src/share/vm/gc_implementation/g1/concurrentMark.cpp

Mon, 24 Mar 2014 15:30:14 +0100

author
tschatzl
date
Mon, 24 Mar 2014 15:30:14 +0100
changeset 6402
191174b49bec
parent 6399
f53edbc2b728
child 6422
8ee855b4e667
permissions
-rw-r--r--

8035406: Improve data structure for Code Cache remembered sets
Summary: Change the code cache remembered sets data structure from a GrowableArray to a chunked list of nmethods. This makes the data structure more amenable to parallelization, and decreases freeing time.
Reviewed-by: mgerdin, brutisso

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1Log.hpp"
    33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    34 #include "gc_implementation/g1/g1RemSet.hpp"
    35 #include "gc_implementation/g1/heapRegion.inline.hpp"
    36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    38 #include "gc_implementation/shared/vmGCOperations.hpp"
    39 #include "gc_implementation/shared/gcTimer.hpp"
    40 #include "gc_implementation/shared/gcTrace.hpp"
    41 #include "gc_implementation/shared/gcTraceTime.hpp"
    42 #include "memory/genOopClosures.inline.hpp"
    43 #include "memory/referencePolicy.hpp"
    44 #include "memory/resourceArea.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/java.hpp"
    48 #include "services/memTracker.hpp"
    50 // Concurrent marking bit map wrapper
    52 CMBitMapRO::CMBitMapRO(int shifter) :
    53   _bm(),
    54   _shifter(shifter) {
    55   _bmStartWord = 0;
    56   _bmWordSize = 0;
    57 }
    59 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
    60                                                HeapWord* limit) const {
    61   // First we must round addr *up* to a possible object boundary.
    62   addr = (HeapWord*)align_size_up((intptr_t)addr,
    63                                   HeapWordSize << _shifter);
    64   size_t addrOffset = heapWordToOffset(addr);
    65   if (limit == NULL) {
    66     limit = _bmStartWord + _bmWordSize;
    67   }
    68   size_t limitOffset = heapWordToOffset(limit);
    69   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    70   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    71   assert(nextAddr >= addr, "get_next_one postcondition");
    72   assert(nextAddr == limit || isMarked(nextAddr),
    73          "get_next_one postcondition");
    74   return nextAddr;
    75 }
    77 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
    78                                                  HeapWord* limit) const {
    79   size_t addrOffset = heapWordToOffset(addr);
    80   if (limit == NULL) {
    81     limit = _bmStartWord + _bmWordSize;
    82   }
    83   size_t limitOffset = heapWordToOffset(limit);
    84   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    85   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    86   assert(nextAddr >= addr, "get_next_one postcondition");
    87   assert(nextAddr == limit || !isMarked(nextAddr),
    88          "get_next_one postcondition");
    89   return nextAddr;
    90 }
    92 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    93   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    94   return (int) (diff >> _shifter);
    95 }
    97 #ifndef PRODUCT
    98 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
    99   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   100   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   101          "size inconsistency");
   102   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
   103          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
   104 }
   105 #endif
   107 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   108   _bm.print_on_error(st, prefix);
   109 }
   111 bool CMBitMap::allocate(ReservedSpace heap_rs) {
   112   _bmStartWord = (HeapWord*)(heap_rs.base());
   113   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
   114   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
   115                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
   116   if (!brs.is_reserved()) {
   117     warning("ConcurrentMark marking bit map allocation failure");
   118     return false;
   119   }
   120   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
   121   // For now we'll just commit all of the bit map up front.
   122   // Later on we'll try to be more parsimonious with swap.
   123   if (!_virtual_space.initialize(brs, brs.size())) {
   124     warning("ConcurrentMark marking bit map backing store failure");
   125     return false;
   126   }
   127   assert(_virtual_space.committed_size() == brs.size(),
   128          "didn't reserve backing store for all of concurrent marking bit map?");
   129   _bm.set_map((uintptr_t*)_virtual_space.low());
   130   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
   131          _bmWordSize, "inconsistency in bit map sizing");
   132   _bm.set_size(_bmWordSize >> _shifter);
   133   return true;
   134 }
   136 void CMBitMap::clearAll() {
   137   _bm.clear();
   138   return;
   139 }
   141 void CMBitMap::markRange(MemRegion mr) {
   142   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   143   assert(!mr.is_empty(), "unexpected empty region");
   144   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   145           ((HeapWord *) mr.end())),
   146          "markRange memory region end is not card aligned");
   147   // convert address range into offset range
   148   _bm.at_put_range(heapWordToOffset(mr.start()),
   149                    heapWordToOffset(mr.end()), true);
   150 }
   152 void CMBitMap::clearRange(MemRegion mr) {
   153   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   154   assert(!mr.is_empty(), "unexpected empty region");
   155   // convert address range into offset range
   156   _bm.at_put_range(heapWordToOffset(mr.start()),
   157                    heapWordToOffset(mr.end()), false);
   158 }
   160 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   161                                             HeapWord* end_addr) {
   162   HeapWord* start = getNextMarkedWordAddress(addr);
   163   start = MIN2(start, end_addr);
   164   HeapWord* end   = getNextUnmarkedWordAddress(start);
   165   end = MIN2(end, end_addr);
   166   assert(start <= end, "Consistency check");
   167   MemRegion mr(start, end);
   168   if (!mr.is_empty()) {
   169     clearRange(mr);
   170   }
   171   return mr;
   172 }
   174 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   175   _base(NULL), _cm(cm)
   176 #ifdef ASSERT
   177   , _drain_in_progress(false)
   178   , _drain_in_progress_yields(false)
   179 #endif
   180 {}
   182 bool CMMarkStack::allocate(size_t capacity) {
   183   // allocate a stack of the requisite depth
   184   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   185   if (!rs.is_reserved()) {
   186     warning("ConcurrentMark MarkStack allocation failure");
   187     return false;
   188   }
   189   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   190   if (!_virtual_space.initialize(rs, rs.size())) {
   191     warning("ConcurrentMark MarkStack backing store failure");
   192     // Release the virtual memory reserved for the marking stack
   193     rs.release();
   194     return false;
   195   }
   196   assert(_virtual_space.committed_size() == rs.size(),
   197          "Didn't reserve backing store for all of ConcurrentMark stack?");
   198   _base = (oop*) _virtual_space.low();
   199   setEmpty();
   200   _capacity = (jint) capacity;
   201   _saved_index = -1;
   202   _should_expand = false;
   203   NOT_PRODUCT(_max_depth = 0);
   204   return true;
   205 }
   207 void CMMarkStack::expand() {
   208   // Called, during remark, if we've overflown the marking stack during marking.
   209   assert(isEmpty(), "stack should been emptied while handling overflow");
   210   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   211   // Clear expansion flag
   212   _should_expand = false;
   213   if (_capacity == (jint) MarkStackSizeMax) {
   214     if (PrintGCDetails && Verbose) {
   215       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   216     }
   217     return;
   218   }
   219   // Double capacity if possible
   220   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   221   // Do not give up existing stack until we have managed to
   222   // get the double capacity that we desired.
   223   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   224                                                            sizeof(oop)));
   225   if (rs.is_reserved()) {
   226     // Release the backing store associated with old stack
   227     _virtual_space.release();
   228     // Reinitialize virtual space for new stack
   229     if (!_virtual_space.initialize(rs, rs.size())) {
   230       fatal("Not enough swap for expanded marking stack capacity");
   231     }
   232     _base = (oop*)(_virtual_space.low());
   233     _index = 0;
   234     _capacity = new_capacity;
   235   } else {
   236     if (PrintGCDetails && Verbose) {
   237       // Failed to double capacity, continue;
   238       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   239                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   240                           _capacity / K, new_capacity / K);
   241     }
   242   }
   243 }
   245 void CMMarkStack::set_should_expand() {
   246   // If we're resetting the marking state because of an
   247   // marking stack overflow, record that we should, if
   248   // possible, expand the stack.
   249   _should_expand = _cm->has_overflown();
   250 }
   252 CMMarkStack::~CMMarkStack() {
   253   if (_base != NULL) {
   254     _base = NULL;
   255     _virtual_space.release();
   256   }
   257 }
   259 void CMMarkStack::par_push(oop ptr) {
   260   while (true) {
   261     if (isFull()) {
   262       _overflow = true;
   263       return;
   264     }
   265     // Otherwise...
   266     jint index = _index;
   267     jint next_index = index+1;
   268     jint res = Atomic::cmpxchg(next_index, &_index, index);
   269     if (res == index) {
   270       _base[index] = ptr;
   271       // Note that we don't maintain this atomically.  We could, but it
   272       // doesn't seem necessary.
   273       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   274       return;
   275     }
   276     // Otherwise, we need to try again.
   277   }
   278 }
   280 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   281   while (true) {
   282     if (isFull()) {
   283       _overflow = true;
   284       return;
   285     }
   286     // Otherwise...
   287     jint index = _index;
   288     jint next_index = index + n;
   289     if (next_index > _capacity) {
   290       _overflow = true;
   291       return;
   292     }
   293     jint res = Atomic::cmpxchg(next_index, &_index, index);
   294     if (res == index) {
   295       for (int i = 0; i < n; i++) {
   296         int  ind = index + i;
   297         assert(ind < _capacity, "By overflow test above.");
   298         _base[ind] = ptr_arr[i];
   299       }
   300       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   301       return;
   302     }
   303     // Otherwise, we need to try again.
   304   }
   305 }
   307 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   308   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   309   jint start = _index;
   310   jint next_index = start + n;
   311   if (next_index > _capacity) {
   312     _overflow = true;
   313     return;
   314   }
   315   // Otherwise.
   316   _index = next_index;
   317   for (int i = 0; i < n; i++) {
   318     int ind = start + i;
   319     assert(ind < _capacity, "By overflow test above.");
   320     _base[ind] = ptr_arr[i];
   321   }
   322   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   323 }
   325 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   326   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   327   jint index = _index;
   328   if (index == 0) {
   329     *n = 0;
   330     return false;
   331   } else {
   332     int k = MIN2(max, index);
   333     jint  new_ind = index - k;
   334     for (int j = 0; j < k; j++) {
   335       ptr_arr[j] = _base[new_ind + j];
   336     }
   337     _index = new_ind;
   338     *n = k;
   339     return true;
   340   }
   341 }
   343 template<class OopClosureClass>
   344 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   345   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   346          || SafepointSynchronize::is_at_safepoint(),
   347          "Drain recursion must be yield-safe.");
   348   bool res = true;
   349   debug_only(_drain_in_progress = true);
   350   debug_only(_drain_in_progress_yields = yield_after);
   351   while (!isEmpty()) {
   352     oop newOop = pop();
   353     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   354     assert(newOop->is_oop(), "Expected an oop");
   355     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   356            "only grey objects on this stack");
   357     newOop->oop_iterate(cl);
   358     if (yield_after && _cm->do_yield_check()) {
   359       res = false;
   360       break;
   361     }
   362   }
   363   debug_only(_drain_in_progress = false);
   364   return res;
   365 }
   367 void CMMarkStack::note_start_of_gc() {
   368   assert(_saved_index == -1,
   369          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   370   _saved_index = _index;
   371 }
   373 void CMMarkStack::note_end_of_gc() {
   374   // This is intentionally a guarantee, instead of an assert. If we
   375   // accidentally add something to the mark stack during GC, it
   376   // will be a correctness issue so it's better if we crash. we'll
   377   // only check this once per GC anyway, so it won't be a performance
   378   // issue in any way.
   379   guarantee(_saved_index == _index,
   380             err_msg("saved index: %d index: %d", _saved_index, _index));
   381   _saved_index = -1;
   382 }
   384 void CMMarkStack::oops_do(OopClosure* f) {
   385   assert(_saved_index == _index,
   386          err_msg("saved index: %d index: %d", _saved_index, _index));
   387   for (int i = 0; i < _index; i += 1) {
   388     f->do_oop(&_base[i]);
   389   }
   390 }
   392 bool ConcurrentMark::not_yet_marked(oop obj) const {
   393   return _g1h->is_obj_ill(obj);
   394 }
   396 CMRootRegions::CMRootRegions() :
   397   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   398   _should_abort(false),  _next_survivor(NULL) { }
   400 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   401   _young_list = g1h->young_list();
   402   _cm = cm;
   403 }
   405 void CMRootRegions::prepare_for_scan() {
   406   assert(!scan_in_progress(), "pre-condition");
   408   // Currently, only survivors can be root regions.
   409   assert(_next_survivor == NULL, "pre-condition");
   410   _next_survivor = _young_list->first_survivor_region();
   411   _scan_in_progress = (_next_survivor != NULL);
   412   _should_abort = false;
   413 }
   415 HeapRegion* CMRootRegions::claim_next() {
   416   if (_should_abort) {
   417     // If someone has set the should_abort flag, we return NULL to
   418     // force the caller to bail out of their loop.
   419     return NULL;
   420   }
   422   // Currently, only survivors can be root regions.
   423   HeapRegion* res = _next_survivor;
   424   if (res != NULL) {
   425     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   426     // Read it again in case it changed while we were waiting for the lock.
   427     res = _next_survivor;
   428     if (res != NULL) {
   429       if (res == _young_list->last_survivor_region()) {
   430         // We just claimed the last survivor so store NULL to indicate
   431         // that we're done.
   432         _next_survivor = NULL;
   433       } else {
   434         _next_survivor = res->get_next_young_region();
   435       }
   436     } else {
   437       // Someone else claimed the last survivor while we were trying
   438       // to take the lock so nothing else to do.
   439     }
   440   }
   441   assert(res == NULL || res->is_survivor(), "post-condition");
   443   return res;
   444 }
   446 void CMRootRegions::scan_finished() {
   447   assert(scan_in_progress(), "pre-condition");
   449   // Currently, only survivors can be root regions.
   450   if (!_should_abort) {
   451     assert(_next_survivor == NULL, "we should have claimed all survivors");
   452   }
   453   _next_survivor = NULL;
   455   {
   456     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   457     _scan_in_progress = false;
   458     RootRegionScan_lock->notify_all();
   459   }
   460 }
   462 bool CMRootRegions::wait_until_scan_finished() {
   463   if (!scan_in_progress()) return false;
   465   {
   466     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   467     while (scan_in_progress()) {
   468       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   469     }
   470   }
   471   return true;
   472 }
   474 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   475 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   476 #endif // _MSC_VER
   478 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   479   return MAX2((n_par_threads + 2) / 4, 1U);
   480 }
   482 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
   483   _g1h(g1h),
   484   _markBitMap1(log2_intptr(MinObjAlignment)),
   485   _markBitMap2(log2_intptr(MinObjAlignment)),
   486   _parallel_marking_threads(0),
   487   _max_parallel_marking_threads(0),
   488   _sleep_factor(0.0),
   489   _marking_task_overhead(1.0),
   490   _cleanup_sleep_factor(0.0),
   491   _cleanup_task_overhead(1.0),
   492   _cleanup_list("Cleanup List"),
   493   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   494   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
   495             CardTableModRefBS::card_shift,
   496             false /* in_resource_area*/),
   498   _prevMarkBitMap(&_markBitMap1),
   499   _nextMarkBitMap(&_markBitMap2),
   501   _markStack(this),
   502   // _finger set in set_non_marking_state
   504   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   505   // _active_tasks set in set_non_marking_state
   506   // _tasks set inside the constructor
   507   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   508   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   510   _has_overflown(false),
   511   _concurrent(false),
   512   _has_aborted(false),
   513   _restart_for_overflow(false),
   514   _concurrent_marking_in_progress(false),
   516   // _verbose_level set below
   518   _init_times(),
   519   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   520   _cleanup_times(),
   521   _total_counting_time(0.0),
   522   _total_rs_scrub_time(0.0),
   524   _parallel_workers(NULL),
   526   _count_card_bitmaps(NULL),
   527   _count_marked_bytes(NULL),
   528   _completed_initialization(false) {
   529   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   530   if (verbose_level < no_verbose) {
   531     verbose_level = no_verbose;
   532   }
   533   if (verbose_level > high_verbose) {
   534     verbose_level = high_verbose;
   535   }
   536   _verbose_level = verbose_level;
   538   if (verbose_low()) {
   539     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   540                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
   541   }
   543   if (!_markBitMap1.allocate(heap_rs)) {
   544     warning("Failed to allocate first CM bit map");
   545     return;
   546   }
   547   if (!_markBitMap2.allocate(heap_rs)) {
   548     warning("Failed to allocate second CM bit map");
   549     return;
   550   }
   552   // Create & start a ConcurrentMark thread.
   553   _cmThread = new ConcurrentMarkThread(this);
   554   assert(cmThread() != NULL, "CM Thread should have been created");
   555   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   556   if (_cmThread->osthread() == NULL) {
   557       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   558   }
   560   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   561   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
   562   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
   564   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   565   satb_qs.set_buffer_size(G1SATBBufferSize);
   567   _root_regions.init(_g1h, this);
   569   if (ConcGCThreads > ParallelGCThreads) {
   570     warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
   571             "than ParallelGCThreads (" UINT32_FORMAT ").",
   572             ConcGCThreads, ParallelGCThreads);
   573     return;
   574   }
   575   if (ParallelGCThreads == 0) {
   576     // if we are not running with any parallel GC threads we will not
   577     // spawn any marking threads either
   578     _parallel_marking_threads =       0;
   579     _max_parallel_marking_threads =   0;
   580     _sleep_factor             =     0.0;
   581     _marking_task_overhead    =     1.0;
   582   } else {
   583     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   584       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   585       // if both are set
   586       _sleep_factor             = 0.0;
   587       _marking_task_overhead    = 1.0;
   588     } else if (G1MarkingOverheadPercent > 0) {
   589       // We will calculate the number of parallel marking threads based
   590       // on a target overhead with respect to the soft real-time goal
   591       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   592       double overall_cm_overhead =
   593         (double) MaxGCPauseMillis * marking_overhead /
   594         (double) GCPauseIntervalMillis;
   595       double cpu_ratio = 1.0 / (double) os::processor_count();
   596       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   597       double marking_task_overhead =
   598         overall_cm_overhead / marking_thread_num *
   599                                                 (double) os::processor_count();
   600       double sleep_factor =
   601                          (1.0 - marking_task_overhead) / marking_task_overhead;
   603       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   604       _sleep_factor             = sleep_factor;
   605       _marking_task_overhead    = marking_task_overhead;
   606     } else {
   607       // Calculate the number of parallel marking threads by scaling
   608       // the number of parallel GC threads.
   609       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   610       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   611       _sleep_factor             = 0.0;
   612       _marking_task_overhead    = 1.0;
   613     }
   615     assert(ConcGCThreads > 0, "Should have been set");
   616     _parallel_marking_threads = (uint) ConcGCThreads;
   617     _max_parallel_marking_threads = _parallel_marking_threads;
   619     if (parallel_marking_threads() > 1) {
   620       _cleanup_task_overhead = 1.0;
   621     } else {
   622       _cleanup_task_overhead = marking_task_overhead();
   623     }
   624     _cleanup_sleep_factor =
   625                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   627 #if 0
   628     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   629     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   630     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   631     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   632     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   633 #endif
   635     guarantee(parallel_marking_threads() > 0, "peace of mind");
   636     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   637          _max_parallel_marking_threads, false, true);
   638     if (_parallel_workers == NULL) {
   639       vm_exit_during_initialization("Failed necessary allocation.");
   640     } else {
   641       _parallel_workers->initialize_workers();
   642     }
   643   }
   645   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   646     uintx mark_stack_size =
   647       MIN2(MarkStackSizeMax,
   648           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   649     // Verify that the calculated value for MarkStackSize is in range.
   650     // It would be nice to use the private utility routine from Arguments.
   651     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   652       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   653               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   654               mark_stack_size, 1, MarkStackSizeMax);
   655       return;
   656     }
   657     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   658   } else {
   659     // Verify MarkStackSize is in range.
   660     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   661       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   662         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   663           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   664                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   665                   MarkStackSize, 1, MarkStackSizeMax);
   666           return;
   667         }
   668       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   669         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   670           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   671                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   672                   MarkStackSize, MarkStackSizeMax);
   673           return;
   674         }
   675       }
   676     }
   677   }
   679   if (!_markStack.allocate(MarkStackSize)) {
   680     warning("Failed to allocate CM marking stack");
   681     return;
   682   }
   684   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   685   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   687   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   688   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   690   BitMap::idx_t card_bm_size = _card_bm.size();
   692   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   693   _active_tasks = _max_worker_id;
   695   size_t max_regions = (size_t) _g1h->max_regions();
   696   for (uint i = 0; i < _max_worker_id; ++i) {
   697     CMTaskQueue* task_queue = new CMTaskQueue();
   698     task_queue->initialize();
   699     _task_queues->register_queue(i, task_queue);
   701     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   702     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   704     _tasks[i] = new CMTask(i, this,
   705                            _count_marked_bytes[i],
   706                            &_count_card_bitmaps[i],
   707                            task_queue, _task_queues);
   709     _accum_task_vtime[i] = 0.0;
   710   }
   712   // Calculate the card number for the bottom of the heap. Used
   713   // in biasing indexes into the accounting card bitmaps.
   714   _heap_bottom_card_num =
   715     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   716                                 CardTableModRefBS::card_shift);
   718   // Clear all the liveness counting data
   719   clear_all_count_data();
   721   // so that the call below can read a sensible value
   722   _heap_start = (HeapWord*) heap_rs.base();
   723   set_non_marking_state();
   724   _completed_initialization = true;
   725 }
   727 void ConcurrentMark::update_g1_committed(bool force) {
   728   // If concurrent marking is not in progress, then we do not need to
   729   // update _heap_end.
   730   if (!concurrent_marking_in_progress() && !force) return;
   732   MemRegion committed = _g1h->g1_committed();
   733   assert(committed.start() == _heap_start, "start shouldn't change");
   734   HeapWord* new_end = committed.end();
   735   if (new_end > _heap_end) {
   736     // The heap has been expanded.
   738     _heap_end = new_end;
   739   }
   740   // Notice that the heap can also shrink. However, this only happens
   741   // during a Full GC (at least currently) and the entire marking
   742   // phase will bail out and the task will not be restarted. So, let's
   743   // do nothing.
   744 }
   746 void ConcurrentMark::reset() {
   747   // Starting values for these two. This should be called in a STW
   748   // phase. CM will be notified of any future g1_committed expansions
   749   // will be at the end of evacuation pauses, when tasks are
   750   // inactive.
   751   MemRegion committed = _g1h->g1_committed();
   752   _heap_start = committed.start();
   753   _heap_end   = committed.end();
   755   // Separated the asserts so that we know which one fires.
   756   assert(_heap_start != NULL, "heap bounds should look ok");
   757   assert(_heap_end != NULL, "heap bounds should look ok");
   758   assert(_heap_start < _heap_end, "heap bounds should look ok");
   760   // Reset all the marking data structures and any necessary flags
   761   reset_marking_state();
   763   if (verbose_low()) {
   764     gclog_or_tty->print_cr("[global] resetting");
   765   }
   767   // We do reset all of them, since different phases will use
   768   // different number of active threads. So, it's easiest to have all
   769   // of them ready.
   770   for (uint i = 0; i < _max_worker_id; ++i) {
   771     _tasks[i]->reset(_nextMarkBitMap);
   772   }
   774   // we need this to make sure that the flag is on during the evac
   775   // pause with initial mark piggy-backed
   776   set_concurrent_marking_in_progress();
   777 }
   780 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   781   _markStack.set_should_expand();
   782   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   783   if (clear_overflow) {
   784     clear_has_overflown();
   785   } else {
   786     assert(has_overflown(), "pre-condition");
   787   }
   788   _finger = _heap_start;
   790   for (uint i = 0; i < _max_worker_id; ++i) {
   791     CMTaskQueue* queue = _task_queues->queue(i);
   792     queue->set_empty();
   793   }
   794 }
   796 void ConcurrentMark::set_concurrency(uint active_tasks) {
   797   assert(active_tasks <= _max_worker_id, "we should not have more");
   799   _active_tasks = active_tasks;
   800   // Need to update the three data structures below according to the
   801   // number of active threads for this phase.
   802   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   803   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   804   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   805 }
   807 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   808   set_concurrency(active_tasks);
   810   _concurrent = concurrent;
   811   // We propagate this to all tasks, not just the active ones.
   812   for (uint i = 0; i < _max_worker_id; ++i)
   813     _tasks[i]->set_concurrent(concurrent);
   815   if (concurrent) {
   816     set_concurrent_marking_in_progress();
   817   } else {
   818     // We currently assume that the concurrent flag has been set to
   819     // false before we start remark. At this point we should also be
   820     // in a STW phase.
   821     assert(!concurrent_marking_in_progress(), "invariant");
   822     assert(_finger == _heap_end,
   823            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   824                    _finger, _heap_end));
   825     update_g1_committed(true);
   826   }
   827 }
   829 void ConcurrentMark::set_non_marking_state() {
   830   // We set the global marking state to some default values when we're
   831   // not doing marking.
   832   reset_marking_state();
   833   _active_tasks = 0;
   834   clear_concurrent_marking_in_progress();
   835 }
   837 ConcurrentMark::~ConcurrentMark() {
   838   // The ConcurrentMark instance is never freed.
   839   ShouldNotReachHere();
   840 }
   842 void ConcurrentMark::clearNextBitmap() {
   843   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   844   G1CollectorPolicy* g1p = g1h->g1_policy();
   846   // Make sure that the concurrent mark thread looks to still be in
   847   // the current cycle.
   848   guarantee(cmThread()->during_cycle(), "invariant");
   850   // We are finishing up the current cycle by clearing the next
   851   // marking bitmap and getting it ready for the next cycle. During
   852   // this time no other cycle can start. So, let's make sure that this
   853   // is the case.
   854   guarantee(!g1h->mark_in_progress(), "invariant");
   856   // clear the mark bitmap (no grey objects to start with).
   857   // We need to do this in chunks and offer to yield in between
   858   // each chunk.
   859   HeapWord* start  = _nextMarkBitMap->startWord();
   860   HeapWord* end    = _nextMarkBitMap->endWord();
   861   HeapWord* cur    = start;
   862   size_t chunkSize = M;
   863   while (cur < end) {
   864     HeapWord* next = cur + chunkSize;
   865     if (next > end) {
   866       next = end;
   867     }
   868     MemRegion mr(cur,next);
   869     _nextMarkBitMap->clearRange(mr);
   870     cur = next;
   871     do_yield_check();
   873     // Repeat the asserts from above. We'll do them as asserts here to
   874     // minimize their overhead on the product. However, we'll have
   875     // them as guarantees at the beginning / end of the bitmap
   876     // clearing to get some checking in the product.
   877     assert(cmThread()->during_cycle(), "invariant");
   878     assert(!g1h->mark_in_progress(), "invariant");
   879   }
   881   // Clear the liveness counting data
   882   clear_all_count_data();
   884   // Repeat the asserts from above.
   885   guarantee(cmThread()->during_cycle(), "invariant");
   886   guarantee(!g1h->mark_in_progress(), "invariant");
   887 }
   889 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   890 public:
   891   bool doHeapRegion(HeapRegion* r) {
   892     if (!r->continuesHumongous()) {
   893       r->note_start_of_marking();
   894     }
   895     return false;
   896   }
   897 };
   899 void ConcurrentMark::checkpointRootsInitialPre() {
   900   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   901   G1CollectorPolicy* g1p = g1h->g1_policy();
   903   _has_aborted = false;
   905 #ifndef PRODUCT
   906   if (G1PrintReachableAtInitialMark) {
   907     print_reachable("at-cycle-start",
   908                     VerifyOption_G1UsePrevMarking, true /* all */);
   909   }
   910 #endif
   912   // Initialise marking structures. This has to be done in a STW phase.
   913   reset();
   915   // For each region note start of marking.
   916   NoteStartOfMarkHRClosure startcl;
   917   g1h->heap_region_iterate(&startcl);
   918 }
   921 void ConcurrentMark::checkpointRootsInitialPost() {
   922   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   924   // If we force an overflow during remark, the remark operation will
   925   // actually abort and we'll restart concurrent marking. If we always
   926   // force an oveflow during remark we'll never actually complete the
   927   // marking phase. So, we initilize this here, at the start of the
   928   // cycle, so that at the remaining overflow number will decrease at
   929   // every remark and we'll eventually not need to cause one.
   930   force_overflow_stw()->init();
   932   // Start Concurrent Marking weak-reference discovery.
   933   ReferenceProcessor* rp = g1h->ref_processor_cm();
   934   // enable ("weak") refs discovery
   935   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   936   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   938   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   939   // This is the start of  the marking cycle, we're expected all
   940   // threads to have SATB queues with active set to false.
   941   satb_mq_set.set_active_all_threads(true, /* new active value */
   942                                      false /* expected_active */);
   944   _root_regions.prepare_for_scan();
   946   // update_g1_committed() will be called at the end of an evac pause
   947   // when marking is on. So, it's also called at the end of the
   948   // initial-mark pause to update the heap end, if the heap expands
   949   // during it. No need to call it here.
   950 }
   952 /*
   953  * Notice that in the next two methods, we actually leave the STS
   954  * during the barrier sync and join it immediately afterwards. If we
   955  * do not do this, the following deadlock can occur: one thread could
   956  * be in the barrier sync code, waiting for the other thread to also
   957  * sync up, whereas another one could be trying to yield, while also
   958  * waiting for the other threads to sync up too.
   959  *
   960  * Note, however, that this code is also used during remark and in
   961  * this case we should not attempt to leave / enter the STS, otherwise
   962  * we'll either hit an asseert (debug / fastdebug) or deadlock
   963  * (product). So we should only leave / enter the STS if we are
   964  * operating concurrently.
   965  *
   966  * Because the thread that does the sync barrier has left the STS, it
   967  * is possible to be suspended for a Full GC or an evacuation pause
   968  * could occur. This is actually safe, since the entering the sync
   969  * barrier is one of the last things do_marking_step() does, and it
   970  * doesn't manipulate any data structures afterwards.
   971  */
   973 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   974   if (verbose_low()) {
   975     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   976   }
   978   if (concurrent()) {
   979     ConcurrentGCThread::stsLeave();
   980   }
   981   _first_overflow_barrier_sync.enter();
   982   if (concurrent()) {
   983     ConcurrentGCThread::stsJoin();
   984   }
   985   // at this point everyone should have synced up and not be doing any
   986   // more work
   988   if (verbose_low()) {
   989     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
   990   }
   992   // If we're executing the concurrent phase of marking, reset the marking
   993   // state; otherwise the marking state is reset after reference processing,
   994   // during the remark pause.
   995   // If we reset here as a result of an overflow during the remark we will
   996   // see assertion failures from any subsequent set_concurrency_and_phase()
   997   // calls.
   998   if (concurrent()) {
   999     // let the task associated with with worker 0 do this
  1000     if (worker_id == 0) {
  1001       // task 0 is responsible for clearing the global data structures
  1002       // We should be here because of an overflow. During STW we should
  1003       // not clear the overflow flag since we rely on it being true when
  1004       // we exit this method to abort the pause and restart concurent
  1005       // marking.
  1006       reset_marking_state(true /* clear_overflow */);
  1007       force_overflow()->update();
  1009       if (G1Log::fine()) {
  1010         gclog_or_tty->date_stamp(PrintGCDateStamps);
  1011         gclog_or_tty->stamp(PrintGCTimeStamps);
  1012         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1017   // after this, each task should reset its own data structures then
  1018   // then go into the second barrier
  1021 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1022   if (verbose_low()) {
  1023     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1026   if (concurrent()) {
  1027     ConcurrentGCThread::stsLeave();
  1029   _second_overflow_barrier_sync.enter();
  1030   if (concurrent()) {
  1031     ConcurrentGCThread::stsJoin();
  1033   // at this point everything should be re-initialized and ready to go
  1035   if (verbose_low()) {
  1036     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1040 #ifndef PRODUCT
  1041 void ForceOverflowSettings::init() {
  1042   _num_remaining = G1ConcMarkForceOverflow;
  1043   _force = false;
  1044   update();
  1047 void ForceOverflowSettings::update() {
  1048   if (_num_remaining > 0) {
  1049     _num_remaining -= 1;
  1050     _force = true;
  1051   } else {
  1052     _force = false;
  1056 bool ForceOverflowSettings::should_force() {
  1057   if (_force) {
  1058     _force = false;
  1059     return true;
  1060   } else {
  1061     return false;
  1064 #endif // !PRODUCT
  1066 class CMConcurrentMarkingTask: public AbstractGangTask {
  1067 private:
  1068   ConcurrentMark*       _cm;
  1069   ConcurrentMarkThread* _cmt;
  1071 public:
  1072   void work(uint worker_id) {
  1073     assert(Thread::current()->is_ConcurrentGC_thread(),
  1074            "this should only be done by a conc GC thread");
  1075     ResourceMark rm;
  1077     double start_vtime = os::elapsedVTime();
  1079     ConcurrentGCThread::stsJoin();
  1081     assert(worker_id < _cm->active_tasks(), "invariant");
  1082     CMTask* the_task = _cm->task(worker_id);
  1083     the_task->record_start_time();
  1084     if (!_cm->has_aborted()) {
  1085       do {
  1086         double start_vtime_sec = os::elapsedVTime();
  1087         double start_time_sec = os::elapsedTime();
  1088         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1090         the_task->do_marking_step(mark_step_duration_ms,
  1091                                   true  /* do_termination */,
  1092                                   false /* is_serial*/);
  1094         double end_time_sec = os::elapsedTime();
  1095         double end_vtime_sec = os::elapsedVTime();
  1096         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1097         double elapsed_time_sec = end_time_sec - start_time_sec;
  1098         _cm->clear_has_overflown();
  1100         bool ret = _cm->do_yield_check(worker_id);
  1102         jlong sleep_time_ms;
  1103         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1104           sleep_time_ms =
  1105             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1106           ConcurrentGCThread::stsLeave();
  1107           os::sleep(Thread::current(), sleep_time_ms, false);
  1108           ConcurrentGCThread::stsJoin();
  1110         double end_time2_sec = os::elapsedTime();
  1111         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1113 #if 0
  1114           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1115                                  "overhead %1.4lf",
  1116                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1117                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1118           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1119                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1120 #endif
  1121       } while (!_cm->has_aborted() && the_task->has_aborted());
  1123     the_task->record_end_time();
  1124     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1126     ConcurrentGCThread::stsLeave();
  1128     double end_vtime = os::elapsedVTime();
  1129     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1132   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1133                           ConcurrentMarkThread* cmt) :
  1134       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1136   ~CMConcurrentMarkingTask() { }
  1137 };
  1139 // Calculates the number of active workers for a concurrent
  1140 // phase.
  1141 uint ConcurrentMark::calc_parallel_marking_threads() {
  1142   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1143     uint n_conc_workers = 0;
  1144     if (!UseDynamicNumberOfGCThreads ||
  1145         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1146          !ForceDynamicNumberOfGCThreads)) {
  1147       n_conc_workers = max_parallel_marking_threads();
  1148     } else {
  1149       n_conc_workers =
  1150         AdaptiveSizePolicy::calc_default_active_workers(
  1151                                      max_parallel_marking_threads(),
  1152                                      1, /* Minimum workers */
  1153                                      parallel_marking_threads(),
  1154                                      Threads::number_of_non_daemon_threads());
  1155       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1156       // that scaling has already gone into "_max_parallel_marking_threads".
  1158     assert(n_conc_workers > 0, "Always need at least 1");
  1159     return n_conc_workers;
  1161   // If we are not running with any parallel GC threads we will not
  1162   // have spawned any marking threads either. Hence the number of
  1163   // concurrent workers should be 0.
  1164   return 0;
  1167 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1168   // Currently, only survivors can be root regions.
  1169   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1170   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1172   const uintx interval = PrefetchScanIntervalInBytes;
  1173   HeapWord* curr = hr->bottom();
  1174   const HeapWord* end = hr->top();
  1175   while (curr < end) {
  1176     Prefetch::read(curr, interval);
  1177     oop obj = oop(curr);
  1178     int size = obj->oop_iterate(&cl);
  1179     assert(size == obj->size(), "sanity");
  1180     curr += size;
  1184 class CMRootRegionScanTask : public AbstractGangTask {
  1185 private:
  1186   ConcurrentMark* _cm;
  1188 public:
  1189   CMRootRegionScanTask(ConcurrentMark* cm) :
  1190     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1192   void work(uint worker_id) {
  1193     assert(Thread::current()->is_ConcurrentGC_thread(),
  1194            "this should only be done by a conc GC thread");
  1196     CMRootRegions* root_regions = _cm->root_regions();
  1197     HeapRegion* hr = root_regions->claim_next();
  1198     while (hr != NULL) {
  1199       _cm->scanRootRegion(hr, worker_id);
  1200       hr = root_regions->claim_next();
  1203 };
  1205 void ConcurrentMark::scanRootRegions() {
  1206   // scan_in_progress() will have been set to true only if there was
  1207   // at least one root region to scan. So, if it's false, we
  1208   // should not attempt to do any further work.
  1209   if (root_regions()->scan_in_progress()) {
  1210     _parallel_marking_threads = calc_parallel_marking_threads();
  1211     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1212            "Maximum number of marking threads exceeded");
  1213     uint active_workers = MAX2(1U, parallel_marking_threads());
  1215     CMRootRegionScanTask task(this);
  1216     if (use_parallel_marking_threads()) {
  1217       _parallel_workers->set_active_workers((int) active_workers);
  1218       _parallel_workers->run_task(&task);
  1219     } else {
  1220       task.work(0);
  1223     // It's possible that has_aborted() is true here without actually
  1224     // aborting the survivor scan earlier. This is OK as it's
  1225     // mainly used for sanity checking.
  1226     root_regions()->scan_finished();
  1230 void ConcurrentMark::markFromRoots() {
  1231   // we might be tempted to assert that:
  1232   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1233   //        "inconsistent argument?");
  1234   // However that wouldn't be right, because it's possible that
  1235   // a safepoint is indeed in progress as a younger generation
  1236   // stop-the-world GC happens even as we mark in this generation.
  1238   _restart_for_overflow = false;
  1239   force_overflow_conc()->init();
  1241   // _g1h has _n_par_threads
  1242   _parallel_marking_threads = calc_parallel_marking_threads();
  1243   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1244     "Maximum number of marking threads exceeded");
  1246   uint active_workers = MAX2(1U, parallel_marking_threads());
  1248   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1249   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1251   CMConcurrentMarkingTask markingTask(this, cmThread());
  1252   if (use_parallel_marking_threads()) {
  1253     _parallel_workers->set_active_workers((int)active_workers);
  1254     // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
  1255     // and the decisions on that MT processing is made elsewhere.
  1256     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1257     _parallel_workers->run_task(&markingTask);
  1258   } else {
  1259     markingTask.work(0);
  1261   print_stats();
  1264 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1265   // world is stopped at this checkpoint
  1266   assert(SafepointSynchronize::is_at_safepoint(),
  1267          "world should be stopped");
  1269   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1271   // If a full collection has happened, we shouldn't do this.
  1272   if (has_aborted()) {
  1273     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1274     return;
  1277   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1279   if (VerifyDuringGC) {
  1280     HandleMark hm;  // handle scope
  1281     Universe::heap()->prepare_for_verify();
  1282     Universe::verify(VerifyOption_G1UsePrevMarking,
  1283                      " VerifyDuringGC:(before)");
  1286   G1CollectorPolicy* g1p = g1h->g1_policy();
  1287   g1p->record_concurrent_mark_remark_start();
  1289   double start = os::elapsedTime();
  1291   checkpointRootsFinalWork();
  1293   double mark_work_end = os::elapsedTime();
  1295   weakRefsWork(clear_all_soft_refs);
  1297   if (has_overflown()) {
  1298     // Oops.  We overflowed.  Restart concurrent marking.
  1299     _restart_for_overflow = true;
  1300     if (G1TraceMarkStackOverflow) {
  1301       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1304     // Verify the heap w.r.t. the previous marking bitmap.
  1305     if (VerifyDuringGC) {
  1306       HandleMark hm;  // handle scope
  1307       Universe::heap()->prepare_for_verify();
  1308       Universe::verify(VerifyOption_G1UsePrevMarking,
  1309                        " VerifyDuringGC:(overflow)");
  1312     // Clear the marking state because we will be restarting
  1313     // marking due to overflowing the global mark stack.
  1314     reset_marking_state();
  1315   } else {
  1316     // Aggregate the per-task counting data that we have accumulated
  1317     // while marking.
  1318     aggregate_count_data();
  1320     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1321     // We're done with marking.
  1322     // This is the end of  the marking cycle, we're expected all
  1323     // threads to have SATB queues with active set to true.
  1324     satb_mq_set.set_active_all_threads(false, /* new active value */
  1325                                        true /* expected_active */);
  1327     if (VerifyDuringGC) {
  1328       HandleMark hm;  // handle scope
  1329       Universe::heap()->prepare_for_verify();
  1330       Universe::verify(VerifyOption_G1UseNextMarking,
  1331                        " VerifyDuringGC:(after)");
  1333     assert(!restart_for_overflow(), "sanity");
  1334     // Completely reset the marking state since marking completed
  1335     set_non_marking_state();
  1338   // Expand the marking stack, if we have to and if we can.
  1339   if (_markStack.should_expand()) {
  1340     _markStack.expand();
  1343   // Statistics
  1344   double now = os::elapsedTime();
  1345   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1346   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1347   _remark_times.add((now - start) * 1000.0);
  1349   g1p->record_concurrent_mark_remark_end();
  1351   G1CMIsAliveClosure is_alive(g1h);
  1352   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1355 // Base class of the closures that finalize and verify the
  1356 // liveness counting data.
  1357 class CMCountDataClosureBase: public HeapRegionClosure {
  1358 protected:
  1359   G1CollectedHeap* _g1h;
  1360   ConcurrentMark* _cm;
  1361   CardTableModRefBS* _ct_bs;
  1363   BitMap* _region_bm;
  1364   BitMap* _card_bm;
  1366   // Takes a region that's not empty (i.e., it has at least one
  1367   // live object in it and sets its corresponding bit on the region
  1368   // bitmap to 1. If the region is "starts humongous" it will also set
  1369   // to 1 the bits on the region bitmap that correspond to its
  1370   // associated "continues humongous" regions.
  1371   void set_bit_for_region(HeapRegion* hr) {
  1372     assert(!hr->continuesHumongous(), "should have filtered those out");
  1374     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1375     if (!hr->startsHumongous()) {
  1376       // Normal (non-humongous) case: just set the bit.
  1377       _region_bm->par_at_put(index, true);
  1378     } else {
  1379       // Starts humongous case: calculate how many regions are part of
  1380       // this humongous region and then set the bit range.
  1381       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1382       _region_bm->par_at_put_range(index, end_index, true);
  1386 public:
  1387   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1388                          BitMap* region_bm, BitMap* card_bm):
  1389     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1390     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1391     _region_bm(region_bm), _card_bm(card_bm) { }
  1392 };
  1394 // Closure that calculates the # live objects per region. Used
  1395 // for verification purposes during the cleanup pause.
  1396 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1397   CMBitMapRO* _bm;
  1398   size_t _region_marked_bytes;
  1400 public:
  1401   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1402                          BitMap* region_bm, BitMap* card_bm) :
  1403     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1404     _bm(bm), _region_marked_bytes(0) { }
  1406   bool doHeapRegion(HeapRegion* hr) {
  1408     if (hr->continuesHumongous()) {
  1409       // We will ignore these here and process them when their
  1410       // associated "starts humongous" region is processed (see
  1411       // set_bit_for_heap_region()). Note that we cannot rely on their
  1412       // associated "starts humongous" region to have their bit set to
  1413       // 1 since, due to the region chunking in the parallel region
  1414       // iteration, a "continues humongous" region might be visited
  1415       // before its associated "starts humongous".
  1416       return false;
  1419     HeapWord* ntams = hr->next_top_at_mark_start();
  1420     HeapWord* start = hr->bottom();
  1422     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1423            err_msg("Preconditions not met - "
  1424                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1425                    start, ntams, hr->end()));
  1427     // Find the first marked object at or after "start".
  1428     start = _bm->getNextMarkedWordAddress(start, ntams);
  1430     size_t marked_bytes = 0;
  1432     while (start < ntams) {
  1433       oop obj = oop(start);
  1434       int obj_sz = obj->size();
  1435       HeapWord* obj_end = start + obj_sz;
  1437       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1438       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1440       // Note: if we're looking at the last region in heap - obj_end
  1441       // could be actually just beyond the end of the heap; end_idx
  1442       // will then correspond to a (non-existent) card that is also
  1443       // just beyond the heap.
  1444       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1445         // end of object is not card aligned - increment to cover
  1446         // all the cards spanned by the object
  1447         end_idx += 1;
  1450       // Set the bits in the card BM for the cards spanned by this object.
  1451       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1453       // Add the size of this object to the number of marked bytes.
  1454       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1456       // Find the next marked object after this one.
  1457       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1460     // Mark the allocated-since-marking portion...
  1461     HeapWord* top = hr->top();
  1462     if (ntams < top) {
  1463       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1464       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1466       // Note: if we're looking at the last region in heap - top
  1467       // could be actually just beyond the end of the heap; end_idx
  1468       // will then correspond to a (non-existent) card that is also
  1469       // just beyond the heap.
  1470       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1471         // end of object is not card aligned - increment to cover
  1472         // all the cards spanned by the object
  1473         end_idx += 1;
  1475       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1477       // This definitely means the region has live objects.
  1478       set_bit_for_region(hr);
  1481     // Update the live region bitmap.
  1482     if (marked_bytes > 0) {
  1483       set_bit_for_region(hr);
  1486     // Set the marked bytes for the current region so that
  1487     // it can be queried by a calling verificiation routine
  1488     _region_marked_bytes = marked_bytes;
  1490     return false;
  1493   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1494 };
  1496 // Heap region closure used for verifying the counting data
  1497 // that was accumulated concurrently and aggregated during
  1498 // the remark pause. This closure is applied to the heap
  1499 // regions during the STW cleanup pause.
  1501 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1502   G1CollectedHeap* _g1h;
  1503   ConcurrentMark* _cm;
  1504   CalcLiveObjectsClosure _calc_cl;
  1505   BitMap* _region_bm;   // Region BM to be verified
  1506   BitMap* _card_bm;     // Card BM to be verified
  1507   bool _verbose;        // verbose output?
  1509   BitMap* _exp_region_bm; // Expected Region BM values
  1510   BitMap* _exp_card_bm;   // Expected card BM values
  1512   int _failures;
  1514 public:
  1515   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1516                                 BitMap* region_bm,
  1517                                 BitMap* card_bm,
  1518                                 BitMap* exp_region_bm,
  1519                                 BitMap* exp_card_bm,
  1520                                 bool verbose) :
  1521     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1522     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1523     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1524     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1525     _failures(0) { }
  1527   int failures() const { return _failures; }
  1529   bool doHeapRegion(HeapRegion* hr) {
  1530     if (hr->continuesHumongous()) {
  1531       // We will ignore these here and process them when their
  1532       // associated "starts humongous" region is processed (see
  1533       // set_bit_for_heap_region()). Note that we cannot rely on their
  1534       // associated "starts humongous" region to have their bit set to
  1535       // 1 since, due to the region chunking in the parallel region
  1536       // iteration, a "continues humongous" region might be visited
  1537       // before its associated "starts humongous".
  1538       return false;
  1541     int failures = 0;
  1543     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1544     // this region and set the corresponding bits in the expected region
  1545     // and card bitmaps.
  1546     bool res = _calc_cl.doHeapRegion(hr);
  1547     assert(res == false, "should be continuing");
  1549     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1550                     Mutex::_no_safepoint_check_flag);
  1552     // Verify the marked bytes for this region.
  1553     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1554     size_t act_marked_bytes = hr->next_marked_bytes();
  1556     // We're not OK if expected marked bytes > actual marked bytes. It means
  1557     // we have missed accounting some objects during the actual marking.
  1558     if (exp_marked_bytes > act_marked_bytes) {
  1559       if (_verbose) {
  1560         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1561                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1562                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1564       failures += 1;
  1567     // Verify the bit, for this region, in the actual and expected
  1568     // (which was just calculated) region bit maps.
  1569     // We're not OK if the bit in the calculated expected region
  1570     // bitmap is set and the bit in the actual region bitmap is not.
  1571     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1573     bool expected = _exp_region_bm->at(index);
  1574     bool actual = _region_bm->at(index);
  1575     if (expected && !actual) {
  1576       if (_verbose) {
  1577         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1578                                "expected: %s, actual: %s",
  1579                                hr->hrs_index(),
  1580                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1582       failures += 1;
  1585     // Verify that the card bit maps for the cards spanned by the current
  1586     // region match. We have an error if we have a set bit in the expected
  1587     // bit map and the corresponding bit in the actual bitmap is not set.
  1589     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1590     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1592     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1593       expected = _exp_card_bm->at(i);
  1594       actual = _card_bm->at(i);
  1596       if (expected && !actual) {
  1597         if (_verbose) {
  1598           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1599                                  "expected: %s, actual: %s",
  1600                                  hr->hrs_index(), i,
  1601                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1603         failures += 1;
  1607     if (failures > 0 && _verbose)  {
  1608       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1609                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1610                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
  1611                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1614     _failures += failures;
  1616     // We could stop iteration over the heap when we
  1617     // find the first violating region by returning true.
  1618     return false;
  1620 };
  1622 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1623 protected:
  1624   G1CollectedHeap* _g1h;
  1625   ConcurrentMark* _cm;
  1626   BitMap* _actual_region_bm;
  1627   BitMap* _actual_card_bm;
  1629   uint    _n_workers;
  1631   BitMap* _expected_region_bm;
  1632   BitMap* _expected_card_bm;
  1634   int  _failures;
  1635   bool _verbose;
  1637 public:
  1638   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1639                             BitMap* region_bm, BitMap* card_bm,
  1640                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1641     : AbstractGangTask("G1 verify final counting"),
  1642       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1643       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1644       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1645       _failures(0), _verbose(false),
  1646       _n_workers(0) {
  1647     assert(VerifyDuringGC, "don't call this otherwise");
  1649     // Use the value already set as the number of active threads
  1650     // in the call to run_task().
  1651     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1652       assert( _g1h->workers()->active_workers() > 0,
  1653         "Should have been previously set");
  1654       _n_workers = _g1h->workers()->active_workers();
  1655     } else {
  1656       _n_workers = 1;
  1659     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1660     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1662     _verbose = _cm->verbose_medium();
  1665   void work(uint worker_id) {
  1666     assert(worker_id < _n_workers, "invariant");
  1668     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1669                                             _actual_region_bm, _actual_card_bm,
  1670                                             _expected_region_bm,
  1671                                             _expected_card_bm,
  1672                                             _verbose);
  1674     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1675       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1676                                             worker_id,
  1677                                             _n_workers,
  1678                                             HeapRegion::VerifyCountClaimValue);
  1679     } else {
  1680       _g1h->heap_region_iterate(&verify_cl);
  1683     Atomic::add(verify_cl.failures(), &_failures);
  1686   int failures() const { return _failures; }
  1687 };
  1689 // Closure that finalizes the liveness counting data.
  1690 // Used during the cleanup pause.
  1691 // Sets the bits corresponding to the interval [NTAMS, top]
  1692 // (which contains the implicitly live objects) in the
  1693 // card liveness bitmap. Also sets the bit for each region,
  1694 // containing live data, in the region liveness bitmap.
  1696 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1697  public:
  1698   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1699                               BitMap* region_bm,
  1700                               BitMap* card_bm) :
  1701     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1703   bool doHeapRegion(HeapRegion* hr) {
  1705     if (hr->continuesHumongous()) {
  1706       // We will ignore these here and process them when their
  1707       // associated "starts humongous" region is processed (see
  1708       // set_bit_for_heap_region()). Note that we cannot rely on their
  1709       // associated "starts humongous" region to have their bit set to
  1710       // 1 since, due to the region chunking in the parallel region
  1711       // iteration, a "continues humongous" region might be visited
  1712       // before its associated "starts humongous".
  1713       return false;
  1716     HeapWord* ntams = hr->next_top_at_mark_start();
  1717     HeapWord* top   = hr->top();
  1719     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1721     // Mark the allocated-since-marking portion...
  1722     if (ntams < top) {
  1723       // This definitely means the region has live objects.
  1724       set_bit_for_region(hr);
  1726       // Now set the bits in the card bitmap for [ntams, top)
  1727       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1728       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1730       // Note: if we're looking at the last region in heap - top
  1731       // could be actually just beyond the end of the heap; end_idx
  1732       // will then correspond to a (non-existent) card that is also
  1733       // just beyond the heap.
  1734       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1735         // end of object is not card aligned - increment to cover
  1736         // all the cards spanned by the object
  1737         end_idx += 1;
  1740       assert(end_idx <= _card_bm->size(),
  1741              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1742                      end_idx, _card_bm->size()));
  1743       assert(start_idx < _card_bm->size(),
  1744              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1745                      start_idx, _card_bm->size()));
  1747       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1750     // Set the bit for the region if it contains live data
  1751     if (hr->next_marked_bytes() > 0) {
  1752       set_bit_for_region(hr);
  1755     return false;
  1757 };
  1759 class G1ParFinalCountTask: public AbstractGangTask {
  1760 protected:
  1761   G1CollectedHeap* _g1h;
  1762   ConcurrentMark* _cm;
  1763   BitMap* _actual_region_bm;
  1764   BitMap* _actual_card_bm;
  1766   uint    _n_workers;
  1768 public:
  1769   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1770     : AbstractGangTask("G1 final counting"),
  1771       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1772       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1773       _n_workers(0) {
  1774     // Use the value already set as the number of active threads
  1775     // in the call to run_task().
  1776     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1777       assert( _g1h->workers()->active_workers() > 0,
  1778         "Should have been previously set");
  1779       _n_workers = _g1h->workers()->active_workers();
  1780     } else {
  1781       _n_workers = 1;
  1785   void work(uint worker_id) {
  1786     assert(worker_id < _n_workers, "invariant");
  1788     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1789                                                 _actual_region_bm,
  1790                                                 _actual_card_bm);
  1792     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1793       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1794                                             worker_id,
  1795                                             _n_workers,
  1796                                             HeapRegion::FinalCountClaimValue);
  1797     } else {
  1798       _g1h->heap_region_iterate(&final_update_cl);
  1801 };
  1803 class G1ParNoteEndTask;
  1805 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1806   G1CollectedHeap* _g1;
  1807   int _worker_num;
  1808   size_t _max_live_bytes;
  1809   uint _regions_claimed;
  1810   size_t _freed_bytes;
  1811   FreeRegionList* _local_cleanup_list;
  1812   HeapRegionSetCount _old_regions_removed;
  1813   HeapRegionSetCount _humongous_regions_removed;
  1814   HRRSCleanupTask* _hrrs_cleanup_task;
  1815   double _claimed_region_time;
  1816   double _max_region_time;
  1818 public:
  1819   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1820                              int worker_num,
  1821                              FreeRegionList* local_cleanup_list,
  1822                              HRRSCleanupTask* hrrs_cleanup_task) :
  1823     _g1(g1), _worker_num(worker_num),
  1824     _max_live_bytes(0), _regions_claimed(0),
  1825     _freed_bytes(0),
  1826     _claimed_region_time(0.0), _max_region_time(0.0),
  1827     _local_cleanup_list(local_cleanup_list),
  1828     _old_regions_removed(),
  1829     _humongous_regions_removed(),
  1830     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1832   size_t freed_bytes() { return _freed_bytes; }
  1833   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1834   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1836   bool doHeapRegion(HeapRegion *hr) {
  1837     if (hr->continuesHumongous()) {
  1838       return false;
  1840     // We use a claim value of zero here because all regions
  1841     // were claimed with value 1 in the FinalCount task.
  1842     _g1->reset_gc_time_stamps(hr);
  1843     double start = os::elapsedTime();
  1844     _regions_claimed++;
  1845     hr->note_end_of_marking();
  1846     _max_live_bytes += hr->max_live_bytes();
  1848     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1849       _freed_bytes += hr->used();
  1850       hr->set_containing_set(NULL);
  1851       if (hr->isHumongous()) {
  1852         assert(hr->startsHumongous(), "we should only see starts humongous");
  1853         _humongous_regions_removed.increment(1u, hr->capacity());
  1854         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1855       } else {
  1856         _old_regions_removed.increment(1u, hr->capacity());
  1857         _g1->free_region(hr, _local_cleanup_list, true);
  1859     } else {
  1860       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1863     double region_time = (os::elapsedTime() - start);
  1864     _claimed_region_time += region_time;
  1865     if (region_time > _max_region_time) {
  1866       _max_region_time = region_time;
  1868     return false;
  1871   size_t max_live_bytes() { return _max_live_bytes; }
  1872   uint regions_claimed() { return _regions_claimed; }
  1873   double claimed_region_time_sec() { return _claimed_region_time; }
  1874   double max_region_time_sec() { return _max_region_time; }
  1875 };
  1877 class G1ParNoteEndTask: public AbstractGangTask {
  1878   friend class G1NoteEndOfConcMarkClosure;
  1880 protected:
  1881   G1CollectedHeap* _g1h;
  1882   size_t _max_live_bytes;
  1883   size_t _freed_bytes;
  1884   FreeRegionList* _cleanup_list;
  1886 public:
  1887   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1888                    FreeRegionList* cleanup_list) :
  1889     AbstractGangTask("G1 note end"), _g1h(g1h),
  1890     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1892   void work(uint worker_id) {
  1893     double start = os::elapsedTime();
  1894     FreeRegionList local_cleanup_list("Local Cleanup List");
  1895     HRRSCleanupTask hrrs_cleanup_task;
  1896     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
  1897                                            &hrrs_cleanup_task);
  1898     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1899       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1900                                             _g1h->workers()->active_workers(),
  1901                                             HeapRegion::NoteEndClaimValue);
  1902     } else {
  1903       _g1h->heap_region_iterate(&g1_note_end);
  1905     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1907     // Now update the lists
  1908     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1910       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1911       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1912       _max_live_bytes += g1_note_end.max_live_bytes();
  1913       _freed_bytes += g1_note_end.freed_bytes();
  1915       // If we iterate over the global cleanup list at the end of
  1916       // cleanup to do this printing we will not guarantee to only
  1917       // generate output for the newly-reclaimed regions (the list
  1918       // might not be empty at the beginning of cleanup; we might
  1919       // still be working on its previous contents). So we do the
  1920       // printing here, before we append the new regions to the global
  1921       // cleanup list.
  1923       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1924       if (hr_printer->is_active()) {
  1925         FreeRegionListIterator iter(&local_cleanup_list);
  1926         while (iter.more_available()) {
  1927           HeapRegion* hr = iter.get_next();
  1928           hr_printer->cleanup(hr);
  1932       _cleanup_list->add_as_tail(&local_cleanup_list);
  1933       assert(local_cleanup_list.is_empty(), "post-condition");
  1935       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1938   size_t max_live_bytes() { return _max_live_bytes; }
  1939   size_t freed_bytes() { return _freed_bytes; }
  1940 };
  1942 class G1ParScrubRemSetTask: public AbstractGangTask {
  1943 protected:
  1944   G1RemSet* _g1rs;
  1945   BitMap* _region_bm;
  1946   BitMap* _card_bm;
  1947 public:
  1948   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1949                        BitMap* region_bm, BitMap* card_bm) :
  1950     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1951     _region_bm(region_bm), _card_bm(card_bm) { }
  1953   void work(uint worker_id) {
  1954     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1955       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1956                        HeapRegion::ScrubRemSetClaimValue);
  1957     } else {
  1958       _g1rs->scrub(_region_bm, _card_bm);
  1962 };
  1964 void ConcurrentMark::cleanup() {
  1965   // world is stopped at this checkpoint
  1966   assert(SafepointSynchronize::is_at_safepoint(),
  1967          "world should be stopped");
  1968   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1970   // If a full collection has happened, we shouldn't do this.
  1971   if (has_aborted()) {
  1972     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1973     return;
  1976   g1h->verify_region_sets_optional();
  1978   if (VerifyDuringGC) {
  1979     HandleMark hm;  // handle scope
  1980     Universe::heap()->prepare_for_verify();
  1981     Universe::verify(VerifyOption_G1UsePrevMarking,
  1982                      " VerifyDuringGC:(before)");
  1985   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  1986   g1p->record_concurrent_mark_cleanup_start();
  1988   double start = os::elapsedTime();
  1990   HeapRegionRemSet::reset_for_cleanup_tasks();
  1992   uint n_workers;
  1994   // Do counting once more with the world stopped for good measure.
  1995   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  1997   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1998    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1999            "sanity check");
  2001     g1h->set_par_threads();
  2002     n_workers = g1h->n_par_threads();
  2003     assert(g1h->n_par_threads() == n_workers,
  2004            "Should not have been reset");
  2005     g1h->workers()->run_task(&g1_par_count_task);
  2006     // Done with the parallel phase so reset to 0.
  2007     g1h->set_par_threads(0);
  2009     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2010            "sanity check");
  2011   } else {
  2012     n_workers = 1;
  2013     g1_par_count_task.work(0);
  2016   if (VerifyDuringGC) {
  2017     // Verify that the counting data accumulated during marking matches
  2018     // that calculated by walking the marking bitmap.
  2020     // Bitmaps to hold expected values
  2021     BitMap expected_region_bm(_region_bm.size(), false);
  2022     BitMap expected_card_bm(_card_bm.size(), false);
  2024     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2025                                                  &_region_bm,
  2026                                                  &_card_bm,
  2027                                                  &expected_region_bm,
  2028                                                  &expected_card_bm);
  2030     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2031       g1h->set_par_threads((int)n_workers);
  2032       g1h->workers()->run_task(&g1_par_verify_task);
  2033       // Done with the parallel phase so reset to 0.
  2034       g1h->set_par_threads(0);
  2036       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2037              "sanity check");
  2038     } else {
  2039       g1_par_verify_task.work(0);
  2042     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2045   size_t start_used_bytes = g1h->used();
  2046   g1h->set_marking_complete();
  2048   double count_end = os::elapsedTime();
  2049   double this_final_counting_time = (count_end - start);
  2050   _total_counting_time += this_final_counting_time;
  2052   if (G1PrintRegionLivenessInfo) {
  2053     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2054     _g1h->heap_region_iterate(&cl);
  2057   // Install newly created mark bitMap as "prev".
  2058   swapMarkBitMaps();
  2060   g1h->reset_gc_time_stamp();
  2062   // Note end of marking in all heap regions.
  2063   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2064   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2065     g1h->set_par_threads((int)n_workers);
  2066     g1h->workers()->run_task(&g1_par_note_end_task);
  2067     g1h->set_par_threads(0);
  2069     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2070            "sanity check");
  2071   } else {
  2072     g1_par_note_end_task.work(0);
  2074   g1h->check_gc_time_stamps();
  2076   if (!cleanup_list_is_empty()) {
  2077     // The cleanup list is not empty, so we'll have to process it
  2078     // concurrently. Notify anyone else that might be wanting free
  2079     // regions that there will be more free regions coming soon.
  2080     g1h->set_free_regions_coming();
  2083   // call below, since it affects the metric by which we sort the heap
  2084   // regions.
  2085   if (G1ScrubRemSets) {
  2086     double rs_scrub_start = os::elapsedTime();
  2087     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2088     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2089       g1h->set_par_threads((int)n_workers);
  2090       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2091       g1h->set_par_threads(0);
  2093       assert(g1h->check_heap_region_claim_values(
  2094                                             HeapRegion::ScrubRemSetClaimValue),
  2095              "sanity check");
  2096     } else {
  2097       g1_par_scrub_rs_task.work(0);
  2100     double rs_scrub_end = os::elapsedTime();
  2101     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2102     _total_rs_scrub_time += this_rs_scrub_time;
  2105   // this will also free any regions totally full of garbage objects,
  2106   // and sort the regions.
  2107   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2109   // Statistics.
  2110   double end = os::elapsedTime();
  2111   _cleanup_times.add((end - start) * 1000.0);
  2113   if (G1Log::fine()) {
  2114     g1h->print_size_transition(gclog_or_tty,
  2115                                start_used_bytes,
  2116                                g1h->used(),
  2117                                g1h->capacity());
  2120   // Clean up will have freed any regions completely full of garbage.
  2121   // Update the soft reference policy with the new heap occupancy.
  2122   Universe::update_heap_info_at_gc();
  2124   // We need to make this be a "collection" so any collection pause that
  2125   // races with it goes around and waits for completeCleanup to finish.
  2126   g1h->increment_total_collections();
  2128   // We reclaimed old regions so we should calculate the sizes to make
  2129   // sure we update the old gen/space data.
  2130   g1h->g1mm()->update_sizes();
  2132   if (VerifyDuringGC) {
  2133     HandleMark hm;  // handle scope
  2134     Universe::heap()->prepare_for_verify();
  2135     Universe::verify(VerifyOption_G1UsePrevMarking,
  2136                      " VerifyDuringGC:(after)");
  2139   g1h->verify_region_sets_optional();
  2140   g1h->trace_heap_after_concurrent_cycle();
  2143 void ConcurrentMark::completeCleanup() {
  2144   if (has_aborted()) return;
  2146   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2148   _cleanup_list.verify_list();
  2149   FreeRegionList tmp_free_list("Tmp Free List");
  2151   if (G1ConcRegionFreeingVerbose) {
  2152     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2153                            "cleanup list has %u entries",
  2154                            _cleanup_list.length());
  2157   // Noone else should be accessing the _cleanup_list at this point,
  2158   // so it's not necessary to take any locks
  2159   while (!_cleanup_list.is_empty()) {
  2160     HeapRegion* hr = _cleanup_list.remove_head();
  2161     assert(hr != NULL, "the list was not empty");
  2162     hr->par_clear();
  2163     tmp_free_list.add_as_tail(hr);
  2165     // Instead of adding one region at a time to the secondary_free_list,
  2166     // we accumulate them in the local list and move them a few at a
  2167     // time. This also cuts down on the number of notify_all() calls
  2168     // we do during this process. We'll also append the local list when
  2169     // _cleanup_list is empty (which means we just removed the last
  2170     // region from the _cleanup_list).
  2171     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2172         _cleanup_list.is_empty()) {
  2173       if (G1ConcRegionFreeingVerbose) {
  2174         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2175                                "appending %u entries to the secondary_free_list, "
  2176                                "cleanup list still has %u entries",
  2177                                tmp_free_list.length(),
  2178                                _cleanup_list.length());
  2182         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2183         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
  2184         SecondaryFreeList_lock->notify_all();
  2187       if (G1StressConcRegionFreeing) {
  2188         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2189           os::sleep(Thread::current(), (jlong) 1, false);
  2194   assert(tmp_free_list.is_empty(), "post-condition");
  2197 // Supporting Object and Oop closures for reference discovery
  2198 // and processing in during marking
  2200 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2201   HeapWord* addr = (HeapWord*)obj;
  2202   return addr != NULL &&
  2203          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2206 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2207 // Uses the CMTask associated with a worker thread (for serial reference
  2208 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2209 // trace referent objects.
  2210 //
  2211 // Using the CMTask and embedded local queues avoids having the worker
  2212 // threads operating on the global mark stack. This reduces the risk
  2213 // of overflowing the stack - which we would rather avoid at this late
  2214 // state. Also using the tasks' local queues removes the potential
  2215 // of the workers interfering with each other that could occur if
  2216 // operating on the global stack.
  2218 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2219   ConcurrentMark* _cm;
  2220   CMTask*         _task;
  2221   int             _ref_counter_limit;
  2222   int             _ref_counter;
  2223   bool            _is_serial;
  2224  public:
  2225   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2226     _cm(cm), _task(task), _is_serial(is_serial),
  2227     _ref_counter_limit(G1RefProcDrainInterval) {
  2228     assert(_ref_counter_limit > 0, "sanity");
  2229     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2230     _ref_counter = _ref_counter_limit;
  2233   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2234   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2236   template <class T> void do_oop_work(T* p) {
  2237     if (!_cm->has_overflown()) {
  2238       oop obj = oopDesc::load_decode_heap_oop(p);
  2239       if (_cm->verbose_high()) {
  2240         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2241                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2242                                _task->worker_id(), p, (void*) obj);
  2245       _task->deal_with_reference(obj);
  2246       _ref_counter--;
  2248       if (_ref_counter == 0) {
  2249         // We have dealt with _ref_counter_limit references, pushing them
  2250         // and objects reachable from them on to the local stack (and
  2251         // possibly the global stack). Call CMTask::do_marking_step() to
  2252         // process these entries.
  2253         //
  2254         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2255         // there's nothing more to do (i.e. we're done with the entries that
  2256         // were pushed as a result of the CMTask::deal_with_reference() calls
  2257         // above) or we overflow.
  2258         //
  2259         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2260         // flag while there may still be some work to do. (See the comment at
  2261         // the beginning of CMTask::do_marking_step() for those conditions -
  2262         // one of which is reaching the specified time target.) It is only
  2263         // when CMTask::do_marking_step() returns without setting the
  2264         // has_aborted() flag that the marking step has completed.
  2265         do {
  2266           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2267           _task->do_marking_step(mark_step_duration_ms,
  2268                                  false      /* do_termination */,
  2269                                  _is_serial);
  2270         } while (_task->has_aborted() && !_cm->has_overflown());
  2271         _ref_counter = _ref_counter_limit;
  2273     } else {
  2274       if (_cm->verbose_high()) {
  2275          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2279 };
  2281 // 'Drain' oop closure used by both serial and parallel reference processing.
  2282 // Uses the CMTask associated with a given worker thread (for serial
  2283 // reference processing the CMtask for worker 0 is used). Calls the
  2284 // do_marking_step routine, with an unbelievably large timeout value,
  2285 // to drain the marking data structures of the remaining entries
  2286 // added by the 'keep alive' oop closure above.
  2288 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2289   ConcurrentMark* _cm;
  2290   CMTask*         _task;
  2291   bool            _is_serial;
  2292  public:
  2293   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2294     _cm(cm), _task(task), _is_serial(is_serial) {
  2295     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2298   void do_void() {
  2299     do {
  2300       if (_cm->verbose_high()) {
  2301         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2302                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2305       // We call CMTask::do_marking_step() to completely drain the local
  2306       // and global marking stacks of entries pushed by the 'keep alive'
  2307       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2308       //
  2309       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2310       // if there's nothing more to do (i.e. we'completely drained the
  2311       // entries that were pushed as a a result of applying the 'keep alive'
  2312       // closure to the entries on the discovered ref lists) or we overflow
  2313       // the global marking stack.
  2314       //
  2315       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2316       // flag while there may still be some work to do. (See the comment at
  2317       // the beginning of CMTask::do_marking_step() for those conditions -
  2318       // one of which is reaching the specified time target.) It is only
  2319       // when CMTask::do_marking_step() returns without setting the
  2320       // has_aborted() flag that the marking step has completed.
  2322       _task->do_marking_step(1000000000.0 /* something very large */,
  2323                              true         /* do_termination */,
  2324                              _is_serial);
  2325     } while (_task->has_aborted() && !_cm->has_overflown());
  2327 };
  2329 // Implementation of AbstractRefProcTaskExecutor for parallel
  2330 // reference processing at the end of G1 concurrent marking
  2332 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2333 private:
  2334   G1CollectedHeap* _g1h;
  2335   ConcurrentMark*  _cm;
  2336   WorkGang*        _workers;
  2337   int              _active_workers;
  2339 public:
  2340   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2341                         ConcurrentMark* cm,
  2342                         WorkGang* workers,
  2343                         int n_workers) :
  2344     _g1h(g1h), _cm(cm),
  2345     _workers(workers), _active_workers(n_workers) { }
  2347   // Executes the given task using concurrent marking worker threads.
  2348   virtual void execute(ProcessTask& task);
  2349   virtual void execute(EnqueueTask& task);
  2350 };
  2352 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2353   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2354   ProcessTask&     _proc_task;
  2355   G1CollectedHeap* _g1h;
  2356   ConcurrentMark*  _cm;
  2358 public:
  2359   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2360                      G1CollectedHeap* g1h,
  2361                      ConcurrentMark* cm) :
  2362     AbstractGangTask("Process reference objects in parallel"),
  2363     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2364     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2365     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2368   virtual void work(uint worker_id) {
  2369     CMTask* task = _cm->task(worker_id);
  2370     G1CMIsAliveClosure g1_is_alive(_g1h);
  2371     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2372     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2374     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2376 };
  2378 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2379   assert(_workers != NULL, "Need parallel worker threads.");
  2380   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2382   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2384   // We need to reset the concurrency level before each
  2385   // proxy task execution, so that the termination protocol
  2386   // and overflow handling in CMTask::do_marking_step() knows
  2387   // how many workers to wait for.
  2388   _cm->set_concurrency(_active_workers);
  2389   _g1h->set_par_threads(_active_workers);
  2390   _workers->run_task(&proc_task_proxy);
  2391   _g1h->set_par_threads(0);
  2394 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2395   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2396   EnqueueTask& _enq_task;
  2398 public:
  2399   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2400     AbstractGangTask("Enqueue reference objects in parallel"),
  2401     _enq_task(enq_task) { }
  2403   virtual void work(uint worker_id) {
  2404     _enq_task.work(worker_id);
  2406 };
  2408 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2409   assert(_workers != NULL, "Need parallel worker threads.");
  2410   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2412   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2414   // Not strictly necessary but...
  2415   //
  2416   // We need to reset the concurrency level before each
  2417   // proxy task execution, so that the termination protocol
  2418   // and overflow handling in CMTask::do_marking_step() knows
  2419   // how many workers to wait for.
  2420   _cm->set_concurrency(_active_workers);
  2421   _g1h->set_par_threads(_active_workers);
  2422   _workers->run_task(&enq_task_proxy);
  2423   _g1h->set_par_threads(0);
  2426 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2427   if (has_overflown()) {
  2428     // Skip processing the discovered references if we have
  2429     // overflown the global marking stack. Reference objects
  2430     // only get discovered once so it is OK to not
  2431     // de-populate the discovered reference lists. We could have,
  2432     // but the only benefit would be that, when marking restarts,
  2433     // less reference objects are discovered.
  2434     return;
  2437   ResourceMark rm;
  2438   HandleMark   hm;
  2440   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2442   // Is alive closure.
  2443   G1CMIsAliveClosure g1_is_alive(g1h);
  2445   // Inner scope to exclude the cleaning of the string and symbol
  2446   // tables from the displayed time.
  2448     if (G1Log::finer()) {
  2449       gclog_or_tty->put(' ');
  2451     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm());
  2453     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2455     // See the comment in G1CollectedHeap::ref_processing_init()
  2456     // about how reference processing currently works in G1.
  2458     // Set the soft reference policy
  2459     rp->setup_policy(clear_all_soft_refs);
  2460     assert(_markStack.isEmpty(), "mark stack should be empty");
  2462     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2463     // in serial reference processing. Note these closures are also
  2464     // used for serially processing (by the the current thread) the
  2465     // JNI references during parallel reference processing.
  2466     //
  2467     // These closures do not need to synchronize with the worker
  2468     // threads involved in parallel reference processing as these
  2469     // instances are executed serially by the current thread (e.g.
  2470     // reference processing is not multi-threaded and is thus
  2471     // performed by the current thread instead of a gang worker).
  2472     //
  2473     // The gang tasks involved in parallel reference procssing create
  2474     // their own instances of these closures, which do their own
  2475     // synchronization among themselves.
  2476     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2477     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2479     // We need at least one active thread. If reference processing
  2480     // is not multi-threaded we use the current (VMThread) thread,
  2481     // otherwise we use the work gang from the G1CollectedHeap and
  2482     // we utilize all the worker threads we can.
  2483     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2484     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2485     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2487     // Parallel processing task executor.
  2488     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2489                                               g1h->workers(), active_workers);
  2490     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2492     // Set the concurrency level. The phase was already set prior to
  2493     // executing the remark task.
  2494     set_concurrency(active_workers);
  2496     // Set the degree of MT processing here.  If the discovery was done MT,
  2497     // the number of threads involved during discovery could differ from
  2498     // the number of active workers.  This is OK as long as the discovered
  2499     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2500     rp->set_active_mt_degree(active_workers);
  2502     // Process the weak references.
  2503     const ReferenceProcessorStats& stats =
  2504         rp->process_discovered_references(&g1_is_alive,
  2505                                           &g1_keep_alive,
  2506                                           &g1_drain_mark_stack,
  2507                                           executor,
  2508                                           g1h->gc_timer_cm());
  2509     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2511     // The do_oop work routines of the keep_alive and drain_marking_stack
  2512     // oop closures will set the has_overflown flag if we overflow the
  2513     // global marking stack.
  2515     assert(_markStack.overflow() || _markStack.isEmpty(),
  2516             "mark stack should be empty (unless it overflowed)");
  2518     if (_markStack.overflow()) {
  2519       // This should have been done already when we tried to push an
  2520       // entry on to the global mark stack. But let's do it again.
  2521       set_has_overflown();
  2524     assert(rp->num_q() == active_workers, "why not");
  2526     rp->enqueue_discovered_references(executor);
  2528     rp->verify_no_references_recorded();
  2529     assert(!rp->discovery_enabled(), "Post condition");
  2532   if (has_overflown()) {
  2533     // We can not trust g1_is_alive if the marking stack overflowed
  2534     return;
  2537   g1h->unlink_string_and_symbol_table(&g1_is_alive,
  2538                                       /* process_strings */ false, // currently strings are always roots
  2539                                       /* process_symbols */ true);
  2542 void ConcurrentMark::swapMarkBitMaps() {
  2543   CMBitMapRO* temp = _prevMarkBitMap;
  2544   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2545   _nextMarkBitMap  = (CMBitMap*)  temp;
  2548 class CMRemarkTask: public AbstractGangTask {
  2549 private:
  2550   ConcurrentMark* _cm;
  2551   bool            _is_serial;
  2552 public:
  2553   void work(uint worker_id) {
  2554     // Since all available tasks are actually started, we should
  2555     // only proceed if we're supposed to be actived.
  2556     if (worker_id < _cm->active_tasks()) {
  2557       CMTask* task = _cm->task(worker_id);
  2558       task->record_start_time();
  2559       do {
  2560         task->do_marking_step(1000000000.0 /* something very large */,
  2561                               true         /* do_termination       */,
  2562                               _is_serial);
  2563       } while (task->has_aborted() && !_cm->has_overflown());
  2564       // If we overflow, then we do not want to restart. We instead
  2565       // want to abort remark and do concurrent marking again.
  2566       task->record_end_time();
  2570   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2571     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2572     _cm->terminator()->reset_for_reuse(active_workers);
  2574 };
  2576 void ConcurrentMark::checkpointRootsFinalWork() {
  2577   ResourceMark rm;
  2578   HandleMark   hm;
  2579   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2581   g1h->ensure_parsability(false);
  2583   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2584     G1CollectedHeap::StrongRootsScope srs(g1h);
  2585     // this is remark, so we'll use up all active threads
  2586     uint active_workers = g1h->workers()->active_workers();
  2587     if (active_workers == 0) {
  2588       assert(active_workers > 0, "Should have been set earlier");
  2589       active_workers = (uint) ParallelGCThreads;
  2590       g1h->workers()->set_active_workers(active_workers);
  2592     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2593     // Leave _parallel_marking_threads at it's
  2594     // value originally calculated in the ConcurrentMark
  2595     // constructor and pass values of the active workers
  2596     // through the gang in the task.
  2598     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2599     // We will start all available threads, even if we decide that the
  2600     // active_workers will be fewer. The extra ones will just bail out
  2601     // immediately.
  2602     g1h->set_par_threads(active_workers);
  2603     g1h->workers()->run_task(&remarkTask);
  2604     g1h->set_par_threads(0);
  2605   } else {
  2606     G1CollectedHeap::StrongRootsScope srs(g1h);
  2607     uint active_workers = 1;
  2608     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2610     // Note - if there's no work gang then the VMThread will be
  2611     // the thread to execute the remark - serially. We have
  2612     // to pass true for the is_serial parameter so that
  2613     // CMTask::do_marking_step() doesn't enter the sync
  2614     // barriers in the event of an overflow. Doing so will
  2615     // cause an assert that the current thread is not a
  2616     // concurrent GC thread.
  2617     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2618     remarkTask.work(0);
  2620   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2621   guarantee(has_overflown() ||
  2622             satb_mq_set.completed_buffers_num() == 0,
  2623             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2624                     BOOL_TO_STR(has_overflown()),
  2625                     satb_mq_set.completed_buffers_num()));
  2627   print_stats();
  2630 #ifndef PRODUCT
  2632 class PrintReachableOopClosure: public OopClosure {
  2633 private:
  2634   G1CollectedHeap* _g1h;
  2635   outputStream*    _out;
  2636   VerifyOption     _vo;
  2637   bool             _all;
  2639 public:
  2640   PrintReachableOopClosure(outputStream* out,
  2641                            VerifyOption  vo,
  2642                            bool          all) :
  2643     _g1h(G1CollectedHeap::heap()),
  2644     _out(out), _vo(vo), _all(all) { }
  2646   void do_oop(narrowOop* p) { do_oop_work(p); }
  2647   void do_oop(      oop* p) { do_oop_work(p); }
  2649   template <class T> void do_oop_work(T* p) {
  2650     oop         obj = oopDesc::load_decode_heap_oop(p);
  2651     const char* str = NULL;
  2652     const char* str2 = "";
  2654     if (obj == NULL) {
  2655       str = "";
  2656     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2657       str = " O";
  2658     } else {
  2659       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2660       guarantee(hr != NULL, "invariant");
  2661       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2662       bool marked = _g1h->is_marked(obj, _vo);
  2664       if (over_tams) {
  2665         str = " >";
  2666         if (marked) {
  2667           str2 = " AND MARKED";
  2669       } else if (marked) {
  2670         str = " M";
  2671       } else {
  2672         str = " NOT";
  2676     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2677                    p, (void*) obj, str, str2);
  2679 };
  2681 class PrintReachableObjectClosure : public ObjectClosure {
  2682 private:
  2683   G1CollectedHeap* _g1h;
  2684   outputStream*    _out;
  2685   VerifyOption     _vo;
  2686   bool             _all;
  2687   HeapRegion*      _hr;
  2689 public:
  2690   PrintReachableObjectClosure(outputStream* out,
  2691                               VerifyOption  vo,
  2692                               bool          all,
  2693                               HeapRegion*   hr) :
  2694     _g1h(G1CollectedHeap::heap()),
  2695     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2697   void do_object(oop o) {
  2698     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2699     bool marked = _g1h->is_marked(o, _vo);
  2700     bool print_it = _all || over_tams || marked;
  2702     if (print_it) {
  2703       _out->print_cr(" "PTR_FORMAT"%s",
  2704                      (void *)o, (over_tams) ? " >" : (marked) ? " M" : "");
  2705       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2706       o->oop_iterate_no_header(&oopCl);
  2709 };
  2711 class PrintReachableRegionClosure : public HeapRegionClosure {
  2712 private:
  2713   G1CollectedHeap* _g1h;
  2714   outputStream*    _out;
  2715   VerifyOption     _vo;
  2716   bool             _all;
  2718 public:
  2719   bool doHeapRegion(HeapRegion* hr) {
  2720     HeapWord* b = hr->bottom();
  2721     HeapWord* e = hr->end();
  2722     HeapWord* t = hr->top();
  2723     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2724     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2725                    "TAMS: "PTR_FORMAT, b, e, t, p);
  2726     _out->cr();
  2728     HeapWord* from = b;
  2729     HeapWord* to   = t;
  2731     if (to > from) {
  2732       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
  2733       _out->cr();
  2734       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2735       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2736       _out->cr();
  2739     return false;
  2742   PrintReachableRegionClosure(outputStream* out,
  2743                               VerifyOption  vo,
  2744                               bool          all) :
  2745     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2746 };
  2748 void ConcurrentMark::print_reachable(const char* str,
  2749                                      VerifyOption vo,
  2750                                      bool all) {
  2751   gclog_or_tty->cr();
  2752   gclog_or_tty->print_cr("== Doing heap dump... ");
  2754   if (G1PrintReachableBaseFile == NULL) {
  2755     gclog_or_tty->print_cr("  #### error: no base file defined");
  2756     return;
  2759   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2760       (JVM_MAXPATHLEN - 1)) {
  2761     gclog_or_tty->print_cr("  #### error: file name too long");
  2762     return;
  2765   char file_name[JVM_MAXPATHLEN];
  2766   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2767   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2769   fileStream fout(file_name);
  2770   if (!fout.is_open()) {
  2771     gclog_or_tty->print_cr("  #### error: could not open file");
  2772     return;
  2775   outputStream* out = &fout;
  2776   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2777   out->cr();
  2779   out->print_cr("--- ITERATING OVER REGIONS");
  2780   out->cr();
  2781   PrintReachableRegionClosure rcl(out, vo, all);
  2782   _g1h->heap_region_iterate(&rcl);
  2783   out->cr();
  2785   gclog_or_tty->print_cr("  done");
  2786   gclog_or_tty->flush();
  2789 #endif // PRODUCT
  2791 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2792   // Note we are overriding the read-only view of the prev map here, via
  2793   // the cast.
  2794   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2797 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2798   _nextMarkBitMap->clearRange(mr);
  2801 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2802   clearRangePrevBitmap(mr);
  2803   clearRangeNextBitmap(mr);
  2806 HeapRegion*
  2807 ConcurrentMark::claim_region(uint worker_id) {
  2808   // "checkpoint" the finger
  2809   HeapWord* finger = _finger;
  2811   // _heap_end will not change underneath our feet; it only changes at
  2812   // yield points.
  2813   while (finger < _heap_end) {
  2814     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2816     // Note on how this code handles humongous regions. In the
  2817     // normal case the finger will reach the start of a "starts
  2818     // humongous" (SH) region. Its end will either be the end of the
  2819     // last "continues humongous" (CH) region in the sequence, or the
  2820     // standard end of the SH region (if the SH is the only region in
  2821     // the sequence). That way claim_region() will skip over the CH
  2822     // regions. However, there is a subtle race between a CM thread
  2823     // executing this method and a mutator thread doing a humongous
  2824     // object allocation. The two are not mutually exclusive as the CM
  2825     // thread does not need to hold the Heap_lock when it gets
  2826     // here. So there is a chance that claim_region() will come across
  2827     // a free region that's in the progress of becoming a SH or a CH
  2828     // region. In the former case, it will either
  2829     //   a) Miss the update to the region's end, in which case it will
  2830     //      visit every subsequent CH region, will find their bitmaps
  2831     //      empty, and do nothing, or
  2832     //   b) Will observe the update of the region's end (in which case
  2833     //      it will skip the subsequent CH regions).
  2834     // If it comes across a region that suddenly becomes CH, the
  2835     // scenario will be similar to b). So, the race between
  2836     // claim_region() and a humongous object allocation might force us
  2837     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2838     // iterations) but it should not introduce and correctness issues.
  2839     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  2840     HeapWord*   bottom        = curr_region->bottom();
  2841     HeapWord*   end           = curr_region->end();
  2842     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2844     if (verbose_low()) {
  2845       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2846                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2847                              "limit = "PTR_FORMAT,
  2848                              worker_id, curr_region, bottom, end, limit);
  2851     // Is the gap between reading the finger and doing the CAS too long?
  2852     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2853     if (res == finger) {
  2854       // we succeeded
  2856       // notice that _finger == end cannot be guaranteed here since,
  2857       // someone else might have moved the finger even further
  2858       assert(_finger >= end, "the finger should have moved forward");
  2860       if (verbose_low()) {
  2861         gclog_or_tty->print_cr("[%u] we were successful with region = "
  2862                                PTR_FORMAT, worker_id, curr_region);
  2865       if (limit > bottom) {
  2866         if (verbose_low()) {
  2867           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  2868                                  "returning it ", worker_id, curr_region);
  2870         return curr_region;
  2871       } else {
  2872         assert(limit == bottom,
  2873                "the region limit should be at bottom");
  2874         if (verbose_low()) {
  2875           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  2876                                  "returning NULL", worker_id, curr_region);
  2878         // we return NULL and the caller should try calling
  2879         // claim_region() again.
  2880         return NULL;
  2882     } else {
  2883       assert(_finger > finger, "the finger should have moved forward");
  2884       if (verbose_low()) {
  2885         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  2886                                "global finger = "PTR_FORMAT", "
  2887                                "our finger = "PTR_FORMAT,
  2888                                worker_id, _finger, finger);
  2891       // read it again
  2892       finger = _finger;
  2896   return NULL;
  2899 #ifndef PRODUCT
  2900 enum VerifyNoCSetOopsPhase {
  2901   VerifyNoCSetOopsStack,
  2902   VerifyNoCSetOopsQueues,
  2903   VerifyNoCSetOopsSATBCompleted,
  2904   VerifyNoCSetOopsSATBThread
  2905 };
  2907 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  2908 private:
  2909   G1CollectedHeap* _g1h;
  2910   VerifyNoCSetOopsPhase _phase;
  2911   int _info;
  2913   const char* phase_str() {
  2914     switch (_phase) {
  2915     case VerifyNoCSetOopsStack:         return "Stack";
  2916     case VerifyNoCSetOopsQueues:        return "Queue";
  2917     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  2918     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  2919     default:                            ShouldNotReachHere();
  2921     return NULL;
  2924   void do_object_work(oop obj) {
  2925     guarantee(!_g1h->obj_in_cs(obj),
  2926               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  2927                       (void*) obj, phase_str(), _info));
  2930 public:
  2931   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  2933   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  2934     _phase = phase;
  2935     _info = info;
  2938   virtual void do_oop(oop* p) {
  2939     oop obj = oopDesc::load_decode_heap_oop(p);
  2940     do_object_work(obj);
  2943   virtual void do_oop(narrowOop* p) {
  2944     // We should not come across narrow oops while scanning marking
  2945     // stacks and SATB buffers.
  2946     ShouldNotReachHere();
  2949   virtual void do_object(oop obj) {
  2950     do_object_work(obj);
  2952 };
  2954 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  2955                                          bool verify_enqueued_buffers,
  2956                                          bool verify_thread_buffers,
  2957                                          bool verify_fingers) {
  2958   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2959   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  2960     return;
  2963   VerifyNoCSetOopsClosure cl;
  2965   if (verify_stacks) {
  2966     // Verify entries on the global mark stack
  2967     cl.set_phase(VerifyNoCSetOopsStack);
  2968     _markStack.oops_do(&cl);
  2970     // Verify entries on the task queues
  2971     for (uint i = 0; i < _max_worker_id; i += 1) {
  2972       cl.set_phase(VerifyNoCSetOopsQueues, i);
  2973       CMTaskQueue* queue = _task_queues->queue(i);
  2974       queue->oops_do(&cl);
  2978   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  2980   // Verify entries on the enqueued SATB buffers
  2981   if (verify_enqueued_buffers) {
  2982     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  2983     satb_qs.iterate_completed_buffers_read_only(&cl);
  2986   // Verify entries on the per-thread SATB buffers
  2987   if (verify_thread_buffers) {
  2988     cl.set_phase(VerifyNoCSetOopsSATBThread);
  2989     satb_qs.iterate_thread_buffers_read_only(&cl);
  2992   if (verify_fingers) {
  2993     // Verify the global finger
  2994     HeapWord* global_finger = finger();
  2995     if (global_finger != NULL && global_finger < _heap_end) {
  2996       // The global finger always points to a heap region boundary. We
  2997       // use heap_region_containing_raw() to get the containing region
  2998       // given that the global finger could be pointing to a free region
  2999       // which subsequently becomes continues humongous. If that
  3000       // happens, heap_region_containing() will return the bottom of the
  3001       // corresponding starts humongous region and the check below will
  3002       // not hold any more.
  3003       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3004       guarantee(global_finger == global_hr->bottom(),
  3005                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3006                         global_finger, HR_FORMAT_PARAMS(global_hr)));
  3009     // Verify the task fingers
  3010     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3011     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3012       CMTask* task = _tasks[i];
  3013       HeapWord* task_finger = task->finger();
  3014       if (task_finger != NULL && task_finger < _heap_end) {
  3015         // See above note on the global finger verification.
  3016         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3017         guarantee(task_finger == task_hr->bottom() ||
  3018                   !task_hr->in_collection_set(),
  3019                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3020                           task_finger, HR_FORMAT_PARAMS(task_hr)));
  3025 #endif // PRODUCT
  3027 // Aggregate the counting data that was constructed concurrently
  3028 // with marking.
  3029 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3030   G1CollectedHeap* _g1h;
  3031   ConcurrentMark* _cm;
  3032   CardTableModRefBS* _ct_bs;
  3033   BitMap* _cm_card_bm;
  3034   uint _max_worker_id;
  3036  public:
  3037   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3038                               BitMap* cm_card_bm,
  3039                               uint max_worker_id) :
  3040     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3041     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3042     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3044   bool doHeapRegion(HeapRegion* hr) {
  3045     if (hr->continuesHumongous()) {
  3046       // We will ignore these here and process them when their
  3047       // associated "starts humongous" region is processed.
  3048       // Note that we cannot rely on their associated
  3049       // "starts humongous" region to have their bit set to 1
  3050       // since, due to the region chunking in the parallel region
  3051       // iteration, a "continues humongous" region might be visited
  3052       // before its associated "starts humongous".
  3053       return false;
  3056     HeapWord* start = hr->bottom();
  3057     HeapWord* limit = hr->next_top_at_mark_start();
  3058     HeapWord* end = hr->end();
  3060     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3061            err_msg("Preconditions not met - "
  3062                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3063                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3064                    start, limit, hr->top(), hr->end()));
  3066     assert(hr->next_marked_bytes() == 0, "Precondition");
  3068     if (start == limit) {
  3069       // NTAMS of this region has not been set so nothing to do.
  3070       return false;
  3073     // 'start' should be in the heap.
  3074     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3075     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3076     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3078     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3079     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3080     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3082     // If ntams is not card aligned then we bump card bitmap index
  3083     // for limit so that we get the all the cards spanned by
  3084     // the object ending at ntams.
  3085     // Note: if this is the last region in the heap then ntams
  3086     // could be actually just beyond the end of the the heap;
  3087     // limit_idx will then  correspond to a (non-existent) card
  3088     // that is also outside the heap.
  3089     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3090       limit_idx += 1;
  3093     assert(limit_idx <= end_idx, "or else use atomics");
  3095     // Aggregate the "stripe" in the count data associated with hr.
  3096     uint hrs_index = hr->hrs_index();
  3097     size_t marked_bytes = 0;
  3099     for (uint i = 0; i < _max_worker_id; i += 1) {
  3100       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3101       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3103       // Fetch the marked_bytes in this region for task i and
  3104       // add it to the running total for this region.
  3105       marked_bytes += marked_bytes_array[hrs_index];
  3107       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3108       // into the global card bitmap.
  3109       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3111       while (scan_idx < limit_idx) {
  3112         assert(task_card_bm->at(scan_idx) == true, "should be");
  3113         _cm_card_bm->set_bit(scan_idx);
  3114         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3116         // BitMap::get_next_one_offset() can handle the case when
  3117         // its left_offset parameter is greater than its right_offset
  3118         // parameter. It does, however, have an early exit if
  3119         // left_offset == right_offset. So let's limit the value
  3120         // passed in for left offset here.
  3121         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3122         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3126     // Update the marked bytes for this region.
  3127     hr->add_to_marked_bytes(marked_bytes);
  3129     // Next heap region
  3130     return false;
  3132 };
  3134 class G1AggregateCountDataTask: public AbstractGangTask {
  3135 protected:
  3136   G1CollectedHeap* _g1h;
  3137   ConcurrentMark* _cm;
  3138   BitMap* _cm_card_bm;
  3139   uint _max_worker_id;
  3140   int _active_workers;
  3142 public:
  3143   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3144                            ConcurrentMark* cm,
  3145                            BitMap* cm_card_bm,
  3146                            uint max_worker_id,
  3147                            int n_workers) :
  3148     AbstractGangTask("Count Aggregation"),
  3149     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3150     _max_worker_id(max_worker_id),
  3151     _active_workers(n_workers) { }
  3153   void work(uint worker_id) {
  3154     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3156     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3157       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3158                                             _active_workers,
  3159                                             HeapRegion::AggregateCountClaimValue);
  3160     } else {
  3161       _g1h->heap_region_iterate(&cl);
  3164 };
  3167 void ConcurrentMark::aggregate_count_data() {
  3168   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3169                         _g1h->workers()->active_workers() :
  3170                         1);
  3172   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3173                                            _max_worker_id, n_workers);
  3175   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3176     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3177            "sanity check");
  3178     _g1h->set_par_threads(n_workers);
  3179     _g1h->workers()->run_task(&g1_par_agg_task);
  3180     _g1h->set_par_threads(0);
  3182     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3183            "sanity check");
  3184     _g1h->reset_heap_region_claim_values();
  3185   } else {
  3186     g1_par_agg_task.work(0);
  3190 // Clear the per-worker arrays used to store the per-region counting data
  3191 void ConcurrentMark::clear_all_count_data() {
  3192   // Clear the global card bitmap - it will be filled during
  3193   // liveness count aggregation (during remark) and the
  3194   // final counting task.
  3195   _card_bm.clear();
  3197   // Clear the global region bitmap - it will be filled as part
  3198   // of the final counting task.
  3199   _region_bm.clear();
  3201   uint max_regions = _g1h->max_regions();
  3202   assert(_max_worker_id > 0, "uninitialized");
  3204   for (uint i = 0; i < _max_worker_id; i += 1) {
  3205     BitMap* task_card_bm = count_card_bitmap_for(i);
  3206     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3208     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3209     assert(marked_bytes_array != NULL, "uninitialized");
  3211     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3212     task_card_bm->clear();
  3216 void ConcurrentMark::print_stats() {
  3217   if (verbose_stats()) {
  3218     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3219     for (size_t i = 0; i < _active_tasks; ++i) {
  3220       _tasks[i]->print_stats();
  3221       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3226 // abandon current marking iteration due to a Full GC
  3227 void ConcurrentMark::abort() {
  3228   // Clear all marks to force marking thread to do nothing
  3229   _nextMarkBitMap->clearAll();
  3230   // Clear the liveness counting data
  3231   clear_all_count_data();
  3232   // Empty mark stack
  3233   reset_marking_state();
  3234   for (uint i = 0; i < _max_worker_id; ++i) {
  3235     _tasks[i]->clear_region_fields();
  3237   _has_aborted = true;
  3239   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3240   satb_mq_set.abandon_partial_marking();
  3241   // This can be called either during or outside marking, we'll read
  3242   // the expected_active value from the SATB queue set.
  3243   satb_mq_set.set_active_all_threads(
  3244                                  false, /* new active value */
  3245                                  satb_mq_set.is_active() /* expected_active */);
  3247   _g1h->trace_heap_after_concurrent_cycle();
  3248   _g1h->register_concurrent_cycle_end();
  3251 static void print_ms_time_info(const char* prefix, const char* name,
  3252                                NumberSeq& ns) {
  3253   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3254                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3255   if (ns.num() > 0) {
  3256     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3257                            prefix, ns.sd(), ns.maximum());
  3261 void ConcurrentMark::print_summary_info() {
  3262   gclog_or_tty->print_cr(" Concurrent marking:");
  3263   print_ms_time_info("  ", "init marks", _init_times);
  3264   print_ms_time_info("  ", "remarks", _remark_times);
  3266     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3267     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3270   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3271   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3272                          _total_counting_time,
  3273                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3274                           (double)_cleanup_times.num()
  3275                          : 0.0));
  3276   if (G1ScrubRemSets) {
  3277     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3278                            _total_rs_scrub_time,
  3279                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3280                             (double)_cleanup_times.num()
  3281                            : 0.0));
  3283   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3284                          (_init_times.sum() + _remark_times.sum() +
  3285                           _cleanup_times.sum())/1000.0);
  3286   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3287                 "(%8.2f s marking).",
  3288                 cmThread()->vtime_accum(),
  3289                 cmThread()->vtime_mark_accum());
  3292 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3293   if (use_parallel_marking_threads()) {
  3294     _parallel_workers->print_worker_threads_on(st);
  3298 void ConcurrentMark::print_on_error(outputStream* st) const {
  3299   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3300       _prevMarkBitMap, _nextMarkBitMap);
  3301   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3302   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3305 // We take a break if someone is trying to stop the world.
  3306 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3307   if (should_yield()) {
  3308     if (worker_id == 0) {
  3309       _g1h->g1_policy()->record_concurrent_pause();
  3311     cmThread()->yield();
  3312     return true;
  3313   } else {
  3314     return false;
  3318 bool ConcurrentMark::should_yield() {
  3319   return cmThread()->should_yield();
  3322 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3323   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3324   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3327 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3328                                                  void* last) {
  3329   return containing_card_is_marked(start) &&
  3330          containing_card_is_marked(last);
  3333 #ifndef PRODUCT
  3334 // for debugging purposes
  3335 void ConcurrentMark::print_finger() {
  3336   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3337                          _heap_start, _heap_end, _finger);
  3338   for (uint i = 0; i < _max_worker_id; ++i) {
  3339     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
  3341   gclog_or_tty->print_cr("");
  3343 #endif
  3345 void CMTask::scan_object(oop obj) {
  3346   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3348   if (_cm->verbose_high()) {
  3349     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3350                            _worker_id, (void*) obj);
  3353   size_t obj_size = obj->size();
  3354   _words_scanned += obj_size;
  3356   obj->oop_iterate(_cm_oop_closure);
  3357   statsOnly( ++_objs_scanned );
  3358   check_limits();
  3361 // Closure for iteration over bitmaps
  3362 class CMBitMapClosure : public BitMapClosure {
  3363 private:
  3364   // the bitmap that is being iterated over
  3365   CMBitMap*                   _nextMarkBitMap;
  3366   ConcurrentMark*             _cm;
  3367   CMTask*                     _task;
  3369 public:
  3370   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3371     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3373   bool do_bit(size_t offset) {
  3374     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3375     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3376     assert( addr < _cm->finger(), "invariant");
  3378     statsOnly( _task->increase_objs_found_on_bitmap() );
  3379     assert(addr >= _task->finger(), "invariant");
  3381     // We move that task's local finger along.
  3382     _task->move_finger_to(addr);
  3384     _task->scan_object(oop(addr));
  3385     // we only partially drain the local queue and global stack
  3386     _task->drain_local_queue(true);
  3387     _task->drain_global_stack(true);
  3389     // if the has_aborted flag has been raised, we need to bail out of
  3390     // the iteration
  3391     return !_task->has_aborted();
  3393 };
  3395 // Closure for iterating over objects, currently only used for
  3396 // processing SATB buffers.
  3397 class CMObjectClosure : public ObjectClosure {
  3398 private:
  3399   CMTask* _task;
  3401 public:
  3402   void do_object(oop obj) {
  3403     _task->deal_with_reference(obj);
  3406   CMObjectClosure(CMTask* task) : _task(task) { }
  3407 };
  3409 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3410                                ConcurrentMark* cm,
  3411                                CMTask* task)
  3412   : _g1h(g1h), _cm(cm), _task(task) {
  3413   assert(_ref_processor == NULL, "should be initialized to NULL");
  3415   if (G1UseConcMarkReferenceProcessing) {
  3416     _ref_processor = g1h->ref_processor_cm();
  3417     assert(_ref_processor != NULL, "should not be NULL");
  3421 void CMTask::setup_for_region(HeapRegion* hr) {
  3422   // Separated the asserts so that we know which one fires.
  3423   assert(hr != NULL,
  3424         "claim_region() should have filtered out continues humongous regions");
  3425   assert(!hr->continuesHumongous(),
  3426         "claim_region() should have filtered out continues humongous regions");
  3428   if (_cm->verbose_low()) {
  3429     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3430                            _worker_id, hr);
  3433   _curr_region  = hr;
  3434   _finger       = hr->bottom();
  3435   update_region_limit();
  3438 void CMTask::update_region_limit() {
  3439   HeapRegion* hr            = _curr_region;
  3440   HeapWord* bottom          = hr->bottom();
  3441   HeapWord* limit           = hr->next_top_at_mark_start();
  3443   if (limit == bottom) {
  3444     if (_cm->verbose_low()) {
  3445       gclog_or_tty->print_cr("[%u] found an empty region "
  3446                              "["PTR_FORMAT", "PTR_FORMAT")",
  3447                              _worker_id, bottom, limit);
  3449     // The region was collected underneath our feet.
  3450     // We set the finger to bottom to ensure that the bitmap
  3451     // iteration that will follow this will not do anything.
  3452     // (this is not a condition that holds when we set the region up,
  3453     // as the region is not supposed to be empty in the first place)
  3454     _finger = bottom;
  3455   } else if (limit >= _region_limit) {
  3456     assert(limit >= _finger, "peace of mind");
  3457   } else {
  3458     assert(limit < _region_limit, "only way to get here");
  3459     // This can happen under some pretty unusual circumstances.  An
  3460     // evacuation pause empties the region underneath our feet (NTAMS
  3461     // at bottom). We then do some allocation in the region (NTAMS
  3462     // stays at bottom), followed by the region being used as a GC
  3463     // alloc region (NTAMS will move to top() and the objects
  3464     // originally below it will be grayed). All objects now marked in
  3465     // the region are explicitly grayed, if below the global finger,
  3466     // and we do not need in fact to scan anything else. So, we simply
  3467     // set _finger to be limit to ensure that the bitmap iteration
  3468     // doesn't do anything.
  3469     _finger = limit;
  3472   _region_limit = limit;
  3475 void CMTask::giveup_current_region() {
  3476   assert(_curr_region != NULL, "invariant");
  3477   if (_cm->verbose_low()) {
  3478     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3479                            _worker_id, _curr_region);
  3481   clear_region_fields();
  3484 void CMTask::clear_region_fields() {
  3485   // Values for these three fields that indicate that we're not
  3486   // holding on to a region.
  3487   _curr_region   = NULL;
  3488   _finger        = NULL;
  3489   _region_limit  = NULL;
  3492 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3493   if (cm_oop_closure == NULL) {
  3494     assert(_cm_oop_closure != NULL, "invariant");
  3495   } else {
  3496     assert(_cm_oop_closure == NULL, "invariant");
  3498   _cm_oop_closure = cm_oop_closure;
  3501 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3502   guarantee(nextMarkBitMap != NULL, "invariant");
  3504   if (_cm->verbose_low()) {
  3505     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3508   _nextMarkBitMap                = nextMarkBitMap;
  3509   clear_region_fields();
  3511   _calls                         = 0;
  3512   _elapsed_time_ms               = 0.0;
  3513   _termination_time_ms           = 0.0;
  3514   _termination_start_time_ms     = 0.0;
  3516 #if _MARKING_STATS_
  3517   _local_pushes                  = 0;
  3518   _local_pops                    = 0;
  3519   _local_max_size                = 0;
  3520   _objs_scanned                  = 0;
  3521   _global_pushes                 = 0;
  3522   _global_pops                   = 0;
  3523   _global_max_size               = 0;
  3524   _global_transfers_to           = 0;
  3525   _global_transfers_from         = 0;
  3526   _regions_claimed               = 0;
  3527   _objs_found_on_bitmap          = 0;
  3528   _satb_buffers_processed        = 0;
  3529   _steal_attempts                = 0;
  3530   _steals                        = 0;
  3531   _aborted                       = 0;
  3532   _aborted_overflow              = 0;
  3533   _aborted_cm_aborted            = 0;
  3534   _aborted_yield                 = 0;
  3535   _aborted_timed_out             = 0;
  3536   _aborted_satb                  = 0;
  3537   _aborted_termination           = 0;
  3538 #endif // _MARKING_STATS_
  3541 bool CMTask::should_exit_termination() {
  3542   regular_clock_call();
  3543   // This is called when we are in the termination protocol. We should
  3544   // quit if, for some reason, this task wants to abort or the global
  3545   // stack is not empty (this means that we can get work from it).
  3546   return !_cm->mark_stack_empty() || has_aborted();
  3549 void CMTask::reached_limit() {
  3550   assert(_words_scanned >= _words_scanned_limit ||
  3551          _refs_reached >= _refs_reached_limit ,
  3552          "shouldn't have been called otherwise");
  3553   regular_clock_call();
  3556 void CMTask::regular_clock_call() {
  3557   if (has_aborted()) return;
  3559   // First, we need to recalculate the words scanned and refs reached
  3560   // limits for the next clock call.
  3561   recalculate_limits();
  3563   // During the regular clock call we do the following
  3565   // (1) If an overflow has been flagged, then we abort.
  3566   if (_cm->has_overflown()) {
  3567     set_has_aborted();
  3568     return;
  3571   // If we are not concurrent (i.e. we're doing remark) we don't need
  3572   // to check anything else. The other steps are only needed during
  3573   // the concurrent marking phase.
  3574   if (!concurrent()) return;
  3576   // (2) If marking has been aborted for Full GC, then we also abort.
  3577   if (_cm->has_aborted()) {
  3578     set_has_aborted();
  3579     statsOnly( ++_aborted_cm_aborted );
  3580     return;
  3583   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3585   // (3) If marking stats are enabled, then we update the step history.
  3586 #if _MARKING_STATS_
  3587   if (_words_scanned >= _words_scanned_limit) {
  3588     ++_clock_due_to_scanning;
  3590   if (_refs_reached >= _refs_reached_limit) {
  3591     ++_clock_due_to_marking;
  3594   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3595   _interval_start_time_ms = curr_time_ms;
  3596   _all_clock_intervals_ms.add(last_interval_ms);
  3598   if (_cm->verbose_medium()) {
  3599       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3600                         "scanned = %d%s, refs reached = %d%s",
  3601                         _worker_id, last_interval_ms,
  3602                         _words_scanned,
  3603                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3604                         _refs_reached,
  3605                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3607 #endif // _MARKING_STATS_
  3609   // (4) We check whether we should yield. If we have to, then we abort.
  3610   if (_cm->should_yield()) {
  3611     // We should yield. To do this we abort the task. The caller is
  3612     // responsible for yielding.
  3613     set_has_aborted();
  3614     statsOnly( ++_aborted_yield );
  3615     return;
  3618   // (5) We check whether we've reached our time quota. If we have,
  3619   // then we abort.
  3620   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3621   if (elapsed_time_ms > _time_target_ms) {
  3622     set_has_aborted();
  3623     _has_timed_out = true;
  3624     statsOnly( ++_aborted_timed_out );
  3625     return;
  3628   // (6) Finally, we check whether there are enough completed STAB
  3629   // buffers available for processing. If there are, we abort.
  3630   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3631   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3632     if (_cm->verbose_low()) {
  3633       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3634                              _worker_id);
  3636     // we do need to process SATB buffers, we'll abort and restart
  3637     // the marking task to do so
  3638     set_has_aborted();
  3639     statsOnly( ++_aborted_satb );
  3640     return;
  3644 void CMTask::recalculate_limits() {
  3645   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3646   _words_scanned_limit      = _real_words_scanned_limit;
  3648   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3649   _refs_reached_limit       = _real_refs_reached_limit;
  3652 void CMTask::decrease_limits() {
  3653   // This is called when we believe that we're going to do an infrequent
  3654   // operation which will increase the per byte scanned cost (i.e. move
  3655   // entries to/from the global stack). It basically tries to decrease the
  3656   // scanning limit so that the clock is called earlier.
  3658   if (_cm->verbose_medium()) {
  3659     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3662   _words_scanned_limit = _real_words_scanned_limit -
  3663     3 * words_scanned_period / 4;
  3664   _refs_reached_limit  = _real_refs_reached_limit -
  3665     3 * refs_reached_period / 4;
  3668 void CMTask::move_entries_to_global_stack() {
  3669   // local array where we'll store the entries that will be popped
  3670   // from the local queue
  3671   oop buffer[global_stack_transfer_size];
  3673   int n = 0;
  3674   oop obj;
  3675   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3676     buffer[n] = obj;
  3677     ++n;
  3680   if (n > 0) {
  3681     // we popped at least one entry from the local queue
  3683     statsOnly( ++_global_transfers_to; _local_pops += n );
  3685     if (!_cm->mark_stack_push(buffer, n)) {
  3686       if (_cm->verbose_low()) {
  3687         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3688                                _worker_id);
  3690       set_has_aborted();
  3691     } else {
  3692       // the transfer was successful
  3694       if (_cm->verbose_medium()) {
  3695         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3696                                _worker_id, n);
  3698       statsOnly( int tmp_size = _cm->mark_stack_size();
  3699                  if (tmp_size > _global_max_size) {
  3700                    _global_max_size = tmp_size;
  3702                  _global_pushes += n );
  3706   // this operation was quite expensive, so decrease the limits
  3707   decrease_limits();
  3710 void CMTask::get_entries_from_global_stack() {
  3711   // local array where we'll store the entries that will be popped
  3712   // from the global stack.
  3713   oop buffer[global_stack_transfer_size];
  3714   int n;
  3715   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3716   assert(n <= global_stack_transfer_size,
  3717          "we should not pop more than the given limit");
  3718   if (n > 0) {
  3719     // yes, we did actually pop at least one entry
  3721     statsOnly( ++_global_transfers_from; _global_pops += n );
  3722     if (_cm->verbose_medium()) {
  3723       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3724                              _worker_id, n);
  3726     for (int i = 0; i < n; ++i) {
  3727       bool success = _task_queue->push(buffer[i]);
  3728       // We only call this when the local queue is empty or under a
  3729       // given target limit. So, we do not expect this push to fail.
  3730       assert(success, "invariant");
  3733     statsOnly( int tmp_size = _task_queue->size();
  3734                if (tmp_size > _local_max_size) {
  3735                  _local_max_size = tmp_size;
  3737                _local_pushes += n );
  3740   // this operation was quite expensive, so decrease the limits
  3741   decrease_limits();
  3744 void CMTask::drain_local_queue(bool partially) {
  3745   if (has_aborted()) return;
  3747   // Decide what the target size is, depending whether we're going to
  3748   // drain it partially (so that other tasks can steal if they run out
  3749   // of things to do) or totally (at the very end).
  3750   size_t target_size;
  3751   if (partially) {
  3752     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3753   } else {
  3754     target_size = 0;
  3757   if (_task_queue->size() > target_size) {
  3758     if (_cm->verbose_high()) {
  3759       gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
  3760                              _worker_id, target_size);
  3763     oop obj;
  3764     bool ret = _task_queue->pop_local(obj);
  3765     while (ret) {
  3766       statsOnly( ++_local_pops );
  3768       if (_cm->verbose_high()) {
  3769         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3770                                (void*) obj);
  3773       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3774       assert(!_g1h->is_on_master_free_list(
  3775                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3777       scan_object(obj);
  3779       if (_task_queue->size() <= target_size || has_aborted()) {
  3780         ret = false;
  3781       } else {
  3782         ret = _task_queue->pop_local(obj);
  3786     if (_cm->verbose_high()) {
  3787       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3788                              _worker_id, _task_queue->size());
  3793 void CMTask::drain_global_stack(bool partially) {
  3794   if (has_aborted()) return;
  3796   // We have a policy to drain the local queue before we attempt to
  3797   // drain the global stack.
  3798   assert(partially || _task_queue->size() == 0, "invariant");
  3800   // Decide what the target size is, depending whether we're going to
  3801   // drain it partially (so that other tasks can steal if they run out
  3802   // of things to do) or totally (at the very end).  Notice that,
  3803   // because we move entries from the global stack in chunks or
  3804   // because another task might be doing the same, we might in fact
  3805   // drop below the target. But, this is not a problem.
  3806   size_t target_size;
  3807   if (partially) {
  3808     target_size = _cm->partial_mark_stack_size_target();
  3809   } else {
  3810     target_size = 0;
  3813   if (_cm->mark_stack_size() > target_size) {
  3814     if (_cm->verbose_low()) {
  3815       gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
  3816                              _worker_id, target_size);
  3819     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3820       get_entries_from_global_stack();
  3821       drain_local_queue(partially);
  3824     if (_cm->verbose_low()) {
  3825       gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
  3826                              _worker_id, _cm->mark_stack_size());
  3831 // SATB Queue has several assumptions on whether to call the par or
  3832 // non-par versions of the methods. this is why some of the code is
  3833 // replicated. We should really get rid of the single-threaded version
  3834 // of the code to simplify things.
  3835 void CMTask::drain_satb_buffers() {
  3836   if (has_aborted()) return;
  3838   // We set this so that the regular clock knows that we're in the
  3839   // middle of draining buffers and doesn't set the abort flag when it
  3840   // notices that SATB buffers are available for draining. It'd be
  3841   // very counter productive if it did that. :-)
  3842   _draining_satb_buffers = true;
  3844   CMObjectClosure oc(this);
  3845   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3846   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3847     satb_mq_set.set_par_closure(_worker_id, &oc);
  3848   } else {
  3849     satb_mq_set.set_closure(&oc);
  3852   // This keeps claiming and applying the closure to completed buffers
  3853   // until we run out of buffers or we need to abort.
  3854   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3855     while (!has_aborted() &&
  3856            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  3857       if (_cm->verbose_medium()) {
  3858         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3860       statsOnly( ++_satb_buffers_processed );
  3861       regular_clock_call();
  3863   } else {
  3864     while (!has_aborted() &&
  3865            satb_mq_set.apply_closure_to_completed_buffer()) {
  3866       if (_cm->verbose_medium()) {
  3867         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3869       statsOnly( ++_satb_buffers_processed );
  3870       regular_clock_call();
  3874   if (!concurrent() && !has_aborted()) {
  3875     // We should only do this during remark.
  3876     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3877       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
  3878     } else {
  3879       satb_mq_set.iterate_closure_all_threads();
  3883   _draining_satb_buffers = false;
  3885   assert(has_aborted() ||
  3886          concurrent() ||
  3887          satb_mq_set.completed_buffers_num() == 0, "invariant");
  3889   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3890     satb_mq_set.set_par_closure(_worker_id, NULL);
  3891   } else {
  3892     satb_mq_set.set_closure(NULL);
  3895   // again, this was a potentially expensive operation, decrease the
  3896   // limits to get the regular clock call early
  3897   decrease_limits();
  3900 void CMTask::print_stats() {
  3901   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  3902                          _worker_id, _calls);
  3903   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  3904                          _elapsed_time_ms, _termination_time_ms);
  3905   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3906                          _step_times_ms.num(), _step_times_ms.avg(),
  3907                          _step_times_ms.sd());
  3908   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  3909                          _step_times_ms.maximum(), _step_times_ms.sum());
  3911 #if _MARKING_STATS_
  3912   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3913                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  3914                          _all_clock_intervals_ms.sd());
  3915   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  3916                          _all_clock_intervals_ms.maximum(),
  3917                          _all_clock_intervals_ms.sum());
  3918   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  3919                          _clock_due_to_scanning, _clock_due_to_marking);
  3920   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  3921                          _objs_scanned, _objs_found_on_bitmap);
  3922   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  3923                          _local_pushes, _local_pops, _local_max_size);
  3924   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  3925                          _global_pushes, _global_pops, _global_max_size);
  3926   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  3927                          _global_transfers_to,_global_transfers_from);
  3928   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  3929   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  3930   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  3931                          _steal_attempts, _steals);
  3932   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  3933   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  3934                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  3935   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  3936                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  3937 #endif // _MARKING_STATS_
  3940 /*****************************************************************************
  3942     The do_marking_step(time_target_ms, ...) method is the building
  3943     block of the parallel marking framework. It can be called in parallel
  3944     with other invocations of do_marking_step() on different tasks
  3945     (but only one per task, obviously) and concurrently with the
  3946     mutator threads, or during remark, hence it eliminates the need
  3947     for two versions of the code. When called during remark, it will
  3948     pick up from where the task left off during the concurrent marking
  3949     phase. Interestingly, tasks are also claimable during evacuation
  3950     pauses too, since do_marking_step() ensures that it aborts before
  3951     it needs to yield.
  3953     The data structures that it uses to do marking work are the
  3954     following:
  3956       (1) Marking Bitmap. If there are gray objects that appear only
  3957       on the bitmap (this happens either when dealing with an overflow
  3958       or when the initial marking phase has simply marked the roots
  3959       and didn't push them on the stack), then tasks claim heap
  3960       regions whose bitmap they then scan to find gray objects. A
  3961       global finger indicates where the end of the last claimed region
  3962       is. A local finger indicates how far into the region a task has
  3963       scanned. The two fingers are used to determine how to gray an
  3964       object (i.e. whether simply marking it is OK, as it will be
  3965       visited by a task in the future, or whether it needs to be also
  3966       pushed on a stack).
  3968       (2) Local Queue. The local queue of the task which is accessed
  3969       reasonably efficiently by the task. Other tasks can steal from
  3970       it when they run out of work. Throughout the marking phase, a
  3971       task attempts to keep its local queue short but not totally
  3972       empty, so that entries are available for stealing by other
  3973       tasks. Only when there is no more work, a task will totally
  3974       drain its local queue.
  3976       (3) Global Mark Stack. This handles local queue overflow. During
  3977       marking only sets of entries are moved between it and the local
  3978       queues, as access to it requires a mutex and more fine-grain
  3979       interaction with it which might cause contention. If it
  3980       overflows, then the marking phase should restart and iterate
  3981       over the bitmap to identify gray objects. Throughout the marking
  3982       phase, tasks attempt to keep the global mark stack at a small
  3983       length but not totally empty, so that entries are available for
  3984       popping by other tasks. Only when there is no more work, tasks
  3985       will totally drain the global mark stack.
  3987       (4) SATB Buffer Queue. This is where completed SATB buffers are
  3988       made available. Buffers are regularly removed from this queue
  3989       and scanned for roots, so that the queue doesn't get too
  3990       long. During remark, all completed buffers are processed, as
  3991       well as the filled in parts of any uncompleted buffers.
  3993     The do_marking_step() method tries to abort when the time target
  3994     has been reached. There are a few other cases when the
  3995     do_marking_step() method also aborts:
  3997       (1) When the marking phase has been aborted (after a Full GC).
  3999       (2) When a global overflow (on the global stack) has been
  4000       triggered. Before the task aborts, it will actually sync up with
  4001       the other tasks to ensure that all the marking data structures
  4002       (local queues, stacks, fingers etc.)  are re-initialized so that
  4003       when do_marking_step() completes, the marking phase can
  4004       immediately restart.
  4006       (3) When enough completed SATB buffers are available. The
  4007       do_marking_step() method only tries to drain SATB buffers right
  4008       at the beginning. So, if enough buffers are available, the
  4009       marking step aborts and the SATB buffers are processed at
  4010       the beginning of the next invocation.
  4012       (4) To yield. when we have to yield then we abort and yield
  4013       right at the end of do_marking_step(). This saves us from a lot
  4014       of hassle as, by yielding we might allow a Full GC. If this
  4015       happens then objects will be compacted underneath our feet, the
  4016       heap might shrink, etc. We save checking for this by just
  4017       aborting and doing the yield right at the end.
  4019     From the above it follows that the do_marking_step() method should
  4020     be called in a loop (or, otherwise, regularly) until it completes.
  4022     If a marking step completes without its has_aborted() flag being
  4023     true, it means it has completed the current marking phase (and
  4024     also all other marking tasks have done so and have all synced up).
  4026     A method called regular_clock_call() is invoked "regularly" (in
  4027     sub ms intervals) throughout marking. It is this clock method that
  4028     checks all the abort conditions which were mentioned above and
  4029     decides when the task should abort. A work-based scheme is used to
  4030     trigger this clock method: when the number of object words the
  4031     marking phase has scanned or the number of references the marking
  4032     phase has visited reach a given limit. Additional invocations to
  4033     the method clock have been planted in a few other strategic places
  4034     too. The initial reason for the clock method was to avoid calling
  4035     vtime too regularly, as it is quite expensive. So, once it was in
  4036     place, it was natural to piggy-back all the other conditions on it
  4037     too and not constantly check them throughout the code.
  4039     If do_termination is true then do_marking_step will enter its
  4040     termination protocol.
  4042     The value of is_serial must be true when do_marking_step is being
  4043     called serially (i.e. by the VMThread) and do_marking_step should
  4044     skip any synchronization in the termination and overflow code.
  4045     Examples include the serial remark code and the serial reference
  4046     processing closures.
  4048     The value of is_serial must be false when do_marking_step is
  4049     being called by any of the worker threads in a work gang.
  4050     Examples include the concurrent marking code (CMMarkingTask),
  4051     the MT remark code, and the MT reference processing closures.
  4053  *****************************************************************************/
  4055 void CMTask::do_marking_step(double time_target_ms,
  4056                              bool do_termination,
  4057                              bool is_serial) {
  4058   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4059   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4061   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4062   assert(_task_queues != NULL, "invariant");
  4063   assert(_task_queue != NULL, "invariant");
  4064   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4066   assert(!_claimed,
  4067          "only one thread should claim this task at any one time");
  4069   // OK, this doesn't safeguard again all possible scenarios, as it is
  4070   // possible for two threads to set the _claimed flag at the same
  4071   // time. But it is only for debugging purposes anyway and it will
  4072   // catch most problems.
  4073   _claimed = true;
  4075   _start_time_ms = os::elapsedVTime() * 1000.0;
  4076   statsOnly( _interval_start_time_ms = _start_time_ms );
  4078   // If do_stealing is true then do_marking_step will attempt to
  4079   // steal work from the other CMTasks. It only makes sense to
  4080   // enable stealing when the termination protocol is enabled
  4081   // and do_marking_step() is not being called serially.
  4082   bool do_stealing = do_termination && !is_serial;
  4084   double diff_prediction_ms =
  4085     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4086   _time_target_ms = time_target_ms - diff_prediction_ms;
  4088   // set up the variables that are used in the work-based scheme to
  4089   // call the regular clock method
  4090   _words_scanned = 0;
  4091   _refs_reached  = 0;
  4092   recalculate_limits();
  4094   // clear all flags
  4095   clear_has_aborted();
  4096   _has_timed_out = false;
  4097   _draining_satb_buffers = false;
  4099   ++_calls;
  4101   if (_cm->verbose_low()) {
  4102     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4103                            "target = %1.2lfms >>>>>>>>>>",
  4104                            _worker_id, _calls, _time_target_ms);
  4107   // Set up the bitmap and oop closures. Anything that uses them is
  4108   // eventually called from this method, so it is OK to allocate these
  4109   // statically.
  4110   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4111   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4112   set_cm_oop_closure(&cm_oop_closure);
  4114   if (_cm->has_overflown()) {
  4115     // This can happen if the mark stack overflows during a GC pause
  4116     // and this task, after a yield point, restarts. We have to abort
  4117     // as we need to get into the overflow protocol which happens
  4118     // right at the end of this task.
  4119     set_has_aborted();
  4122   // First drain any available SATB buffers. After this, we will not
  4123   // look at SATB buffers before the next invocation of this method.
  4124   // If enough completed SATB buffers are queued up, the regular clock
  4125   // will abort this task so that it restarts.
  4126   drain_satb_buffers();
  4127   // ...then partially drain the local queue and the global stack
  4128   drain_local_queue(true);
  4129   drain_global_stack(true);
  4131   do {
  4132     if (!has_aborted() && _curr_region != NULL) {
  4133       // This means that we're already holding on to a region.
  4134       assert(_finger != NULL, "if region is not NULL, then the finger "
  4135              "should not be NULL either");
  4137       // We might have restarted this task after an evacuation pause
  4138       // which might have evacuated the region we're holding on to
  4139       // underneath our feet. Let's read its limit again to make sure
  4140       // that we do not iterate over a region of the heap that
  4141       // contains garbage (update_region_limit() will also move
  4142       // _finger to the start of the region if it is found empty).
  4143       update_region_limit();
  4144       // We will start from _finger not from the start of the region,
  4145       // as we might be restarting this task after aborting half-way
  4146       // through scanning this region. In this case, _finger points to
  4147       // the address where we last found a marked object. If this is a
  4148       // fresh region, _finger points to start().
  4149       MemRegion mr = MemRegion(_finger, _region_limit);
  4151       if (_cm->verbose_low()) {
  4152         gclog_or_tty->print_cr("[%u] we're scanning part "
  4153                                "["PTR_FORMAT", "PTR_FORMAT") "
  4154                                "of region "HR_FORMAT,
  4155                                _worker_id, _finger, _region_limit,
  4156                                HR_FORMAT_PARAMS(_curr_region));
  4159       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4160              "humongous regions should go around loop once only");
  4162       // Some special cases:
  4163       // If the memory region is empty, we can just give up the region.
  4164       // If the current region is humongous then we only need to check
  4165       // the bitmap for the bit associated with the start of the object,
  4166       // scan the object if it's live, and give up the region.
  4167       // Otherwise, let's iterate over the bitmap of the part of the region
  4168       // that is left.
  4169       // If the iteration is successful, give up the region.
  4170       if (mr.is_empty()) {
  4171         giveup_current_region();
  4172         regular_clock_call();
  4173       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4174         if (_nextMarkBitMap->isMarked(mr.start())) {
  4175           // The object is marked - apply the closure
  4176           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4177           bitmap_closure.do_bit(offset);
  4179         // Even if this task aborted while scanning the humongous object
  4180         // we can (and should) give up the current region.
  4181         giveup_current_region();
  4182         regular_clock_call();
  4183       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4184         giveup_current_region();
  4185         regular_clock_call();
  4186       } else {
  4187         assert(has_aborted(), "currently the only way to do so");
  4188         // The only way to abort the bitmap iteration is to return
  4189         // false from the do_bit() method. However, inside the
  4190         // do_bit() method we move the _finger to point to the
  4191         // object currently being looked at. So, if we bail out, we
  4192         // have definitely set _finger to something non-null.
  4193         assert(_finger != NULL, "invariant");
  4195         // Region iteration was actually aborted. So now _finger
  4196         // points to the address of the object we last scanned. If we
  4197         // leave it there, when we restart this task, we will rescan
  4198         // the object. It is easy to avoid this. We move the finger by
  4199         // enough to point to the next possible object header (the
  4200         // bitmap knows by how much we need to move it as it knows its
  4201         // granularity).
  4202         assert(_finger < _region_limit, "invariant");
  4203         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4204         // Check if bitmap iteration was aborted while scanning the last object
  4205         if (new_finger >= _region_limit) {
  4206           giveup_current_region();
  4207         } else {
  4208           move_finger_to(new_finger);
  4212     // At this point we have either completed iterating over the
  4213     // region we were holding on to, or we have aborted.
  4215     // We then partially drain the local queue and the global stack.
  4216     // (Do we really need this?)
  4217     drain_local_queue(true);
  4218     drain_global_stack(true);
  4220     // Read the note on the claim_region() method on why it might
  4221     // return NULL with potentially more regions available for
  4222     // claiming and why we have to check out_of_regions() to determine
  4223     // whether we're done or not.
  4224     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4225       // We are going to try to claim a new region. We should have
  4226       // given up on the previous one.
  4227       // Separated the asserts so that we know which one fires.
  4228       assert(_curr_region  == NULL, "invariant");
  4229       assert(_finger       == NULL, "invariant");
  4230       assert(_region_limit == NULL, "invariant");
  4231       if (_cm->verbose_low()) {
  4232         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4234       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4235       if (claimed_region != NULL) {
  4236         // Yes, we managed to claim one
  4237         statsOnly( ++_regions_claimed );
  4239         if (_cm->verbose_low()) {
  4240           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4241                                  "region "PTR_FORMAT,
  4242                                  _worker_id, claimed_region);
  4245         setup_for_region(claimed_region);
  4246         assert(_curr_region == claimed_region, "invariant");
  4248       // It is important to call the regular clock here. It might take
  4249       // a while to claim a region if, for example, we hit a large
  4250       // block of empty regions. So we need to call the regular clock
  4251       // method once round the loop to make sure it's called
  4252       // frequently enough.
  4253       regular_clock_call();
  4256     if (!has_aborted() && _curr_region == NULL) {
  4257       assert(_cm->out_of_regions(),
  4258              "at this point we should be out of regions");
  4260   } while ( _curr_region != NULL && !has_aborted());
  4262   if (!has_aborted()) {
  4263     // We cannot check whether the global stack is empty, since other
  4264     // tasks might be pushing objects to it concurrently.
  4265     assert(_cm->out_of_regions(),
  4266            "at this point we should be out of regions");
  4268     if (_cm->verbose_low()) {
  4269       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4272     // Try to reduce the number of available SATB buffers so that
  4273     // remark has less work to do.
  4274     drain_satb_buffers();
  4277   // Since we've done everything else, we can now totally drain the
  4278   // local queue and global stack.
  4279   drain_local_queue(false);
  4280   drain_global_stack(false);
  4282   // Attempt at work stealing from other task's queues.
  4283   if (do_stealing && !has_aborted()) {
  4284     // We have not aborted. This means that we have finished all that
  4285     // we could. Let's try to do some stealing...
  4287     // We cannot check whether the global stack is empty, since other
  4288     // tasks might be pushing objects to it concurrently.
  4289     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4290            "only way to reach here");
  4292     if (_cm->verbose_low()) {
  4293       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4296     while (!has_aborted()) {
  4297       oop obj;
  4298       statsOnly( ++_steal_attempts );
  4300       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4301         if (_cm->verbose_medium()) {
  4302           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4303                                  _worker_id, (void*) obj);
  4306         statsOnly( ++_steals );
  4308         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4309                "any stolen object should be marked");
  4310         scan_object(obj);
  4312         // And since we're towards the end, let's totally drain the
  4313         // local queue and global stack.
  4314         drain_local_queue(false);
  4315         drain_global_stack(false);
  4316       } else {
  4317         break;
  4322   // If we are about to wrap up and go into termination, check if we
  4323   // should raise the overflow flag.
  4324   if (do_termination && !has_aborted()) {
  4325     if (_cm->force_overflow()->should_force()) {
  4326       _cm->set_has_overflown();
  4327       regular_clock_call();
  4331   // We still haven't aborted. Now, let's try to get into the
  4332   // termination protocol.
  4333   if (do_termination && !has_aborted()) {
  4334     // We cannot check whether the global stack is empty, since other
  4335     // tasks might be concurrently pushing objects on it.
  4336     // Separated the asserts so that we know which one fires.
  4337     assert(_cm->out_of_regions(), "only way to reach here");
  4338     assert(_task_queue->size() == 0, "only way to reach here");
  4340     if (_cm->verbose_low()) {
  4341       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4344     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4346     // The CMTask class also extends the TerminatorTerminator class,
  4347     // hence its should_exit_termination() method will also decide
  4348     // whether to exit the termination protocol or not.
  4349     bool finished = (is_serial ||
  4350                      _cm->terminator()->offer_termination(this));
  4351     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4352     _termination_time_ms +=
  4353       termination_end_time_ms - _termination_start_time_ms;
  4355     if (finished) {
  4356       // We're all done.
  4358       if (_worker_id == 0) {
  4359         // let's allow task 0 to do this
  4360         if (concurrent()) {
  4361           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4362           // we need to set this to false before the next
  4363           // safepoint. This way we ensure that the marking phase
  4364           // doesn't observe any more heap expansions.
  4365           _cm->clear_concurrent_marking_in_progress();
  4369       // We can now guarantee that the global stack is empty, since
  4370       // all other tasks have finished. We separated the guarantees so
  4371       // that, if a condition is false, we can immediately find out
  4372       // which one.
  4373       guarantee(_cm->out_of_regions(), "only way to reach here");
  4374       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4375       guarantee(_task_queue->size() == 0, "only way to reach here");
  4376       guarantee(!_cm->has_overflown(), "only way to reach here");
  4377       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4379       if (_cm->verbose_low()) {
  4380         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4382     } else {
  4383       // Apparently there's more work to do. Let's abort this task. It
  4384       // will restart it and we can hopefully find more things to do.
  4386       if (_cm->verbose_low()) {
  4387         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4388                                _worker_id);
  4391       set_has_aborted();
  4392       statsOnly( ++_aborted_termination );
  4396   // Mainly for debugging purposes to make sure that a pointer to the
  4397   // closure which was statically allocated in this frame doesn't
  4398   // escape it by accident.
  4399   set_cm_oop_closure(NULL);
  4400   double end_time_ms = os::elapsedVTime() * 1000.0;
  4401   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4402   // Update the step history.
  4403   _step_times_ms.add(elapsed_time_ms);
  4405   if (has_aborted()) {
  4406     // The task was aborted for some reason.
  4408     statsOnly( ++_aborted );
  4410     if (_has_timed_out) {
  4411       double diff_ms = elapsed_time_ms - _time_target_ms;
  4412       // Keep statistics of how well we did with respect to hitting
  4413       // our target only if we actually timed out (if we aborted for
  4414       // other reasons, then the results might get skewed).
  4415       _marking_step_diffs_ms.add(diff_ms);
  4418     if (_cm->has_overflown()) {
  4419       // This is the interesting one. We aborted because a global
  4420       // overflow was raised. This means we have to restart the
  4421       // marking phase and start iterating over regions. However, in
  4422       // order to do this we have to make sure that all tasks stop
  4423       // what they are doing and re-initialise in a safe manner. We
  4424       // will achieve this with the use of two barrier sync points.
  4426       if (_cm->verbose_low()) {
  4427         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4430       if (!is_serial) {
  4431         // We only need to enter the sync barrier if being called
  4432         // from a parallel context
  4433         _cm->enter_first_sync_barrier(_worker_id);
  4435         // When we exit this sync barrier we know that all tasks have
  4436         // stopped doing marking work. So, it's now safe to
  4437         // re-initialise our data structures. At the end of this method,
  4438         // task 0 will clear the global data structures.
  4441       statsOnly( ++_aborted_overflow );
  4443       // We clear the local state of this task...
  4444       clear_region_fields();
  4446       if (!is_serial) {
  4447         // ...and enter the second barrier.
  4448         _cm->enter_second_sync_barrier(_worker_id);
  4450       // At this point, if we're during the concurrent phase of
  4451       // marking, everything has been re-initialized and we're
  4452       // ready to restart.
  4455     if (_cm->verbose_low()) {
  4456       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4457                              "elapsed = %1.2lfms <<<<<<<<<<",
  4458                              _worker_id, _time_target_ms, elapsed_time_ms);
  4459       if (_cm->has_aborted()) {
  4460         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4461                                _worker_id);
  4464   } else {
  4465     if (_cm->verbose_low()) {
  4466       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4467                              "elapsed = %1.2lfms <<<<<<<<<<",
  4468                              _worker_id, _time_target_ms, elapsed_time_ms);
  4472   _claimed = false;
  4475 CMTask::CMTask(uint worker_id,
  4476                ConcurrentMark* cm,
  4477                size_t* marked_bytes,
  4478                BitMap* card_bm,
  4479                CMTaskQueue* task_queue,
  4480                CMTaskQueueSet* task_queues)
  4481   : _g1h(G1CollectedHeap::heap()),
  4482     _worker_id(worker_id), _cm(cm),
  4483     _claimed(false),
  4484     _nextMarkBitMap(NULL), _hash_seed(17),
  4485     _task_queue(task_queue),
  4486     _task_queues(task_queues),
  4487     _cm_oop_closure(NULL),
  4488     _marked_bytes_array(marked_bytes),
  4489     _card_bm(card_bm) {
  4490   guarantee(task_queue != NULL, "invariant");
  4491   guarantee(task_queues != NULL, "invariant");
  4493   statsOnly( _clock_due_to_scanning = 0;
  4494              _clock_due_to_marking  = 0 );
  4496   _marking_step_diffs_ms.add(0.5);
  4499 // These are formatting macros that are used below to ensure
  4500 // consistent formatting. The *_H_* versions are used to format the
  4501 // header for a particular value and they should be kept consistent
  4502 // with the corresponding macro. Also note that most of the macros add
  4503 // the necessary white space (as a prefix) which makes them a bit
  4504 // easier to compose.
  4506 // All the output lines are prefixed with this string to be able to
  4507 // identify them easily in a large log file.
  4508 #define G1PPRL_LINE_PREFIX            "###"
  4510 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4511 #ifdef _LP64
  4512 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4513 #else // _LP64
  4514 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4515 #endif // _LP64
  4517 // For per-region info
  4518 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4519 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4520 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4521 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4522 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4523 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4525 // For summary info
  4526 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4527 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4528 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4529 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4531 G1PrintRegionLivenessInfoClosure::
  4532 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4533   : _out(out),
  4534     _total_used_bytes(0), _total_capacity_bytes(0),
  4535     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4536     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4537     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4538     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4539   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4540   MemRegion g1_committed = g1h->g1_committed();
  4541   MemRegion g1_reserved = g1h->g1_reserved();
  4542   double now = os::elapsedTime();
  4544   // Print the header of the output.
  4545   _out->cr();
  4546   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4547   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4548                  G1PPRL_SUM_ADDR_FORMAT("committed")
  4549                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4550                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4551                  g1_committed.start(), g1_committed.end(),
  4552                  g1_reserved.start(), g1_reserved.end(),
  4553                  HeapRegion::GrainBytes);
  4554   _out->print_cr(G1PPRL_LINE_PREFIX);
  4555   _out->print_cr(G1PPRL_LINE_PREFIX
  4556                 G1PPRL_TYPE_H_FORMAT
  4557                 G1PPRL_ADDR_BASE_H_FORMAT
  4558                 G1PPRL_BYTE_H_FORMAT
  4559                 G1PPRL_BYTE_H_FORMAT
  4560                 G1PPRL_BYTE_H_FORMAT
  4561                 G1PPRL_DOUBLE_H_FORMAT
  4562                 G1PPRL_BYTE_H_FORMAT
  4563                 G1PPRL_BYTE_H_FORMAT,
  4564                 "type", "address-range",
  4565                 "used", "prev-live", "next-live", "gc-eff",
  4566                 "remset", "code-roots");
  4567   _out->print_cr(G1PPRL_LINE_PREFIX
  4568                 G1PPRL_TYPE_H_FORMAT
  4569                 G1PPRL_ADDR_BASE_H_FORMAT
  4570                 G1PPRL_BYTE_H_FORMAT
  4571                 G1PPRL_BYTE_H_FORMAT
  4572                 G1PPRL_BYTE_H_FORMAT
  4573                 G1PPRL_DOUBLE_H_FORMAT
  4574                 G1PPRL_BYTE_H_FORMAT
  4575                 G1PPRL_BYTE_H_FORMAT,
  4576                 "", "",
  4577                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4578                 "(bytes)", "(bytes)");
  4581 // It takes as a parameter a reference to one of the _hum_* fields, it
  4582 // deduces the corresponding value for a region in a humongous region
  4583 // series (either the region size, or what's left if the _hum_* field
  4584 // is < the region size), and updates the _hum_* field accordingly.
  4585 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4586   size_t bytes = 0;
  4587   // The > 0 check is to deal with the prev and next live bytes which
  4588   // could be 0.
  4589   if (*hum_bytes > 0) {
  4590     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4591     *hum_bytes -= bytes;
  4593   return bytes;
  4596 // It deduces the values for a region in a humongous region series
  4597 // from the _hum_* fields and updates those accordingly. It assumes
  4598 // that that _hum_* fields have already been set up from the "starts
  4599 // humongous" region and we visit the regions in address order.
  4600 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4601                                                      size_t* capacity_bytes,
  4602                                                      size_t* prev_live_bytes,
  4603                                                      size_t* next_live_bytes) {
  4604   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4605   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4606   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4607   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4608   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4611 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4612   const char* type = "";
  4613   HeapWord* bottom       = r->bottom();
  4614   HeapWord* end          = r->end();
  4615   size_t capacity_bytes  = r->capacity();
  4616   size_t used_bytes      = r->used();
  4617   size_t prev_live_bytes = r->live_bytes();
  4618   size_t next_live_bytes = r->next_live_bytes();
  4619   double gc_eff          = r->gc_efficiency();
  4620   size_t remset_bytes    = r->rem_set()->mem_size();
  4621   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4623   if (r->used() == 0) {
  4624     type = "FREE";
  4625   } else if (r->is_survivor()) {
  4626     type = "SURV";
  4627   } else if (r->is_young()) {
  4628     type = "EDEN";
  4629   } else if (r->startsHumongous()) {
  4630     type = "HUMS";
  4632     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4633            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4634            "they should have been zeroed after the last time we used them");
  4635     // Set up the _hum_* fields.
  4636     _hum_capacity_bytes  = capacity_bytes;
  4637     _hum_used_bytes      = used_bytes;
  4638     _hum_prev_live_bytes = prev_live_bytes;
  4639     _hum_next_live_bytes = next_live_bytes;
  4640     get_hum_bytes(&used_bytes, &capacity_bytes,
  4641                   &prev_live_bytes, &next_live_bytes);
  4642     end = bottom + HeapRegion::GrainWords;
  4643   } else if (r->continuesHumongous()) {
  4644     type = "HUMC";
  4645     get_hum_bytes(&used_bytes, &capacity_bytes,
  4646                   &prev_live_bytes, &next_live_bytes);
  4647     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4648   } else {
  4649     type = "OLD";
  4652   _total_used_bytes      += used_bytes;
  4653   _total_capacity_bytes  += capacity_bytes;
  4654   _total_prev_live_bytes += prev_live_bytes;
  4655   _total_next_live_bytes += next_live_bytes;
  4656   _total_remset_bytes    += remset_bytes;
  4657   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4659   // Print a line for this particular region.
  4660   _out->print_cr(G1PPRL_LINE_PREFIX
  4661                  G1PPRL_TYPE_FORMAT
  4662                  G1PPRL_ADDR_BASE_FORMAT
  4663                  G1PPRL_BYTE_FORMAT
  4664                  G1PPRL_BYTE_FORMAT
  4665                  G1PPRL_BYTE_FORMAT
  4666                  G1PPRL_DOUBLE_FORMAT
  4667                  G1PPRL_BYTE_FORMAT
  4668                  G1PPRL_BYTE_FORMAT,
  4669                  type, bottom, end,
  4670                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4671                  remset_bytes, strong_code_roots_bytes);
  4673   return false;
  4676 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4677   // add static memory usages to remembered set sizes
  4678   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4679   // Print the footer of the output.
  4680   _out->print_cr(G1PPRL_LINE_PREFIX);
  4681   _out->print_cr(G1PPRL_LINE_PREFIX
  4682                  " SUMMARY"
  4683                  G1PPRL_SUM_MB_FORMAT("capacity")
  4684                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4685                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4686                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4687                  G1PPRL_SUM_MB_FORMAT("remset")
  4688                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4689                  bytes_to_mb(_total_capacity_bytes),
  4690                  bytes_to_mb(_total_used_bytes),
  4691                  perc(_total_used_bytes, _total_capacity_bytes),
  4692                  bytes_to_mb(_total_prev_live_bytes),
  4693                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4694                  bytes_to_mb(_total_next_live_bytes),
  4695                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4696                  bytes_to_mb(_total_remset_bytes),
  4697                  bytes_to_mb(_total_strong_code_roots_bytes));
  4698   _out->cr();

mercurial