src/share/vm/asm/assembler.cpp

Tue, 27 Nov 2012 17:41:38 -0800

author
kvn
date
Tue, 27 Nov 2012 17:41:38 -0800
changeset 4316
1acccb7c0b01
parent 4153
b9a9ed0f8eeb
child 4317
6ab62ad83507
permissions
-rw-r--r--

8003850: add support for constants in stub code
Summary: remember the code section and switch back to the proper one when adding constants.
Reviewed-by: twisti, kvn
Contributed-by: goetz.lindenmaier@sap.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "asm/codeBuffer.hpp"
    29 #include "runtime/icache.hpp"
    30 #include "runtime/os.hpp"
    31 #ifdef TARGET_ARCH_x86
    32 # include "assembler_x86.inline.hpp"
    33 #endif
    34 #ifdef TARGET_ARCH_sparc
    35 # include "assembler_sparc.inline.hpp"
    36 #endif
    37 #ifdef TARGET_ARCH_zero
    38 # include "assembler_zero.inline.hpp"
    39 #endif
    40 #ifdef TARGET_ARCH_arm
    41 # include "assembler_arm.inline.hpp"
    42 #endif
    43 #ifdef TARGET_ARCH_ppc
    44 # include "assembler_ppc.inline.hpp"
    45 #endif
    48 // Implementation of AbstractAssembler
    49 //
    50 // The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
    51 // the assembler keeps a copy of the code buffers boundaries & modifies them when
    52 // emitting bytes rather than using the code buffers accessor functions all the time.
    53 // The code buffer is updated via set_code_end(...) after emitting a whole instruction.
    55 AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
    56   if (code == NULL)  return;
    57   CodeSection* cs = code->insts();
    58   cs->clear_mark();   // new assembler kills old mark
    59   _code_section = cs;
    60   _code_begin  = cs->start();
    61   _code_limit  = cs->limit();
    62   _code_pos    = cs->end();
    63   _oop_recorder= code->oop_recorder();
    64   DEBUG_ONLY( _short_branch_delta = 0; )
    65   if (_code_begin == NULL)  {
    66     vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
    67                                      code->name()));
    68   }
    69 }
    71 void AbstractAssembler::set_code_section(CodeSection* cs) {
    72   assert(cs->outer() == code_section()->outer(), "sanity");
    73   assert(cs->is_allocated(), "need to pre-allocate this section");
    74   cs->clear_mark();  // new assembly into this section kills old mark
    75   _code_section = cs;
    76   _code_begin  = cs->start();
    77   _code_limit  = cs->limit();
    78   _code_pos    = cs->end();
    79 }
    81 // Inform CodeBuffer that incoming code and relocation will be for stubs
    82 address AbstractAssembler::start_a_stub(int required_space) {
    83   CodeBuffer*  cb = code();
    84   CodeSection* cs = cb->stubs();
    85   assert(_code_section == cb->insts(), "not in insts?");
    86   sync();
    87   if (cs->maybe_expand_to_ensure_remaining(required_space)
    88       && cb->blob() == NULL) {
    89     return NULL;
    90   }
    91   set_code_section(cs);
    92   return pc();
    93 }
    95 // Inform CodeBuffer that incoming code and relocation will be code
    96 // Should not be called if start_a_stub() returned NULL
    97 void AbstractAssembler::end_a_stub() {
    98   assert(_code_section == code()->stubs(), "not in stubs?");
    99   sync();
   100   set_code_section(code()->insts());
   101 }
   103 // Inform CodeBuffer that incoming code and relocation will be for stubs
   104 address AbstractAssembler::start_a_const(int required_space, int required_align) {
   105   CodeBuffer*  cb = code();
   106   CodeSection* cs = cb->consts();
   107   assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
   108   sync();
   109   address end = cs->end();
   110   int pad = -(intptr_t)end & (required_align-1);
   111   if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
   112     if (cb->blob() == NULL)  return NULL;
   113     end = cs->end();  // refresh pointer
   114   }
   115   if (pad > 0) {
   116     while (--pad >= 0) { *end++ = 0; }
   117     cs->set_end(end);
   118   }
   119   set_code_section(cs);
   120   return end;
   121 }
   123 // Inform CodeBuffer that incoming code and relocation will be code
   124 // in section cs (insts or stubs).
   125 void AbstractAssembler::end_a_const(CodeSection* cs) {
   126   assert(_code_section == code()->consts(), "not in consts?");
   127   sync();
   128   set_code_section(cs);
   129 }
   131 void AbstractAssembler::flush() {
   132   sync();
   133   ICache::invalidate_range(addr_at(0), offset());
   134 }
   137 void AbstractAssembler::a_byte(int x) {
   138   emit_byte(x);
   139 }
   142 void AbstractAssembler::a_long(jint x) {
   143   emit_long(x);
   144 }
   146 // Labels refer to positions in the (to be) generated code.  There are bound
   147 // and unbound
   148 //
   149 // Bound labels refer to known positions in the already generated code.
   150 // offset() is the position the label refers to.
   151 //
   152 // Unbound labels refer to unknown positions in the code to be generated; it
   153 // may contain a list of unresolved displacements that refer to it
   154 #ifndef PRODUCT
   155 void AbstractAssembler::print(Label& L) {
   156   if (L.is_bound()) {
   157     tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
   158   } else if (L.is_unbound()) {
   159     L.print_instructions((MacroAssembler*)this);
   160   } else {
   161     tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
   162   }
   163 }
   164 #endif // PRODUCT
   167 void AbstractAssembler::bind(Label& L) {
   168   if (L.is_bound()) {
   169     // Assembler can bind a label more than once to the same place.
   170     guarantee(L.loc() == locator(), "attempt to redefine label");
   171     return;
   172   }
   173   L.bind_loc(locator());
   174   L.patch_instructions((MacroAssembler*)this);
   175 }
   177 void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
   178   if (UseStackBanging) {
   179     // Each code entry causes one stack bang n pages down the stack where n
   180     // is configurable by StackBangPages.  The setting depends on the maximum
   181     // depth of VM call stack or native before going back into java code,
   182     // since only java code can raise a stack overflow exception using the
   183     // stack banging mechanism.  The VM and native code does not detect stack
   184     // overflow.
   185     // The code in JavaCalls::call() checks that there is at least n pages
   186     // available, so all entry code needs to do is bang once for the end of
   187     // this shadow zone.
   188     // The entry code may need to bang additional pages if the framesize
   189     // is greater than a page.
   191     const int page_size = os::vm_page_size();
   192     int bang_end = StackShadowPages*page_size;
   194     // This is how far the previous frame's stack banging extended.
   195     const int bang_end_safe = bang_end;
   197     if (frame_size_in_bytes > page_size) {
   198       bang_end += frame_size_in_bytes;
   199     }
   201     int bang_offset = bang_end_safe;
   202     while (bang_offset <= bang_end) {
   203       // Need at least one stack bang at end of shadow zone.
   204       bang_stack_with_offset(bang_offset);
   205       bang_offset += page_size;
   206     }
   207   } // end (UseStackBanging)
   208 }
   210 void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
   211   assert(_loc == -1, "Label is unbound");
   212   if (_patch_index < PatchCacheSize) {
   213     _patches[_patch_index] = branch_loc;
   214   } else {
   215     if (_patch_overflow == NULL) {
   216       _patch_overflow = cb->create_patch_overflow();
   217     }
   218     _patch_overflow->push(branch_loc);
   219   }
   220   ++_patch_index;
   221 }
   223 void Label::patch_instructions(MacroAssembler* masm) {
   224   assert(is_bound(), "Label is bound");
   225   CodeBuffer* cb = masm->code();
   226   int target_sect = CodeBuffer::locator_sect(loc());
   227   address target = cb->locator_address(loc());
   228   while (_patch_index > 0) {
   229     --_patch_index;
   230     int branch_loc;
   231     if (_patch_index >= PatchCacheSize) {
   232       branch_loc = _patch_overflow->pop();
   233     } else {
   234       branch_loc = _patches[_patch_index];
   235     }
   236     int branch_sect = CodeBuffer::locator_sect(branch_loc);
   237     address branch = cb->locator_address(branch_loc);
   238     if (branch_sect == CodeBuffer::SECT_CONSTS) {
   239       // The thing to patch is a constant word.
   240       *(address*)branch = target;
   241       continue;
   242     }
   244 #ifdef ASSERT
   245     // Cross-section branches only work if the
   246     // intermediate section boundaries are frozen.
   247     if (target_sect != branch_sect) {
   248       for (int n = MIN2(target_sect, branch_sect),
   249                nlimit = (target_sect + branch_sect) - n;
   250            n < nlimit; n++) {
   251         CodeSection* cs = cb->code_section(n);
   252         assert(cs->is_frozen(), "cross-section branch needs stable offsets");
   253       }
   254     }
   255 #endif //ASSERT
   257     // Push the target offset into the branch instruction.
   258     masm->pd_patch_instruction(branch, target);
   259   }
   260 }
   262 struct DelayedConstant {
   263   typedef void (*value_fn_t)();
   264   BasicType type;
   265   intptr_t value;
   266   value_fn_t value_fn;
   267   // This limit of 20 is generous for initial uses.
   268   // The limit needs to be large enough to store the field offsets
   269   // into classes which do not have statically fixed layouts.
   270   // (Initial use is for method handle object offsets.)
   271   // Look for uses of "delayed_value" in the source code
   272   // and make sure this number is generous enough to handle all of them.
   273   enum { DC_LIMIT = 20 };
   274   static DelayedConstant delayed_constants[DC_LIMIT];
   275   static DelayedConstant* add(BasicType type, value_fn_t value_fn);
   276   bool match(BasicType t, value_fn_t cfn) {
   277     return type == t && value_fn == cfn;
   278   }
   279   static void update_all();
   280 };
   282 DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
   283 // Default C structure initialization rules have the following effect here:
   284 // = { { (BasicType)0, (intptr_t)NULL }, ... };
   286 DelayedConstant* DelayedConstant::add(BasicType type,
   287                                       DelayedConstant::value_fn_t cfn) {
   288   for (int i = 0; i < DC_LIMIT; i++) {
   289     DelayedConstant* dcon = &delayed_constants[i];
   290     if (dcon->match(type, cfn))
   291       return dcon;
   292     if (dcon->value_fn == NULL) {
   293       // (cmpxchg not because this is multi-threaded but because I'm paranoid)
   294       if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
   295         dcon->type = type;
   296         return dcon;
   297       }
   298     }
   299   }
   300   // If this assert is hit (in pre-integration testing!) then re-evaluate
   301   // the comment on the definition of DC_LIMIT.
   302   guarantee(false, "too many delayed constants");
   303   return NULL;
   304 }
   306 void DelayedConstant::update_all() {
   307   for (int i = 0; i < DC_LIMIT; i++) {
   308     DelayedConstant* dcon = &delayed_constants[i];
   309     if (dcon->value_fn != NULL && dcon->value == 0) {
   310       typedef int     (*int_fn_t)();
   311       typedef address (*address_fn_t)();
   312       switch (dcon->type) {
   313       case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
   314       case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
   315       }
   316     }
   317   }
   318 }
   320 RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
   321   intptr_t val = (intptr_t) (*value_fn)();
   322   if (val != 0)  return val + offset;
   323   return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
   324 }
   325 RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
   326   intptr_t val = (intptr_t) (*value_fn)();
   327   if (val != 0)  return val + offset;
   328   return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
   329 }
   330 intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
   331   DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
   332   return &dcon->value;
   333 }
   334 intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
   335   DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
   336   return &dcon->value;
   337 }
   338 void AbstractAssembler::update_delayed_values() {
   339   DelayedConstant::update_all();
   340 }
   345 void AbstractAssembler::block_comment(const char* comment) {
   346   if (sect() == CodeBuffer::SECT_INSTS) {
   347     code_section()->outer()->block_comment(offset(), comment);
   348   }
   349 }
   351 bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
   352   // Exception handler checks the nmethod's implicit null checks table
   353   // only when this method returns false.
   354 #ifdef _LP64
   355   if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
   356     assert (Universe::heap() != NULL, "java heap should be initialized");
   357     // The first page after heap_base is unmapped and
   358     // the 'offset' is equal to [heap_base + offset] for
   359     // narrow oop implicit null checks.
   360     uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
   361     if ((uintptr_t)offset >= base) {
   362       // Normalize offset for the next check.
   363       offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
   364     }
   365   }
   366 #endif
   367   return offset < 0 || os::vm_page_size() <= offset;
   368 }
   370 #ifndef PRODUCT
   371 void Label::print_instructions(MacroAssembler* masm) const {
   372   CodeBuffer* cb = masm->code();
   373   for (int i = 0; i < _patch_index; ++i) {
   374     int branch_loc;
   375     if (i >= PatchCacheSize) {
   376       branch_loc = _patch_overflow->at(i - PatchCacheSize);
   377     } else {
   378       branch_loc = _patches[i];
   379     }
   380     int branch_pos  = CodeBuffer::locator_pos(branch_loc);
   381     int branch_sect = CodeBuffer::locator_sect(branch_loc);
   382     address branch = cb->locator_address(branch_loc);
   383     tty->print_cr("unbound label");
   384     tty->print("@ %d|%d ", branch_pos, branch_sect);
   385     if (branch_sect == CodeBuffer::SECT_CONSTS) {
   386       tty->print_cr(PTR_FORMAT, *(address*)branch);
   387       continue;
   388     }
   389     masm->pd_print_patched_instruction(branch);
   390     tty->cr();
   391   }
   392 }
   393 #endif // ndef PRODUCT

mercurial