src/cpu/x86/vm/stubGenerator_x86_32.cpp

Mon, 28 Feb 2011 06:07:12 -0800

author
twisti
date
Mon, 28 Feb 2011 06:07:12 -0800
changeset 2603
1b4e6a5d98e0
parent 2595
d89a22843c62
child 2606
0ac769a57c64
permissions
-rw-r--r--

7012914: JSR 292 MethodHandlesTest C1: frame::verify_return_pc(return_address) failed: must be a return pc
Reviewed-by: never, bdelsart

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef COMPILER2
    51 #include "opto/runtime.hpp"
    52 #endif
    54 // Declaration and definition of StubGenerator (no .hpp file).
    55 // For a more detailed description of the stub routine structure
    56 // see the comment in stubRoutines.hpp
    58 #define __ _masm->
    59 #define a__ ((Assembler*)_masm)->
    61 #ifdef PRODUCT
    62 #define BLOCK_COMMENT(str) /* nothing */
    63 #else
    64 #define BLOCK_COMMENT(str) __ block_comment(str)
    65 #endif
    67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    69 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    70 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    72 // -------------------------------------------------------------------------------------------------------------------------
    73 // Stub Code definitions
    75 static address handle_unsafe_access() {
    76   JavaThread* thread = JavaThread::current();
    77   address pc  = thread->saved_exception_pc();
    78   // pc is the instruction which we must emulate
    79   // doing a no-op is fine:  return garbage from the load
    80   // therefore, compute npc
    81   address npc = Assembler::locate_next_instruction(pc);
    83   // request an async exception
    84   thread->set_pending_unsafe_access_error();
    86   // return address of next instruction to execute
    87   return npc;
    88 }
    90 class StubGenerator: public StubCodeGenerator {
    91  private:
    93 #ifdef PRODUCT
    94 #define inc_counter_np(counter) (0)
    95 #else
    96   void inc_counter_np_(int& counter) {
    97     __ incrementl(ExternalAddress((address)&counter));
    98   }
    99 #define inc_counter_np(counter) \
   100   BLOCK_COMMENT("inc_counter " #counter); \
   101   inc_counter_np_(counter);
   102 #endif //PRODUCT
   104   void inc_copy_counter_np(BasicType t) {
   105 #ifndef PRODUCT
   106     switch (t) {
   107     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   108     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   109     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   110     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   111     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   112     }
   113     ShouldNotReachHere();
   114 #endif //PRODUCT
   115   }
   117   //------------------------------------------------------------------------------------------------------------------------
   118   // Call stubs are used to call Java from C
   119   //
   120   //    [ return_from_Java     ] <--- rsp
   121   //    [ argument word n      ]
   122   //      ...
   123   // -N [ argument word 1      ]
   124   // -7 [ Possible padding for stack alignment ]
   125   // -6 [ Possible padding for stack alignment ]
   126   // -5 [ Possible padding for stack alignment ]
   127   // -4 [ mxcsr save           ] <--- rsp_after_call
   128   // -3 [ saved rbx,            ]
   129   // -2 [ saved rsi            ]
   130   // -1 [ saved rdi            ]
   131   //  0 [ saved rbp,            ] <--- rbp,
   132   //  1 [ return address       ]
   133   //  2 [ ptr. to call wrapper ]
   134   //  3 [ result               ]
   135   //  4 [ result_type          ]
   136   //  5 [ method               ]
   137   //  6 [ entry_point          ]
   138   //  7 [ parameters           ]
   139   //  8 [ parameter_size       ]
   140   //  9 [ thread               ]
   143   address generate_call_stub(address& return_address) {
   144     StubCodeMark mark(this, "StubRoutines", "call_stub");
   145     address start = __ pc();
   147     // stub code parameters / addresses
   148     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   149     bool  sse_save = false;
   150     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   151     const int     locals_count_in_bytes  (4*wordSize);
   152     const Address mxcsr_save    (rbp, -4 * wordSize);
   153     const Address saved_rbx     (rbp, -3 * wordSize);
   154     const Address saved_rsi     (rbp, -2 * wordSize);
   155     const Address saved_rdi     (rbp, -1 * wordSize);
   156     const Address result        (rbp,  3 * wordSize);
   157     const Address result_type   (rbp,  4 * wordSize);
   158     const Address method        (rbp,  5 * wordSize);
   159     const Address entry_point   (rbp,  6 * wordSize);
   160     const Address parameters    (rbp,  7 * wordSize);
   161     const Address parameter_size(rbp,  8 * wordSize);
   162     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   163     sse_save =  UseSSE > 0;
   165     // stub code
   166     __ enter();
   167     __ movptr(rcx, parameter_size);              // parameter counter
   168     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   169     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   170     __ subptr(rsp, rcx);
   171     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   173     // save rdi, rsi, & rbx, according to C calling conventions
   174     __ movptr(saved_rdi, rdi);
   175     __ movptr(saved_rsi, rsi);
   176     __ movptr(saved_rbx, rbx);
   177     // save and initialize %mxcsr
   178     if (sse_save) {
   179       Label skip_ldmx;
   180       __ stmxcsr(mxcsr_save);
   181       __ movl(rax, mxcsr_save);
   182       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   183       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   184       __ cmp32(rax, mxcsr_std);
   185       __ jcc(Assembler::equal, skip_ldmx);
   186       __ ldmxcsr(mxcsr_std);
   187       __ bind(skip_ldmx);
   188     }
   190     // make sure the control word is correct.
   191     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   193 #ifdef ASSERT
   194     // make sure we have no pending exceptions
   195     { Label L;
   196       __ movptr(rcx, thread);
   197       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   198       __ jcc(Assembler::equal, L);
   199       __ stop("StubRoutines::call_stub: entered with pending exception");
   200       __ bind(L);
   201     }
   202 #endif
   204     // pass parameters if any
   205     BLOCK_COMMENT("pass parameters if any");
   206     Label parameters_done;
   207     __ movl(rcx, parameter_size);  // parameter counter
   208     __ testl(rcx, rcx);
   209     __ jcc(Assembler::zero, parameters_done);
   211     // parameter passing loop
   213     Label loop;
   214     // Copy Java parameters in reverse order (receiver last)
   215     // Note that the argument order is inverted in the process
   216     // source is rdx[rcx: N-1..0]
   217     // dest   is rsp[rbx: 0..N-1]
   219     __ movptr(rdx, parameters);          // parameter pointer
   220     __ xorptr(rbx, rbx);
   222     __ BIND(loop);
   224     // get parameter
   225     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   226     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   227                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   228     __ increment(rbx);
   229     __ decrement(rcx);
   230     __ jcc(Assembler::notZero, loop);
   232     // call Java function
   233     __ BIND(parameters_done);
   234     __ movptr(rbx, method);           // get methodOop
   235     __ movptr(rax, entry_point);      // get entry_point
   236     __ mov(rsi, rsp);                 // set sender sp
   237     BLOCK_COMMENT("call Java function");
   238     __ call(rax);
   240     BLOCK_COMMENT("call_stub_return_address:");
   241     return_address = __ pc();
   243 #ifdef COMPILER2
   244     {
   245       Label L_skip;
   246       if (UseSSE >= 2) {
   247         __ verify_FPU(0, "call_stub_return");
   248       } else {
   249         for (int i = 1; i < 8; i++) {
   250           __ ffree(i);
   251         }
   253         // UseSSE <= 1 so double result should be left on TOS
   254         __ movl(rsi, result_type);
   255         __ cmpl(rsi, T_DOUBLE);
   256         __ jcc(Assembler::equal, L_skip);
   257         if (UseSSE == 0) {
   258           // UseSSE == 0 so float result should be left on TOS
   259           __ cmpl(rsi, T_FLOAT);
   260           __ jcc(Assembler::equal, L_skip);
   261         }
   262         __ ffree(0);
   263       }
   264       __ BIND(L_skip);
   265     }
   266 #endif // COMPILER2
   268     // store result depending on type
   269     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   270     __ movptr(rdi, result);
   271     Label is_long, is_float, is_double, exit;
   272     __ movl(rsi, result_type);
   273     __ cmpl(rsi, T_LONG);
   274     __ jcc(Assembler::equal, is_long);
   275     __ cmpl(rsi, T_FLOAT);
   276     __ jcc(Assembler::equal, is_float);
   277     __ cmpl(rsi, T_DOUBLE);
   278     __ jcc(Assembler::equal, is_double);
   280     // handle T_INT case
   281     __ movl(Address(rdi, 0), rax);
   282     __ BIND(exit);
   284     // check that FPU stack is empty
   285     __ verify_FPU(0, "generate_call_stub");
   287     // pop parameters
   288     __ lea(rsp, rsp_after_call);
   290     // restore %mxcsr
   291     if (sse_save) {
   292       __ ldmxcsr(mxcsr_save);
   293     }
   295     // restore rdi, rsi and rbx,
   296     __ movptr(rbx, saved_rbx);
   297     __ movptr(rsi, saved_rsi);
   298     __ movptr(rdi, saved_rdi);
   299     __ addptr(rsp, 4*wordSize);
   301     // return
   302     __ pop(rbp);
   303     __ ret(0);
   305     // handle return types different from T_INT
   306     __ BIND(is_long);
   307     __ movl(Address(rdi, 0 * wordSize), rax);
   308     __ movl(Address(rdi, 1 * wordSize), rdx);
   309     __ jmp(exit);
   311     __ BIND(is_float);
   312     // interpreter uses xmm0 for return values
   313     if (UseSSE >= 1) {
   314       __ movflt(Address(rdi, 0), xmm0);
   315     } else {
   316       __ fstp_s(Address(rdi, 0));
   317     }
   318     __ jmp(exit);
   320     __ BIND(is_double);
   321     // interpreter uses xmm0 for return values
   322     if (UseSSE >= 2) {
   323       __ movdbl(Address(rdi, 0), xmm0);
   324     } else {
   325       __ fstp_d(Address(rdi, 0));
   326     }
   327     __ jmp(exit);
   329     return start;
   330   }
   333   //------------------------------------------------------------------------------------------------------------------------
   334   // Return point for a Java call if there's an exception thrown in Java code.
   335   // The exception is caught and transformed into a pending exception stored in
   336   // JavaThread that can be tested from within the VM.
   337   //
   338   // Note: Usually the parameters are removed by the callee. In case of an exception
   339   //       crossing an activation frame boundary, that is not the case if the callee
   340   //       is compiled code => need to setup the rsp.
   341   //
   342   // rax,: exception oop
   344   address generate_catch_exception() {
   345     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   346     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   347     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   348     address start = __ pc();
   350     // get thread directly
   351     __ movptr(rcx, thread);
   352 #ifdef ASSERT
   353     // verify that threads correspond
   354     { Label L;
   355       __ get_thread(rbx);
   356       __ cmpptr(rbx, rcx);
   357       __ jcc(Assembler::equal, L);
   358       __ stop("StubRoutines::catch_exception: threads must correspond");
   359       __ bind(L);
   360     }
   361 #endif
   362     // set pending exception
   363     __ verify_oop(rax);
   364     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   365     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   366            ExternalAddress((address)__FILE__));
   367     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   368     // complete return to VM
   369     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   370     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   372     return start;
   373   }
   376   //------------------------------------------------------------------------------------------------------------------------
   377   // Continuation point for runtime calls returning with a pending exception.
   378   // The pending exception check happened in the runtime or native call stub.
   379   // The pending exception in Thread is converted into a Java-level exception.
   380   //
   381   // Contract with Java-level exception handlers:
   382   // rax: exception
   383   // rdx: throwing pc
   384   //
   385   // NOTE: At entry of this stub, exception-pc must be on stack !!
   387   address generate_forward_exception() {
   388     StubCodeMark mark(this, "StubRoutines", "forward exception");
   389     address start = __ pc();
   390     const Register thread = rcx;
   392     // other registers used in this stub
   393     const Register exception_oop = rax;
   394     const Register handler_addr  = rbx;
   395     const Register exception_pc  = rdx;
   397     // Upon entry, the sp points to the return address returning into Java
   398     // (interpreted or compiled) code; i.e., the return address becomes the
   399     // throwing pc.
   400     //
   401     // Arguments pushed before the runtime call are still on the stack but
   402     // the exception handler will reset the stack pointer -> ignore them.
   403     // A potential result in registers can be ignored as well.
   405 #ifdef ASSERT
   406     // make sure this code is only executed if there is a pending exception
   407     { Label L;
   408       __ get_thread(thread);
   409       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   410       __ jcc(Assembler::notEqual, L);
   411       __ stop("StubRoutines::forward exception: no pending exception (1)");
   412       __ bind(L);
   413     }
   414 #endif
   416     // compute exception handler into rbx,
   417     __ get_thread(thread);
   418     __ movptr(exception_pc, Address(rsp, 0));
   419     BLOCK_COMMENT("call exception_handler_for_return_address");
   420     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   421     __ mov(handler_addr, rax);
   423     // setup rax & rdx, remove return address & clear pending exception
   424     __ get_thread(thread);
   425     __ pop(exception_pc);
   426     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   427     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   429 #ifdef ASSERT
   430     // make sure exception is set
   431     { Label L;
   432       __ testptr(exception_oop, exception_oop);
   433       __ jcc(Assembler::notEqual, L);
   434       __ stop("StubRoutines::forward exception: no pending exception (2)");
   435       __ bind(L);
   436     }
   437 #endif
   439     // Verify that there is really a valid exception in RAX.
   440     __ verify_oop(exception_oop);
   442     // continue at exception handler (return address removed)
   443     // rax: exception
   444     // rbx: exception handler
   445     // rdx: throwing pc
   446     __ jmp(handler_addr);
   448     return start;
   449   }
   452   //----------------------------------------------------------------------------------------------------
   453   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   454   //
   455   // xchg exists as far back as 8086, lock needed for MP only
   456   // Stack layout immediately after call:
   457   //
   458   // 0 [ret addr ] <--- rsp
   459   // 1 [  ex     ]
   460   // 2 [  dest   ]
   461   //
   462   // Result:   *dest <- ex, return (old *dest)
   463   //
   464   // Note: win32 does not currently use this code
   466   address generate_atomic_xchg() {
   467     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   468     address start = __ pc();
   470     __ push(rdx);
   471     Address exchange(rsp, 2 * wordSize);
   472     Address dest_addr(rsp, 3 * wordSize);
   473     __ movl(rax, exchange);
   474     __ movptr(rdx, dest_addr);
   475     __ xchgl(rax, Address(rdx, 0));
   476     __ pop(rdx);
   477     __ ret(0);
   479     return start;
   480   }
   482   //----------------------------------------------------------------------------------------------------
   483   // Support for void verify_mxcsr()
   484   //
   485   // This routine is used with -Xcheck:jni to verify that native
   486   // JNI code does not return to Java code without restoring the
   487   // MXCSR register to our expected state.
   490   address generate_verify_mxcsr() {
   491     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   492     address start = __ pc();
   494     const Address mxcsr_save(rsp, 0);
   496     if (CheckJNICalls && UseSSE > 0 ) {
   497       Label ok_ret;
   498       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   499       __ push(rax);
   500       __ subptr(rsp, wordSize);      // allocate a temp location
   501       __ stmxcsr(mxcsr_save);
   502       __ movl(rax, mxcsr_save);
   503       __ andl(rax, MXCSR_MASK);
   504       __ cmp32(rax, mxcsr_std);
   505       __ jcc(Assembler::equal, ok_ret);
   507       __ warn("MXCSR changed by native JNI code.");
   509       __ ldmxcsr(mxcsr_std);
   511       __ bind(ok_ret);
   512       __ addptr(rsp, wordSize);
   513       __ pop(rax);
   514     }
   516     __ ret(0);
   518     return start;
   519   }
   522   //---------------------------------------------------------------------------
   523   // Support for void verify_fpu_cntrl_wrd()
   524   //
   525   // This routine is used with -Xcheck:jni to verify that native
   526   // JNI code does not return to Java code without restoring the
   527   // FP control word to our expected state.
   529   address generate_verify_fpu_cntrl_wrd() {
   530     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   531     address start = __ pc();
   533     const Address fpu_cntrl_wrd_save(rsp, 0);
   535     if (CheckJNICalls) {
   536       Label ok_ret;
   537       __ push(rax);
   538       __ subptr(rsp, wordSize);      // allocate a temp location
   539       __ fnstcw(fpu_cntrl_wrd_save);
   540       __ movl(rax, fpu_cntrl_wrd_save);
   541       __ andl(rax, FPU_CNTRL_WRD_MASK);
   542       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   543       __ cmp32(rax, fpu_std);
   544       __ jcc(Assembler::equal, ok_ret);
   546       __ warn("Floating point control word changed by native JNI code.");
   548       __ fldcw(fpu_std);
   550       __ bind(ok_ret);
   551       __ addptr(rsp, wordSize);
   552       __ pop(rax);
   553     }
   555     __ ret(0);
   557     return start;
   558   }
   560   //---------------------------------------------------------------------------
   561   // Wrapper for slow-case handling of double-to-integer conversion
   562   // d2i or f2i fast case failed either because it is nan or because
   563   // of under/overflow.
   564   // Input:  FPU TOS: float value
   565   // Output: rax, (rdx): integer (long) result
   567   address generate_d2i_wrapper(BasicType t, address fcn) {
   568     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   569     address start = __ pc();
   571   // Capture info about frame layout
   572   enum layout { FPUState_off         = 0,
   573                 rbp_off              = FPUStateSizeInWords,
   574                 rdi_off,
   575                 rsi_off,
   576                 rcx_off,
   577                 rbx_off,
   578                 saved_argument_off,
   579                 saved_argument_off2, // 2nd half of double
   580                 framesize
   581   };
   583   assert(FPUStateSizeInWords == 27, "update stack layout");
   585     // Save outgoing argument to stack across push_FPU_state()
   586     __ subptr(rsp, wordSize * 2);
   587     __ fstp_d(Address(rsp, 0));
   589     // Save CPU & FPU state
   590     __ push(rbx);
   591     __ push(rcx);
   592     __ push(rsi);
   593     __ push(rdi);
   594     __ push(rbp);
   595     __ push_FPU_state();
   597     // push_FPU_state() resets the FP top of stack
   598     // Load original double into FP top of stack
   599     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   600     // Store double into stack as outgoing argument
   601     __ subptr(rsp, wordSize*2);
   602     __ fst_d(Address(rsp, 0));
   604     // Prepare FPU for doing math in C-land
   605     __ empty_FPU_stack();
   606     // Call the C code to massage the double.  Result in EAX
   607     if (t == T_INT)
   608       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   609     else if (t == T_LONG)
   610       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   611     __ call_VM_leaf( fcn, 2 );
   613     // Restore CPU & FPU state
   614     __ pop_FPU_state();
   615     __ pop(rbp);
   616     __ pop(rdi);
   617     __ pop(rsi);
   618     __ pop(rcx);
   619     __ pop(rbx);
   620     __ addptr(rsp, wordSize * 2);
   622     __ ret(0);
   624     return start;
   625   }
   628   //---------------------------------------------------------------------------
   629   // The following routine generates a subroutine to throw an asynchronous
   630   // UnknownError when an unsafe access gets a fault that could not be
   631   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   632   address generate_handler_for_unsafe_access() {
   633     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   634     address start = __ pc();
   636     __ push(0);                       // hole for return address-to-be
   637     __ pusha();                       // push registers
   638     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   639     BLOCK_COMMENT("call handle_unsafe_access");
   640     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   641     __ movptr(next_pc, rax);          // stuff next address
   642     __ popa();
   643     __ ret(0);                        // jump to next address
   645     return start;
   646   }
   649   //----------------------------------------------------------------------------------------------------
   650   // Non-destructive plausibility checks for oops
   652   address generate_verify_oop() {
   653     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   654     address start = __ pc();
   656     // Incoming arguments on stack after saving rax,:
   657     //
   658     // [tos    ]: saved rdx
   659     // [tos + 1]: saved EFLAGS
   660     // [tos + 2]: return address
   661     // [tos + 3]: char* error message
   662     // [tos + 4]: oop   object to verify
   663     // [tos + 5]: saved rax, - saved by caller and bashed
   665     Label exit, error;
   666     __ pushf();
   667     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   668     __ push(rdx);                                // save rdx
   669     // make sure object is 'reasonable'
   670     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   671     __ testptr(rax, rax);
   672     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   674     // Check if the oop is in the right area of memory
   675     const int oop_mask = Universe::verify_oop_mask();
   676     const int oop_bits = Universe::verify_oop_bits();
   677     __ mov(rdx, rax);
   678     __ andptr(rdx, oop_mask);
   679     __ cmpptr(rdx, oop_bits);
   680     __ jcc(Assembler::notZero, error);
   682     // make sure klass is 'reasonable'
   683     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   684     __ testptr(rax, rax);
   685     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   687     // Check if the klass is in the right area of memory
   688     const int klass_mask = Universe::verify_klass_mask();
   689     const int klass_bits = Universe::verify_klass_bits();
   690     __ mov(rdx, rax);
   691     __ andptr(rdx, klass_mask);
   692     __ cmpptr(rdx, klass_bits);
   693     __ jcc(Assembler::notZero, error);
   695     // make sure klass' klass is 'reasonable'
   696     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   697     __ testptr(rax, rax);
   698     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   700     __ mov(rdx, rax);
   701     __ andptr(rdx, klass_mask);
   702     __ cmpptr(rdx, klass_bits);
   703     __ jcc(Assembler::notZero, error);           // if klass not in right area
   704                                                  // of memory it is broken too.
   706     // return if everything seems ok
   707     __ bind(exit);
   708     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   709     __ pop(rdx);                                 // restore rdx
   710     __ popf();                                   // restore EFLAGS
   711     __ ret(3 * wordSize);                        // pop arguments
   713     // handle errors
   714     __ bind(error);
   715     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   716     __ pop(rdx);                                 // get saved rdx back
   717     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   718     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   719     BLOCK_COMMENT("call MacroAssembler::debug");
   720     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   721     __ popa();
   722     __ ret(3 * wordSize);                        // pop arguments
   723     return start;
   724   }
   726   //
   727   //  Generate pre-barrier for array stores
   728   //
   729   //  Input:
   730   //     start   -  starting address
   731   //     count   -  element count
   732   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   733     assert_different_registers(start, count);
   734     BarrierSet* bs = Universe::heap()->barrier_set();
   735     switch (bs->kind()) {
   736       case BarrierSet::G1SATBCT:
   737       case BarrierSet::G1SATBCTLogging:
   738         {
   739           __ pusha();                      // push registers
   740           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   741                           start, count);
   742           __ popa();
   743         }
   744         break;
   745       case BarrierSet::CardTableModRef:
   746       case BarrierSet::CardTableExtension:
   747       case BarrierSet::ModRef:
   748         break;
   749       default      :
   750         ShouldNotReachHere();
   752     }
   753   }
   756   //
   757   // Generate a post-barrier for an array store
   758   //
   759   //     start    -  starting address
   760   //     count    -  element count
   761   //
   762   //  The two input registers are overwritten.
   763   //
   764   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   765     BarrierSet* bs = Universe::heap()->barrier_set();
   766     assert_different_registers(start, count);
   767     switch (bs->kind()) {
   768       case BarrierSet::G1SATBCT:
   769       case BarrierSet::G1SATBCTLogging:
   770         {
   771           __ pusha();                      // push registers
   772           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   773                           start, count);
   774           __ popa();
   775         }
   776         break;
   778       case BarrierSet::CardTableModRef:
   779       case BarrierSet::CardTableExtension:
   780         {
   781           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   782           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   784           Label L_loop;
   785           const Register end = count;  // elements count; end == start+count-1
   786           assert_different_registers(start, end);
   788           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   789           __ shrptr(start, CardTableModRefBS::card_shift);
   790           __ shrptr(end,   CardTableModRefBS::card_shift);
   791           __ subptr(end, start); // end --> count
   792         __ BIND(L_loop);
   793           intptr_t disp = (intptr_t) ct->byte_map_base;
   794           Address cardtable(start, count, Address::times_1, disp);
   795           __ movb(cardtable, 0);
   796           __ decrement(count);
   797           __ jcc(Assembler::greaterEqual, L_loop);
   798         }
   799         break;
   800       case BarrierSet::ModRef:
   801         break;
   802       default      :
   803         ShouldNotReachHere();
   805     }
   806   }
   809   // Copy 64 bytes chunks
   810   //
   811   // Inputs:
   812   //   from        - source array address
   813   //   to_from     - destination array address - from
   814   //   qword_count - 8-bytes element count, negative
   815   //
   816   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   817     assert( UseSSE >= 2, "supported cpu only" );
   818     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   819     // Copy 64-byte chunks
   820     __ jmpb(L_copy_64_bytes);
   821     __ align(OptoLoopAlignment);
   822   __ BIND(L_copy_64_bytes_loop);
   824     if(UseUnalignedLoadStores) {
   825       __ movdqu(xmm0, Address(from, 0));
   826       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   827       __ movdqu(xmm1, Address(from, 16));
   828       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   829       __ movdqu(xmm2, Address(from, 32));
   830       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   831       __ movdqu(xmm3, Address(from, 48));
   832       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   834     } else {
   835       __ movq(xmm0, Address(from, 0));
   836       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   837       __ movq(xmm1, Address(from, 8));
   838       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   839       __ movq(xmm2, Address(from, 16));
   840       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   841       __ movq(xmm3, Address(from, 24));
   842       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   843       __ movq(xmm4, Address(from, 32));
   844       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   845       __ movq(xmm5, Address(from, 40));
   846       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   847       __ movq(xmm6, Address(from, 48));
   848       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   849       __ movq(xmm7, Address(from, 56));
   850       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   851     }
   853     __ addl(from, 64);
   854   __ BIND(L_copy_64_bytes);
   855     __ subl(qword_count, 8);
   856     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   857     __ addl(qword_count, 8);
   858     __ jccb(Assembler::zero, L_exit);
   859     //
   860     // length is too short, just copy qwords
   861     //
   862   __ BIND(L_copy_8_bytes);
   863     __ movq(xmm0, Address(from, 0));
   864     __ movq(Address(from, to_from, Address::times_1), xmm0);
   865     __ addl(from, 8);
   866     __ decrement(qword_count);
   867     __ jcc(Assembler::greater, L_copy_8_bytes);
   868   __ BIND(L_exit);
   869   }
   871   // Copy 64 bytes chunks
   872   //
   873   // Inputs:
   874   //   from        - source array address
   875   //   to_from     - destination array address - from
   876   //   qword_count - 8-bytes element count, negative
   877   //
   878   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   879     assert( VM_Version::supports_mmx(), "supported cpu only" );
   880     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   881     // Copy 64-byte chunks
   882     __ jmpb(L_copy_64_bytes);
   883     __ align(OptoLoopAlignment);
   884   __ BIND(L_copy_64_bytes_loop);
   885     __ movq(mmx0, Address(from, 0));
   886     __ movq(mmx1, Address(from, 8));
   887     __ movq(mmx2, Address(from, 16));
   888     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   889     __ movq(mmx3, Address(from, 24));
   890     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   891     __ movq(mmx4, Address(from, 32));
   892     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   893     __ movq(mmx5, Address(from, 40));
   894     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   895     __ movq(mmx6, Address(from, 48));
   896     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   897     __ movq(mmx7, Address(from, 56));
   898     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   899     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   900     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   901     __ addptr(from, 64);
   902   __ BIND(L_copy_64_bytes);
   903     __ subl(qword_count, 8);
   904     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   905     __ addl(qword_count, 8);
   906     __ jccb(Assembler::zero, L_exit);
   907     //
   908     // length is too short, just copy qwords
   909     //
   910   __ BIND(L_copy_8_bytes);
   911     __ movq(mmx0, Address(from, 0));
   912     __ movq(Address(from, to_from, Address::times_1), mmx0);
   913     __ addptr(from, 8);
   914     __ decrement(qword_count);
   915     __ jcc(Assembler::greater, L_copy_8_bytes);
   916   __ BIND(L_exit);
   917     __ emms();
   918   }
   920   address generate_disjoint_copy(BasicType t, bool aligned,
   921                                  Address::ScaleFactor sf,
   922                                  address* entry, const char *name) {
   923     __ align(CodeEntryAlignment);
   924     StubCodeMark mark(this, "StubRoutines", name);
   925     address start = __ pc();
   927     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   928     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   930     int shift = Address::times_ptr - sf;
   932     const Register from     = rsi;  // source array address
   933     const Register to       = rdi;  // destination array address
   934     const Register count    = rcx;  // elements count
   935     const Register to_from  = to;   // (to - from)
   936     const Register saved_to = rdx;  // saved destination array address
   938     __ enter(); // required for proper stackwalking of RuntimeStub frame
   939     __ push(rsi);
   940     __ push(rdi);
   941     __ movptr(from , Address(rsp, 12+ 4));
   942     __ movptr(to   , Address(rsp, 12+ 8));
   943     __ movl(count, Address(rsp, 12+ 12));
   945     if (entry != NULL) {
   946       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   947       BLOCK_COMMENT("Entry:");
   948     }
   950     if (t == T_OBJECT) {
   951       __ testl(count, count);
   952       __ jcc(Assembler::zero, L_0_count);
   953       gen_write_ref_array_pre_barrier(to, count);
   954       __ mov(saved_to, to);          // save 'to'
   955     }
   957     __ subptr(to, from); // to --> to_from
   958     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   959     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   960     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   961       // align source address at 4 bytes address boundary
   962       if (t == T_BYTE) {
   963         // One byte misalignment happens only for byte arrays
   964         __ testl(from, 1);
   965         __ jccb(Assembler::zero, L_skip_align1);
   966         __ movb(rax, Address(from, 0));
   967         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   968         __ increment(from);
   969         __ decrement(count);
   970       __ BIND(L_skip_align1);
   971       }
   972       // Two bytes misalignment happens only for byte and short (char) arrays
   973       __ testl(from, 2);
   974       __ jccb(Assembler::zero, L_skip_align2);
   975       __ movw(rax, Address(from, 0));
   976       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   977       __ addptr(from, 2);
   978       __ subl(count, 1<<(shift-1));
   979     __ BIND(L_skip_align2);
   980     }
   981     if (!VM_Version::supports_mmx()) {
   982       __ mov(rax, count);      // save 'count'
   983       __ shrl(count, shift); // bytes count
   984       __ addptr(to_from, from);// restore 'to'
   985       __ rep_mov();
   986       __ subptr(to_from, from);// restore 'to_from'
   987       __ mov(count, rax);      // restore 'count'
   988       __ jmpb(L_copy_2_bytes); // all dwords were copied
   989     } else {
   990       if (!UseUnalignedLoadStores) {
   991         // align to 8 bytes, we know we are 4 byte aligned to start
   992         __ testptr(from, 4);
   993         __ jccb(Assembler::zero, L_copy_64_bytes);
   994         __ movl(rax, Address(from, 0));
   995         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   996         __ addptr(from, 4);
   997         __ subl(count, 1<<shift);
   998       }
   999     __ BIND(L_copy_64_bytes);
  1000       __ mov(rax, count);
  1001       __ shrl(rax, shift+1);  // 8 bytes chunk count
  1002       //
  1003       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
  1004       //
  1005       if (UseXMMForArrayCopy) {
  1006         xmm_copy_forward(from, to_from, rax);
  1007       } else {
  1008         mmx_copy_forward(from, to_from, rax);
  1011     // copy tailing dword
  1012   __ BIND(L_copy_4_bytes);
  1013     __ testl(count, 1<<shift);
  1014     __ jccb(Assembler::zero, L_copy_2_bytes);
  1015     __ movl(rax, Address(from, 0));
  1016     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1017     if (t == T_BYTE || t == T_SHORT) {
  1018       __ addptr(from, 4);
  1019     __ BIND(L_copy_2_bytes);
  1020       // copy tailing word
  1021       __ testl(count, 1<<(shift-1));
  1022       __ jccb(Assembler::zero, L_copy_byte);
  1023       __ movw(rax, Address(from, 0));
  1024       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1025       if (t == T_BYTE) {
  1026         __ addptr(from, 2);
  1027       __ BIND(L_copy_byte);
  1028         // copy tailing byte
  1029         __ testl(count, 1);
  1030         __ jccb(Assembler::zero, L_exit);
  1031         __ movb(rax, Address(from, 0));
  1032         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1033       __ BIND(L_exit);
  1034       } else {
  1035       __ BIND(L_copy_byte);
  1037     } else {
  1038     __ BIND(L_copy_2_bytes);
  1041     if (t == T_OBJECT) {
  1042       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1043       __ mov(to, saved_to); // restore 'to'
  1044       gen_write_ref_array_post_barrier(to, count);
  1045     __ BIND(L_0_count);
  1047     inc_copy_counter_np(t);
  1048     __ pop(rdi);
  1049     __ pop(rsi);
  1050     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1051     __ xorptr(rax, rax); // return 0
  1052     __ ret(0);
  1053     return start;
  1057   address generate_fill(BasicType t, bool aligned, const char *name) {
  1058     __ align(CodeEntryAlignment);
  1059     StubCodeMark mark(this, "StubRoutines", name);
  1060     address start = __ pc();
  1062     BLOCK_COMMENT("Entry:");
  1064     const Register to       = rdi;  // source array address
  1065     const Register value    = rdx;  // value
  1066     const Register count    = rsi;  // elements count
  1068     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1069     __ push(rsi);
  1070     __ push(rdi);
  1071     __ movptr(to   , Address(rsp, 12+ 4));
  1072     __ movl(value, Address(rsp, 12+ 8));
  1073     __ movl(count, Address(rsp, 12+ 12));
  1075     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1077     __ pop(rdi);
  1078     __ pop(rsi);
  1079     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1080     __ ret(0);
  1081     return start;
  1084   address generate_conjoint_copy(BasicType t, bool aligned,
  1085                                  Address::ScaleFactor sf,
  1086                                  address nooverlap_target,
  1087                                  address* entry, const char *name) {
  1088     __ align(CodeEntryAlignment);
  1089     StubCodeMark mark(this, "StubRoutines", name);
  1090     address start = __ pc();
  1092     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1093     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1095     int shift = Address::times_ptr - sf;
  1097     const Register src   = rax;  // source array address
  1098     const Register dst   = rdx;  // destination array address
  1099     const Register from  = rsi;  // source array address
  1100     const Register to    = rdi;  // destination array address
  1101     const Register count = rcx;  // elements count
  1102     const Register end   = rax;  // array end address
  1104     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1105     __ push(rsi);
  1106     __ push(rdi);
  1107     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1108     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1109     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1111     if (entry != NULL) {
  1112       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1113       BLOCK_COMMENT("Entry:");
  1116     // nooverlap_target expects arguments in rsi and rdi.
  1117     __ mov(from, src);
  1118     __ mov(to  , dst);
  1120     // arrays overlap test: dispatch to disjoint stub if necessary.
  1121     RuntimeAddress nooverlap(nooverlap_target);
  1122     __ cmpptr(dst, src);
  1123     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1124     __ jump_cc(Assembler::belowEqual, nooverlap);
  1125     __ cmpptr(dst, end);
  1126     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1128     if (t == T_OBJECT) {
  1129       __ testl(count, count);
  1130       __ jcc(Assembler::zero, L_0_count);
  1131        gen_write_ref_array_pre_barrier(dst, count);
  1134     // copy from high to low
  1135     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1136     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1137     if (t == T_BYTE || t == T_SHORT) {
  1138       // Align the end of destination array at 4 bytes address boundary
  1139       __ lea(end, Address(dst, count, sf, 0));
  1140       if (t == T_BYTE) {
  1141         // One byte misalignment happens only for byte arrays
  1142         __ testl(end, 1);
  1143         __ jccb(Assembler::zero, L_skip_align1);
  1144         __ decrement(count);
  1145         __ movb(rdx, Address(from, count, sf, 0));
  1146         __ movb(Address(to, count, sf, 0), rdx);
  1147       __ BIND(L_skip_align1);
  1149       // Two bytes misalignment happens only for byte and short (char) arrays
  1150       __ testl(end, 2);
  1151       __ jccb(Assembler::zero, L_skip_align2);
  1152       __ subptr(count, 1<<(shift-1));
  1153       __ movw(rdx, Address(from, count, sf, 0));
  1154       __ movw(Address(to, count, sf, 0), rdx);
  1155     __ BIND(L_skip_align2);
  1156       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1157       __ jcc(Assembler::below, L_copy_4_bytes);
  1160     if (!VM_Version::supports_mmx()) {
  1161       __ std();
  1162       __ mov(rax, count); // Save 'count'
  1163       __ mov(rdx, to);    // Save 'to'
  1164       __ lea(rsi, Address(from, count, sf, -4));
  1165       __ lea(rdi, Address(to  , count, sf, -4));
  1166       __ shrptr(count, shift); // bytes count
  1167       __ rep_mov();
  1168       __ cld();
  1169       __ mov(count, rax); // restore 'count'
  1170       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1171       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1172       __ mov(to, rdx);   // restore 'to'
  1173       __ jmpb(L_copy_2_bytes); // all dword were copied
  1174    } else {
  1175       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1176       __ testptr(end, 4);
  1177       __ jccb(Assembler::zero, L_copy_8_bytes);
  1178       __ subl(count, 1<<shift);
  1179       __ movl(rdx, Address(from, count, sf, 0));
  1180       __ movl(Address(to, count, sf, 0), rdx);
  1181       __ jmpb(L_copy_8_bytes);
  1183       __ align(OptoLoopAlignment);
  1184       // Move 8 bytes
  1185     __ BIND(L_copy_8_bytes_loop);
  1186       if (UseXMMForArrayCopy) {
  1187         __ movq(xmm0, Address(from, count, sf, 0));
  1188         __ movq(Address(to, count, sf, 0), xmm0);
  1189       } else {
  1190         __ movq(mmx0, Address(from, count, sf, 0));
  1191         __ movq(Address(to, count, sf, 0), mmx0);
  1193     __ BIND(L_copy_8_bytes);
  1194       __ subl(count, 2<<shift);
  1195       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1196       __ addl(count, 2<<shift);
  1197       if (!UseXMMForArrayCopy) {
  1198         __ emms();
  1201   __ BIND(L_copy_4_bytes);
  1202     // copy prefix qword
  1203     __ testl(count, 1<<shift);
  1204     __ jccb(Assembler::zero, L_copy_2_bytes);
  1205     __ movl(rdx, Address(from, count, sf, -4));
  1206     __ movl(Address(to, count, sf, -4), rdx);
  1208     if (t == T_BYTE || t == T_SHORT) {
  1209         __ subl(count, (1<<shift));
  1210       __ BIND(L_copy_2_bytes);
  1211         // copy prefix dword
  1212         __ testl(count, 1<<(shift-1));
  1213         __ jccb(Assembler::zero, L_copy_byte);
  1214         __ movw(rdx, Address(from, count, sf, -2));
  1215         __ movw(Address(to, count, sf, -2), rdx);
  1216         if (t == T_BYTE) {
  1217           __ subl(count, 1<<(shift-1));
  1218         __ BIND(L_copy_byte);
  1219           // copy prefix byte
  1220           __ testl(count, 1);
  1221           __ jccb(Assembler::zero, L_exit);
  1222           __ movb(rdx, Address(from, 0));
  1223           __ movb(Address(to, 0), rdx);
  1224         __ BIND(L_exit);
  1225         } else {
  1226         __ BIND(L_copy_byte);
  1228     } else {
  1229     __ BIND(L_copy_2_bytes);
  1231     if (t == T_OBJECT) {
  1232       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1233       gen_write_ref_array_post_barrier(to, count);
  1234     __ BIND(L_0_count);
  1236     inc_copy_counter_np(t);
  1237     __ pop(rdi);
  1238     __ pop(rsi);
  1239     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1240     __ xorptr(rax, rax); // return 0
  1241     __ ret(0);
  1242     return start;
  1246   address generate_disjoint_long_copy(address* entry, const char *name) {
  1247     __ align(CodeEntryAlignment);
  1248     StubCodeMark mark(this, "StubRoutines", name);
  1249     address start = __ pc();
  1251     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1252     const Register from       = rax;  // source array address
  1253     const Register to         = rdx;  // destination array address
  1254     const Register count      = rcx;  // elements count
  1255     const Register to_from    = rdx;  // (to - from)
  1257     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1258     __ movptr(from , Address(rsp, 8+0));       // from
  1259     __ movptr(to   , Address(rsp, 8+4));       // to
  1260     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1262     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1263     BLOCK_COMMENT("Entry:");
  1265     __ subptr(to, from); // to --> to_from
  1266     if (VM_Version::supports_mmx()) {
  1267       if (UseXMMForArrayCopy) {
  1268         xmm_copy_forward(from, to_from, count);
  1269       } else {
  1270         mmx_copy_forward(from, to_from, count);
  1272     } else {
  1273       __ jmpb(L_copy_8_bytes);
  1274       __ align(OptoLoopAlignment);
  1275     __ BIND(L_copy_8_bytes_loop);
  1276       __ fild_d(Address(from, 0));
  1277       __ fistp_d(Address(from, to_from, Address::times_1));
  1278       __ addptr(from, 8);
  1279     __ BIND(L_copy_8_bytes);
  1280       __ decrement(count);
  1281       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1283     inc_copy_counter_np(T_LONG);
  1284     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1285     __ xorptr(rax, rax); // return 0
  1286     __ ret(0);
  1287     return start;
  1290   address generate_conjoint_long_copy(address nooverlap_target,
  1291                                       address* entry, const char *name) {
  1292     __ align(CodeEntryAlignment);
  1293     StubCodeMark mark(this, "StubRoutines", name);
  1294     address start = __ pc();
  1296     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1297     const Register from       = rax;  // source array address
  1298     const Register to         = rdx;  // destination array address
  1299     const Register count      = rcx;  // elements count
  1300     const Register end_from   = rax;  // source array end address
  1302     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1303     __ movptr(from , Address(rsp, 8+0));       // from
  1304     __ movptr(to   , Address(rsp, 8+4));       // to
  1305     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1307     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1308     BLOCK_COMMENT("Entry:");
  1310     // arrays overlap test
  1311     __ cmpptr(to, from);
  1312     RuntimeAddress nooverlap(nooverlap_target);
  1313     __ jump_cc(Assembler::belowEqual, nooverlap);
  1314     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1315     __ cmpptr(to, end_from);
  1316     __ movptr(from, Address(rsp, 8));  // from
  1317     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1319     __ jmpb(L_copy_8_bytes);
  1321     __ align(OptoLoopAlignment);
  1322   __ BIND(L_copy_8_bytes_loop);
  1323     if (VM_Version::supports_mmx()) {
  1324       if (UseXMMForArrayCopy) {
  1325         __ movq(xmm0, Address(from, count, Address::times_8));
  1326         __ movq(Address(to, count, Address::times_8), xmm0);
  1327       } else {
  1328         __ movq(mmx0, Address(from, count, Address::times_8));
  1329         __ movq(Address(to, count, Address::times_8), mmx0);
  1331     } else {
  1332       __ fild_d(Address(from, count, Address::times_8));
  1333       __ fistp_d(Address(to, count, Address::times_8));
  1335   __ BIND(L_copy_8_bytes);
  1336     __ decrement(count);
  1337     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1339     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1340       __ emms();
  1342     inc_copy_counter_np(T_LONG);
  1343     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1344     __ xorptr(rax, rax); // return 0
  1345     __ ret(0);
  1346     return start;
  1350   // Helper for generating a dynamic type check.
  1351   // The sub_klass must be one of {rbx, rdx, rsi}.
  1352   // The temp is killed.
  1353   void generate_type_check(Register sub_klass,
  1354                            Address& super_check_offset_addr,
  1355                            Address& super_klass_addr,
  1356                            Register temp,
  1357                            Label* L_success, Label* L_failure) {
  1358     BLOCK_COMMENT("type_check:");
  1360     Label L_fallthrough;
  1361 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1362     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1363     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1365     // The following is a strange variation of the fast path which requires
  1366     // one less register, because needed values are on the argument stack.
  1367     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1368     //                                  L_success, L_failure, NULL);
  1369     assert_different_registers(sub_klass, temp);
  1371     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1372                      Klass::secondary_super_cache_offset_in_bytes());
  1374     // if the pointers are equal, we are done (e.g., String[] elements)
  1375     __ cmpptr(sub_klass, super_klass_addr);
  1376     LOCAL_JCC(Assembler::equal, L_success);
  1378     // check the supertype display:
  1379     __ movl2ptr(temp, super_check_offset_addr);
  1380     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1381     __ movptr(temp, super_check_addr); // load displayed supertype
  1382     __ cmpptr(temp, super_klass_addr); // test the super type
  1383     LOCAL_JCC(Assembler::equal, L_success);
  1385     // if it was a primary super, we can just fail immediately
  1386     __ cmpl(super_check_offset_addr, sc_offset);
  1387     LOCAL_JCC(Assembler::notEqual, L_failure);
  1389     // The repne_scan instruction uses fixed registers, which will get spilled.
  1390     // We happen to know this works best when super_klass is in rax.
  1391     Register super_klass = temp;
  1392     __ movptr(super_klass, super_klass_addr);
  1393     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1394                                      L_success, L_failure);
  1396     __ bind(L_fallthrough);
  1398     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1399     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1401 #undef LOCAL_JCC
  1404   //
  1405   //  Generate checkcasting array copy stub
  1406   //
  1407   //  Input:
  1408   //    4(rsp)   - source array address
  1409   //    8(rsp)   - destination array address
  1410   //   12(rsp)   - element count, can be zero
  1411   //   16(rsp)   - size_t ckoff (super_check_offset)
  1412   //   20(rsp)   - oop ckval (super_klass)
  1413   //
  1414   //  Output:
  1415   //    rax, ==  0  -  success
  1416   //    rax, == -1^K - failure, where K is partial transfer count
  1417   //
  1418   address generate_checkcast_copy(const char *name, address* entry) {
  1419     __ align(CodeEntryAlignment);
  1420     StubCodeMark mark(this, "StubRoutines", name);
  1421     address start = __ pc();
  1423     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1425     // register use:
  1426     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1427     //  rdi, rsi      -- element access (oop, klass)
  1428     //  rbx,           -- temp
  1429     const Register from       = rax;    // source array address
  1430     const Register to         = rdx;    // destination array address
  1431     const Register length     = rcx;    // elements count
  1432     const Register elem       = rdi;    // each oop copied
  1433     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1434     const Register temp       = rbx;    // lone remaining temp
  1436     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1438     __ push(rsi);
  1439     __ push(rdi);
  1440     __ push(rbx);
  1442     Address   from_arg(rsp, 16+ 4);     // from
  1443     Address     to_arg(rsp, 16+ 8);     // to
  1444     Address length_arg(rsp, 16+12);     // elements count
  1445     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1446     Address  ckval_arg(rsp, 16+20);     // super_klass
  1448     // Load up:
  1449     __ movptr(from,     from_arg);
  1450     __ movptr(to,         to_arg);
  1451     __ movl2ptr(length, length_arg);
  1453     if (entry != NULL) {
  1454       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1455       BLOCK_COMMENT("Entry:");
  1458     //---------------------------------------------------------------
  1459     // Assembler stub will be used for this call to arraycopy
  1460     // if the two arrays are subtypes of Object[] but the
  1461     // destination array type is not equal to or a supertype
  1462     // of the source type.  Each element must be separately
  1463     // checked.
  1465     // Loop-invariant addresses.  They are exclusive end pointers.
  1466     Address end_from_addr(from, length, Address::times_ptr, 0);
  1467     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1469     Register end_from = from;           // re-use
  1470     Register end_to   = to;             // re-use
  1471     Register count    = length;         // re-use
  1473     // Loop-variant addresses.  They assume post-incremented count < 0.
  1474     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1475     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1476     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1478     // Copy from low to high addresses, indexed from the end of each array.
  1479     gen_write_ref_array_pre_barrier(to, count);
  1480     __ lea(end_from, end_from_addr);
  1481     __ lea(end_to,   end_to_addr);
  1482     assert(length == count, "");        // else fix next line:
  1483     __ negptr(count);                   // negate and test the length
  1484     __ jccb(Assembler::notZero, L_load_element);
  1486     // Empty array:  Nothing to do.
  1487     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1488     __ jmp(L_done);
  1490     // ======== begin loop ========
  1491     // (Loop is rotated; its entry is L_load_element.)
  1492     // Loop control:
  1493     //   for (count = -count; count != 0; count++)
  1494     // Base pointers src, dst are biased by 8*count,to last element.
  1495     __ align(OptoLoopAlignment);
  1497     __ BIND(L_store_element);
  1498     __ movptr(to_element_addr, elem);     // store the oop
  1499     __ increment(count);                // increment the count toward zero
  1500     __ jccb(Assembler::zero, L_do_card_marks);
  1502     // ======== loop entry is here ========
  1503     __ BIND(L_load_element);
  1504     __ movptr(elem, from_element_addr);   // load the oop
  1505     __ testptr(elem, elem);
  1506     __ jccb(Assembler::zero, L_store_element);
  1508     // (Could do a trick here:  Remember last successful non-null
  1509     // element stored and make a quick oop equality check on it.)
  1511     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1512     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1513                         &L_store_element, NULL);
  1514       // (On fall-through, we have failed the element type check.)
  1515     // ======== end loop ========
  1517     // It was a real error; we must depend on the caller to finish the job.
  1518     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1519     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1520     // and report their number to the caller.
  1521     __ addl(count, length_arg);         // transfers = (length - remaining)
  1522     __ movl2ptr(rax, count);            // save the value
  1523     __ notptr(rax);                     // report (-1^K) to caller
  1524     __ movptr(to, to_arg);              // reload
  1525     assert_different_registers(to, count, rax);
  1526     gen_write_ref_array_post_barrier(to, count);
  1527     __ jmpb(L_done);
  1529     // Come here on success only.
  1530     __ BIND(L_do_card_marks);
  1531     __ movl2ptr(count, length_arg);
  1532     __ movptr(to, to_arg);                // reload
  1533     gen_write_ref_array_post_barrier(to, count);
  1534     __ xorptr(rax, rax);                  // return 0 on success
  1536     // Common exit point (success or failure).
  1537     __ BIND(L_done);
  1538     __ pop(rbx);
  1539     __ pop(rdi);
  1540     __ pop(rsi);
  1541     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1542     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1543     __ ret(0);
  1545     return start;
  1548   //
  1549   //  Generate 'unsafe' array copy stub
  1550   //  Though just as safe as the other stubs, it takes an unscaled
  1551   //  size_t argument instead of an element count.
  1552   //
  1553   //  Input:
  1554   //    4(rsp)   - source array address
  1555   //    8(rsp)   - destination array address
  1556   //   12(rsp)   - byte count, can be zero
  1557   //
  1558   //  Output:
  1559   //    rax, ==  0  -  success
  1560   //    rax, == -1  -  need to call System.arraycopy
  1561   //
  1562   // Examines the alignment of the operands and dispatches
  1563   // to a long, int, short, or byte copy loop.
  1564   //
  1565   address generate_unsafe_copy(const char *name,
  1566                                address byte_copy_entry,
  1567                                address short_copy_entry,
  1568                                address int_copy_entry,
  1569                                address long_copy_entry) {
  1571     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1573     __ align(CodeEntryAlignment);
  1574     StubCodeMark mark(this, "StubRoutines", name);
  1575     address start = __ pc();
  1577     const Register from       = rax;  // source array address
  1578     const Register to         = rdx;  // destination array address
  1579     const Register count      = rcx;  // elements count
  1581     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1582     __ push(rsi);
  1583     __ push(rdi);
  1584     Address  from_arg(rsp, 12+ 4);      // from
  1585     Address    to_arg(rsp, 12+ 8);      // to
  1586     Address count_arg(rsp, 12+12);      // byte count
  1588     // Load up:
  1589     __ movptr(from ,  from_arg);
  1590     __ movptr(to   ,    to_arg);
  1591     __ movl2ptr(count, count_arg);
  1593     // bump this on entry, not on exit:
  1594     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1596     const Register bits = rsi;
  1597     __ mov(bits, from);
  1598     __ orptr(bits, to);
  1599     __ orptr(bits, count);
  1601     __ testl(bits, BytesPerLong-1);
  1602     __ jccb(Assembler::zero, L_long_aligned);
  1604     __ testl(bits, BytesPerInt-1);
  1605     __ jccb(Assembler::zero, L_int_aligned);
  1607     __ testl(bits, BytesPerShort-1);
  1608     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1610     __ BIND(L_short_aligned);
  1611     __ shrptr(count, LogBytesPerShort); // size => short_count
  1612     __ movl(count_arg, count);          // update 'count'
  1613     __ jump(RuntimeAddress(short_copy_entry));
  1615     __ BIND(L_int_aligned);
  1616     __ shrptr(count, LogBytesPerInt); // size => int_count
  1617     __ movl(count_arg, count);          // update 'count'
  1618     __ jump(RuntimeAddress(int_copy_entry));
  1620     __ BIND(L_long_aligned);
  1621     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1622     __ movl(count_arg, count);          // update 'count'
  1623     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1624     __ pop(rsi);
  1625     __ jump(RuntimeAddress(long_copy_entry));
  1627     return start;
  1631   // Perform range checks on the proposed arraycopy.
  1632   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1633   void arraycopy_range_checks(Register src,
  1634                               Register src_pos,
  1635                               Register dst,
  1636                               Register dst_pos,
  1637                               Address& length,
  1638                               Label& L_failed) {
  1639     BLOCK_COMMENT("arraycopy_range_checks:");
  1640     const Register src_end = src_pos;   // source array end position
  1641     const Register dst_end = dst_pos;   // destination array end position
  1642     __ addl(src_end, length); // src_pos + length
  1643     __ addl(dst_end, length); // dst_pos + length
  1645     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1646     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1647     __ jcc(Assembler::above, L_failed);
  1649     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1650     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1651     __ jcc(Assembler::above, L_failed);
  1653     BLOCK_COMMENT("arraycopy_range_checks done");
  1657   //
  1658   //  Generate generic array copy stubs
  1659   //
  1660   //  Input:
  1661   //     4(rsp)    -  src oop
  1662   //     8(rsp)    -  src_pos
  1663   //    12(rsp)    -  dst oop
  1664   //    16(rsp)    -  dst_pos
  1665   //    20(rsp)    -  element count
  1666   //
  1667   //  Output:
  1668   //    rax, ==  0  -  success
  1669   //    rax, == -1^K - failure, where K is partial transfer count
  1670   //
  1671   address generate_generic_copy(const char *name,
  1672                                 address entry_jbyte_arraycopy,
  1673                                 address entry_jshort_arraycopy,
  1674                                 address entry_jint_arraycopy,
  1675                                 address entry_oop_arraycopy,
  1676                                 address entry_jlong_arraycopy,
  1677                                 address entry_checkcast_arraycopy) {
  1678     Label L_failed, L_failed_0, L_objArray;
  1680     { int modulus = CodeEntryAlignment;
  1681       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1682       int advance = target - (__ offset() % modulus);
  1683       if (advance < 0)  advance += modulus;
  1684       if (advance > 0)  __ nop(advance);
  1686     StubCodeMark mark(this, "StubRoutines", name);
  1688     // Short-hop target to L_failed.  Makes for denser prologue code.
  1689     __ BIND(L_failed_0);
  1690     __ jmp(L_failed);
  1691     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1693     __ align(CodeEntryAlignment);
  1694     address start = __ pc();
  1696     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1697     __ push(rsi);
  1698     __ push(rdi);
  1700     // bump this on entry, not on exit:
  1701     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1703     // Input values
  1704     Address SRC     (rsp, 12+ 4);
  1705     Address SRC_POS (rsp, 12+ 8);
  1706     Address DST     (rsp, 12+12);
  1707     Address DST_POS (rsp, 12+16);
  1708     Address LENGTH  (rsp, 12+20);
  1710     //-----------------------------------------------------------------------
  1711     // Assembler stub will be used for this call to arraycopy
  1712     // if the following conditions are met:
  1713     //
  1714     // (1) src and dst must not be null.
  1715     // (2) src_pos must not be negative.
  1716     // (3) dst_pos must not be negative.
  1717     // (4) length  must not be negative.
  1718     // (5) src klass and dst klass should be the same and not NULL.
  1719     // (6) src and dst should be arrays.
  1720     // (7) src_pos + length must not exceed length of src.
  1721     // (8) dst_pos + length must not exceed length of dst.
  1722     //
  1724     const Register src     = rax;       // source array oop
  1725     const Register src_pos = rsi;
  1726     const Register dst     = rdx;       // destination array oop
  1727     const Register dst_pos = rdi;
  1728     const Register length  = rcx;       // transfer count
  1730     //  if (src == NULL) return -1;
  1731     __ movptr(src, SRC);      // src oop
  1732     __ testptr(src, src);
  1733     __ jccb(Assembler::zero, L_failed_0);
  1735     //  if (src_pos < 0) return -1;
  1736     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1737     __ testl(src_pos, src_pos);
  1738     __ jccb(Assembler::negative, L_failed_0);
  1740     //  if (dst == NULL) return -1;
  1741     __ movptr(dst, DST);      // dst oop
  1742     __ testptr(dst, dst);
  1743     __ jccb(Assembler::zero, L_failed_0);
  1745     //  if (dst_pos < 0) return -1;
  1746     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1747     __ testl(dst_pos, dst_pos);
  1748     __ jccb(Assembler::negative, L_failed_0);
  1750     //  if (length < 0) return -1;
  1751     __ movl2ptr(length, LENGTH);   // length
  1752     __ testl(length, length);
  1753     __ jccb(Assembler::negative, L_failed_0);
  1755     //  if (src->klass() == NULL) return -1;
  1756     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1757     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1758     const Register rcx_src_klass = rcx;    // array klass
  1759     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1761 #ifdef ASSERT
  1762     //  assert(src->klass() != NULL);
  1763     BLOCK_COMMENT("assert klasses not null");
  1764     { Label L1, L2;
  1765       __ testptr(rcx_src_klass, rcx_src_klass);
  1766       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1767       __ bind(L1);
  1768       __ stop("broken null klass");
  1769       __ bind(L2);
  1770       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1771       __ jccb(Assembler::equal, L1);      // this would be broken also
  1772       BLOCK_COMMENT("assert done");
  1774 #endif //ASSERT
  1776     // Load layout helper (32-bits)
  1777     //
  1778     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1779     // 32        30    24            16              8     2                 0
  1780     //
  1781     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1782     //
  1784     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1785                     Klass::layout_helper_offset_in_bytes();
  1786     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1788     // Handle objArrays completely differently...
  1789     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1790     __ cmpl(src_klass_lh_addr, objArray_lh);
  1791     __ jcc(Assembler::equal, L_objArray);
  1793     //  if (src->klass() != dst->klass()) return -1;
  1794     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1795     __ jccb(Assembler::notEqual, L_failed_0);
  1797     const Register rcx_lh = rcx;  // layout helper
  1798     assert(rcx_lh == rcx_src_klass, "known alias");
  1799     __ movl(rcx_lh, src_klass_lh_addr);
  1801     //  if (!src->is_Array()) return -1;
  1802     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1803     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1805     // At this point, it is known to be a typeArray (array_tag 0x3).
  1806 #ifdef ASSERT
  1807     { Label L;
  1808       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1809       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1810       __ stop("must be a primitive array");
  1811       __ bind(L);
  1813 #endif
  1815     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1816     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1818     // typeArrayKlass
  1819     //
  1820     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1821     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1822     //
  1823     const Register rsi_offset = rsi; // array offset
  1824     const Register src_array  = src; // src array offset
  1825     const Register dst_array  = dst; // dst array offset
  1826     const Register rdi_elsize = rdi; // log2 element size
  1828     __ mov(rsi_offset, rcx_lh);
  1829     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1830     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1831     __ addptr(src_array, rsi_offset);  // src array offset
  1832     __ addptr(dst_array, rsi_offset);  // dst array offset
  1833     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1835     // next registers should be set before the jump to corresponding stub
  1836     const Register from       = src; // source array address
  1837     const Register to         = dst; // destination array address
  1838     const Register count      = rcx; // elements count
  1839     // some of them should be duplicated on stack
  1840 #define FROM   Address(rsp, 12+ 4)
  1841 #define TO     Address(rsp, 12+ 8)   // Not used now
  1842 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1844     BLOCK_COMMENT("scale indexes to element size");
  1845     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1846     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1847     assert(src_array == from, "");
  1848     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1849     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1850     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1851     assert(dst_array == to, "");
  1852     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1853     __ movptr(FROM, from);      // src_addr
  1854     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1855     __ movl2ptr(count, LENGTH); // elements count
  1857     BLOCK_COMMENT("choose copy loop based on element size");
  1858     __ cmpl(rdi_elsize, 0);
  1860     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1861     __ cmpl(rdi_elsize, LogBytesPerShort);
  1862     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1863     __ cmpl(rdi_elsize, LogBytesPerInt);
  1864     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1865 #ifdef ASSERT
  1866     __ cmpl(rdi_elsize, LogBytesPerLong);
  1867     __ jccb(Assembler::notEqual, L_failed);
  1868 #endif
  1869     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1870     __ pop(rsi);
  1871     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1873   __ BIND(L_failed);
  1874     __ xorptr(rax, rax);
  1875     __ notptr(rax); // return -1
  1876     __ pop(rdi);
  1877     __ pop(rsi);
  1878     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1879     __ ret(0);
  1881     // objArrayKlass
  1882   __ BIND(L_objArray);
  1883     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1885     Label L_plain_copy, L_checkcast_copy;
  1886     //  test array classes for subtyping
  1887     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1888     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1890     // Identically typed arrays can be copied without element-wise checks.
  1891     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1892     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1894   __ BIND(L_plain_copy);
  1895     __ movl2ptr(count, LENGTH); // elements count
  1896     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1897     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1898                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1899     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1900     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1901                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1902     __ movptr(FROM,  from);   // src_addr
  1903     __ movptr(TO,    to);     // dst_addr
  1904     __ movl(COUNT, count);  // count
  1905     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1907   __ BIND(L_checkcast_copy);
  1908     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1910       // Handy offsets:
  1911       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1912                         objArrayKlass::element_klass_offset_in_bytes());
  1913       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1914                         Klass::super_check_offset_offset_in_bytes());
  1916       Register rsi_dst_klass = rsi;
  1917       Register rdi_temp      = rdi;
  1918       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1919       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1920       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1922       // Before looking at dst.length, make sure dst is also an objArray.
  1923       __ movptr(rsi_dst_klass, dst_klass_addr);
  1924       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1925       __ jccb(Assembler::notEqual, L_failed);
  1927       // It is safe to examine both src.length and dst.length.
  1928       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1929       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1930       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1932       // We'll need this temp (don't forget to pop it after the type check).
  1933       __ push(rbx);
  1934       Register rbx_src_klass = rbx;
  1936       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1937       __ movptr(rsi_dst_klass, dst_klass_addr);
  1938       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1939       Label L_fail_array_check;
  1940       generate_type_check(rbx_src_klass,
  1941                           super_check_offset_addr, dst_klass_addr,
  1942                           rdi_temp, NULL, &L_fail_array_check);
  1943       // (On fall-through, we have passed the array type check.)
  1944       __ pop(rbx);
  1945       __ jmp(L_plain_copy);
  1947       __ BIND(L_fail_array_check);
  1948       // Reshuffle arguments so we can call checkcast_arraycopy:
  1950       // match initial saves for checkcast_arraycopy
  1951       // push(rsi);    // already done; see above
  1952       // push(rdi);    // already done; see above
  1953       // push(rbx);    // already done; see above
  1955       // Marshal outgoing arguments now, freeing registers.
  1956       Address   from_arg(rsp, 16+ 4);   // from
  1957       Address     to_arg(rsp, 16+ 8);   // to
  1958       Address length_arg(rsp, 16+12);   // elements count
  1959       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1960       Address  ckval_arg(rsp, 16+20);   // super_klass
  1962       Address SRC_POS_arg(rsp, 16+ 8);
  1963       Address DST_POS_arg(rsp, 16+16);
  1964       Address  LENGTH_arg(rsp, 16+20);
  1965       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1966       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1968       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1969       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1970       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1971       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1973       __ movptr(ckval_arg, rbx);          // destination element type
  1974       __ movl(rbx, Address(rbx, sco_offset));
  1975       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1977       __ movl(length_arg, length);      // outgoing length argument
  1979       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1980                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1981       __ movptr(from_arg, from);
  1983       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1984                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1985       __ movptr(to_arg, to);
  1986       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1989     return start;
  1992   void generate_arraycopy_stubs() {
  1993     address entry;
  1994     address entry_jbyte_arraycopy;
  1995     address entry_jshort_arraycopy;
  1996     address entry_jint_arraycopy;
  1997     address entry_oop_arraycopy;
  1998     address entry_jlong_arraycopy;
  1999     address entry_checkcast_arraycopy;
  2001     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  2002         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  2003                                "arrayof_jbyte_disjoint_arraycopy");
  2004     StubRoutines::_arrayof_jbyte_arraycopy =
  2005         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  2006                                NULL, "arrayof_jbyte_arraycopy");
  2007     StubRoutines::_jbyte_disjoint_arraycopy =
  2008         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  2009                                "jbyte_disjoint_arraycopy");
  2010     StubRoutines::_jbyte_arraycopy =
  2011         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  2012                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  2014     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  2015         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2016                                "arrayof_jshort_disjoint_arraycopy");
  2017     StubRoutines::_arrayof_jshort_arraycopy =
  2018         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2019                                NULL, "arrayof_jshort_arraycopy");
  2020     StubRoutines::_jshort_disjoint_arraycopy =
  2021         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2022                                "jshort_disjoint_arraycopy");
  2023     StubRoutines::_jshort_arraycopy =
  2024         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2025                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2027     // Next arrays are always aligned on 4 bytes at least.
  2028     StubRoutines::_jint_disjoint_arraycopy =
  2029         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2030                                "jint_disjoint_arraycopy");
  2031     StubRoutines::_jint_arraycopy =
  2032         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2033                                &entry_jint_arraycopy, "jint_arraycopy");
  2035     StubRoutines::_oop_disjoint_arraycopy =
  2036         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2037                                "oop_disjoint_arraycopy");
  2038     StubRoutines::_oop_arraycopy =
  2039         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2040                                &entry_oop_arraycopy, "oop_arraycopy");
  2042     StubRoutines::_jlong_disjoint_arraycopy =
  2043         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2044     StubRoutines::_jlong_arraycopy =
  2045         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2046                                     "jlong_arraycopy");
  2048     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2049     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2050     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2051     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2052     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2053     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2055     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  2056         StubRoutines::_jint_disjoint_arraycopy;
  2057     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  2058         StubRoutines::_oop_disjoint_arraycopy;
  2059     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  2060         StubRoutines::_jlong_disjoint_arraycopy;
  2062     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  2063     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  2064     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  2066     StubRoutines::_checkcast_arraycopy =
  2067         generate_checkcast_copy("checkcast_arraycopy",
  2068                                   &entry_checkcast_arraycopy);
  2070     StubRoutines::_unsafe_arraycopy =
  2071         generate_unsafe_copy("unsafe_arraycopy",
  2072                                entry_jbyte_arraycopy,
  2073                                entry_jshort_arraycopy,
  2074                                entry_jint_arraycopy,
  2075                                entry_jlong_arraycopy);
  2077     StubRoutines::_generic_arraycopy =
  2078         generate_generic_copy("generic_arraycopy",
  2079                                entry_jbyte_arraycopy,
  2080                                entry_jshort_arraycopy,
  2081                                entry_jint_arraycopy,
  2082                                entry_oop_arraycopy,
  2083                                entry_jlong_arraycopy,
  2084                                entry_checkcast_arraycopy);
  2087   void generate_math_stubs() {
  2089       StubCodeMark mark(this, "StubRoutines", "log");
  2090       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2092       __ fld_d(Address(rsp, 4));
  2093       __ flog();
  2094       __ ret(0);
  2097       StubCodeMark mark(this, "StubRoutines", "log10");
  2098       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2100       __ fld_d(Address(rsp, 4));
  2101       __ flog10();
  2102       __ ret(0);
  2105       StubCodeMark mark(this, "StubRoutines", "sin");
  2106       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2108       __ fld_d(Address(rsp, 4));
  2109       __ trigfunc('s');
  2110       __ ret(0);
  2113       StubCodeMark mark(this, "StubRoutines", "cos");
  2114       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2116       __ fld_d(Address(rsp, 4));
  2117       __ trigfunc('c');
  2118       __ ret(0);
  2121       StubCodeMark mark(this, "StubRoutines", "tan");
  2122       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2124       __ fld_d(Address(rsp, 4));
  2125       __ trigfunc('t');
  2126       __ ret(0);
  2129     // The intrinsic version of these seem to return the same value as
  2130     // the strict version.
  2131     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2132     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2135  public:
  2136   // Information about frame layout at time of blocking runtime call.
  2137   // Note that we only have to preserve callee-saved registers since
  2138   // the compilers are responsible for supplying a continuation point
  2139   // if they expect all registers to be preserved.
  2140   enum layout {
  2141     thread_off,    // last_java_sp
  2142     rbp_off,       // callee saved register
  2143     ret_pc,
  2144     framesize
  2145   };
  2147  private:
  2149 #undef  __
  2150 #define __ masm->
  2152   //------------------------------------------------------------------------------------------------------------------------
  2153   // Continuation point for throwing of implicit exceptions that are not handled in
  2154   // the current activation. Fabricates an exception oop and initiates normal
  2155   // exception dispatching in this frame.
  2156   //
  2157   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2158   // This is no longer true after adapter frames were removed but could possibly
  2159   // be brought back in the future if the interpreter code was reworked and it
  2160   // was deemed worthwhile. The comment below was left to describe what must
  2161   // happen here if callee saves were resurrected. As it stands now this stub
  2162   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2163   // Since it doesn't make much difference we've chosen to leave it the
  2164   // way it was in the callee save days and keep the comment.
  2166   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2167   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2168   // If the compiler needs all registers to be preserved between the fault
  2169   // point and the exception handler then it must assume responsibility for that in
  2170   // AbstractCompiler::continuation_for_implicit_null_exception or
  2171   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2172   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2173   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2174   // so caller saved registers were assumed volatile in the compiler.
  2175   address generate_throw_exception(const char* name, address runtime_entry,
  2176                                    bool restore_saved_exception_pc) {
  2178     int insts_size = 256;
  2179     int locs_size  = 32;
  2181     CodeBuffer code(name, insts_size, locs_size);
  2182     OopMapSet* oop_maps  = new OopMapSet();
  2183     MacroAssembler* masm = new MacroAssembler(&code);
  2185     address start = __ pc();
  2187     // This is an inlined and slightly modified version of call_VM
  2188     // which has the ability to fetch the return PC out of
  2189     // thread-local storage and also sets up last_Java_sp slightly
  2190     // differently than the real call_VM
  2191     Register java_thread = rbx;
  2192     __ get_thread(java_thread);
  2193     if (restore_saved_exception_pc) {
  2194       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2195       __ push(rax);
  2198     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2200     // pc and rbp, already pushed
  2201     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2203     // Frame is now completed as far as size and linkage.
  2205     int frame_complete = __ pc() - start;
  2207     // push java thread (becomes first argument of C function)
  2208     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2210     // Set up last_Java_sp and last_Java_fp
  2211     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2213     // Call runtime
  2214     BLOCK_COMMENT("call runtime_entry");
  2215     __ call(RuntimeAddress(runtime_entry));
  2216     // Generate oop map
  2217     OopMap* map =  new OopMap(framesize, 0);
  2218     oop_maps->add_gc_map(__ pc() - start, map);
  2220     // restore the thread (cannot use the pushed argument since arguments
  2221     // may be overwritten by C code generated by an optimizing compiler);
  2222     // however can use the register value directly if it is callee saved.
  2223     __ get_thread(java_thread);
  2225     __ reset_last_Java_frame(java_thread, true, false);
  2227     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2229     // check for pending exceptions
  2230 #ifdef ASSERT
  2231     Label L;
  2232     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2233     __ jcc(Assembler::notEqual, L);
  2234     __ should_not_reach_here();
  2235     __ bind(L);
  2236 #endif /* ASSERT */
  2237     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2240     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2241     return stub->entry_point();
  2245   void create_control_words() {
  2246     // Round to nearest, 53-bit mode, exceptions masked
  2247     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2248     // Round to zero, 53-bit mode, exception mased
  2249     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2250     // Round to nearest, 24-bit mode, exceptions masked
  2251     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2252     // Round to nearest, 64-bit mode, exceptions masked
  2253     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2254     // Round to nearest, 64-bit mode, exceptions masked
  2255     StubRoutines::_mxcsr_std           = 0x1F80;
  2256     // Note: the following two constants are 80-bit values
  2257     //       layout is critical for correct loading by FPU.
  2258     // Bias for strict fp multiply/divide
  2259     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2260     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2261     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2262     // Un-Bias for strict fp multiply/divide
  2263     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2264     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2265     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2268   //---------------------------------------------------------------------------
  2269   // Initialization
  2271   void generate_initial() {
  2272     // Generates all stubs and initializes the entry points
  2274     //------------------------------------------------------------------------------------------------------------------------
  2275     // entry points that exist in all platforms
  2276     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2277     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2278     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2280     StubRoutines::_call_stub_entry              =
  2281       generate_call_stub(StubRoutines::_call_stub_return_address);
  2282     // is referenced by megamorphic call
  2283     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2285     // These are currently used by Solaris/Intel
  2286     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2288     StubRoutines::_handler_for_unsafe_access_entry =
  2289       generate_handler_for_unsafe_access();
  2291     // platform dependent
  2292     create_control_words();
  2294     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2295     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2296     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2297                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2298     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2299                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2303   void generate_all() {
  2304     // Generates all stubs and initializes the entry points
  2306     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2307     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2308     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2309     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2310     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2311     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2312     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2313     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2315     //------------------------------------------------------------------------------------------------------------------------
  2316     // entry points that are platform specific
  2318     // support for verify_oop (must happen after universe_init)
  2319     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2321     // arraycopy stubs used by compilers
  2322     generate_arraycopy_stubs();
  2324     generate_math_stubs();
  2328  public:
  2329   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2330     if (all) {
  2331       generate_all();
  2332     } else {
  2333       generate_initial();
  2336 }; // end class declaration
  2339 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2340   StubGenerator g(code, all);

mercurial