src/share/vm/opto/loopTransform.cpp

Sun, 27 Mar 2011 00:00:14 -0700

author
never
date
Sun, 27 Mar 2011 00:00:14 -0700
changeset 2685
1927db75dd85
parent 2665
9dc311b8473e
child 2694
f9424955eb18
permissions
-rw-r--r--

7024475: loop doesn't terminate when compiled
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_profile_trip_cnt----------------------------
    67 // Compute loop trip count from profile data as
    68 //    (backedge_count + loop_exit_count) / loop_exit_count
    69 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    70   if (!_head->is_CountedLoop()) {
    71     return;
    72   }
    73   CountedLoopNode* head = _head->as_CountedLoop();
    74   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    75     return; // Already computed
    76   }
    77   float trip_cnt = (float)max_jint; // default is big
    79   Node* back = head->in(LoopNode::LoopBackControl);
    80   while (back != head) {
    81     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82         back->in(0) &&
    83         back->in(0)->is_If() &&
    84         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    85         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    86       break;
    87     }
    88     back = phase->idom(back);
    89   }
    90   if (back != head) {
    91     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    92            back->in(0), "if-projection exists");
    93     IfNode* back_if = back->in(0)->as_If();
    94     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    96     // Now compute a loop exit count
    97     float loop_exit_cnt = 0.0f;
    98     for( uint i = 0; i < _body.size(); i++ ) {
    99       Node *n = _body[i];
   100       if( n->is_If() ) {
   101         IfNode *iff = n->as_If();
   102         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   103           Node *exit = is_loop_exit(iff);
   104           if( exit ) {
   105             float exit_prob = iff->_prob;
   106             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   107             if (exit_prob > PROB_MIN) {
   108               float exit_cnt = iff->_fcnt * exit_prob;
   109               loop_exit_cnt += exit_cnt;
   110             }
   111           }
   112         }
   113       }
   114     }
   115     if (loop_exit_cnt > 0.0f) {
   116       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   117     } else {
   118       // No exit count so use
   119       trip_cnt = loop_back_cnt;
   120     }
   121   }
   122 #ifndef PRODUCT
   123   if (TraceProfileTripCount) {
   124     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   125   }
   126 #endif
   127   head->set_profile_trip_cnt(trip_cnt);
   128 }
   130 //---------------------is_invariant_addition-----------------------------
   131 // Return nonzero index of invariant operand for an Add or Sub
   132 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   133 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   134   int op = n->Opcode();
   135   if (op == Op_AddI || op == Op_SubI) {
   136     bool in1_invar = this->is_invariant(n->in(1));
   137     bool in2_invar = this->is_invariant(n->in(2));
   138     if (in1_invar && !in2_invar) return 1;
   139     if (!in1_invar && in2_invar) return 2;
   140   }
   141   return 0;
   142 }
   144 //---------------------reassociate_add_sub-----------------------------
   145 // Reassociate invariant add and subtract expressions:
   146 //
   147 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   148 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   149 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   150 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   151 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   152 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   153 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   154 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   155 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   156 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   157 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   158 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   159 //
   160 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   161   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   162   if (is_invariant(n1)) return NULL;
   163   int inv1_idx = is_invariant_addition(n1, phase);
   164   if (!inv1_idx) return NULL;
   165   // Don't mess with add of constant (igvn moves them to expression tree root.)
   166   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   167   Node* inv1 = n1->in(inv1_idx);
   168   Node* n2 = n1->in(3 - inv1_idx);
   169   int inv2_idx = is_invariant_addition(n2, phase);
   170   if (!inv2_idx) return NULL;
   171   Node* x    = n2->in(3 - inv2_idx);
   172   Node* inv2 = n2->in(inv2_idx);
   174   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   175   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   176   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   177   if (n1->is_Sub() && inv1_idx == 1) {
   178     neg_x    = !neg_x;
   179     neg_inv2 = !neg_inv2;
   180   }
   181   Node* inv1_c = phase->get_ctrl(inv1);
   182   Node* inv2_c = phase->get_ctrl(inv2);
   183   Node* n_inv1;
   184   if (neg_inv1) {
   185     Node *zero = phase->_igvn.intcon(0);
   186     phase->set_ctrl(zero, phase->C->root());
   187     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   188     phase->register_new_node(n_inv1, inv1_c);
   189   } else {
   190     n_inv1 = inv1;
   191   }
   192   Node* inv;
   193   if (neg_inv2) {
   194     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   195   } else {
   196     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   197   }
   198   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   200   Node* addx;
   201   if (neg_x) {
   202     addx = new (phase->C, 3) SubINode(inv, x);
   203   } else {
   204     addx = new (phase->C, 3) AddINode(x, inv);
   205   }
   206   phase->register_new_node(addx, phase->get_ctrl(x));
   207   phase->_igvn.replace_node(n1, addx);
   208   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   209   _body.yank(n1);
   210   return addx;
   211 }
   213 //---------------------reassociate_invariants-----------------------------
   214 // Reassociate invariant expressions:
   215 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   216   for (int i = _body.size() - 1; i >= 0; i--) {
   217     Node *n = _body.at(i);
   218     for (int j = 0; j < 5; j++) {
   219       Node* nn = reassociate_add_sub(n, phase);
   220       if (nn == NULL) break;
   221       n = nn; // again
   222     };
   223   }
   224 }
   226 //------------------------------policy_peeling---------------------------------
   227 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   228 // make some loop-invariant test (usually a null-check) happen before the loop.
   229 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   230   Node *test = ((IdealLoopTree*)this)->tail();
   231   int  body_size = ((IdealLoopTree*)this)->_body.size();
   232   int  uniq      = phase->C->unique();
   233   // Peeling does loop cloning which can result in O(N^2) node construction
   234   if( body_size > 255 /* Prevent overflow for large body_size */
   235       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   236     return false;           // too large to safely clone
   237   }
   238   while( test != _head ) {      // Scan till run off top of loop
   239     if( test->is_If() ) {       // Test?
   240       Node *ctrl = phase->get_ctrl(test->in(1));
   241       if (ctrl->is_top())
   242         return false;           // Found dead test on live IF?  No peeling!
   243       // Standard IF only has one input value to check for loop invariance
   244       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   245       // Condition is not a member of this loop?
   246       if( !is_member(phase->get_loop(ctrl)) &&
   247           is_loop_exit(test) )
   248         return true;            // Found reason to peel!
   249     }
   250     // Walk up dominators to loop _head looking for test which is
   251     // executed on every path thru loop.
   252     test = phase->idom(test);
   253   }
   254   return false;
   255 }
   257 //------------------------------peeled_dom_test_elim---------------------------
   258 // If we got the effect of peeling, either by actually peeling or by making
   259 // a pre-loop which must execute at least once, we can remove all
   260 // loop-invariant dominated tests in the main body.
   261 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   262   bool progress = true;
   263   while( progress ) {
   264     progress = false;           // Reset for next iteration
   265     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   266     Node *test = prev->in(0);
   267     while( test != loop->_head ) { // Scan till run off top of loop
   269       int p_op = prev->Opcode();
   270       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   271           test->is_If() &&      // Test?
   272           !test->in(1)->is_Con() && // And not already obvious?
   273           // Condition is not a member of this loop?
   274           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   275         // Walk loop body looking for instances of this test
   276         for( uint i = 0; i < loop->_body.size(); i++ ) {
   277           Node *n = loop->_body.at(i);
   278           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   279             // IfNode was dominated by version in peeled loop body
   280             progress = true;
   281             dominated_by( old_new[prev->_idx], n );
   282           }
   283         }
   284       }
   285       prev = test;
   286       test = idom(test);
   287     } // End of scan tests in loop
   289   } // End of while( progress )
   290 }
   292 //------------------------------do_peeling-------------------------------------
   293 // Peel the first iteration of the given loop.
   294 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   295 //         The pre-loop illegally has 2 control users (old & new loops).
   296 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   297 //         Do this by making the old-loop fall-in edges act as if they came
   298 //         around the loopback from the prior iteration (follow the old-loop
   299 //         backedges) and then map to the new peeled iteration.  This leaves
   300 //         the pre-loop with only 1 user (the new peeled iteration), but the
   301 //         peeled-loop backedge has 2 users.
   302 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   303 //         extra backedge user.
   304 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   306   C->set_major_progress();
   307   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   308   // 'pre' loop from the main and the 'pre' can no longer have it's
   309   // iterations adjusted.  Therefore, we need to declare this loop as
   310   // no longer a 'main' loop; it will need new pre and post loops before
   311   // we can do further RCE.
   312 #ifndef PRODUCT
   313   if (TraceLoopOpts) {
   314     tty->print("Peel         ");
   315     loop->dump_head();
   316   }
   317 #endif
   318   Node *h = loop->_head;
   319   if (h->is_CountedLoop()) {
   320     CountedLoopNode *cl = h->as_CountedLoop();
   321     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   322     cl->set_trip_count(cl->trip_count() - 1);
   323     if (cl->is_main_loop()) {
   324       cl->set_normal_loop();
   325 #ifndef PRODUCT
   326       if (PrintOpto && VerifyLoopOptimizations) {
   327         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   328         loop->dump_head();
   329       }
   330 #endif
   331     }
   332   }
   334   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335   //         The pre-loop illegally has 2 control users (old & new loops).
   336   clone_loop( loop, old_new, dom_depth(loop->_head) );
   339   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   340   //         Do this by making the old-loop fall-in edges act as if they came
   341   //         around the loopback from the prior iteration (follow the old-loop
   342   //         backedges) and then map to the new peeled iteration.  This leaves
   343   //         the pre-loop with only 1 user (the new peeled iteration), but the
   344   //         peeled-loop backedge has 2 users.
   345   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   346     Node* old = loop->_head->fast_out(j);
   347     if( old->in(0) == loop->_head && old->req() == 3 &&
   348         (old->is_Loop() || old->is_Phi()) ) {
   349       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   350       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   351         // Then loop body backedge value remains the same.
   352         new_exit_value = old->in(LoopNode::LoopBackControl);
   353       _igvn.hash_delete(old);
   354       old->set_req(LoopNode::EntryControl, new_exit_value);
   355     }
   356   }
   359   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   360   //         extra backedge user.
   361   Node *nnn = old_new[loop->_head->_idx];
   362   _igvn.hash_delete(nnn);
   363   nnn->set_req(LoopNode::LoopBackControl, C->top());
   364   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   365     Node* use = nnn->fast_out(j2);
   366     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   367       _igvn.hash_delete(use);
   368       use->set_req(LoopNode::LoopBackControl, C->top());
   369     }
   370   }
   373   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   374   int dd = dom_depth(loop->_head);
   375   set_idom(loop->_head, loop->_head->in(1), dd);
   376   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   377     Node *old = loop->_body.at(j3);
   378     Node *nnn = old_new[old->_idx];
   379     if (!has_ctrl(nnn))
   380       set_idom(nnn, idom(nnn), dd-1);
   381     // While we're at it, remove any SafePoints from the peeled code
   382     if( old->Opcode() == Op_SafePoint ) {
   383       Node *nnn = old_new[old->_idx];
   384       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   385     }
   386   }
   388   // Now force out all loop-invariant dominating tests.  The optimizer
   389   // finds some, but we _know_ they are all useless.
   390   peeled_dom_test_elim(loop,old_new);
   392   loop->record_for_igvn();
   393 }
   395 //------------------------------policy_maximally_unroll------------------------
   396 // Return exact loop trip count, or 0 if not maximally unrolling
   397 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   398   CountedLoopNode *cl = _head->as_CountedLoop();
   399   assert( cl->is_normal_loop(), "" );
   401   Node *init_n = cl->init_trip();
   402   Node *limit_n = cl->limit();
   404   // Non-constant bounds
   405   if( init_n   == NULL || !init_n->is_Con()  ||
   406       limit_n  == NULL || !limit_n->is_Con() ||
   407       // protect against stride not being a constant
   408       !cl->stride_is_con() ) {
   409     return false;
   410   }
   411   int init   = init_n->get_int();
   412   int limit  = limit_n->get_int();
   413   int span   = limit - init;
   414   int stride = cl->stride_con();
   416   if (init >= limit || stride > span) {
   417     // return a false (no maximally unroll) and the regular unroll/peel
   418     // route will make a small mess which CCP will fold away.
   419     return false;
   420   }
   421   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   422   assert( (int)trip_count*stride == span, "must divide evenly" );
   424   // Real policy: if we maximally unroll, does it get too big?
   425   // Allow the unrolled mess to get larger than standard loop
   426   // size.  After all, it will no longer be a loop.
   427   uint body_size    = _body.size();
   428   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   429   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   430   cl->set_trip_count(trip_count);
   431   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
   432     uint new_body_size = body_size * trip_count;
   433     if (new_body_size <= unroll_limit &&
   434         body_size == new_body_size / trip_count &&
   435         // Unrolling can result in a large amount of node construction
   436         new_body_size < MaxNodeLimit - phase->C->unique()) {
   437       return true;    // maximally unroll
   438     }
   439   }
   441   return false;               // Do not maximally unroll
   442 }
   445 //------------------------------policy_unroll----------------------------------
   446 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   447 // the loop is a CountedLoop and the body is small enough.
   448 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   450   CountedLoopNode *cl = _head->as_CountedLoop();
   451   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
   453   // protect against stride not being a constant
   454   if( !cl->stride_is_con() ) return false;
   456   // protect against over-unrolling
   457   if( cl->trip_count() <= 1 ) return false;
   459   int future_unroll_ct = cl->unrolled_count() * 2;
   461   // Don't unroll if the next round of unrolling would push us
   462   // over the expected trip count of the loop.  One is subtracted
   463   // from the expected trip count because the pre-loop normally
   464   // executes 1 iteration.
   465   if (UnrollLimitForProfileCheck > 0 &&
   466       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   467       future_unroll_ct        > UnrollLimitForProfileCheck &&
   468       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   469     return false;
   470   }
   472   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   473   //   the residual iterations are more than 10% of the trip count
   474   //   and rounds of "unroll,optimize" are not making significant progress
   475   //   Progress defined as current size less than 20% larger than previous size.
   476   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   477       future_unroll_ct > LoopUnrollMin &&
   478       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   479       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   480     return false;
   481   }
   483   Node *init_n = cl->init_trip();
   484   Node *limit_n = cl->limit();
   485   // Non-constant bounds.
   486   // Protect against over-unrolling when init or/and limit are not constant
   487   // (so that trip_count's init value is maxint) but iv range is known.
   488   if( init_n   == NULL || !init_n->is_Con()  ||
   489       limit_n  == NULL || !limit_n->is_Con() ) {
   490     Node* phi = cl->phi();
   491     if( phi != NULL ) {
   492       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   493       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   494       int next_stride = cl->stride_con() * 2; // stride after this unroll
   495       if( next_stride > 0 ) {
   496         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   497             iv_type->_lo + next_stride >  iv_type->_hi ) {
   498           return false;  // over-unrolling
   499         }
   500       } else if( next_stride < 0 ) {
   501         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   502             iv_type->_hi + next_stride <  iv_type->_lo ) {
   503           return false;  // over-unrolling
   504         }
   505       }
   506     }
   507   }
   509   // Adjust body_size to determine if we unroll or not
   510   uint body_size = _body.size();
   511   // Key test to unroll CaffeineMark's Logic test
   512   int xors_in_loop = 0;
   513   // Also count ModL, DivL and MulL which expand mightly
   514   for( uint k = 0; k < _body.size(); k++ ) {
   515     switch( _body.at(k)->Opcode() ) {
   516     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   517     case Op_ModL: body_size += 30; break;
   518     case Op_DivL: body_size += 30; break;
   519     case Op_MulL: body_size += 10; break;
   520     }
   521   }
   523   // Check for being too big
   524   if( body_size > (uint)LoopUnrollLimit ) {
   525     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   526     // Normal case: loop too big
   527     return false;
   528   }
   530   // Check for stride being a small enough constant
   531   if( abs(cl->stride_con()) > (1<<3) ) return false;
   533   // Unroll once!  (Each trip will soon do double iterations)
   534   return true;
   535 }
   537 //------------------------------policy_align-----------------------------------
   538 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   539 // expression that does the alignment.  Note that only one array base can be
   540 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   541 // if we vectorize short memory ops into longer memory ops, we may want to
   542 // increase alignment.
   543 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   544   return false;
   545 }
   547 //------------------------------policy_range_check-----------------------------
   548 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   549 // Actually we do iteration-splitting, a more powerful form of RCE.
   550 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   551   if( !RangeCheckElimination ) return false;
   553   CountedLoopNode *cl = _head->as_CountedLoop();
   554   // If we unrolled with no intention of doing RCE and we later
   555   // changed our minds, we got no pre-loop.  Either we need to
   556   // make a new pre-loop, or we gotta disallow RCE.
   557   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   558   Node *trip_counter = cl->phi();
   560   // Check loop body for tests of trip-counter plus loop-invariant vs
   561   // loop-invariant.
   562   for( uint i = 0; i < _body.size(); i++ ) {
   563     Node *iff = _body[i];
   564     if( iff->Opcode() == Op_If ) { // Test?
   566       // Comparing trip+off vs limit
   567       Node *bol = iff->in(1);
   568       if( bol->req() != 2 ) continue; // dead constant test
   569       if (!bol->is_Bool()) {
   570         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   571         continue;
   572       }
   573       Node *cmp = bol->in(1);
   575       Node *rc_exp = cmp->in(1);
   576       Node *limit = cmp->in(2);
   578       Node *limit_c = phase->get_ctrl(limit);
   579       if( limit_c == phase->C->top() )
   580         return false;           // Found dead test on live IF?  No RCE!
   581       if( is_member(phase->get_loop(limit_c) ) ) {
   582         // Compare might have operands swapped; commute them
   583         rc_exp = cmp->in(2);
   584         limit  = cmp->in(1);
   585         limit_c = phase->get_ctrl(limit);
   586         if( is_member(phase->get_loop(limit_c) ) )
   587           continue;             // Both inputs are loop varying; cannot RCE
   588       }
   590       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   591         continue;
   592       }
   593       // Yeah!  Found a test like 'trip+off vs limit'
   594       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   595       // we need loop unswitching instead of iteration splitting.
   596       if( is_loop_exit(iff) )
   597         return true;            // Found reason to split iterations
   598     } // End of is IF
   599   }
   601   return false;
   602 }
   604 //------------------------------policy_peel_only-------------------------------
   605 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   606 // for unrolling loops with NO array accesses.
   607 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   609   for( uint i = 0; i < _body.size(); i++ )
   610     if( _body[i]->is_Mem() )
   611       return false;
   613   // No memory accesses at all!
   614   return true;
   615 }
   617 //------------------------------clone_up_backedge_goo--------------------------
   618 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   619 // version of n in preheader_ctrl block and return that, otherwise return n.
   620 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   621   if( get_ctrl(n) != back_ctrl ) return n;
   623   Node *x = NULL;               // If required, a clone of 'n'
   624   // Check for 'n' being pinned in the backedge.
   625   if( n->in(0) && n->in(0) == back_ctrl ) {
   626     x = n->clone();             // Clone a copy of 'n' to preheader
   627     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   628   }
   630   // Recursive fixup any other input edges into x.
   631   // If there are no changes we can just return 'n', otherwise
   632   // we need to clone a private copy and change it.
   633   for( uint i = 1; i < n->req(); i++ ) {
   634     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   635     if( g != n->in(i) ) {
   636       if( !x )
   637         x = n->clone();
   638       x->set_req(i, g);
   639     }
   640   }
   641   if( x ) {                     // x can legally float to pre-header location
   642     register_new_node( x, preheader_ctrl );
   643     return x;
   644   } else {                      // raise n to cover LCA of uses
   645     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   646   }
   647   return n;
   648 }
   650 //------------------------------insert_pre_post_loops--------------------------
   651 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   652 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   653 // alignment.  Useful to unroll loops that do no array accesses.
   654 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   656 #ifndef PRODUCT
   657   if (TraceLoopOpts) {
   658     if (peel_only)
   659       tty->print("PeelMainPost ");
   660     else
   661       tty->print("PreMainPost  ");
   662     loop->dump_head();
   663   }
   664 #endif
   665   C->set_major_progress();
   667   // Find common pieces of the loop being guarded with pre & post loops
   668   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   669   assert( main_head->is_normal_loop(), "" );
   670   CountedLoopEndNode *main_end = main_head->loopexit();
   671   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   672   uint dd_main_head = dom_depth(main_head);
   673   uint max = main_head->outcnt();
   675   Node *pre_header= main_head->in(LoopNode::EntryControl);
   676   Node *init      = main_head->init_trip();
   677   Node *incr      = main_end ->incr();
   678   Node *limit     = main_end ->limit();
   679   Node *stride    = main_end ->stride();
   680   Node *cmp       = main_end ->cmp_node();
   681   BoolTest::mask b_test = main_end->test_trip();
   683   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   684   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   685   if( bol->outcnt() != 1 ) {
   686     bol = bol->clone();
   687     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   688     _igvn.hash_delete(main_end);
   689     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   690   }
   691   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   692   if( cmp->outcnt() != 1 ) {
   693     cmp = cmp->clone();
   694     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   695     _igvn.hash_delete(bol);
   696     bol->set_req(1, cmp);
   697   }
   699   //------------------------------
   700   // Step A: Create Post-Loop.
   701   Node* main_exit = main_end->proj_out(false);
   702   assert( main_exit->Opcode() == Op_IfFalse, "" );
   703   int dd_main_exit = dom_depth(main_exit);
   705   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   706   // loop pre-header illegally has 2 control users (old & new loops).
   707   clone_loop( loop, old_new, dd_main_exit );
   708   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   709   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   710   post_head->set_post_loop(main_head);
   712   // Reduce the post-loop trip count.
   713   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   714   post_end->_prob = PROB_FAIR;
   716   // Build the main-loop normal exit.
   717   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   718   _igvn.register_new_node_with_optimizer( new_main_exit );
   719   set_idom(new_main_exit, main_end, dd_main_exit );
   720   set_loop(new_main_exit, loop->_parent);
   722   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   723   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   724   // (the main-loop trip-counter exit value) because we will be changing
   725   // the exit value (via unrolling) so we cannot constant-fold away the zero
   726   // trip guard until all unrolling is done.
   727   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   728   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   729   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   730   register_new_node( zer_opaq, new_main_exit );
   731   register_new_node( zer_cmp , new_main_exit );
   732   register_new_node( zer_bol , new_main_exit );
   734   // Build the IfNode
   735   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   736   _igvn.register_new_node_with_optimizer( zer_iff );
   737   set_idom(zer_iff, new_main_exit, dd_main_exit);
   738   set_loop(zer_iff, loop->_parent);
   740   // Plug in the false-path, taken if we need to skip post-loop
   741   _igvn.hash_delete( main_exit );
   742   main_exit->set_req(0, zer_iff);
   743   _igvn._worklist.push(main_exit);
   744   set_idom(main_exit, zer_iff, dd_main_exit);
   745   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   746   // Make the true-path, must enter the post loop
   747   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   748   _igvn.register_new_node_with_optimizer( zer_taken );
   749   set_idom(zer_taken, zer_iff, dd_main_exit);
   750   set_loop(zer_taken, loop->_parent);
   751   // Plug in the true path
   752   _igvn.hash_delete( post_head );
   753   post_head->set_req(LoopNode::EntryControl, zer_taken);
   754   set_idom(post_head, zer_taken, dd_main_exit);
   756   // Step A3: Make the fall-in values to the post-loop come from the
   757   // fall-out values of the main-loop.
   758   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   759     Node* main_phi = main_head->fast_out(i);
   760     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   761       Node *post_phi = old_new[main_phi->_idx];
   762       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   763                                               post_head->init_control(),
   764                                               main_phi->in(LoopNode::LoopBackControl));
   765       _igvn.hash_delete(post_phi);
   766       post_phi->set_req( LoopNode::EntryControl, fallmain );
   767     }
   768   }
   770   // Update local caches for next stanza
   771   main_exit = new_main_exit;
   774   //------------------------------
   775   // Step B: Create Pre-Loop.
   777   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   778   // loop pre-header illegally has 2 control users (old & new loops).
   779   clone_loop( loop, old_new, dd_main_head );
   780   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   781   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   782   pre_head->set_pre_loop(main_head);
   783   Node *pre_incr = old_new[incr->_idx];
   785   // Reduce the pre-loop trip count.
   786   pre_end->_prob = PROB_FAIR;
   788   // Find the pre-loop normal exit.
   789   Node* pre_exit = pre_end->proj_out(false);
   790   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   791   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   792   _igvn.register_new_node_with_optimizer( new_pre_exit );
   793   set_idom(new_pre_exit, pre_end, dd_main_head);
   794   set_loop(new_pre_exit, loop->_parent);
   796   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   797   // pre-loop, the main-loop may not execute at all.  Later in life this
   798   // zero-trip guard will become the minimum-trip guard when we unroll
   799   // the main-loop.
   800   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   801   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   802   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   803   register_new_node( min_opaq, new_pre_exit );
   804   register_new_node( min_cmp , new_pre_exit );
   805   register_new_node( min_bol , new_pre_exit );
   807   // Build the IfNode (assume the main-loop is executed always).
   808   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
   809   _igvn.register_new_node_with_optimizer( min_iff );
   810   set_idom(min_iff, new_pre_exit, dd_main_head);
   811   set_loop(min_iff, loop->_parent);
   813   // Plug in the false-path, taken if we need to skip main-loop
   814   _igvn.hash_delete( pre_exit );
   815   pre_exit->set_req(0, min_iff);
   816   set_idom(pre_exit, min_iff, dd_main_head);
   817   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   818   // Make the true-path, must enter the main loop
   819   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   820   _igvn.register_new_node_with_optimizer( min_taken );
   821   set_idom(min_taken, min_iff, dd_main_head);
   822   set_loop(min_taken, loop->_parent);
   823   // Plug in the true path
   824   _igvn.hash_delete( main_head );
   825   main_head->set_req(LoopNode::EntryControl, min_taken);
   826   set_idom(main_head, min_taken, dd_main_head);
   828   // Step B3: Make the fall-in values to the main-loop come from the
   829   // fall-out values of the pre-loop.
   830   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   831     Node* main_phi = main_head->fast_out(i2);
   832     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   833       Node *pre_phi = old_new[main_phi->_idx];
   834       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   835                                              main_head->init_control(),
   836                                              pre_phi->in(LoopNode::LoopBackControl));
   837       _igvn.hash_delete(main_phi);
   838       main_phi->set_req( LoopNode::EntryControl, fallpre );
   839     }
   840   }
   842   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
   843   // RCE and alignment may change this later.
   844   Node *cmp_end = pre_end->cmp_node();
   845   assert( cmp_end->in(2) == limit, "" );
   846   Node *pre_limit = new (C, 3) AddINode( init, stride );
   848   // Save the original loop limit in this Opaque1 node for
   849   // use by range check elimination.
   850   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
   852   register_new_node( pre_limit, pre_head->in(0) );
   853   register_new_node( pre_opaq , pre_head->in(0) );
   855   // Since no other users of pre-loop compare, I can hack limit directly
   856   assert( cmp_end->outcnt() == 1, "no other users" );
   857   _igvn.hash_delete(cmp_end);
   858   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
   860   // Special case for not-equal loop bounds:
   861   // Change pre loop test, main loop test, and the
   862   // main loop guard test to use lt or gt depending on stride
   863   // direction:
   864   // positive stride use <
   865   // negative stride use >
   867   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
   869     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
   870     // Modify pre loop end condition
   871     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   872     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
   873     register_new_node( new_bol0, pre_head->in(0) );
   874     _igvn.hash_delete(pre_end);
   875     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
   876     // Modify main loop guard condition
   877     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
   878     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
   879     register_new_node( new_bol1, new_pre_exit );
   880     _igvn.hash_delete(min_iff);
   881     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
   882     // Modify main loop end condition
   883     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   884     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
   885     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
   886     _igvn.hash_delete(main_end);
   887     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
   888   }
   890   // Flag main loop
   891   main_head->set_main_loop();
   892   if( peel_only ) main_head->set_main_no_pre_loop();
   894   // It's difficult to be precise about the trip-counts
   895   // for the pre/post loops.  They are usually very short,
   896   // so guess that 4 trips is a reasonable value.
   897   post_head->set_profile_trip_cnt(4.0);
   898   pre_head->set_profile_trip_cnt(4.0);
   900   // Now force out all loop-invariant dominating tests.  The optimizer
   901   // finds some, but we _know_ they are all useless.
   902   peeled_dom_test_elim(loop,old_new);
   903 }
   905 //------------------------------is_invariant-----------------------------
   906 // Return true if n is invariant
   907 bool IdealLoopTree::is_invariant(Node* n) const {
   908   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
   909   if (n_c->is_top()) return false;
   910   return !is_member(_phase->get_loop(n_c));
   911 }
   914 //------------------------------do_unroll--------------------------------------
   915 // Unroll the loop body one step - make each trip do 2 iterations.
   916 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
   917   assert(LoopUnrollLimit, "");
   918   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
   919   CountedLoopEndNode *loop_end = loop_head->loopexit();
   920   assert(loop_end, "");
   921 #ifndef PRODUCT
   922   if (PrintOpto && VerifyLoopOptimizations) {
   923     tty->print("Unrolling ");
   924     loop->dump_head();
   925   } else if (TraceLoopOpts) {
   926     tty->print("Unroll     %d ", loop_head->unrolled_count()*2);
   927     loop->dump_head();
   928   }
   929 #endif
   931   // Remember loop node count before unrolling to detect
   932   // if rounds of unroll,optimize are making progress
   933   loop_head->set_node_count_before_unroll(loop->_body.size());
   935   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
   936   Node *limit = loop_head->limit();
   937   Node *init  = loop_head->init_trip();
   938   Node *stride = loop_head->stride();
   940   Node *opaq = NULL;
   941   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
   942     assert( loop_head->is_main_loop(), "" );
   943     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
   944     Node *iff = ctrl->in(0);
   945     assert( iff->Opcode() == Op_If, "" );
   946     Node *bol = iff->in(1);
   947     assert( bol->Opcode() == Op_Bool, "" );
   948     Node *cmp = bol->in(1);
   949     assert( cmp->Opcode() == Op_CmpI, "" );
   950     opaq = cmp->in(2);
   951     // Occasionally it's possible for a pre-loop Opaque1 node to be
   952     // optimized away and then another round of loop opts attempted.
   953     // We can not optimize this particular loop in that case.
   954     if( opaq->Opcode() != Op_Opaque1 )
   955       return;                   // Cannot find pre-loop!  Bail out!
   956   }
   958   C->set_major_progress();
   960   // Adjust max trip count. The trip count is intentionally rounded
   961   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
   962   // the main, unrolled, part of the loop will never execute as it is protected
   963   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
   964   // and later determined that part of the unrolled loop was dead.
   965   loop_head->set_trip_count(loop_head->trip_count() / 2);
   967   // Double the count of original iterations in the unrolled loop body.
   968   loop_head->double_unrolled_count();
   970   // -----------
   971   // Step 2: Cut back the trip counter for an unroll amount of 2.
   972   // Loop will normally trip (limit - init)/stride_con.  Since it's a
   973   // CountedLoop this is exact (stride divides limit-init exactly).
   974   // We are going to double the loop body, so we want to knock off any
   975   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
   976   Node *span = new (C, 3) SubINode( limit, init );
   977   register_new_node( span, ctrl );
   978   Node *trip = new (C, 3) DivINode( 0, span, stride );
   979   register_new_node( trip, ctrl );
   980   Node *mtwo = _igvn.intcon(-2);
   981   set_ctrl(mtwo, C->root());
   982   Node *rond = new (C, 3) AndINode( trip, mtwo );
   983   register_new_node( rond, ctrl );
   984   Node *spn2 = new (C, 3) MulINode( rond, stride );
   985   register_new_node( spn2, ctrl );
   986   Node *lim2 = new (C, 3) AddINode( spn2, init );
   987   register_new_node( lim2, ctrl );
   989   // Hammer in the new limit
   990   Node *ctrl2 = loop_end->in(0);
   991   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
   992   register_new_node( cmp2, ctrl2 );
   993   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
   994   register_new_node( bol2, ctrl2 );
   995   _igvn.hash_delete(loop_end);
   996   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
   998   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
   999   // Make it a 1-trip test (means at least 2 trips).
  1000   if( adjust_min_trip ) {
  1001     // Guard test uses an 'opaque' node which is not shared.  Hence I
  1002     // can edit it's inputs directly.  Hammer in the new limit for the
  1003     // minimum-trip guard.
  1004     assert( opaq->outcnt() == 1, "" );
  1005     _igvn.hash_delete(opaq);
  1006     opaq->set_req(1, lim2);
  1009   // ---------
  1010   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1011   // represents the odd iterations; since the loop trips an even number of
  1012   // times its backedge is never taken.  Kill the backedge.
  1013   uint dd = dom_depth(loop_head);
  1014   clone_loop( loop, old_new, dd );
  1016   // Make backedges of the clone equal to backedges of the original.
  1017   // Make the fall-in from the original come from the fall-out of the clone.
  1018   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1019     Node* phi = loop_head->fast_out(j);
  1020     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1021       Node *newphi = old_new[phi->_idx];
  1022       _igvn.hash_delete( phi );
  1023       _igvn.hash_delete( newphi );
  1025       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1026       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1027       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1030   Node *clone_head = old_new[loop_head->_idx];
  1031   _igvn.hash_delete( clone_head );
  1032   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1033   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1034   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1035   loop->_head = clone_head;     // New loop header
  1037   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1038   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1040   // Kill the clone's backedge
  1041   Node *newcle = old_new[loop_end->_idx];
  1042   _igvn.hash_delete( newcle );
  1043   Node *one = _igvn.intcon(1);
  1044   set_ctrl(one, C->root());
  1045   newcle->set_req(1, one);
  1046   // Force clone into same loop body
  1047   uint max = loop->_body.size();
  1048   for( uint k = 0; k < max; k++ ) {
  1049     Node *old = loop->_body.at(k);
  1050     Node *nnn = old_new[old->_idx];
  1051     loop->_body.push(nnn);
  1052     if (!has_ctrl(old))
  1053       set_loop(nnn, loop);
  1056   loop->record_for_igvn();
  1059 //------------------------------do_maximally_unroll----------------------------
  1061 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1062   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1063   assert(cl->trip_count() > 0, "");
  1064 #ifndef PRODUCT
  1065   if (TraceLoopOpts) {
  1066     tty->print("MaxUnroll  %d ", cl->trip_count());
  1067     loop->dump_head();
  1069 #endif
  1071   // If loop is tripping an odd number of times, peel odd iteration
  1072   if ((cl->trip_count() & 1) == 1) {
  1073     do_peeling(loop, old_new);
  1076   // Now its tripping an even number of times remaining.  Double loop body.
  1077   // Do not adjust pre-guards; they are not needed and do not exist.
  1078   if (cl->trip_count() > 0) {
  1079     do_unroll(loop, old_new, false);
  1083 //------------------------------dominates_backedge---------------------------------
  1084 // Returns true if ctrl is executed on every complete iteration
  1085 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1086   assert(ctrl->is_CFG(), "must be control");
  1087   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1088   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1091 //------------------------------add_constraint---------------------------------
  1092 // Constrain the main loop iterations so the condition:
  1093 //    scale_con * I + offset  <  limit
  1094 // always holds true.  That is, either increase the number of iterations in
  1095 // the pre-loop or the post-loop until the condition holds true in the main
  1096 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1097 // stride and scale are constants (offset and limit often are).
  1098 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1100   // Compute "I :: (limit-offset)/scale_con"
  1101   Node *con = new (C, 3) SubINode( limit, offset );
  1102   register_new_node( con, pre_ctrl );
  1103   Node *scale = _igvn.intcon(scale_con);
  1104   set_ctrl(scale, C->root());
  1105   Node *X = new (C, 3) DivINode( 0, con, scale );
  1106   register_new_node( X, pre_ctrl );
  1108   // For positive stride, the pre-loop limit always uses a MAX function
  1109   // and the main loop a MIN function.  For negative stride these are
  1110   // reversed.
  1112   // Also for positive stride*scale the affine function is increasing, so the
  1113   // pre-loop must check for underflow and the post-loop for overflow.
  1114   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1115   // post-loop for underflow.
  1116   if( stride_con*scale_con > 0 ) {
  1117     // Compute I < (limit-offset)/scale_con
  1118     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1119     *main_limit = (stride_con > 0)
  1120       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1121       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1122     register_new_node( *main_limit, pre_ctrl );
  1124   } else {
  1125     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1126     // Add the negation of the main-loop constraint to the pre-loop.
  1127     // See footnote [++] below for a derivation of the limit expression.
  1128     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1129     set_ctrl(incr, C->root());
  1130     Node *adj = new (C, 3) AddINode( X, incr );
  1131     register_new_node( adj, pre_ctrl );
  1132     *pre_limit = (scale_con > 0)
  1133       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1134       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1135     register_new_node( *pre_limit, pre_ctrl );
  1137 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1138 //
  1139 //   NOT( scale_con * I + offset  <  limit )
  1140 //      ==
  1141 //   scale_con * I + offset  >=  limit
  1142 //      ==
  1143 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1144 //      ==
  1145 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1146 //      ==
  1147 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1148 //      ==
  1149 //   ( if (scale_con > 0) /*common case*/
  1150 //       (limit-offset)/scale_con - 1  <  I
  1151 //     else
  1152 //       (limit-offset)/scale_con + 1  >  I
  1153 //    )
  1154 //   ( if (scale_con > 0) /*common case*/
  1155 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1156 //     else
  1157 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1162 //------------------------------is_scaled_iv---------------------------------
  1163 // Return true if exp is a constant times an induction var
  1164 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1165   if (exp == iv) {
  1166     if (p_scale != NULL) {
  1167       *p_scale = 1;
  1169     return true;
  1171   int opc = exp->Opcode();
  1172   if (opc == Op_MulI) {
  1173     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1174       if (p_scale != NULL) {
  1175         *p_scale = exp->in(2)->get_int();
  1177       return true;
  1179     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1180       if (p_scale != NULL) {
  1181         *p_scale = exp->in(1)->get_int();
  1183       return true;
  1185   } else if (opc == Op_LShiftI) {
  1186     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1187       if (p_scale != NULL) {
  1188         *p_scale = 1 << exp->in(2)->get_int();
  1190       return true;
  1193   return false;
  1196 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1197 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1198 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1199   if (is_scaled_iv(exp, iv, p_scale)) {
  1200     if (p_offset != NULL) {
  1201       Node *zero = _igvn.intcon(0);
  1202       set_ctrl(zero, C->root());
  1203       *p_offset = zero;
  1205     return true;
  1207   int opc = exp->Opcode();
  1208   if (opc == Op_AddI) {
  1209     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1210       if (p_offset != NULL) {
  1211         *p_offset = exp->in(2);
  1213       return true;
  1215     if (exp->in(2)->is_Con()) {
  1216       Node* offset2 = NULL;
  1217       if (depth < 2 &&
  1218           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1219                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1220         if (p_offset != NULL) {
  1221           Node *ctrl_off2 = get_ctrl(offset2);
  1222           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1223           register_new_node(offset, ctrl_off2);
  1224           *p_offset = offset;
  1226         return true;
  1229   } else if (opc == Op_SubI) {
  1230     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1231       if (p_offset != NULL) {
  1232         Node *zero = _igvn.intcon(0);
  1233         set_ctrl(zero, C->root());
  1234         Node *ctrl_off = get_ctrl(exp->in(2));
  1235         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1236         register_new_node(offset, ctrl_off);
  1237         *p_offset = offset;
  1239       return true;
  1241     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1242       if (p_offset != NULL) {
  1243         *p_scale *= -1;
  1244         *p_offset = exp->in(1);
  1246       return true;
  1249   return false;
  1252 //------------------------------do_range_check---------------------------------
  1253 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1254 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1255 #ifndef PRODUCT
  1256   if (PrintOpto && VerifyLoopOptimizations) {
  1257     tty->print("Range Check Elimination ");
  1258     loop->dump_head();
  1259   } else if (TraceLoopOpts) {
  1260     tty->print("RangeCheck   ");
  1261     loop->dump_head();
  1263 #endif
  1264   assert(RangeCheckElimination, "");
  1265   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1266   assert(cl->is_main_loop(), "");
  1268   // protect against stride not being a constant
  1269   if (!cl->stride_is_con())
  1270     return;
  1272   // Find the trip counter; we are iteration splitting based on it
  1273   Node *trip_counter = cl->phi();
  1274   // Find the main loop limit; we will trim it's iterations
  1275   // to not ever trip end tests
  1276   Node *main_limit = cl->limit();
  1278   // Need to find the main-loop zero-trip guard
  1279   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1280   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1281   Node *iffm = ctrl->in(0);
  1282   assert(iffm->Opcode() == Op_If, "");
  1283   Node *bolzm = iffm->in(1);
  1284   assert(bolzm->Opcode() == Op_Bool, "");
  1285   Node *cmpzm = bolzm->in(1);
  1286   assert(cmpzm->is_Cmp(), "");
  1287   Node *opqzm = cmpzm->in(2);
  1288   // Can not optimize a loop if pre-loop Opaque1 node is optimized
  1289   // away and then another round of loop opts attempted.
  1290   if (opqzm->Opcode() != Op_Opaque1)
  1291     return;
  1292   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1294   // Find the pre-loop limit; we will expand it's iterations to
  1295   // not ever trip low tests.
  1296   Node *p_f = iffm->in(0);
  1297   assert(p_f->Opcode() == Op_IfFalse, "");
  1298   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1299   assert(pre_end->loopnode()->is_pre_loop(), "");
  1300   Node *pre_opaq1 = pre_end->limit();
  1301   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1302   // optimized away and then another round of loop opts attempted.
  1303   // We can not optimize this particular loop in that case.
  1304   if (pre_opaq1->Opcode() != Op_Opaque1)
  1305     return;
  1306   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1307   Node *pre_limit = pre_opaq->in(1);
  1309   // Where do we put new limit calculations
  1310   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1312   // Ensure the original loop limit is available from the
  1313   // pre-loop Opaque1 node.
  1314   Node *orig_limit = pre_opaq->original_loop_limit();
  1315   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1316     return;
  1318   // Must know if its a count-up or count-down loop
  1320   int stride_con = cl->stride_con();
  1321   Node *zero = _igvn.intcon(0);
  1322   Node *one  = _igvn.intcon(1);
  1323   set_ctrl(zero, C->root());
  1324   set_ctrl(one,  C->root());
  1326   // Range checks that do not dominate the loop backedge (ie.
  1327   // conditionally executed) can lengthen the pre loop limit beyond
  1328   // the original loop limit. To prevent this, the pre limit is
  1329   // (for stride > 0) MINed with the original loop limit (MAXed
  1330   // stride < 0) when some range_check (rc) is conditionally
  1331   // executed.
  1332   bool conditional_rc = false;
  1334   // Check loop body for tests of trip-counter plus loop-invariant vs
  1335   // loop-invariant.
  1336   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1337     Node *iff = loop->_body[i];
  1338     if( iff->Opcode() == Op_If ) { // Test?
  1340       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1341       // we need loop unswitching instead of iteration splitting.
  1342       Node *exit = loop->is_loop_exit(iff);
  1343       if( !exit ) continue;
  1344       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1346       // Get boolean condition to test
  1347       Node *i1 = iff->in(1);
  1348       if( !i1->is_Bool() ) continue;
  1349       BoolNode *bol = i1->as_Bool();
  1350       BoolTest b_test = bol->_test;
  1351       // Flip sense of test if exit condition is flipped
  1352       if( flip )
  1353         b_test = b_test.negate();
  1355       // Get compare
  1356       Node *cmp = bol->in(1);
  1358       // Look for trip_counter + offset vs limit
  1359       Node *rc_exp = cmp->in(1);
  1360       Node *limit  = cmp->in(2);
  1361       jint scale_con= 1;        // Assume trip counter not scaled
  1363       Node *limit_c = get_ctrl(limit);
  1364       if( loop->is_member(get_loop(limit_c) ) ) {
  1365         // Compare might have operands swapped; commute them
  1366         b_test = b_test.commute();
  1367         rc_exp = cmp->in(2);
  1368         limit  = cmp->in(1);
  1369         limit_c = get_ctrl(limit);
  1370         if( loop->is_member(get_loop(limit_c) ) )
  1371           continue;             // Both inputs are loop varying; cannot RCE
  1373       // Here we know 'limit' is loop invariant
  1375       // 'limit' maybe pinned below the zero trip test (probably from a
  1376       // previous round of rce), in which case, it can't be used in the
  1377       // zero trip test expression which must occur before the zero test's if.
  1378       if( limit_c == ctrl ) {
  1379         continue;  // Don't rce this check but continue looking for other candidates.
  1382       // Check for scaled induction variable plus an offset
  1383       Node *offset = NULL;
  1385       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1386         continue;
  1389       Node *offset_c = get_ctrl(offset);
  1390       if( loop->is_member( get_loop(offset_c) ) )
  1391         continue;               // Offset is not really loop invariant
  1392       // Here we know 'offset' is loop invariant.
  1394       // As above for the 'limit', the 'offset' maybe pinned below the
  1395       // zero trip test.
  1396       if( offset_c == ctrl ) {
  1397         continue; // Don't rce this check but continue looking for other candidates.
  1400       // At this point we have the expression as:
  1401       //   scale_con * trip_counter + offset :: limit
  1402       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1403       // monotonically increases by stride_con, a constant.  Both (or either)
  1404       // stride_con and scale_con can be negative which will flip about the
  1405       // sense of the test.
  1407       // Adjust pre and main loop limits to guard the correct iteration set
  1408       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1409         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1410           // The overflow limit: scale*I+offset < limit
  1411           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1412           // The underflow limit: 0 <= scale*I+offset.
  1413           // Some math yields: -scale*I-(offset+1) < 0
  1414           Node *plus_one = new (C, 3) AddINode( offset, one );
  1415           register_new_node( plus_one, pre_ctrl );
  1416           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1417           register_new_node( neg_offset, pre_ctrl );
  1418           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1419           if (!conditional_rc) {
  1420             conditional_rc = !loop->dominates_backedge(iff);
  1422         } else {
  1423 #ifndef PRODUCT
  1424           if( PrintOpto )
  1425             tty->print_cr("missed RCE opportunity");
  1426 #endif
  1427           continue;             // In release mode, ignore it
  1429       } else {                  // Otherwise work on normal compares
  1430         switch( b_test._test ) {
  1431         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1432           scale_con = -scale_con;
  1433           offset = new (C, 3) SubINode( zero, offset );
  1434           register_new_node( offset, pre_ctrl );
  1435           limit  = new (C, 3) SubINode( zero, limit  );
  1436           register_new_node( limit, pre_ctrl );
  1437           // Fall into LE case
  1438         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1439           limit = new (C, 3) AddINode( limit, one );
  1440           register_new_node( limit, pre_ctrl );
  1441           // Fall into LT case
  1442         case BoolTest::lt:
  1443           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1444           if (!conditional_rc) {
  1445             conditional_rc = !loop->dominates_backedge(iff);
  1447           break;
  1448         default:
  1449 #ifndef PRODUCT
  1450           if( PrintOpto )
  1451             tty->print_cr("missed RCE opportunity");
  1452 #endif
  1453           continue;             // Unhandled case
  1457       // Kill the eliminated test
  1458       C->set_major_progress();
  1459       Node *kill_con = _igvn.intcon( 1-flip );
  1460       set_ctrl(kill_con, C->root());
  1461       _igvn.hash_delete(iff);
  1462       iff->set_req(1, kill_con);
  1463       _igvn._worklist.push(iff);
  1464       // Find surviving projection
  1465       assert(iff->is_If(), "");
  1466       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1467       // Find loads off the surviving projection; remove their control edge
  1468       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1469         Node* cd = dp->fast_out(i); // Control-dependent node
  1470         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1471           _igvn.hash_delete(cd);
  1472           // Allow the load to float around in the loop, or before it
  1473           // but NOT before the pre-loop.
  1474           cd->set_req(0, ctrl);   // ctrl, not NULL
  1475           _igvn._worklist.push(cd);
  1476           --i;
  1477           --imax;
  1481     } // End of is IF
  1485   // Update loop limits
  1486   if (conditional_rc) {
  1487     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1488                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1489     register_new_node(pre_limit, pre_ctrl);
  1491   _igvn.hash_delete(pre_opaq);
  1492   pre_opaq->set_req(1, pre_limit);
  1494   // Note:: we are making the main loop limit no longer precise;
  1495   // need to round up based on stride.
  1496   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1497     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1498     // Hopefully, compiler will optimize for powers of 2.
  1499     Node *ctrl = get_ctrl(main_limit);
  1500     Node *stride = cl->stride();
  1501     Node *init = cl->init_trip();
  1502     Node *span = new (C, 3) SubINode(main_limit,init);
  1503     register_new_node(span,ctrl);
  1504     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1505     Node *add = new (C, 3) AddINode(span,rndup);
  1506     register_new_node(add,ctrl);
  1507     Node *div = new (C, 3) DivINode(0,add,stride);
  1508     register_new_node(div,ctrl);
  1509     Node *mul = new (C, 3) MulINode(div,stride);
  1510     register_new_node(mul,ctrl);
  1511     Node *newlim = new (C, 3) AddINode(mul,init);
  1512     register_new_node(newlim,ctrl);
  1513     main_limit = newlim;
  1516   Node *main_cle = cl->loopexit();
  1517   Node *main_bol = main_cle->in(1);
  1518   // Hacking loop bounds; need private copies of exit test
  1519   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1520     _igvn.hash_delete(main_cle);
  1521     main_bol = main_bol->clone();// Clone a private BoolNode
  1522     register_new_node( main_bol, main_cle->in(0) );
  1523     main_cle->set_req(1,main_bol);
  1525   Node *main_cmp = main_bol->in(1);
  1526   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1527     _igvn.hash_delete(main_bol);
  1528     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1529     register_new_node( main_cmp, main_cle->in(0) );
  1530     main_bol->set_req(1,main_cmp);
  1532   // Hack the now-private loop bounds
  1533   _igvn.hash_delete(main_cmp);
  1534   main_cmp->set_req(2, main_limit);
  1535   _igvn._worklist.push(main_cmp);
  1536   // The OpaqueNode is unshared by design
  1537   _igvn.hash_delete(opqzm);
  1538   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1539   opqzm->set_req(1,main_limit);
  1540   _igvn._worklist.push(opqzm);
  1543 //------------------------------DCE_loop_body----------------------------------
  1544 // Remove simplistic dead code from loop body
  1545 void IdealLoopTree::DCE_loop_body() {
  1546   for( uint i = 0; i < _body.size(); i++ )
  1547     if( _body.at(i)->outcnt() == 0 )
  1548       _body.map( i--, _body.pop() );
  1552 //------------------------------adjust_loop_exit_prob--------------------------
  1553 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1554 // Replace with a 1-in-10 exit guess.
  1555 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1556   Node *test = tail();
  1557   while( test != _head ) {
  1558     uint top = test->Opcode();
  1559     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1560       int test_con = ((ProjNode*)test)->_con;
  1561       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1562       IfNode *iff = test->in(0)->as_If();
  1563       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1564         Node *bol = iff->in(1);
  1565         if( bol && bol->req() > 1 && bol->in(1) &&
  1566             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1567              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1568              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1569              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1570              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1571              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1572              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1573           return;               // Allocation loops RARELY take backedge
  1574         // Find the OTHER exit path from the IF
  1575         Node* ex = iff->proj_out(1-test_con);
  1576         float p = iff->_prob;
  1577         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1578           if( top == Op_IfTrue ) {
  1579             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1580               iff->_prob = PROB_STATIC_FREQUENT;
  1582           } else {
  1583             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1584               iff->_prob = PROB_STATIC_INFREQUENT;
  1590     test = phase->idom(test);
  1595 //------------------------------policy_do_remove_empty_loop--------------------
  1596 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1597 // The 'DO' part is to replace the trip counter with the value it will
  1598 // have on the last iteration.  This will break the loop.
  1599 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1600   // Minimum size must be empty loop
  1601   if (_body.size() > 7/*number of nodes in an empty loop*/)
  1602     return false;
  1604   if (!_head->is_CountedLoop())
  1605     return false;     // Dead loop
  1606   CountedLoopNode *cl = _head->as_CountedLoop();
  1607   if (!cl->loopexit())
  1608     return false; // Malformed loop
  1609   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  1610     return false;             // Infinite loop
  1612 #ifdef ASSERT
  1613   // Ensure only one phi which is the iv.
  1614   Node* iv = NULL;
  1615   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1616     Node* n = cl->fast_out(i);
  1617     if (n->Opcode() == Op_Phi) {
  1618       assert(iv == NULL, "Too many phis" );
  1619       iv = n;
  1622   assert(iv == cl->phi(), "Wrong phi" );
  1623 #endif
  1625   // main and post loops have explicitly created zero trip guard
  1626   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  1627   if (needs_guard) {
  1628     // Check for an obvious zero trip guard.
  1629     Node* inctrl = cl->in(LoopNode::EntryControl);
  1630     if (inctrl->Opcode() == Op_IfTrue) {
  1631       // The test should look like just the backedge of a CountedLoop
  1632       Node* iff = inctrl->in(0);
  1633       if (iff->is_If()) {
  1634         Node* bol = iff->in(1);
  1635         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  1636           Node* cmp = bol->in(1);
  1637           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  1638             needs_guard = false;
  1645 #ifndef PRODUCT
  1646   if (PrintOpto) {
  1647     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  1648     this->dump_head();
  1649   } else if (TraceLoopOpts) {
  1650     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  1651     this->dump_head();
  1653 #endif
  1655   if (needs_guard) {
  1656     // Peel the loop to ensure there's a zero trip guard
  1657     Node_List old_new;
  1658     phase->do_peeling(this, old_new);
  1661   // Replace the phi at loop head with the final value of the last
  1662   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1663   // taken) and all loop-invariant uses of the exit values will be correct.
  1664   Node *phi = cl->phi();
  1665   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1666   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1667   phase->_igvn.replace_node(phi,final);
  1668   phase->C->set_major_progress();
  1669   return true;
  1673 //=============================================================================
  1674 //------------------------------iteration_split_impl---------------------------
  1675 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1676   // Check and remove empty loops (spam micro-benchmarks)
  1677   if( policy_do_remove_empty_loop(phase) )
  1678     return true;  // Here we removed an empty loop
  1680   bool should_peel = policy_peeling(phase); // Should we peel?
  1682   bool should_unswitch = policy_unswitching(phase);
  1684   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1685   // This removes loop-invariant tests (usually null checks).
  1686   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1687     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1688       // Partial peel succeeded so terminate this round of loop opts
  1689       return false;
  1691     if( should_peel ) {            // Should we peel?
  1692 #ifndef PRODUCT
  1693       if (PrintOpto) tty->print_cr("should_peel");
  1694 #endif
  1695       phase->do_peeling(this,old_new);
  1696     } else if( should_unswitch ) {
  1697       phase->do_unswitching(this, old_new);
  1699     return true;
  1701   CountedLoopNode *cl = _head->as_CountedLoop();
  1703   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1705   // Do nothing special to pre- and post- loops
  1706   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1708   // Compute loop trip count from profile data
  1709   compute_profile_trip_cnt(phase);
  1711   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1712   // to completely unroll this loop or do loop unswitching.
  1713   if( cl->is_normal_loop() ) {
  1714     if (should_unswitch) {
  1715       phase->do_unswitching(this, old_new);
  1716       return true;
  1718     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1719     if( should_maximally_unroll ) {
  1720       // Here we did some unrolling and peeling.  Eventually we will
  1721       // completely unroll this loop and it will no longer be a loop.
  1722       phase->do_maximally_unroll(this,old_new);
  1723       return true;
  1728   // Counted loops may be peeled, may need some iterations run up
  1729   // front for RCE, and may want to align loop refs to a cache
  1730   // line.  Thus we clone a full loop up front whose trip count is
  1731   // at least 1 (if peeling), but may be several more.
  1733   // The main loop will start cache-line aligned with at least 1
  1734   // iteration of the unrolled body (zero-trip test required) and
  1735   // will have some range checks removed.
  1737   // A post-loop will finish any odd iterations (leftover after
  1738   // unrolling), plus any needed for RCE purposes.
  1740   bool should_unroll = policy_unroll(phase);
  1742   bool should_rce = policy_range_check(phase);
  1744   bool should_align = policy_align(phase);
  1746   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1747   // need a pre-loop.  We may still need to peel an initial iteration but
  1748   // we will not be needing an unknown number of pre-iterations.
  1749   //
  1750   // Basically, if may_rce_align reports FALSE first time through,
  1751   // we will not be able to later do RCE or Aligning on this loop.
  1752   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1754   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1755   // we switch to the pre-/main-/post-loop model.  This model also covers
  1756   // peeling.
  1757   if( should_rce || should_align || should_unroll ) {
  1758     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1759       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1761     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1762     // with full checks, but the main-loop with no checks.  Remove said
  1763     // checks from the main body.
  1764     if( should_rce )
  1765       phase->do_range_check(this,old_new);
  1767     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1768     // twice as many iterations as before) and the main body limit (only do
  1769     // an even number of trips).  If we are peeling, we might enable some RCE
  1770     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1771     // peeling.
  1772       if( should_unroll && !should_peel )
  1773         phase->do_unroll(this,old_new, true);
  1775     // Adjust the pre-loop limits to align the main body
  1776     // iterations.
  1777     if( should_align )
  1778       Unimplemented();
  1780   } else {                      // Else we have an unchanged counted loop
  1781     if( should_peel )           // Might want to peel but do nothing else
  1782       phase->do_peeling(this,old_new);
  1784   return true;
  1788 //=============================================================================
  1789 //------------------------------iteration_split--------------------------------
  1790 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1791   // Recursively iteration split nested loops
  1792   if (_child && !_child->iteration_split(phase, old_new))
  1793     return false;
  1795   // Clean out prior deadwood
  1796   DCE_loop_body();
  1799   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1800   // Replace with a 1-in-10 exit guess.
  1801   if (_parent /*not the root loop*/ &&
  1802       !_irreducible &&
  1803       // Also ignore the occasional dead backedge
  1804       !tail()->is_top()) {
  1805     adjust_loop_exit_prob(phase);
  1808   // Gate unrolling, RCE and peeling efforts.
  1809   if (!_child &&                // If not an inner loop, do not split
  1810       !_irreducible &&
  1811       _allow_optimizations &&
  1812       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  1813     if (!_has_call) {
  1814         if (!iteration_split_impl(phase, old_new)) {
  1815           return false;
  1817     } else if (policy_unswitching(phase)) {
  1818       phase->do_unswitching(this, old_new);
  1822   // Minor offset re-organization to remove loop-fallout uses of
  1823   // trip counter when there was no major reshaping.
  1824   phase->reorg_offsets(this);
  1826   if (_next && !_next->iteration_split(phase, old_new))
  1827     return false;
  1828   return true;
  1831 //-------------------------------is_uncommon_trap_proj----------------------------
  1832 // Return true if proj is the form of "proj->[region->..]call_uct"
  1833 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, Deoptimization::DeoptReason reason) {
  1834   int path_limit = 10;
  1835   assert(proj, "invalid argument");
  1836   Node* out = proj;
  1837   for (int ct = 0; ct < path_limit; ct++) {
  1838     out = out->unique_ctrl_out();
  1839     if (out == NULL || out->is_Root() || out->is_Start())
  1840       return false;
  1841     if (out->is_CallStaticJava()) {
  1842       int req = out->as_CallStaticJava()->uncommon_trap_request();
  1843       if (req != 0) {
  1844         Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
  1845         if (trap_reason == reason || reason == Deoptimization::Reason_none) {
  1846            return true;
  1849       return false; // don't do further after call
  1852   return false;
  1855 //-------------------------------is_uncommon_trap_if_pattern-------------------------
  1856 // Return true  for "if(test)-> proj -> ...
  1857 //                          |
  1858 //                          V
  1859 //                      other_proj->[region->..]call_uct"
  1860 //
  1861 // "must_reason_predicate" means the uct reason must be Reason_predicate
  1862 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, Deoptimization::DeoptReason reason) {
  1863   Node *in0 = proj->in(0);
  1864   if (!in0->is_If()) return false;
  1865   // Variation of a dead If node.
  1866   if (in0->outcnt() < 2)  return false;
  1867   IfNode* iff = in0->as_If();
  1869   // we need "If(Conv2B(Opaque1(...)))" pattern for reason_predicate
  1870   if (reason != Deoptimization::Reason_none) {
  1871     if (iff->in(1)->Opcode() != Op_Conv2B ||
  1872        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
  1873       return false;
  1877   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
  1878   return is_uncommon_trap_proj(other_proj, reason);
  1881 //-------------------------------register_control-------------------------
  1882 void PhaseIdealLoop::register_control(Node* n, IdealLoopTree *loop, Node* pred) {
  1883   assert(n->is_CFG(), "must be control node");
  1884   _igvn.register_new_node_with_optimizer(n);
  1885   loop->_body.push(n);
  1886   set_loop(n, loop);
  1887   // When called from beautify_loops() idom is not constructed yet.
  1888   if (_idom != NULL) {
  1889     set_idom(n, pred, dom_depth(pred));
  1893 //------------------------------create_new_if_for_predicate------------------------
  1894 // create a new if above the uct_if_pattern for the predicate to be promoted.
  1895 //
  1896 //          before                                after
  1897 //        ----------                           ----------
  1898 //           ctrl                                 ctrl
  1899 //            |                                     |
  1900 //            |                                     |
  1901 //            v                                     v
  1902 //           iff                                 new_iff
  1903 //          /    \                                /      \
  1904 //         /      \                              /        \
  1905 //        v        v                            v          v
  1906 //  uncommon_proj cont_proj                   if_uct     if_cont
  1907 // \      |        |                           |          |
  1908 //  \     |        |                           |          |
  1909 //   v    v        v                           |          v
  1910 //     rgn       loop                          |         iff
  1911 //      |                                      |        /     \
  1912 //      |                                      |       /       \
  1913 //      v                                      |      v         v
  1914 // uncommon_trap                               | uncommon_proj cont_proj
  1915 //                                           \  \    |           |
  1916 //                                            \  \   |           |
  1917 //                                             v  v  v           v
  1918 //                                               rgn           loop
  1919 //                                                |
  1920 //                                                |
  1921 //                                                v
  1922 //                                           uncommon_trap
  1923 //
  1924 //
  1925 // We will create a region to guard the uct call if there is no one there.
  1926 // The true projecttion (if_cont) of the new_iff is returned.
  1927 // This code is also used to clone predicates to clonned loops.
  1928 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
  1929                                                       Deoptimization::DeoptReason reason) {
  1930   assert(is_uncommon_trap_if_pattern(cont_proj, reason), "must be a uct if pattern!");
  1931   IfNode* iff = cont_proj->in(0)->as_If();
  1933   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
  1934   Node     *rgn   = uncommon_proj->unique_ctrl_out();
  1935   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
  1937   if (!rgn->is_Region()) { // create a region to guard the call
  1938     assert(rgn->is_Call(), "must be call uct");
  1939     CallNode* call = rgn->as_Call();
  1940     IdealLoopTree* loop = get_loop(call);
  1941     rgn = new (C, 1) RegionNode(1);
  1942     rgn->add_req(uncommon_proj);
  1943     register_control(rgn, loop, uncommon_proj);
  1944     _igvn.hash_delete(call);
  1945     call->set_req(0, rgn);
  1946     // When called from beautify_loops() idom is not constructed yet.
  1947     if (_idom != NULL) {
  1948       set_idom(call, rgn, dom_depth(rgn));
  1952   Node* entry = iff->in(0);
  1953   if (new_entry != NULL) {
  1954     // Clonning the predicate to new location.
  1955     entry = new_entry;
  1957   // Create new_iff
  1958   IdealLoopTree* lp = get_loop(entry);
  1959   IfNode *new_iff = new (C, 2) IfNode(entry, NULL, iff->_prob, iff->_fcnt);
  1960   register_control(new_iff, lp, entry);
  1961   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
  1962   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
  1963   if (cont_proj->is_IfFalse()) {
  1964     // Swap
  1965     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
  1967   register_control(if_cont, lp, new_iff);
  1968   register_control(if_uct, get_loop(rgn), new_iff);
  1970   // if_uct to rgn
  1971   _igvn.hash_delete(rgn);
  1972   rgn->add_req(if_uct);
  1973   // When called from beautify_loops() idom is not constructed yet.
  1974   if (_idom != NULL) {
  1975     Node* ridom = idom(rgn);
  1976     Node* nrdom = dom_lca(ridom, new_iff);
  1977     set_idom(rgn, nrdom, dom_depth(rgn));
  1979   // rgn must have no phis
  1980   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
  1982   if (new_entry == NULL) {
  1983     // Attach if_cont to iff
  1984     _igvn.hash_delete(iff);
  1985     iff->set_req(0, if_cont);
  1986     if (_idom != NULL) {
  1987       set_idom(iff, if_cont, dom_depth(iff));
  1990   return if_cont->as_Proj();
  1993 //--------------------------find_predicate_insertion_point-------------------
  1994 // Find a good location to insert a predicate
  1995 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason) {
  1996   if (start_c == NULL || !start_c->is_Proj())
  1997     return NULL;
  1998   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), reason)) {
  1999     return start_c->as_Proj();
  2001   return NULL;
  2004 //--------------------------find_predicate------------------------------------
  2005 // Find a predicate
  2006 Node* PhaseIdealLoop::find_predicate(Node* entry) {
  2007   Node* predicate = NULL;
  2008   if (UseLoopPredicate) {
  2009     predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  2010     if (predicate != NULL) { // right pattern that can be used by loop predication
  2011       assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
  2012       return entry;
  2015   return NULL;
  2018 //------------------------------Invariance-----------------------------------
  2019 // Helper class for loop_predication_impl to compute invariance on the fly and
  2020 // clone invariants.
  2021 class Invariance : public StackObj {
  2022   VectorSet _visited, _invariant;
  2023   Node_Stack _stack;
  2024   VectorSet _clone_visited;
  2025   Node_List _old_new; // map of old to new (clone)
  2026   IdealLoopTree* _lpt;
  2027   PhaseIdealLoop* _phase;
  2029   // Helper function to set up the invariance for invariance computation
  2030   // If n is a known invariant, set up directly. Otherwise, look up the
  2031   // the possibility to push n onto the stack for further processing.
  2032   void visit(Node* use, Node* n) {
  2033     if (_lpt->is_invariant(n)) { // known invariant
  2034       _invariant.set(n->_idx);
  2035     } else if (!n->is_CFG()) {
  2036       Node *n_ctrl = _phase->ctrl_or_self(n);
  2037       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
  2038       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
  2039         _stack.push(n, n->in(0) == NULL ? 1 : 0);
  2044   // Compute invariance for "the_node" and (possibly) all its inputs recursively
  2045   // on the fly
  2046   void compute_invariance(Node* n) {
  2047     assert(_visited.test(n->_idx), "must be");
  2048     visit(n, n);
  2049     while (_stack.is_nonempty()) {
  2050       Node*  n = _stack.node();
  2051       uint idx = _stack.index();
  2052       if (idx == n->req()) { // all inputs are processed
  2053         _stack.pop();
  2054         // n is invariant if it's inputs are all invariant
  2055         bool all_inputs_invariant = true;
  2056         for (uint i = 0; i < n->req(); i++) {
  2057           Node* in = n->in(i);
  2058           if (in == NULL) continue;
  2059           assert(_visited.test(in->_idx), "must have visited input");
  2060           if (!_invariant.test(in->_idx)) { // bad guy
  2061             all_inputs_invariant = false;
  2062             break;
  2065         if (all_inputs_invariant) {
  2066           _invariant.set(n->_idx); // I am a invariant too
  2068       } else { // process next input
  2069         _stack.set_index(idx + 1);
  2070         Node* m = n->in(idx);
  2071         if (m != NULL && !_visited.test_set(m->_idx)) {
  2072           visit(n, m);
  2078   // Helper function to set up _old_new map for clone_nodes.
  2079   // If n is a known invariant, set up directly ("clone" of n == n).
  2080   // Otherwise, push n onto the stack for real cloning.
  2081   void clone_visit(Node* n) {
  2082     assert(_invariant.test(n->_idx), "must be invariant");
  2083     if (_lpt->is_invariant(n)) { // known invariant
  2084       _old_new.map(n->_idx, n);
  2085     } else{ // to be cloned
  2086       assert (!n->is_CFG(), "should not see CFG here");
  2087       _stack.push(n, n->in(0) == NULL ? 1 : 0);
  2091   // Clone "n" and (possibly) all its inputs recursively
  2092   void clone_nodes(Node* n, Node* ctrl) {
  2093     clone_visit(n);
  2094     while (_stack.is_nonempty()) {
  2095       Node*  n = _stack.node();
  2096       uint idx = _stack.index();
  2097       if (idx == n->req()) { // all inputs processed, clone n!
  2098         _stack.pop();
  2099         // clone invariant node
  2100         Node* n_cl = n->clone();
  2101         _old_new.map(n->_idx, n_cl);
  2102         _phase->register_new_node(n_cl, ctrl);
  2103         for (uint i = 0; i < n->req(); i++) {
  2104           Node* in = n_cl->in(i);
  2105           if (in == NULL) continue;
  2106           n_cl->set_req(i, _old_new[in->_idx]);
  2108       } else { // process next input
  2109         _stack.set_index(idx + 1);
  2110         Node* m = n->in(idx);
  2111         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
  2112           clone_visit(m); // visit the input
  2118  public:
  2119   Invariance(Arena* area, IdealLoopTree* lpt) :
  2120     _lpt(lpt), _phase(lpt->_phase),
  2121     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
  2122     _clone_visited(area), _old_new(area)
  2123   {}
  2125   // Map old to n for invariance computation and clone
  2126   void map_ctrl(Node* old, Node* n) {
  2127     assert(old->is_CFG() && n->is_CFG(), "must be");
  2128     _old_new.map(old->_idx, n); // "clone" of old is n
  2129     _invariant.set(old->_idx);  // old is invariant
  2130     _clone_visited.set(old->_idx);
  2133   // Driver function to compute invariance
  2134   bool is_invariant(Node* n) {
  2135     if (!_visited.test_set(n->_idx))
  2136       compute_invariance(n);
  2137     return (_invariant.test(n->_idx) != 0);
  2140   // Driver function to clone invariant
  2141   Node* clone(Node* n, Node* ctrl) {
  2142     assert(ctrl->is_CFG(), "must be");
  2143     assert(_invariant.test(n->_idx), "must be an invariant");
  2144     if (!_clone_visited.test(n->_idx))
  2145       clone_nodes(n, ctrl);
  2146     return _old_new[n->_idx];
  2148 };
  2150 //------------------------------is_range_check_if -----------------------------------
  2151 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
  2152 // Note: this function is particularly designed for loop predication. We require load_range
  2153 //       and offset to be loop invariant computed on the fly by "invar"
  2154 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
  2155   if (!is_loop_exit(iff)) {
  2156     return false;
  2158   if (!iff->in(1)->is_Bool()) {
  2159     return false;
  2161   const BoolNode *bol = iff->in(1)->as_Bool();
  2162   if (bol->_test._test != BoolTest::lt) {
  2163     return false;
  2165   if (!bol->in(1)->is_Cmp()) {
  2166     return false;
  2168   const CmpNode *cmp = bol->in(1)->as_Cmp();
  2169   if (cmp->Opcode() != Op_CmpU ) {
  2170     return false;
  2172   Node* range = cmp->in(2);
  2173   if (range->Opcode() != Op_LoadRange) {
  2174     const TypeInt* tint = phase->_igvn.type(range)->isa_int();
  2175     if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
  2176       // Allow predication on positive values that aren't LoadRanges.
  2177       // This allows optimization of loops where the length of the
  2178       // array is a known value and doesn't need to be loaded back
  2179       // from the array.
  2180       return false;
  2183   if (!invar.is_invariant(range)) {
  2184     return false;
  2186   Node *iv     = _head->as_CountedLoop()->phi();
  2187   int   scale  = 0;
  2188   Node *offset = NULL;
  2189   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
  2190     return false;
  2192   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
  2193     return false;
  2195   return true;
  2198 //------------------------------rc_predicate-----------------------------------
  2199 // Create a range check predicate
  2200 //
  2201 // for (i = init; i < limit; i += stride) {
  2202 //    a[scale*i+offset]
  2203 // }
  2204 //
  2205 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
  2206 // as "max(scale*i + offset) u< a.length".
  2207 //
  2208 // There are two cases for max(scale*i + offset):
  2209 // (1) stride*scale > 0
  2210 //   max(scale*i + offset) = scale*(limit-stride) + offset
  2211 // (2) stride*scale < 0
  2212 //   max(scale*i + offset) = scale*init + offset
  2213 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
  2214                                        int scale, Node* offset,
  2215                                        Node* init, Node* limit, Node* stride,
  2216                                        Node* range, bool upper) {
  2217   DEBUG_ONLY(ttyLocker ttyl);
  2218   if (TraceLoopPredicate) tty->print("rc_predicate ");
  2220   Node* max_idx_expr  = init;
  2221   int stride_con = stride->get_int();
  2222   if ((stride_con > 0) == (scale > 0) == upper) {
  2223     max_idx_expr = new (C, 3) SubINode(limit, stride);
  2224     register_new_node(max_idx_expr, ctrl);
  2225     if (TraceLoopPredicate) tty->print("(limit - stride) ");
  2226   } else {
  2227     if (TraceLoopPredicate) tty->print("init ");
  2230   if (scale != 1) {
  2231     ConNode* con_scale = _igvn.intcon(scale);
  2232     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
  2233     register_new_node(max_idx_expr, ctrl);
  2234     if (TraceLoopPredicate) tty->print("* %d ", scale);
  2237   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
  2238     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
  2239     register_new_node(max_idx_expr, ctrl);
  2240     if (TraceLoopPredicate)
  2241       if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
  2242       else tty->print("+ offset ");
  2245   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
  2246   register_new_node(cmp, ctrl);
  2247   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
  2248   register_new_node(bol, ctrl);
  2250   if (TraceLoopPredicate) tty->print_cr("<u range");
  2251   return bol;
  2254 //------------------------------ loop_predication_impl--------------------------
  2255 // Insert loop predicates for null checks and range checks
  2256 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
  2257   if (!UseLoopPredicate) return false;
  2259   if (!loop->_head->is_Loop()) {
  2260     // Could be a simple region when irreducible loops are present.
  2261     return false;
  2264   if (loop->_head->unique_ctrl_out()->Opcode() == Op_NeverBranch) {
  2265     // do nothing for infinite loops
  2266     return false;
  2269   CountedLoopNode *cl = NULL;
  2270   if (loop->_head->is_CountedLoop()) {
  2271     cl = loop->_head->as_CountedLoop();
  2272     // do nothing for iteration-splitted loops
  2273     if (!cl->is_normal_loop()) return false;
  2276   LoopNode *lpn  = loop->_head->as_Loop();
  2277   Node* entry = lpn->in(LoopNode::EntryControl);
  2279   ProjNode *predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  2280   if (!predicate_proj) {
  2281 #ifndef PRODUCT
  2282     if (TraceLoopPredicate) {
  2283       tty->print("missing predicate:");
  2284       loop->dump_head();
  2285       lpn->dump(1);
  2287 #endif
  2288     return false;
  2290   ConNode* zero = _igvn.intcon(0);
  2291   set_ctrl(zero, C->root());
  2293   ResourceArea *area = Thread::current()->resource_area();
  2294   Invariance invar(area, loop);
  2296   // Create list of if-projs such that a newer proj dominates all older
  2297   // projs in the list, and they all dominate loop->tail()
  2298   Node_List if_proj_list(area);
  2299   LoopNode *head  = loop->_head->as_Loop();
  2300   Node *current_proj = loop->tail(); //start from tail
  2301   while ( current_proj != head ) {
  2302     if (loop == get_loop(current_proj) && // still in the loop ?
  2303         current_proj->is_Proj()        && // is a projection  ?
  2304         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
  2305       if_proj_list.push(current_proj);
  2307     current_proj = idom(current_proj);
  2310   bool hoisted = false; // true if at least one proj is promoted
  2311   while (if_proj_list.size() > 0) {
  2312     // Following are changed to nonnull when a predicate can be hoisted
  2313     ProjNode* new_predicate_proj = NULL;
  2315     ProjNode* proj = if_proj_list.pop()->as_Proj();
  2316     IfNode*   iff  = proj->in(0)->as_If();
  2318     if (!is_uncommon_trap_if_pattern(proj, Deoptimization::Reason_none)) {
  2319       if (loop->is_loop_exit(iff)) {
  2320         // stop processing the remaining projs in the list because the execution of them
  2321         // depends on the condition of "iff" (iff->in(1)).
  2322         break;
  2323       } else {
  2324         // Both arms are inside the loop. There are two cases:
  2325         // (1) there is one backward branch. In this case, any remaining proj
  2326         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
  2327         //     does not determine the execution the remining projs directly, and we
  2328         //     can safely continue.
  2329         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
  2330         //     does not dominate loop->tail(), so it can not be in the if_proj list.
  2331         continue;
  2335     Node*     test = iff->in(1);
  2336     if (!test->is_Bool()){ //Conv2B, ...
  2337       continue;
  2339     BoolNode* bol = test->as_Bool();
  2340     if (invar.is_invariant(bol)) {
  2341       // Invariant test
  2342       new_predicate_proj = create_new_if_for_predicate(predicate_proj, NULL,
  2343                                                        Deoptimization::Reason_predicate);
  2344       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
  2345       BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
  2347       // Negate test if necessary
  2348       bool negated = false;
  2349       if (proj->_con != predicate_proj->_con) {
  2350         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
  2351         register_new_node(new_predicate_bol, ctrl);
  2352         negated = true;
  2354       IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
  2355       _igvn.hash_delete(new_predicate_iff);
  2356       new_predicate_iff->set_req(1, new_predicate_bol);
  2357 #ifndef PRODUCT
  2358       if (TraceLoopPredicate) {
  2359         tty->print("Predicate invariant if%s: %d ", negated ? " negated" : "", new_predicate_iff->_idx);
  2360         loop->dump_head();
  2361       } else if (TraceLoopOpts) {
  2362         tty->print("Predicate IC ");
  2363         loop->dump_head();
  2365 #endif
  2366     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
  2367       assert(proj->_con == predicate_proj->_con, "must match");
  2369       // Range check for counted loops
  2370       const Node*    cmp    = bol->in(1)->as_Cmp();
  2371       Node*          idx    = cmp->in(1);
  2372       assert(!invar.is_invariant(idx), "index is variant");
  2373       assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
  2374       Node* rng = cmp->in(2);
  2375       assert(invar.is_invariant(rng), "range must be invariant");
  2376       int scale    = 1;
  2377       Node* offset = zero;
  2378       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
  2379       assert(ok, "must be index expression");
  2381       Node* init    = cl->init_trip();
  2382       Node* limit   = cl->limit();
  2383       Node* stride  = cl->stride();
  2385       // Build if's for the upper and lower bound tests.  The
  2386       // lower_bound test will dominate the upper bound test and all
  2387       // cloned or created nodes will use the lower bound test as
  2388       // their declared control.
  2389       ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
  2390       ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
  2391       assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
  2392       Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
  2394       // Perform cloning to keep Invariance state correct since the
  2395       // late schedule will place invariant things in the loop.
  2396       rng = invar.clone(rng, ctrl);
  2397       if (offset && offset != zero) {
  2398         assert(invar.is_invariant(offset), "offset must be loop invariant");
  2399         offset = invar.clone(offset, ctrl);
  2402       // Test the lower bound
  2403       Node*  lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
  2404       IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
  2405       _igvn.hash_delete(lower_bound_iff);
  2406       lower_bound_iff->set_req(1, lower_bound_bol);
  2407       if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
  2409       // Test the upper bound
  2410       Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
  2411       IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
  2412       _igvn.hash_delete(upper_bound_iff);
  2413       upper_bound_iff->set_req(1, upper_bound_bol);
  2414       if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
  2416       // Fall through into rest of the clean up code which will move
  2417       // any dependent nodes onto the upper bound test.
  2418       new_predicate_proj = upper_bound_proj;
  2420 #ifndef PRODUCT
  2421       if (TraceLoopOpts && !TraceLoopPredicate) {
  2422         tty->print("Predicate RC ");
  2423         loop->dump_head();
  2425 #endif
  2426     } else {
  2427       // Loop variant check (for example, range check in non-counted loop)
  2428       // with uncommon trap.
  2429       continue;
  2431     assert(new_predicate_proj != NULL, "sanity");
  2432     // Success - attach condition (new_predicate_bol) to predicate if
  2433     invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
  2435     // Eliminate the old If in the loop body
  2436     dominated_by( new_predicate_proj, iff, proj->_con != new_predicate_proj->_con );
  2438     hoisted = true;
  2439     C->set_major_progress();
  2440   } // end while
  2442 #ifndef PRODUCT
  2443   // report that the loop predication has been actually performed
  2444   // for this loop
  2445   if (TraceLoopPredicate && hoisted) {
  2446     tty->print("Loop Predication Performed:");
  2447     loop->dump_head();
  2449 #endif
  2451   return hoisted;
  2454 //------------------------------loop_predication--------------------------------
  2455 // driver routine for loop predication optimization
  2456 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
  2457   bool hoisted = false;
  2458   // Recursively promote predicates
  2459   if ( _child ) {
  2460     hoisted = _child->loop_predication( phase);
  2463   // self
  2464   if (!_irreducible && !tail()->is_top()) {
  2465     hoisted |= phase->loop_predication_impl(this);
  2468   if ( _next ) { //sibling
  2469     hoisted |= _next->loop_predication( phase);
  2472   return hoisted;
  2476 // Process all the loops in the loop tree and replace any fill
  2477 // patterns with an intrisc version.
  2478 bool PhaseIdealLoop::do_intrinsify_fill() {
  2479   bool changed = false;
  2480   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2481     IdealLoopTree* lpt = iter.current();
  2482     changed |= intrinsify_fill(lpt);
  2484   return changed;
  2488 // Examine an inner loop looking for a a single store of an invariant
  2489 // value in a unit stride loop,
  2490 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2491                                      Node*& shift, Node*& con) {
  2492   const char* msg = NULL;
  2493   Node* msg_node = NULL;
  2495   store_value = NULL;
  2496   con = NULL;
  2497   shift = NULL;
  2499   // Process the loop looking for stores.  If there are multiple
  2500   // stores or extra control flow give at this point.
  2501   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2502   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2503     Node* n = lpt->_body.at(i);
  2504     if (n->outcnt() == 0) continue; // Ignore dead
  2505     if (n->is_Store()) {
  2506       if (store != NULL) {
  2507         msg = "multiple stores";
  2508         break;
  2510       int opc = n->Opcode();
  2511       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
  2512         msg = "oop fills not handled";
  2513         break;
  2515       Node* value = n->in(MemNode::ValueIn);
  2516       if (!lpt->is_invariant(value)) {
  2517         msg  = "variant store value";
  2518       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2519         msg = "not array address";
  2521       store = n;
  2522       store_value = value;
  2523     } else if (n->is_If() && n != head->loopexit()) {
  2524       msg = "extra control flow";
  2525       msg_node = n;
  2529   if (store == NULL) {
  2530     // No store in loop
  2531     return false;
  2534   if (msg == NULL && head->stride_con() != 1) {
  2535     // could handle negative strides too
  2536     if (head->stride_con() < 0) {
  2537       msg = "negative stride";
  2538     } else {
  2539       msg = "non-unit stride";
  2543   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2544     msg = "can't handle store address";
  2545     msg_node = store->in(MemNode::Address);
  2548   if (msg == NULL &&
  2549       (!store->in(MemNode::Memory)->is_Phi() ||
  2550        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2551     msg = "store memory isn't proper phi";
  2552     msg_node = store->in(MemNode::Memory);
  2555   // Make sure there is an appropriate fill routine
  2556   BasicType t = store->as_Mem()->memory_type();
  2557   const char* fill_name;
  2558   if (msg == NULL &&
  2559       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2560     msg = "unsupported store";
  2561     msg_node = store;
  2564   if (msg != NULL) {
  2565 #ifndef PRODUCT
  2566     if (TraceOptimizeFill) {
  2567       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2568       if (msg_node != NULL) msg_node->dump();
  2570 #endif
  2571     return false;
  2574   // Make sure the address expression can be handled.  It should be
  2575   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2576   Node* elements[4];
  2577   Node* conv = NULL;
  2578   bool found_index = false;
  2579   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2580   for (int e = 0; e < count; e++) {
  2581     Node* n = elements[e];
  2582     if (n->is_Con() && con == NULL) {
  2583       con = n;
  2584     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2585       Node* value = n->in(1);
  2586 #ifdef _LP64
  2587       if (value->Opcode() == Op_ConvI2L) {
  2588         conv = value;
  2589         value = value->in(1);
  2591 #endif
  2592       if (value != head->phi()) {
  2593         msg = "unhandled shift in address";
  2594       } else {
  2595         found_index = true;
  2596         shift = n;
  2597         assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
  2599     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2600       if (n->in(1) == head->phi()) {
  2601         found_index = true;
  2602         conv = n;
  2603       } else {
  2604         msg = "unhandled input to ConvI2L";
  2606     } else if (n == head->phi()) {
  2607       // no shift, check below for allowed cases
  2608       found_index = true;
  2609     } else {
  2610       msg = "unhandled node in address";
  2611       msg_node = n;
  2615   if (count == -1) {
  2616     msg = "malformed address expression";
  2617     msg_node = store;
  2620   if (!found_index) {
  2621     msg = "missing use of index";
  2624   // byte sized items won't have a shift
  2625   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2626     msg = "can't find shift";
  2627     msg_node = store;
  2630   if (msg != NULL) {
  2631 #ifndef PRODUCT
  2632     if (TraceOptimizeFill) {
  2633       tty->print_cr("not fill intrinsic: %s", msg);
  2634       if (msg_node != NULL) msg_node->dump();
  2636 #endif
  2637     return false;
  2640   // No make sure all the other nodes in the loop can be handled
  2641   VectorSet ok(Thread::current()->resource_area());
  2643   // store related values are ok
  2644   ok.set(store->_idx);
  2645   ok.set(store->in(MemNode::Memory)->_idx);
  2647   // Loop structure is ok
  2648   ok.set(head->_idx);
  2649   ok.set(head->loopexit()->_idx);
  2650   ok.set(head->phi()->_idx);
  2651   ok.set(head->incr()->_idx);
  2652   ok.set(head->loopexit()->cmp_node()->_idx);
  2653   ok.set(head->loopexit()->in(1)->_idx);
  2655   // Address elements are ok
  2656   if (con)   ok.set(con->_idx);
  2657   if (shift) ok.set(shift->_idx);
  2658   if (conv)  ok.set(conv->_idx);
  2660   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2661     Node* n = lpt->_body.at(i);
  2662     if (n->outcnt() == 0) continue; // Ignore dead
  2663     if (ok.test(n->_idx)) continue;
  2664     // Backedge projection is ok
  2665     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
  2666     if (!n->is_AddP()) {
  2667       msg = "unhandled node";
  2668       msg_node = n;
  2669       break;
  2673   // Make sure no unexpected values are used outside the loop
  2674   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2675     Node* n = lpt->_body.at(i);
  2676     // These values can be replaced with other nodes if they are used
  2677     // outside the loop.
  2678     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2679     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2680       Node* use = iter.get();
  2681       if (!lpt->_body.contains(use)) {
  2682         msg = "node is used outside loop";
  2683         // lpt->_body.dump();
  2684         msg_node = n;
  2685         break;
  2690 #ifdef ASSERT
  2691   if (TraceOptimizeFill) {
  2692     if (msg != NULL) {
  2693       tty->print_cr("no fill intrinsic: %s", msg);
  2694       if (msg_node != NULL) msg_node->dump();
  2695     } else {
  2696       tty->print_cr("fill intrinsic for:");
  2698     store->dump();
  2699     if (Verbose) {
  2700       lpt->_body.dump();
  2703 #endif
  2705   return msg == NULL;
  2710 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2711   // Only for counted inner loops
  2712   if (!lpt->is_counted() || !lpt->is_inner()) {
  2713     return false;
  2716   // Must have constant stride
  2717   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2718   if (!head->stride_is_con() || !head->is_normal_loop()) {
  2719     return false;
  2722   // Check that the body only contains a store of a loop invariant
  2723   // value that is indexed by the loop phi.
  2724   Node* store = NULL;
  2725   Node* store_value = NULL;
  2726   Node* shift = NULL;
  2727   Node* offset = NULL;
  2728   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2729     return false;
  2732   // Now replace the whole loop body by a call to a fill routine that
  2733   // covers the same region as the loop.
  2734   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2736   // Build an expression for the beginning of the copy region
  2737   Node* index = head->init_trip();
  2738 #ifdef _LP64
  2739   index = new (C, 2) ConvI2LNode(index);
  2740   _igvn.register_new_node_with_optimizer(index);
  2741 #endif
  2742   if (shift != NULL) {
  2743     // byte arrays don't require a shift but others do.
  2744     index = new (C, 3) LShiftXNode(index, shift->in(2));
  2745     _igvn.register_new_node_with_optimizer(index);
  2747   index = new (C, 4) AddPNode(base, base, index);
  2748   _igvn.register_new_node_with_optimizer(index);
  2749   Node* from = new (C, 4) AddPNode(base, index, offset);
  2750   _igvn.register_new_node_with_optimizer(from);
  2751   // Compute the number of elements to copy
  2752   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
  2753   _igvn.register_new_node_with_optimizer(len);
  2755   BasicType t = store->as_Mem()->memory_type();
  2756   bool aligned = false;
  2757   if (offset != NULL && head->init_trip()->is_Con()) {
  2758     int element_size = type2aelembytes(t);
  2759     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2762   // Build a call to the fill routine
  2763   const char* fill_name;
  2764   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2765   assert(fill != NULL, "what?");
  2767   // Convert float/double to int/long for fill routines
  2768   if (t == T_FLOAT) {
  2769     store_value = new (C, 2) MoveF2INode(store_value);
  2770     _igvn.register_new_node_with_optimizer(store_value);
  2771   } else if (t == T_DOUBLE) {
  2772     store_value = new (C, 2) MoveD2LNode(store_value);
  2773     _igvn.register_new_node_with_optimizer(store_value);
  2776   Node* mem_phi = store->in(MemNode::Memory);
  2777   Node* result_ctrl;
  2778   Node* result_mem;
  2779   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2780   int size = call_type->domain()->cnt();
  2781   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
  2782                                                       fill_name, TypeAryPtr::get_array_body_type(t));
  2783   call->init_req(TypeFunc::Parms+0, from);
  2784   call->init_req(TypeFunc::Parms+1, store_value);
  2785 #ifdef _LP64
  2786   len = new (C, 2) ConvI2LNode(len);
  2787   _igvn.register_new_node_with_optimizer(len);
  2788 #endif
  2789   call->init_req(TypeFunc::Parms+2, len);
  2790 #ifdef _LP64
  2791   call->init_req(TypeFunc::Parms+3, C->top());
  2792 #endif
  2793   call->init_req( TypeFunc::Control, head->init_control());
  2794   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  2795   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  2796   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  2797   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  2798   _igvn.register_new_node_with_optimizer(call);
  2799   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  2800   _igvn.register_new_node_with_optimizer(result_ctrl);
  2801   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  2802   _igvn.register_new_node_with_optimizer(result_mem);
  2804   // If this fill is tightly coupled to an allocation and overwrites
  2805   // the whole body, allow it to take over the zeroing.
  2806   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2807   if (alloc != NULL && alloc->is_AllocateArray()) {
  2808     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2809     if (head->limit() == length &&
  2810         head->init_trip() == _igvn.intcon(0)) {
  2811       if (TraceOptimizeFill) {
  2812         tty->print_cr("Eliminated zeroing in allocation");
  2814       alloc->maybe_set_complete(&_igvn);
  2815     } else {
  2816 #ifdef ASSERT
  2817       if (TraceOptimizeFill) {
  2818         tty->print_cr("filling array but bounds don't match");
  2819         alloc->dump();
  2820         head->init_trip()->dump();
  2821         head->limit()->dump();
  2822         length->dump();
  2824 #endif
  2828   // Redirect the old control and memory edges that are outside the loop.
  2829   Node* exit = head->loopexit()->proj_out(0);
  2830   // Sometimes the memory phi of the head is used as the outgoing
  2831   // state of the loop.  It's safe in this case to replace it with the
  2832   // result_mem.
  2833   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2834   _igvn.replace_node(exit, result_ctrl);
  2835   _igvn.replace_node(store, result_mem);
  2836   // Any uses the increment outside of the loop become the loop limit.
  2837   _igvn.replace_node(head->incr(), head->limit());
  2839   // Disconnect the head from the loop.
  2840   for (uint i = 0; i < lpt->_body.size(); i++) {
  2841     Node* n = lpt->_body.at(i);
  2842     _igvn.replace_node(n, C->top());
  2845   return true;

mercurial