src/share/vm/runtime/sharedRuntime.cpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5628
f98f5d48f511
child 5785
a5ac0873476c
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "compiler/disassembler.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "interpreter/interpreterRuntime.hpp"
    37 #include "memory/gcLocker.inline.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "prims/forte.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiRedefineClassesTrace.hpp"
    43 #include "prims/methodHandles.hpp"
    44 #include "prims/nativeLookup.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/handles.inline.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/sharedRuntime.hpp"
    52 #include "runtime/stubRoutines.hpp"
    53 #include "runtime/vframe.hpp"
    54 #include "runtime/vframeArray.hpp"
    55 #include "utilities/copy.hpp"
    56 #include "utilities/dtrace.hpp"
    57 #include "utilities/events.hpp"
    58 #include "utilities/hashtable.inline.hpp"
    59 #include "utilities/macros.hpp"
    60 #include "utilities/xmlstream.hpp"
    61 #ifdef TARGET_ARCH_x86
    62 # include "nativeInst_x86.hpp"
    63 # include "vmreg_x86.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_sparc
    66 # include "nativeInst_sparc.hpp"
    67 # include "vmreg_sparc.inline.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_zero
    70 # include "nativeInst_zero.hpp"
    71 # include "vmreg_zero.inline.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_arm
    74 # include "nativeInst_arm.hpp"
    75 # include "vmreg_arm.inline.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_ppc
    78 # include "nativeInst_ppc.hpp"
    79 # include "vmreg_ppc.inline.hpp"
    80 #endif
    81 #ifdef COMPILER1
    82 #include "c1/c1_Runtime1.hpp"
    83 #endif
    85 // Shared stub locations
    86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    87 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    88 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    89 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    90 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
    94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    97 #ifdef COMPILER2
    98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    99 #endif // COMPILER2
   102 //----------------------------generate_stubs-----------------------------------
   103 void SharedRuntime::generate_stubs() {
   104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
   105   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
   106   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
   107   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
   108   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
   110 #ifdef COMPILER2
   111   // Vectors are generated only by C2.
   112   if (is_wide_vector(MaxVectorSize)) {
   113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   114   }
   115 #endif // COMPILER2
   116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   119   generate_deopt_blob();
   121 #ifdef COMPILER2
   122   generate_uncommon_trap_blob();
   123 #endif // COMPILER2
   124 }
   126 #include <math.h>
   128 #ifndef USDT2
   129 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   130 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   131                       char*, int, char*, int, char*, int);
   132 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   133                       char*, int, char*, int, char*, int);
   134 #endif /* !USDT2 */
   136 // Implementation of SharedRuntime
   138 #ifndef PRODUCT
   139 // For statistics
   140 int SharedRuntime::_ic_miss_ctr = 0;
   141 int SharedRuntime::_wrong_method_ctr = 0;
   142 int SharedRuntime::_resolve_static_ctr = 0;
   143 int SharedRuntime::_resolve_virtual_ctr = 0;
   144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   145 int SharedRuntime::_implicit_null_throws = 0;
   146 int SharedRuntime::_implicit_div0_throws = 0;
   147 int SharedRuntime::_throw_null_ctr = 0;
   149 int SharedRuntime::_nof_normal_calls = 0;
   150 int SharedRuntime::_nof_optimized_calls = 0;
   151 int SharedRuntime::_nof_inlined_calls = 0;
   152 int SharedRuntime::_nof_megamorphic_calls = 0;
   153 int SharedRuntime::_nof_static_calls = 0;
   154 int SharedRuntime::_nof_inlined_static_calls = 0;
   155 int SharedRuntime::_nof_interface_calls = 0;
   156 int SharedRuntime::_nof_optimized_interface_calls = 0;
   157 int SharedRuntime::_nof_inlined_interface_calls = 0;
   158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   159 int SharedRuntime::_nof_removable_exceptions = 0;
   161 int SharedRuntime::_new_instance_ctr=0;
   162 int SharedRuntime::_new_array_ctr=0;
   163 int SharedRuntime::_multi1_ctr=0;
   164 int SharedRuntime::_multi2_ctr=0;
   165 int SharedRuntime::_multi3_ctr=0;
   166 int SharedRuntime::_multi4_ctr=0;
   167 int SharedRuntime::_multi5_ctr=0;
   168 int SharedRuntime::_mon_enter_stub_ctr=0;
   169 int SharedRuntime::_mon_exit_stub_ctr=0;
   170 int SharedRuntime::_mon_enter_ctr=0;
   171 int SharedRuntime::_mon_exit_ctr=0;
   172 int SharedRuntime::_partial_subtype_ctr=0;
   173 int SharedRuntime::_jbyte_array_copy_ctr=0;
   174 int SharedRuntime::_jshort_array_copy_ctr=0;
   175 int SharedRuntime::_jint_array_copy_ctr=0;
   176 int SharedRuntime::_jlong_array_copy_ctr=0;
   177 int SharedRuntime::_oop_array_copy_ctr=0;
   178 int SharedRuntime::_checkcast_array_copy_ctr=0;
   179 int SharedRuntime::_unsafe_array_copy_ctr=0;
   180 int SharedRuntime::_generic_array_copy_ctr=0;
   181 int SharedRuntime::_slow_array_copy_ctr=0;
   182 int SharedRuntime::_find_handler_ctr=0;
   183 int SharedRuntime::_rethrow_ctr=0;
   185 int     SharedRuntime::_ICmiss_index                    = 0;
   186 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   190 void SharedRuntime::trace_ic_miss(address at) {
   191   for (int i = 0; i < _ICmiss_index; i++) {
   192     if (_ICmiss_at[i] == at) {
   193       _ICmiss_count[i]++;
   194       return;
   195     }
   196   }
   197   int index = _ICmiss_index++;
   198   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   199   _ICmiss_at[index] = at;
   200   _ICmiss_count[index] = 1;
   201 }
   203 void SharedRuntime::print_ic_miss_histogram() {
   204   if (ICMissHistogram) {
   205     tty->print_cr ("IC Miss Histogram:");
   206     int tot_misses = 0;
   207     for (int i = 0; i < _ICmiss_index; i++) {
   208       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   209       tot_misses += _ICmiss_count[i];
   210     }
   211     tty->print_cr ("Total IC misses: %7d", tot_misses);
   212   }
   213 }
   214 #endif // PRODUCT
   216 #if INCLUDE_ALL_GCS
   218 // G1 write-barrier pre: executed before a pointer store.
   219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   220   if (orig == NULL) {
   221     assert(false, "should be optimized out");
   222     return;
   223   }
   224   assert(orig->is_oop(true /* ignore mark word */), "Error");
   225   // store the original value that was in the field reference
   226   thread->satb_mark_queue().enqueue(orig);
   227 JRT_END
   229 // G1 write-barrier post: executed after a pointer store.
   230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   231   thread->dirty_card_queue().enqueue(card_addr);
   232 JRT_END
   234 #endif // INCLUDE_ALL_GCS
   237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   238   return x * y;
   239 JRT_END
   242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   243   if (x == min_jlong && y == CONST64(-1)) {
   244     return x;
   245   } else {
   246     return x / y;
   247   }
   248 JRT_END
   251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   252   if (x == min_jlong && y == CONST64(-1)) {
   253     return 0;
   254   } else {
   255     return x % y;
   256   }
   257 JRT_END
   260 const juint  float_sign_mask  = 0x7FFFFFFF;
   261 const juint  float_infinity   = 0x7F800000;
   262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   263 const julong double_infinity  = CONST64(0x7FF0000000000000);
   265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   266 #ifdef _WIN64
   267   // 64-bit Windows on amd64 returns the wrong values for
   268   // infinity operands.
   269   union { jfloat f; juint i; } xbits, ybits;
   270   xbits.f = x;
   271   ybits.f = y;
   272   // x Mod Infinity == x unless x is infinity
   273   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   274        ((ybits.i & float_sign_mask) == float_infinity) ) {
   275     return x;
   276   }
   277 #endif
   278   return ((jfloat)fmod((double)x,(double)y));
   279 JRT_END
   282 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   283 #ifdef _WIN64
   284   union { jdouble d; julong l; } xbits, ybits;
   285   xbits.d = x;
   286   ybits.d = y;
   287   // x Mod Infinity == x unless x is infinity
   288   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   289        ((ybits.l & double_sign_mask) == double_infinity) ) {
   290     return x;
   291   }
   292 #endif
   293   return ((jdouble)fmod((double)x,(double)y));
   294 JRT_END
   296 #ifdef __SOFTFP__
   297 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   298   return x + y;
   299 JRT_END
   301 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   302   return x - y;
   303 JRT_END
   305 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   306   return x * y;
   307 JRT_END
   309 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   310   return x / y;
   311 JRT_END
   313 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   314   return x + y;
   315 JRT_END
   317 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   318   return x - y;
   319 JRT_END
   321 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   322   return x * y;
   323 JRT_END
   325 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   326   return x / y;
   327 JRT_END
   329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   330   return (jfloat)x;
   331 JRT_END
   333 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   334   return (jdouble)x;
   335 JRT_END
   337 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   338   return (jdouble)x;
   339 JRT_END
   341 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   342   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   343 JRT_END
   345 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   347 JRT_END
   349 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   350   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   351 JRT_END
   353 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   354   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   355 JRT_END
   357 // Functions to return the opposite of the aeabi functions for nan.
   358 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   360 JRT_END
   362 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   364 JRT_END
   366 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   368 JRT_END
   370 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   372 JRT_END
   374 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   376 JRT_END
   378 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   380 JRT_END
   382 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   384 JRT_END
   386 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   388 JRT_END
   390 // Intrinsics make gcc generate code for these.
   391 float  SharedRuntime::fneg(float f)   {
   392   return -f;
   393 }
   395 double SharedRuntime::dneg(double f)  {
   396   return -f;
   397 }
   399 #endif // __SOFTFP__
   401 #if defined(__SOFTFP__) || defined(E500V2)
   402 // Intrinsics make gcc generate code for these.
   403 double SharedRuntime::dabs(double f)  {
   404   return (f <= (double)0.0) ? (double)0.0 - f : f;
   405 }
   407 #endif
   409 #if defined(__SOFTFP__) || defined(PPC)
   410 double SharedRuntime::dsqrt(double f) {
   411   return sqrt(f);
   412 }
   413 #endif
   415 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   416   if (g_isnan(x))
   417     return 0;
   418   if (x >= (jfloat) max_jint)
   419     return max_jint;
   420   if (x <= (jfloat) min_jint)
   421     return min_jint;
   422   return (jint) x;
   423 JRT_END
   426 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   427   if (g_isnan(x))
   428     return 0;
   429   if (x >= (jfloat) max_jlong)
   430     return max_jlong;
   431   if (x <= (jfloat) min_jlong)
   432     return min_jlong;
   433   return (jlong) x;
   434 JRT_END
   437 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   438   if (g_isnan(x))
   439     return 0;
   440   if (x >= (jdouble) max_jint)
   441     return max_jint;
   442   if (x <= (jdouble) min_jint)
   443     return min_jint;
   444   return (jint) x;
   445 JRT_END
   448 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   449   if (g_isnan(x))
   450     return 0;
   451   if (x >= (jdouble) max_jlong)
   452     return max_jlong;
   453   if (x <= (jdouble) min_jlong)
   454     return min_jlong;
   455   return (jlong) x;
   456 JRT_END
   459 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   460   return (jfloat)x;
   461 JRT_END
   464 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   465   return (jfloat)x;
   466 JRT_END
   469 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   470   return (jdouble)x;
   471 JRT_END
   473 // Exception handling accross interpreter/compiler boundaries
   474 //
   475 // exception_handler_for_return_address(...) returns the continuation address.
   476 // The continuation address is the entry point of the exception handler of the
   477 // previous frame depending on the return address.
   479 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   480   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   482   // Reset method handle flag.
   483   thread->set_is_method_handle_return(false);
   485   // The fastest case first
   486   CodeBlob* blob = CodeCache::find_blob(return_address);
   487   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   488   if (nm != NULL) {
   489     // Set flag if return address is a method handle call site.
   490     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   491     // native nmethods don't have exception handlers
   492     assert(!nm->is_native_method(), "no exception handler");
   493     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   494     if (nm->is_deopt_pc(return_address)) {
   495       return SharedRuntime::deopt_blob()->unpack_with_exception();
   496     } else {
   497       return nm->exception_begin();
   498     }
   499   }
   501   // Entry code
   502   if (StubRoutines::returns_to_call_stub(return_address)) {
   503     return StubRoutines::catch_exception_entry();
   504   }
   505   // Interpreted code
   506   if (Interpreter::contains(return_address)) {
   507     return Interpreter::rethrow_exception_entry();
   508   }
   510   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   511   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   513 #ifndef PRODUCT
   514   { ResourceMark rm;
   515     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   516     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   517     tty->print_cr("b) other problem");
   518   }
   519 #endif // PRODUCT
   521   ShouldNotReachHere();
   522   return NULL;
   523 }
   526 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   527   return raw_exception_handler_for_return_address(thread, return_address);
   528 JRT_END
   531 address SharedRuntime::get_poll_stub(address pc) {
   532   address stub;
   533   // Look up the code blob
   534   CodeBlob *cb = CodeCache::find_blob(pc);
   536   // Should be an nmethod
   537   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   539   // Look up the relocation information
   540   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   541     "safepoint polling: type must be poll" );
   543   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   544     "Only polling locations are used for safepoint");
   546   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   547   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   548   if (at_poll_return) {
   549     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   550            "polling page return stub not created yet");
   551     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   552   } else if (has_wide_vectors) {
   553     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   554            "polling page vectors safepoint stub not created yet");
   555     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   556   } else {
   557     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   558            "polling page safepoint stub not created yet");
   559     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   560   }
   561 #ifndef PRODUCT
   562   if( TraceSafepoint ) {
   563     char buf[256];
   564     jio_snprintf(buf, sizeof(buf),
   565                  "... found polling page %s exception at pc = "
   566                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   567                  at_poll_return ? "return" : "loop",
   568                  (intptr_t)pc, (intptr_t)stub);
   569     tty->print_raw_cr(buf);
   570   }
   571 #endif // PRODUCT
   572   return stub;
   573 }
   576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   577   assert(caller.is_interpreted_frame(), "");
   578   int args_size = ArgumentSizeComputer(sig).size() + 1;
   579   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   580   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
   581   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   582   return result;
   583 }
   586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   587   if (JvmtiExport::can_post_on_exceptions()) {
   588     vframeStream vfst(thread, true);
   589     methodHandle method = methodHandle(thread, vfst.method());
   590     address bcp = method()->bcp_from(vfst.bci());
   591     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   592   }
   593   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   594 }
   596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   597   Handle h_exception = Exceptions::new_exception(thread, name, message);
   598   throw_and_post_jvmti_exception(thread, h_exception);
   599 }
   601 // The interpreter code to call this tracing function is only
   602 // called/generated when TraceRedefineClasses has the right bits
   603 // set. Since obsolete methods are never compiled, we don't have
   604 // to modify the compilers to generate calls to this function.
   605 //
   606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   607     JavaThread* thread, Method* method))
   608   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   610   if (method->is_obsolete()) {
   611     // We are calling an obsolete method, but this is not necessarily
   612     // an error. Our method could have been redefined just after we
   613     // fetched the Method* from the constant pool.
   615     // RC_TRACE macro has an embedded ResourceMark
   616     RC_TRACE_WITH_THREAD(0x00001000, thread,
   617                          ("calling obsolete method '%s'",
   618                           method->name_and_sig_as_C_string()));
   619     if (RC_TRACE_ENABLED(0x00002000)) {
   620       // this option is provided to debug calls to obsolete methods
   621       guarantee(false, "faulting at call to an obsolete method.");
   622     }
   623   }
   624   return 0;
   625 JRT_END
   627 // ret_pc points into caller; we are returning caller's exception handler
   628 // for given exception
   629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   630                                                     bool force_unwind, bool top_frame_only) {
   631   assert(nm != NULL, "must exist");
   632   ResourceMark rm;
   634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   635   // determine handler bci, if any
   636   EXCEPTION_MARK;
   638   int handler_bci = -1;
   639   int scope_depth = 0;
   640   if (!force_unwind) {
   641     int bci = sd->bci();
   642     bool recursive_exception = false;
   643     do {
   644       bool skip_scope_increment = false;
   645       // exception handler lookup
   646       KlassHandle ek (THREAD, exception->klass());
   647       methodHandle mh(THREAD, sd->method());
   648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   649       if (HAS_PENDING_EXCEPTION) {
   650         recursive_exception = true;
   651         // We threw an exception while trying to find the exception handler.
   652         // Transfer the new exception to the exception handle which will
   653         // be set into thread local storage, and do another lookup for an
   654         // exception handler for this exception, this time starting at the
   655         // BCI of the exception handler which caused the exception to be
   656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   657         // argument to ensure that the correct exception is thrown (4870175).
   658         exception = Handle(THREAD, PENDING_EXCEPTION);
   659         CLEAR_PENDING_EXCEPTION;
   660         if (handler_bci >= 0) {
   661           bci = handler_bci;
   662           handler_bci = -1;
   663           skip_scope_increment = true;
   664         }
   665       }
   666       else {
   667         recursive_exception = false;
   668       }
   669       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   670         sd = sd->sender();
   671         if (sd != NULL) {
   672           bci = sd->bci();
   673         }
   674         ++scope_depth;
   675       }
   676     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   677   }
   679   // found handling method => lookup exception handler
   680   int catch_pco = ret_pc - nm->code_begin();
   682   ExceptionHandlerTable table(nm);
   683   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   684   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   685     // Allow abbreviated catch tables.  The idea is to allow a method
   686     // to materialize its exceptions without committing to the exact
   687     // routing of exceptions.  In particular this is needed for adding
   688     // a synthethic handler to unlock monitors when inlining
   689     // synchonized methods since the unlock path isn't represented in
   690     // the bytecodes.
   691     t = table.entry_for(catch_pco, -1, 0);
   692   }
   694 #ifdef COMPILER1
   695   if (t == NULL && nm->is_compiled_by_c1()) {
   696     assert(nm->unwind_handler_begin() != NULL, "");
   697     return nm->unwind_handler_begin();
   698   }
   699 #endif
   701   if (t == NULL) {
   702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   703     tty->print_cr("   Exception:");
   704     exception->print();
   705     tty->cr();
   706     tty->print_cr(" Compiled exception table :");
   707     table.print();
   708     nm->print_code();
   709     guarantee(false, "missing exception handler");
   710     return NULL;
   711   }
   713   return nm->code_begin() + t->pco();
   714 }
   716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   717   // These errors occur only at call sites
   718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   719 JRT_END
   721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   722   // These errors occur only at call sites
   723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   724 JRT_END
   726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   728 JRT_END
   730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   732 JRT_END
   734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   736   // cache sites (when the callee activation is not yet set up) so we are at a call site
   737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   738 JRT_END
   740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   741   // We avoid using the normal exception construction in this case because
   742   // it performs an upcall to Java, and we're already out of stack space.
   743   Klass* k = SystemDictionary::StackOverflowError_klass();
   744   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   745   Handle exception (thread, exception_oop);
   746   if (StackTraceInThrowable) {
   747     java_lang_Throwable::fill_in_stack_trace(exception);
   748   }
   749   throw_and_post_jvmti_exception(thread, exception);
   750 JRT_END
   752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   753                                                            address pc,
   754                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   755 {
   756   address target_pc = NULL;
   758   if (Interpreter::contains(pc)) {
   759 #ifdef CC_INTERP
   760     // C++ interpreter doesn't throw implicit exceptions
   761     ShouldNotReachHere();
   762 #else
   763     switch (exception_kind) {
   764       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   765       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   766       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   767       default:                      ShouldNotReachHere();
   768     }
   769 #endif // !CC_INTERP
   770   } else {
   771     switch (exception_kind) {
   772       case STACK_OVERFLOW: {
   773         // Stack overflow only occurs upon frame setup; the callee is
   774         // going to be unwound. Dispatch to a shared runtime stub
   775         // which will cause the StackOverflowError to be fabricated
   776         // and processed.
   777         // For stack overflow in deoptimization blob, cleanup thread.
   778         if (thread->deopt_mark() != NULL) {
   779           Deoptimization::cleanup_deopt_info(thread, NULL);
   780         }
   781         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   782         return StubRoutines::throw_StackOverflowError_entry();
   783       }
   785       case IMPLICIT_NULL: {
   786         if (VtableStubs::contains(pc)) {
   787           // We haven't yet entered the callee frame. Fabricate an
   788           // exception and begin dispatching it in the caller. Since
   789           // the caller was at a call site, it's safe to destroy all
   790           // caller-saved registers, as these entry points do.
   791           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   793           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   794           if (vt_stub == NULL) return NULL;
   796           if (vt_stub->is_abstract_method_error(pc)) {
   797             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   798             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   799             return StubRoutines::throw_AbstractMethodError_entry();
   800           } else {
   801             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   802             return StubRoutines::throw_NullPointerException_at_call_entry();
   803           }
   804         } else {
   805           CodeBlob* cb = CodeCache::find_blob(pc);
   807           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   808           if (cb == NULL) return NULL;
   810           // Exception happened in CodeCache. Must be either:
   811           // 1. Inline-cache check in C2I handler blob,
   812           // 2. Inline-cache check in nmethod, or
   813           // 3. Implict null exception in nmethod
   815           if (!cb->is_nmethod()) {
   816             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
   817             if (!is_in_blob) {
   818               cb->print();
   819               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
   820             }
   821             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   822             // There is no handler here, so we will simply unwind.
   823             return StubRoutines::throw_NullPointerException_at_call_entry();
   824           }
   826           // Otherwise, it's an nmethod.  Consult its exception handlers.
   827           nmethod* nm = (nmethod*)cb;
   828           if (nm->inlinecache_check_contains(pc)) {
   829             // exception happened inside inline-cache check code
   830             // => the nmethod is not yet active (i.e., the frame
   831             // is not set up yet) => use return address pushed by
   832             // caller => don't push another return address
   833             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   834             return StubRoutines::throw_NullPointerException_at_call_entry();
   835           }
   837           if (nm->method()->is_method_handle_intrinsic()) {
   838             // exception happened inside MH dispatch code, similar to a vtable stub
   839             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   840             return StubRoutines::throw_NullPointerException_at_call_entry();
   841           }
   843 #ifndef PRODUCT
   844           _implicit_null_throws++;
   845 #endif
   846           target_pc = nm->continuation_for_implicit_exception(pc);
   847           // If there's an unexpected fault, target_pc might be NULL,
   848           // in which case we want to fall through into the normal
   849           // error handling code.
   850         }
   852         break; // fall through
   853       }
   856       case IMPLICIT_DIVIDE_BY_ZERO: {
   857         nmethod* nm = CodeCache::find_nmethod(pc);
   858         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   859 #ifndef PRODUCT
   860         _implicit_div0_throws++;
   861 #endif
   862         target_pc = nm->continuation_for_implicit_exception(pc);
   863         // If there's an unexpected fault, target_pc might be NULL,
   864         // in which case we want to fall through into the normal
   865         // error handling code.
   866         break; // fall through
   867       }
   869       default: ShouldNotReachHere();
   870     }
   872     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   874     // for AbortVMOnException flag
   875     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   876     if (exception_kind == IMPLICIT_NULL) {
   877       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   878     } else {
   879       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   880     }
   881     return target_pc;
   882   }
   884   ShouldNotReachHere();
   885   return NULL;
   886 }
   889 /**
   890  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
   891  * installed in the native function entry of all native Java methods before
   892  * they get linked to their actual native methods.
   893  *
   894  * \note
   895  * This method actually never gets called!  The reason is because
   896  * the interpreter's native entries call NativeLookup::lookup() which
   897  * throws the exception when the lookup fails.  The exception is then
   898  * caught and forwarded on the return from NativeLookup::lookup() call
   899  * before the call to the native function.  This might change in the future.
   900  */
   901 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
   902 {
   903   // We return a bad value here to make sure that the exception is
   904   // forwarded before we look at the return value.
   905   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
   906 }
   907 JNI_END
   909 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   910   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   911 }
   914 #ifndef PRODUCT
   915 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   916   const frame f = thread->last_frame();
   917   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   918 #ifndef PRODUCT
   919   methodHandle mh(THREAD, f.interpreter_frame_method());
   920   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   921 #endif // !PRODUCT
   922   return preserve_this_value;
   923 JRT_END
   924 #endif // !PRODUCT
   927 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   928   os::yield_all(attempts);
   929 JRT_END
   932 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   933   assert(obj->is_oop(), "must be a valid oop");
   934   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   935   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   936 JRT_END
   939 jlong SharedRuntime::get_java_tid(Thread* thread) {
   940   if (thread != NULL) {
   941     if (thread->is_Java_thread()) {
   942       oop obj = ((JavaThread*)thread)->threadObj();
   943       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   944     }
   945   }
   946   return 0;
   947 }
   949 /**
   950  * This function ought to be a void function, but cannot be because
   951  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   952  * 6254741.  Once that is fixed we can remove the dummy return value.
   953  */
   954 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   955   return dtrace_object_alloc_base(Thread::current(), o);
   956 }
   958 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   959   assert(DTraceAllocProbes, "wrong call");
   960   Klass* klass = o->klass();
   961   int size = o->size();
   962   Symbol* name = klass->name();
   963 #ifndef USDT2
   964   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   965                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   966 #else /* USDT2 */
   967   HOTSPOT_OBJECT_ALLOC(
   968                    get_java_tid(thread),
   969                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   970 #endif /* USDT2 */
   971   return 0;
   972 }
   974 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   975     JavaThread* thread, Method* method))
   976   assert(DTraceMethodProbes, "wrong call");
   977   Symbol* kname = method->klass_name();
   978   Symbol* name = method->name();
   979   Symbol* sig = method->signature();
   980 #ifndef USDT2
   981   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   982       kname->bytes(), kname->utf8_length(),
   983       name->bytes(), name->utf8_length(),
   984       sig->bytes(), sig->utf8_length());
   985 #else /* USDT2 */
   986   HOTSPOT_METHOD_ENTRY(
   987       get_java_tid(thread),
   988       (char *) kname->bytes(), kname->utf8_length(),
   989       (char *) name->bytes(), name->utf8_length(),
   990       (char *) sig->bytes(), sig->utf8_length());
   991 #endif /* USDT2 */
   992   return 0;
   993 JRT_END
   995 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   996     JavaThread* thread, Method* method))
   997   assert(DTraceMethodProbes, "wrong call");
   998   Symbol* kname = method->klass_name();
   999   Symbol* name = method->name();
  1000   Symbol* sig = method->signature();
  1001 #ifndef USDT2
  1002   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1003       kname->bytes(), kname->utf8_length(),
  1004       name->bytes(), name->utf8_length(),
  1005       sig->bytes(), sig->utf8_length());
  1006 #else /* USDT2 */
  1007   HOTSPOT_METHOD_RETURN(
  1008       get_java_tid(thread),
  1009       (char *) kname->bytes(), kname->utf8_length(),
  1010       (char *) name->bytes(), name->utf8_length(),
  1011       (char *) sig->bytes(), sig->utf8_length());
  1012 #endif /* USDT2 */
  1013   return 0;
  1014 JRT_END
  1017 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1018 // for a call current in progress, i.e., arguments has been pushed on stack
  1019 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1020 // vtable updates, etc.  Caller frame must be compiled.
  1021 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1022   ResourceMark rm(THREAD);
  1024   // last java frame on stack (which includes native call frames)
  1025   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1027   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1031 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1032 // for a call current in progress, i.e., arguments has been pushed on stack
  1033 // but callee has not been invoked yet.  Caller frame must be compiled.
  1034 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1035                                               vframeStream& vfst,
  1036                                               Bytecodes::Code& bc,
  1037                                               CallInfo& callinfo, TRAPS) {
  1038   Handle receiver;
  1039   Handle nullHandle;  //create a handy null handle for exception returns
  1041   assert(!vfst.at_end(), "Java frame must exist");
  1043   // Find caller and bci from vframe
  1044   methodHandle caller(THREAD, vfst.method());
  1045   int          bci   = vfst.bci();
  1047   // Find bytecode
  1048   Bytecode_invoke bytecode(caller, bci);
  1049   bc = bytecode.invoke_code();
  1050   int bytecode_index = bytecode.index();
  1052   // Find receiver for non-static call
  1053   if (bc != Bytecodes::_invokestatic &&
  1054       bc != Bytecodes::_invokedynamic &&
  1055       bc != Bytecodes::_invokehandle) {
  1056     // This register map must be update since we need to find the receiver for
  1057     // compiled frames. The receiver might be in a register.
  1058     RegisterMap reg_map2(thread);
  1059     frame stubFrame   = thread->last_frame();
  1060     // Caller-frame is a compiled frame
  1061     frame callerFrame = stubFrame.sender(&reg_map2);
  1063     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1064     if (callee.is_null()) {
  1065       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1067     // Retrieve from a compiled argument list
  1068     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1070     if (receiver.is_null()) {
  1071       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1075   // Resolve method. This is parameterized by bytecode.
  1076   constantPoolHandle constants(THREAD, caller->constants());
  1077   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1078   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1080 #ifdef ASSERT
  1081   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1082   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
  1083     assert(receiver.not_null(), "should have thrown exception");
  1084     KlassHandle receiver_klass(THREAD, receiver->klass());
  1085     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1086                             // klass is already loaded
  1087     KlassHandle static_receiver_klass(THREAD, rk);
  1088     // Method handle invokes might have been optimized to a direct call
  1089     // so don't check for the receiver class.
  1090     // FIXME this weakens the assert too much
  1091     methodHandle callee = callinfo.selected_method();
  1092     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1093            callee->is_method_handle_intrinsic() ||
  1094            callee->is_compiled_lambda_form(),
  1095            "actual receiver must be subclass of static receiver klass");
  1096     if (receiver_klass->oop_is_instance()) {
  1097       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1098         tty->print_cr("ERROR: Klass not yet initialized!!");
  1099         receiver_klass()->print();
  1101       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1104 #endif
  1106   return receiver;
  1109 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1110   ResourceMark rm(THREAD);
  1111   // We need first to check if any Java activations (compiled, interpreted)
  1112   // exist on the stack since last JavaCall.  If not, we need
  1113   // to get the target method from the JavaCall wrapper.
  1114   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1115   methodHandle callee_method;
  1116   if (vfst.at_end()) {
  1117     // No Java frames were found on stack since we did the JavaCall.
  1118     // Hence the stack can only contain an entry_frame.  We need to
  1119     // find the target method from the stub frame.
  1120     RegisterMap reg_map(thread, false);
  1121     frame fr = thread->last_frame();
  1122     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1123     fr = fr.sender(&reg_map);
  1124     assert(fr.is_entry_frame(), "must be");
  1125     // fr is now pointing to the entry frame.
  1126     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1127     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1128   } else {
  1129     Bytecodes::Code bc;
  1130     CallInfo callinfo;
  1131     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1132     callee_method = callinfo.selected_method();
  1134   assert(callee_method()->is_method(), "must be");
  1135   return callee_method;
  1138 // Resolves a call.
  1139 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1140                                            bool is_virtual,
  1141                                            bool is_optimized, TRAPS) {
  1142   methodHandle callee_method;
  1143   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1144   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1145     int retry_count = 0;
  1146     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1147            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1148       // If has a pending exception then there is no need to re-try to
  1149       // resolve this method.
  1150       // If the method has been redefined, we need to try again.
  1151       // Hack: we have no way to update the vtables of arrays, so don't
  1152       // require that java.lang.Object has been updated.
  1154       // It is very unlikely that method is redefined more than 100 times
  1155       // in the middle of resolve. If it is looping here more than 100 times
  1156       // means then there could be a bug here.
  1157       guarantee((retry_count++ < 100),
  1158                 "Could not resolve to latest version of redefined method");
  1159       // method is redefined in the middle of resolve so re-try.
  1160       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1163   return callee_method;
  1166 // Resolves a call.  The compilers generate code for calls that go here
  1167 // and are patched with the real destination of the call.
  1168 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1169                                            bool is_virtual,
  1170                                            bool is_optimized, TRAPS) {
  1172   ResourceMark rm(thread);
  1173   RegisterMap cbl_map(thread, false);
  1174   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1176   CodeBlob* caller_cb = caller_frame.cb();
  1177   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1178   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1179   // make sure caller is not getting deoptimized
  1180   // and removed before we are done with it.
  1181   // CLEANUP - with lazy deopt shouldn't need this lock
  1182   nmethodLocker caller_lock(caller_nm);
  1185   // determine call info & receiver
  1186   // note: a) receiver is NULL for static calls
  1187   //       b) an exception is thrown if receiver is NULL for non-static calls
  1188   CallInfo call_info;
  1189   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1190   Handle receiver = find_callee_info(thread, invoke_code,
  1191                                      call_info, CHECK_(methodHandle()));
  1192   methodHandle callee_method = call_info.selected_method();
  1194   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1195          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1196          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1197          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1199 #ifndef PRODUCT
  1200   // tracing/debugging/statistics
  1201   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1202                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1203                                (&_resolve_static_ctr);
  1204   Atomic::inc(addr);
  1206   if (TraceCallFixup) {
  1207     ResourceMark rm(thread);
  1208     tty->print("resolving %s%s (%s) call to",
  1209       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1210       Bytecodes::name(invoke_code));
  1211     callee_method->print_short_name(tty);
  1212     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1214 #endif
  1216   // JSR 292 key invariant:
  1217   // If the resolved method is a MethodHandle invoke target the call
  1218   // site must be a MethodHandle call site, because the lambda form might tail-call
  1219   // leaving the stack in a state unknown to either caller or callee
  1220   // TODO detune for now but we might need it again
  1221 //  assert(!callee_method->is_compiled_lambda_form() ||
  1222 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1224   // Compute entry points. This might require generation of C2I converter
  1225   // frames, so we cannot be holding any locks here. Furthermore, the
  1226   // computation of the entry points is independent of patching the call.  We
  1227   // always return the entry-point, but we only patch the stub if the call has
  1228   // not been deoptimized.  Return values: For a virtual call this is an
  1229   // (cached_oop, destination address) pair. For a static call/optimized
  1230   // virtual this is just a destination address.
  1232   StaticCallInfo static_call_info;
  1233   CompiledICInfo virtual_call_info;
  1235   // Make sure the callee nmethod does not get deoptimized and removed before
  1236   // we are done patching the code.
  1237   nmethod* callee_nm = callee_method->code();
  1238   nmethodLocker nl_callee(callee_nm);
  1239 #ifdef ASSERT
  1240   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1241 #endif
  1243   if (is_virtual) {
  1244     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
  1245     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1246     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
  1247     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1248                      is_optimized, static_bound, virtual_call_info,
  1249                      CHECK_(methodHandle()));
  1250   } else {
  1251     // static call
  1252     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1255   // grab lock, check for deoptimization and potentially patch caller
  1257     MutexLocker ml_patch(CompiledIC_lock);
  1259     // Now that we are ready to patch if the Method* was redefined then
  1260     // don't update call site and let the caller retry.
  1262     if (!callee_method->is_old()) {
  1263 #ifdef ASSERT
  1264       // We must not try to patch to jump to an already unloaded method.
  1265       if (dest_entry_point != 0) {
  1266         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1267                "should not unload nmethod while locked");
  1269 #endif
  1270       if (is_virtual) {
  1271         nmethod* nm = callee_nm;
  1272         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1273         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1274         if (inline_cache->is_clean()) {
  1275           inline_cache->set_to_monomorphic(virtual_call_info);
  1277       } else {
  1278         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1279         if (ssc->is_clean()) ssc->set(static_call_info);
  1283   } // unlock CompiledIC_lock
  1285   return callee_method;
  1289 // Inline caches exist only in compiled code
  1290 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1291 #ifdef ASSERT
  1292   RegisterMap reg_map(thread, false);
  1293   frame stub_frame = thread->last_frame();
  1294   assert(stub_frame.is_runtime_frame(), "sanity check");
  1295   frame caller_frame = stub_frame.sender(&reg_map);
  1296   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1297 #endif /* ASSERT */
  1299   methodHandle callee_method;
  1300   JRT_BLOCK
  1301     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1302     // Return Method* through TLS
  1303     thread->set_vm_result_2(callee_method());
  1304   JRT_BLOCK_END
  1305   // return compiled code entry point after potential safepoints
  1306   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1307   return callee_method->verified_code_entry();
  1308 JRT_END
  1311 // Handle call site that has been made non-entrant
  1312 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1313   // 6243940 We might end up in here if the callee is deoptimized
  1314   // as we race to call it.  We don't want to take a safepoint if
  1315   // the caller was interpreted because the caller frame will look
  1316   // interpreted to the stack walkers and arguments are now
  1317   // "compiled" so it is much better to make this transition
  1318   // invisible to the stack walking code. The i2c path will
  1319   // place the callee method in the callee_target. It is stashed
  1320   // there because if we try and find the callee by normal means a
  1321   // safepoint is possible and have trouble gc'ing the compiled args.
  1322   RegisterMap reg_map(thread, false);
  1323   frame stub_frame = thread->last_frame();
  1324   assert(stub_frame.is_runtime_frame(), "sanity check");
  1325   frame caller_frame = stub_frame.sender(&reg_map);
  1327   if (caller_frame.is_interpreted_frame() ||
  1328       caller_frame.is_entry_frame()) {
  1329     Method* callee = thread->callee_target();
  1330     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1331     thread->set_vm_result_2(callee);
  1332     thread->set_callee_target(NULL);
  1333     return callee->get_c2i_entry();
  1336   // Must be compiled to compiled path which is safe to stackwalk
  1337   methodHandle callee_method;
  1338   JRT_BLOCK
  1339     // Force resolving of caller (if we called from compiled frame)
  1340     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1341     thread->set_vm_result_2(callee_method());
  1342   JRT_BLOCK_END
  1343   // return compiled code entry point after potential safepoints
  1344   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1345   return callee_method->verified_code_entry();
  1346 JRT_END
  1349 // resolve a static call and patch code
  1350 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1351   methodHandle callee_method;
  1352   JRT_BLOCK
  1353     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1354     thread->set_vm_result_2(callee_method());
  1355   JRT_BLOCK_END
  1356   // return compiled code entry point after potential safepoints
  1357   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1358   return callee_method->verified_code_entry();
  1359 JRT_END
  1362 // resolve virtual call and update inline cache to monomorphic
  1363 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1364   methodHandle callee_method;
  1365   JRT_BLOCK
  1366     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1367     thread->set_vm_result_2(callee_method());
  1368   JRT_BLOCK_END
  1369   // return compiled code entry point after potential safepoints
  1370   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1371   return callee_method->verified_code_entry();
  1372 JRT_END
  1375 // Resolve a virtual call that can be statically bound (e.g., always
  1376 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1377 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1378   methodHandle callee_method;
  1379   JRT_BLOCK
  1380     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1381     thread->set_vm_result_2(callee_method());
  1382   JRT_BLOCK_END
  1383   // return compiled code entry point after potential safepoints
  1384   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1385   return callee_method->verified_code_entry();
  1386 JRT_END
  1392 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1393   ResourceMark rm(thread);
  1394   CallInfo call_info;
  1395   Bytecodes::Code bc;
  1397   // receiver is NULL for static calls. An exception is thrown for NULL
  1398   // receivers for non-static calls
  1399   Handle receiver = find_callee_info(thread, bc, call_info,
  1400                                      CHECK_(methodHandle()));
  1401   // Compiler1 can produce virtual call sites that can actually be statically bound
  1402   // If we fell thru to below we would think that the site was going megamorphic
  1403   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1404   // we'd try and do a vtable dispatch however methods that can be statically bound
  1405   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1406   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1407   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1408   // never to miss again. I don't believe C2 will produce code like this but if it
  1409   // did this would still be the correct thing to do for it too, hence no ifdef.
  1410   //
  1411   if (call_info.resolved_method()->can_be_statically_bound()) {
  1412     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1413     if (TraceCallFixup) {
  1414       RegisterMap reg_map(thread, false);
  1415       frame caller_frame = thread->last_frame().sender(&reg_map);
  1416       ResourceMark rm(thread);
  1417       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1418       callee_method->print_short_name(tty);
  1419       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1420       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1422     return callee_method;
  1425   methodHandle callee_method = call_info.selected_method();
  1427   bool should_be_mono = false;
  1429 #ifndef PRODUCT
  1430   Atomic::inc(&_ic_miss_ctr);
  1432   // Statistics & Tracing
  1433   if (TraceCallFixup) {
  1434     ResourceMark rm(thread);
  1435     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1436     callee_method->print_short_name(tty);
  1437     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1440   if (ICMissHistogram) {
  1441     MutexLocker m(VMStatistic_lock);
  1442     RegisterMap reg_map(thread, false);
  1443     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1444     // produce statistics under the lock
  1445     trace_ic_miss(f.pc());
  1447 #endif
  1449   // install an event collector so that when a vtable stub is created the
  1450   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1451   // event can't be posted when the stub is created as locks are held
  1452   // - instead the event will be deferred until the event collector goes
  1453   // out of scope.
  1454   JvmtiDynamicCodeEventCollector event_collector;
  1456   // Update inline cache to megamorphic. Skip update if caller has been
  1457   // made non-entrant or we are called from interpreted.
  1458   { MutexLocker ml_patch (CompiledIC_lock);
  1459     RegisterMap reg_map(thread, false);
  1460     frame caller_frame = thread->last_frame().sender(&reg_map);
  1461     CodeBlob* cb = caller_frame.cb();
  1462     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1463       // Not a non-entrant nmethod, so find inline_cache
  1464       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1465       bool should_be_mono = false;
  1466       if (inline_cache->is_optimized()) {
  1467         if (TraceCallFixup) {
  1468           ResourceMark rm(thread);
  1469           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1470           callee_method->print_short_name(tty);
  1471           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1473         should_be_mono = true;
  1474       } else if (inline_cache->is_icholder_call()) {
  1475         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1476         if ( ic_oop != NULL) {
  1478           if (receiver()->klass() == ic_oop->holder_klass()) {
  1479             // This isn't a real miss. We must have seen that compiled code
  1480             // is now available and we want the call site converted to a
  1481             // monomorphic compiled call site.
  1482             // We can't assert for callee_method->code() != NULL because it
  1483             // could have been deoptimized in the meantime
  1484             if (TraceCallFixup) {
  1485               ResourceMark rm(thread);
  1486               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1487               callee_method->print_short_name(tty);
  1488               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1490             should_be_mono = true;
  1495       if (should_be_mono) {
  1497         // We have a path that was monomorphic but was going interpreted
  1498         // and now we have (or had) a compiled entry. We correct the IC
  1499         // by using a new icBuffer.
  1500         CompiledICInfo info;
  1501         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1502         inline_cache->compute_monomorphic_entry(callee_method,
  1503                                                 receiver_klass,
  1504                                                 inline_cache->is_optimized(),
  1505                                                 false,
  1506                                                 info, CHECK_(methodHandle()));
  1507         inline_cache->set_to_monomorphic(info);
  1508       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1509         // Change to megamorphic
  1510         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1511       } else {
  1512         // Either clean or megamorphic
  1515   } // Release CompiledIC_lock
  1517   return callee_method;
  1520 //
  1521 // Resets a call-site in compiled code so it will get resolved again.
  1522 // This routines handles both virtual call sites, optimized virtual call
  1523 // sites, and static call sites. Typically used to change a call sites
  1524 // destination from compiled to interpreted.
  1525 //
  1526 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1527   ResourceMark rm(thread);
  1528   RegisterMap reg_map(thread, false);
  1529   frame stub_frame = thread->last_frame();
  1530   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1531   frame caller = stub_frame.sender(&reg_map);
  1533   // Do nothing if the frame isn't a live compiled frame.
  1534   // nmethod could be deoptimized by the time we get here
  1535   // so no update to the caller is needed.
  1537   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1539     address pc = caller.pc();
  1541     // Default call_addr is the location of the "basic" call.
  1542     // Determine the address of the call we a reresolving. With
  1543     // Inline Caches we will always find a recognizable call.
  1544     // With Inline Caches disabled we may or may not find a
  1545     // recognizable call. We will always find a call for static
  1546     // calls and for optimized virtual calls. For vanilla virtual
  1547     // calls it depends on the state of the UseInlineCaches switch.
  1548     //
  1549     // With Inline Caches disabled we can get here for a virtual call
  1550     // for two reasons:
  1551     //   1 - calling an abstract method. The vtable for abstract methods
  1552     //       will run us thru handle_wrong_method and we will eventually
  1553     //       end up in the interpreter to throw the ame.
  1554     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1555     //       call and between the time we fetch the entry address and
  1556     //       we jump to it the target gets deoptimized. Similar to 1
  1557     //       we will wind up in the interprter (thru a c2i with c2).
  1558     //
  1559     address call_addr = NULL;
  1561       // Get call instruction under lock because another thread may be
  1562       // busy patching it.
  1563       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1564       // Location of call instruction
  1565       if (NativeCall::is_call_before(pc)) {
  1566         NativeCall *ncall = nativeCall_before(pc);
  1567         call_addr = ncall->instruction_address();
  1571     // Check for static or virtual call
  1572     bool is_static_call = false;
  1573     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1574     // Make sure nmethod doesn't get deoptimized and removed until
  1575     // this is done with it.
  1576     // CLEANUP - with lazy deopt shouldn't need this lock
  1577     nmethodLocker nmlock(caller_nm);
  1579     if (call_addr != NULL) {
  1580       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1581       int ret = iter.next(); // Get item
  1582       if (ret) {
  1583         assert(iter.addr() == call_addr, "must find call");
  1584         if (iter.type() == relocInfo::static_call_type) {
  1585           is_static_call = true;
  1586         } else {
  1587           assert(iter.type() == relocInfo::virtual_call_type ||
  1588                  iter.type() == relocInfo::opt_virtual_call_type
  1589                 , "unexpected relocInfo. type");
  1591       } else {
  1592         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1595       // Cleaning the inline cache will force a new resolve. This is more robust
  1596       // than directly setting it to the new destination, since resolving of calls
  1597       // is always done through the same code path. (experience shows that it
  1598       // leads to very hard to track down bugs, if an inline cache gets updated
  1599       // to a wrong method). It should not be performance critical, since the
  1600       // resolve is only done once.
  1602       MutexLocker ml(CompiledIC_lock);
  1603       //
  1604       // We do not patch the call site if the nmethod has been made non-entrant
  1605       // as it is a waste of time
  1606       //
  1607       if (caller_nm->is_in_use()) {
  1608         if (is_static_call) {
  1609           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1610           ssc->set_to_clean();
  1611         } else {
  1612           // compiled, dispatched call (which used to call an interpreted method)
  1613           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1614           inline_cache->set_to_clean();
  1621   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1624 #ifndef PRODUCT
  1625   Atomic::inc(&_wrong_method_ctr);
  1627   if (TraceCallFixup) {
  1628     ResourceMark rm(thread);
  1629     tty->print("handle_wrong_method reresolving call to");
  1630     callee_method->print_short_name(tty);
  1631     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1633 #endif
  1635   return callee_method;
  1638 #ifdef ASSERT
  1639 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1640                                                                 const BasicType* sig_bt,
  1641                                                                 const VMRegPair* regs) {
  1642   ResourceMark rm;
  1643   const int total_args_passed = method->size_of_parameters();
  1644   const VMRegPair*    regs_with_member_name = regs;
  1645         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1647   const int member_arg_pos = total_args_passed - 1;
  1648   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1649   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1651   const bool is_outgoing = method->is_method_handle_intrinsic();
  1652   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1654   for (int i = 0; i < member_arg_pos; i++) {
  1655     VMReg a =    regs_with_member_name[i].first();
  1656     VMReg b = regs_without_member_name[i].first();
  1657     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1659   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1661 #endif
  1663 // ---------------------------------------------------------------------------
  1664 // We are calling the interpreter via a c2i. Normally this would mean that
  1665 // we were called by a compiled method. However we could have lost a race
  1666 // where we went int -> i2c -> c2i and so the caller could in fact be
  1667 // interpreted. If the caller is compiled we attempt to patch the caller
  1668 // so he no longer calls into the interpreter.
  1669 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1670   Method* moop(method);
  1672   address entry_point = moop->from_compiled_entry();
  1674   // It's possible that deoptimization can occur at a call site which hasn't
  1675   // been resolved yet, in which case this function will be called from
  1676   // an nmethod that has been patched for deopt and we can ignore the
  1677   // request for a fixup.
  1678   // Also it is possible that we lost a race in that from_compiled_entry
  1679   // is now back to the i2c in that case we don't need to patch and if
  1680   // we did we'd leap into space because the callsite needs to use
  1681   // "to interpreter" stub in order to load up the Method*. Don't
  1682   // ask me how I know this...
  1684   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1685   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1686     return;
  1689   // The check above makes sure this is a nmethod.
  1690   nmethod* nm = cb->as_nmethod_or_null();
  1691   assert(nm, "must be");
  1693   // Get the return PC for the passed caller PC.
  1694   address return_pc = caller_pc + frame::pc_return_offset;
  1696   // There is a benign race here. We could be attempting to patch to a compiled
  1697   // entry point at the same time the callee is being deoptimized. If that is
  1698   // the case then entry_point may in fact point to a c2i and we'd patch the
  1699   // call site with the same old data. clear_code will set code() to NULL
  1700   // at the end of it. If we happen to see that NULL then we can skip trying
  1701   // to patch. If we hit the window where the callee has a c2i in the
  1702   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1703   // and patch the code with the same old data. Asi es la vida.
  1705   if (moop->code() == NULL) return;
  1707   if (nm->is_in_use()) {
  1709     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1710     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1711     if (NativeCall::is_call_before(return_pc)) {
  1712       NativeCall *call = nativeCall_before(return_pc);
  1713       //
  1714       // bug 6281185. We might get here after resolving a call site to a vanilla
  1715       // virtual call. Because the resolvee uses the verified entry it may then
  1716       // see compiled code and attempt to patch the site by calling us. This would
  1717       // then incorrectly convert the call site to optimized and its downhill from
  1718       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1719       // just made a call site that could be megamorphic into a monomorphic site
  1720       // for the rest of its life! Just another racing bug in the life of
  1721       // fixup_callers_callsite ...
  1722       //
  1723       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1724       iter.next();
  1725       assert(iter.has_current(), "must have a reloc at java call site");
  1726       relocInfo::relocType typ = iter.reloc()->type();
  1727       if ( typ != relocInfo::static_call_type &&
  1728            typ != relocInfo::opt_virtual_call_type &&
  1729            typ != relocInfo::static_stub_type) {
  1730         return;
  1732       address destination = call->destination();
  1733       if (destination != entry_point) {
  1734         CodeBlob* callee = CodeCache::find_blob(destination);
  1735         // callee == cb seems weird. It means calling interpreter thru stub.
  1736         if (callee == cb || callee->is_adapter_blob()) {
  1737           // static call or optimized virtual
  1738           if (TraceCallFixup) {
  1739             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1740             moop->print_short_name(tty);
  1741             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1743           call->set_destination_mt_safe(entry_point);
  1744         } else {
  1745           if (TraceCallFixup) {
  1746             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1747             moop->print_short_name(tty);
  1748             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1750           // assert is too strong could also be resolve destinations.
  1751           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1753       } else {
  1754           if (TraceCallFixup) {
  1755             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1756             moop->print_short_name(tty);
  1757             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1762 IRT_END
  1765 // same as JVM_Arraycopy, but called directly from compiled code
  1766 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1767                                                 oopDesc* dest, jint dest_pos,
  1768                                                 jint length,
  1769                                                 JavaThread* thread)) {
  1770 #ifndef PRODUCT
  1771   _slow_array_copy_ctr++;
  1772 #endif
  1773   // Check if we have null pointers
  1774   if (src == NULL || dest == NULL) {
  1775     THROW(vmSymbols::java_lang_NullPointerException());
  1777   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1778   // even though the copy_array API also performs dynamic checks to ensure
  1779   // that src and dest are truly arrays (and are conformable).
  1780   // The copy_array mechanism is awkward and could be removed, but
  1781   // the compilers don't call this function except as a last resort,
  1782   // so it probably doesn't matter.
  1783   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1784                                         (arrayOopDesc*)dest, dest_pos,
  1785                                         length, thread);
  1787 JRT_END
  1789 char* SharedRuntime::generate_class_cast_message(
  1790     JavaThread* thread, const char* objName) {
  1792   // Get target class name from the checkcast instruction
  1793   vframeStream vfst(thread, true);
  1794   assert(!vfst.at_end(), "Java frame must exist");
  1795   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1796   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1797     cc.index(), thread);
  1798   return generate_class_cast_message(objName, targetKlass->external_name());
  1801 char* SharedRuntime::generate_class_cast_message(
  1802     const char* objName, const char* targetKlassName, const char* desc) {
  1803   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1805   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1806   if (NULL == message) {
  1807     // Shouldn't happen, but don't cause even more problems if it does
  1808     message = const_cast<char*>(objName);
  1809   } else {
  1810     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1812   return message;
  1815 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1816   (void) JavaThread::current()->reguard_stack();
  1817 JRT_END
  1820 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1821 #ifndef PRODUCT
  1822 int SharedRuntime::_monitor_enter_ctr=0;
  1823 #endif
  1824 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1825   oop obj(_obj);
  1826 #ifndef PRODUCT
  1827   _monitor_enter_ctr++;             // monitor enter slow
  1828 #endif
  1829   if (PrintBiasedLockingStatistics) {
  1830     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1832   Handle h_obj(THREAD, obj);
  1833   if (UseBiasedLocking) {
  1834     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1835     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1836   } else {
  1837     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1839   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1840 JRT_END
  1842 #ifndef PRODUCT
  1843 int SharedRuntime::_monitor_exit_ctr=0;
  1844 #endif
  1845 // Handles the uncommon cases of monitor unlocking in compiled code
  1846 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1847    oop obj(_obj);
  1848 #ifndef PRODUCT
  1849   _monitor_exit_ctr++;              // monitor exit slow
  1850 #endif
  1851   Thread* THREAD = JavaThread::current();
  1852   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1853   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1854   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1855 #undef MIGHT_HAVE_PENDING
  1856 #ifdef MIGHT_HAVE_PENDING
  1857   // Save and restore any pending_exception around the exception mark.
  1858   // While the slow_exit must not throw an exception, we could come into
  1859   // this routine with one set.
  1860   oop pending_excep = NULL;
  1861   const char* pending_file;
  1862   int pending_line;
  1863   if (HAS_PENDING_EXCEPTION) {
  1864     pending_excep = PENDING_EXCEPTION;
  1865     pending_file  = THREAD->exception_file();
  1866     pending_line  = THREAD->exception_line();
  1867     CLEAR_PENDING_EXCEPTION;
  1869 #endif /* MIGHT_HAVE_PENDING */
  1872     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1873     EXCEPTION_MARK;
  1874     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1877 #ifdef MIGHT_HAVE_PENDING
  1878   if (pending_excep != NULL) {
  1879     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1881 #endif /* MIGHT_HAVE_PENDING */
  1882 JRT_END
  1884 #ifndef PRODUCT
  1886 void SharedRuntime::print_statistics() {
  1887   ttyLocker ttyl;
  1888   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1890   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1891   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1892   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1894   SharedRuntime::print_ic_miss_histogram();
  1896   if (CountRemovableExceptions) {
  1897     if (_nof_removable_exceptions > 0) {
  1898       Unimplemented(); // this counter is not yet incremented
  1899       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1903   // Dump the JRT_ENTRY counters
  1904   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1905   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1906   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1907   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1908   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1909   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1910   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1912   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1913   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1914   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1915   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1916   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1918   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1919   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1920   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1921   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1922   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1923   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1924   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1925   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1926   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1927   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1928   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1929   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1930   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1931   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1932   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1933   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1935   AdapterHandlerLibrary::print_statistics();
  1937   if (xtty != NULL)  xtty->tail("statistics");
  1940 inline double percent(int x, int y) {
  1941   return 100.0 * x / MAX2(y, 1);
  1944 class MethodArityHistogram {
  1945  public:
  1946   enum { MAX_ARITY = 256 };
  1947  private:
  1948   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1949   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1950   static int _max_arity;                      // max. arity seen
  1951   static int _max_size;                       // max. arg size seen
  1953   static void add_method_to_histogram(nmethod* nm) {
  1954     Method* m = nm->method();
  1955     ArgumentCount args(m->signature());
  1956     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1957     int argsize = m->size_of_parameters();
  1958     arity   = MIN2(arity, MAX_ARITY-1);
  1959     argsize = MIN2(argsize, MAX_ARITY-1);
  1960     int count = nm->method()->compiled_invocation_count();
  1961     _arity_histogram[arity]  += count;
  1962     _size_histogram[argsize] += count;
  1963     _max_arity = MAX2(_max_arity, arity);
  1964     _max_size  = MAX2(_max_size, argsize);
  1967   void print_histogram_helper(int n, int* histo, const char* name) {
  1968     const int N = MIN2(5, n);
  1969     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1970     double sum = 0;
  1971     double weighted_sum = 0;
  1972     int i;
  1973     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1974     double rest = sum;
  1975     double percent = sum / 100;
  1976     for (i = 0; i <= N; i++) {
  1977       rest -= histo[i];
  1978       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1980     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1981     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1984   void print_histogram() {
  1985     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1986     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1987     tty->print_cr("\nSame for parameter size (in words):");
  1988     print_histogram_helper(_max_size, _size_histogram, "size");
  1989     tty->cr();
  1992  public:
  1993   MethodArityHistogram() {
  1994     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1995     _max_arity = _max_size = 0;
  1996     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1997     CodeCache::nmethods_do(add_method_to_histogram);
  1998     print_histogram();
  2000 };
  2002 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2003 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2004 int MethodArityHistogram::_max_arity;
  2005 int MethodArityHistogram::_max_size;
  2007 void SharedRuntime::print_call_statistics(int comp_total) {
  2008   tty->print_cr("Calls from compiled code:");
  2009   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2010   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2011   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2012   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2013   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2014   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2015   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2016   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2017   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2018   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2019   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2020   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2021   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2022   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2023   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2024   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2025   tty->cr();
  2026   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2027   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2028   tty->print_cr("        %% in nested categories are relative to their category");
  2029   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2030   tty->cr();
  2032   MethodArityHistogram h;
  2034 #endif
  2037 // A simple wrapper class around the calling convention information
  2038 // that allows sharing of adapters for the same calling convention.
  2039 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2040  private:
  2041   enum {
  2042     _basic_type_bits = 4,
  2043     _basic_type_mask = right_n_bits(_basic_type_bits),
  2044     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2045     _compact_int_count = 3
  2046   };
  2047   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2048   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2050   union {
  2051     int  _compact[_compact_int_count];
  2052     int* _fingerprint;
  2053   } _value;
  2054   int _length; // A negative length indicates the fingerprint is in the compact form,
  2055                // Otherwise _value._fingerprint is the array.
  2057   // Remap BasicTypes that are handled equivalently by the adapters.
  2058   // These are correct for the current system but someday it might be
  2059   // necessary to make this mapping platform dependent.
  2060   static int adapter_encoding(BasicType in) {
  2061     switch(in) {
  2062       case T_BOOLEAN:
  2063       case T_BYTE:
  2064       case T_SHORT:
  2065       case T_CHAR:
  2066         // There are all promoted to T_INT in the calling convention
  2067         return T_INT;
  2069       case T_OBJECT:
  2070       case T_ARRAY:
  2071         // In other words, we assume that any register good enough for
  2072         // an int or long is good enough for a managed pointer.
  2073 #ifdef _LP64
  2074         return T_LONG;
  2075 #else
  2076         return T_INT;
  2077 #endif
  2079       case T_INT:
  2080       case T_LONG:
  2081       case T_FLOAT:
  2082       case T_DOUBLE:
  2083       case T_VOID:
  2084         return in;
  2086       default:
  2087         ShouldNotReachHere();
  2088         return T_CONFLICT;
  2092  public:
  2093   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2094     // The fingerprint is based on the BasicType signature encoded
  2095     // into an array of ints with eight entries per int.
  2096     int* ptr;
  2097     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2098     if (len <= _compact_int_count) {
  2099       assert(_compact_int_count == 3, "else change next line");
  2100       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2101       // Storing the signature encoded as signed chars hits about 98%
  2102       // of the time.
  2103       _length = -len;
  2104       ptr = _value._compact;
  2105     } else {
  2106       _length = len;
  2107       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2108       ptr = _value._fingerprint;
  2111     // Now pack the BasicTypes with 8 per int
  2112     int sig_index = 0;
  2113     for (int index = 0; index < len; index++) {
  2114       int value = 0;
  2115       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2116         int bt = ((sig_index < total_args_passed)
  2117                   ? adapter_encoding(sig_bt[sig_index++])
  2118                   : 0);
  2119         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2120         value = (value << _basic_type_bits) | bt;
  2122       ptr[index] = value;
  2126   ~AdapterFingerPrint() {
  2127     if (_length > 0) {
  2128       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2132   int value(int index) {
  2133     if (_length < 0) {
  2134       return _value._compact[index];
  2136     return _value._fingerprint[index];
  2138   int length() {
  2139     if (_length < 0) return -_length;
  2140     return _length;
  2143   bool is_compact() {
  2144     return _length <= 0;
  2147   unsigned int compute_hash() {
  2148     int hash = 0;
  2149     for (int i = 0; i < length(); i++) {
  2150       int v = value(i);
  2151       hash = (hash << 8) ^ v ^ (hash >> 5);
  2153     return (unsigned int)hash;
  2156   const char* as_string() {
  2157     stringStream st;
  2158     st.print("0x");
  2159     for (int i = 0; i < length(); i++) {
  2160       st.print("%08x", value(i));
  2162     return st.as_string();
  2165   bool equals(AdapterFingerPrint* other) {
  2166     if (other->_length != _length) {
  2167       return false;
  2169     if (_length < 0) {
  2170       assert(_compact_int_count == 3, "else change next line");
  2171       return _value._compact[0] == other->_value._compact[0] &&
  2172              _value._compact[1] == other->_value._compact[1] &&
  2173              _value._compact[2] == other->_value._compact[2];
  2174     } else {
  2175       for (int i = 0; i < _length; i++) {
  2176         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2177           return false;
  2181     return true;
  2183 };
  2186 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2187 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2188   friend class AdapterHandlerTableIterator;
  2190  private:
  2192 #ifndef PRODUCT
  2193   static int _lookups; // number of calls to lookup
  2194   static int _buckets; // number of buckets checked
  2195   static int _equals;  // number of buckets checked with matching hash
  2196   static int _hits;    // number of successful lookups
  2197   static int _compact; // number of equals calls with compact signature
  2198 #endif
  2200   AdapterHandlerEntry* bucket(int i) {
  2201     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2204  public:
  2205   AdapterHandlerTable()
  2206     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2208   // Create a new entry suitable for insertion in the table
  2209   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2210     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2211     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2212     return entry;
  2215   // Insert an entry into the table
  2216   void add(AdapterHandlerEntry* entry) {
  2217     int index = hash_to_index(entry->hash());
  2218     add_entry(index, entry);
  2221   void free_entry(AdapterHandlerEntry* entry) {
  2222     entry->deallocate();
  2223     BasicHashtable<mtCode>::free_entry(entry);
  2226   // Find a entry with the same fingerprint if it exists
  2227   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2228     NOT_PRODUCT(_lookups++);
  2229     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2230     unsigned int hash = fp.compute_hash();
  2231     int index = hash_to_index(hash);
  2232     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2233       NOT_PRODUCT(_buckets++);
  2234       if (e->hash() == hash) {
  2235         NOT_PRODUCT(_equals++);
  2236         if (fp.equals(e->fingerprint())) {
  2237 #ifndef PRODUCT
  2238           if (fp.is_compact()) _compact++;
  2239           _hits++;
  2240 #endif
  2241           return e;
  2245     return NULL;
  2248 #ifndef PRODUCT
  2249   void print_statistics() {
  2250     ResourceMark rm;
  2251     int longest = 0;
  2252     int empty = 0;
  2253     int total = 0;
  2254     int nonempty = 0;
  2255     for (int index = 0; index < table_size(); index++) {
  2256       int count = 0;
  2257       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2258         count++;
  2260       if (count != 0) nonempty++;
  2261       if (count == 0) empty++;
  2262       if (count > longest) longest = count;
  2263       total += count;
  2265     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2266                   empty, longest, total, total / (double)nonempty);
  2267     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2268                   _lookups, _buckets, _equals, _hits, _compact);
  2270 #endif
  2271 };
  2274 #ifndef PRODUCT
  2276 int AdapterHandlerTable::_lookups;
  2277 int AdapterHandlerTable::_buckets;
  2278 int AdapterHandlerTable::_equals;
  2279 int AdapterHandlerTable::_hits;
  2280 int AdapterHandlerTable::_compact;
  2282 #endif
  2284 class AdapterHandlerTableIterator : public StackObj {
  2285  private:
  2286   AdapterHandlerTable* _table;
  2287   int _index;
  2288   AdapterHandlerEntry* _current;
  2290   void scan() {
  2291     while (_index < _table->table_size()) {
  2292       AdapterHandlerEntry* a = _table->bucket(_index);
  2293       _index++;
  2294       if (a != NULL) {
  2295         _current = a;
  2296         return;
  2301  public:
  2302   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2303     scan();
  2305   bool has_next() {
  2306     return _current != NULL;
  2308   AdapterHandlerEntry* next() {
  2309     if (_current != NULL) {
  2310       AdapterHandlerEntry* result = _current;
  2311       _current = _current->next();
  2312       if (_current == NULL) scan();
  2313       return result;
  2314     } else {
  2315       return NULL;
  2318 };
  2321 // ---------------------------------------------------------------------------
  2322 // Implementation of AdapterHandlerLibrary
  2323 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2324 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2325 const int AdapterHandlerLibrary_size = 16*K;
  2326 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2328 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2329   // Should be called only when AdapterHandlerLibrary_lock is active.
  2330   if (_buffer == NULL) // Initialize lazily
  2331       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2332   return _buffer;
  2335 void AdapterHandlerLibrary::initialize() {
  2336   if (_adapters != NULL) return;
  2337   _adapters = new AdapterHandlerTable();
  2339   // Create a special handler for abstract methods.  Abstract methods
  2340   // are never compiled so an i2c entry is somewhat meaningless, but
  2341   // fill it in with something appropriate just in case.  Pass handle
  2342   // wrong method for the c2i transitions.
  2343   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2344   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2345                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2346                                                               wrong_method, wrong_method);
  2349 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2350                                                       address i2c_entry,
  2351                                                       address c2i_entry,
  2352                                                       address c2i_unverified_entry) {
  2353   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2356 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2357   // Use customized signature handler.  Need to lock around updates to
  2358   // the AdapterHandlerTable (it is not safe for concurrent readers
  2359   // and a single writer: this could be fixed if it becomes a
  2360   // problem).
  2362   // Get the address of the ic_miss handlers before we grab the
  2363   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2364   // was caused by the initialization of the stubs happening
  2365   // while we held the lock and then notifying jvmti while
  2366   // holding it. This just forces the initialization to be a little
  2367   // earlier.
  2368   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2369   assert(ic_miss != NULL, "must have handler");
  2371   ResourceMark rm;
  2373   NOT_PRODUCT(int insts_size);
  2374   AdapterBlob* B = NULL;
  2375   AdapterHandlerEntry* entry = NULL;
  2376   AdapterFingerPrint* fingerprint = NULL;
  2378     MutexLocker mu(AdapterHandlerLibrary_lock);
  2379     // make sure data structure is initialized
  2380     initialize();
  2382     if (method->is_abstract()) {
  2383       return _abstract_method_handler;
  2386     // Fill in the signature array, for the calling-convention call.
  2387     int total_args_passed = method->size_of_parameters(); // All args on stack
  2389     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2390     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2391     int i = 0;
  2392     if (!method->is_static())  // Pass in receiver first
  2393       sig_bt[i++] = T_OBJECT;
  2394     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2395       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2396       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2397         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2399     assert(i == total_args_passed, "");
  2401     // Lookup method signature's fingerprint
  2402     entry = _adapters->lookup(total_args_passed, sig_bt);
  2404 #ifdef ASSERT
  2405     AdapterHandlerEntry* shared_entry = NULL;
  2406     if (VerifyAdapterSharing && entry != NULL) {
  2407       shared_entry = entry;
  2408       entry = NULL;
  2410 #endif
  2412     if (entry != NULL) {
  2413       return entry;
  2416     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2417     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2419     // Make a C heap allocated version of the fingerprint to store in the adapter
  2420     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2422     // Create I2C & C2I handlers
  2424     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2425     if (buf != NULL) {
  2426       CodeBuffer buffer(buf);
  2427       short buffer_locs[20];
  2428       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2429                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2430       MacroAssembler _masm(&buffer);
  2432       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2433                                                      total_args_passed,
  2434                                                      comp_args_on_stack,
  2435                                                      sig_bt,
  2436                                                      regs,
  2437                                                      fingerprint);
  2439 #ifdef ASSERT
  2440       if (VerifyAdapterSharing) {
  2441         if (shared_entry != NULL) {
  2442           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2443                  "code must match");
  2444           // Release the one just created and return the original
  2445           _adapters->free_entry(entry);
  2446           return shared_entry;
  2447         } else  {
  2448           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2451 #endif
  2453       B = AdapterBlob::create(&buffer);
  2454       NOT_PRODUCT(insts_size = buffer.insts_size());
  2456     if (B == NULL) {
  2457       // CodeCache is full, disable compilation
  2458       // Ought to log this but compile log is only per compile thread
  2459       // and we're some non descript Java thread.
  2460       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2461       CompileBroker::handle_full_code_cache();
  2462       return NULL; // Out of CodeCache space
  2464     entry->relocate(B->content_begin());
  2465 #ifndef PRODUCT
  2466     // debugging suppport
  2467     if (PrintAdapterHandlers || PrintStubCode) {
  2468       ttyLocker ttyl;
  2469       entry->print_adapter_on(tty);
  2470       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2471                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2472                     method->signature()->as_C_string(), insts_size);
  2473       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2474       if (Verbose || PrintStubCode) {
  2475         address first_pc = entry->base_address();
  2476         if (first_pc != NULL) {
  2477           Disassembler::decode(first_pc, first_pc + insts_size);
  2478           tty->cr();
  2482 #endif
  2484     _adapters->add(entry);
  2486   // Outside of the lock
  2487   if (B != NULL) {
  2488     char blob_id[256];
  2489     jio_snprintf(blob_id,
  2490                  sizeof(blob_id),
  2491                  "%s(%s)@" PTR_FORMAT,
  2492                  B->name(),
  2493                  fingerprint->as_string(),
  2494                  B->content_begin());
  2495     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2497     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2498       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2501   return entry;
  2504 address AdapterHandlerEntry::base_address() {
  2505   address base = _i2c_entry;
  2506   if (base == NULL)  base = _c2i_entry;
  2507   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2508   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2509   return base;
  2512 void AdapterHandlerEntry::relocate(address new_base) {
  2513   address old_base = base_address();
  2514   assert(old_base != NULL, "");
  2515   ptrdiff_t delta = new_base - old_base;
  2516   if (_i2c_entry != NULL)
  2517     _i2c_entry += delta;
  2518   if (_c2i_entry != NULL)
  2519     _c2i_entry += delta;
  2520   if (_c2i_unverified_entry != NULL)
  2521     _c2i_unverified_entry += delta;
  2522   assert(base_address() == new_base, "");
  2526 void AdapterHandlerEntry::deallocate() {
  2527   delete _fingerprint;
  2528 #ifdef ASSERT
  2529   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2530   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
  2531 #endif
  2535 #ifdef ASSERT
  2536 // Capture the code before relocation so that it can be compared
  2537 // against other versions.  If the code is captured after relocation
  2538 // then relative instructions won't be equivalent.
  2539 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2540   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2541   _code_length = length;
  2542   memcpy(_saved_code, buffer, length);
  2543   _total_args_passed = total_args_passed;
  2544   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
  2545   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2549 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2550   if (length != _code_length) {
  2551     return false;
  2553   for (int i = 0; i < length; i++) {
  2554     if (buffer[i] != _saved_code[i]) {
  2555       return false;
  2558   return true;
  2560 #endif
  2563 // Create a native wrapper for this native method.  The wrapper converts the
  2564 // java compiled calling convention to the native convention, handlizes
  2565 // arguments, and transitions to native.  On return from the native we transition
  2566 // back to java blocking if a safepoint is in progress.
  2567 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2568   ResourceMark rm;
  2569   nmethod* nm = NULL;
  2571   assert(method->is_native(), "must be native");
  2572   assert(method->is_method_handle_intrinsic() ||
  2573          method->has_native_function(), "must have something valid to call!");
  2576     // perform the work while holding the lock, but perform any printing outside the lock
  2577     MutexLocker mu(AdapterHandlerLibrary_lock);
  2578     // See if somebody beat us to it
  2579     nm = method->code();
  2580     if (nm) {
  2581       return nm;
  2584     ResourceMark rm;
  2586     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2587     if (buf != NULL) {
  2588       CodeBuffer buffer(buf);
  2589       double locs_buf[20];
  2590       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2591       MacroAssembler _masm(&buffer);
  2593       // Fill in the signature array, for the calling-convention call.
  2594       const int total_args_passed = method->size_of_parameters();
  2596       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2597       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2598       int i=0;
  2599       if( !method->is_static() )  // Pass in receiver first
  2600         sig_bt[i++] = T_OBJECT;
  2601       SignatureStream ss(method->signature());
  2602       for( ; !ss.at_return_type(); ss.next()) {
  2603         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2604         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2605           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2607       assert(i == total_args_passed, "");
  2608       BasicType ret_type = ss.type();
  2610       // Now get the compiled-Java layout as input (or output) arguments.
  2611       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2612       // are just trampolines so the argument registers must be outgoing ones.
  2613       const bool is_outgoing = method->is_method_handle_intrinsic();
  2614       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2616       // Generate the compiled-to-native wrapper code
  2617       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2618                                                   method,
  2619                                                   compile_id,
  2620                                                   sig_bt,
  2621                                                   regs,
  2622                                                   ret_type);
  2626   // Must unlock before calling set_code
  2628   // Install the generated code.
  2629   if (nm != NULL) {
  2630     if (PrintCompilation) {
  2631       ttyLocker ttyl;
  2632       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2634     method->set_code(method, nm);
  2635     nm->post_compiled_method_load_event();
  2636   } else {
  2637     // CodeCache is full, disable compilation
  2638     CompileBroker::handle_full_code_cache();
  2640   return nm;
  2643 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2644   assert(thread == JavaThread::current(), "must be");
  2645   // The code is about to enter a JNI lazy critical native method and
  2646   // _needs_gc is true, so if this thread is already in a critical
  2647   // section then just return, otherwise this thread should block
  2648   // until needs_gc has been cleared.
  2649   if (thread->in_critical()) {
  2650     return;
  2652   // Lock and unlock a critical section to give the system a chance to block
  2653   GC_locker::lock_critical(thread);
  2654   GC_locker::unlock_critical(thread);
  2655 JRT_END
  2657 #ifdef HAVE_DTRACE_H
  2658 // Create a dtrace nmethod for this method.  The wrapper converts the
  2659 // java compiled calling convention to the native convention, makes a dummy call
  2660 // (actually nops for the size of the call instruction, which become a trap if
  2661 // probe is enabled). The returns to the caller. Since this all looks like a
  2662 // leaf no thread transition is needed.
  2664 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2665   ResourceMark rm;
  2666   nmethod* nm = NULL;
  2668   if (PrintCompilation) {
  2669     ttyLocker ttyl;
  2670     tty->print("---   n%s  ");
  2671     method->print_short_name(tty);
  2672     if (method->is_static()) {
  2673       tty->print(" (static)");
  2675     tty->cr();
  2679     // perform the work while holding the lock, but perform any printing
  2680     // outside the lock
  2681     MutexLocker mu(AdapterHandlerLibrary_lock);
  2682     // See if somebody beat us to it
  2683     nm = method->code();
  2684     if (nm) {
  2685       return nm;
  2688     ResourceMark rm;
  2690     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2691     if (buf != NULL) {
  2692       CodeBuffer buffer(buf);
  2693       // Need a few relocation entries
  2694       double locs_buf[20];
  2695       buffer.insts()->initialize_shared_locs(
  2696         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2697       MacroAssembler _masm(&buffer);
  2699       // Generate the compiled-to-native wrapper code
  2700       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2703   return nm;
  2706 // the dtrace method needs to convert java lang string to utf8 string.
  2707 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2708   typeArrayOop jlsValue  = java_lang_String::value(src);
  2709   int          jlsOffset = java_lang_String::offset(src);
  2710   int          jlsLen    = java_lang_String::length(src);
  2711   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2712                                            jlsValue->char_at_addr(jlsOffset);
  2713   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2714   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2716 #endif // ndef HAVE_DTRACE_H
  2718 // -------------------------------------------------------------------------
  2719 // Java-Java calling convention
  2720 // (what you use when Java calls Java)
  2722 //------------------------------name_for_receiver----------------------------------
  2723 // For a given signature, return the VMReg for parameter 0.
  2724 VMReg SharedRuntime::name_for_receiver() {
  2725   VMRegPair regs;
  2726   BasicType sig_bt = T_OBJECT;
  2727   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2728   // Return argument 0 register.  In the LP64 build pointers
  2729   // take 2 registers, but the VM wants only the 'main' name.
  2730   return regs.first();
  2733 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
  2734   // This method is returning a data structure allocating as a
  2735   // ResourceObject, so do not put any ResourceMarks in here.
  2736   char *s = sig->as_C_string();
  2737   int len = (int)strlen(s);
  2738   s++; len--;                   // Skip opening paren
  2739   char *t = s+len;
  2740   while( *(--t) != ')' ) ;      // Find close paren
  2742   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2743   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2744   int cnt = 0;
  2745   if (has_receiver) {
  2746     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2749   while( s < t ) {
  2750     switch( *s++ ) {            // Switch on signature character
  2751     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2752     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2753     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2754     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2755     case 'I': sig_bt[cnt++] = T_INT;     break;
  2756     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2757     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2758     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2759     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2760     case 'L':                   // Oop
  2761       while( *s++ != ';'  ) ;   // Skip signature
  2762       sig_bt[cnt++] = T_OBJECT;
  2763       break;
  2764     case '[': {                 // Array
  2765       do {                      // Skip optional size
  2766         while( *s >= '0' && *s <= '9' ) s++;
  2767       } while( *s++ == '[' );   // Nested arrays?
  2768       // Skip element type
  2769       if( s[-1] == 'L' )
  2770         while( *s++ != ';'  ) ; // Skip signature
  2771       sig_bt[cnt++] = T_ARRAY;
  2772       break;
  2774     default : ShouldNotReachHere();
  2778   if (has_appendix) {
  2779     sig_bt[cnt++] = T_OBJECT;
  2782   assert( cnt < 256, "grow table size" );
  2784   int comp_args_on_stack;
  2785   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2787   // the calling convention doesn't count out_preserve_stack_slots so
  2788   // we must add that in to get "true" stack offsets.
  2790   if (comp_args_on_stack) {
  2791     for (int i = 0; i < cnt; i++) {
  2792       VMReg reg1 = regs[i].first();
  2793       if( reg1->is_stack()) {
  2794         // Yuck
  2795         reg1 = reg1->bias(out_preserve_stack_slots());
  2797       VMReg reg2 = regs[i].second();
  2798       if( reg2->is_stack()) {
  2799         // Yuck
  2800         reg2 = reg2->bias(out_preserve_stack_slots());
  2802       regs[i].set_pair(reg2, reg1);
  2806   // results
  2807   *arg_size = cnt;
  2808   return regs;
  2811 // OSR Migration Code
  2812 //
  2813 // This code is used convert interpreter frames into compiled frames.  It is
  2814 // called from very start of a compiled OSR nmethod.  A temp array is
  2815 // allocated to hold the interesting bits of the interpreter frame.  All
  2816 // active locks are inflated to allow them to move.  The displaced headers and
  2817 // active interpeter locals are copied into the temp buffer.  Then we return
  2818 // back to the compiled code.  The compiled code then pops the current
  2819 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2820 // copies the interpreter locals and displaced headers where it wants.
  2821 // Finally it calls back to free the temp buffer.
  2822 //
  2823 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2825 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2827   //
  2828   // This code is dependent on the memory layout of the interpreter local
  2829   // array and the monitors. On all of our platforms the layout is identical
  2830   // so this code is shared. If some platform lays the their arrays out
  2831   // differently then this code could move to platform specific code or
  2832   // the code here could be modified to copy items one at a time using
  2833   // frame accessor methods and be platform independent.
  2835   frame fr = thread->last_frame();
  2836   assert( fr.is_interpreted_frame(), "" );
  2837   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2839   // Figure out how many monitors are active.
  2840   int active_monitor_count = 0;
  2841   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2842        kptr < fr.interpreter_frame_monitor_begin();
  2843        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2844     if( kptr->obj() != NULL ) active_monitor_count++;
  2847   // QQQ we could place number of active monitors in the array so that compiled code
  2848   // could double check it.
  2850   Method* moop = fr.interpreter_frame_method();
  2851   int max_locals = moop->max_locals();
  2852   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2853   int buf_size_words = max_locals + active_monitor_count*2;
  2854   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2856   // Copy the locals.  Order is preserved so that loading of longs works.
  2857   // Since there's no GC I can copy the oops blindly.
  2858   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2859   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2860                        (HeapWord*)&buf[0],
  2861                        max_locals);
  2863   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2864   int i = max_locals;
  2865   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2866        kptr2 < fr.interpreter_frame_monitor_begin();
  2867        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2868     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2869       BasicLock *lock = kptr2->lock();
  2870       // Inflate so the displaced header becomes position-independent
  2871       if (lock->displaced_header()->is_unlocked())
  2872         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2873       // Now the displaced header is free to move
  2874       buf[i++] = (intptr_t)lock->displaced_header();
  2875       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
  2878   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2880   return buf;
  2881 JRT_END
  2883 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2884   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2885 JRT_END
  2887 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2888   AdapterHandlerTableIterator iter(_adapters);
  2889   while (iter.has_next()) {
  2890     AdapterHandlerEntry* a = iter.next();
  2891     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2893   return false;
  2896 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2897   AdapterHandlerTableIterator iter(_adapters);
  2898   while (iter.has_next()) {
  2899     AdapterHandlerEntry* a = iter.next();
  2900     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  2901       st->print("Adapter for signature: ");
  2902       a->print_adapter_on(tty);
  2903       return;
  2906   assert(false, "Should have found handler");
  2909 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  2910   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2911                (intptr_t) this, fingerprint()->as_string(),
  2912                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  2916 #ifndef PRODUCT
  2918 void AdapterHandlerLibrary::print_statistics() {
  2919   _adapters->print_statistics();
  2922 #endif /* PRODUCT */

mercurial