src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5701
40136aa2cdb1
child 5820
798522662fcd
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/evacuationInfo.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.hpp"
    31 #include "gc_implementation/g1/g1HRPrinter.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/g1RemSet.hpp"
    34 #include "gc_implementation/g1/g1YCTypes.hpp"
    35 #include "gc_implementation/g1/heapRegionSeq.hpp"
    36 #include "gc_implementation/g1/heapRegionSets.hpp"
    37 #include "gc_implementation/shared/hSpaceCounters.hpp"
    38 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    39 #include "memory/barrierSet.hpp"
    40 #include "memory/memRegion.hpp"
    41 #include "memory/sharedHeap.hpp"
    42 #include "utilities/stack.hpp"
    44 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    45 // It uses the "Garbage First" heap organization and algorithm, which
    46 // may combine concurrent marking with parallel, incremental compaction of
    47 // heap subsets that will yield large amounts of garbage.
    49 // Forward declarations
    50 class HeapRegion;
    51 class HRRSCleanupTask;
    52 class GenerationSpec;
    53 class OopsInHeapRegionClosure;
    54 class G1KlassScanClosure;
    55 class G1ScanHeapEvacClosure;
    56 class ObjectClosure;
    57 class SpaceClosure;
    58 class CompactibleSpaceClosure;
    59 class Space;
    60 class G1CollectorPolicy;
    61 class GenRemSet;
    62 class G1RemSet;
    63 class HeapRegionRemSetIterator;
    64 class ConcurrentMark;
    65 class ConcurrentMarkThread;
    66 class ConcurrentG1Refine;
    67 class ConcurrentGCTimer;
    68 class GenerationCounters;
    69 class STWGCTimer;
    70 class G1NewTracer;
    71 class G1OldTracer;
    72 class EvacuationFailedInfo;
    73 class nmethod;
    75 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    76 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    78 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    79 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    81 enum GCAllocPurpose {
    82   GCAllocForTenured,
    83   GCAllocForSurvived,
    84   GCAllocPurposeCount
    85 };
    87 class YoungList : public CHeapObj<mtGC> {
    88 private:
    89   G1CollectedHeap* _g1h;
    91   HeapRegion* _head;
    93   HeapRegion* _survivor_head;
    94   HeapRegion* _survivor_tail;
    96   HeapRegion* _curr;
    98   uint        _length;
    99   uint        _survivor_length;
   101   size_t      _last_sampled_rs_lengths;
   102   size_t      _sampled_rs_lengths;
   104   void         empty_list(HeapRegion* list);
   106 public:
   107   YoungList(G1CollectedHeap* g1h);
   109   void         push_region(HeapRegion* hr);
   110   void         add_survivor_region(HeapRegion* hr);
   112   void         empty_list();
   113   bool         is_empty() { return _length == 0; }
   114   uint         length() { return _length; }
   115   uint         survivor_length() { return _survivor_length; }
   117   // Currently we do not keep track of the used byte sum for the
   118   // young list and the survivors and it'd be quite a lot of work to
   119   // do so. When we'll eventually replace the young list with
   120   // instances of HeapRegionLinkedList we'll get that for free. So,
   121   // we'll report the more accurate information then.
   122   size_t       eden_used_bytes() {
   123     assert(length() >= survivor_length(), "invariant");
   124     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   125   }
   126   size_t       survivor_used_bytes() {
   127     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   128   }
   130   void rs_length_sampling_init();
   131   bool rs_length_sampling_more();
   132   void rs_length_sampling_next();
   134   void reset_sampled_info() {
   135     _last_sampled_rs_lengths =   0;
   136   }
   137   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   139   // for development purposes
   140   void reset_auxilary_lists();
   141   void clear() { _head = NULL; _length = 0; }
   143   void clear_survivors() {
   144     _survivor_head    = NULL;
   145     _survivor_tail    = NULL;
   146     _survivor_length  = 0;
   147   }
   149   HeapRegion* first_region() { return _head; }
   150   HeapRegion* first_survivor_region() { return _survivor_head; }
   151   HeapRegion* last_survivor_region() { return _survivor_tail; }
   153   // debugging
   154   bool          check_list_well_formed();
   155   bool          check_list_empty(bool check_sample = true);
   156   void          print();
   157 };
   159 class MutatorAllocRegion : public G1AllocRegion {
   160 protected:
   161   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   162   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   163 public:
   164   MutatorAllocRegion()
   165     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   166 };
   168 class SurvivorGCAllocRegion : public G1AllocRegion {
   169 protected:
   170   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   171   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   172 public:
   173   SurvivorGCAllocRegion()
   174   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   175 };
   177 class OldGCAllocRegion : public G1AllocRegion {
   178 protected:
   179   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   180   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   181 public:
   182   OldGCAllocRegion()
   183   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   184 };
   186 // The G1 STW is alive closure.
   187 // An instance is embedded into the G1CH and used as the
   188 // (optional) _is_alive_non_header closure in the STW
   189 // reference processor. It is also extensively used during
   190 // reference processing during STW evacuation pauses.
   191 class G1STWIsAliveClosure: public BoolObjectClosure {
   192   G1CollectedHeap* _g1;
   193 public:
   194   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   195   bool do_object_b(oop p);
   196 };
   198 class RefineCardTableEntryClosure;
   200 class G1CollectedHeap : public SharedHeap {
   201   friend class VM_G1CollectForAllocation;
   202   friend class VM_G1CollectFull;
   203   friend class VM_G1IncCollectionPause;
   204   friend class VMStructs;
   205   friend class MutatorAllocRegion;
   206   friend class SurvivorGCAllocRegion;
   207   friend class OldGCAllocRegion;
   209   // Closures used in implementation.
   210   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
   211   friend class G1ParCopyClosure;
   212   friend class G1IsAliveClosure;
   213   friend class G1EvacuateFollowersClosure;
   214   friend class G1ParScanThreadState;
   215   friend class G1ParScanClosureSuper;
   216   friend class G1ParEvacuateFollowersClosure;
   217   friend class G1ParTask;
   218   friend class G1FreeGarbageRegionClosure;
   219   friend class RefineCardTableEntryClosure;
   220   friend class G1PrepareCompactClosure;
   221   friend class RegionSorter;
   222   friend class RegionResetter;
   223   friend class CountRCClosure;
   224   friend class EvacPopObjClosure;
   225   friend class G1ParCleanupCTTask;
   227   // Other related classes.
   228   friend class G1MarkSweep;
   230 private:
   231   // The one and only G1CollectedHeap, so static functions can find it.
   232   static G1CollectedHeap* _g1h;
   234   static size_t _humongous_object_threshold_in_words;
   236   // Storage for the G1 heap.
   237   VirtualSpace _g1_storage;
   238   MemRegion    _g1_reserved;
   240   // The part of _g1_storage that is currently committed.
   241   MemRegion _g1_committed;
   243   // The master free list. It will satisfy all new region allocations.
   244   MasterFreeRegionList      _free_list;
   246   // The secondary free list which contains regions that have been
   247   // freed up during the cleanup process. This will be appended to the
   248   // master free list when appropriate.
   249   SecondaryFreeRegionList   _secondary_free_list;
   251   // It keeps track of the old regions.
   252   MasterOldRegionSet        _old_set;
   254   // It keeps track of the humongous regions.
   255   MasterHumongousRegionSet  _humongous_set;
   257   // The number of regions we could create by expansion.
   258   uint _expansion_regions;
   260   // The block offset table for the G1 heap.
   261   G1BlockOffsetSharedArray* _bot_shared;
   263   // Tears down the region sets / lists so that they are empty and the
   264   // regions on the heap do not belong to a region set / list. The
   265   // only exception is the humongous set which we leave unaltered. If
   266   // free_list_only is true, it will only tear down the master free
   267   // list. It is called before a Full GC (free_list_only == false) or
   268   // before heap shrinking (free_list_only == true).
   269   void tear_down_region_sets(bool free_list_only);
   271   // Rebuilds the region sets / lists so that they are repopulated to
   272   // reflect the contents of the heap. The only exception is the
   273   // humongous set which was not torn down in the first place. If
   274   // free_list_only is true, it will only rebuild the master free
   275   // list. It is called after a Full GC (free_list_only == false) or
   276   // after heap shrinking (free_list_only == true).
   277   void rebuild_region_sets(bool free_list_only);
   279   // The sequence of all heap regions in the heap.
   280   HeapRegionSeq _hrs;
   282   // Alloc region used to satisfy mutator allocation requests.
   283   MutatorAllocRegion _mutator_alloc_region;
   285   // Alloc region used to satisfy allocation requests by the GC for
   286   // survivor objects.
   287   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   289   // PLAB sizing policy for survivors.
   290   PLABStats _survivor_plab_stats;
   292   // Alloc region used to satisfy allocation requests by the GC for
   293   // old objects.
   294   OldGCAllocRegion _old_gc_alloc_region;
   296   // PLAB sizing policy for tenured objects.
   297   PLABStats _old_plab_stats;
   299   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   300     PLABStats* stats = NULL;
   302     switch (purpose) {
   303     case GCAllocForSurvived:
   304       stats = &_survivor_plab_stats;
   305       break;
   306     case GCAllocForTenured:
   307       stats = &_old_plab_stats;
   308       break;
   309     default:
   310       assert(false, "unrecognized GCAllocPurpose");
   311     }
   313     return stats;
   314   }
   316   // The last old region we allocated to during the last GC.
   317   // Typically, it is not full so we should re-use it during the next GC.
   318   HeapRegion* _retained_old_gc_alloc_region;
   320   // It specifies whether we should attempt to expand the heap after a
   321   // region allocation failure. If heap expansion fails we set this to
   322   // false so that we don't re-attempt the heap expansion (it's likely
   323   // that subsequent expansion attempts will also fail if one fails).
   324   // Currently, it is only consulted during GC and it's reset at the
   325   // start of each GC.
   326   bool _expand_heap_after_alloc_failure;
   328   // It resets the mutator alloc region before new allocations can take place.
   329   void init_mutator_alloc_region();
   331   // It releases the mutator alloc region.
   332   void release_mutator_alloc_region();
   334   // It initializes the GC alloc regions at the start of a GC.
   335   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   337   // It releases the GC alloc regions at the end of a GC.
   338   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   340   // It does any cleanup that needs to be done on the GC alloc regions
   341   // before a Full GC.
   342   void abandon_gc_alloc_regions();
   344   // Helper for monitoring and management support.
   345   G1MonitoringSupport* _g1mm;
   347   // Determines PLAB size for a particular allocation purpose.
   348   size_t desired_plab_sz(GCAllocPurpose purpose);
   350   // Outside of GC pauses, the number of bytes used in all regions other
   351   // than the current allocation region.
   352   size_t _summary_bytes_used;
   354   // This is used for a quick test on whether a reference points into
   355   // the collection set or not. Basically, we have an array, with one
   356   // byte per region, and that byte denotes whether the corresponding
   357   // region is in the collection set or not. The entry corresponding
   358   // the bottom of the heap, i.e., region 0, is pointed to by
   359   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   360   // biased so that it actually points to address 0 of the address
   361   // space, to make the test as fast as possible (we can simply shift
   362   // the address to address into it, instead of having to subtract the
   363   // bottom of the heap from the address before shifting it; basically
   364   // it works in the same way the card table works).
   365   bool* _in_cset_fast_test;
   367   // The allocated array used for the fast test on whether a reference
   368   // points into the collection set or not. This field is also used to
   369   // free the array.
   370   bool* _in_cset_fast_test_base;
   372   // The length of the _in_cset_fast_test_base array.
   373   uint _in_cset_fast_test_length;
   375   volatile unsigned _gc_time_stamp;
   377   size_t* _surviving_young_words;
   379   G1HRPrinter _hr_printer;
   381   void setup_surviving_young_words();
   382   void update_surviving_young_words(size_t* surv_young_words);
   383   void cleanup_surviving_young_words();
   385   // It decides whether an explicit GC should start a concurrent cycle
   386   // instead of doing a STW GC. Currently, a concurrent cycle is
   387   // explicitly started if:
   388   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   389   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   390   // (c) cause == _g1_humongous_allocation
   391   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   393   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   394   // concurrent cycles) we have started.
   395   volatile unsigned int _old_marking_cycles_started;
   397   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   398   // concurrent cycles) we have completed.
   399   volatile unsigned int _old_marking_cycles_completed;
   401   bool _concurrent_cycle_started;
   403   // This is a non-product method that is helpful for testing. It is
   404   // called at the end of a GC and artificially expands the heap by
   405   // allocating a number of dead regions. This way we can induce very
   406   // frequent marking cycles and stress the cleanup / concurrent
   407   // cleanup code more (as all the regions that will be allocated by
   408   // this method will be found dead by the marking cycle).
   409   void allocate_dummy_regions() PRODUCT_RETURN;
   411   // Clear RSets after a compaction. It also resets the GC time stamps.
   412   void clear_rsets_post_compaction();
   414   // If the HR printer is active, dump the state of the regions in the
   415   // heap after a compaction.
   416   void print_hrs_post_compaction();
   418   double verify(bool guard, const char* msg);
   419   void verify_before_gc();
   420   void verify_after_gc();
   422   void log_gc_header();
   423   void log_gc_footer(double pause_time_sec);
   425   // These are macros so that, if the assert fires, we get the correct
   426   // line number, file, etc.
   428 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   429   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   430           (_extra_message_),                                                  \
   431           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   432           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   433           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   435 #define assert_heap_locked()                                                  \
   436   do {                                                                        \
   437     assert(Heap_lock->owned_by_self(),                                        \
   438            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   439   } while (0)
   441 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   442   do {                                                                        \
   443     assert(Heap_lock->owned_by_self() ||                                      \
   444            (SafepointSynchronize::is_at_safepoint() &&                        \
   445              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   446            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   447                                         "should be at a safepoint"));         \
   448   } while (0)
   450 #define assert_heap_locked_and_not_at_safepoint()                             \
   451   do {                                                                        \
   452     assert(Heap_lock->owned_by_self() &&                                      \
   453                                     !SafepointSynchronize::is_at_safepoint(), \
   454           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   455                                        "should not be at a safepoint"));      \
   456   } while (0)
   458 #define assert_heap_not_locked()                                              \
   459   do {                                                                        \
   460     assert(!Heap_lock->owned_by_self(),                                       \
   461         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   462   } while (0)
   464 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   465   do {                                                                        \
   466     assert(!Heap_lock->owned_by_self() &&                                     \
   467                                     !SafepointSynchronize::is_at_safepoint(), \
   468       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   469                                    "should not be at a safepoint"));          \
   470   } while (0)
   472 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   473   do {                                                                        \
   474     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   475               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   476            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   477   } while (0)
   479 #define assert_not_at_safepoint()                                             \
   480   do {                                                                        \
   481     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   482            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   483   } while (0)
   485 protected:
   487   // The young region list.
   488   YoungList*  _young_list;
   490   // The current policy object for the collector.
   491   G1CollectorPolicy* _g1_policy;
   493   // This is the second level of trying to allocate a new region. If
   494   // new_region() didn't find a region on the free_list, this call will
   495   // check whether there's anything available on the
   496   // secondary_free_list and/or wait for more regions to appear on
   497   // that list, if _free_regions_coming is set.
   498   HeapRegion* new_region_try_secondary_free_list();
   500   // Try to allocate a single non-humongous HeapRegion sufficient for
   501   // an allocation of the given word_size. If do_expand is true,
   502   // attempt to expand the heap if necessary to satisfy the allocation
   503   // request.
   504   HeapRegion* new_region(size_t word_size, bool do_expand);
   506   // Attempt to satisfy a humongous allocation request of the given
   507   // size by finding a contiguous set of free regions of num_regions
   508   // length and remove them from the master free list. Return the
   509   // index of the first region or G1_NULL_HRS_INDEX if the search
   510   // was unsuccessful.
   511   uint humongous_obj_allocate_find_first(uint num_regions,
   512                                          size_t word_size);
   514   // Initialize a contiguous set of free regions of length num_regions
   515   // and starting at index first so that they appear as a single
   516   // humongous region.
   517   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   518                                                       uint num_regions,
   519                                                       size_t word_size);
   521   // Attempt to allocate a humongous object of the given size. Return
   522   // NULL if unsuccessful.
   523   HeapWord* humongous_obj_allocate(size_t word_size);
   525   // The following two methods, allocate_new_tlab() and
   526   // mem_allocate(), are the two main entry points from the runtime
   527   // into the G1's allocation routines. They have the following
   528   // assumptions:
   529   //
   530   // * They should both be called outside safepoints.
   531   //
   532   // * They should both be called without holding the Heap_lock.
   533   //
   534   // * All allocation requests for new TLABs should go to
   535   //   allocate_new_tlab().
   536   //
   537   // * All non-TLAB allocation requests should go to mem_allocate().
   538   //
   539   // * If either call cannot satisfy the allocation request using the
   540   //   current allocating region, they will try to get a new one. If
   541   //   this fails, they will attempt to do an evacuation pause and
   542   //   retry the allocation.
   543   //
   544   // * If all allocation attempts fail, even after trying to schedule
   545   //   an evacuation pause, allocate_new_tlab() will return NULL,
   546   //   whereas mem_allocate() will attempt a heap expansion and/or
   547   //   schedule a Full GC.
   548   //
   549   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   550   //   should never be called with word_size being humongous. All
   551   //   humongous allocation requests should go to mem_allocate() which
   552   //   will satisfy them with a special path.
   554   virtual HeapWord* allocate_new_tlab(size_t word_size);
   556   virtual HeapWord* mem_allocate(size_t word_size,
   557                                  bool*  gc_overhead_limit_was_exceeded);
   559   // The following three methods take a gc_count_before_ret
   560   // parameter which is used to return the GC count if the method
   561   // returns NULL. Given that we are required to read the GC count
   562   // while holding the Heap_lock, and these paths will take the
   563   // Heap_lock at some point, it's easier to get them to read the GC
   564   // count while holding the Heap_lock before they return NULL instead
   565   // of the caller (namely: mem_allocate()) having to also take the
   566   // Heap_lock just to read the GC count.
   568   // First-level mutator allocation attempt: try to allocate out of
   569   // the mutator alloc region without taking the Heap_lock. This
   570   // should only be used for non-humongous allocations.
   571   inline HeapWord* attempt_allocation(size_t word_size,
   572                                       unsigned int* gc_count_before_ret,
   573                                       int* gclocker_retry_count_ret);
   575   // Second-level mutator allocation attempt: take the Heap_lock and
   576   // retry the allocation attempt, potentially scheduling a GC
   577   // pause. This should only be used for non-humongous allocations.
   578   HeapWord* attempt_allocation_slow(size_t word_size,
   579                                     unsigned int* gc_count_before_ret,
   580                                     int* gclocker_retry_count_ret);
   582   // Takes the Heap_lock and attempts a humongous allocation. It can
   583   // potentially schedule a GC pause.
   584   HeapWord* attempt_allocation_humongous(size_t word_size,
   585                                          unsigned int* gc_count_before_ret,
   586                                          int* gclocker_retry_count_ret);
   588   // Allocation attempt that should be called during safepoints (e.g.,
   589   // at the end of a successful GC). expect_null_mutator_alloc_region
   590   // specifies whether the mutator alloc region is expected to be NULL
   591   // or not.
   592   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   593                                        bool expect_null_mutator_alloc_region);
   595   // It dirties the cards that cover the block so that so that the post
   596   // write barrier never queues anything when updating objects on this
   597   // block. It is assumed (and in fact we assert) that the block
   598   // belongs to a young region.
   599   inline void dirty_young_block(HeapWord* start, size_t word_size);
   601   // Allocate blocks during garbage collection. Will ensure an
   602   // allocation region, either by picking one or expanding the
   603   // heap, and then allocate a block of the given size. The block
   604   // may not be a humongous - it must fit into a single heap region.
   605   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   607   // Ensure that no further allocations can happen in "r", bearing in mind
   608   // that parallel threads might be attempting allocations.
   609   void par_allocate_remaining_space(HeapRegion* r);
   611   // Allocation attempt during GC for a survivor object / PLAB.
   612   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   614   // Allocation attempt during GC for an old object / PLAB.
   615   inline HeapWord* old_attempt_allocation(size_t word_size);
   617   // These methods are the "callbacks" from the G1AllocRegion class.
   619   // For mutator alloc regions.
   620   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   621   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   622                                    size_t allocated_bytes);
   624   // For GC alloc regions.
   625   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   626                                   GCAllocPurpose ap);
   627   void retire_gc_alloc_region(HeapRegion* alloc_region,
   628                               size_t allocated_bytes, GCAllocPurpose ap);
   630   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   631   //   inspection request and should collect the entire heap
   632   // - if clear_all_soft_refs is true, all soft references should be
   633   //   cleared during the GC
   634   // - if explicit_gc is false, word_size describes the allocation that
   635   //   the GC should attempt (at least) to satisfy
   636   // - it returns false if it is unable to do the collection due to the
   637   //   GC locker being active, true otherwise
   638   bool do_collection(bool explicit_gc,
   639                      bool clear_all_soft_refs,
   640                      size_t word_size);
   642   // Callback from VM_G1CollectFull operation.
   643   // Perform a full collection.
   644   virtual void do_full_collection(bool clear_all_soft_refs);
   646   // Resize the heap if necessary after a full collection.  If this is
   647   // after a collect-for allocation, "word_size" is the allocation size,
   648   // and will be considered part of the used portion of the heap.
   649   void resize_if_necessary_after_full_collection(size_t word_size);
   651   // Callback from VM_G1CollectForAllocation operation.
   652   // This function does everything necessary/possible to satisfy a
   653   // failed allocation request (including collection, expansion, etc.)
   654   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   656   // Attempting to expand the heap sufficiently
   657   // to support an allocation of the given "word_size".  If
   658   // successful, perform the allocation and return the address of the
   659   // allocated block, or else "NULL".
   660   HeapWord* expand_and_allocate(size_t word_size);
   662   // Process any reference objects discovered during
   663   // an incremental evacuation pause.
   664   void process_discovered_references(uint no_of_gc_workers);
   666   // Enqueue any remaining discovered references
   667   // after processing.
   668   void enqueue_discovered_references(uint no_of_gc_workers);
   670 public:
   672   G1MonitoringSupport* g1mm() {
   673     assert(_g1mm != NULL, "should have been initialized");
   674     return _g1mm;
   675   }
   677   // Expand the garbage-first heap by at least the given size (in bytes!).
   678   // Returns true if the heap was expanded by the requested amount;
   679   // false otherwise.
   680   // (Rounds up to a HeapRegion boundary.)
   681   bool expand(size_t expand_bytes);
   683   // Do anything common to GC's.
   684   virtual void gc_prologue(bool full);
   685   virtual void gc_epilogue(bool full);
   687   // We register a region with the fast "in collection set" test. We
   688   // simply set to true the array slot corresponding to this region.
   689   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   690     assert(_in_cset_fast_test_base != NULL, "sanity");
   691     assert(r->in_collection_set(), "invariant");
   692     uint index = r->hrs_index();
   693     assert(index < _in_cset_fast_test_length, "invariant");
   694     assert(!_in_cset_fast_test_base[index], "invariant");
   695     _in_cset_fast_test_base[index] = true;
   696   }
   698   // This is a fast test on whether a reference points into the
   699   // collection set or not. It does not assume that the reference
   700   // points into the heap; if it doesn't, it will return false.
   701   bool in_cset_fast_test(oop obj) {
   702     assert(_in_cset_fast_test != NULL, "sanity");
   703     if (_g1_committed.contains((HeapWord*) obj)) {
   704       // no need to subtract the bottom of the heap from obj,
   705       // _in_cset_fast_test is biased
   706       uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
   707       bool ret = _in_cset_fast_test[index];
   708       // let's make sure the result is consistent with what the slower
   709       // test returns
   710       assert( ret || !obj_in_cs(obj), "sanity");
   711       assert(!ret ||  obj_in_cs(obj), "sanity");
   712       return ret;
   713     } else {
   714       return false;
   715     }
   716   }
   718   void clear_cset_fast_test() {
   719     assert(_in_cset_fast_test_base != NULL, "sanity");
   720     memset(_in_cset_fast_test_base, false,
   721            (size_t) _in_cset_fast_test_length * sizeof(bool));
   722   }
   724   // This is called at the start of either a concurrent cycle or a Full
   725   // GC to update the number of old marking cycles started.
   726   void increment_old_marking_cycles_started();
   728   // This is called at the end of either a concurrent cycle or a Full
   729   // GC to update the number of old marking cycles completed. Those two
   730   // can happen in a nested fashion, i.e., we start a concurrent
   731   // cycle, a Full GC happens half-way through it which ends first,
   732   // and then the cycle notices that a Full GC happened and ends
   733   // too. The concurrent parameter is a boolean to help us do a bit
   734   // tighter consistency checking in the method. If concurrent is
   735   // false, the caller is the inner caller in the nesting (i.e., the
   736   // Full GC). If concurrent is true, the caller is the outer caller
   737   // in this nesting (i.e., the concurrent cycle). Further nesting is
   738   // not currently supported. The end of this call also notifies
   739   // the FullGCCount_lock in case a Java thread is waiting for a full
   740   // GC to happen (e.g., it called System.gc() with
   741   // +ExplicitGCInvokesConcurrent).
   742   void increment_old_marking_cycles_completed(bool concurrent);
   744   unsigned int old_marking_cycles_completed() {
   745     return _old_marking_cycles_completed;
   746   }
   748   void register_concurrent_cycle_start(jlong start_time);
   749   void register_concurrent_cycle_end();
   750   void trace_heap_after_concurrent_cycle();
   752   G1YCType yc_type();
   754   G1HRPrinter* hr_printer() { return &_hr_printer; }
   756 protected:
   758   // Shrink the garbage-first heap by at most the given size (in bytes!).
   759   // (Rounds down to a HeapRegion boundary.)
   760   virtual void shrink(size_t expand_bytes);
   761   void shrink_helper(size_t expand_bytes);
   763   #if TASKQUEUE_STATS
   764   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   765   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   766   void reset_taskqueue_stats();
   767   #endif // TASKQUEUE_STATS
   769   // Schedule the VM operation that will do an evacuation pause to
   770   // satisfy an allocation request of word_size. *succeeded will
   771   // return whether the VM operation was successful (it did do an
   772   // evacuation pause) or not (another thread beat us to it or the GC
   773   // locker was active). Given that we should not be holding the
   774   // Heap_lock when we enter this method, we will pass the
   775   // gc_count_before (i.e., total_collections()) as a parameter since
   776   // it has to be read while holding the Heap_lock. Currently, both
   777   // methods that call do_collection_pause() release the Heap_lock
   778   // before the call, so it's easy to read gc_count_before just before.
   779   HeapWord* do_collection_pause(size_t         word_size,
   780                                 unsigned int   gc_count_before,
   781                                 bool*          succeeded,
   782                                 GCCause::Cause gc_cause);
   784   // The guts of the incremental collection pause, executed by the vm
   785   // thread. It returns false if it is unable to do the collection due
   786   // to the GC locker being active, true otherwise
   787   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   789   // Actually do the work of evacuating the collection set.
   790   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   792   // The g1 remembered set of the heap.
   793   G1RemSet* _g1_rem_set;
   794   // And it's mod ref barrier set, used to track updates for the above.
   795   ModRefBarrierSet* _mr_bs;
   797   // A set of cards that cover the objects for which the Rsets should be updated
   798   // concurrently after the collection.
   799   DirtyCardQueueSet _dirty_card_queue_set;
   801   // The closure used to refine a single card.
   802   RefineCardTableEntryClosure* _refine_cte_cl;
   804   // A function to check the consistency of dirty card logs.
   805   void check_ct_logs_at_safepoint();
   807   // A DirtyCardQueueSet that is used to hold cards that contain
   808   // references into the current collection set. This is used to
   809   // update the remembered sets of the regions in the collection
   810   // set in the event of an evacuation failure.
   811   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   813   // After a collection pause, make the regions in the CS into free
   814   // regions.
   815   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   817   // Abandon the current collection set without recording policy
   818   // statistics or updating free lists.
   819   void abandon_collection_set(HeapRegion* cs_head);
   821   // Applies "scan_non_heap_roots" to roots outside the heap,
   822   // "scan_rs" to roots inside the heap (having done "set_region" to
   823   // indicate the region in which the root resides),
   824   // and does "scan_metadata" If "scan_rs" is
   825   // NULL, then this step is skipped.  The "worker_i"
   826   // param is for use with parallel roots processing, and should be
   827   // the "i" of the calling parallel worker thread's work(i) function.
   828   // In the sequential case this param will be ignored.
   829   void g1_process_strong_roots(bool is_scavenging,
   830                                ScanningOption so,
   831                                OopClosure* scan_non_heap_roots,
   832                                OopsInHeapRegionClosure* scan_rs,
   833                                G1KlassScanClosure* scan_klasses,
   834                                int worker_i);
   836   // Apply "blk" to all the weak roots of the system.  These include
   837   // JNI weak roots, the code cache, system dictionary, symbol table,
   838   // string table, and referents of reachable weak refs.
   839   void g1_process_weak_roots(OopClosure* root_closure);
   841   // Frees a non-humongous region by initializing its contents and
   842   // adding it to the free list that's passed as a parameter (this is
   843   // usually a local list which will be appended to the master free
   844   // list later). The used bytes of freed regions are accumulated in
   845   // pre_used. If par is true, the region's RSet will not be freed
   846   // up. The assumption is that this will be done later.
   847   void free_region(HeapRegion* hr,
   848                    size_t* pre_used,
   849                    FreeRegionList* free_list,
   850                    bool par);
   852   // Frees a humongous region by collapsing it into individual regions
   853   // and calling free_region() for each of them. The freed regions
   854   // will be added to the free list that's passed as a parameter (this
   855   // is usually a local list which will be appended to the master free
   856   // list later). The used bytes of freed regions are accumulated in
   857   // pre_used. If par is true, the region's RSet will not be freed
   858   // up. The assumption is that this will be done later.
   859   void free_humongous_region(HeapRegion* hr,
   860                              size_t* pre_used,
   861                              FreeRegionList* free_list,
   862                              HumongousRegionSet* humongous_proxy_set,
   863                              bool par);
   865   // Notifies all the necessary spaces that the committed space has
   866   // been updated (either expanded or shrunk). It should be called
   867   // after _g1_storage is updated.
   868   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   870   // The concurrent marker (and the thread it runs in.)
   871   ConcurrentMark* _cm;
   872   ConcurrentMarkThread* _cmThread;
   873   bool _mark_in_progress;
   875   // The concurrent refiner.
   876   ConcurrentG1Refine* _cg1r;
   878   // The parallel task queues
   879   RefToScanQueueSet *_task_queues;
   881   // True iff a evacuation has failed in the current collection.
   882   bool _evacuation_failed;
   884   EvacuationFailedInfo* _evacuation_failed_info_array;
   886   // Failed evacuations cause some logical from-space objects to have
   887   // forwarding pointers to themselves.  Reset them.
   888   void remove_self_forwarding_pointers();
   890   // Together, these store an object with a preserved mark, and its mark value.
   891   Stack<oop, mtGC>     _objs_with_preserved_marks;
   892   Stack<markOop, mtGC> _preserved_marks_of_objs;
   894   // Preserve the mark of "obj", if necessary, in preparation for its mark
   895   // word being overwritten with a self-forwarding-pointer.
   896   void preserve_mark_if_necessary(oop obj, markOop m);
   898   // The stack of evac-failure objects left to be scanned.
   899   GrowableArray<oop>*    _evac_failure_scan_stack;
   900   // The closure to apply to evac-failure objects.
   902   OopsInHeapRegionClosure* _evac_failure_closure;
   903   // Set the field above.
   904   void
   905   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   906     _evac_failure_closure = evac_failure_closure;
   907   }
   909   // Push "obj" on the scan stack.
   910   void push_on_evac_failure_scan_stack(oop obj);
   911   // Process scan stack entries until the stack is empty.
   912   void drain_evac_failure_scan_stack();
   913   // True iff an invocation of "drain_scan_stack" is in progress; to
   914   // prevent unnecessary recursion.
   915   bool _drain_in_progress;
   917   // Do any necessary initialization for evacuation-failure handling.
   918   // "cl" is the closure that will be used to process evac-failure
   919   // objects.
   920   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   921   // Do any necessary cleanup for evacuation-failure handling data
   922   // structures.
   923   void finalize_for_evac_failure();
   925   // An attempt to evacuate "obj" has failed; take necessary steps.
   926   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   927   void handle_evacuation_failure_common(oop obj, markOop m);
   929 #ifndef PRODUCT
   930   // Support for forcing evacuation failures. Analogous to
   931   // PromotionFailureALot for the other collectors.
   933   // Records whether G1EvacuationFailureALot should be in effect
   934   // for the current GC
   935   bool _evacuation_failure_alot_for_current_gc;
   937   // Used to record the GC number for interval checking when
   938   // determining whether G1EvaucationFailureALot is in effect
   939   // for the current GC.
   940   size_t _evacuation_failure_alot_gc_number;
   942   // Count of the number of evacuations between failures.
   943   volatile size_t _evacuation_failure_alot_count;
   945   // Set whether G1EvacuationFailureALot should be in effect
   946   // for the current GC (based upon the type of GC and which
   947   // command line flags are set);
   948   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   949                                                   bool during_initial_mark,
   950                                                   bool during_marking);
   952   inline void set_evacuation_failure_alot_for_current_gc();
   954   // Return true if it's time to cause an evacuation failure.
   955   inline bool evacuation_should_fail();
   957   // Reset the G1EvacuationFailureALot counters.  Should be called at
   958   // the end of an evacuation pause in which an evacuation failure occurred.
   959   inline void reset_evacuation_should_fail();
   960 #endif // !PRODUCT
   962   // ("Weak") Reference processing support.
   963   //
   964   // G1 has 2 instances of the reference processor class. One
   965   // (_ref_processor_cm) handles reference object discovery
   966   // and subsequent processing during concurrent marking cycles.
   967   //
   968   // The other (_ref_processor_stw) handles reference object
   969   // discovery and processing during full GCs and incremental
   970   // evacuation pauses.
   971   //
   972   // During an incremental pause, reference discovery will be
   973   // temporarily disabled for _ref_processor_cm and will be
   974   // enabled for _ref_processor_stw. At the end of the evacuation
   975   // pause references discovered by _ref_processor_stw will be
   976   // processed and discovery will be disabled. The previous
   977   // setting for reference object discovery for _ref_processor_cm
   978   // will be re-instated.
   979   //
   980   // At the start of marking:
   981   //  * Discovery by the CM ref processor is verified to be inactive
   982   //    and it's discovered lists are empty.
   983   //  * Discovery by the CM ref processor is then enabled.
   984   //
   985   // At the end of marking:
   986   //  * Any references on the CM ref processor's discovered
   987   //    lists are processed (possibly MT).
   988   //
   989   // At the start of full GC we:
   990   //  * Disable discovery by the CM ref processor and
   991   //    empty CM ref processor's discovered lists
   992   //    (without processing any entries).
   993   //  * Verify that the STW ref processor is inactive and it's
   994   //    discovered lists are empty.
   995   //  * Temporarily set STW ref processor discovery as single threaded.
   996   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   997   //    field.
   998   //  * Finally enable discovery by the STW ref processor.
   999   //
  1000   // The STW ref processor is used to record any discovered
  1001   // references during the full GC.
  1002   //
  1003   // At the end of a full GC we:
  1004   //  * Enqueue any reference objects discovered by the STW ref processor
  1005   //    that have non-live referents. This has the side-effect of
  1006   //    making the STW ref processor inactive by disabling discovery.
  1007   //  * Verify that the CM ref processor is still inactive
  1008   //    and no references have been placed on it's discovered
  1009   //    lists (also checked as a precondition during initial marking).
  1011   // The (stw) reference processor...
  1012   ReferenceProcessor* _ref_processor_stw;
  1014   STWGCTimer* _gc_timer_stw;
  1015   ConcurrentGCTimer* _gc_timer_cm;
  1017   G1OldTracer* _gc_tracer_cm;
  1018   G1NewTracer* _gc_tracer_stw;
  1020   // During reference object discovery, the _is_alive_non_header
  1021   // closure (if non-null) is applied to the referent object to
  1022   // determine whether the referent is live. If so then the
  1023   // reference object does not need to be 'discovered' and can
  1024   // be treated as a regular oop. This has the benefit of reducing
  1025   // the number of 'discovered' reference objects that need to
  1026   // be processed.
  1027   //
  1028   // Instance of the is_alive closure for embedding into the
  1029   // STW reference processor as the _is_alive_non_header field.
  1030   // Supplying a value for the _is_alive_non_header field is
  1031   // optional but doing so prevents unnecessary additions to
  1032   // the discovered lists during reference discovery.
  1033   G1STWIsAliveClosure _is_alive_closure_stw;
  1035   // The (concurrent marking) reference processor...
  1036   ReferenceProcessor* _ref_processor_cm;
  1038   // Instance of the concurrent mark is_alive closure for embedding
  1039   // into the Concurrent Marking reference processor as the
  1040   // _is_alive_non_header field. Supplying a value for the
  1041   // _is_alive_non_header field is optional but doing so prevents
  1042   // unnecessary additions to the discovered lists during reference
  1043   // discovery.
  1044   G1CMIsAliveClosure _is_alive_closure_cm;
  1046   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1047   HeapRegion** _worker_cset_start_region;
  1049   // Time stamp to validate the regions recorded in the cache
  1050   // used by G1CollectedHeap::start_cset_region_for_worker().
  1051   // The heap region entry for a given worker is valid iff
  1052   // the associated time stamp value matches the current value
  1053   // of G1CollectedHeap::_gc_time_stamp.
  1054   unsigned int* _worker_cset_start_region_time_stamp;
  1056   enum G1H_process_strong_roots_tasks {
  1057     G1H_PS_filter_satb_buffers,
  1058     G1H_PS_refProcessor_oops_do,
  1059     // Leave this one last.
  1060     G1H_PS_NumElements
  1061   };
  1063   SubTasksDone* _process_strong_tasks;
  1065   volatile bool _free_regions_coming;
  1067 public:
  1069   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1071   void set_refine_cte_cl_concurrency(bool concurrent);
  1073   RefToScanQueue *task_queue(int i) const;
  1075   // A set of cards where updates happened during the GC
  1076   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1078   // A DirtyCardQueueSet that is used to hold cards that contain
  1079   // references into the current collection set. This is used to
  1080   // update the remembered sets of the regions in the collection
  1081   // set in the event of an evacuation failure.
  1082   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1083         { return _into_cset_dirty_card_queue_set; }
  1085   // Create a G1CollectedHeap with the specified policy.
  1086   // Must call the initialize method afterwards.
  1087   // May not return if something goes wrong.
  1088   G1CollectedHeap(G1CollectorPolicy* policy);
  1090   // Initialize the G1CollectedHeap to have the initial and
  1091   // maximum sizes and remembered and barrier sets
  1092   // specified by the policy object.
  1093   jint initialize();
  1095   // Return the (conservative) maximum heap alignment for any G1 heap
  1096   static size_t conservative_max_heap_alignment();
  1098   // Initialize weak reference processing.
  1099   virtual void ref_processing_init();
  1101   void set_par_threads(uint t) {
  1102     SharedHeap::set_par_threads(t);
  1103     // Done in SharedHeap but oddly there are
  1104     // two _process_strong_tasks's in a G1CollectedHeap
  1105     // so do it here too.
  1106     _process_strong_tasks->set_n_threads(t);
  1109   // Set _n_par_threads according to a policy TBD.
  1110   void set_par_threads();
  1112   void set_n_termination(int t) {
  1113     _process_strong_tasks->set_n_threads(t);
  1116   virtual CollectedHeap::Name kind() const {
  1117     return CollectedHeap::G1CollectedHeap;
  1120   // The current policy object for the collector.
  1121   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1123   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1125   // Adaptive size policy.  No such thing for g1.
  1126   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1128   // The rem set and barrier set.
  1129   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1130   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1132   unsigned get_gc_time_stamp() {
  1133     return _gc_time_stamp;
  1136   void reset_gc_time_stamp() {
  1137     _gc_time_stamp = 0;
  1138     OrderAccess::fence();
  1139     // Clear the cached CSet starting regions and time stamps.
  1140     // Their validity is dependent on the GC timestamp.
  1141     clear_cset_start_regions();
  1144   void check_gc_time_stamps() PRODUCT_RETURN;
  1146   void increment_gc_time_stamp() {
  1147     ++_gc_time_stamp;
  1148     OrderAccess::fence();
  1151   // Reset the given region's GC timestamp. If it's starts humongous,
  1152   // also reset the GC timestamp of its corresponding
  1153   // continues humongous regions too.
  1154   void reset_gc_time_stamps(HeapRegion* hr);
  1156   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1157                                   DirtyCardQueue* into_cset_dcq,
  1158                                   bool concurrent, int worker_i);
  1160   // The shared block offset table array.
  1161   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1163   // Reference Processing accessors
  1165   // The STW reference processor....
  1166   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1168   // The Concurrent Marking reference processor...
  1169   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1171   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1172   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1174   virtual size_t capacity() const;
  1175   virtual size_t used() const;
  1176   // This should be called when we're not holding the heap lock. The
  1177   // result might be a bit inaccurate.
  1178   size_t used_unlocked() const;
  1179   size_t recalculate_used() const;
  1181   // These virtual functions do the actual allocation.
  1182   // Some heaps may offer a contiguous region for shared non-blocking
  1183   // allocation, via inlined code (by exporting the address of the top and
  1184   // end fields defining the extent of the contiguous allocation region.)
  1185   // But G1CollectedHeap doesn't yet support this.
  1187   // Return an estimate of the maximum allocation that could be performed
  1188   // without triggering any collection or expansion activity.  In a
  1189   // generational collector, for example, this is probably the largest
  1190   // allocation that could be supported (without expansion) in the youngest
  1191   // generation.  It is "unsafe" because no locks are taken; the result
  1192   // should be treated as an approximation, not a guarantee, for use in
  1193   // heuristic resizing decisions.
  1194   virtual size_t unsafe_max_alloc();
  1196   virtual bool is_maximal_no_gc() const {
  1197     return _g1_storage.uncommitted_size() == 0;
  1200   // The total number of regions in the heap.
  1201   uint n_regions() { return _hrs.length(); }
  1203   // The max number of regions in the heap.
  1204   uint max_regions() { return _hrs.max_length(); }
  1206   // The number of regions that are completely free.
  1207   uint free_regions() { return _free_list.length(); }
  1209   // The number of regions that are not completely free.
  1210   uint used_regions() { return n_regions() - free_regions(); }
  1212   // The number of regions available for "regular" expansion.
  1213   uint expansion_regions() { return _expansion_regions; }
  1215   // Factory method for HeapRegion instances. It will return NULL if
  1216   // the allocation fails.
  1217   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1219   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1220   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1221   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1222   void verify_dirty_young_regions() PRODUCT_RETURN;
  1224   // verify_region_sets() performs verification over the region
  1225   // lists. It will be compiled in the product code to be used when
  1226   // necessary (i.e., during heap verification).
  1227   void verify_region_sets();
  1229   // verify_region_sets_optional() is planted in the code for
  1230   // list verification in non-product builds (and it can be enabled in
  1231   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1232 #if HEAP_REGION_SET_FORCE_VERIFY
  1233   void verify_region_sets_optional() {
  1234     verify_region_sets();
  1236 #else // HEAP_REGION_SET_FORCE_VERIFY
  1237   void verify_region_sets_optional() { }
  1238 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1240 #ifdef ASSERT
  1241   bool is_on_master_free_list(HeapRegion* hr) {
  1242     return hr->containing_set() == &_free_list;
  1245   bool is_in_humongous_set(HeapRegion* hr) {
  1246     return hr->containing_set() == &_humongous_set;
  1248 #endif // ASSERT
  1250   // Wrapper for the region list operations that can be called from
  1251   // methods outside this class.
  1253   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1254     _secondary_free_list.add_as_tail(list);
  1257   void append_secondary_free_list() {
  1258     _free_list.add_as_head(&_secondary_free_list);
  1261   void append_secondary_free_list_if_not_empty_with_lock() {
  1262     // If the secondary free list looks empty there's no reason to
  1263     // take the lock and then try to append it.
  1264     if (!_secondary_free_list.is_empty()) {
  1265       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1266       append_secondary_free_list();
  1270   void old_set_remove(HeapRegion* hr) {
  1271     _old_set.remove(hr);
  1274   size_t non_young_capacity_bytes() {
  1275     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1278   void set_free_regions_coming();
  1279   void reset_free_regions_coming();
  1280   bool free_regions_coming() { return _free_regions_coming; }
  1281   void wait_while_free_regions_coming();
  1283   // Determine whether the given region is one that we are using as an
  1284   // old GC alloc region.
  1285   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1286     return hr == _retained_old_gc_alloc_region;
  1289   // Perform a collection of the heap; intended for use in implementing
  1290   // "System.gc".  This probably implies as full a collection as the
  1291   // "CollectedHeap" supports.
  1292   virtual void collect(GCCause::Cause cause);
  1294   // The same as above but assume that the caller holds the Heap_lock.
  1295   void collect_locked(GCCause::Cause cause);
  1297   // True iff an evacuation has failed in the most-recent collection.
  1298   bool evacuation_failed() { return _evacuation_failed; }
  1300   // It will free a region if it has allocated objects in it that are
  1301   // all dead. It calls either free_region() or
  1302   // free_humongous_region() depending on the type of the region that
  1303   // is passed to it.
  1304   void free_region_if_empty(HeapRegion* hr,
  1305                             size_t* pre_used,
  1306                             FreeRegionList* free_list,
  1307                             OldRegionSet* old_proxy_set,
  1308                             HumongousRegionSet* humongous_proxy_set,
  1309                             HRRSCleanupTask* hrrs_cleanup_task,
  1310                             bool par);
  1312   // It appends the free list to the master free list and updates the
  1313   // master humongous list according to the contents of the proxy
  1314   // list. It also adjusts the total used bytes according to pre_used
  1315   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1316   void update_sets_after_freeing_regions(size_t pre_used,
  1317                                        FreeRegionList* free_list,
  1318                                        OldRegionSet* old_proxy_set,
  1319                                        HumongousRegionSet* humongous_proxy_set,
  1320                                        bool par);
  1322   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1323   virtual bool is_in(const void* p) const;
  1325   // Return "TRUE" iff the given object address is within the collection
  1326   // set.
  1327   inline bool obj_in_cs(oop obj);
  1329   // Return "TRUE" iff the given object address is in the reserved
  1330   // region of g1.
  1331   bool is_in_g1_reserved(const void* p) const {
  1332     return _g1_reserved.contains(p);
  1335   // Returns a MemRegion that corresponds to the space that has been
  1336   // reserved for the heap
  1337   MemRegion g1_reserved() {
  1338     return _g1_reserved;
  1341   // Returns a MemRegion that corresponds to the space that has been
  1342   // committed in the heap
  1343   MemRegion g1_committed() {
  1344     return _g1_committed;
  1347   virtual bool is_in_closed_subset(const void* p) const;
  1349   // This resets the card table to all zeros.  It is used after
  1350   // a collection pause which used the card table to claim cards.
  1351   void cleanUpCardTable();
  1353   // Iteration functions.
  1355   // Iterate over all the ref-containing fields of all objects, calling
  1356   // "cl.do_oop" on each.
  1357   virtual void oop_iterate(ExtendedOopClosure* cl);
  1359   // Same as above, restricted to a memory region.
  1360   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1362   // Iterate over all objects, calling "cl.do_object" on each.
  1363   virtual void object_iterate(ObjectClosure* cl);
  1365   virtual void safe_object_iterate(ObjectClosure* cl) {
  1366     object_iterate(cl);
  1369   // Iterate over all spaces in use in the heap, in ascending address order.
  1370   virtual void space_iterate(SpaceClosure* cl);
  1372   // Iterate over heap regions, in address order, terminating the
  1373   // iteration early if the "doHeapRegion" method returns "true".
  1374   void heap_region_iterate(HeapRegionClosure* blk) const;
  1376   // Return the region with the given index. It assumes the index is valid.
  1377   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
  1379   // Divide the heap region sequence into "chunks" of some size (the number
  1380   // of regions divided by the number of parallel threads times some
  1381   // overpartition factor, currently 4).  Assumes that this will be called
  1382   // in parallel by ParallelGCThreads worker threads with discinct worker
  1383   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1384   // calls will use the same "claim_value", and that that claim value is
  1385   // different from the claim_value of any heap region before the start of
  1386   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1387   // attempting to claim the first region in each chunk, and, if
  1388   // successful, applying the closure to each region in the chunk (and
  1389   // setting the claim value of the second and subsequent regions of the
  1390   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1391   // i.e., that a closure never attempt to abort a traversal.
  1392   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1393                                        uint worker,
  1394                                        uint no_of_par_workers,
  1395                                        jint claim_value);
  1397   // It resets all the region claim values to the default.
  1398   void reset_heap_region_claim_values();
  1400   // Resets the claim values of regions in the current
  1401   // collection set to the default.
  1402   void reset_cset_heap_region_claim_values();
  1404 #ifdef ASSERT
  1405   bool check_heap_region_claim_values(jint claim_value);
  1407   // Same as the routine above but only checks regions in the
  1408   // current collection set.
  1409   bool check_cset_heap_region_claim_values(jint claim_value);
  1410 #endif // ASSERT
  1412   // Clear the cached cset start regions and (more importantly)
  1413   // the time stamps. Called when we reset the GC time stamp.
  1414   void clear_cset_start_regions();
  1416   // Given the id of a worker, obtain or calculate a suitable
  1417   // starting region for iterating over the current collection set.
  1418   HeapRegion* start_cset_region_for_worker(int worker_i);
  1420   // This is a convenience method that is used by the
  1421   // HeapRegionIterator classes to calculate the starting region for
  1422   // each worker so that they do not all start from the same region.
  1423   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1425   // Iterate over the regions (if any) in the current collection set.
  1426   void collection_set_iterate(HeapRegionClosure* blk);
  1428   // As above but starting from region r
  1429   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1431   // Returns the first (lowest address) compactible space in the heap.
  1432   virtual CompactibleSpace* first_compactible_space();
  1434   // A CollectedHeap will contain some number of spaces.  This finds the
  1435   // space containing a given address, or else returns NULL.
  1436   virtual Space* space_containing(const void* addr) const;
  1438   // A G1CollectedHeap will contain some number of heap regions.  This
  1439   // finds the region containing a given address, or else returns NULL.
  1440   template <class T>
  1441   inline HeapRegion* heap_region_containing(const T addr) const;
  1443   // Like the above, but requires "addr" to be in the heap (to avoid a
  1444   // null-check), and unlike the above, may return an continuing humongous
  1445   // region.
  1446   template <class T>
  1447   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1449   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1450   // each address in the (reserved) heap is a member of exactly
  1451   // one block.  The defining characteristic of a block is that it is
  1452   // possible to find its size, and thus to progress forward to the next
  1453   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1454   // represent Java objects, or they might be free blocks in a
  1455   // free-list-based heap (or subheap), as long as the two kinds are
  1456   // distinguishable and the size of each is determinable.
  1458   // Returns the address of the start of the "block" that contains the
  1459   // address "addr".  We say "blocks" instead of "object" since some heaps
  1460   // may not pack objects densely; a chunk may either be an object or a
  1461   // non-object.
  1462   virtual HeapWord* block_start(const void* addr) const;
  1464   // Requires "addr" to be the start of a chunk, and returns its size.
  1465   // "addr + size" is required to be the start of a new chunk, or the end
  1466   // of the active area of the heap.
  1467   virtual size_t block_size(const HeapWord* addr) const;
  1469   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1470   // the block is an object.
  1471   virtual bool block_is_obj(const HeapWord* addr) const;
  1473   // Does this heap support heap inspection? (+PrintClassHistogram)
  1474   virtual bool supports_heap_inspection() const { return true; }
  1476   // Section on thread-local allocation buffers (TLABs)
  1477   // See CollectedHeap for semantics.
  1479   virtual bool supports_tlab_allocation() const;
  1480   virtual size_t tlab_capacity(Thread* thr) const;
  1481   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1483   // Can a compiler initialize a new object without store barriers?
  1484   // This permission only extends from the creation of a new object
  1485   // via a TLAB up to the first subsequent safepoint. If such permission
  1486   // is granted for this heap type, the compiler promises to call
  1487   // defer_store_barrier() below on any slow path allocation of
  1488   // a new object for which such initializing store barriers will
  1489   // have been elided. G1, like CMS, allows this, but should be
  1490   // ready to provide a compensating write barrier as necessary
  1491   // if that storage came out of a non-young region. The efficiency
  1492   // of this implementation depends crucially on being able to
  1493   // answer very efficiently in constant time whether a piece of
  1494   // storage in the heap comes from a young region or not.
  1495   // See ReduceInitialCardMarks.
  1496   virtual bool can_elide_tlab_store_barriers() const {
  1497     return true;
  1500   virtual bool card_mark_must_follow_store() const {
  1501     return true;
  1504   bool is_in_young(const oop obj) {
  1505     HeapRegion* hr = heap_region_containing(obj);
  1506     return hr != NULL && hr->is_young();
  1509 #ifdef ASSERT
  1510   virtual bool is_in_partial_collection(const void* p);
  1511 #endif
  1513   virtual bool is_scavengable(const void* addr);
  1515   // We don't need barriers for initializing stores to objects
  1516   // in the young gen: for the SATB pre-barrier, there is no
  1517   // pre-value that needs to be remembered; for the remembered-set
  1518   // update logging post-barrier, we don't maintain remembered set
  1519   // information for young gen objects.
  1520   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1521     return is_in_young(new_obj);
  1524   // Returns "true" iff the given word_size is "very large".
  1525   static bool isHumongous(size_t word_size) {
  1526     // Note this has to be strictly greater-than as the TLABs
  1527     // are capped at the humongous thresold and we want to
  1528     // ensure that we don't try to allocate a TLAB as
  1529     // humongous and that we don't allocate a humongous
  1530     // object in a TLAB.
  1531     return word_size > _humongous_object_threshold_in_words;
  1534   // Update mod union table with the set of dirty cards.
  1535   void updateModUnion();
  1537   // Set the mod union bits corresponding to the given memRegion.  Note
  1538   // that this is always a safe operation, since it doesn't clear any
  1539   // bits.
  1540   void markModUnionRange(MemRegion mr);
  1542   // Records the fact that a marking phase is no longer in progress.
  1543   void set_marking_complete() {
  1544     _mark_in_progress = false;
  1546   void set_marking_started() {
  1547     _mark_in_progress = true;
  1549   bool mark_in_progress() {
  1550     return _mark_in_progress;
  1553   // Print the maximum heap capacity.
  1554   virtual size_t max_capacity() const;
  1556   virtual jlong millis_since_last_gc();
  1559   // Convenience function to be used in situations where the heap type can be
  1560   // asserted to be this type.
  1561   static G1CollectedHeap* heap();
  1563   void set_region_short_lived_locked(HeapRegion* hr);
  1564   // add appropriate methods for any other surv rate groups
  1566   YoungList* young_list() { return _young_list; }
  1568   // debugging
  1569   bool check_young_list_well_formed() {
  1570     return _young_list->check_list_well_formed();
  1573   bool check_young_list_empty(bool check_heap,
  1574                               bool check_sample = true);
  1576   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1577   // many of these need to be public.
  1579   // The functions below are helper functions that a subclass of
  1580   // "CollectedHeap" can use in the implementation of its virtual
  1581   // functions.
  1582   // This performs a concurrent marking of the live objects in a
  1583   // bitmap off to the side.
  1584   void doConcurrentMark();
  1586   bool isMarkedPrev(oop obj) const;
  1587   bool isMarkedNext(oop obj) const;
  1589   // Determine if an object is dead, given the object and also
  1590   // the region to which the object belongs. An object is dead
  1591   // iff a) it was not allocated since the last mark and b) it
  1592   // is not marked.
  1594   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1595     return
  1596       !hr->obj_allocated_since_prev_marking(obj) &&
  1597       !isMarkedPrev(obj);
  1600   // This function returns true when an object has been
  1601   // around since the previous marking and hasn't yet
  1602   // been marked during this marking.
  1604   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1605     return
  1606       !hr->obj_allocated_since_next_marking(obj) &&
  1607       !isMarkedNext(obj);
  1610   // Determine if an object is dead, given only the object itself.
  1611   // This will find the region to which the object belongs and
  1612   // then call the region version of the same function.
  1614   // Added if it is NULL it isn't dead.
  1616   bool is_obj_dead(const oop obj) const {
  1617     const HeapRegion* hr = heap_region_containing(obj);
  1618     if (hr == NULL) {
  1619       if (obj == NULL) return false;
  1620       else return true;
  1622     else return is_obj_dead(obj, hr);
  1625   bool is_obj_ill(const oop obj) const {
  1626     const HeapRegion* hr = heap_region_containing(obj);
  1627     if (hr == NULL) {
  1628       if (obj == NULL) return false;
  1629       else return true;
  1631     else return is_obj_ill(obj, hr);
  1634   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1635   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1636   bool is_marked(oop obj, VerifyOption vo);
  1637   const char* top_at_mark_start_str(VerifyOption vo);
  1639   ConcurrentMark* concurrent_mark() const { return _cm; }
  1641   // Refinement
  1643   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1645   // The dirty cards region list is used to record a subset of regions
  1646   // whose cards need clearing. The list if populated during the
  1647   // remembered set scanning and drained during the card table
  1648   // cleanup. Although the methods are reentrant, population/draining
  1649   // phases must not overlap. For synchronization purposes the last
  1650   // element on the list points to itself.
  1651   HeapRegion* _dirty_cards_region_list;
  1652   void push_dirty_cards_region(HeapRegion* hr);
  1653   HeapRegion* pop_dirty_cards_region();
  1655   // Optimized nmethod scanning support routines
  1657   // Register the given nmethod with the G1 heap
  1658   virtual void register_nmethod(nmethod* nm);
  1660   // Unregister the given nmethod from the G1 heap
  1661   virtual void unregister_nmethod(nmethod* nm);
  1663   // Migrate the nmethods in the code root lists of the regions
  1664   // in the collection set to regions in to-space. In the event
  1665   // of an evacuation failure, nmethods that reference objects
  1666   // that were not successfullly evacuated are not migrated.
  1667   void migrate_strong_code_roots();
  1669   // During an initial mark pause, mark all the code roots that
  1670   // point into regions *not* in the collection set.
  1671   void mark_strong_code_roots(uint worker_id);
  1673   // Rebuild the stong code root lists for each region
  1674   // after a full GC
  1675   void rebuild_strong_code_roots();
  1677   // Verification
  1679   // The following is just to alert the verification code
  1680   // that a full collection has occurred and that the
  1681   // remembered sets are no longer up to date.
  1682   bool _full_collection;
  1683   void set_full_collection() { _full_collection = true;}
  1684   void clear_full_collection() {_full_collection = false;}
  1685   bool full_collection() {return _full_collection;}
  1687   // Perform any cleanup actions necessary before allowing a verification.
  1688   virtual void prepare_for_verify();
  1690   // Perform verification.
  1692   // vo == UsePrevMarking  -> use "prev" marking information,
  1693   // vo == UseNextMarking -> use "next" marking information
  1694   // vo == UseMarkWord    -> use the mark word in the object header
  1695   //
  1696   // NOTE: Only the "prev" marking information is guaranteed to be
  1697   // consistent most of the time, so most calls to this should use
  1698   // vo == UsePrevMarking.
  1699   // Currently, there is only one case where this is called with
  1700   // vo == UseNextMarking, which is to verify the "next" marking
  1701   // information at the end of remark.
  1702   // Currently there is only one place where this is called with
  1703   // vo == UseMarkWord, which is to verify the marking during a
  1704   // full GC.
  1705   void verify(bool silent, VerifyOption vo);
  1707   // Override; it uses the "prev" marking information
  1708   virtual void verify(bool silent);
  1710   // The methods below are here for convenience and dispatch the
  1711   // appropriate method depending on value of the given VerifyOption
  1712   // parameter. The values for that parameter, and their meanings,
  1713   // are the same as those above.
  1715   bool is_obj_dead_cond(const oop obj,
  1716                         const HeapRegion* hr,
  1717                         const VerifyOption vo) const {
  1718     switch (vo) {
  1719     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  1720     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  1721     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1722     default:                            ShouldNotReachHere();
  1724     return false; // keep some compilers happy
  1727   bool is_obj_dead_cond(const oop obj,
  1728                         const VerifyOption vo) const {
  1729     switch (vo) {
  1730     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  1731     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  1732     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1733     default:                            ShouldNotReachHere();
  1735     return false; // keep some compilers happy
  1738   // Printing
  1740   virtual void print_on(outputStream* st) const;
  1741   virtual void print_extended_on(outputStream* st) const;
  1742   virtual void print_on_error(outputStream* st) const;
  1744   virtual void print_gc_threads_on(outputStream* st) const;
  1745   virtual void gc_threads_do(ThreadClosure* tc) const;
  1747   // Override
  1748   void print_tracing_info() const;
  1750   // The following two methods are helpful for debugging RSet issues.
  1751   void print_cset_rsets() PRODUCT_RETURN;
  1752   void print_all_rsets() PRODUCT_RETURN;
  1754 public:
  1755   void stop_conc_gc_threads();
  1757   size_t pending_card_num();
  1758   size_t cards_scanned();
  1760 protected:
  1761   size_t _max_heap_capacity;
  1762 };
  1764 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1765 private:
  1766   bool        _retired;
  1768 public:
  1769   G1ParGCAllocBuffer(size_t gclab_word_size);
  1771   void set_buf(HeapWord* buf) {
  1772     ParGCAllocBuffer::set_buf(buf);
  1773     _retired = false;
  1776   void retire(bool end_of_gc, bool retain) {
  1777     if (_retired)
  1778       return;
  1779     ParGCAllocBuffer::retire(end_of_gc, retain);
  1780     _retired = true;
  1783   bool is_retired() {
  1784     return _retired;
  1786 };
  1788 class G1ParGCAllocBufferContainer {
  1789 protected:
  1790   static int const _priority_max = 2;
  1791   G1ParGCAllocBuffer* _priority_buffer[_priority_max];
  1793 public:
  1794   G1ParGCAllocBufferContainer(size_t gclab_word_size) {
  1795     for (int pr = 0; pr < _priority_max; ++pr) {
  1796       _priority_buffer[pr] = new G1ParGCAllocBuffer(gclab_word_size);
  1800   ~G1ParGCAllocBufferContainer() {
  1801     for (int pr = 0; pr < _priority_max; ++pr) {
  1802       assert(_priority_buffer[pr]->is_retired(), "alloc buffers should all retire at this point.");
  1803       delete _priority_buffer[pr];
  1807   HeapWord* allocate(size_t word_sz) {
  1808     HeapWord* obj;
  1809     for (int pr = 0; pr < _priority_max; ++pr) {
  1810       obj = _priority_buffer[pr]->allocate(word_sz);
  1811       if (obj != NULL) return obj;
  1813     return obj;
  1816   bool contains(void* addr) {
  1817     for (int pr = 0; pr < _priority_max; ++pr) {
  1818       if (_priority_buffer[pr]->contains(addr)) return true;
  1820     return false;
  1823   void undo_allocation(HeapWord* obj, size_t word_sz) {
  1824     bool finish_undo;
  1825     for (int pr = 0; pr < _priority_max; ++pr) {
  1826       if (_priority_buffer[pr]->contains(obj)) {
  1827         _priority_buffer[pr]->undo_allocation(obj, word_sz);
  1828         finish_undo = true;
  1831     if (!finish_undo) ShouldNotReachHere();
  1834   size_t words_remaining() {
  1835     size_t result = 0;
  1836     for (int pr = 0; pr < _priority_max; ++pr) {
  1837       result += _priority_buffer[pr]->words_remaining();
  1839     return result;
  1842   size_t words_remaining_in_retired_buffer() {
  1843     G1ParGCAllocBuffer* retired = _priority_buffer[0];
  1844     return retired->words_remaining();
  1847   void flush_stats_and_retire(PLABStats* stats, bool end_of_gc, bool retain) {
  1848     for (int pr = 0; pr < _priority_max; ++pr) {
  1849       _priority_buffer[pr]->flush_stats_and_retire(stats, end_of_gc, retain);
  1853   void update(bool end_of_gc, bool retain, HeapWord* buf, size_t word_sz) {
  1854     G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
  1855     retired_and_set->retire(end_of_gc, retain);
  1856     retired_and_set->set_buf(buf);
  1857     retired_and_set->set_word_size(word_sz);
  1858     adjust_priority_order();
  1861 private:
  1862   void adjust_priority_order() {
  1863     G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
  1865     int last = _priority_max - 1;
  1866     for (int pr = 0; pr < last; ++pr) {
  1867       _priority_buffer[pr] = _priority_buffer[pr + 1];
  1869     _priority_buffer[last] = retired_and_set;
  1871 };
  1873 class G1ParScanThreadState : public StackObj {
  1874 protected:
  1875   G1CollectedHeap* _g1h;
  1876   RefToScanQueue*  _refs;
  1877   DirtyCardQueue   _dcq;
  1878   CardTableModRefBS* _ct_bs;
  1879   G1RemSet* _g1_rem;
  1881   G1ParGCAllocBufferContainer  _surviving_alloc_buffer;
  1882   G1ParGCAllocBufferContainer  _tenured_alloc_buffer;
  1883   G1ParGCAllocBufferContainer* _alloc_buffers[GCAllocPurposeCount];
  1884   ageTable            _age_table;
  1886   size_t           _alloc_buffer_waste;
  1887   size_t           _undo_waste;
  1889   OopsInHeapRegionClosure*      _evac_failure_cl;
  1890   G1ParScanHeapEvacClosure*     _evac_cl;
  1891   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1893   int  _hash_seed;
  1894   uint _queue_num;
  1896   size_t _term_attempts;
  1898   double _start;
  1899   double _start_strong_roots;
  1900   double _strong_roots_time;
  1901   double _start_term;
  1902   double _term_time;
  1904   // Map from young-age-index (0 == not young, 1 is youngest) to
  1905   // surviving words. base is what we get back from the malloc call
  1906   size_t* _surviving_young_words_base;
  1907   // this points into the array, as we use the first few entries for padding
  1908   size_t* _surviving_young_words;
  1910 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1912   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1914   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1916   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1917   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1919   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1920     if (!from->is_survivor()) {
  1921       _g1_rem->par_write_ref(from, p, tid);
  1925   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1926     // If the new value of the field points to the same region or
  1927     // is the to-space, we don't need to include it in the Rset updates.
  1928     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1929       size_t card_index = ctbs()->index_for(p);
  1930       // If the card hasn't been added to the buffer, do it.
  1931       if (ctbs()->mark_card_deferred(card_index)) {
  1932         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1937 public:
  1938   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1940   ~G1ParScanThreadState() {
  1941     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1944   RefToScanQueue*   refs()            { return _refs;             }
  1945   ageTable*         age_table()       { return &_age_table;       }
  1947   G1ParGCAllocBufferContainer* alloc_buffer(GCAllocPurpose purpose) {
  1948     return _alloc_buffers[purpose];
  1951   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1952   size_t undo_waste() const                      { return _undo_waste; }
  1954 #ifdef ASSERT
  1955   bool verify_ref(narrowOop* ref) const;
  1956   bool verify_ref(oop* ref) const;
  1957   bool verify_task(StarTask ref) const;
  1958 #endif // ASSERT
  1960   template <class T> void push_on_queue(T* ref) {
  1961     assert(verify_ref(ref), "sanity");
  1962     refs()->push(ref);
  1965   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1966     if (G1DeferredRSUpdate) {
  1967       deferred_rs_update(from, p, tid);
  1968     } else {
  1969       immediate_rs_update(from, p, tid);
  1973   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1974     HeapWord* obj = NULL;
  1975     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1976     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1977       G1ParGCAllocBufferContainer* alloc_buf = alloc_buffer(purpose);
  1979       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1980       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1982       add_to_alloc_buffer_waste(alloc_buf->words_remaining_in_retired_buffer());
  1983       alloc_buf->update(false /* end_of_gc */, false /* retain */, buf, gclab_word_size);
  1985       obj = alloc_buf->allocate(word_sz);
  1986       assert(obj != NULL, "buffer was definitely big enough...");
  1987     } else {
  1988       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1990     return obj;
  1993   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1994     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1995     if (obj != NULL) return obj;
  1996     return allocate_slow(purpose, word_sz);
  1999   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  2000     if (alloc_buffer(purpose)->contains(obj)) {
  2001       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  2002              "should contain whole object");
  2003       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  2004     } else {
  2005       CollectedHeap::fill_with_object(obj, word_sz);
  2006       add_to_undo_waste(word_sz);
  2010   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  2011     _evac_failure_cl = evac_failure_cl;
  2013   OopsInHeapRegionClosure* evac_failure_closure() {
  2014     return _evac_failure_cl;
  2017   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  2018     _evac_cl = evac_cl;
  2021   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  2022     _partial_scan_cl = partial_scan_cl;
  2025   int* hash_seed() { return &_hash_seed; }
  2026   uint queue_num() { return _queue_num; }
  2028   size_t term_attempts() const  { return _term_attempts; }
  2029   void note_term_attempt() { _term_attempts++; }
  2031   void start_strong_roots() {
  2032     _start_strong_roots = os::elapsedTime();
  2034   void end_strong_roots() {
  2035     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  2037   double strong_roots_time() const { return _strong_roots_time; }
  2039   void start_term_time() {
  2040     note_term_attempt();
  2041     _start_term = os::elapsedTime();
  2043   void end_term_time() {
  2044     _term_time += (os::elapsedTime() - _start_term);
  2046   double term_time() const { return _term_time; }
  2048   double elapsed_time() const {
  2049     return os::elapsedTime() - _start;
  2052   static void
  2053     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  2054   void
  2055     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  2057   size_t* surviving_young_words() {
  2058     // We add on to hide entry 0 which accumulates surviving words for
  2059     // age -1 regions (i.e. non-young ones)
  2060     return _surviving_young_words;
  2063   void retire_alloc_buffers() {
  2064     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2065       size_t waste = _alloc_buffers[ap]->words_remaining();
  2066       add_to_alloc_buffer_waste(waste);
  2067       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  2068                                                  true /* end_of_gc */,
  2069                                                  false /* retain */);
  2073   template <class T> void deal_with_reference(T* ref_to_scan) {
  2074     if (has_partial_array_mask(ref_to_scan)) {
  2075       _partial_scan_cl->do_oop_nv(ref_to_scan);
  2076     } else {
  2077       // Note: we can use "raw" versions of "region_containing" because
  2078       // "obj_to_scan" is definitely in the heap, and is not in a
  2079       // humongous region.
  2080       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2081       _evac_cl->set_region(r);
  2082       _evac_cl->do_oop_nv(ref_to_scan);
  2086   void deal_with_reference(StarTask ref) {
  2087     assert(verify_task(ref), "sanity");
  2088     if (ref.is_narrow()) {
  2089       deal_with_reference((narrowOop*)ref);
  2090     } else {
  2091       deal_with_reference((oop*)ref);
  2095   void trim_queue();
  2096 };
  2098 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial