src/share/vm/prims/jvmtiTagMap.cpp

Tue, 26 Mar 2013 15:00:34 +0100

author
rbackman
date
Tue, 26 Mar 2013 15:00:34 +0100
changeset 4818
1916ca1dec2f
parent 4542
db9981fd3124
child 4993
746b070f5022
permissions
-rw-r--r--

8009382: Add JVM_Get{Field|Method}TypeAnnotations
Reviewed-by: dcubed, rbackman
Contributed-by: Joel Borggren-Franck <joel.franck@oracle.com>

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "jvmtifiles/jvmtiEnv.hpp"
    30 #include "oops/instanceMirrorKlass.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline2.hpp"
    33 #include "prims/jvmtiEventController.hpp"
    34 #include "prims/jvmtiEventController.inline.hpp"
    35 #include "prims/jvmtiExport.hpp"
    36 #include "prims/jvmtiImpl.hpp"
    37 #include "prims/jvmtiTagMap.hpp"
    38 #include "runtime/biasedLocking.hpp"
    39 #include "runtime/javaCalls.hpp"
    40 #include "runtime/jniHandles.hpp"
    41 #include "runtime/mutex.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "runtime/reflectionUtils.hpp"
    44 #include "runtime/vframe.hpp"
    45 #include "runtime/vmThread.hpp"
    46 #include "runtime/vm_operations.hpp"
    47 #include "services/serviceUtil.hpp"
    48 #include "utilities/macros.hpp"
    49 #if INCLUDE_ALL_GCS
    50 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    51 #endif // INCLUDE_ALL_GCS
    53 // JvmtiTagHashmapEntry
    54 //
    55 // Each entry encapsulates a reference to the tagged object
    56 // and the tag value. In addition an entry includes a next pointer which
    57 // is used to chain entries together.
    59 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
    60  private:
    61   friend class JvmtiTagMap;
    63   oop _object;                          // tagged object
    64   jlong _tag;                           // the tag
    65   JvmtiTagHashmapEntry* _next;          // next on the list
    67   inline void init(oop object, jlong tag) {
    68     _object = object;
    69     _tag = tag;
    70     _next = NULL;
    71   }
    73   // constructor
    74   JvmtiTagHashmapEntry(oop object, jlong tag)         { init(object, tag); }
    76  public:
    78   // accessor methods
    79   inline oop object() const                           { return _object; }
    80   inline oop* object_addr()                           { return &_object; }
    81   inline jlong tag() const                            { return _tag; }
    83   inline void set_tag(jlong tag) {
    84     assert(tag != 0, "can't be zero");
    85     _tag = tag;
    86   }
    88   inline JvmtiTagHashmapEntry* next() const             { return _next; }
    89   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
    90 };
    93 // JvmtiTagHashmap
    94 //
    95 // A hashmap is essentially a table of pointers to entries. Entries
    96 // are hashed to a location, or position in the table, and then
    97 // chained from that location. The "key" for hashing is address of
    98 // the object, or oop. The "value" is the tag value.
    99 //
   100 // A hashmap maintains a count of the number entries in the hashmap
   101 // and resizes if the number of entries exceeds a given threshold.
   102 // The threshold is specified as a percentage of the size - for
   103 // example a threshold of 0.75 will trigger the hashmap to resize
   104 // if the number of entries is >75% of table size.
   105 //
   106 // A hashmap provides functions for adding, removing, and finding
   107 // entries. It also provides a function to iterate over all entries
   108 // in the hashmap.
   110 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
   111  private:
   112   friend class JvmtiTagMap;
   114   enum {
   115     small_trace_threshold  = 10000,                  // threshold for tracing
   116     medium_trace_threshold = 100000,
   117     large_trace_threshold  = 1000000,
   118     initial_trace_threshold = small_trace_threshold
   119   };
   121   static int _sizes[];                  // array of possible hashmap sizes
   122   int _size;                            // actual size of the table
   123   int _size_index;                      // index into size table
   125   int _entry_count;                     // number of entries in the hashmap
   127   float _load_factor;                   // load factor as a % of the size
   128   int _resize_threshold;                // computed threshold to trigger resizing.
   129   bool _resizing_enabled;               // indicates if hashmap can resize
   131   int _trace_threshold;                 // threshold for trace messages
   133   JvmtiTagHashmapEntry** _table;        // the table of entries.
   135   // private accessors
   136   int resize_threshold() const                  { return _resize_threshold; }
   137   int trace_threshold() const                   { return _trace_threshold; }
   139   // initialize the hashmap
   140   void init(int size_index=0, float load_factor=4.0f) {
   141     int initial_size =  _sizes[size_index];
   142     _size_index = size_index;
   143     _size = initial_size;
   144     _entry_count = 0;
   145     if (TraceJVMTIObjectTagging) {
   146       _trace_threshold = initial_trace_threshold;
   147     } else {
   148       _trace_threshold = -1;
   149     }
   150     _load_factor = load_factor;
   151     _resize_threshold = (int)(_load_factor * _size);
   152     _resizing_enabled = true;
   153     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
   154     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
   155     if (_table == NULL) {
   156       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
   157     }
   158     for (int i=0; i<initial_size; i++) {
   159       _table[i] = NULL;
   160     }
   161   }
   163   // hash a given key (oop) with the specified size
   164   static unsigned int hash(oop key, int size) {
   165     // shift right to get better distribution (as these bits will be zero
   166     // with aligned addresses)
   167     unsigned int addr = (unsigned int)((intptr_t)key);
   168 #ifdef _LP64
   169     return (addr >> 3) % size;
   170 #else
   171     return (addr >> 2) % size;
   172 #endif
   173   }
   175   // hash a given key (oop)
   176   unsigned int hash(oop key) {
   177     return hash(key, _size);
   178   }
   180   // resize the hashmap - allocates a large table and re-hashes
   181   // all entries into the new table.
   182   void resize() {
   183     int new_size_index = _size_index+1;
   184     int new_size = _sizes[new_size_index];
   185     if (new_size < 0) {
   186       // hashmap already at maximum capacity
   187       return;
   188     }
   190     // allocate new table
   191     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
   192     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
   193     if (new_table == NULL) {
   194       warning("unable to allocate larger hashtable for jvmti object tags");
   195       set_resizing_enabled(false);
   196       return;
   197     }
   199     // initialize new table
   200     int i;
   201     for (i=0; i<new_size; i++) {
   202       new_table[i] = NULL;
   203     }
   205     // rehash all entries into the new table
   206     for (i=0; i<_size; i++) {
   207       JvmtiTagHashmapEntry* entry = _table[i];
   208       while (entry != NULL) {
   209         JvmtiTagHashmapEntry* next = entry->next();
   210         oop key = entry->object();
   211         assert(key != NULL, "jni weak reference cleared!!");
   212         unsigned int h = hash(key, new_size);
   213         JvmtiTagHashmapEntry* anchor = new_table[h];
   214         if (anchor == NULL) {
   215           new_table[h] = entry;
   216           entry->set_next(NULL);
   217         } else {
   218           entry->set_next(anchor);
   219           new_table[h] = entry;
   220         }
   221         entry = next;
   222       }
   223     }
   225     // free old table and update settings.
   226     os::free((void*)_table);
   227     _table = new_table;
   228     _size_index = new_size_index;
   229     _size = new_size;
   231     // compute new resize threshold
   232     _resize_threshold = (int)(_load_factor * _size);
   233   }
   236   // internal remove function - remove an entry at a given position in the
   237   // table.
   238   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
   239     assert(pos >= 0 && pos < _size, "out of range");
   240     if (prev == NULL) {
   241       _table[pos] = entry->next();
   242     } else {
   243       prev->set_next(entry->next());
   244     }
   245     assert(_entry_count > 0, "checking");
   246     _entry_count--;
   247   }
   249   // resizing switch
   250   bool is_resizing_enabled() const          { return _resizing_enabled; }
   251   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
   253   // debugging
   254   void print_memory_usage();
   255   void compute_next_trace_threshold();
   257  public:
   259   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
   260   // The preferred size is rounded down to an actual size.
   261   JvmtiTagHashmap(int size, float load_factor=0.0f) {
   262     int i=0;
   263     while (_sizes[i] < size) {
   264       if (_sizes[i] < 0) {
   265         assert(i > 0, "sanity check");
   266         i--;
   267         break;
   268       }
   269       i++;
   270     }
   272     // if a load factor is specified then use it, otherwise use default
   273     if (load_factor > 0.01f) {
   274       init(i, load_factor);
   275     } else {
   276       init(i);
   277     }
   278   }
   280   // create a JvmtiTagHashmap with default settings
   281   JvmtiTagHashmap() {
   282     init();
   283   }
   285   // release table when JvmtiTagHashmap destroyed
   286   ~JvmtiTagHashmap() {
   287     if (_table != NULL) {
   288       os::free((void*)_table);
   289       _table = NULL;
   290     }
   291   }
   293   // accessors
   294   int size() const                              { return _size; }
   295   JvmtiTagHashmapEntry** table() const          { return _table; }
   296   int entry_count() const                       { return _entry_count; }
   298   // find an entry in the hashmap, returns NULL if not found.
   299   inline JvmtiTagHashmapEntry* find(oop key) {
   300     unsigned int h = hash(key);
   301     JvmtiTagHashmapEntry* entry = _table[h];
   302     while (entry != NULL) {
   303       if (entry->object() == key) {
   304          return entry;
   305       }
   306       entry = entry->next();
   307     }
   308     return NULL;
   309   }
   312   // add a new entry to hashmap
   313   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
   314     assert(key != NULL, "checking");
   315     assert(find(key) == NULL, "duplicate detected");
   316     unsigned int h = hash(key);
   317     JvmtiTagHashmapEntry* anchor = _table[h];
   318     if (anchor == NULL) {
   319       _table[h] = entry;
   320       entry->set_next(NULL);
   321     } else {
   322       entry->set_next(anchor);
   323       _table[h] = entry;
   324     }
   326     _entry_count++;
   327     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
   328       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
   329       print_memory_usage();
   330       compute_next_trace_threshold();
   331     }
   333     // if the number of entries exceed the threshold then resize
   334     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
   335       resize();
   336     }
   337   }
   339   // remove an entry with the given key.
   340   inline JvmtiTagHashmapEntry* remove(oop key) {
   341     unsigned int h = hash(key);
   342     JvmtiTagHashmapEntry* entry = _table[h];
   343     JvmtiTagHashmapEntry* prev = NULL;
   344     while (entry != NULL) {
   345       if (key == entry->object()) {
   346         break;
   347       }
   348       prev = entry;
   349       entry = entry->next();
   350     }
   351     if (entry != NULL) {
   352       remove(prev, h, entry);
   353     }
   354     return entry;
   355   }
   357   // iterate over all entries in the hashmap
   358   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
   359 };
   361 // possible hashmap sizes - odd primes that roughly double in size.
   362 // To avoid excessive resizing the odd primes from 4801-76831 and
   363 // 76831-307261 have been removed. The list must be terminated by -1.
   364 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
   365     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
   368 // A supporting class for iterating over all entries in Hashmap
   369 class JvmtiTagHashmapEntryClosure {
   370  public:
   371   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
   372 };
   375 // iterate over all entries in the hashmap
   376 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   377   for (int i=0; i<_size; i++) {
   378     JvmtiTagHashmapEntry* entry = _table[i];
   379     JvmtiTagHashmapEntry* prev = NULL;
   380     while (entry != NULL) {
   381       // obtain the next entry before invoking do_entry - this is
   382       // necessary because do_entry may remove the entry from the
   383       // hashmap.
   384       JvmtiTagHashmapEntry* next = entry->next();
   385       closure->do_entry(entry);
   386       entry = next;
   387      }
   388   }
   389 }
   391 // debugging
   392 void JvmtiTagHashmap::print_memory_usage() {
   393   intptr_t p = (intptr_t)this;
   394   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
   396   // table + entries in KB
   397   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
   398     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
   400   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
   401   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
   402     entry_count(), hashmap_usage, weak_globals_usage);
   403 }
   405 // compute threshold for the next trace message
   406 void JvmtiTagHashmap::compute_next_trace_threshold() {
   407   if (trace_threshold() < medium_trace_threshold) {
   408     _trace_threshold += small_trace_threshold;
   409   } else {
   410     if (trace_threshold() < large_trace_threshold) {
   411       _trace_threshold += medium_trace_threshold;
   412     } else {
   413       _trace_threshold += large_trace_threshold;
   414     }
   415   }
   416 }
   418 // create a JvmtiTagMap
   419 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
   420   _env(env),
   421   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
   422   _free_entries(NULL),
   423   _free_entries_count(0)
   424 {
   425   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
   426   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
   428   _hashmap = new JvmtiTagHashmap();
   430   // finally add us to the environment
   431   ((JvmtiEnvBase *)env)->set_tag_map(this);
   432 }
   435 // destroy a JvmtiTagMap
   436 JvmtiTagMap::~JvmtiTagMap() {
   438   // no lock acquired as we assume the enclosing environment is
   439   // also being destroryed.
   440   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
   442   JvmtiTagHashmapEntry** table = _hashmap->table();
   443   for (int j = 0; j < _hashmap->size(); j++) {
   444     JvmtiTagHashmapEntry* entry = table[j];
   445     while (entry != NULL) {
   446       JvmtiTagHashmapEntry* next = entry->next();
   447       delete entry;
   448       entry = next;
   449     }
   450   }
   452   // finally destroy the hashmap
   453   delete _hashmap;
   454   _hashmap = NULL;
   456   // remove any entries on the free list
   457   JvmtiTagHashmapEntry* entry = _free_entries;
   458   while (entry != NULL) {
   459     JvmtiTagHashmapEntry* next = entry->next();
   460     delete entry;
   461     entry = next;
   462   }
   463   _free_entries = NULL;
   464 }
   466 // create a hashmap entry
   467 // - if there's an entry on the (per-environment) free list then this
   468 // is returned. Otherwise an new entry is allocated.
   469 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
   470   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
   471   JvmtiTagHashmapEntry* entry;
   472   if (_free_entries == NULL) {
   473     entry = new JvmtiTagHashmapEntry(ref, tag);
   474   } else {
   475     assert(_free_entries_count > 0, "mismatched _free_entries_count");
   476     _free_entries_count--;
   477     entry = _free_entries;
   478     _free_entries = entry->next();
   479     entry->init(ref, tag);
   480   }
   481   return entry;
   482 }
   484 // destroy an entry by returning it to the free list
   485 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
   486   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   487   // limit the size of the free list
   488   if (_free_entries_count >= max_free_entries) {
   489     delete entry;
   490   } else {
   491     entry->set_next(_free_entries);
   492     _free_entries = entry;
   493     _free_entries_count++;
   494   }
   495 }
   497 // returns the tag map for the given environments. If the tag map
   498 // doesn't exist then it is created.
   499 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
   500   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
   501   if (tag_map == NULL) {
   502     MutexLocker mu(JvmtiThreadState_lock);
   503     tag_map = ((JvmtiEnvBase*)env)->tag_map();
   504     if (tag_map == NULL) {
   505       tag_map = new JvmtiTagMap(env);
   506     }
   507   } else {
   508     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
   509   }
   510   return tag_map;
   511 }
   513 // iterate over all entries in the tag map.
   514 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   515   hashmap()->entry_iterate(closure);
   516 }
   518 // returns true if the hashmaps are empty
   519 bool JvmtiTagMap::is_empty() {
   520   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   521   return hashmap()->entry_count() == 0;
   522 }
   525 // Return the tag value for an object, or 0 if the object is
   526 // not tagged
   527 //
   528 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
   529   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
   530   if (entry == NULL) {
   531     return 0;
   532   } else {
   533     return entry->tag();
   534   }
   535 }
   538 // A CallbackWrapper is a support class for querying and tagging an object
   539 // around a callback to a profiler. The constructor does pre-callback
   540 // work to get the tag value, klass tag value, ... and the destructor
   541 // does the post-callback work of tagging or untagging the object.
   542 //
   543 // {
   544 //   CallbackWrapper wrapper(tag_map, o);
   545 //
   546 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
   547 //
   548 // } // wrapper goes out of scope here which results in the destructor
   549 //      checking to see if the object has been tagged, untagged, or the
   550 //      tag value has changed.
   551 //
   552 class CallbackWrapper : public StackObj {
   553  private:
   554   JvmtiTagMap* _tag_map;
   555   JvmtiTagHashmap* _hashmap;
   556   JvmtiTagHashmapEntry* _entry;
   557   oop _o;
   558   jlong _obj_size;
   559   jlong _obj_tag;
   560   jlong _klass_tag;
   562  protected:
   563   JvmtiTagMap* tag_map() const      { return _tag_map; }
   565   // invoked post-callback to tag, untag, or update the tag of an object
   566   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
   567                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
   568  public:
   569   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
   570     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
   571            "MT unsafe or must be VM thread");
   573     // object to tag
   574     _o = o;
   576     // object size
   577     _obj_size = (jlong)_o->size() * wordSize;
   579     // record the context
   580     _tag_map = tag_map;
   581     _hashmap = tag_map->hashmap();
   582     _entry = _hashmap->find(_o);
   584     // get object tag
   585     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
   587     // get the class and the class's tag value
   588     assert(SystemDictionary::Class_klass()->oop_is_instanceMirror(), "Is not?");
   590     _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
   591   }
   593   ~CallbackWrapper() {
   594     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
   595   }
   597   inline jlong* obj_tag_p()                     { return &_obj_tag; }
   598   inline jlong obj_size() const                 { return _obj_size; }
   599   inline jlong obj_tag() const                  { return _obj_tag; }
   600   inline jlong klass_tag() const                { return _klass_tag; }
   601 };
   605 // callback post-callback to tag, untag, or update the tag of an object
   606 void inline CallbackWrapper::post_callback_tag_update(oop o,
   607                                                       JvmtiTagHashmap* hashmap,
   608                                                       JvmtiTagHashmapEntry* entry,
   609                                                       jlong obj_tag) {
   610   if (entry == NULL) {
   611     if (obj_tag != 0) {
   612       // callback has tagged the object
   613       assert(Thread::current()->is_VM_thread(), "must be VMThread");
   614       entry = tag_map()->create_entry(o, obj_tag);
   615       hashmap->add(o, entry);
   616     }
   617   } else {
   618     // object was previously tagged - the callback may have untagged
   619     // the object or changed the tag value
   620     if (obj_tag == 0) {
   622       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
   623       assert(entry_removed == entry, "checking");
   624       tag_map()->destroy_entry(entry);
   626     } else {
   627       if (obj_tag != entry->tag()) {
   628          entry->set_tag(obj_tag);
   629       }
   630     }
   631   }
   632 }
   634 // An extended CallbackWrapper used when reporting an object reference
   635 // to the agent.
   636 //
   637 // {
   638 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
   639 //
   640 //   (*callback)(wrapper.klass_tag(),
   641 //               wrapper.obj_size(),
   642 //               wrapper.obj_tag_p()
   643 //               wrapper.referrer_tag_p(), ...)
   644 //
   645 // } // wrapper goes out of scope here which results in the destructor
   646 //      checking to see if the referrer object has been tagged, untagged,
   647 //      or the tag value has changed.
   648 //
   649 class TwoOopCallbackWrapper : public CallbackWrapper {
   650  private:
   651   bool _is_reference_to_self;
   652   JvmtiTagHashmap* _referrer_hashmap;
   653   JvmtiTagHashmapEntry* _referrer_entry;
   654   oop _referrer;
   655   jlong _referrer_obj_tag;
   656   jlong _referrer_klass_tag;
   657   jlong* _referrer_tag_p;
   659   bool is_reference_to_self() const             { return _is_reference_to_self; }
   661  public:
   662   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
   663     CallbackWrapper(tag_map, o)
   664   {
   665     // self reference needs to be handled in a special way
   666     _is_reference_to_self = (referrer == o);
   668     if (_is_reference_to_self) {
   669       _referrer_klass_tag = klass_tag();
   670       _referrer_tag_p = obj_tag_p();
   671     } else {
   672       _referrer = referrer;
   673       // record the context
   674       _referrer_hashmap = tag_map->hashmap();
   675       _referrer_entry = _referrer_hashmap->find(_referrer);
   677       // get object tag
   678       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
   679       _referrer_tag_p = &_referrer_obj_tag;
   681       // get referrer class tag.
   682       _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
   683     }
   684   }
   686   ~TwoOopCallbackWrapper() {
   687     if (!is_reference_to_self()){
   688       post_callback_tag_update(_referrer,
   689                                _referrer_hashmap,
   690                                _referrer_entry,
   691                                _referrer_obj_tag);
   692     }
   693   }
   695   // address of referrer tag
   696   // (for a self reference this will return the same thing as obj_tag_p())
   697   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
   699   // referrer's class tag
   700   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
   701 };
   703 // tag an object
   704 //
   705 // This function is performance critical. If many threads attempt to tag objects
   706 // around the same time then it's possible that the Mutex associated with the
   707 // tag map will be a hot lock.
   708 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
   709   MutexLocker ml(lock());
   711   // resolve the object
   712   oop o = JNIHandles::resolve_non_null(object);
   714   // see if the object is already tagged
   715   JvmtiTagHashmap* hashmap = _hashmap;
   716   JvmtiTagHashmapEntry* entry = hashmap->find(o);
   718   // if the object is not already tagged then we tag it
   719   if (entry == NULL) {
   720     if (tag != 0) {
   721       entry = create_entry(o, tag);
   722       hashmap->add(o, entry);
   723     } else {
   724       // no-op
   725     }
   726   } else {
   727     // if the object is already tagged then we either update
   728     // the tag (if a new tag value has been provided)
   729     // or remove the object if the new tag value is 0.
   730     if (tag == 0) {
   731       hashmap->remove(o);
   732       destroy_entry(entry);
   733     } else {
   734       entry->set_tag(tag);
   735     }
   736   }
   737 }
   739 // get the tag for an object
   740 jlong JvmtiTagMap::get_tag(jobject object) {
   741   MutexLocker ml(lock());
   743   // resolve the object
   744   oop o = JNIHandles::resolve_non_null(object);
   746   return tag_for(this, o);
   747 }
   750 // Helper class used to describe the static or instance fields of a class.
   751 // For each field it holds the field index (as defined by the JVMTI specification),
   752 // the field type, and the offset.
   754 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
   755  private:
   756   int _field_index;
   757   int _field_offset;
   758   char _field_type;
   759  public:
   760   ClassFieldDescriptor(int index, char type, int offset) :
   761     _field_index(index), _field_type(type), _field_offset(offset) {
   762   }
   763   int field_index()  const  { return _field_index; }
   764   char field_type()  const  { return _field_type; }
   765   int field_offset() const  { return _field_offset; }
   766 };
   768 class ClassFieldMap: public CHeapObj<mtInternal> {
   769  private:
   770   enum {
   771     initial_field_count = 5
   772   };
   774   // list of field descriptors
   775   GrowableArray<ClassFieldDescriptor*>* _fields;
   777   // constructor
   778   ClassFieldMap();
   780   // add a field
   781   void add(int index, char type, int offset);
   783   // returns the field count for the given class
   784   static int compute_field_count(instanceKlassHandle ikh);
   786  public:
   787   ~ClassFieldMap();
   789   // access
   790   int field_count()                     { return _fields->length(); }
   791   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
   793   // functions to create maps of static or instance fields
   794   static ClassFieldMap* create_map_of_static_fields(Klass* k);
   795   static ClassFieldMap* create_map_of_instance_fields(oop obj);
   796 };
   798 ClassFieldMap::ClassFieldMap() {
   799   _fields = new (ResourceObj::C_HEAP, mtInternal)
   800     GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
   801 }
   803 ClassFieldMap::~ClassFieldMap() {
   804   for (int i=0; i<_fields->length(); i++) {
   805     delete _fields->at(i);
   806   }
   807   delete _fields;
   808 }
   810 void ClassFieldMap::add(int index, char type, int offset) {
   811   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
   812   _fields->append(field);
   813 }
   815 // Returns a heap allocated ClassFieldMap to describe the static fields
   816 // of the given class.
   817 //
   818 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
   819   HandleMark hm;
   820   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
   822   // create the field map
   823   ClassFieldMap* field_map = new ClassFieldMap();
   825   FilteredFieldStream f(ikh, false, false);
   826   int max_field_index = f.field_count()-1;
   828   int index = 0;
   829   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
   830     // ignore instance fields
   831     if (!fld.access_flags().is_static()) {
   832       continue;
   833     }
   834     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   835   }
   836   return field_map;
   837 }
   839 // Returns a heap allocated ClassFieldMap to describe the instance fields
   840 // of the given class. All instance fields are included (this means public
   841 // and private fields declared in superclasses and superinterfaces too).
   842 //
   843 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
   844   HandleMark hm;
   845   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
   847   // create the field map
   848   ClassFieldMap* field_map = new ClassFieldMap();
   850   FilteredFieldStream f(ikh, false, false);
   852   int max_field_index = f.field_count()-1;
   854   int index = 0;
   855   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
   856     // ignore static fields
   857     if (fld.access_flags().is_static()) {
   858       continue;
   859     }
   860     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   861   }
   863   return field_map;
   864 }
   866 // Helper class used to cache a ClassFileMap for the instance fields of
   867 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
   868 // heap iteration and avoid creating a field map for each object in the heap
   869 // (only need to create the map when the first instance of a class is encountered).
   870 //
   871 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
   872  private:
   873    enum {
   874      initial_class_count = 200
   875    };
   876   ClassFieldMap* _field_map;
   878   ClassFieldMap* field_map() const          { return _field_map; }
   880   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
   881   ~JvmtiCachedClassFieldMap();
   883   static GrowableArray<InstanceKlass*>* _class_list;
   884   static void add_to_class_list(InstanceKlass* ik);
   886  public:
   887   // returns the field map for a given object (returning map cached
   888   // by InstanceKlass if possible
   889   static ClassFieldMap* get_map_of_instance_fields(oop obj);
   891   // removes the field map from all instanceKlasses - should be
   892   // called before VM operation completes
   893   static void clear_cache();
   895   // returns the number of ClassFieldMap cached by instanceKlasses
   896   static int cached_field_map_count();
   897 };
   899 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
   901 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
   902   _field_map = field_map;
   903 }
   905 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
   906   if (_field_map != NULL) {
   907     delete _field_map;
   908   }
   909 }
   911 // Marker class to ensure that the class file map cache is only used in a defined
   912 // scope.
   913 class ClassFieldMapCacheMark : public StackObj {
   914  private:
   915    static bool _is_active;
   916  public:
   917    ClassFieldMapCacheMark() {
   918      assert(Thread::current()->is_VM_thread(), "must be VMThread");
   919      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
   920      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
   921      _is_active = true;
   922    }
   923    ~ClassFieldMapCacheMark() {
   924      JvmtiCachedClassFieldMap::clear_cache();
   925      _is_active = false;
   926    }
   927    static bool is_active() { return _is_active; }
   928 };
   930 bool ClassFieldMapCacheMark::_is_active;
   933 // record that the given InstanceKlass is caching a field map
   934 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
   935   if (_class_list == NULL) {
   936     _class_list = new (ResourceObj::C_HEAP, mtInternal)
   937       GrowableArray<InstanceKlass*>(initial_class_count, true);
   938   }
   939   _class_list->push(ik);
   940 }
   942 // returns the instance field map for the given object
   943 // (returns field map cached by the InstanceKlass if possible)
   944 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
   945   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   946   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
   948   Klass* k = obj->klass();
   949   InstanceKlass* ik = InstanceKlass::cast(k);
   951   // return cached map if possible
   952   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   953   if (cached_map != NULL) {
   954     assert(cached_map->field_map() != NULL, "missing field list");
   955     return cached_map->field_map();
   956   } else {
   957     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
   958     cached_map = new JvmtiCachedClassFieldMap(field_map);
   959     ik->set_jvmti_cached_class_field_map(cached_map);
   960     add_to_class_list(ik);
   961     return field_map;
   962   }
   963 }
   965 // remove the fields maps cached from all instanceKlasses
   966 void JvmtiCachedClassFieldMap::clear_cache() {
   967   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   968   if (_class_list != NULL) {
   969     for (int i = 0; i < _class_list->length(); i++) {
   970       InstanceKlass* ik = _class_list->at(i);
   971       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   972       assert(cached_map != NULL, "should not be NULL");
   973       ik->set_jvmti_cached_class_field_map(NULL);
   974       delete cached_map;  // deletes the encapsulated field map
   975     }
   976     delete _class_list;
   977     _class_list = NULL;
   978   }
   979 }
   981 // returns the number of ClassFieldMap cached by instanceKlasses
   982 int JvmtiCachedClassFieldMap::cached_field_map_count() {
   983   return (_class_list == NULL) ? 0 : _class_list->length();
   984 }
   986 // helper function to indicate if an object is filtered by its tag or class tag
   987 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
   988                                               jlong klass_tag,
   989                                               int heap_filter) {
   990   // apply the heap filter
   991   if (obj_tag != 0) {
   992     // filter out tagged objects
   993     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
   994   } else {
   995     // filter out untagged objects
   996     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
   997   }
   998   if (klass_tag != 0) {
   999     // filter out objects with tagged classes
  1000     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
  1001   } else {
  1002     // filter out objects with untagged classes.
  1003     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
  1005   return false;
  1008 // helper function to indicate if an object is filtered by a klass filter
  1009 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
  1010   if (!klass_filter.is_null()) {
  1011     if (obj->klass() != klass_filter()) {
  1012       return true;
  1015   return false;
  1018 // helper function to tell if a field is a primitive field or not
  1019 static inline bool is_primitive_field_type(char type) {
  1020   return (type != 'L' && type != '[');
  1023 // helper function to copy the value from location addr to jvalue.
  1024 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
  1025   switch (value_type) {
  1026     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
  1027     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
  1028     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
  1029     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
  1030     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
  1031     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
  1032     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
  1033     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
  1034     default: ShouldNotReachHere();
  1038 // helper function to invoke string primitive value callback
  1039 // returns visit control flags
  1040 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
  1041                                          CallbackWrapper* wrapper,
  1042                                          oop str,
  1043                                          void* user_data)
  1045   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  1047   // get the string value and length
  1048   // (string value may be offset from the base)
  1049   int s_len = java_lang_String::length(str);
  1050   typeArrayOop s_value = java_lang_String::value(str);
  1051   int s_offset = java_lang_String::offset(str);
  1052   jchar* value;
  1053   if (s_len > 0) {
  1054     value = s_value->char_at_addr(s_offset);
  1055   } else {
  1056     value = (jchar*) s_value->base(T_CHAR);
  1059   // invoke the callback
  1060   return (*cb)(wrapper->klass_tag(),
  1061                wrapper->obj_size(),
  1062                wrapper->obj_tag_p(),
  1063                value,
  1064                (jint)s_len,
  1065                user_data);
  1068 // helper function to invoke string primitive value callback
  1069 // returns visit control flags
  1070 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
  1071                                                   CallbackWrapper* wrapper,
  1072                                                   oop obj,
  1073                                                   void* user_data)
  1075   assert(obj->is_typeArray(), "not a primitive array");
  1077   // get base address of first element
  1078   typeArrayOop array = typeArrayOop(obj);
  1079   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
  1080   void* elements = array->base(type);
  1082   // jvmtiPrimitiveType is defined so this mapping is always correct
  1083   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
  1085   return (*cb)(wrapper->klass_tag(),
  1086                wrapper->obj_size(),
  1087                wrapper->obj_tag_p(),
  1088                (jint)array->length(),
  1089                elem_type,
  1090                elements,
  1091                user_data);
  1094 // helper function to invoke the primitive field callback for all static fields
  1095 // of a given class
  1096 static jint invoke_primitive_field_callback_for_static_fields
  1097   (CallbackWrapper* wrapper,
  1098    oop obj,
  1099    jvmtiPrimitiveFieldCallback cb,
  1100    void* user_data)
  1102   // for static fields only the index will be set
  1103   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1105   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
  1106   if (java_lang_Class::is_primitive(obj)) {
  1107     return 0;
  1109   Klass* klass = java_lang_Class::as_Klass(obj);
  1111   // ignore classes for object and type arrays
  1112   if (!klass->oop_is_instance()) {
  1113     return 0;
  1116   // ignore classes which aren't linked yet
  1117   InstanceKlass* ik = InstanceKlass::cast(klass);
  1118   if (!ik->is_linked()) {
  1119     return 0;
  1122   // get the field map
  1123   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
  1125   // invoke the callback for each static primitive field
  1126   for (int i=0; i<field_map->field_count(); i++) {
  1127     ClassFieldDescriptor* field = field_map->field_at(i);
  1129     // ignore non-primitive fields
  1130     char type = field->field_type();
  1131     if (!is_primitive_field_type(type)) {
  1132       continue;
  1134     // one-to-one mapping
  1135     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1137     // get offset and field value
  1138     int offset = field->field_offset();
  1139     address addr = (address)klass->java_mirror() + offset;
  1140     jvalue value;
  1141     copy_to_jvalue(&value, addr, value_type);
  1143     // field index
  1144     reference_info.field.index = field->field_index();
  1146     // invoke the callback
  1147     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  1148                      &reference_info,
  1149                      wrapper->klass_tag(),
  1150                      wrapper->obj_tag_p(),
  1151                      value,
  1152                      value_type,
  1153                      user_data);
  1154     if (res & JVMTI_VISIT_ABORT) {
  1155       delete field_map;
  1156       return res;
  1160   delete field_map;
  1161   return 0;
  1164 // helper function to invoke the primitive field callback for all instance fields
  1165 // of a given object
  1166 static jint invoke_primitive_field_callback_for_instance_fields(
  1167   CallbackWrapper* wrapper,
  1168   oop obj,
  1169   jvmtiPrimitiveFieldCallback cb,
  1170   void* user_data)
  1172   // for instance fields only the index will be set
  1173   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1175   // get the map of the instance fields
  1176   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
  1178   // invoke the callback for each instance primitive field
  1179   for (int i=0; i<fields->field_count(); i++) {
  1180     ClassFieldDescriptor* field = fields->field_at(i);
  1182     // ignore non-primitive fields
  1183     char type = field->field_type();
  1184     if (!is_primitive_field_type(type)) {
  1185       continue;
  1187     // one-to-one mapping
  1188     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1190     // get offset and field value
  1191     int offset = field->field_offset();
  1192     address addr = (address)obj + offset;
  1193     jvalue value;
  1194     copy_to_jvalue(&value, addr, value_type);
  1196     // field index
  1197     reference_info.field.index = field->field_index();
  1199     // invoke the callback
  1200     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
  1201                      &reference_info,
  1202                      wrapper->klass_tag(),
  1203                      wrapper->obj_tag_p(),
  1204                      value,
  1205                      value_type,
  1206                      user_data);
  1207     if (res & JVMTI_VISIT_ABORT) {
  1208       return res;
  1211   return 0;
  1215 // VM operation to iterate over all objects in the heap (both reachable
  1216 // and unreachable)
  1217 class VM_HeapIterateOperation: public VM_Operation {
  1218  private:
  1219   ObjectClosure* _blk;
  1220  public:
  1221   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
  1223   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
  1224   void doit() {
  1225     // allows class files maps to be cached during iteration
  1226     ClassFieldMapCacheMark cm;
  1228     // make sure that heap is parsable (fills TLABs with filler objects)
  1229     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1231     // Verify heap before iteration - if the heap gets corrupted then
  1232     // JVMTI's IterateOverHeap will crash.
  1233     if (VerifyBeforeIteration) {
  1234       Universe::verify();
  1237     // do the iteration
  1238     // If this operation encounters a bad object when using CMS,
  1239     // consider using safe_object_iterate() which avoids perm gen
  1240     // objects that may contain bad references.
  1241     Universe::heap()->object_iterate(_blk);
  1244 };
  1247 // An ObjectClosure used to support the deprecated IterateOverHeap and
  1248 // IterateOverInstancesOfClass functions
  1249 class IterateOverHeapObjectClosure: public ObjectClosure {
  1250  private:
  1251   JvmtiTagMap* _tag_map;
  1252   KlassHandle _klass;
  1253   jvmtiHeapObjectFilter _object_filter;
  1254   jvmtiHeapObjectCallback _heap_object_callback;
  1255   const void* _user_data;
  1257   // accessors
  1258   JvmtiTagMap* tag_map() const                    { return _tag_map; }
  1259   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
  1260   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
  1261   KlassHandle klass() const                       { return _klass; }
  1262   const void* user_data() const                   { return _user_data; }
  1264   // indicates if iteration has been aborted
  1265   bool _iteration_aborted;
  1266   bool is_iteration_aborted() const               { return _iteration_aborted; }
  1267   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
  1269  public:
  1270   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
  1271                                KlassHandle klass,
  1272                                jvmtiHeapObjectFilter object_filter,
  1273                                jvmtiHeapObjectCallback heap_object_callback,
  1274                                const void* user_data) :
  1275     _tag_map(tag_map),
  1276     _klass(klass),
  1277     _object_filter(object_filter),
  1278     _heap_object_callback(heap_object_callback),
  1279     _user_data(user_data),
  1280     _iteration_aborted(false)
  1284   void do_object(oop o);
  1285 };
  1287 // invoked for each object in the heap
  1288 void IterateOverHeapObjectClosure::do_object(oop o) {
  1289   // check if iteration has been halted
  1290   if (is_iteration_aborted()) return;
  1292   // ignore any objects that aren't visible to profiler
  1293   if (!ServiceUtil::visible_oop(o)) return;
  1295   // instanceof check when filtering by klass
  1296   if (!klass().is_null() && !o->is_a(klass()())) {
  1297     return;
  1299   // prepare for the calllback
  1300   CallbackWrapper wrapper(tag_map(), o);
  1302   // if the object is tagged and we're only interested in untagged objects
  1303   // then don't invoke the callback. Similiarly, if the object is untagged
  1304   // and we're only interested in tagged objects we skip the callback.
  1305   if (wrapper.obj_tag() != 0) {
  1306     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
  1307   } else {
  1308     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
  1311   // invoke the agent's callback
  1312   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
  1313                                                        wrapper.obj_size(),
  1314                                                        wrapper.obj_tag_p(),
  1315                                                        (void*)user_data());
  1316   if (control == JVMTI_ITERATION_ABORT) {
  1317     set_iteration_aborted(true);
  1321 // An ObjectClosure used to support the IterateThroughHeap function
  1322 class IterateThroughHeapObjectClosure: public ObjectClosure {
  1323  private:
  1324   JvmtiTagMap* _tag_map;
  1325   KlassHandle _klass;
  1326   int _heap_filter;
  1327   const jvmtiHeapCallbacks* _callbacks;
  1328   const void* _user_data;
  1330   // accessor functions
  1331   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  1332   int heap_filter() const                          { return _heap_filter; }
  1333   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
  1334   KlassHandle klass() const                        { return _klass; }
  1335   const void* user_data() const                    { return _user_data; }
  1337   // indicates if the iteration has been aborted
  1338   bool _iteration_aborted;
  1339   bool is_iteration_aborted() const                { return _iteration_aborted; }
  1341   // used to check the visit control flags. If the abort flag is set
  1342   // then we set the iteration aborted flag so that the iteration completes
  1343   // without processing any further objects
  1344   bool check_flags_for_abort(jint flags) {
  1345     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
  1346     if (is_abort) {
  1347       _iteration_aborted = true;
  1349     return is_abort;
  1352  public:
  1353   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
  1354                                   KlassHandle klass,
  1355                                   int heap_filter,
  1356                                   const jvmtiHeapCallbacks* heap_callbacks,
  1357                                   const void* user_data) :
  1358     _tag_map(tag_map),
  1359     _klass(klass),
  1360     _heap_filter(heap_filter),
  1361     _callbacks(heap_callbacks),
  1362     _user_data(user_data),
  1363     _iteration_aborted(false)
  1367   void do_object(oop o);
  1368 };
  1370 // invoked for each object in the heap
  1371 void IterateThroughHeapObjectClosure::do_object(oop obj) {
  1372   // check if iteration has been halted
  1373   if (is_iteration_aborted()) return;
  1375   // ignore any objects that aren't visible to profiler
  1376   if (!ServiceUtil::visible_oop(obj)) return;
  1378   // apply class filter
  1379   if (is_filtered_by_klass_filter(obj, klass())) return;
  1381   // prepare for callback
  1382   CallbackWrapper wrapper(tag_map(), obj);
  1384   // check if filtered by the heap filter
  1385   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
  1386     return;
  1389   // for arrays we need the length, otherwise -1
  1390   bool is_array = obj->is_array();
  1391   int len = is_array ? arrayOop(obj)->length() : -1;
  1393   // invoke the object callback (if callback is provided)
  1394   if (callbacks()->heap_iteration_callback != NULL) {
  1395     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
  1396     jint res = (*cb)(wrapper.klass_tag(),
  1397                      wrapper.obj_size(),
  1398                      wrapper.obj_tag_p(),
  1399                      (jint)len,
  1400                      (void*)user_data());
  1401     if (check_flags_for_abort(res)) return;
  1404   // for objects and classes we report primitive fields if callback provided
  1405   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
  1406     jint res;
  1407     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
  1408     if (obj->klass() == SystemDictionary::Class_klass()) {
  1409       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
  1410                                                                     obj,
  1411                                                                     cb,
  1412                                                                     (void*)user_data());
  1413     } else {
  1414       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
  1415                                                                       obj,
  1416                                                                       cb,
  1417                                                                       (void*)user_data());
  1419     if (check_flags_for_abort(res)) return;
  1422   // string callback
  1423   if (!is_array &&
  1424       callbacks()->string_primitive_value_callback != NULL &&
  1425       obj->klass() == SystemDictionary::String_klass()) {
  1426     jint res = invoke_string_value_callback(
  1427                 callbacks()->string_primitive_value_callback,
  1428                 &wrapper,
  1429                 obj,
  1430                 (void*)user_data() );
  1431     if (check_flags_for_abort(res)) return;
  1434   // array callback
  1435   if (is_array &&
  1436       callbacks()->array_primitive_value_callback != NULL &&
  1437       obj->is_typeArray()) {
  1438     jint res = invoke_array_primitive_value_callback(
  1439                callbacks()->array_primitive_value_callback,
  1440                &wrapper,
  1441                obj,
  1442                (void*)user_data() );
  1443     if (check_flags_for_abort(res)) return;
  1445 };
  1448 // Deprecated function to iterate over all objects in the heap
  1449 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
  1450                                     KlassHandle klass,
  1451                                     jvmtiHeapObjectCallback heap_object_callback,
  1452                                     const void* user_data)
  1454   MutexLocker ml(Heap_lock);
  1455   IterateOverHeapObjectClosure blk(this,
  1456                                    klass,
  1457                                    object_filter,
  1458                                    heap_object_callback,
  1459                                    user_data);
  1460   VM_HeapIterateOperation op(&blk);
  1461   VMThread::execute(&op);
  1465 // Iterates over all objects in the heap
  1466 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
  1467                                        KlassHandle klass,
  1468                                        const jvmtiHeapCallbacks* callbacks,
  1469                                        const void* user_data)
  1471   MutexLocker ml(Heap_lock);
  1472   IterateThroughHeapObjectClosure blk(this,
  1473                                       klass,
  1474                                       heap_filter,
  1475                                       callbacks,
  1476                                       user_data);
  1477   VM_HeapIterateOperation op(&blk);
  1478   VMThread::execute(&op);
  1481 // support class for get_objects_with_tags
  1483 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
  1484  private:
  1485   JvmtiEnv* _env;
  1486   jlong* _tags;
  1487   jint _tag_count;
  1489   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
  1490   GrowableArray<uint64_t>* _tag_results;    // collected tags
  1492  public:
  1493   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
  1494     _env = env;
  1495     _tags = (jlong*)tags;
  1496     _tag_count = tag_count;
  1497     _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
  1498     _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
  1501   ~TagObjectCollector() {
  1502     delete _object_results;
  1503     delete _tag_results;
  1506   // for each tagged object check if the tag value matches
  1507   // - if it matches then we create a JNI local reference to the object
  1508   // and record the reference and tag value.
  1509   //
  1510   void do_entry(JvmtiTagHashmapEntry* entry) {
  1511     for (int i=0; i<_tag_count; i++) {
  1512       if (_tags[i] == entry->tag()) {
  1513         oop o = entry->object();
  1514         assert(o != NULL && Universe::heap()->is_in_reserved(o), "sanity check");
  1515         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
  1516         _object_results->append(ref);
  1517         _tag_results->append((uint64_t)entry->tag());
  1522   // return the results from the collection
  1523   //
  1524   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1525     jvmtiError error;
  1526     int count = _object_results->length();
  1527     assert(count >= 0, "sanity check");
  1529     // if object_result_ptr is not NULL then allocate the result and copy
  1530     // in the object references.
  1531     if (object_result_ptr != NULL) {
  1532       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
  1533       if (error != JVMTI_ERROR_NONE) {
  1534         return error;
  1536       for (int i=0; i<count; i++) {
  1537         (*object_result_ptr)[i] = _object_results->at(i);
  1541     // if tag_result_ptr is not NULL then allocate the result and copy
  1542     // in the tag values.
  1543     if (tag_result_ptr != NULL) {
  1544       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
  1545       if (error != JVMTI_ERROR_NONE) {
  1546         if (object_result_ptr != NULL) {
  1547           _env->Deallocate((unsigned char*)object_result_ptr);
  1549         return error;
  1551       for (int i=0; i<count; i++) {
  1552         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
  1556     *count_ptr = count;
  1557     return JVMTI_ERROR_NONE;
  1559 };
  1561 // return the list of objects with the specified tags
  1562 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
  1563   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1565   TagObjectCollector collector(env(), tags, count);
  1567     // iterate over all tagged objects
  1568     MutexLocker ml(lock());
  1569     entry_iterate(&collector);
  1571   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
  1575 // ObjectMarker is used to support the marking objects when walking the
  1576 // heap.
  1577 //
  1578 // This implementation uses the existing mark bits in an object for
  1579 // marking. Objects that are marked must later have their headers restored.
  1580 // As most objects are unlocked and don't have their identity hash computed
  1581 // we don't have to save their headers. Instead we save the headers that
  1582 // are "interesting". Later when the headers are restored this implementation
  1583 // restores all headers to their initial value and then restores the few
  1584 // objects that had interesting headers.
  1585 //
  1586 // Future work: This implementation currently uses growable arrays to save
  1587 // the oop and header of interesting objects. As an optimization we could
  1588 // use the same technique as the GC and make use of the unused area
  1589 // between top() and end().
  1590 //
  1592 // An ObjectClosure used to restore the mark bits of an object
  1593 class RestoreMarksClosure : public ObjectClosure {
  1594  public:
  1595   void do_object(oop o) {
  1596     if (o != NULL) {
  1597       markOop mark = o->mark();
  1598       if (mark->is_marked()) {
  1599         o->init_mark();
  1603 };
  1605 // ObjectMarker provides the mark and visited functions
  1606 class ObjectMarker : AllStatic {
  1607  private:
  1608   // saved headers
  1609   static GrowableArray<oop>* _saved_oop_stack;
  1610   static GrowableArray<markOop>* _saved_mark_stack;
  1611   static bool _needs_reset;                  // do we need to reset mark bits?
  1613  public:
  1614   static void init();                       // initialize
  1615   static void done();                       // clean-up
  1617   static inline void mark(oop o);           // mark an object
  1618   static inline bool visited(oop o);        // check if object has been visited
  1620   static inline bool needs_reset()            { return _needs_reset; }
  1621   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
  1622 };
  1624 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
  1625 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
  1626 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
  1628 // initialize ObjectMarker - prepares for object marking
  1629 void ObjectMarker::init() {
  1630   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1632   // prepare heap for iteration
  1633   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1635   // create stacks for interesting headers
  1636   _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true);
  1637   _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
  1639   if (UseBiasedLocking) {
  1640     BiasedLocking::preserve_marks();
  1644 // Object marking is done so restore object headers
  1645 void ObjectMarker::done() {
  1646   // iterate over all objects and restore the mark bits to
  1647   // their initial value
  1648   RestoreMarksClosure blk;
  1649   if (needs_reset()) {
  1650     Universe::heap()->object_iterate(&blk);
  1651   } else {
  1652     // We don't need to reset mark bits on this call, but reset the
  1653     // flag to the default for the next call.
  1654     set_needs_reset(true);
  1657   // now restore the interesting headers
  1658   for (int i = 0; i < _saved_oop_stack->length(); i++) {
  1659     oop o = _saved_oop_stack->at(i);
  1660     markOop mark = _saved_mark_stack->at(i);
  1661     o->set_mark(mark);
  1664   if (UseBiasedLocking) {
  1665     BiasedLocking::restore_marks();
  1668   // free the stacks
  1669   delete _saved_oop_stack;
  1670   delete _saved_mark_stack;
  1673 // mark an object
  1674 inline void ObjectMarker::mark(oop o) {
  1675   assert(Universe::heap()->is_in(o), "sanity check");
  1676   assert(!o->mark()->is_marked(), "should only mark an object once");
  1678   // object's mark word
  1679   markOop mark = o->mark();
  1681   if (mark->must_be_preserved(o)) {
  1682     _saved_mark_stack->push(mark);
  1683     _saved_oop_stack->push(o);
  1686   // mark the object
  1687   o->set_mark(markOopDesc::prototype()->set_marked());
  1690 // return true if object is marked
  1691 inline bool ObjectMarker::visited(oop o) {
  1692   return o->mark()->is_marked();
  1695 // Stack allocated class to help ensure that ObjectMarker is used
  1696 // correctly. Constructor initializes ObjectMarker, destructor calls
  1697 // ObjectMarker's done() function to restore object headers.
  1698 class ObjectMarkerController : public StackObj {
  1699  public:
  1700   ObjectMarkerController() {
  1701     ObjectMarker::init();
  1703   ~ObjectMarkerController() {
  1704     ObjectMarker::done();
  1706 };
  1709 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
  1710 // (not performance critical as only used for roots)
  1711 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
  1712   switch (kind) {
  1713     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
  1714     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
  1715     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
  1716     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
  1717     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
  1718     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
  1719     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
  1720     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
  1724 // Base class for all heap walk contexts. The base class maintains a flag
  1725 // to indicate if the context is valid or not.
  1726 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
  1727  private:
  1728   bool _valid;
  1729  public:
  1730   HeapWalkContext(bool valid)                   { _valid = valid; }
  1731   void invalidate()                             { _valid = false; }
  1732   bool is_valid() const                         { return _valid; }
  1733 };
  1735 // A basic heap walk context for the deprecated heap walking functions.
  1736 // The context for a basic heap walk are the callbacks and fields used by
  1737 // the referrer caching scheme.
  1738 class BasicHeapWalkContext: public HeapWalkContext {
  1739  private:
  1740   jvmtiHeapRootCallback _heap_root_callback;
  1741   jvmtiStackReferenceCallback _stack_ref_callback;
  1742   jvmtiObjectReferenceCallback _object_ref_callback;
  1744   // used for caching
  1745   oop _last_referrer;
  1746   jlong _last_referrer_tag;
  1748  public:
  1749   BasicHeapWalkContext() : HeapWalkContext(false) { }
  1751   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
  1752                        jvmtiStackReferenceCallback stack_ref_callback,
  1753                        jvmtiObjectReferenceCallback object_ref_callback) :
  1754     HeapWalkContext(true),
  1755     _heap_root_callback(heap_root_callback),
  1756     _stack_ref_callback(stack_ref_callback),
  1757     _object_ref_callback(object_ref_callback),
  1758     _last_referrer(NULL),
  1759     _last_referrer_tag(0) {
  1762   // accessors
  1763   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
  1764   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
  1765   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
  1767   oop last_referrer() const               { return _last_referrer; }
  1768   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
  1769   jlong last_referrer_tag() const         { return _last_referrer_tag; }
  1770   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
  1771 };
  1773 // The advanced heap walk context for the FollowReferences functions.
  1774 // The context is the callbacks, and the fields used for filtering.
  1775 class AdvancedHeapWalkContext: public HeapWalkContext {
  1776  private:
  1777   jint _heap_filter;
  1778   KlassHandle _klass_filter;
  1779   const jvmtiHeapCallbacks* _heap_callbacks;
  1781  public:
  1782   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
  1784   AdvancedHeapWalkContext(jint heap_filter,
  1785                            KlassHandle klass_filter,
  1786                            const jvmtiHeapCallbacks* heap_callbacks) :
  1787     HeapWalkContext(true),
  1788     _heap_filter(heap_filter),
  1789     _klass_filter(klass_filter),
  1790     _heap_callbacks(heap_callbacks) {
  1793   // accessors
  1794   jint heap_filter() const         { return _heap_filter; }
  1795   KlassHandle klass_filter() const { return _klass_filter; }
  1797   const jvmtiHeapReferenceCallback heap_reference_callback() const {
  1798     return _heap_callbacks->heap_reference_callback;
  1799   };
  1800   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
  1801     return _heap_callbacks->primitive_field_callback;
  1803   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
  1804     return _heap_callbacks->array_primitive_value_callback;
  1806   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
  1807     return _heap_callbacks->string_primitive_value_callback;
  1809 };
  1811 // The CallbackInvoker is a class with static functions that the heap walk can call
  1812 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
  1813 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
  1814 // mode is for the newer FollowReferences function which supports a lot of
  1815 // additional callbacks.
  1816 class CallbackInvoker : AllStatic {
  1817  private:
  1818   // heap walk styles
  1819   enum { basic, advanced };
  1820   static int _heap_walk_type;
  1821   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
  1822   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
  1824   // context for basic style heap walk
  1825   static BasicHeapWalkContext _basic_context;
  1826   static BasicHeapWalkContext* basic_context() {
  1827     assert(_basic_context.is_valid(), "invalid");
  1828     return &_basic_context;
  1831   // context for advanced style heap walk
  1832   static AdvancedHeapWalkContext _advanced_context;
  1833   static AdvancedHeapWalkContext* advanced_context() {
  1834     assert(_advanced_context.is_valid(), "invalid");
  1835     return &_advanced_context;
  1838   // context needed for all heap walks
  1839   static JvmtiTagMap* _tag_map;
  1840   static const void* _user_data;
  1841   static GrowableArray<oop>* _visit_stack;
  1843   // accessors
  1844   static JvmtiTagMap* tag_map()                        { return _tag_map; }
  1845   static const void* user_data()                       { return _user_data; }
  1846   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
  1848   // if the object hasn't been visited then push it onto the visit stack
  1849   // so that it will be visited later
  1850   static inline bool check_for_visit(oop obj) {
  1851     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
  1852     return true;
  1855   // invoke basic style callbacks
  1856   static inline bool invoke_basic_heap_root_callback
  1857     (jvmtiHeapRootKind root_kind, oop obj);
  1858   static inline bool invoke_basic_stack_ref_callback
  1859     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
  1860      int slot, oop obj);
  1861   static inline bool invoke_basic_object_reference_callback
  1862     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1864   // invoke advanced style callbacks
  1865   static inline bool invoke_advanced_heap_root_callback
  1866     (jvmtiHeapReferenceKind ref_kind, oop obj);
  1867   static inline bool invoke_advanced_stack_ref_callback
  1868     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
  1869      jmethodID method, jlocation bci, jint slot, oop obj);
  1870   static inline bool invoke_advanced_object_reference_callback
  1871     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1873   // used to report the value of primitive fields
  1874   static inline bool report_primitive_field
  1875     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
  1877  public:
  1878   // initialize for basic mode
  1879   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1880                                              GrowableArray<oop>* visit_stack,
  1881                                              const void* user_data,
  1882                                              BasicHeapWalkContext context);
  1884   // initialize for advanced mode
  1885   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1886                                                 GrowableArray<oop>* visit_stack,
  1887                                                 const void* user_data,
  1888                                                 AdvancedHeapWalkContext context);
  1890    // functions to report roots
  1891   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
  1892   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
  1893     jmethodID m, oop o);
  1894   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
  1895     jmethodID method, jlocation bci, jint slot, oop o);
  1897   // functions to report references
  1898   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
  1899   static inline bool report_class_reference(oop referrer, oop referree);
  1900   static inline bool report_class_loader_reference(oop referrer, oop referree);
  1901   static inline bool report_signers_reference(oop referrer, oop referree);
  1902   static inline bool report_protection_domain_reference(oop referrer, oop referree);
  1903   static inline bool report_superclass_reference(oop referrer, oop referree);
  1904   static inline bool report_interface_reference(oop referrer, oop referree);
  1905   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
  1906   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
  1907   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
  1908   static inline bool report_primitive_array_values(oop array);
  1909   static inline bool report_string_value(oop str);
  1910   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
  1911   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
  1912 };
  1914 // statics
  1915 int CallbackInvoker::_heap_walk_type;
  1916 BasicHeapWalkContext CallbackInvoker::_basic_context;
  1917 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
  1918 JvmtiTagMap* CallbackInvoker::_tag_map;
  1919 const void* CallbackInvoker::_user_data;
  1920 GrowableArray<oop>* CallbackInvoker::_visit_stack;
  1922 // initialize for basic heap walk (IterateOverReachableObjects et al)
  1923 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1924                                                      GrowableArray<oop>* visit_stack,
  1925                                                      const void* user_data,
  1926                                                      BasicHeapWalkContext context) {
  1927   _tag_map = tag_map;
  1928   _visit_stack = visit_stack;
  1929   _user_data = user_data;
  1930   _basic_context = context;
  1931   _advanced_context.invalidate();       // will trigger assertion if used
  1932   _heap_walk_type = basic;
  1935 // initialize for advanced heap walk (FollowReferences)
  1936 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1937                                                         GrowableArray<oop>* visit_stack,
  1938                                                         const void* user_data,
  1939                                                         AdvancedHeapWalkContext context) {
  1940   _tag_map = tag_map;
  1941   _visit_stack = visit_stack;
  1942   _user_data = user_data;
  1943   _advanced_context = context;
  1944   _basic_context.invalidate();      // will trigger assertion if used
  1945   _heap_walk_type = advanced;
  1949 // invoke basic style heap root callback
  1950 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
  1951   assert(ServiceUtil::visible_oop(obj), "checking");
  1953   // if we heap roots should be reported
  1954   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
  1955   if (cb == NULL) {
  1956     return check_for_visit(obj);
  1959   CallbackWrapper wrapper(tag_map(), obj);
  1960   jvmtiIterationControl control = (*cb)(root_kind,
  1961                                         wrapper.klass_tag(),
  1962                                         wrapper.obj_size(),
  1963                                         wrapper.obj_tag_p(),
  1964                                         (void*)user_data());
  1965   // push root to visit stack when following references
  1966   if (control == JVMTI_ITERATION_CONTINUE &&
  1967       basic_context()->object_ref_callback() != NULL) {
  1968     visit_stack()->push(obj);
  1970   return control != JVMTI_ITERATION_ABORT;
  1973 // invoke basic style stack ref callback
  1974 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
  1975                                                              jlong thread_tag,
  1976                                                              jint depth,
  1977                                                              jmethodID method,
  1978                                                              jint slot,
  1979                                                              oop obj) {
  1980   assert(ServiceUtil::visible_oop(obj), "checking");
  1982   // if we stack refs should be reported
  1983   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
  1984   if (cb == NULL) {
  1985     return check_for_visit(obj);
  1988   CallbackWrapper wrapper(tag_map(), obj);
  1989   jvmtiIterationControl control = (*cb)(root_kind,
  1990                                         wrapper.klass_tag(),
  1991                                         wrapper.obj_size(),
  1992                                         wrapper.obj_tag_p(),
  1993                                         thread_tag,
  1994                                         depth,
  1995                                         method,
  1996                                         slot,
  1997                                         (void*)user_data());
  1998   // push root to visit stack when following references
  1999   if (control == JVMTI_ITERATION_CONTINUE &&
  2000       basic_context()->object_ref_callback() != NULL) {
  2001     visit_stack()->push(obj);
  2003   return control != JVMTI_ITERATION_ABORT;
  2006 // invoke basic style object reference callback
  2007 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
  2008                                                                     oop referrer,
  2009                                                                     oop referree,
  2010                                                                     jint index) {
  2012   assert(ServiceUtil::visible_oop(referrer), "checking");
  2013   assert(ServiceUtil::visible_oop(referree), "checking");
  2015   BasicHeapWalkContext* context = basic_context();
  2017   // callback requires the referrer's tag. If it's the same referrer
  2018   // as the last call then we use the cached value.
  2019   jlong referrer_tag;
  2020   if (referrer == context->last_referrer()) {
  2021     referrer_tag = context->last_referrer_tag();
  2022   } else {
  2023     referrer_tag = tag_for(tag_map(), referrer);
  2026   // do the callback
  2027   CallbackWrapper wrapper(tag_map(), referree);
  2028   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
  2029   jvmtiIterationControl control = (*cb)(ref_kind,
  2030                                         wrapper.klass_tag(),
  2031                                         wrapper.obj_size(),
  2032                                         wrapper.obj_tag_p(),
  2033                                         referrer_tag,
  2034                                         index,
  2035                                         (void*)user_data());
  2037   // record referrer and referrer tag. For self-references record the
  2038   // tag value from the callback as this might differ from referrer_tag.
  2039   context->set_last_referrer(referrer);
  2040   if (referrer == referree) {
  2041     context->set_last_referrer_tag(*wrapper.obj_tag_p());
  2042   } else {
  2043     context->set_last_referrer_tag(referrer_tag);
  2046   if (control == JVMTI_ITERATION_CONTINUE) {
  2047     return check_for_visit(referree);
  2048   } else {
  2049     return control != JVMTI_ITERATION_ABORT;
  2053 // invoke advanced style heap root callback
  2054 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
  2055                                                                 oop obj) {
  2056   assert(ServiceUtil::visible_oop(obj), "checking");
  2058   AdvancedHeapWalkContext* context = advanced_context();
  2060   // check that callback is provided
  2061   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2062   if (cb == NULL) {
  2063     return check_for_visit(obj);
  2066   // apply class filter
  2067   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2068     return check_for_visit(obj);
  2071   // setup the callback wrapper
  2072   CallbackWrapper wrapper(tag_map(), obj);
  2074   // apply tag filter
  2075   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2076                                  wrapper.klass_tag(),
  2077                                  context->heap_filter())) {
  2078     return check_for_visit(obj);
  2081   // for arrays we need the length, otherwise -1
  2082   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2084   // invoke the callback
  2085   jint res  = (*cb)(ref_kind,
  2086                     NULL, // referrer info
  2087                     wrapper.klass_tag(),
  2088                     0,    // referrer_class_tag is 0 for heap root
  2089                     wrapper.obj_size(),
  2090                     wrapper.obj_tag_p(),
  2091                     NULL, // referrer_tag_p
  2092                     len,
  2093                     (void*)user_data());
  2094   if (res & JVMTI_VISIT_ABORT) {
  2095     return false;// referrer class tag
  2097   if (res & JVMTI_VISIT_OBJECTS) {
  2098     check_for_visit(obj);
  2100   return true;
  2103 // report a reference from a thread stack to an object
  2104 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
  2105                                                                 jlong thread_tag,
  2106                                                                 jlong tid,
  2107                                                                 int depth,
  2108                                                                 jmethodID method,
  2109                                                                 jlocation bci,
  2110                                                                 jint slot,
  2111                                                                 oop obj) {
  2112   assert(ServiceUtil::visible_oop(obj), "checking");
  2114   AdvancedHeapWalkContext* context = advanced_context();
  2116   // check that callback is provider
  2117   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2118   if (cb == NULL) {
  2119     return check_for_visit(obj);
  2122   // apply class filter
  2123   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2124     return check_for_visit(obj);
  2127   // setup the callback wrapper
  2128   CallbackWrapper wrapper(tag_map(), obj);
  2130   // apply tag filter
  2131   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2132                                  wrapper.klass_tag(),
  2133                                  context->heap_filter())) {
  2134     return check_for_visit(obj);
  2137   // setup the referrer info
  2138   jvmtiHeapReferenceInfo reference_info;
  2139   reference_info.stack_local.thread_tag = thread_tag;
  2140   reference_info.stack_local.thread_id = tid;
  2141   reference_info.stack_local.depth = depth;
  2142   reference_info.stack_local.method = method;
  2143   reference_info.stack_local.location = bci;
  2144   reference_info.stack_local.slot = slot;
  2146   // for arrays we need the length, otherwise -1
  2147   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2149   // call into the agent
  2150   int res = (*cb)(ref_kind,
  2151                   &reference_info,
  2152                   wrapper.klass_tag(),
  2153                   0,    // referrer_class_tag is 0 for heap root (stack)
  2154                   wrapper.obj_size(),
  2155                   wrapper.obj_tag_p(),
  2156                   NULL, // referrer_tag is 0 for root
  2157                   len,
  2158                   (void*)user_data());
  2160   if (res & JVMTI_VISIT_ABORT) {
  2161     return false;
  2163   if (res & JVMTI_VISIT_OBJECTS) {
  2164     check_for_visit(obj);
  2166   return true;
  2169 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
  2170 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
  2171 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
  2172                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
  2173                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
  2174                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
  2175                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
  2176                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
  2178 // invoke the object reference callback to report a reference
  2179 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
  2180                                                                        oop referrer,
  2181                                                                        oop obj,
  2182                                                                        jint index)
  2184   // field index is only valid field in reference_info
  2185   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2187   assert(ServiceUtil::visible_oop(referrer), "checking");
  2188   assert(ServiceUtil::visible_oop(obj), "checking");
  2190   AdvancedHeapWalkContext* context = advanced_context();
  2192   // check that callback is provider
  2193   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2194   if (cb == NULL) {
  2195     return check_for_visit(obj);
  2198   // apply class filter
  2199   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2200     return check_for_visit(obj);
  2203   // setup the callback wrapper
  2204   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
  2206   // apply tag filter
  2207   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2208                                  wrapper.klass_tag(),
  2209                                  context->heap_filter())) {
  2210     return check_for_visit(obj);
  2213   // field index is only valid field in reference_info
  2214   reference_info.field.index = index;
  2216   // for arrays we need the length, otherwise -1
  2217   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2219   // invoke the callback
  2220   int res = (*cb)(ref_kind,
  2221                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
  2222                   wrapper.klass_tag(),
  2223                   wrapper.referrer_klass_tag(),
  2224                   wrapper.obj_size(),
  2225                   wrapper.obj_tag_p(),
  2226                   wrapper.referrer_tag_p(),
  2227                   len,
  2228                   (void*)user_data());
  2230   if (res & JVMTI_VISIT_ABORT) {
  2231     return false;
  2233   if (res & JVMTI_VISIT_OBJECTS) {
  2234     check_for_visit(obj);
  2236   return true;
  2239 // report a "simple root"
  2240 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
  2241   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
  2242          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
  2243   assert(ServiceUtil::visible_oop(obj), "checking");
  2245   if (is_basic_heap_walk()) {
  2246     // map to old style root kind
  2247     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
  2248     return invoke_basic_heap_root_callback(root_kind, obj);
  2249   } else {
  2250     assert(is_advanced_heap_walk(), "wrong heap walk type");
  2251     return invoke_advanced_heap_root_callback(kind, obj);
  2256 // invoke the primitive array values
  2257 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
  2258   assert(obj->is_typeArray(), "not a primitive array");
  2260   AdvancedHeapWalkContext* context = advanced_context();
  2261   assert(context->array_primitive_value_callback() != NULL, "no callback");
  2263   // apply class filter
  2264   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2265     return true;
  2268   CallbackWrapper wrapper(tag_map(), obj);
  2270   // apply tag filter
  2271   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2272                                  wrapper.klass_tag(),
  2273                                  context->heap_filter())) {
  2274     return true;
  2277   // invoke the callback
  2278   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
  2279                                                   &wrapper,
  2280                                                   obj,
  2281                                                   (void*)user_data());
  2282   return (!(res & JVMTI_VISIT_ABORT));
  2285 // invoke the string value callback
  2286 inline bool CallbackInvoker::report_string_value(oop str) {
  2287   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  2289   AdvancedHeapWalkContext* context = advanced_context();
  2290   assert(context->string_primitive_value_callback() != NULL, "no callback");
  2292   // apply class filter
  2293   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
  2294     return true;
  2297   CallbackWrapper wrapper(tag_map(), str);
  2299   // apply tag filter
  2300   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2301                                  wrapper.klass_tag(),
  2302                                  context->heap_filter())) {
  2303     return true;
  2306   // invoke the callback
  2307   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
  2308                                          &wrapper,
  2309                                          str,
  2310                                          (void*)user_data());
  2311   return (!(res & JVMTI_VISIT_ABORT));
  2314 // invoke the primitive field callback
  2315 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
  2316                                                     oop obj,
  2317                                                     jint index,
  2318                                                     address addr,
  2319                                                     char type)
  2321   // for primitive fields only the index will be set
  2322   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2324   AdvancedHeapWalkContext* context = advanced_context();
  2325   assert(context->primitive_field_callback() != NULL, "no callback");
  2327   // apply class filter
  2328   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2329     return true;
  2332   CallbackWrapper wrapper(tag_map(), obj);
  2334   // apply tag filter
  2335   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2336                                  wrapper.klass_tag(),
  2337                                  context->heap_filter())) {
  2338     return true;
  2341   // the field index in the referrer
  2342   reference_info.field.index = index;
  2344   // map the type
  2345   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  2347   // setup the jvalue
  2348   jvalue value;
  2349   copy_to_jvalue(&value, addr, value_type);
  2351   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
  2352   int res = (*cb)(ref_kind,
  2353                   &reference_info,
  2354                   wrapper.klass_tag(),
  2355                   wrapper.obj_tag_p(),
  2356                   value,
  2357                   value_type,
  2358                   (void*)user_data());
  2359   return (!(res & JVMTI_VISIT_ABORT));
  2363 // instance field
  2364 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
  2365                                                              jint index,
  2366                                                              address value,
  2367                                                              char type) {
  2368   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
  2369                                 obj,
  2370                                 index,
  2371                                 value,
  2372                                 type);
  2375 // static field
  2376 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
  2377                                                            jint index,
  2378                                                            address value,
  2379                                                            char type) {
  2380   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  2381                                 obj,
  2382                                 index,
  2383                                 value,
  2384                                 type);
  2387 // report a JNI local (root object) to the profiler
  2388 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
  2389   if (is_basic_heap_walk()) {
  2390     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
  2391                                            thread_tag,
  2392                                            depth,
  2393                                            m,
  2394                                            -1,
  2395                                            obj);
  2396   } else {
  2397     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
  2398                                               thread_tag, tid,
  2399                                               depth,
  2400                                               m,
  2401                                               (jlocation)-1,
  2402                                               -1,
  2403                                               obj);
  2408 // report a local (stack reference, root object)
  2409 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
  2410                                                    jlong tid,
  2411                                                    jint depth,
  2412                                                    jmethodID method,
  2413                                                    jlocation bci,
  2414                                                    jint slot,
  2415                                                    oop obj) {
  2416   if (is_basic_heap_walk()) {
  2417     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
  2418                                            thread_tag,
  2419                                            depth,
  2420                                            method,
  2421                                            slot,
  2422                                            obj);
  2423   } else {
  2424     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
  2425                                               thread_tag,
  2426                                               tid,
  2427                                               depth,
  2428                                               method,
  2429                                               bci,
  2430                                               slot,
  2431                                               obj);
  2435 // report an object referencing a class.
  2436 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
  2437   if (is_basic_heap_walk()) {
  2438     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2439   } else {
  2440     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
  2444 // report a class referencing its class loader.
  2445 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
  2446   if (is_basic_heap_walk()) {
  2447     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2448   } else {
  2449     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2453 // report a class referencing its signers.
  2454 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
  2455   if (is_basic_heap_walk()) {
  2456     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
  2457   } else {
  2458     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
  2462 // report a class referencing its protection domain..
  2463 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
  2464   if (is_basic_heap_walk()) {
  2465     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2466   } else {
  2467     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2471 // report a class referencing its superclass.
  2472 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
  2473   if (is_basic_heap_walk()) {
  2474     // Send this to be consistent with past implementation
  2475     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2476   } else {
  2477     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
  2481 // report a class referencing one of its interfaces.
  2482 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
  2483   if (is_basic_heap_walk()) {
  2484     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
  2485   } else {
  2486     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
  2490 // report a class referencing one of its static fields.
  2491 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
  2492   if (is_basic_heap_walk()) {
  2493     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2494   } else {
  2495     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2499 // report an array referencing an element object
  2500 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
  2501   if (is_basic_heap_walk()) {
  2502     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2503   } else {
  2504     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2508 // report an object referencing an instance field object
  2509 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
  2510   if (is_basic_heap_walk()) {
  2511     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
  2512   } else {
  2513     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
  2517 // report an array referencing an element object
  2518 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
  2519   if (is_basic_heap_walk()) {
  2520     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2521   } else {
  2522     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2526 // A supporting closure used to process simple roots
  2527 class SimpleRootsClosure : public OopClosure {
  2528  private:
  2529   jvmtiHeapReferenceKind _kind;
  2530   bool _continue;
  2532   jvmtiHeapReferenceKind root_kind()    { return _kind; }
  2534  public:
  2535   void set_kind(jvmtiHeapReferenceKind kind) {
  2536     _kind = kind;
  2537     _continue = true;
  2540   inline bool stopped() {
  2541     return !_continue;
  2544   void do_oop(oop* obj_p) {
  2545     // iteration has terminated
  2546     if (stopped()) {
  2547       return;
  2550     // ignore null or deleted handles
  2551     oop o = *obj_p;
  2552     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2553       return;
  2556     assert(Universe::heap()->is_in_reserved(o), "should be impossible");
  2558     jvmtiHeapReferenceKind kind = root_kind();
  2559     if (kind == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
  2560       // SystemDictionary::always_strong_oops_do reports the application
  2561       // class loader as a root. We want this root to be reported as
  2562       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
  2563       if (!o->is_instanceMirror()) {
  2564         kind = JVMTI_HEAP_REFERENCE_OTHER;
  2568     // some objects are ignored - in the case of simple
  2569     // roots it's mostly Symbol*s that we are skipping
  2570     // here.
  2571     if (!ServiceUtil::visible_oop(o)) {
  2572       return;
  2575     // invoke the callback
  2576     _continue = CallbackInvoker::report_simple_root(kind, o);
  2579   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2580 };
  2582 // A supporting closure used to process JNI locals
  2583 class JNILocalRootsClosure : public OopClosure {
  2584  private:
  2585   jlong _thread_tag;
  2586   jlong _tid;
  2587   jint _depth;
  2588   jmethodID _method;
  2589   bool _continue;
  2590  public:
  2591   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
  2592     _thread_tag = thread_tag;
  2593     _tid = tid;
  2594     _depth = depth;
  2595     _method = method;
  2596     _continue = true;
  2599   inline bool stopped() {
  2600     return !_continue;
  2603   void do_oop(oop* obj_p) {
  2604     // iteration has terminated
  2605     if (stopped()) {
  2606       return;
  2609     // ignore null or deleted handles
  2610     oop o = *obj_p;
  2611     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2612       return;
  2615     if (!ServiceUtil::visible_oop(o)) {
  2616       return;
  2619     // invoke the callback
  2620     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
  2622   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2623 };
  2626 // A VM operation to iterate over objects that are reachable from
  2627 // a set of roots or an initial object.
  2628 //
  2629 // For VM_HeapWalkOperation the set of roots used is :-
  2630 //
  2631 // - All JNI global references
  2632 // - All inflated monitors
  2633 // - All classes loaded by the boot class loader (or all classes
  2634 //     in the event that class unloading is disabled)
  2635 // - All java threads
  2636 // - For each java thread then all locals and JNI local references
  2637 //      on the thread's execution stack
  2638 // - All visible/explainable objects from Universes::oops_do
  2639 //
  2640 class VM_HeapWalkOperation: public VM_Operation {
  2641  private:
  2642   enum {
  2643     initial_visit_stack_size = 4000
  2644   };
  2646   bool _is_advanced_heap_walk;                      // indicates FollowReferences
  2647   JvmtiTagMap* _tag_map;
  2648   Handle _initial_object;
  2649   GrowableArray<oop>* _visit_stack;                 // the visit stack
  2651   bool _collecting_heap_roots;                      // are we collecting roots
  2652   bool _following_object_refs;                      // are we following object references
  2654   bool _reporting_primitive_fields;                 // optional reporting
  2655   bool _reporting_primitive_array_values;
  2656   bool _reporting_string_values;
  2658   GrowableArray<oop>* create_visit_stack() {
  2659     return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
  2662   // accessors
  2663   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
  2664   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  2665   Handle initial_object() const                    { return _initial_object; }
  2667   bool is_following_references() const             { return _following_object_refs; }
  2669   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
  2670   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
  2671   bool is_reporting_string_values() const          { return _reporting_string_values; }
  2673   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
  2675   // iterate over the various object types
  2676   inline bool iterate_over_array(oop o);
  2677   inline bool iterate_over_type_array(oop o);
  2678   inline bool iterate_over_class(oop o);
  2679   inline bool iterate_over_object(oop o);
  2681   // root collection
  2682   inline bool collect_simple_roots();
  2683   inline bool collect_stack_roots();
  2684   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
  2686   // visit an object
  2687   inline bool visit(oop o);
  2689  public:
  2690   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2691                        Handle initial_object,
  2692                        BasicHeapWalkContext callbacks,
  2693                        const void* user_data);
  2695   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2696                        Handle initial_object,
  2697                        AdvancedHeapWalkContext callbacks,
  2698                        const void* user_data);
  2700   ~VM_HeapWalkOperation();
  2702   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
  2703   void doit();
  2704 };
  2707 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2708                                            Handle initial_object,
  2709                                            BasicHeapWalkContext callbacks,
  2710                                            const void* user_data) {
  2711   _is_advanced_heap_walk = false;
  2712   _tag_map = tag_map;
  2713   _initial_object = initial_object;
  2714   _following_object_refs = (callbacks.object_ref_callback() != NULL);
  2715   _reporting_primitive_fields = false;
  2716   _reporting_primitive_array_values = false;
  2717   _reporting_string_values = false;
  2718   _visit_stack = create_visit_stack();
  2721   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2724 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2725                                            Handle initial_object,
  2726                                            AdvancedHeapWalkContext callbacks,
  2727                                            const void* user_data) {
  2728   _is_advanced_heap_walk = true;
  2729   _tag_map = tag_map;
  2730   _initial_object = initial_object;
  2731   _following_object_refs = true;
  2732   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
  2733   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
  2734   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
  2735   _visit_stack = create_visit_stack();
  2737   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2740 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
  2741   if (_following_object_refs) {
  2742     assert(_visit_stack != NULL, "checking");
  2743     delete _visit_stack;
  2744     _visit_stack = NULL;
  2748 // an array references its class and has a reference to
  2749 // each element in the array
  2750 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
  2751   objArrayOop array = objArrayOop(o);
  2753   // array reference to its class
  2754   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
  2755   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2756     return false;
  2759   // iterate over the array and report each reference to a
  2760   // non-null element
  2761   for (int index=0; index<array->length(); index++) {
  2762     oop elem = array->obj_at(index);
  2763     if (elem == NULL) {
  2764       continue;
  2767     // report the array reference o[index] = elem
  2768     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
  2769       return false;
  2772   return true;
  2775 // a type array references its class
  2776 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
  2777   Klass* k = o->klass();
  2778   oop mirror = k->java_mirror();
  2779   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2780     return false;
  2783   // report the array contents if required
  2784   if (is_reporting_primitive_array_values()) {
  2785     if (!CallbackInvoker::report_primitive_array_values(o)) {
  2786       return false;
  2789   return true;
  2792 // verify that a static oop field is in range
  2793 static inline bool verify_static_oop(InstanceKlass* ik,
  2794                                      oop mirror, int offset) {
  2795   address obj_p = (address)mirror + offset;
  2796   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
  2797   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
  2798   assert(end >= start, "sanity check");
  2800   if (obj_p >= start && obj_p < end) {
  2801     return true;
  2802   } else {
  2803     return false;
  2807 // a class references its super class, interfaces, class loader, ...
  2808 // and finally its static fields
  2809 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
  2810   int i;
  2811   Klass* klass = java_lang_Class::as_Klass(java_class);
  2813   if (klass->oop_is_instance()) {
  2814     InstanceKlass* ik = InstanceKlass::cast(klass);
  2816     // ignore the class if it's has been initialized yet
  2817     if (!ik->is_linked()) {
  2818       return true;
  2821     // get the java mirror
  2822     oop mirror = klass->java_mirror();
  2824     // super (only if something more interesting than java.lang.Object)
  2825     Klass* java_super = ik->java_super();
  2826     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
  2827       oop super = java_super->java_mirror();
  2828       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
  2829         return false;
  2833     // class loader
  2834     oop cl = ik->class_loader();
  2835     if (cl != NULL) {
  2836       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
  2837         return false;
  2841     // protection domain
  2842     oop pd = ik->protection_domain();
  2843     if (pd != NULL) {
  2844       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
  2845         return false;
  2849     // signers
  2850     oop signers = ik->signers();
  2851     if (signers != NULL) {
  2852       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
  2853         return false;
  2857     // references from the constant pool
  2859       ConstantPool* const pool = ik->constants();
  2860       for (int i = 1; i < pool->length(); i++) {
  2861         constantTag tag = pool->tag_at(i).value();
  2862         if (tag.is_string() || tag.is_klass()) {
  2863           oop entry;
  2864           if (tag.is_string()) {
  2865             entry = pool->resolved_string_at(i);
  2866             // If the entry is non-null it is resolved.
  2867             if (entry == NULL) continue;
  2868           } else {
  2869             entry = pool->resolved_klass_at(i)->java_mirror();
  2871           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
  2872             return false;
  2878     // interfaces
  2879     // (These will already have been reported as references from the constant pool
  2880     //  but are specified by IterateOverReachableObjects and must be reported).
  2881     Array<Klass*>* interfaces = ik->local_interfaces();
  2882     for (i = 0; i < interfaces->length(); i++) {
  2883       oop interf = ((Klass*)interfaces->at(i))->java_mirror();
  2884       if (interf == NULL) {
  2885         continue;
  2887       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
  2888         return false;
  2892     // iterate over the static fields
  2894     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
  2895     for (i=0; i<field_map->field_count(); i++) {
  2896       ClassFieldDescriptor* field = field_map->field_at(i);
  2897       char type = field->field_type();
  2898       if (!is_primitive_field_type(type)) {
  2899         oop fld_o = mirror->obj_field(field->field_offset());
  2900         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
  2901         if (fld_o != NULL) {
  2902           int slot = field->field_index();
  2903           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
  2904             delete field_map;
  2905             return false;
  2908       } else {
  2909          if (is_reporting_primitive_fields()) {
  2910            address addr = (address)mirror + field->field_offset();
  2911            int slot = field->field_index();
  2912            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
  2913              delete field_map;
  2914              return false;
  2919     delete field_map;
  2921     return true;
  2924   return true;
  2927 // an object references a class and its instance fields
  2928 // (static fields are ignored here as we report these as
  2929 // references from the class).
  2930 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
  2931   // reference to the class
  2932   if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
  2933     return false;
  2936   // iterate over instance fields
  2937   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
  2938   for (int i=0; i<field_map->field_count(); i++) {
  2939     ClassFieldDescriptor* field = field_map->field_at(i);
  2940     char type = field->field_type();
  2941     if (!is_primitive_field_type(type)) {
  2942       oop fld_o = o->obj_field(field->field_offset());
  2943       // ignore any objects that aren't visible to profiler
  2944       if (fld_o != NULL && ServiceUtil::visible_oop(fld_o)) {
  2945         assert(Universe::heap()->is_in_reserved(fld_o), "unsafe code should not "
  2946                "have references to Klass* anymore");
  2947         int slot = field->field_index();
  2948         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
  2949           return false;
  2952     } else {
  2953       if (is_reporting_primitive_fields()) {
  2954         // primitive instance field
  2955         address addr = (address)o + field->field_offset();
  2956         int slot = field->field_index();
  2957         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
  2958           return false;
  2964   // if the object is a java.lang.String
  2965   if (is_reporting_string_values() &&
  2966       o->klass() == SystemDictionary::String_klass()) {
  2967     if (!CallbackInvoker::report_string_value(o)) {
  2968       return false;
  2971   return true;
  2975 // Collects all simple (non-stack) roots except for threads;
  2976 // threads are handled in collect_stack_roots() as an optimization.
  2977 // if there's a heap root callback provided then the callback is
  2978 // invoked for each simple root.
  2979 // if an object reference callback is provided then all simple
  2980 // roots are pushed onto the marking stack so that they can be
  2981 // processed later
  2982 //
  2983 inline bool VM_HeapWalkOperation::collect_simple_roots() {
  2984   SimpleRootsClosure blk;
  2986   // JNI globals
  2987   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
  2988   JNIHandles::oops_do(&blk);
  2989   if (blk.stopped()) {
  2990     return false;
  2993   // Preloaded classes and loader from the system dictionary
  2994   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
  2995   SystemDictionary::always_strong_oops_do(&blk);
  2996   KlassToOopClosure klass_blk(&blk);
  2997   ClassLoaderDataGraph::always_strong_oops_do(&blk, &klass_blk, false);
  2998   if (blk.stopped()) {
  2999     return false;
  3002   // Inflated monitors
  3003   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
  3004   ObjectSynchronizer::oops_do(&blk);
  3005   if (blk.stopped()) {
  3006     return false;
  3009   // threads are now handled in collect_stack_roots()
  3011   // Other kinds of roots maintained by HotSpot
  3012   // Many of these won't be visible but others (such as instances of important
  3013   // exceptions) will be visible.
  3014   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3015   Universe::oops_do(&blk);
  3017   // If there are any non-perm roots in the code cache, visit them.
  3018   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3019   CodeBlobToOopClosure look_in_blobs(&blk, false);
  3020   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
  3022   return true;
  3025 // Walk the stack of a given thread and find all references (locals
  3026 // and JNI calls) and report these as stack references
  3027 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
  3028                                                       JNILocalRootsClosure* blk)
  3030   oop threadObj = java_thread->threadObj();
  3031   assert(threadObj != NULL, "sanity check");
  3033   // only need to get the thread's tag once per thread
  3034   jlong thread_tag = tag_for(_tag_map, threadObj);
  3036   // also need the thread id
  3037   jlong tid = java_lang_Thread::thread_id(threadObj);
  3040   if (java_thread->has_last_Java_frame()) {
  3042     // vframes are resource allocated
  3043     Thread* current_thread = Thread::current();
  3044     ResourceMark rm(current_thread);
  3045     HandleMark hm(current_thread);
  3047     RegisterMap reg_map(java_thread);
  3048     frame f = java_thread->last_frame();
  3049     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
  3051     bool is_top_frame = true;
  3052     int depth = 0;
  3053     frame* last_entry_frame = NULL;
  3055     while (vf != NULL) {
  3056       if (vf->is_java_frame()) {
  3058         // java frame (interpreted, compiled, ...)
  3059         javaVFrame *jvf = javaVFrame::cast(vf);
  3061         // the jmethodID
  3062         jmethodID method = jvf->method()->jmethod_id();
  3064         if (!(jvf->method()->is_native())) {
  3065           jlocation bci = (jlocation)jvf->bci();
  3066           StackValueCollection* locals = jvf->locals();
  3067           for (int slot=0; slot<locals->size(); slot++) {
  3068             if (locals->at(slot)->type() == T_OBJECT) {
  3069               oop o = locals->obj_at(slot)();
  3070               if (o == NULL) {
  3071                 continue;
  3074               // stack reference
  3075               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
  3076                                                    bci, slot, o)) {
  3077                 return false;
  3081         } else {
  3082           blk->set_context(thread_tag, tid, depth, method);
  3083           if (is_top_frame) {
  3084             // JNI locals for the top frame.
  3085             java_thread->active_handles()->oops_do(blk);
  3086           } else {
  3087             if (last_entry_frame != NULL) {
  3088               // JNI locals for the entry frame
  3089               assert(last_entry_frame->is_entry_frame(), "checking");
  3090               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
  3094         last_entry_frame = NULL;
  3095         depth++;
  3096       } else {
  3097         // externalVFrame - for an entry frame then we report the JNI locals
  3098         // when we find the corresponding javaVFrame
  3099         frame* fr = vf->frame_pointer();
  3100         assert(fr != NULL, "sanity check");
  3101         if (fr->is_entry_frame()) {
  3102           last_entry_frame = fr;
  3106       vf = vf->sender();
  3107       is_top_frame = false;
  3109   } else {
  3110     // no last java frame but there may be JNI locals
  3111     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
  3112     java_thread->active_handles()->oops_do(blk);
  3114   return true;
  3118 // Collects the simple roots for all threads and collects all
  3119 // stack roots - for each thread it walks the execution
  3120 // stack to find all references and local JNI refs.
  3121 inline bool VM_HeapWalkOperation::collect_stack_roots() {
  3122   JNILocalRootsClosure blk;
  3123   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3124     oop threadObj = thread->threadObj();
  3125     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3126       // Collect the simple root for this thread before we
  3127       // collect its stack roots
  3128       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
  3129                                                threadObj)) {
  3130         return false;
  3132       if (!collect_stack_roots(thread, &blk)) {
  3133         return false;
  3137   return true;
  3140 // visit an object
  3141 // first mark the object as visited
  3142 // second get all the outbound references from this object (in other words, all
  3143 // the objects referenced by this object).
  3144 //
  3145 bool VM_HeapWalkOperation::visit(oop o) {
  3146   // mark object as visited
  3147   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
  3148   ObjectMarker::mark(o);
  3150   // instance
  3151   if (o->is_instance()) {
  3152     if (o->klass() == SystemDictionary::Class_klass()) {
  3153       if (!java_lang_Class::is_primitive(o)) {
  3154         // a java.lang.Class
  3155         return iterate_over_class(o);
  3157     } else {
  3158       return iterate_over_object(o);
  3162   // object array
  3163   if (o->is_objArray()) {
  3164     return iterate_over_array(o);
  3167   // type array
  3168   if (o->is_typeArray()) {
  3169     return iterate_over_type_array(o);
  3172   return true;
  3175 void VM_HeapWalkOperation::doit() {
  3176   ResourceMark rm;
  3177   ObjectMarkerController marker;
  3178   ClassFieldMapCacheMark cm;
  3180   assert(visit_stack()->is_empty(), "visit stack must be empty");
  3182   // the heap walk starts with an initial object or the heap roots
  3183   if (initial_object().is_null()) {
  3184     // If either collect_stack_roots() or collect_simple_roots()
  3185     // returns false at this point, then there are no mark bits
  3186     // to reset.
  3187     ObjectMarker::set_needs_reset(false);
  3189     // Calling collect_stack_roots() before collect_simple_roots()
  3190     // can result in a big performance boost for an agent that is
  3191     // focused on analyzing references in the thread stacks.
  3192     if (!collect_stack_roots()) return;
  3194     if (!collect_simple_roots()) return;
  3196     // no early return so enable heap traversal to reset the mark bits
  3197     ObjectMarker::set_needs_reset(true);
  3198   } else {
  3199     visit_stack()->push(initial_object()());
  3202   // object references required
  3203   if (is_following_references()) {
  3205     // visit each object until all reachable objects have been
  3206     // visited or the callback asked to terminate the iteration.
  3207     while (!visit_stack()->is_empty()) {
  3208       oop o = visit_stack()->pop();
  3209       if (!ObjectMarker::visited(o)) {
  3210         if (!visit(o)) {
  3211           break;
  3218 // iterate over all objects that are reachable from a set of roots
  3219 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
  3220                                                  jvmtiStackReferenceCallback stack_ref_callback,
  3221                                                  jvmtiObjectReferenceCallback object_ref_callback,
  3222                                                  const void* user_data) {
  3223   MutexLocker ml(Heap_lock);
  3224   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
  3225   VM_HeapWalkOperation op(this, Handle(), context, user_data);
  3226   VMThread::execute(&op);
  3229 // iterate over all objects that are reachable from a given object
  3230 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
  3231                                                              jvmtiObjectReferenceCallback object_ref_callback,
  3232                                                              const void* user_data) {
  3233   oop obj = JNIHandles::resolve(object);
  3234   Handle initial_object(Thread::current(), obj);
  3236   MutexLocker ml(Heap_lock);
  3237   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
  3238   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3239   VMThread::execute(&op);
  3242 // follow references from an initial object or the GC roots
  3243 void JvmtiTagMap::follow_references(jint heap_filter,
  3244                                     KlassHandle klass,
  3245                                     jobject object,
  3246                                     const jvmtiHeapCallbacks* callbacks,
  3247                                     const void* user_data)
  3249   oop obj = JNIHandles::resolve(object);
  3250   Handle initial_object(Thread::current(), obj);
  3252   MutexLocker ml(Heap_lock);
  3253   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
  3254   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3255   VMThread::execute(&op);
  3259 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
  3260   // No locks during VM bring-up (0 threads) and no safepoints after main
  3261   // thread creation and before VMThread creation (1 thread); initial GC
  3262   // verification can happen in that window which gets to here.
  3263   assert(Threads::number_of_threads() <= 1 ||
  3264          SafepointSynchronize::is_at_safepoint(),
  3265          "must be executed at a safepoint");
  3266   if (JvmtiEnv::environments_might_exist()) {
  3267     JvmtiEnvIterator it;
  3268     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3269       JvmtiTagMap* tag_map = env->tag_map();
  3270       if (tag_map != NULL && !tag_map->is_empty()) {
  3271         tag_map->do_weak_oops(is_alive, f);
  3277 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
  3279   // does this environment have the OBJECT_FREE event enabled
  3280   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
  3282   // counters used for trace message
  3283   int freed = 0;
  3284   int moved = 0;
  3286   JvmtiTagHashmap* hashmap = this->hashmap();
  3288   // reenable sizing (if disabled)
  3289   hashmap->set_resizing_enabled(true);
  3291   // if the hashmap is empty then we can skip it
  3292   if (hashmap->_entry_count == 0) {
  3293     return;
  3296   // now iterate through each entry in the table
  3298   JvmtiTagHashmapEntry** table = hashmap->table();
  3299   int size = hashmap->size();
  3301   JvmtiTagHashmapEntry* delayed_add = NULL;
  3303   for (int pos = 0; pos < size; ++pos) {
  3304     JvmtiTagHashmapEntry* entry = table[pos];
  3305     JvmtiTagHashmapEntry* prev = NULL;
  3307     while (entry != NULL) {
  3308       JvmtiTagHashmapEntry* next = entry->next();
  3310       oop* obj = entry->object_addr();
  3312       // has object been GC'ed
  3313       if (!is_alive->do_object_b(entry->object())) {
  3314         // grab the tag
  3315         jlong tag = entry->tag();
  3316         guarantee(tag != 0, "checking");
  3318         // remove GC'ed entry from hashmap and return the
  3319         // entry to the free list
  3320         hashmap->remove(prev, pos, entry);
  3321         destroy_entry(entry);
  3323         // post the event to the profiler
  3324         if (post_object_free) {
  3325           JvmtiExport::post_object_free(env(), tag);
  3328         ++freed;
  3329       } else {
  3330         f->do_oop(entry->object_addr());
  3331         oop new_oop = entry->object();
  3333         // if the object has moved then re-hash it and move its
  3334         // entry to its new location.
  3335         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
  3336         if (new_pos != (unsigned int)pos) {
  3337           if (prev == NULL) {
  3338             table[pos] = next;
  3339           } else {
  3340             prev->set_next(next);
  3342           if (new_pos < (unsigned int)pos) {
  3343             entry->set_next(table[new_pos]);
  3344             table[new_pos] = entry;
  3345           } else {
  3346             // Delay adding this entry to it's new position as we'd end up
  3347             // hitting it again during this iteration.
  3348             entry->set_next(delayed_add);
  3349             delayed_add = entry;
  3351           moved++;
  3352         } else {
  3353           // object didn't move
  3354           prev = entry;
  3358       entry = next;
  3362   // Re-add all the entries which were kept aside
  3363   while (delayed_add != NULL) {
  3364     JvmtiTagHashmapEntry* next = delayed_add->next();
  3365     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
  3366     delayed_add->set_next(table[pos]);
  3367     table[pos] = delayed_add;
  3368     delayed_add = next;
  3371   // stats
  3372   if (TraceJVMTIObjectTagging) {
  3373     int post_total = hashmap->_entry_count;
  3374     int pre_total = post_total + freed;
  3376     tty->print_cr("(%d->%d, %d freed, %d total moves)",
  3377         pre_total, post_total, freed, moved);

mercurial