src/share/vm/utilities/globalDefinitions.hpp

Fri, 18 Jan 2019 17:05:41 +0100

author
shade
date
Fri, 18 Jan 2019 17:05:41 +0100
changeset 9667
1a1aec8c87b7
parent 9619
71bd8f8ad1fb
child 9677
af43bab3c5d0
permissions
-rw-r--r--

8217315: Proper units should print more significant digits
Reviewed-by: stuefe, tschatzl

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    41 #ifdef TARGET_COMPILER_xlc
    42 # include "utilities/globalDefinitions_xlc.hpp"
    43 #endif
    45 #ifndef PRAGMA_DIAG_PUSH
    46 #define PRAGMA_DIAG_PUSH
    47 #endif
    48 #ifndef PRAGMA_DIAG_POP
    49 #define PRAGMA_DIAG_POP
    50 #endif
    51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
    52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
    53 #endif
    54 #ifndef PRAGMA_FORMAT_IGNORED
    55 #define PRAGMA_FORMAT_IGNORED
    56 #endif
    57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    59 #endif
    60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    62 #endif
    63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    65 #endif
    66 #ifndef ATTRIBUTE_PRINTF
    67 #define ATTRIBUTE_PRINTF(fmt, vargs)
    68 #endif
    71 #include "utilities/macros.hpp"
    73 // This file holds all globally used constants & types, class (forward)
    74 // declarations and a few frequently used utility functions.
    76 //----------------------------------------------------------------------------------------------------
    77 // Constants
    79 const int LogBytesPerShort   = 1;
    80 const int LogBytesPerInt     = 2;
    81 #ifdef _LP64
    82 const int LogBytesPerWord    = 3;
    83 #else
    84 const int LogBytesPerWord    = 2;
    85 #endif
    86 const int LogBytesPerLong    = 3;
    88 const int BytesPerShort      = 1 << LogBytesPerShort;
    89 const int BytesPerInt        = 1 << LogBytesPerInt;
    90 const int BytesPerWord       = 1 << LogBytesPerWord;
    91 const int BytesPerLong       = 1 << LogBytesPerLong;
    93 const int LogBitsPerByte     = 3;
    94 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    95 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    96 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    97 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    99 const int BitsPerByte        = 1 << LogBitsPerByte;
   100 const int BitsPerShort       = 1 << LogBitsPerShort;
   101 const int BitsPerInt         = 1 << LogBitsPerInt;
   102 const int BitsPerWord        = 1 << LogBitsPerWord;
   103 const int BitsPerLong        = 1 << LogBitsPerLong;
   105 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
   106 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
   108 const int WordsPerLong       = 2;       // Number of stack entries for longs
   110 const int oopSize            = sizeof(char*); // Full-width oop
   111 extern int heapOopSize;                       // Oop within a java object
   112 const int wordSize           = sizeof(char*);
   113 const int longSize           = sizeof(jlong);
   114 const int jintSize           = sizeof(jint);
   115 const int size_tSize         = sizeof(size_t);
   117 const int BytesPerOop        = BytesPerWord;  // Full-width oop
   119 extern int LogBytesPerHeapOop;                // Oop within a java object
   120 extern int LogBitsPerHeapOop;
   121 extern int BytesPerHeapOop;
   122 extern int BitsPerHeapOop;
   124 // Oop encoding heap max
   125 extern uint64_t OopEncodingHeapMax;
   127 const int BitsPerJavaInteger = 32;
   128 const int BitsPerJavaLong    = 64;
   129 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   131 // Size of a char[] needed to represent a jint as a string in decimal.
   132 const int jintAsStringSize = 12;
   134 // In fact this should be
   135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   136 // see os::set_memory_serialize_page()
   137 #ifdef _LP64
   138 const int SerializePageShiftCount = 4;
   139 #else
   140 const int SerializePageShiftCount = 3;
   141 #endif
   143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   144 // pointer into the heap.  We require that object sizes be measured in
   145 // units of heap words, so that that
   146 //   HeapWord* hw;
   147 //   hw += oop(hw)->foo();
   148 // works, where foo is a method (like size or scavenge) that returns the
   149 // object size.
   150 class HeapWord {
   151   friend class VMStructs;
   152  private:
   153   char* i;
   154 #ifndef PRODUCT
   155  public:
   156   char* value() { return i; }
   157 #endif
   158 };
   160 // Analogous opaque struct for metadata allocated from
   161 // metaspaces.
   162 class MetaWord {
   163   friend class VMStructs;
   164  private:
   165   char* i;
   166 };
   168 // HeapWordSize must be 2^LogHeapWordSize.
   169 const int HeapWordSize        = sizeof(HeapWord);
   170 #ifdef _LP64
   171 const int LogHeapWordSize     = 3;
   172 #else
   173 const int LogHeapWordSize     = 2;
   174 #endif
   175 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   178 // The larger HeapWordSize for 64bit requires larger heaps
   179 // for the same application running in 64bit.  See bug 4967770.
   180 // The minimum alignment to a heap word size is done.  Other
   181 // parts of the memory system may required additional alignment
   182 // and are responsible for those alignments.
   183 #ifdef _LP64
   184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   185 #else
   186 #define ScaleForWordSize(x) (x)
   187 #endif
   189 // The minimum number of native machine words necessary to contain "byte_size"
   190 // bytes.
   191 inline size_t heap_word_size(size_t byte_size) {
   192   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   193 }
   196 const size_t K                  = 1024;
   197 const size_t M                  = K*K;
   198 const size_t G                  = M*K;
   199 const size_t HWperKB            = K / sizeof(HeapWord);
   201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   202 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   204 // Constants for converting from a base unit to milli-base units.  For
   205 // example from seconds to milliseconds and microseconds
   207 const int MILLIUNITS    = 1000;         // milli units per base unit
   208 const int MICROUNITS    = 1000000;      // micro units per base unit
   209 const int NANOUNITS     = 1000000000;   // nano units per base unit
   211 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   212 const jint  NANOSECS_PER_MILLISEC = 1000000;
   214 // Proper units routines try to maintain at least three significant digits.
   215 // In worst case, it would print five significant digits with lower prefix.
   216 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
   217 // and therefore we need to be careful.
   219 inline const char* proper_unit_for_byte_size(size_t s) {
   220 #ifdef _LP64
   221   if (s >= 100*G) {
   222     return "G";
   223   }
   224 #endif
   225   if (s >= 100*M) {
   226     return "M";
   227   } else if (s >= 100*K) {
   228     return "K";
   229   } else {
   230     return "B";
   231   }
   232 }
   234 template <class T>
   235 inline T byte_size_in_proper_unit(T s) {
   236 #ifdef _LP64
   237   if (s >= 100*G) {
   238     return (T)(s/G);
   239   }
   240 #endif
   241   if (s >= 100*M) {
   242     return (T)(s/M);
   243   } else if (s >= 100*K) {
   244     return (T)(s/K);
   245   } else {
   246     return s;
   247   }
   248 }
   250 //----------------------------------------------------------------------------------------------------
   251 // VM type definitions
   253 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   254 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   256 typedef intptr_t  intx;
   257 typedef uintptr_t uintx;
   259 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   260 const intx  max_intx  = (uintx)min_intx - 1;
   261 const uintx max_uintx = (uintx)-1;
   263 // Table of values:
   264 //      sizeof intx         4               8
   265 // min_intx             0x80000000      0x8000000000000000
   266 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   267 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   269 typedef unsigned int uint;   NEEDS_CLEANUP
   272 //----------------------------------------------------------------------------------------------------
   273 // Java type definitions
   275 // All kinds of 'plain' byte addresses
   276 typedef   signed char s_char;
   277 typedef unsigned char u_char;
   278 typedef u_char*       address;
   279 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   280                                     // except for some implementations of a C++
   281                                     // linkage pointer to function. Should never
   282                                     // need one of those to be placed in this
   283                                     // type anyway.
   285 //  Utility functions to "portably" (?) bit twiddle pointers
   286 //  Where portable means keep ANSI C++ compilers quiet
   288 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   289 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   291 //  Utility functions to "portably" make cast to/from function pointers.
   293 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   294 inline address_word  castable_address(address x)              { return address_word(x) ; }
   295 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   297 // Pointer subtraction.
   298 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   299 // the range we might need to find differences from one end of the heap
   300 // to the other.
   301 // A typical use might be:
   302 //     if (pointer_delta(end(), top()) >= size) {
   303 //       // enough room for an object of size
   304 //       ...
   305 // and then additions like
   306 //       ... top() + size ...
   307 // are safe because we know that top() is at least size below end().
   308 inline size_t pointer_delta(const void* left,
   309                             const void* right,
   310                             size_t element_size) {
   311   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   312 }
   313 // A version specialized for HeapWord*'s.
   314 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   315   return pointer_delta(left, right, sizeof(HeapWord));
   316 }
   317 // A version specialized for MetaWord*'s.
   318 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
   319   return pointer_delta(left, right, sizeof(MetaWord));
   320 }
   322 //
   323 // ANSI C++ does not allow casting from one pointer type to a function pointer
   324 // directly without at best a warning. This macro accomplishes it silently
   325 // In every case that is present at this point the value be cast is a pointer
   326 // to a C linkage function. In somecase the type used for the cast reflects
   327 // that linkage and a picky compiler would not complain. In other cases because
   328 // there is no convenient place to place a typedef with extern C linkage (i.e
   329 // a platform dependent header file) it doesn't. At this point no compiler seems
   330 // picky enough to catch these instances (which are few). It is possible that
   331 // using templates could fix these for all cases. This use of templates is likely
   332 // so far from the middle of the road that it is likely to be problematic in
   333 // many C++ compilers.
   334 //
   335 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   336 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   338 // Unsigned byte types for os and stream.hpp
   340 // Unsigned one, two, four and eigth byte quantities used for describing
   341 // the .class file format. See JVM book chapter 4.
   343 typedef jubyte  u1;
   344 typedef jushort u2;
   345 typedef juint   u4;
   346 typedef julong  u8;
   348 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   349 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   350 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   351 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   353 typedef jbyte  s1;
   354 typedef jshort s2;
   355 typedef jint   s4;
   356 typedef jlong  s8;
   358 //----------------------------------------------------------------------------------------------------
   359 // JVM spec restrictions
   361 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   363 // Default ProtectionDomainCacheSize values
   365 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
   367 //----------------------------------------------------------------------------------------------------
   368 // Default and minimum StringTableSize values
   370 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
   371 const int minimumStringTableSize = 1009;
   373 const int defaultSymbolTableSize = 20011;
   374 const int minimumSymbolTableSize = 1009;
   377 //----------------------------------------------------------------------------------------------------
   378 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   379 //
   380 // Determines whether on-the-fly class replacement and frame popping are enabled.
   382 #define HOTSWAP
   384 //----------------------------------------------------------------------------------------------------
   385 // Object alignment, in units of HeapWords.
   386 //
   387 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   388 // reference fields can be naturally aligned.
   390 extern int MinObjAlignment;
   391 extern int MinObjAlignmentInBytes;
   392 extern int MinObjAlignmentInBytesMask;
   394 extern int LogMinObjAlignment;
   395 extern int LogMinObjAlignmentInBytes;
   397 const int LogKlassAlignmentInBytes = 3;
   398 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
   399 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
   400 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
   402 // Klass encoding metaspace max size
   403 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
   405 // Machine dependent stuff
   407 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
   408 // Include Restricted Transactional Memory lock eliding optimization
   409 #define INCLUDE_RTM_OPT 1
   410 #define RTM_OPT_ONLY(code) code
   411 #else
   412 #define INCLUDE_RTM_OPT 0
   413 #define RTM_OPT_ONLY(code)
   414 #endif
   415 // States of Restricted Transactional Memory usage.
   416 enum RTMState {
   417   NoRTM      = 0x2, // Don't use RTM
   418   UseRTM     = 0x1, // Use RTM
   419   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
   420 };
   422 #ifdef TARGET_ARCH_x86
   423 # include "globalDefinitions_x86.hpp"
   424 #endif
   425 #ifdef TARGET_ARCH_sparc
   426 # include "globalDefinitions_sparc.hpp"
   427 #endif
   428 #ifdef TARGET_ARCH_zero
   429 # include "globalDefinitions_zero.hpp"
   430 #endif
   431 #ifdef TARGET_ARCH_arm
   432 # include "globalDefinitions_arm.hpp"
   433 #endif
   434 #ifdef TARGET_ARCH_ppc
   435 # include "globalDefinitions_ppc.hpp"
   436 #endif
   438 /*
   439  * If a platform does not support native stack walking
   440  * the platform specific globalDefinitions (above)
   441  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
   442  */
   443 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
   444 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
   445 #endif
   447 // To assure the IRIW property on processors that are not multiple copy
   448 // atomic, sync instructions must be issued between volatile reads to
   449 // assure their ordering, instead of after volatile stores.
   450 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
   451 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
   452 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
   453 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
   454 #else
   455 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
   456 #endif
   458 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   459 // Note: this value must be a power of 2
   461 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   463 // Signed variants of alignment helpers.  There are two versions of each, a macro
   464 // for use in places like enum definitions that require compile-time constant
   465 // expressions and a function for all other places so as to get type checking.
   467 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   469 inline bool is_size_aligned(size_t size, size_t alignment) {
   470   return align_size_up_(size, alignment) == size;
   471 }
   473 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
   474   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
   475 }
   477 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   478   return align_size_up_(size, alignment);
   479 }
   481 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   483 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   484   return align_size_down_(size, alignment);
   485 }
   487 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
   489 inline void* align_ptr_up(void* ptr, size_t alignment) {
   490   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
   491 }
   493 inline void* align_ptr_down(void* ptr, size_t alignment) {
   494   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
   495 }
   497 // Align objects by rounding up their size, in HeapWord units.
   499 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   501 inline intptr_t align_object_size(intptr_t size) {
   502   return align_size_up(size, MinObjAlignment);
   503 }
   505 inline bool is_object_aligned(intptr_t addr) {
   506   return addr == align_object_size(addr);
   507 }
   509 // Pad out certain offsets to jlong alignment, in HeapWord units.
   511 inline intptr_t align_object_offset(intptr_t offset) {
   512   return align_size_up(offset, HeapWordsPerLong);
   513 }
   515 inline void* align_pointer_up(const void* addr, size_t size) {
   516   return (void*) align_size_up_((uintptr_t)addr, size);
   517 }
   519 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
   521 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
   522   size_t aligned_size = align_size_down_(size, alignment);
   523   return aligned_size > 0 ? aligned_size : alignment;
   524 }
   526 // Clamp an address to be within a specific page
   527 // 1. If addr is on the page it is returned as is
   528 // 2. If addr is above the page_address the start of the *next* page will be returned
   529 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
   530 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
   531   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
   532     // address is in the specified page, just return it as is
   533     return addr;
   534   } else if (addr > page_address) {
   535     // address is above specified page, return start of next page
   536     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
   537   } else {
   538     // address is below specified page, return start of page
   539     return (address)align_size_down(intptr_t(page_address), page_size);
   540   }
   541 }
   544 // The expected size in bytes of a cache line, used to pad data structures.
   545 #define DEFAULT_CACHE_LINE_SIZE 64
   548 //----------------------------------------------------------------------------------------------------
   549 // Utility macros for compilers
   550 // used to silence compiler warnings
   552 #define Unused_Variable(var) var
   555 //----------------------------------------------------------------------------------------------------
   556 // Miscellaneous
   558 // 6302670 Eliminate Hotspot __fabsf dependency
   559 // All fabs() callers should call this function instead, which will implicitly
   560 // convert the operand to double, avoiding a dependency on __fabsf which
   561 // doesn't exist in early versions of Solaris 8.
   562 inline double fabsd(double value) {
   563   return fabs(value);
   564 }
   566 //----------------------------------------------------------------------------------------------------
   567 // Special casts
   568 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
   569 typedef union {
   570   jfloat f;
   571   jint i;
   572 } FloatIntConv;
   574 typedef union {
   575   jdouble d;
   576   jlong l;
   577   julong ul;
   578 } DoubleLongConv;
   580 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
   581 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
   583 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
   584 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
   585 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
   587 inline jint low (jlong value)                    { return jint(value); }
   588 inline jint high(jlong value)                    { return jint(value >> 32); }
   590 // the fancy casts are a hopefully portable way
   591 // to do unsigned 32 to 64 bit type conversion
   592 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   593                                                    *value |= (jlong)(julong)(juint)low; }
   595 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   596                                                    *value |= (jlong)high       << 32; }
   598 inline jlong jlong_from(jint h, jint l) {
   599   jlong result = 0; // initialization to avoid warning
   600   set_high(&result, h);
   601   set_low(&result,  l);
   602   return result;
   603 }
   605 union jlong_accessor {
   606   jint  words[2];
   607   jlong long_value;
   608 };
   610 void basic_types_init(); // cannot define here; uses assert
   613 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   614 enum BasicType {
   615   T_BOOLEAN     =  4,
   616   T_CHAR        =  5,
   617   T_FLOAT       =  6,
   618   T_DOUBLE      =  7,
   619   T_BYTE        =  8,
   620   T_SHORT       =  9,
   621   T_INT         = 10,
   622   T_LONG        = 11,
   623   T_OBJECT      = 12,
   624   T_ARRAY       = 13,
   625   T_VOID        = 14,
   626   T_ADDRESS     = 15,
   627   T_NARROWOOP   = 16,
   628   T_METADATA    = 17,
   629   T_NARROWKLASS = 18,
   630   T_CONFLICT    = 19, // for stack value type with conflicting contents
   631   T_ILLEGAL     = 99
   632 };
   634 inline bool is_java_primitive(BasicType t) {
   635   return T_BOOLEAN <= t && t <= T_LONG;
   636 }
   638 inline bool is_subword_type(BasicType t) {
   639   // these guys are processed exactly like T_INT in calling sequences:
   640   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   641 }
   643 inline bool is_signed_subword_type(BasicType t) {
   644   return (t == T_BYTE || t == T_SHORT);
   645 }
   647 // Convert a char from a classfile signature to a BasicType
   648 inline BasicType char2type(char c) {
   649   switch( c ) {
   650   case 'B': return T_BYTE;
   651   case 'C': return T_CHAR;
   652   case 'D': return T_DOUBLE;
   653   case 'F': return T_FLOAT;
   654   case 'I': return T_INT;
   655   case 'J': return T_LONG;
   656   case 'S': return T_SHORT;
   657   case 'Z': return T_BOOLEAN;
   658   case 'V': return T_VOID;
   659   case 'L': return T_OBJECT;
   660   case '[': return T_ARRAY;
   661   }
   662   return T_ILLEGAL;
   663 }
   665 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   666 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   667 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   668 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   669 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   670 extern BasicType name2type(const char* name);
   672 // Auxilary math routines
   673 // least common multiple
   674 extern size_t lcm(size_t a, size_t b);
   677 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   678 enum BasicTypeSize {
   679   T_BOOLEAN_size     = 1,
   680   T_CHAR_size        = 1,
   681   T_FLOAT_size       = 1,
   682   T_DOUBLE_size      = 2,
   683   T_BYTE_size        = 1,
   684   T_SHORT_size       = 1,
   685   T_INT_size         = 1,
   686   T_LONG_size        = 2,
   687   T_OBJECT_size      = 1,
   688   T_ARRAY_size       = 1,
   689   T_NARROWOOP_size   = 1,
   690   T_NARROWKLASS_size = 1,
   691   T_VOID_size        = 0
   692 };
   695 // maps a BasicType to its instance field storage type:
   696 // all sub-word integral types are widened to T_INT
   697 extern BasicType type2field[T_CONFLICT+1];
   698 extern BasicType type2wfield[T_CONFLICT+1];
   701 // size in bytes
   702 enum ArrayElementSize {
   703   T_BOOLEAN_aelem_bytes     = 1,
   704   T_CHAR_aelem_bytes        = 2,
   705   T_FLOAT_aelem_bytes       = 4,
   706   T_DOUBLE_aelem_bytes      = 8,
   707   T_BYTE_aelem_bytes        = 1,
   708   T_SHORT_aelem_bytes       = 2,
   709   T_INT_aelem_bytes         = 4,
   710   T_LONG_aelem_bytes        = 8,
   711 #ifdef _LP64
   712   T_OBJECT_aelem_bytes      = 8,
   713   T_ARRAY_aelem_bytes       = 8,
   714 #else
   715   T_OBJECT_aelem_bytes      = 4,
   716   T_ARRAY_aelem_bytes       = 4,
   717 #endif
   718   T_NARROWOOP_aelem_bytes   = 4,
   719   T_NARROWKLASS_aelem_bytes = 4,
   720   T_VOID_aelem_bytes        = 0
   721 };
   723 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   724 #ifdef ASSERT
   725 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   726 #else
   727 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   728 #endif
   731 // JavaValue serves as a container for arbitrary Java values.
   733 class JavaValue {
   735  public:
   736   typedef union JavaCallValue {
   737     jfloat   f;
   738     jdouble  d;
   739     jint     i;
   740     jlong    l;
   741     jobject  h;
   742   } JavaCallValue;
   744  private:
   745   BasicType _type;
   746   JavaCallValue _value;
   748  public:
   749   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   751   JavaValue(jfloat value) {
   752     _type    = T_FLOAT;
   753     _value.f = value;
   754   }
   756   JavaValue(jdouble value) {
   757     _type    = T_DOUBLE;
   758     _value.d = value;
   759   }
   761  jfloat get_jfloat() const { return _value.f; }
   762  jdouble get_jdouble() const { return _value.d; }
   763  jint get_jint() const { return _value.i; }
   764  jlong get_jlong() const { return _value.l; }
   765  jobject get_jobject() const { return _value.h; }
   766  JavaCallValue* get_value_addr() { return &_value; }
   767  BasicType get_type() const { return _type; }
   769  void set_jfloat(jfloat f) { _value.f = f;}
   770  void set_jdouble(jdouble d) { _value.d = d;}
   771  void set_jint(jint i) { _value.i = i;}
   772  void set_jlong(jlong l) { _value.l = l;}
   773  void set_jobject(jobject h) { _value.h = h;}
   774  void set_type(BasicType t) { _type = t; }
   776  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   777  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   778  jchar get_jchar() const { return (jchar) (_value.i);}
   779  jshort get_jshort() const { return (jshort) (_value.i);}
   781 };
   784 #define STACK_BIAS      0
   785 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   786 // in order to extend the reach of the stack pointer.
   787 #if defined(SPARC) && defined(_LP64)
   788 #undef STACK_BIAS
   789 #define STACK_BIAS      0x7ff
   790 #endif
   793 // TosState describes the top-of-stack state before and after the execution of
   794 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   795 // registers. The TosState corresponds to the 'machine represention' of this cached
   796 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   797 // as well as a 5th state in case the top-of-stack value is actually on the top
   798 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   799 // state when it comes to machine representation but is used separately for (oop)
   800 // type specific operations (e.g. verification code).
   802 enum TosState {         // describes the tos cache contents
   803   btos = 0,             // byte, bool tos cached
   804   ztos = 1,             // byte, bool tos cached
   805   ctos = 2,             // char tos cached
   806   stos = 3,             // short tos cached
   807   itos = 4,             // int tos cached
   808   ltos = 5,             // long tos cached
   809   ftos = 6,             // float tos cached
   810   dtos = 7,             // double tos cached
   811   atos = 8,             // object cached
   812   vtos = 9,             // tos not cached
   813   number_of_states,
   814   ilgl                  // illegal state: should not occur
   815 };
   818 inline TosState as_TosState(BasicType type) {
   819   switch (type) {
   820     case T_BYTE   : return btos;
   821     case T_BOOLEAN: return ztos;
   822     case T_CHAR   : return ctos;
   823     case T_SHORT  : return stos;
   824     case T_INT    : return itos;
   825     case T_LONG   : return ltos;
   826     case T_FLOAT  : return ftos;
   827     case T_DOUBLE : return dtos;
   828     case T_VOID   : return vtos;
   829     case T_ARRAY  : // fall through
   830     case T_OBJECT : return atos;
   831   }
   832   return ilgl;
   833 }
   835 inline BasicType as_BasicType(TosState state) {
   836   switch (state) {
   837     case btos : return T_BYTE;
   838     case ztos : return T_BOOLEAN;
   839     case ctos : return T_CHAR;
   840     case stos : return T_SHORT;
   841     case itos : return T_INT;
   842     case ltos : return T_LONG;
   843     case ftos : return T_FLOAT;
   844     case dtos : return T_DOUBLE;
   845     case atos : return T_OBJECT;
   846     case vtos : return T_VOID;
   847   }
   848   return T_ILLEGAL;
   849 }
   852 // Helper function to convert BasicType info into TosState
   853 // Note: Cannot define here as it uses global constant at the time being.
   854 TosState as_TosState(BasicType type);
   857 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   858 // information is needed by the safepoint code.
   859 //
   860 // There are 4 essential states:
   861 //
   862 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   863 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   864 //  _thread_in_vm       : Executing in the vm
   865 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   866 //
   867 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   868 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   869 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   870 //
   871 // Given a state, the xxx_trans state can always be found by adding 1.
   872 //
   873 enum JavaThreadState {
   874   _thread_uninitialized     =  0, // should never happen (missing initialization)
   875   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   876   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   877   _thread_in_native         =  4, // running in native code
   878   _thread_in_native_trans   =  5, // corresponding transition state
   879   _thread_in_vm             =  6, // running in VM
   880   _thread_in_vm_trans       =  7, // corresponding transition state
   881   _thread_in_Java           =  8, // running in Java or in stub code
   882   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   883   _thread_blocked           = 10, // blocked in vm
   884   _thread_blocked_trans     = 11, // corresponding transition state
   885   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   886 };
   889 // Handy constants for deciding which compiler mode to use.
   890 enum MethodCompilation {
   891   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   892   InvalidOSREntryBci = -2
   893 };
   895 // Enumeration to distinguish tiers of compilation
   896 enum CompLevel {
   897   CompLevel_any               = -1,
   898   CompLevel_all               = -1,
   899   CompLevel_none              = 0,         // Interpreter
   900   CompLevel_simple            = 1,         // C1
   901   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   902   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   903   CompLevel_full_optimization = 4,         // C2 or Shark
   905 #if defined(COMPILER2) || defined(SHARK)
   906   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   907 #elif defined(COMPILER1)
   908   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   909 #else
   910   CompLevel_highest_tier      = CompLevel_none,
   911 #endif
   913 #if defined(TIERED)
   914   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   915 #elif defined(COMPILER1)
   916   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   917 #elif defined(COMPILER2) || defined(SHARK)
   918   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   919 #else
   920   CompLevel_initial_compile   = CompLevel_none
   921 #endif
   922 };
   924 inline bool is_c1_compile(int comp_level) {
   925   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   926 }
   928 inline bool is_c2_compile(int comp_level) {
   929   return comp_level == CompLevel_full_optimization;
   930 }
   932 inline bool is_highest_tier_compile(int comp_level) {
   933   return comp_level == CompLevel_highest_tier;
   934 }
   936 inline bool is_compile(int comp_level) {
   937   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
   938 }
   940 //----------------------------------------------------------------------------------------------------
   941 // 'Forward' declarations of frequently used classes
   942 // (in order to reduce interface dependencies & reduce
   943 // number of unnecessary compilations after changes)
   945 class symbolTable;
   946 class ClassFileStream;
   948 class Event;
   950 class Thread;
   951 class  VMThread;
   952 class  JavaThread;
   953 class Threads;
   955 class VM_Operation;
   956 class VMOperationQueue;
   958 class CodeBlob;
   959 class  nmethod;
   960 class  OSRAdapter;
   961 class  I2CAdapter;
   962 class  C2IAdapter;
   963 class CompiledIC;
   964 class relocInfo;
   965 class ScopeDesc;
   966 class PcDesc;
   968 class Recompiler;
   969 class Recompilee;
   970 class RecompilationPolicy;
   971 class RFrame;
   972 class  CompiledRFrame;
   973 class  InterpretedRFrame;
   975 class frame;
   977 class vframe;
   978 class   javaVFrame;
   979 class     interpretedVFrame;
   980 class     compiledVFrame;
   981 class     deoptimizedVFrame;
   982 class   externalVFrame;
   983 class     entryVFrame;
   985 class RegisterMap;
   987 class Mutex;
   988 class Monitor;
   989 class BasicLock;
   990 class BasicObjectLock;
   992 class PeriodicTask;
   994 class JavaCallWrapper;
   996 class   oopDesc;
   997 class   metaDataOopDesc;
   999 class NativeCall;
  1001 class zone;
  1003 class StubQueue;
  1005 class outputStream;
  1007 class ResourceArea;
  1009 class DebugInformationRecorder;
  1010 class ScopeValue;
  1011 class CompressedStream;
  1012 class   DebugInfoReadStream;
  1013 class   DebugInfoWriteStream;
  1014 class LocationValue;
  1015 class ConstantValue;
  1016 class IllegalValue;
  1018 class PrivilegedElement;
  1019 class MonitorArray;
  1021 class MonitorInfo;
  1023 class OffsetClosure;
  1024 class OopMapCache;
  1025 class InterpreterOopMap;
  1026 class OopMapCacheEntry;
  1027 class OSThread;
  1029 typedef int (*OSThreadStartFunc)(void*);
  1031 class Space;
  1033 class JavaValue;
  1034 class methodHandle;
  1035 class JavaCallArguments;
  1037 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
  1039 extern void basic_fatal(const char* msg);
  1042 //----------------------------------------------------------------------------------------------------
  1043 // Special constants for debugging
  1045 const jint     badInt           = -3;                       // generic "bad int" value
  1046 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
  1047 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
  1048 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
  1049 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
  1050 const int      badResourceValue = 0xAB;                     // value used to zap resource area
  1051 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
  1052 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
  1053 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
  1054 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
  1055 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
  1056 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
  1057 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
  1060 // (These must be implemented as #defines because C++ compilers are
  1061 // not obligated to inline non-integral constants!)
  1062 #define       badAddress        ((address)::badAddressVal)
  1063 #define       badOop            (cast_to_oop(::badOopVal))
  1064 #define       badHeapWord       (::badHeapWordVal)
  1065 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
  1067 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
  1068 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
  1070 //----------------------------------------------------------------------------------------------------
  1071 // Utility functions for bitfield manipulations
  1073 const intptr_t AllBits    = ~0; // all bits set in a word
  1074 const intptr_t NoBits     =  0; // no bits set in a word
  1075 const jlong    NoLongBits =  0; // no bits set in a long
  1076 const intptr_t OneBit     =  1; // only right_most bit set in a word
  1078 // get a word with the n.th or the right-most or left-most n bits set
  1079 // (note: #define used only so that they can be used in enum constant definitions)
  1080 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
  1081 #define right_n_bits(n)   (nth_bit(n) - 1)
  1082 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
  1084 // bit-operations using a mask m
  1085 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
  1086 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
  1087 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
  1088 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
  1089 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
  1091 // bit-operations using the n.th bit
  1092 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
  1093 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
  1094 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
  1096 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
  1097 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
  1098   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
  1102 //----------------------------------------------------------------------------------------------------
  1103 // Utility functions for integers
  1105 // Avoid use of global min/max macros which may cause unwanted double
  1106 // evaluation of arguments.
  1107 #ifdef max
  1108 #undef max
  1109 #endif
  1111 #ifdef min
  1112 #undef min
  1113 #endif
  1115 #define max(a,b) Do_not_use_max_use_MAX2_instead
  1116 #define min(a,b) Do_not_use_min_use_MIN2_instead
  1118 // It is necessary to use templates here. Having normal overloaded
  1119 // functions does not work because it is necessary to provide both 32-
  1120 // and 64-bit overloaded functions, which does not work, and having
  1121 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
  1122 // will be even more error-prone than macros.
  1123 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
  1124 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
  1125 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
  1126 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
  1127 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
  1128 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
  1130 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
  1132 // true if x is a power of 2, false otherwise
  1133 inline bool is_power_of_2(intptr_t x) {
  1134   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
  1137 // long version of is_power_of_2
  1138 inline bool is_power_of_2_long(jlong x) {
  1139   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
  1142 //* largest i such that 2^i <= x
  1143 //  A negative value of 'x' will return '31'
  1144 inline int log2_intptr(uintptr_t x) {
  1145   int i = -1;
  1146   uintptr_t p =  1;
  1147   while (p != 0 && p <= x) {
  1148     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1149     i++; p *= 2;
  1151   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1152   // (if p = 0 then overflow occurred and i = 31)
  1153   return i;
  1156 //* largest i such that 2^i <= x
  1157 inline int log2_long(julong x) {
  1158   int i = -1;
  1159   julong p =  1;
  1160   while (p != 0 && p <= x) {
  1161     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1162     i++; p *= 2;
  1164   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1165   // (if p = 0 then overflow occurred and i = 63)
  1166   return i;
  1169 inline int log2_intptr(intptr_t x) {
  1170   return log2_intptr((uintptr_t)x);
  1173 inline int log2_int(int x) {
  1174   return log2_intptr((uintptr_t)x);
  1177 inline int log2_jint(jint x) {
  1178   return log2_intptr((uintptr_t)x);
  1181 inline int log2_uint(uint x) {
  1182   return log2_intptr((uintptr_t)x);
  1185 //  A negative value of 'x' will return '63'
  1186 inline int log2_jlong(jlong x) {
  1187   return log2_long((julong)x);
  1190 //* the argument must be exactly a power of 2
  1191 inline int exact_log2(intptr_t x) {
  1192   #ifdef ASSERT
  1193     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1194   #endif
  1195   return log2_intptr(x);
  1198 //* the argument must be exactly a power of 2
  1199 inline int exact_log2_long(jlong x) {
  1200   #ifdef ASSERT
  1201     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1202   #endif
  1203   return log2_long(x);
  1207 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1208 inline intptr_t round_to(intptr_t x, uintx s) {
  1209   #ifdef ASSERT
  1210     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1211   #endif
  1212   const uintx m = s - 1;
  1213   return mask_bits(x + m, ~m);
  1216 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1217 inline intptr_t round_down(intptr_t x, uintx s) {
  1218   #ifdef ASSERT
  1219     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1220   #endif
  1221   const uintx m = s - 1;
  1222   return mask_bits(x, ~m);
  1226 inline bool is_odd (intx x) { return x & 1;      }
  1227 inline bool is_even(intx x) { return !is_odd(x); }
  1229 // abs methods which cannot overflow and so are well-defined across
  1230 // the entire domain of integer types.
  1231 static inline unsigned int uabs(unsigned int n) {
  1232   union {
  1233     unsigned int result;
  1234     int value;
  1235   };
  1236   result = n;
  1237   if (value < 0) result = 0-result;
  1238   return result;
  1240 static inline julong uabs(julong n) {
  1241   union {
  1242     julong result;
  1243     jlong value;
  1244   };
  1245   result = n;
  1246   if (value < 0) result = 0-result;
  1247   return result;
  1249 static inline julong uabs(jlong n) { return uabs((julong)n); }
  1250 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
  1252 // "to" should be greater than "from."
  1253 inline intx byte_size(void* from, void* to) {
  1254   return (address)to - (address)from;
  1257 //----------------------------------------------------------------------------------------------------
  1258 // Avoid non-portable casts with these routines (DEPRECATED)
  1260 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1261 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1263 // Given sequence of four bytes, build into a 32-bit word
  1264 // following the conventions used in class files.
  1265 // On the 386, this could be realized with a simple address cast.
  1266 //
  1268 // This routine takes eight bytes:
  1269 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1270   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1271        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1272        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1273        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1274        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1275        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1276        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1277        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1280 // This routine takes four bytes:
  1281 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1282   return  (( u4(c1) << 24 )  &  0xff000000)
  1283        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1284        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1285        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1288 // And this one works if the four bytes are contiguous in memory:
  1289 inline u4 build_u4_from( u1* p ) {
  1290   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1293 // Ditto for two-byte ints:
  1294 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1295   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1296           |  (( u2(c2) <<  0 )  &  0x00ff));
  1299 // And this one works if the two bytes are contiguous in memory:
  1300 inline u2 build_u2_from( u1* p ) {
  1301   return  build_u2_from( p[0], p[1] );
  1304 // Ditto for floats:
  1305 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1306   u4 u = build_u4_from( c1, c2, c3, c4 );
  1307   return  *(jfloat*)&u;
  1310 inline jfloat build_float_from( u1* p ) {
  1311   u4 u = build_u4_from( p );
  1312   return  *(jfloat*)&u;
  1316 // now (64-bit) longs
  1318 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1319   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1320        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1321        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1322        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1323        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1324        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1325        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1326        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1329 inline jlong build_long_from( u1* p ) {
  1330   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1334 // Doubles, too!
  1335 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1336   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1337   return  *(jdouble*)&u;
  1340 inline jdouble build_double_from( u1* p ) {
  1341   jlong u = build_long_from( p );
  1342   return  *(jdouble*)&u;
  1346 // Portable routines to go the other way:
  1348 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1349   c1 = u1(x >> 8);
  1350   c2 = u1(x);
  1353 inline void explode_short_to( u2 x, u1* p ) {
  1354   explode_short_to( x, p[0], p[1]);
  1357 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1358   c1 = u1(x >> 24);
  1359   c2 = u1(x >> 16);
  1360   c3 = u1(x >>  8);
  1361   c4 = u1(x);
  1364 inline void explode_int_to( u4 x, u1* p ) {
  1365   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1369 // Pack and extract shorts to/from ints:
  1371 inline int extract_low_short_from_int(jint x) {
  1372   return x & 0xffff;
  1375 inline int extract_high_short_from_int(jint x) {
  1376   return (x >> 16) & 0xffff;
  1379 inline int build_int_from_shorts( jushort low, jushort high ) {
  1380   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1383 // Convert pointer to intptr_t, for use in printing pointers.
  1384 inline intptr_t p2i(const void * p) {
  1385   return (intptr_t) p;
  1388 // Printf-style formatters for fixed- and variable-width types as pointers and
  1389 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1390 // doesn't provide appropriate definitions, they should be provided in
  1391 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1393 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1395 // Format 32-bit quantities.
  1396 #define INT32_FORMAT           "%" PRId32
  1397 #define UINT32_FORMAT          "%" PRIu32
  1398 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1399 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1401 #define PTR32_FORMAT           "0x%08" PRIx32
  1403 // Format 64-bit quantities.
  1404 #define INT64_FORMAT           "%" PRId64
  1405 #define UINT64_FORMAT          "%" PRIu64
  1406 #define UINT64_FORMAT_X        "%" PRIx64
  1407 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1408 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1410 #define PTR64_FORMAT           "0x%016" PRIx64
  1412 // Format jlong, if necessary
  1413 #ifndef JLONG_FORMAT
  1414 #define JLONG_FORMAT           INT64_FORMAT
  1415 #endif
  1416 #ifndef JULONG_FORMAT
  1417 #define JULONG_FORMAT          UINT64_FORMAT
  1418 #endif
  1420 // Format pointers which change size between 32- and 64-bit.
  1421 #ifdef  _LP64
  1422 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1423 #define PTR_FORMAT    "0x%016" PRIxPTR
  1424 #else   // !_LP64
  1425 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1426 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1427 #endif  // _LP64
  1429 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  1431 #define SSIZE_FORMAT          "%"   PRIdPTR
  1432 #define SIZE_FORMAT           "%"   PRIuPTR
  1433 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
  1434 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
  1435 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
  1436 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
  1438 #define INTX_FORMAT           "%" PRIdPTR
  1439 #define UINTX_FORMAT          "%" PRIuPTR
  1440 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1441 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1444 // Enable zap-a-lot if in debug version.
  1446 # ifdef ASSERT
  1447 # ifdef COMPILER2
  1448 #   define ENABLE_ZAP_DEAD_LOCALS
  1449 #endif /* COMPILER2 */
  1450 # endif /* ASSERT */
  1452 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1454 //----------------------------------------------------------------------------------------------------
  1455 // Sum and product which can never overflow: they wrap, just like the
  1456 // Java operations.  Note that we don't intend these to be used for
  1457 // general-purpose arithmetic: their purpose is to emulate Java
  1458 // operations.
  1460 // The goal of this code to avoid undefined or implementation-defined
  1461 // behaviour.  The use of an lvalue to reference cast is explicitly
  1462 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
  1463 // 15 in C++03]
  1464 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
  1465 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
  1466   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
  1467   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
  1468   return reinterpret_cast<TYPE&>(ures);                 \
  1471 JAVA_INTEGER_OP(+, java_add, jint, juint)
  1472 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
  1473 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
  1474 JAVA_INTEGER_OP(+, java_add, jlong, julong)
  1475 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
  1476 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
  1478 #undef JAVA_INTEGER_OP
  1480 // Dereference vptr
  1481 // All C++ compilers that we know of have the vtbl pointer in the first
  1482 // word.  If there are exceptions, this function needs to be made compiler
  1483 // specific.
  1484 static inline void* dereference_vptr(const void* addr) {
  1485   return *(void**)addr;
  1488 #ifndef PRODUCT
  1490 // For unit testing only
  1491 class GlobalDefinitions {
  1492 public:
  1493   static void test_globals();
  1494   static void test_proper_unit();
  1495 };
  1497 #endif // PRODUCT
  1499 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial