src/share/vm/utilities/taskqueue.hpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5555
61521bd65100
child 6472
2b8e28fdf503
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "utilities/stack.hpp"
    32 #ifdef TARGET_OS_ARCH_linux_x86
    33 # include "orderAccess_linux_x86.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_ARCH_linux_sparc
    36 # include "orderAccess_linux_sparc.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_ARCH_linux_zero
    39 # include "orderAccess_linux_zero.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_ARCH_solaris_x86
    42 # include "orderAccess_solaris_x86.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_ARCH_solaris_sparc
    45 # include "orderAccess_solaris_sparc.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_windows_x86
    48 # include "orderAccess_windows_x86.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_arm
    51 # include "orderAccess_linux_arm.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_linux_ppc
    54 # include "orderAccess_linux_ppc.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_bsd_x86
    57 # include "orderAccess_bsd_x86.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_bsd_zero
    60 # include "orderAccess_bsd_zero.inline.hpp"
    61 #endif
    63 // Simple TaskQueue stats that are collected by default in debug builds.
    65 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    66 #define TASKQUEUE_STATS 1
    67 #elif !defined(TASKQUEUE_STATS)
    68 #define TASKQUEUE_STATS 0
    69 #endif
    71 #if TASKQUEUE_STATS
    72 #define TASKQUEUE_STATS_ONLY(code) code
    73 #else
    74 #define TASKQUEUE_STATS_ONLY(code)
    75 #endif // TASKQUEUE_STATS
    77 #if TASKQUEUE_STATS
    78 class TaskQueueStats {
    79 public:
    80   enum StatId {
    81     push,             // number of taskqueue pushes
    82     pop,              // number of taskqueue pops
    83     pop_slow,         // subset of taskqueue pops that were done slow-path
    84     steal_attempt,    // number of taskqueue steal attempts
    85     steal,            // number of taskqueue steals
    86     overflow,         // number of overflow pushes
    87     overflow_max_len, // max length of overflow stack
    88     last_stat_id
    89   };
    91 public:
    92   inline TaskQueueStats()       { reset(); }
    94   inline void record_push()     { ++_stats[push]; }
    95   inline void record_pop()      { ++_stats[pop]; }
    96   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    97   inline void record_steal(bool success);
    98   inline void record_overflow(size_t new_length);
   100   TaskQueueStats & operator +=(const TaskQueueStats & addend);
   102   inline size_t get(StatId id) const { return _stats[id]; }
   103   inline const size_t* get() const   { return _stats; }
   105   inline void reset();
   107   // Print the specified line of the header (does not include a line separator).
   108   static void print_header(unsigned int line, outputStream* const stream = tty,
   109                            unsigned int width = 10);
   110   // Print the statistics (does not include a line separator).
   111   void print(outputStream* const stream = tty, unsigned int width = 10) const;
   113   DEBUG_ONLY(void verify() const;)
   115 private:
   116   size_t                    _stats[last_stat_id];
   117   static const char * const _names[last_stat_id];
   118 };
   120 void TaskQueueStats::record_steal(bool success) {
   121   ++_stats[steal_attempt];
   122   if (success) ++_stats[steal];
   123 }
   125 void TaskQueueStats::record_overflow(size_t new_len) {
   126   ++_stats[overflow];
   127   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   128 }
   130 void TaskQueueStats::reset() {
   131   memset(_stats, 0, sizeof(_stats));
   132 }
   133 #endif // TASKQUEUE_STATS
   135 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
   137 template <unsigned int N, MEMFLAGS F>
   138 class TaskQueueSuper: public CHeapObj<F> {
   139 protected:
   140   // Internal type for indexing the queue; also used for the tag.
   141   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   143   // The first free element after the last one pushed (mod N).
   144   volatile uint _bottom;
   146   enum { MOD_N_MASK = N - 1 };
   148   class Age {
   149   public:
   150     Age(size_t data = 0)         { _data = data; }
   151     Age(const Age& age)          { _data = age._data; }
   152     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   154     Age   get()        const volatile { return _data; }
   155     void  set(Age age) volatile       { _data = age._data; }
   157     idx_t top()        const volatile { return _fields._top; }
   158     idx_t tag()        const volatile { return _fields._tag; }
   160     // Increment top; if it wraps, increment tag also.
   161     void increment() {
   162       _fields._top = increment_index(_fields._top);
   163       if (_fields._top == 0) ++_fields._tag;
   164     }
   166     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   167       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   168                                           (volatile intptr_t *)&_data,
   169                                           (intptr_t)old_age._data);
   170     }
   172     bool operator ==(const Age& other) const { return _data == other._data; }
   174   private:
   175     struct fields {
   176       idx_t _top;
   177       idx_t _tag;
   178     };
   179     union {
   180       size_t _data;
   181       fields _fields;
   182     };
   183   };
   185   volatile Age _age;
   187   // These both operate mod N.
   188   static uint increment_index(uint ind) {
   189     return (ind + 1) & MOD_N_MASK;
   190   }
   191   static uint decrement_index(uint ind) {
   192     return (ind - 1) & MOD_N_MASK;
   193   }
   195   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   196   // interpreted as 0.
   197   uint dirty_size(uint bot, uint top) const {
   198     return (bot - top) & MOD_N_MASK;
   199   }
   201   // Returns the size corresponding to the given "bot" and "top".
   202   uint size(uint bot, uint top) const {
   203     uint sz = dirty_size(bot, top);
   204     // Has the queue "wrapped", so that bottom is less than top?  There's a
   205     // complicated special case here.  A pair of threads could perform pop_local
   206     // and pop_global operations concurrently, starting from a state in which
   207     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   208     // and the pop_global in incrementing _top (in which case the pop_global
   209     // will be awarded the contested queue element.)  The resulting state must
   210     // be interpreted as an empty queue.  (We only need to worry about one such
   211     // event: only the queue owner performs pop_local's, and several concurrent
   212     // threads attempting to perform the pop_global will all perform the same
   213     // CAS, and only one can succeed.)  Any stealing thread that reads after
   214     // either the increment or decrement will see an empty queue, and will not
   215     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   216     // modified by concurrent queues, so the owner thread can reset the state to
   217     // _bottom == top so subsequent pushes will be performed normally.
   218     return (sz == N - 1) ? 0 : sz;
   219   }
   221 public:
   222   TaskQueueSuper() : _bottom(0), _age() {}
   224   // Return true if the TaskQueue contains/does not contain any tasks.
   225   bool peek()     const { return _bottom != _age.top(); }
   226   bool is_empty() const { return size() == 0; }
   228   // Return an estimate of the number of elements in the queue.
   229   // The "careful" version admits the possibility of pop_local/pop_global
   230   // races.
   231   uint size() const {
   232     return size(_bottom, _age.top());
   233   }
   235   uint dirty_size() const {
   236     return dirty_size(_bottom, _age.top());
   237   }
   239   void set_empty() {
   240     _bottom = 0;
   241     _age.set(0);
   242   }
   244   // Maximum number of elements allowed in the queue.  This is two less
   245   // than the actual queue size, for somewhat complicated reasons.
   246   uint max_elems() const { return N - 2; }
   248   // Total size of queue.
   249   static const uint total_size() { return N; }
   251   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   252 };
   254 //
   255 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
   256 // ended-queue (deque), intended for use in work stealing. Queue operations
   257 // are non-blocking.
   258 //
   259 // A queue owner thread performs push() and pop_local() operations on one end
   260 // of the queue, while other threads may steal work using the pop_global()
   261 // method.
   262 //
   263 // The main difference to the original algorithm is that this
   264 // implementation allows wrap-around at the end of its allocated
   265 // storage, which is an array.
   266 //
   267 // The original paper is:
   268 //
   269 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
   270 // Thread scheduling for multiprogrammed multiprocessors.
   271 // Theory of Computing Systems 34, 2 (2001), 115-144.
   272 //
   273 // The following paper provides an correctness proof and an
   274 // implementation for weakly ordered memory models including (pseudo-)
   275 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
   276 // similar to ABP, with the main difference that it allows resizing of the
   277 // underlying storage:
   278 //
   279 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
   280 // Correct and efficient work-stealing for weak memory models
   281 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
   282 // practice of parallel programming (PPoPP 2013), 69-80
   283 //
   285 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   286 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   287   ArrayAllocator<E, F> _array_allocator;
   288 protected:
   289   typedef typename TaskQueueSuper<N, F>::Age Age;
   290   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   292   using TaskQueueSuper<N, F>::_bottom;
   293   using TaskQueueSuper<N, F>::_age;
   294   using TaskQueueSuper<N, F>::increment_index;
   295   using TaskQueueSuper<N, F>::decrement_index;
   296   using TaskQueueSuper<N, F>::dirty_size;
   298 public:
   299   using TaskQueueSuper<N, F>::max_elems;
   300   using TaskQueueSuper<N, F>::size;
   302 #if  TASKQUEUE_STATS
   303   using TaskQueueSuper<N, F>::stats;
   304 #endif
   306 private:
   307   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   308   bool push_slow(E t, uint dirty_n_elems);
   309   bool pop_local_slow(uint localBot, Age oldAge);
   311 public:
   312   typedef E element_type;
   314   // Initializes the queue to empty.
   315   GenericTaskQueue();
   317   void initialize();
   319   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   320   inline bool push(E t);
   322   // Attempts to claim a task from the "local" end of the queue (the most
   323   // recently pushed).  If successful, returns true and sets t to the task;
   324   // otherwise, returns false (the queue is empty).
   325   inline bool pop_local(volatile E& t);
   327   // Like pop_local(), but uses the "global" end of the queue (the least
   328   // recently pushed).
   329   bool pop_global(volatile E& t);
   331   // Delete any resource associated with the queue.
   332   ~GenericTaskQueue();
   334   // apply the closure to all elements in the task queue
   335   void oops_do(OopClosure* f);
   337 private:
   338   // Element array.
   339   volatile E* _elems;
   340 };
   342 template<class E, MEMFLAGS F, unsigned int N>
   343 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   344   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   345 }
   347 template<class E, MEMFLAGS F, unsigned int N>
   348 void GenericTaskQueue<E, F, N>::initialize() {
   349   _elems = _array_allocator.allocate(N);
   350 }
   352 template<class E, MEMFLAGS F, unsigned int N>
   353 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   354   // tty->print_cr("START OopTaskQueue::oops_do");
   355   uint iters = size();
   356   uint index = _bottom;
   357   for (uint i = 0; i < iters; ++i) {
   358     index = decrement_index(index);
   359     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   360     //            index, &_elems[index], _elems[index]);
   361     E* t = (E*)&_elems[index];      // cast away volatility
   362     oop* p = (oop*)t;
   363     assert((*t)->is_oop_or_null(), "Not an oop or null");
   364     f->do_oop(p);
   365   }
   366   // tty->print_cr("END OopTaskQueue::oops_do");
   367 }
   369 template<class E, MEMFLAGS F, unsigned int N>
   370 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   371   if (dirty_n_elems == N - 1) {
   372     // Actually means 0, so do the push.
   373     uint localBot = _bottom;
   374     // g++ complains if the volatile result of the assignment is
   375     // unused, so we cast the volatile away.  We cannot cast directly
   376     // to void, because gcc treats that as not using the result of the
   377     // assignment.  However, casting to E& means that we trigger an
   378     // unused-value warning.  So, we cast the E& to void.
   379     (void)const_cast<E&>(_elems[localBot] = t);
   380     OrderAccess::release_store(&_bottom, increment_index(localBot));
   381     TASKQUEUE_STATS_ONLY(stats.record_push());
   382     return true;
   383   }
   384   return false;
   385 }
   387 // pop_local_slow() is done by the owning thread and is trying to
   388 // get the last task in the queue.  It will compete with pop_global()
   389 // that will be used by other threads.  The tag age is incremented
   390 // whenever the queue goes empty which it will do here if this thread
   391 // gets the last task or in pop_global() if the queue wraps (top == 0
   392 // and pop_global() succeeds, see pop_global()).
   393 template<class E, MEMFLAGS F, unsigned int N>
   394 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   395   // This queue was observed to contain exactly one element; either this
   396   // thread will claim it, or a competing "pop_global".  In either case,
   397   // the queue will be logically empty afterwards.  Create a new Age value
   398   // that represents the empty queue for the given value of "_bottom".  (We
   399   // must also increment "tag" because of the case where "bottom == 1",
   400   // "top == 0".  A pop_global could read the queue element in that case,
   401   // then have the owner thread do a pop followed by another push.  Without
   402   // the incrementing of "tag", the pop_global's CAS could succeed,
   403   // allowing it to believe it has claimed the stale element.)
   404   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   405   // Perhaps a competing pop_global has already incremented "top", in which
   406   // case it wins the element.
   407   if (localBot == oldAge.top()) {
   408     // No competing pop_global has yet incremented "top"; we'll try to
   409     // install new_age, thus claiming the element.
   410     Age tempAge = _age.cmpxchg(newAge, oldAge);
   411     if (tempAge == oldAge) {
   412       // We win.
   413       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   414       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   415       return true;
   416     }
   417   }
   418   // We lose; a completing pop_global gets the element.  But the queue is empty
   419   // and top is greater than bottom.  Fix this representation of the empty queue
   420   // to become the canonical one.
   421   _age.set(newAge);
   422   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   423   return false;
   424 }
   426 template<class E, MEMFLAGS F, unsigned int N>
   427 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
   428   Age oldAge = _age.get();
   429   // Architectures with weak memory model require a barrier here
   430   // to guarantee that bottom is not older than age,
   431   // which is crucial for the correctness of the algorithm.
   432 #if !(defined SPARC || defined IA32 || defined AMD64)
   433   OrderAccess::fence();
   434 #endif
   435   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   436   uint n_elems = size(localBot, oldAge.top());
   437   if (n_elems == 0) {
   438     return false;
   439   }
   441   // g++ complains if the volatile result of the assignment is
   442   // unused, so we cast the volatile away.  We cannot cast directly
   443   // to void, because gcc treats that as not using the result of the
   444   // assignment.  However, casting to E& means that we trigger an
   445   // unused-value warning.  So, we cast the E& to void.
   446   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   447   Age newAge(oldAge);
   448   newAge.increment();
   449   Age resAge = _age.cmpxchg(newAge, oldAge);
   451   // Note that using "_bottom" here might fail, since a pop_local might
   452   // have decremented it.
   453   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   454   return resAge == oldAge;
   455 }
   457 template<class E, MEMFLAGS F, unsigned int N>
   458 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   459   FREE_C_HEAP_ARRAY(E, _elems, F);
   460 }
   462 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   463 // elements that do not fit in the TaskQueue.
   464 //
   465 // This class hides two methods from super classes:
   466 //
   467 // push() - push onto the task queue or, if that fails, onto the overflow stack
   468 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   469 //
   470 // Note that size() is not hidden--it returns the number of elements in the
   471 // TaskQueue, and does not include the size of the overflow stack.  This
   472 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   473 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   474 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   475 {
   476 public:
   477   typedef Stack<E, F>               overflow_t;
   478   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   480   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   482   // Push task t onto the queue or onto the overflow stack.  Return true.
   483   inline bool push(E t);
   485   // Attempt to pop from the overflow stack; return true if anything was popped.
   486   inline bool pop_overflow(E& t);
   488   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   490   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   491   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   492   inline bool is_empty()        const {
   493     return taskqueue_empty() && overflow_empty();
   494   }
   496 private:
   497   overflow_t _overflow_stack;
   498 };
   500 template <class E, MEMFLAGS F, unsigned int N>
   501 bool OverflowTaskQueue<E, F, N>::push(E t)
   502 {
   503   if (!taskqueue_t::push(t)) {
   504     overflow_stack()->push(t);
   505     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   506   }
   507   return true;
   508 }
   510 template <class E, MEMFLAGS F, unsigned int N>
   511 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   512 {
   513   if (overflow_empty()) return false;
   514   t = overflow_stack()->pop();
   515   return true;
   516 }
   518 class TaskQueueSetSuper {
   519 protected:
   520   static int randomParkAndMiller(int* seed0);
   521 public:
   522   // Returns "true" if some TaskQueue in the set contains a task.
   523   virtual bool peek() = 0;
   524 };
   526 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   527 };
   529 template<class T, MEMFLAGS F>
   530 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   531 private:
   532   uint _n;
   533   T** _queues;
   535 public:
   536   typedef typename T::element_type E;
   538   GenericTaskQueueSet(int n) : _n(n) {
   539     typedef T* GenericTaskQueuePtr;
   540     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   541     for (int i = 0; i < n; i++) {
   542       _queues[i] = NULL;
   543     }
   544   }
   546   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   548   void register_queue(uint i, T* q);
   550   T* queue(uint n);
   552   // The thread with queue number "queue_num" (and whose random number seed is
   553   // at "seed") is trying to steal a task from some other queue.  (It may try
   554   // several queues, according to some configuration parameter.)  If some steal
   555   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   556   // false.
   557   bool steal(uint queue_num, int* seed, E& t);
   559   bool peek();
   560 };
   562 template<class T, MEMFLAGS F> void
   563 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   564   assert(i < _n, "index out of range.");
   565   _queues[i] = q;
   566 }
   568 template<class T, MEMFLAGS F> T*
   569 GenericTaskQueueSet<T, F>::queue(uint i) {
   570   return _queues[i];
   571 }
   573 template<class T, MEMFLAGS F> bool
   574 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   575   for (uint i = 0; i < 2 * _n; i++) {
   576     if (steal_best_of_2(queue_num, seed, t)) {
   577       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   578       return true;
   579     }
   580   }
   581   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   582   return false;
   583 }
   585 template<class T, MEMFLAGS F> bool
   586 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   587   if (_n > 2) {
   588     uint k1 = queue_num;
   589     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   590     uint k2 = queue_num;
   591     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   592     // Sample both and try the larger.
   593     uint sz1 = _queues[k1]->size();
   594     uint sz2 = _queues[k2]->size();
   595     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   596     else return _queues[k1]->pop_global(t);
   597   } else if (_n == 2) {
   598     // Just try the other one.
   599     uint k = (queue_num + 1) % 2;
   600     return _queues[k]->pop_global(t);
   601   } else {
   602     assert(_n == 1, "can't be zero.");
   603     return false;
   604   }
   605 }
   607 template<class T, MEMFLAGS F>
   608 bool GenericTaskQueueSet<T, F>::peek() {
   609   // Try all the queues.
   610   for (uint j = 0; j < _n; j++) {
   611     if (_queues[j]->peek())
   612       return true;
   613   }
   614   return false;
   615 }
   617 // When to terminate from the termination protocol.
   618 class TerminatorTerminator: public CHeapObj<mtInternal> {
   619 public:
   620   virtual bool should_exit_termination() = 0;
   621 };
   623 // A class to aid in the termination of a set of parallel tasks using
   624 // TaskQueueSet's for work stealing.
   626 #undef TRACESPINNING
   628 class ParallelTaskTerminator: public StackObj {
   629 private:
   630   int _n_threads;
   631   TaskQueueSetSuper* _queue_set;
   632   int _offered_termination;
   634 #ifdef TRACESPINNING
   635   static uint _total_yields;
   636   static uint _total_spins;
   637   static uint _total_peeks;
   638 #endif
   640   bool peek_in_queue_set();
   641 protected:
   642   virtual void yield();
   643   void sleep(uint millis);
   645 public:
   647   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   648   // queue sets of work queues of other threads.
   649   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   651   // The current thread has no work, and is ready to terminate if everyone
   652   // else is.  If returns "true", all threads are terminated.  If returns
   653   // "false", available work has been observed in one of the task queues,
   654   // so the global task is not complete.
   655   bool offer_termination() {
   656     return offer_termination(NULL);
   657   }
   659   // As above, but it also terminates if the should_exit_termination()
   660   // method of the terminator parameter returns true. If terminator is
   661   // NULL, then it is ignored.
   662   bool offer_termination(TerminatorTerminator* terminator);
   664   // Reset the terminator, so that it may be reused again.
   665   // The caller is responsible for ensuring that this is done
   666   // in an MT-safe manner, once the previous round of use of
   667   // the terminator is finished.
   668   void reset_for_reuse();
   669   // Same as above but the number of parallel threads is set to the
   670   // given number.
   671   void reset_for_reuse(int n_threads);
   673 #ifdef TRACESPINNING
   674   static uint total_yields() { return _total_yields; }
   675   static uint total_spins() { return _total_spins; }
   676   static uint total_peeks() { return _total_peeks; }
   677   static void print_termination_counts();
   678 #endif
   679 };
   681 template<class E, MEMFLAGS F, unsigned int N> inline bool
   682 GenericTaskQueue<E, F, N>::push(E t) {
   683   uint localBot = _bottom;
   684   assert(localBot < N, "_bottom out of range.");
   685   idx_t top = _age.top();
   686   uint dirty_n_elems = dirty_size(localBot, top);
   687   assert(dirty_n_elems < N, "n_elems out of range.");
   688   if (dirty_n_elems < max_elems()) {
   689     // g++ complains if the volatile result of the assignment is
   690     // unused, so we cast the volatile away.  We cannot cast directly
   691     // to void, because gcc treats that as not using the result of the
   692     // assignment.  However, casting to E& means that we trigger an
   693     // unused-value warning.  So, we cast the E& to void.
   694     (void) const_cast<E&>(_elems[localBot] = t);
   695     OrderAccess::release_store(&_bottom, increment_index(localBot));
   696     TASKQUEUE_STATS_ONLY(stats.record_push());
   697     return true;
   698   } else {
   699     return push_slow(t, dirty_n_elems);
   700   }
   701 }
   703 template<class E, MEMFLAGS F, unsigned int N> inline bool
   704 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
   705   uint localBot = _bottom;
   706   // This value cannot be N-1.  That can only occur as a result of
   707   // the assignment to bottom in this method.  If it does, this method
   708   // resets the size to 0 before the next call (which is sequential,
   709   // since this is pop_local.)
   710   uint dirty_n_elems = dirty_size(localBot, _age.top());
   711   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   712   if (dirty_n_elems == 0) return false;
   713   localBot = decrement_index(localBot);
   714   _bottom = localBot;
   715   // This is necessary to prevent any read below from being reordered
   716   // before the store just above.
   717   OrderAccess::fence();
   718   // g++ complains if the volatile result of the assignment is
   719   // unused, so we cast the volatile away.  We cannot cast directly
   720   // to void, because gcc treats that as not using the result of the
   721   // assignment.  However, casting to E& means that we trigger an
   722   // unused-value warning.  So, we cast the E& to void.
   723   (void) const_cast<E&>(t = _elems[localBot]);
   724   // This is a second read of "age"; the "size()" above is the first.
   725   // If there's still at least one element in the queue, based on the
   726   // "_bottom" and "age" we've read, then there can be no interference with
   727   // a "pop_global" operation, and we're done.
   728   idx_t tp = _age.top();    // XXX
   729   if (size(localBot, tp) > 0) {
   730     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   731     TASKQUEUE_STATS_ONLY(stats.record_pop());
   732     return true;
   733   } else {
   734     // Otherwise, the queue contained exactly one element; we take the slow
   735     // path.
   736     return pop_local_slow(localBot, _age.get());
   737   }
   738 }
   740 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   741 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   743 #ifdef _MSC_VER
   744 #pragma warning(push)
   745 // warning C4522: multiple assignment operators specified
   746 #pragma warning(disable:4522)
   747 #endif
   749 // This is a container class for either an oop* or a narrowOop*.
   750 // Both are pushed onto a task queue and the consumer will test is_narrow()
   751 // to determine which should be processed.
   752 class StarTask {
   753   void*  _holder;        // either union oop* or narrowOop*
   755   enum { COMPRESSED_OOP_MASK = 1 };
   757  public:
   758   StarTask(narrowOop* p) {
   759     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   760     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   761   }
   762   StarTask(oop* p)       {
   763     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   764     _holder = (void*)p;
   765   }
   766   StarTask()             { _holder = NULL; }
   767   operator oop*()        { return (oop*)_holder; }
   768   operator narrowOop*()  {
   769     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   770   }
   772   StarTask& operator=(const StarTask& t) {
   773     _holder = t._holder;
   774     return *this;
   775   }
   776   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   777     _holder = t._holder;
   778     return *this;
   779   }
   781   bool is_narrow() const {
   782     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   783   }
   784 };
   786 class ObjArrayTask
   787 {
   788 public:
   789   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   790   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   791     assert(idx <= size_t(max_jint), "too big");
   792   }
   793   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   795   ObjArrayTask& operator =(const ObjArrayTask& t) {
   796     _obj = t._obj;
   797     _index = t._index;
   798     return *this;
   799   }
   800   volatile ObjArrayTask&
   801   operator =(const volatile ObjArrayTask& t) volatile {
   802     (void)const_cast<oop&>(_obj = t._obj);
   803     _index = t._index;
   804     return *this;
   805   }
   807   inline oop obj()   const { return _obj; }
   808   inline int index() const { return _index; }
   810   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   812 private:
   813   oop _obj;
   814   int _index;
   815 };
   817 #ifdef _MSC_VER
   818 #pragma warning(pop)
   819 #endif
   821 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   822 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   824 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   825 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   828 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial