src/share/vm/runtime/safepoint.cpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 4889
cc32ccaaf47f
child 5802
268e7a2178d7
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "memory/resourceArea.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/compilationPolicy.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/frame.inline.hpp"
    42 #include "runtime/interfaceSupport.hpp"
    43 #include "runtime/mutexLocker.hpp"
    44 #include "runtime/osThread.hpp"
    45 #include "runtime/safepoint.hpp"
    46 #include "runtime/signature.hpp"
    47 #include "runtime/stubCodeGenerator.hpp"
    48 #include "runtime/stubRoutines.hpp"
    49 #include "runtime/sweeper.hpp"
    50 #include "runtime/synchronizer.hpp"
    51 #include "runtime/thread.inline.hpp"
    52 #include "services/memTracker.hpp"
    53 #include "services/runtimeService.hpp"
    54 #include "utilities/events.hpp"
    55 #include "utilities/macros.hpp"
    56 #ifdef TARGET_ARCH_x86
    57 # include "nativeInst_x86.hpp"
    58 # include "vmreg_x86.inline.hpp"
    59 #endif
    60 #ifdef TARGET_ARCH_sparc
    61 # include "nativeInst_sparc.hpp"
    62 # include "vmreg_sparc.inline.hpp"
    63 #endif
    64 #ifdef TARGET_ARCH_zero
    65 # include "nativeInst_zero.hpp"
    66 # include "vmreg_zero.inline.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_arm
    69 # include "nativeInst_arm.hpp"
    70 # include "vmreg_arm.inline.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_ppc
    73 # include "nativeInst_ppc.hpp"
    74 # include "vmreg_ppc.inline.hpp"
    75 #endif
    76 #if INCLUDE_ALL_GCS
    77 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    78 #include "gc_implementation/shared/concurrentGCThread.hpp"
    79 #endif // INCLUDE_ALL_GCS
    80 #ifdef COMPILER1
    81 #include "c1/c1_globals.hpp"
    82 #endif
    84 // --------------------------------------------------------------------------------------------------
    85 // Implementation of Safepoint begin/end
    87 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    88 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    89 volatile int SafepointSynchronize::_safepoint_counter = 0;
    90 int SafepointSynchronize::_current_jni_active_count = 0;
    91 long  SafepointSynchronize::_end_of_last_safepoint = 0;
    92 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
    93 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
    94 static bool timeout_error_printed = false;
    96 // Roll all threads forward to a safepoint and suspend them all
    97 void SafepointSynchronize::begin() {
    99   Thread* myThread = Thread::current();
   100   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   102   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   103     _safepoint_begin_time = os::javaTimeNanos();
   104     _ts_of_current_safepoint = tty->time_stamp().seconds();
   105   }
   107 #if INCLUDE_ALL_GCS
   108   if (UseConcMarkSweepGC) {
   109     // In the future we should investigate whether CMS can use the
   110     // more-general mechanism below.  DLD (01/05).
   111     ConcurrentMarkSweepThread::synchronize(false);
   112   } else if (UseG1GC) {
   113     ConcurrentGCThread::safepoint_synchronize();
   114   }
   115 #endif // INCLUDE_ALL_GCS
   117   // By getting the Threads_lock, we assure that no threads are about to start or
   118   // exit. It is released again in SafepointSynchronize::end().
   119   Threads_lock->lock();
   121   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   123   int nof_threads = Threads::number_of_threads();
   125   if (TraceSafepoint) {
   126     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   127   }
   129   RuntimeService::record_safepoint_begin();
   131   MutexLocker mu(Safepoint_lock);
   133   // Reset the count of active JNI critical threads
   134   _current_jni_active_count = 0;
   136   // Set number of threads to wait for, before we initiate the callbacks
   137   _waiting_to_block = nof_threads;
   138   TryingToBlock     = 0 ;
   139   int still_running = nof_threads;
   141   // Save the starting time, so that it can be compared to see if this has taken
   142   // too long to complete.
   143   jlong safepoint_limit_time;
   144   timeout_error_printed = false;
   146   // PrintSafepointStatisticsTimeout can be specified separately. When
   147   // specified, PrintSafepointStatistics will be set to true in
   148   // deferred_initialize_stat method. The initialization has to be done
   149   // early enough to avoid any races. See bug 6880029 for details.
   150   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   151     deferred_initialize_stat();
   152   }
   154   // Begin the process of bringing the system to a safepoint.
   155   // Java threads can be in several different states and are
   156   // stopped by different mechanisms:
   157   //
   158   //  1. Running interpreted
   159   //     The interpeter dispatch table is changed to force it to
   160   //     check for a safepoint condition between bytecodes.
   161   //  2. Running in native code
   162   //     When returning from the native code, a Java thread must check
   163   //     the safepoint _state to see if we must block.  If the
   164   //     VM thread sees a Java thread in native, it does
   165   //     not wait for this thread to block.  The order of the memory
   166   //     writes and reads of both the safepoint state and the Java
   167   //     threads state is critical.  In order to guarantee that the
   168   //     memory writes are serialized with respect to each other,
   169   //     the VM thread issues a memory barrier instruction
   170   //     (on MP systems).  In order to avoid the overhead of issuing
   171   //     a memory barrier for each Java thread making native calls, each Java
   172   //     thread performs a write to a single memory page after changing
   173   //     the thread state.  The VM thread performs a sequence of
   174   //     mprotect OS calls which forces all previous writes from all
   175   //     Java threads to be serialized.  This is done in the
   176   //     os::serialize_thread_states() call.  This has proven to be
   177   //     much more efficient than executing a membar instruction
   178   //     on every call to native code.
   179   //  3. Running compiled Code
   180   //     Compiled code reads a global (Safepoint Polling) page that
   181   //     is set to fault if we are trying to get to a safepoint.
   182   //  4. Blocked
   183   //     A thread which is blocked will not be allowed to return from the
   184   //     block condition until the safepoint operation is complete.
   185   //  5. In VM or Transitioning between states
   186   //     If a Java thread is currently running in the VM or transitioning
   187   //     between states, the safepointing code will wait for the thread to
   188   //     block itself when it attempts transitions to a new state.
   189   //
   190   _state            = _synchronizing;
   191   OrderAccess::fence();
   193   // Flush all thread states to memory
   194   if (!UseMembar) {
   195     os::serialize_thread_states();
   196   }
   198   // Make interpreter safepoint aware
   199   Interpreter::notice_safepoints();
   201   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   202     // Make polling safepoint aware
   203     guarantee (PageArmed == 0, "invariant") ;
   204     PageArmed = 1 ;
   205     os::make_polling_page_unreadable();
   206   }
   208   // Consider using active_processor_count() ... but that call is expensive.
   209   int ncpus = os::processor_count() ;
   211 #ifdef ASSERT
   212   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   213     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   214     // Clear the visited flag to ensure that the critical counts are collected properly.
   215     cur->set_visited_for_critical_count(false);
   216   }
   217 #endif // ASSERT
   219   if (SafepointTimeout)
   220     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   222   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   223   unsigned int iterations = 0;
   224   int steps = 0 ;
   225   while(still_running > 0) {
   226     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   227       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   228       ThreadSafepointState *cur_state = cur->safepoint_state();
   229       if (cur_state->is_running()) {
   230         cur_state->examine_state_of_thread();
   231         if (!cur_state->is_running()) {
   232            still_running--;
   233            // consider adjusting steps downward:
   234            //   steps = 0
   235            //   steps -= NNN
   236            //   steps >>= 1
   237            //   steps = MIN(steps, 2000-100)
   238            //   if (iterations != 0) steps -= NNN
   239         }
   240         if (TraceSafepoint && Verbose) cur_state->print();
   241       }
   242     }
   244     if (PrintSafepointStatistics && iterations == 0) {
   245       begin_statistics(nof_threads, still_running);
   246     }
   248     if (still_running > 0) {
   249       // Check for if it takes to long
   250       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   251         print_safepoint_timeout(_spinning_timeout);
   252       }
   254       // Spin to avoid context switching.
   255       // There's a tension between allowing the mutators to run (and rendezvous)
   256       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   257       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   258       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   259       // Blocking or yielding incur their own penalties in the form of context switching
   260       // and the resultant loss of $ residency.
   261       //
   262       // Further complicating matters is that yield() does not work as naively expected
   263       // on many platforms -- yield() does not guarantee that any other ready threads
   264       // will run.   As such we revert yield_all() after some number of iterations.
   265       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   266       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   267       // can actually increase the time it takes the VM thread to detect that a system-wide
   268       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   269       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   270       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   271       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   272       // will eventually wake up and detect that all mutators are safe, at which point
   273       // we'll again make progress.
   274       //
   275       // Beware too that that the VMThread typically runs at elevated priority.
   276       // Its default priority is higher than the default mutator priority.
   277       // Obviously, this complicates spinning.
   278       //
   279       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   280       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   281       //
   282       // See the comments in synchronizer.cpp for additional remarks on spinning.
   283       //
   284       // In the future we might:
   285       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   286       //    This is tricky as the path used by a thread exiting the JVM (say on
   287       //    on JNI call-out) simply stores into its state field.  The burden
   288       //    is placed on the VM thread, which must poll (spin).
   289       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   290       //    we might aggressively scan the stacks of threads that are already safe.
   291       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   292       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   293       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   294       // 5. Check system saturation.  If the system is not fully saturated then
   295       //    simply spin and avoid sleep/yield.
   296       // 6. As still-running mutators rendezvous they could unpark the sleeping
   297       //    VMthread.  This works well for still-running mutators that become
   298       //    safe.  The VMthread must still poll for mutators that call-out.
   299       // 7. Drive the policy on time-since-begin instead of iterations.
   300       // 8. Consider making the spin duration a function of the # of CPUs:
   301       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   302       //    Alternately, instead of counting iterations of the outer loop
   303       //    we could count the # of threads visited in the inner loop, above.
   304       // 9. On windows consider using the return value from SwitchThreadTo()
   305       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   307       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   308          guarantee (PageArmed == 0, "invariant") ;
   309          PageArmed = 1 ;
   310          os::make_polling_page_unreadable();
   311       }
   313       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   314       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   315       ++steps ;
   316       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   317         SpinPause() ;     // MP-Polite spin
   318       } else
   319       if (steps < DeferThrSuspendLoopCount) {
   320         os::NakedYield() ;
   321       } else {
   322         os::yield_all(steps) ;
   323         // Alternately, the VM thread could transiently depress its scheduling priority or
   324         // transiently increase the priority of the tardy mutator(s).
   325       }
   327       iterations ++ ;
   328     }
   329     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   330   }
   331   assert(still_running == 0, "sanity check");
   333   if (PrintSafepointStatistics) {
   334     update_statistics_on_spin_end();
   335   }
   337   // wait until all threads are stopped
   338   while (_waiting_to_block > 0) {
   339     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   340     if (!SafepointTimeout || timeout_error_printed) {
   341       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   342     } else {
   343       // Compute remaining time
   344       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   346       // If there is no remaining time, then there is an error
   347       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   348         print_safepoint_timeout(_blocking_timeout);
   349       }
   350     }
   351   }
   352   assert(_waiting_to_block == 0, "sanity check");
   354 #ifndef PRODUCT
   355   if (SafepointTimeout) {
   356     jlong current_time = os::javaTimeNanos();
   357     if (safepoint_limit_time < current_time) {
   358       tty->print_cr("# SafepointSynchronize: Finished after "
   359                     INT64_FORMAT_W(6) " ms",
   360                     ((current_time - safepoint_limit_time) / MICROUNITS +
   361                      SafepointTimeoutDelay));
   362     }
   363   }
   364 #endif
   366   assert((_safepoint_counter & 0x1) == 0, "must be even");
   367   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   368   _safepoint_counter ++;
   370   // Record state
   371   _state = _synchronized;
   373   OrderAccess::fence();
   375 #ifdef ASSERT
   376   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   377     // make sure all the threads were visited
   378     assert(cur->was_visited_for_critical_count(), "missed a thread");
   379   }
   380 #endif // ASSERT
   382   // Update the count of active JNI critical regions
   383   GC_locker::set_jni_lock_count(_current_jni_active_count);
   385   if (TraceSafepoint) {
   386     VM_Operation *op = VMThread::vm_operation();
   387     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   388   }
   390   RuntimeService::record_safepoint_synchronized();
   391   if (PrintSafepointStatistics) {
   392     update_statistics_on_sync_end(os::javaTimeNanos());
   393   }
   395   // Call stuff that needs to be run when a safepoint is just about to be completed
   396   do_cleanup_tasks();
   398   if (PrintSafepointStatistics) {
   399     // Record how much time spend on the above cleanup tasks
   400     update_statistics_on_cleanup_end(os::javaTimeNanos());
   401   }
   402 }
   404 // Wake up all threads, so they are ready to resume execution after the safepoint
   405 // operation has been carried out
   406 void SafepointSynchronize::end() {
   408   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   409   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   410   _safepoint_counter ++;
   411   // memory fence isn't required here since an odd _safepoint_counter
   412   // value can do no harm and a fence is issued below anyway.
   414   DEBUG_ONLY(Thread* myThread = Thread::current();)
   415   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   417   if (PrintSafepointStatistics) {
   418     end_statistics(os::javaTimeNanos());
   419   }
   421 #ifdef ASSERT
   422   // A pending_exception cannot be installed during a safepoint.  The threads
   423   // may install an async exception after they come back from a safepoint into
   424   // pending_exception after they unblock.  But that should happen later.
   425   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   426     assert (!(cur->has_pending_exception() &&
   427               cur->safepoint_state()->is_at_poll_safepoint()),
   428             "safepoint installed a pending exception");
   429   }
   430 #endif // ASSERT
   432   if (PageArmed) {
   433     // Make polling safepoint aware
   434     os::make_polling_page_readable();
   435     PageArmed = 0 ;
   436   }
   438   // Remove safepoint check from interpreter
   439   Interpreter::ignore_safepoints();
   441   {
   442     MutexLocker mu(Safepoint_lock);
   444     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   446     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   447     // when they get restarted.
   448     _state = _not_synchronized;
   449     OrderAccess::fence();
   451     if (TraceSafepoint) {
   452        tty->print_cr("Leaving safepoint region");
   453     }
   455     // Start suspended threads
   456     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   457       // A problem occurring on Solaris is when attempting to restart threads
   458       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   459       // to the next one (since it has been running the longest).  We then have
   460       // to wait for a cpu to become available before we can continue restarting
   461       // threads.
   462       // FIXME: This causes the performance of the VM to degrade when active and with
   463       // large numbers of threads.  Apparently this is due to the synchronous nature
   464       // of suspending threads.
   465       //
   466       // TODO-FIXME: the comments above are vestigial and no longer apply.
   467       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   468       if (VMThreadHintNoPreempt) {
   469         os::hint_no_preempt();
   470       }
   471       ThreadSafepointState* cur_state = current->safepoint_state();
   472       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   473       cur_state->restart();
   474       assert(cur_state->is_running(), "safepoint state has not been reset");
   475     }
   477     RuntimeService::record_safepoint_end();
   479     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   480     // blocked in signal_thread_blocked
   481     Threads_lock->unlock();
   483   }
   484 #if INCLUDE_ALL_GCS
   485   // If there are any concurrent GC threads resume them.
   486   if (UseConcMarkSweepGC) {
   487     ConcurrentMarkSweepThread::desynchronize(false);
   488   } else if (UseG1GC) {
   489     ConcurrentGCThread::safepoint_desynchronize();
   490   }
   491 #endif // INCLUDE_ALL_GCS
   492   // record this time so VMThread can keep track how much time has elasped
   493   // since last safepoint.
   494   _end_of_last_safepoint = os::javaTimeMillis();
   495 }
   497 bool SafepointSynchronize::is_cleanup_needed() {
   498   // Need a safepoint if some inline cache buffers is non-empty
   499   if (!InlineCacheBuffer::is_empty()) return true;
   500   return false;
   501 }
   505 // Various cleaning tasks that should be done periodically at safepoints
   506 void SafepointSynchronize::do_cleanup_tasks() {
   507   {
   508     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   509     ObjectSynchronizer::deflate_idle_monitors();
   510   }
   512   {
   513     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   514     InlineCacheBuffer::update_inline_caches();
   515   }
   516   {
   517     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   518     CompilationPolicy::policy()->do_safepoint_work();
   519   }
   521   {
   522     TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   523     NMethodSweeper::scan_stacks();
   524   }
   526   if (SymbolTable::needs_rehashing()) {
   527     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
   528     SymbolTable::rehash_table();
   529   }
   531   if (StringTable::needs_rehashing()) {
   532     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
   533     StringTable::rehash_table();
   534   }
   536   // rotate log files?
   537   if (UseGCLogFileRotation) {
   538     gclog_or_tty->rotate_log();
   539   }
   541   if (MemTracker::is_on()) {
   542     MemTracker::sync();
   543   }
   544 }
   547 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   548   switch(state) {
   549   case _thread_in_native:
   550     // native threads are safe if they have no java stack or have walkable stack
   551     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   553    // blocked threads should have already have walkable stack
   554   case _thread_blocked:
   555     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   556     return true;
   558   default:
   559     return false;
   560   }
   561 }
   564 // See if the thread is running inside a lazy critical native and
   565 // update the thread critical count if so.  Also set a suspend flag to
   566 // cause the native wrapper to return into the JVM to do the unlock
   567 // once the native finishes.
   568 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   569   if (state == _thread_in_native &&
   570       thread->has_last_Java_frame() &&
   571       thread->frame_anchor()->walkable()) {
   572     // This thread might be in a critical native nmethod so look at
   573     // the top of the stack and increment the critical count if it
   574     // is.
   575     frame wrapper_frame = thread->last_frame();
   576     CodeBlob* stub_cb = wrapper_frame.cb();
   577     if (stub_cb != NULL &&
   578         stub_cb->is_nmethod() &&
   579         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   580       // A thread could potentially be in a critical native across
   581       // more than one safepoint, so only update the critical state on
   582       // the first one.  When it returns it will perform the unlock.
   583       if (!thread->do_critical_native_unlock()) {
   584 #ifdef ASSERT
   585         if (!thread->in_critical()) {
   586           GC_locker::increment_debug_jni_lock_count();
   587         }
   588 #endif
   589         thread->enter_critical();
   590         // Make sure the native wrapper calls back on return to
   591         // perform the needed critical unlock.
   592         thread->set_critical_native_unlock();
   593       }
   594     }
   595   }
   596 }
   600 // -------------------------------------------------------------------------------------------------------
   601 // Implementation of Safepoint callback point
   603 void SafepointSynchronize::block(JavaThread *thread) {
   604   assert(thread != NULL, "thread must be set");
   605   assert(thread->is_Java_thread(), "not a Java thread");
   607   // Threads shouldn't block if they are in the middle of printing, but...
   608   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   610   // Only bail from the block() call if the thread is gone from the
   611   // thread list; starting to exit should still block.
   612   if (thread->is_terminated()) {
   613      // block current thread if we come here from native code when VM is gone
   614      thread->block_if_vm_exited();
   616      // otherwise do nothing
   617      return;
   618   }
   620   JavaThreadState state = thread->thread_state();
   621   thread->frame_anchor()->make_walkable(thread);
   623   // Check that we have a valid thread_state at this point
   624   switch(state) {
   625     case _thread_in_vm_trans:
   626     case _thread_in_Java:        // From compiled code
   628       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   629       // we pretend we are still in the VM.
   630       thread->set_thread_state(_thread_in_vm);
   632       if (is_synchronizing()) {
   633          Atomic::inc (&TryingToBlock) ;
   634       }
   636       // We will always be holding the Safepoint_lock when we are examine the state
   637       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   638       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   639       Safepoint_lock->lock_without_safepoint_check();
   640       if (is_synchronizing()) {
   641         // Decrement the number of threads to wait for and signal vm thread
   642         assert(_waiting_to_block > 0, "sanity check");
   643         _waiting_to_block--;
   644         thread->safepoint_state()->set_has_called_back(true);
   646         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   647         if (thread->in_critical()) {
   648           // Notice that this thread is in a critical section
   649           increment_jni_active_count();
   650         }
   652         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   653         if (_waiting_to_block == 0) {
   654           Safepoint_lock->notify_all();
   655         }
   656       }
   658       // We transition the thread to state _thread_blocked here, but
   659       // we can't do our usual check for external suspension and then
   660       // self-suspend after the lock_without_safepoint_check() call
   661       // below because we are often called during transitions while
   662       // we hold different locks. That would leave us suspended while
   663       // holding a resource which results in deadlocks.
   664       thread->set_thread_state(_thread_blocked);
   665       Safepoint_lock->unlock();
   667       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   668       // the entire safepoint, the threads will all line up here during the safepoint.
   669       Threads_lock->lock_without_safepoint_check();
   670       // restore original state. This is important if the thread comes from compiled code, so it
   671       // will continue to execute with the _thread_in_Java state.
   672       thread->set_thread_state(state);
   673       Threads_lock->unlock();
   674       break;
   676     case _thread_in_native_trans:
   677     case _thread_blocked_trans:
   678     case _thread_new_trans:
   679       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   680         thread->print_thread_state();
   681         fatal("Deadlock in safepoint code.  "
   682               "Should have called back to the VM before blocking.");
   683       }
   685       // We transition the thread to state _thread_blocked here, but
   686       // we can't do our usual check for external suspension and then
   687       // self-suspend after the lock_without_safepoint_check() call
   688       // below because we are often called during transitions while
   689       // we hold different locks. That would leave us suspended while
   690       // holding a resource which results in deadlocks.
   691       thread->set_thread_state(_thread_blocked);
   693       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   694       // the safepoint code might still be waiting for it to block. We need to change the state here,
   695       // so it can see that it is at a safepoint.
   697       // Block until the safepoint operation is completed.
   698       Threads_lock->lock_without_safepoint_check();
   700       // Restore state
   701       thread->set_thread_state(state);
   703       Threads_lock->unlock();
   704       break;
   706     default:
   707      fatal(err_msg("Illegal threadstate encountered: %d", state));
   708   }
   710   // Check for pending. async. exceptions or suspends - except if the
   711   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   712   // is called last since it grabs a lock and we only want to do that when
   713   // we must.
   714   //
   715   // Note: we never deliver an async exception at a polling point as the
   716   // compiler may not have an exception handler for it. The polling
   717   // code will notice the async and deoptimize and the exception will
   718   // be delivered. (Polling at a return point is ok though). Sure is
   719   // a lot of bother for a deprecated feature...
   720   //
   721   // We don't deliver an async exception if the thread state is
   722   // _thread_in_native_trans so JNI functions won't be called with
   723   // a surprising pending exception. If the thread state is going back to java,
   724   // async exception is checked in check_special_condition_for_native_trans().
   726   if (state != _thread_blocked_trans &&
   727       state != _thread_in_vm_trans &&
   728       thread->has_special_runtime_exit_condition()) {
   729     thread->handle_special_runtime_exit_condition(
   730       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   731   }
   732 }
   734 // ------------------------------------------------------------------------------------------------------
   735 // Exception handlers
   737 #ifndef PRODUCT
   739 #ifdef SPARC
   741 #ifdef _LP64
   742 #define PTR_PAD ""
   743 #else
   744 #define PTR_PAD "        "
   745 #endif
   747 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   748   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
   749   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   750                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   751                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   752 }
   754 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   755   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
   756   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   757                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   758                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   759 }
   761 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   762 #ifdef _LP64
   763   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   764   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   765 #else
   766   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   767   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   768 #endif
   769   tty->print_cr("---SP---|");
   770   for( int i=0; i<16; i++ ) {
   771     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   772   tty->print_cr("--------|");
   773   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   774     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   775   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   776   tty->print_cr("--------|");
   777   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   778   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   779   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   780   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   781   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   782   old_sp += incr; new_sp += incr; was_oops += incr;
   783   // Skip the floats
   784   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   785   tty->print_cr("---FP---|");
   786   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   787   for( int i2=0; i2<16; i2++ ) {
   788     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   789   tty->print_cr("");
   790 }
   791 #endif  // SPARC
   792 #endif  // PRODUCT
   795 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   796   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   797   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   798   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   800   // Uncomment this to get some serious before/after printing of the
   801   // Sparc safepoint-blob frame structure.
   802   /*
   803   intptr_t* sp = thread->last_Java_sp();
   804   intptr_t stack_copy[150];
   805   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   806   bool was_oops[150];
   807   for( int i=0; i<150; i++ )
   808     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   809   */
   811   if (ShowSafepointMsgs) {
   812     tty->print("handle_polling_page_exception: ");
   813   }
   815   if (PrintSafepointStatistics) {
   816     inc_page_trap_count();
   817   }
   819   ThreadSafepointState* state = thread->safepoint_state();
   821   state->handle_polling_page_exception();
   822   // print_me(sp,stack_copy,was_oops);
   823 }
   826 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   827   if (!timeout_error_printed) {
   828     timeout_error_printed = true;
   829     // Print out the thread infor which didn't reach the safepoint for debugging
   830     // purposes (useful when there are lots of threads in the debugger).
   831     tty->print_cr("");
   832     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   833     if (reason ==  _spinning_timeout) {
   834       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   835     } else if (reason == _blocking_timeout) {
   836       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   837     }
   839     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   840     ThreadSafepointState *cur_state;
   841     ResourceMark rm;
   842     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   843         cur_thread = cur_thread->next()) {
   844       cur_state = cur_thread->safepoint_state();
   846       if (cur_thread->thread_state() != _thread_blocked &&
   847           ((reason == _spinning_timeout && cur_state->is_running()) ||
   848            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   849         tty->print("# ");
   850         cur_thread->print();
   851         tty->print_cr("");
   852       }
   853     }
   854     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   855   }
   857   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   858   // ShowMessageBoxOnError.
   859   if (DieOnSafepointTimeout) {
   860     char msg[1024];
   861     VM_Operation *op = VMThread::vm_operation();
   862     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   863             SafepointTimeoutDelay,
   864             op != NULL ? op->name() : "no vm operation");
   865     fatal(msg);
   866   }
   867 }
   870 // -------------------------------------------------------------------------------------------------------
   871 // Implementation of ThreadSafepointState
   873 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   874   _thread = thread;
   875   _type   = _running;
   876   _has_called_back = false;
   877   _at_poll_safepoint = false;
   878 }
   880 void ThreadSafepointState::create(JavaThread *thread) {
   881   ThreadSafepointState *state = new ThreadSafepointState(thread);
   882   thread->set_safepoint_state(state);
   883 }
   885 void ThreadSafepointState::destroy(JavaThread *thread) {
   886   if (thread->safepoint_state()) {
   887     delete(thread->safepoint_state());
   888     thread->set_safepoint_state(NULL);
   889   }
   890 }
   892 void ThreadSafepointState::examine_state_of_thread() {
   893   assert(is_running(), "better be running or just have hit safepoint poll");
   895   JavaThreadState state = _thread->thread_state();
   897   // Save the state at the start of safepoint processing.
   898   _orig_thread_state = state;
   900   // Check for a thread that is suspended. Note that thread resume tries
   901   // to grab the Threads_lock which we own here, so a thread cannot be
   902   // resumed during safepoint synchronization.
   904   // We check to see if this thread is suspended without locking to
   905   // avoid deadlocking with a third thread that is waiting for this
   906   // thread to be suspended. The third thread can notice the safepoint
   907   // that we're trying to start at the beginning of its SR_lock->wait()
   908   // call. If that happens, then the third thread will block on the
   909   // safepoint while still holding the underlying SR_lock. We won't be
   910   // able to get the SR_lock and we'll deadlock.
   911   //
   912   // We don't need to grab the SR_lock here for two reasons:
   913   // 1) The suspend flags are both volatile and are set with an
   914   //    Atomic::cmpxchg() call so we should see the suspended
   915   //    state right away.
   916   // 2) We're being called from the safepoint polling loop; if
   917   //    we don't see the suspended state on this iteration, then
   918   //    we'll come around again.
   919   //
   920   bool is_suspended = _thread->is_ext_suspended();
   921   if (is_suspended) {
   922     roll_forward(_at_safepoint);
   923     return;
   924   }
   926   // Some JavaThread states have an initial safepoint state of
   927   // running, but are actually at a safepoint. We will happily
   928   // agree and update the safepoint state here.
   929   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   930     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   931     roll_forward(_at_safepoint);
   932     return;
   933   }
   935   if (state == _thread_in_vm) {
   936     roll_forward(_call_back);
   937     return;
   938   }
   940   // All other thread states will continue to run until they
   941   // transition and self-block in state _blocked
   942   // Safepoint polling in compiled code causes the Java threads to do the same.
   943   // Note: new threads may require a malloc so they must be allowed to finish
   945   assert(is_running(), "examine_state_of_thread on non-running thread");
   946   return;
   947 }
   949 // Returns true is thread could not be rolled forward at present position.
   950 void ThreadSafepointState::roll_forward(suspend_type type) {
   951   _type = type;
   953   switch(_type) {
   954     case _at_safepoint:
   955       SafepointSynchronize::signal_thread_at_safepoint();
   956       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
   957       if (_thread->in_critical()) {
   958         // Notice that this thread is in a critical section
   959         SafepointSynchronize::increment_jni_active_count();
   960       }
   961       break;
   963     case _call_back:
   964       set_has_called_back(false);
   965       break;
   967     case _running:
   968     default:
   969       ShouldNotReachHere();
   970   }
   971 }
   973 void ThreadSafepointState::restart() {
   974   switch(type()) {
   975     case _at_safepoint:
   976     case _call_back:
   977       break;
   979     case _running:
   980     default:
   981        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   982                       _thread, _type);
   983        _thread->print();
   984       ShouldNotReachHere();
   985   }
   986   _type = _running;
   987   set_has_called_back(false);
   988 }
   991 void ThreadSafepointState::print_on(outputStream *st) const {
   992   const char *s;
   994   switch(_type) {
   995     case _running                : s = "_running";              break;
   996     case _at_safepoint           : s = "_at_safepoint";         break;
   997     case _call_back              : s = "_call_back";            break;
   998     default:
   999       ShouldNotReachHere();
  1002   st->print_cr("Thread: " INTPTR_FORMAT
  1003               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1004                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1005                _at_poll_safepoint);
  1007   _thread->print_thread_state_on(st);
  1011 // ---------------------------------------------------------------------------------------------------------------------
  1013 // Block the thread at the safepoint poll or poll return.
  1014 void ThreadSafepointState::handle_polling_page_exception() {
  1016   // Check state.  block() will set thread state to thread_in_vm which will
  1017   // cause the safepoint state _type to become _call_back.
  1018   assert(type() == ThreadSafepointState::_running,
  1019          "polling page exception on thread not running state");
  1021   // Step 1: Find the nmethod from the return address
  1022   if (ShowSafepointMsgs && Verbose) {
  1023     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1025   address real_return_addr = thread()->saved_exception_pc();
  1027   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1028   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1029   nmethod* nm = (nmethod*)cb;
  1031   // Find frame of caller
  1032   frame stub_fr = thread()->last_frame();
  1033   CodeBlob* stub_cb = stub_fr.cb();
  1034   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1035   RegisterMap map(thread(), true);
  1036   frame caller_fr = stub_fr.sender(&map);
  1038   // Should only be poll_return or poll
  1039   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1041   // This is a poll immediately before a return. The exception handling code
  1042   // has already had the effect of causing the return to occur, so the execution
  1043   // will continue immediately after the call. In addition, the oopmap at the
  1044   // return point does not mark the return value as an oop (if it is), so
  1045   // it needs a handle here to be updated.
  1046   if( nm->is_at_poll_return(real_return_addr) ) {
  1047     // See if return type is an oop.
  1048     bool return_oop = nm->method()->is_returning_oop();
  1049     Handle return_value;
  1050     if (return_oop) {
  1051       // The oop result has been saved on the stack together with all
  1052       // the other registers. In order to preserve it over GCs we need
  1053       // to keep it in a handle.
  1054       oop result = caller_fr.saved_oop_result(&map);
  1055       assert(result == NULL || result->is_oop(), "must be oop");
  1056       return_value = Handle(thread(), result);
  1057       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1060     // Block the thread
  1061     SafepointSynchronize::block(thread());
  1063     // restore oop result, if any
  1064     if (return_oop) {
  1065       caller_fr.set_saved_oop_result(&map, return_value());
  1069   // This is a safepoint poll. Verify the return address and block.
  1070   else {
  1071     set_at_poll_safepoint(true);
  1073     // verify the blob built the "return address" correctly
  1074     assert(real_return_addr == caller_fr.pc(), "must match");
  1076     // Block the thread
  1077     SafepointSynchronize::block(thread());
  1078     set_at_poll_safepoint(false);
  1080     // If we have a pending async exception deoptimize the frame
  1081     // as otherwise we may never deliver it.
  1082     if (thread()->has_async_condition()) {
  1083       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1084       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1087     // If an exception has been installed we must check for a pending deoptimization
  1088     // Deoptimize frame if exception has been thrown.
  1090     if (thread()->has_pending_exception() ) {
  1091       RegisterMap map(thread(), true);
  1092       frame caller_fr = stub_fr.sender(&map);
  1093       if (caller_fr.is_deoptimized_frame()) {
  1094         // The exception patch will destroy registers that are still
  1095         // live and will be needed during deoptimization. Defer the
  1096         // Async exception should have defered the exception until the
  1097         // next safepoint which will be detected when we get into
  1098         // the interpreter so if we have an exception now things
  1099         // are messed up.
  1101         fatal("Exception installed and deoptimization is pending");
  1108 //
  1109 //                     Statistics & Instrumentations
  1110 //
  1111 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1112 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1113 int    SafepointSynchronize::_cur_stat_index = 0;
  1114 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1115 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1116 jlong  SafepointSynchronize::_max_sync_time = 0;
  1117 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1118 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1120 static jlong  cleanup_end_time = 0;
  1121 static bool   need_to_track_page_armed_status = false;
  1122 static bool   init_done = false;
  1124 // Helper method to print the header.
  1125 static void print_header() {
  1126   tty->print("         vmop                    "
  1127              "[threads: total initially_running wait_to_block]    ");
  1128   tty->print("[time: spin block sync cleanup vmop] ");
  1130   // no page armed status printed out if it is always armed.
  1131   if (need_to_track_page_armed_status) {
  1132     tty->print("page_armed ");
  1135   tty->print_cr("page_trap_count");
  1138 void SafepointSynchronize::deferred_initialize_stat() {
  1139   if (init_done) return;
  1141   if (PrintSafepointStatisticsCount <= 0) {
  1142     fatal("Wrong PrintSafepointStatisticsCount");
  1145   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1146   // be printed right away, in which case, _safepoint_stats will regress to
  1147   // a single element array. Otherwise, it is a circular ring buffer with default
  1148   // size of PrintSafepointStatisticsCount.
  1149   int stats_array_size;
  1150   if (PrintSafepointStatisticsTimeout > 0) {
  1151     stats_array_size = 1;
  1152     PrintSafepointStatistics = true;
  1153   } else {
  1154     stats_array_size = PrintSafepointStatisticsCount;
  1156   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1157                                                  * sizeof(SafepointStats), mtInternal);
  1158   guarantee(_safepoint_stats != NULL,
  1159             "not enough memory for safepoint instrumentation data");
  1161   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1162     need_to_track_page_armed_status = true;
  1164   init_done = true;
  1167 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1168   assert(init_done, "safepoint statistics array hasn't been initialized");
  1169   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1171   spstat->_time_stamp = _ts_of_current_safepoint;
  1173   VM_Operation *op = VMThread::vm_operation();
  1174   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1175   if (op != NULL) {
  1176     _safepoint_reasons[spstat->_vmop_type]++;
  1179   spstat->_nof_total_threads = nof_threads;
  1180   spstat->_nof_initial_running_threads = nof_running;
  1181   spstat->_nof_threads_hit_page_trap = 0;
  1183   // Records the start time of spinning. The real time spent on spinning
  1184   // will be adjusted when spin is done. Same trick is applied for time
  1185   // spent on waiting for threads to block.
  1186   if (nof_running != 0) {
  1187     spstat->_time_to_spin = os::javaTimeNanos();
  1188   }  else {
  1189     spstat->_time_to_spin = 0;
  1193 void SafepointSynchronize::update_statistics_on_spin_end() {
  1194   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1196   jlong cur_time = os::javaTimeNanos();
  1198   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1199   if (spstat->_nof_initial_running_threads != 0) {
  1200     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1203   if (need_to_track_page_armed_status) {
  1204     spstat->_page_armed = (PageArmed == 1);
  1207   // Records the start time of waiting for to block. Updated when block is done.
  1208   if (_waiting_to_block != 0) {
  1209     spstat->_time_to_wait_to_block = cur_time;
  1210   } else {
  1211     spstat->_time_to_wait_to_block = 0;
  1215 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1216   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1218   if (spstat->_nof_threads_wait_to_block != 0) {
  1219     spstat->_time_to_wait_to_block = end_time -
  1220       spstat->_time_to_wait_to_block;
  1223   // Records the end time of sync which will be used to calculate the total
  1224   // vm operation time. Again, the real time spending in syncing will be deducted
  1225   // from the start of the sync time later when end_statistics is called.
  1226   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1227   if (spstat->_time_to_sync > _max_sync_time) {
  1228     _max_sync_time = spstat->_time_to_sync;
  1231   spstat->_time_to_do_cleanups = end_time;
  1234 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1235   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1237   // Record how long spent in cleanup tasks.
  1238   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1240   cleanup_end_time = end_time;
  1243 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1244   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1246   // Update the vm operation time.
  1247   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1248   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1249     _max_vmop_time = spstat->_time_to_exec_vmop;
  1251   // Only the sync time longer than the specified
  1252   // PrintSafepointStatisticsTimeout will be printed out right away.
  1253   // By default, it is -1 meaning all samples will be put into the list.
  1254   if ( PrintSafepointStatisticsTimeout > 0) {
  1255     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1256       print_statistics();
  1258   } else {
  1259     // The safepoint statistics will be printed out when the _safepoin_stats
  1260     // array fills up.
  1261     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1262       print_statistics();
  1263       _cur_stat_index = 0;
  1264     } else {
  1265       _cur_stat_index++;
  1270 void SafepointSynchronize::print_statistics() {
  1271   SafepointStats* sstats = _safepoint_stats;
  1273   for (int index = 0; index <= _cur_stat_index; index++) {
  1274     if (index % 30 == 0) {
  1275       print_header();
  1277     sstats = &_safepoint_stats[index];
  1278     tty->print("%.3f: ", sstats->_time_stamp);
  1279     tty->print("%-26s       ["
  1280                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1281                "    ]    ",
  1282                sstats->_vmop_type == -1 ? "no vm operation" :
  1283                VM_Operation::name(sstats->_vmop_type),
  1284                sstats->_nof_total_threads,
  1285                sstats->_nof_initial_running_threads,
  1286                sstats->_nof_threads_wait_to_block);
  1287     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1288     tty->print("  ["
  1289                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1290                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1291                INT64_FORMAT_W(6)"    ]  ",
  1292                sstats->_time_to_spin / MICROUNITS,
  1293                sstats->_time_to_wait_to_block / MICROUNITS,
  1294                sstats->_time_to_sync / MICROUNITS,
  1295                sstats->_time_to_do_cleanups / MICROUNITS,
  1296                sstats->_time_to_exec_vmop / MICROUNITS);
  1298     if (need_to_track_page_armed_status) {
  1299       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1301     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1305 // This method will be called when VM exits. It will first call
  1306 // print_statistics to print out the rest of the sampling.  Then
  1307 // it tries to summarize the sampling.
  1308 void SafepointSynchronize::print_stat_on_exit() {
  1309   if (_safepoint_stats == NULL) return;
  1311   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1313   // During VM exit, end_statistics may not get called and in that
  1314   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1315   // don't print it out.
  1316   // Approximate the vm op time.
  1317   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1318     os::javaTimeNanos() - cleanup_end_time;
  1320   if ( PrintSafepointStatisticsTimeout < 0 ||
  1321        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1322     print_statistics();
  1324   tty->print_cr("");
  1326   // Print out polling page sampling status.
  1327   if (!need_to_track_page_armed_status) {
  1328     if (UseCompilerSafepoints) {
  1329       tty->print_cr("Polling page always armed");
  1331   } else {
  1332     tty->print_cr("Defer polling page loop count = %d\n",
  1333                  DeferPollingPageLoopCount);
  1336   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1337     if (_safepoint_reasons[index] != 0) {
  1338       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1339                     _safepoint_reasons[index]);
  1343   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1344                 _coalesced_vmop_count);
  1345   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1346                 _max_sync_time / MICROUNITS);
  1347   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1348                 INT64_FORMAT_W(5)" ms",
  1349                 _max_vmop_time / MICROUNITS);
  1352 // ------------------------------------------------------------------------------------------------
  1353 // Non-product code
  1355 #ifndef PRODUCT
  1357 void SafepointSynchronize::print_state() {
  1358   if (_state == _not_synchronized) {
  1359     tty->print_cr("not synchronized");
  1360   } else if (_state == _synchronizing || _state == _synchronized) {
  1361     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1362                   "synchronized");
  1364     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1365        cur->safepoint_state()->print();
  1370 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1371   if (ShowSafepointMsgs) {
  1372     va_list ap;
  1373     va_start(ap, format);
  1374     tty->vprint_cr(format, ap);
  1375     va_end(ap);
  1379 #endif // !PRODUCT

mercurial