src/cpu/x86/vm/x86_32.ad

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5001
e10e43e58e92
child 5802
268e7a2178d7
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 //
     2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_resets_size() {
   232   int size = 0;
   233   Compile* C = Compile::current();
   234   if (C->in_24_bit_fp_mode()) {
   235     size += 6; // fldcw
   236   }
   237   if (C->max_vector_size() > 16) {
   238     size += 3; // vzeroupper
   239   }
   240   return size;
   241 }
   243 static int preserve_SP_size() {
   244   return 2;  // op, rm(reg/reg)
   245 }
   247 // !!!!! Special hack to get all type of calls to specify the byte offset
   248 //       from the start of the call to the point where the return address
   249 //       will point.
   250 int MachCallStaticJavaNode::ret_addr_offset() {
   251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
   252   if (_method_handle_invoke)
   253     offset += preserve_SP_size();
   254   return offset;
   255 }
   257 int MachCallDynamicJavaNode::ret_addr_offset() {
   258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
   259 }
   261 static int sizeof_FFree_Float_Stack_All = -1;
   263 int MachCallRuntimeNode::ret_addr_offset() {
   264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
   266 }
   268 // Indicate if the safepoint node needs the polling page as an input.
   269 // Since x86 does have absolute addressing, it doesn't.
   270 bool SafePointNode::needs_polling_address_input() {
   271   return false;
   272 }
   274 //
   275 // Compute padding required for nodes which need alignment
   276 //
   278 // The address of the call instruction needs to be 4-byte aligned to
   279 // ensure that it does not span a cache line so that it can be patched.
   280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   281   current_offset += pre_call_resets_size();  // skip fldcw, if any
   282   current_offset += 1;      // skip call opcode byte
   283   return round_to(current_offset, alignment_required()) - current_offset;
   284 }
   286 // The address of the call instruction needs to be 4-byte aligned to
   287 // ensure that it does not span a cache line so that it can be patched.
   288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   289   current_offset += pre_call_resets_size();  // skip fldcw, if any
   290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   291   current_offset += 1;      // skip call opcode byte
   292   return round_to(current_offset, alignment_required()) - current_offset;
   293 }
   295 // The address of the call instruction needs to be 4-byte aligned to
   296 // ensure that it does not span a cache line so that it can be patched.
   297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   298   current_offset += pre_call_resets_size();  // skip fldcw, if any
   299   current_offset += 5;      // skip MOV instruction
   300   current_offset += 1;      // skip call opcode byte
   301   return round_to(current_offset, alignment_required()) - current_offset;
   302 }
   304 // EMIT_RM()
   305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_CC()
   311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   312   unsigned char c = (unsigned char)( f1 | f2 );
   313   cbuf.insts()->emit_int8(c);
   314 }
   316 // EMIT_OPCODE()
   317 void emit_opcode(CodeBuffer &cbuf, int code) {
   318   cbuf.insts()->emit_int8((unsigned char) code);
   319 }
   321 // EMIT_OPCODE() w/ relocation information
   322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   324   emit_opcode(cbuf, code);
   325 }
   327 // EMIT_D8()
   328 void emit_d8(CodeBuffer &cbuf, int d8) {
   329   cbuf.insts()->emit_int8((unsigned char) d8);
   330 }
   332 // EMIT_D16()
   333 void emit_d16(CodeBuffer &cbuf, int d16) {
   334   cbuf.insts()->emit_int16(d16);
   335 }
   337 // EMIT_D32()
   338 void emit_d32(CodeBuffer &cbuf, int d32) {
   339   cbuf.insts()->emit_int32(d32);
   340 }
   342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   344         int format) {
   345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   346   cbuf.insts()->emit_int32(d32);
   347 }
   349 // emit 32 bit value and construct relocation entry from RelocationHolder
   350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   351         int format) {
   352 #ifdef ASSERT
   353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   355   }
   356 #endif
   357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   358   cbuf.insts()->emit_int32(d32);
   359 }
   361 // Access stack slot for load or store
   362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   364   if( -128 <= disp && disp <= 127 ) {
   365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   368   } else {
   369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   372   }
   373 }
   375    // rRegI ereg, memory mem) %{    // emit_reg_mem
   376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   377   // There is no index & no scale, use form without SIB byte
   378   if ((index == 0x4) &&
   379       (scale == 0) && (base != ESP_enc)) {
   380     // If no displacement, mode is 0x0; unless base is [EBP]
   381     if ( (displace == 0) && (base != EBP_enc) ) {
   382       emit_rm(cbuf, 0x0, reg_encoding, base);
   383     }
   384     else {                    // If 8-bit displacement, mode 0x1
   385       if ((displace >= -128) && (displace <= 127)
   386           && (disp_reloc == relocInfo::none) ) {
   387         emit_rm(cbuf, 0x1, reg_encoding, base);
   388         emit_d8(cbuf, displace);
   389       }
   390       else {                  // If 32-bit displacement
   391         if (base == -1) { // Special flag for absolute address
   392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   393           // (manual lies; no SIB needed here)
   394           if ( disp_reloc != relocInfo::none ) {
   395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   396           } else {
   397             emit_d32      (cbuf, displace);
   398           }
   399         }
   400         else {                // Normal base + offset
   401           emit_rm(cbuf, 0x2, reg_encoding, base);
   402           if ( disp_reloc != relocInfo::none ) {
   403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   404           } else {
   405             emit_d32      (cbuf, displace);
   406           }
   407         }
   408       }
   409     }
   410   }
   411   else {                      // Else, encode with the SIB byte
   412     // If no displacement, mode is 0x0; unless base is [EBP]
   413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   415       emit_rm(cbuf, scale, index, base);
   416     }
   417     else {                    // If 8-bit displacement, mode 0x1
   418       if ((displace >= -128) && (displace <= 127)
   419           && (disp_reloc == relocInfo::none) ) {
   420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   421         emit_rm(cbuf, scale, index, base);
   422         emit_d8(cbuf, displace);
   423       }
   424       else {                  // If 32-bit displacement
   425         if (base == 0x04 ) {
   426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   427           emit_rm(cbuf, scale, index, 0x04);
   428         } else {
   429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   430           emit_rm(cbuf, scale, index, base);
   431         }
   432         if ( disp_reloc != relocInfo::none ) {
   433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   434         } else {
   435           emit_d32      (cbuf, displace);
   436         }
   437       }
   438     }
   439   }
   440 }
   443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   444   if( dst_encoding == src_encoding ) {
   445     // reg-reg copy, use an empty encoding
   446   } else {
   447     emit_opcode( cbuf, 0x8B );
   448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   449   }
   450 }
   452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   453   Label exit;
   454   __ jccb(Assembler::noParity, exit);
   455   __ pushf();
   456   //
   457   // comiss/ucomiss instructions set ZF,PF,CF flags and
   458   // zero OF,AF,SF for NaN values.
   459   // Fixup flags by zeroing ZF,PF so that compare of NaN
   460   // values returns 'less than' result (CF is set).
   461   // Leave the rest of flags unchanged.
   462   //
   463   //    7 6 5 4 3 2 1 0
   464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   465   //    0 0 1 0 1 0 1 1   (0x2B)
   466   //
   467   __ andl(Address(rsp, 0), 0xffffff2b);
   468   __ popf();
   469   __ bind(exit);
   470 }
   472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   473   Label done;
   474   __ movl(dst, -1);
   475   __ jcc(Assembler::parity, done);
   476   __ jcc(Assembler::below, done);
   477   __ setb(Assembler::notEqual, dst);
   478   __ movzbl(dst, dst);
   479   __ bind(done);
   480 }
   483 //=============================================================================
   484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   486 int Compile::ConstantTable::calculate_table_base_offset() const {
   487   return 0;  // absolute addressing, no offset
   488 }
   490 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   491   // Empty encoding
   492 }
   494 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   495   return 0;
   496 }
   498 #ifndef PRODUCT
   499 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   500   st->print("# MachConstantBaseNode (empty encoding)");
   501 }
   502 #endif
   505 //=============================================================================
   506 #ifndef PRODUCT
   507 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   508   Compile* C = ra_->C;
   510   int framesize = C->frame_slots() << LogBytesPerInt;
   511   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   512   // Remove wordSize for return addr which is already pushed.
   513   framesize -= wordSize;
   515   if (C->need_stack_bang(framesize)) {
   516     framesize -= wordSize;
   517     st->print("# stack bang");
   518     st->print("\n\t");
   519     st->print("PUSH   EBP\t# Save EBP");
   520     if (framesize) {
   521       st->print("\n\t");
   522       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   523     }
   524   } else {
   525     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   526     st->print("\n\t");
   527     framesize -= wordSize;
   528     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   529   }
   531   if (VerifyStackAtCalls) {
   532     st->print("\n\t");
   533     framesize -= wordSize;
   534     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   535   }
   537   if( C->in_24_bit_fp_mode() ) {
   538     st->print("\n\t");
   539     st->print("FLDCW  \t# load 24 bit fpu control word");
   540   }
   541   if (UseSSE >= 2 && VerifyFPU) {
   542     st->print("\n\t");
   543     st->print("# verify FPU stack (must be clean on entry)");
   544   }
   546 #ifdef ASSERT
   547   if (VerifyStackAtCalls) {
   548     st->print("\n\t");
   549     st->print("# stack alignment check");
   550   }
   551 #endif
   552   st->cr();
   553 }
   554 #endif
   557 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   558   Compile* C = ra_->C;
   559   MacroAssembler _masm(&cbuf);
   561   int framesize = C->frame_slots() << LogBytesPerInt;
   563   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   565   C->set_frame_complete(cbuf.insts_size());
   567   if (C->has_mach_constant_base_node()) {
   568     // NOTE: We set the table base offset here because users might be
   569     // emitted before MachConstantBaseNode.
   570     Compile::ConstantTable& constant_table = C->constant_table();
   571     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   572   }
   573 }
   575 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   576   return MachNode::size(ra_); // too many variables; just compute it the hard way
   577 }
   579 int MachPrologNode::reloc() const {
   580   return 0; // a large enough number
   581 }
   583 //=============================================================================
   584 #ifndef PRODUCT
   585 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   586   Compile *C = ra_->C;
   587   int framesize = C->frame_slots() << LogBytesPerInt;
   588   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   589   // Remove two words for return addr and rbp,
   590   framesize -= 2*wordSize;
   592   if (C->max_vector_size() > 16) {
   593     st->print("VZEROUPPER");
   594     st->cr(); st->print("\t");
   595   }
   596   if (C->in_24_bit_fp_mode()) {
   597     st->print("FLDCW  standard control word");
   598     st->cr(); st->print("\t");
   599   }
   600   if (framesize) {
   601     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   602     st->cr(); st->print("\t");
   603   }
   604   st->print_cr("POPL   EBP"); st->print("\t");
   605   if (do_polling() && C->is_method_compilation()) {
   606     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   607     st->cr(); st->print("\t");
   608   }
   609 }
   610 #endif
   612 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   613   Compile *C = ra_->C;
   615   if (C->max_vector_size() > 16) {
   616     // Clear upper bits of YMM registers when current compiled code uses
   617     // wide vectors to avoid AVX <-> SSE transition penalty during call.
   618     MacroAssembler masm(&cbuf);
   619     masm.vzeroupper();
   620   }
   621   // If method set FPU control word, restore to standard control word
   622   if (C->in_24_bit_fp_mode()) {
   623     MacroAssembler masm(&cbuf);
   624     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   625   }
   627   int framesize = C->frame_slots() << LogBytesPerInt;
   628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   629   // Remove two words for return addr and rbp,
   630   framesize -= 2*wordSize;
   632   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   634   if (framesize >= 128) {
   635     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   636     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   637     emit_d32(cbuf, framesize);
   638   } else if (framesize) {
   639     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   640     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   641     emit_d8(cbuf, framesize);
   642   }
   644   emit_opcode(cbuf, 0x58 | EBP_enc);
   646   if (do_polling() && C->is_method_compilation()) {
   647     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   648     emit_opcode(cbuf,0x85);
   649     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   650     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   651   }
   652 }
   654 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   655   Compile *C = ra_->C;
   656   // If method set FPU control word, restore to standard control word
   657   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   658   if (C->max_vector_size() > 16) size += 3; // vzeroupper
   659   if (do_polling() && C->is_method_compilation()) size += 6;
   661   int framesize = C->frame_slots() << LogBytesPerInt;
   662   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   663   // Remove two words for return addr and rbp,
   664   framesize -= 2*wordSize;
   666   size++; // popl rbp,
   668   if (framesize >= 128) {
   669     size += 6;
   670   } else {
   671     size += framesize ? 3 : 0;
   672   }
   673   return size;
   674 }
   676 int MachEpilogNode::reloc() const {
   677   return 0; // a large enough number
   678 }
   680 const Pipeline * MachEpilogNode::pipeline() const {
   681   return MachNode::pipeline_class();
   682 }
   684 int MachEpilogNode::safepoint_offset() const { return 0; }
   686 //=============================================================================
   688 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   689 static enum RC rc_class( OptoReg::Name reg ) {
   691   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   692   if (OptoReg::is_stack(reg)) return rc_stack;
   694   VMReg r = OptoReg::as_VMReg(reg);
   695   if (r->is_Register()) return rc_int;
   696   if (r->is_FloatRegister()) {
   697     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   698     return rc_float;
   699   }
   700   assert(r->is_XMMRegister(), "must be");
   701   return rc_xmm;
   702 }
   704 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   705                         int opcode, const char *op_str, int size, outputStream* st ) {
   706   if( cbuf ) {
   707     emit_opcode  (*cbuf, opcode );
   708     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   709 #ifndef PRODUCT
   710   } else if( !do_size ) {
   711     if( size != 0 ) st->print("\n\t");
   712     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   713       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   714       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   715     } else { // FLD, FST, PUSH, POP
   716       st->print("%s [ESP + #%d]",op_str,offset);
   717     }
   718 #endif
   719   }
   720   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   721   return size+3+offset_size;
   722 }
   724 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   725 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   726                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   727   if (cbuf) {
   728     MacroAssembler _masm(cbuf);
   729     if (reg_lo+1 == reg_hi) { // double move?
   730       if (is_load) {
   731         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   732       } else {
   733         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   734       }
   735     } else {
   736       if (is_load) {
   737         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   738       } else {
   739         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   740       }
   741     }
   742 #ifndef PRODUCT
   743   } else if (!do_size) {
   744     if (size != 0) st->print("\n\t");
   745     if (reg_lo+1 == reg_hi) { // double move?
   746       if (is_load) st->print("%s %s,[ESP + #%d]",
   747                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   748                               Matcher::regName[reg_lo], offset);
   749       else         st->print("MOVSD  [ESP + #%d],%s",
   750                               offset, Matcher::regName[reg_lo]);
   751     } else {
   752       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   753                               Matcher::regName[reg_lo], offset);
   754       else         st->print("MOVSS  [ESP + #%d],%s",
   755                               offset, Matcher::regName[reg_lo]);
   756     }
   757 #endif
   758   }
   759   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   760   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   761   return size+5+offset_size;
   762 }
   765 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   766                             int src_hi, int dst_hi, int size, outputStream* st ) {
   767   if (cbuf) {
   768     MacroAssembler _masm(cbuf);
   769     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   770       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   771                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   772     } else {
   773       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   774                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   775     }
   776 #ifndef PRODUCT
   777   } else if (!do_size) {
   778     if (size != 0) st->print("\n\t");
   779     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   780       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   781         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   782       } else {
   783         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   784       }
   785     } else {
   786       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   787         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   788       } else {
   789         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   790       }
   791     }
   792 #endif
   793   }
   794   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   795   // Only MOVAPS SSE prefix uses 1 byte.
   796   int sz = 4;
   797   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   798       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   799   return size + sz;
   800 }
   802 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   803                             int src_hi, int dst_hi, int size, outputStream* st ) {
   804   // 32-bit
   805   if (cbuf) {
   806     MacroAssembler _masm(cbuf);
   807     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   808              as_Register(Matcher::_regEncode[src_lo]));
   809 #ifndef PRODUCT
   810   } else if (!do_size) {
   811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   812 #endif
   813   }
   814   return 4;
   815 }
   818 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   819                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   820   // 32-bit
   821   if (cbuf) {
   822     MacroAssembler _masm(cbuf);
   823     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   824              as_XMMRegister(Matcher::_regEncode[src_lo]));
   825 #ifndef PRODUCT
   826   } else if (!do_size) {
   827     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   828 #endif
   829   }
   830   return 4;
   831 }
   833 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   834   if( cbuf ) {
   835     emit_opcode(*cbuf, 0x8B );
   836     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   837 #ifndef PRODUCT
   838   } else if( !do_size ) {
   839     if( size != 0 ) st->print("\n\t");
   840     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   841 #endif
   842   }
   843   return size+2;
   844 }
   846 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   847                                  int offset, int size, outputStream* st ) {
   848   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   849     if( cbuf ) {
   850       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   851       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   852 #ifndef PRODUCT
   853     } else if( !do_size ) {
   854       if( size != 0 ) st->print("\n\t");
   855       st->print("FLD    %s",Matcher::regName[src_lo]);
   856 #endif
   857     }
   858     size += 2;
   859   }
   861   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   862   const char *op_str;
   863   int op;
   864   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   865     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   866     op = 0xDD;
   867   } else {                   // 32-bit store
   868     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   869     op = 0xD9;
   870     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   871   }
   873   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   874 }
   876 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   877 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   878                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   880 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   881                             int stack_offset, int reg, uint ireg, outputStream* st);
   883 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   884                                      int dst_offset, uint ireg, outputStream* st) {
   885   int calc_size = 0;
   886   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   887   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   888   switch (ireg) {
   889   case Op_VecS:
   890     calc_size = 3+src_offset_size + 3+dst_offset_size;
   891     break;
   892   case Op_VecD:
   893     calc_size = 3+src_offset_size + 3+dst_offset_size;
   894     src_offset += 4;
   895     dst_offset += 4;
   896     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   897     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   898     calc_size += 3+src_offset_size + 3+dst_offset_size;
   899     break;
   900   case Op_VecX:
   901     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   902     break;
   903   case Op_VecY:
   904     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   905     break;
   906   default:
   907     ShouldNotReachHere();
   908   }
   909   if (cbuf) {
   910     MacroAssembler _masm(cbuf);
   911     int offset = __ offset();
   912     switch (ireg) {
   913     case Op_VecS:
   914       __ pushl(Address(rsp, src_offset));
   915       __ popl (Address(rsp, dst_offset));
   916       break;
   917     case Op_VecD:
   918       __ pushl(Address(rsp, src_offset));
   919       __ popl (Address(rsp, dst_offset));
   920       __ pushl(Address(rsp, src_offset+4));
   921       __ popl (Address(rsp, dst_offset+4));
   922       break;
   923     case Op_VecX:
   924       __ movdqu(Address(rsp, -16), xmm0);
   925       __ movdqu(xmm0, Address(rsp, src_offset));
   926       __ movdqu(Address(rsp, dst_offset), xmm0);
   927       __ movdqu(xmm0, Address(rsp, -16));
   928       break;
   929     case Op_VecY:
   930       __ vmovdqu(Address(rsp, -32), xmm0);
   931       __ vmovdqu(xmm0, Address(rsp, src_offset));
   932       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   933       __ vmovdqu(xmm0, Address(rsp, -32));
   934       break;
   935     default:
   936       ShouldNotReachHere();
   937     }
   938     int size = __ offset() - offset;
   939     assert(size == calc_size, "incorrect size calculattion");
   940     return size;
   941 #ifndef PRODUCT
   942   } else if (!do_size) {
   943     switch (ireg) {
   944     case Op_VecS:
   945       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   946                 "popl    [rsp + #%d]",
   947                 src_offset, dst_offset);
   948       break;
   949     case Op_VecD:
   950       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   951                 "popq    [rsp + #%d]\n\t"
   952                 "pushl   [rsp + #%d]\n\t"
   953                 "popq    [rsp + #%d]",
   954                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   955       break;
   956      case Op_VecX:
   957       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   958                 "movdqu  xmm0, [rsp + #%d]\n\t"
   959                 "movdqu  [rsp + #%d], xmm0\n\t"
   960                 "movdqu  xmm0, [rsp - #16]",
   961                 src_offset, dst_offset);
   962       break;
   963     case Op_VecY:
   964       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   965                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   966                 "vmovdqu [rsp + #%d], xmm0\n\t"
   967                 "vmovdqu xmm0, [rsp - #32]",
   968                 src_offset, dst_offset);
   969       break;
   970     default:
   971       ShouldNotReachHere();
   972     }
   973 #endif
   974   }
   975   return calc_size;
   976 }
   978 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   979   // Get registers to move
   980   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   981   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   982   OptoReg::Name dst_second = ra_->get_reg_second(this );
   983   OptoReg::Name dst_first = ra_->get_reg_first(this );
   985   enum RC src_second_rc = rc_class(src_second);
   986   enum RC src_first_rc = rc_class(src_first);
   987   enum RC dst_second_rc = rc_class(dst_second);
   988   enum RC dst_first_rc = rc_class(dst_first);
   990   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   992   // Generate spill code!
   993   int size = 0;
   995   if( src_first == dst_first && src_second == dst_second )
   996     return size;            // Self copy, no move
   998   if (bottom_type()->isa_vect() != NULL) {
   999     uint ireg = ideal_reg();
  1000     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
  1001     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
  1002     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
  1003     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1004       // mem -> mem
  1005       int src_offset = ra_->reg2offset(src_first);
  1006       int dst_offset = ra_->reg2offset(dst_first);
  1007       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
  1008     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1009       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
  1010     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1011       int stack_offset = ra_->reg2offset(dst_first);
  1012       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
  1013     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
  1014       int stack_offset = ra_->reg2offset(src_first);
  1015       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1016     } else {
  1017       ShouldNotReachHere();
  1021   // --------------------------------------
  1022   // Check for mem-mem move.  push/pop to move.
  1023   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1024     if( src_second == dst_first ) { // overlapping stack copy ranges
  1025       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1026       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1027       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1028       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1030     // move low bits
  1031     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1032     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1033     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1034       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1035       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1037     return size;
  1040   // --------------------------------------
  1041   // Check for integer reg-reg copy
  1042   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1043     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1045   // Check for integer store
  1046   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1047     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1049   // Check for integer load
  1050   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1051     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1053   // Check for integer reg-xmm reg copy
  1054   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1055     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1056             "no 64 bit integer-float reg moves" );
  1057     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1059   // --------------------------------------
  1060   // Check for float reg-reg copy
  1061   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1063             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1064     if( cbuf ) {
  1066       // Note the mucking with the register encode to compensate for the 0/1
  1067       // indexing issue mentioned in a comment in the reg_def sections
  1068       // for FPR registers many lines above here.
  1070       if( src_first != FPR1L_num ) {
  1071         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1072         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1073         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1074         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1075      } else {
  1076         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1077         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1079 #ifndef PRODUCT
  1080     } else if( !do_size ) {
  1081       if( size != 0 ) st->print("\n\t");
  1082       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1083       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1084 #endif
  1086     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1089   // Check for float store
  1090   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1091     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1094   // Check for float load
  1095   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1096     int offset = ra_->reg2offset(src_first);
  1097     const char *op_str;
  1098     int op;
  1099     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1100       op_str = "FLD_D";
  1101       op = 0xDD;
  1102     } else {                   // 32-bit load
  1103       op_str = "FLD_S";
  1104       op = 0xD9;
  1105       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1107     if( cbuf ) {
  1108       emit_opcode  (*cbuf, op );
  1109       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1110       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1111       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1112 #ifndef PRODUCT
  1113     } else if( !do_size ) {
  1114       if( size != 0 ) st->print("\n\t");
  1115       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1116 #endif
  1118     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1119     return size + 3+offset_size+2;
  1122   // Check for xmm reg-reg copy
  1123   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1124     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1125             (src_first+1 == src_second && dst_first+1 == dst_second),
  1126             "no non-adjacent float-moves" );
  1127     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1130   // Check for xmm reg-integer reg copy
  1131   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1132     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1133             "no 64 bit float-integer reg moves" );
  1134     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1137   // Check for xmm store
  1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1139     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1142   // Check for float xmm load
  1143   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1144     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1147   // Copy from float reg to xmm reg
  1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1149     // copy to the top of stack from floating point reg
  1150     // and use LEA to preserve flags
  1151     if( cbuf ) {
  1152       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1153       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1154       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1155       emit_d8(*cbuf,0xF8);
  1156 #ifndef PRODUCT
  1157     } else if( !do_size ) {
  1158       if( size != 0 ) st->print("\n\t");
  1159       st->print("LEA    ESP,[ESP-8]");
  1160 #endif
  1162     size += 4;
  1164     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1166     // Copy from the temp memory to the xmm reg.
  1167     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1169     if( cbuf ) {
  1170       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1171       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1172       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1173       emit_d8(*cbuf,0x08);
  1174 #ifndef PRODUCT
  1175     } else if( !do_size ) {
  1176       if( size != 0 ) st->print("\n\t");
  1177       st->print("LEA    ESP,[ESP+8]");
  1178 #endif
  1180     size += 4;
  1181     return size;
  1184   assert( size > 0, "missed a case" );
  1186   // --------------------------------------------------------------------
  1187   // Check for second bits still needing moving.
  1188   if( src_second == dst_second )
  1189     return size;               // Self copy; no move
  1190   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1192   // Check for second word int-int move
  1193   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1194     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1196   // Check for second word integer store
  1197   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1198     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1200   // Check for second word integer load
  1201   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1202     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1205   Unimplemented();
  1208 #ifndef PRODUCT
  1209 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1210   implementation( NULL, ra_, false, st );
  1212 #endif
  1214 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1215   implementation( &cbuf, ra_, false, NULL );
  1218 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1219   return implementation( NULL, ra_, true, NULL );
  1223 //=============================================================================
  1224 #ifndef PRODUCT
  1225 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1226   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1227   int reg = ra_->get_reg_first(this);
  1228   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1230 #endif
  1232 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1234   int reg = ra_->get_encode(this);
  1235   if( offset >= 128 ) {
  1236     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1237     emit_rm(cbuf, 0x2, reg, 0x04);
  1238     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1239     emit_d32(cbuf, offset);
  1241   else {
  1242     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1243     emit_rm(cbuf, 0x1, reg, 0x04);
  1244     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1245     emit_d8(cbuf, offset);
  1249 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1250   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1251   if( offset >= 128 ) {
  1252     return 7;
  1254   else {
  1255     return 4;
  1259 //=============================================================================
  1260 #ifndef PRODUCT
  1261 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1262   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1263   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1264   st->print_cr("\tNOP");
  1265   st->print_cr("\tNOP");
  1266   if( !OptoBreakpoint )
  1267     st->print_cr("\tNOP");
  1269 #endif
  1271 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1272   MacroAssembler masm(&cbuf);
  1273 #ifdef ASSERT
  1274   uint insts_size = cbuf.insts_size();
  1275 #endif
  1276   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1277   masm.jump_cc(Assembler::notEqual,
  1278                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1279   /* WARNING these NOPs are critical so that verified entry point is properly
  1280      aligned for patching by NativeJump::patch_verified_entry() */
  1281   int nops_cnt = 2;
  1282   if( !OptoBreakpoint ) // Leave space for int3
  1283      nops_cnt += 1;
  1284   masm.nop(nops_cnt);
  1286   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1289 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1290   return OptoBreakpoint ? 11 : 12;
  1294 //=============================================================================
  1295 uint size_exception_handler() {
  1296   // NativeCall instruction size is the same as NativeJump.
  1297   // exception handler starts out as jump and can be patched to
  1298   // a call be deoptimization.  (4932387)
  1299   // Note that this value is also credited (in output.cpp) to
  1300   // the size of the code section.
  1301   return NativeJump::instruction_size;
  1304 // Emit exception handler code.  Stuff framesize into a register
  1305 // and call a VM stub routine.
  1306 int emit_exception_handler(CodeBuffer& cbuf) {
  1308   // Note that the code buffer's insts_mark is always relative to insts.
  1309   // That's why we must use the macroassembler to generate a handler.
  1310   MacroAssembler _masm(&cbuf);
  1311   address base =
  1312   __ start_a_stub(size_exception_handler());
  1313   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1314   int offset = __ offset();
  1315   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1316   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1317   __ end_a_stub();
  1318   return offset;
  1321 uint size_deopt_handler() {
  1322   // NativeCall instruction size is the same as NativeJump.
  1323   // exception handler starts out as jump and can be patched to
  1324   // a call be deoptimization.  (4932387)
  1325   // Note that this value is also credited (in output.cpp) to
  1326   // the size of the code section.
  1327   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1330 // Emit deopt handler code.
  1331 int emit_deopt_handler(CodeBuffer& cbuf) {
  1333   // Note that the code buffer's insts_mark is always relative to insts.
  1334   // That's why we must use the macroassembler to generate a handler.
  1335   MacroAssembler _masm(&cbuf);
  1336   address base =
  1337   __ start_a_stub(size_exception_handler());
  1338   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1339   int offset = __ offset();
  1340   InternalAddress here(__ pc());
  1341   __ pushptr(here.addr());
  1343   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1344   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1345   __ end_a_stub();
  1346   return offset;
  1349 int Matcher::regnum_to_fpu_offset(int regnum) {
  1350   return regnum - 32; // The FP registers are in the second chunk
  1353 // This is UltraSparc specific, true just means we have fast l2f conversion
  1354 const bool Matcher::convL2FSupported(void) {
  1355   return true;
  1358 // Is this branch offset short enough that a short branch can be used?
  1359 //
  1360 // NOTE: If the platform does not provide any short branch variants, then
  1361 //       this method should return false for offset 0.
  1362 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1363   // The passed offset is relative to address of the branch.
  1364   // On 86 a branch displacement is calculated relative to address
  1365   // of a next instruction.
  1366   offset -= br_size;
  1368   // the short version of jmpConUCF2 contains multiple branches,
  1369   // making the reach slightly less
  1370   if (rule == jmpConUCF2_rule)
  1371     return (-126 <= offset && offset <= 125);
  1372   return (-128 <= offset && offset <= 127);
  1375 const bool Matcher::isSimpleConstant64(jlong value) {
  1376   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1377   return false;
  1380 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1381 const bool Matcher::init_array_count_is_in_bytes = false;
  1383 // Threshold size for cleararray.
  1384 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1386 // Needs 2 CMOV's for longs.
  1387 const int Matcher::long_cmove_cost() { return 1; }
  1389 // No CMOVF/CMOVD with SSE/SSE2
  1390 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1392 // Should the Matcher clone shifts on addressing modes, expecting them to
  1393 // be subsumed into complex addressing expressions or compute them into
  1394 // registers?  True for Intel but false for most RISCs
  1395 const bool Matcher::clone_shift_expressions = true;
  1397 // Do we need to mask the count passed to shift instructions or does
  1398 // the cpu only look at the lower 5/6 bits anyway?
  1399 const bool Matcher::need_masked_shift_count = false;
  1401 bool Matcher::narrow_oop_use_complex_address() {
  1402   ShouldNotCallThis();
  1403   return true;
  1406 bool Matcher::narrow_klass_use_complex_address() {
  1407   ShouldNotCallThis();
  1408   return true;
  1412 // Is it better to copy float constants, or load them directly from memory?
  1413 // Intel can load a float constant from a direct address, requiring no
  1414 // extra registers.  Most RISCs will have to materialize an address into a
  1415 // register first, so they would do better to copy the constant from stack.
  1416 const bool Matcher::rematerialize_float_constants = true;
  1418 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1419 // needed.  Else we split the double into 2 integer pieces and move it
  1420 // piece-by-piece.  Only happens when passing doubles into C code as the
  1421 // Java calling convention forces doubles to be aligned.
  1422 const bool Matcher::misaligned_doubles_ok = true;
  1425 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1426   // Get the memory operand from the node
  1427   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1428   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1429   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1430   uint opcnt     = 1;                 // First operand
  1431   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1432   while( idx >= skipped+num_edges ) {
  1433     skipped += num_edges;
  1434     opcnt++;                          // Bump operand count
  1435     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1436     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1439   MachOper *memory = node->_opnds[opcnt];
  1440   MachOper *new_memory = NULL;
  1441   switch (memory->opcode()) {
  1442   case DIRECT:
  1443   case INDOFFSET32X:
  1444     // No transformation necessary.
  1445     return;
  1446   case INDIRECT:
  1447     new_memory = new (C) indirect_win95_safeOper( );
  1448     break;
  1449   case INDOFFSET8:
  1450     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1451     break;
  1452   case INDOFFSET32:
  1453     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1454     break;
  1455   case INDINDEXOFFSET:
  1456     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1457     break;
  1458   case INDINDEXSCALE:
  1459     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1460     break;
  1461   case INDINDEXSCALEOFFSET:
  1462     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1463     break;
  1464   case LOAD_LONG_INDIRECT:
  1465   case LOAD_LONG_INDOFFSET32:
  1466     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1467     return;
  1468   default:
  1469     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1470     return;
  1472   node->_opnds[opcnt] = new_memory;
  1475 // Advertise here if the CPU requires explicit rounding operations
  1476 // to implement the UseStrictFP mode.
  1477 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1479 // Are floats conerted to double when stored to stack during deoptimization?
  1480 // On x32 it is stored with convertion only when FPU is used for floats.
  1481 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1483 // Do ints take an entire long register or just half?
  1484 const bool Matcher::int_in_long = false;
  1486 // Return whether or not this register is ever used as an argument.  This
  1487 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1488 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1489 // arguments in those registers not be available to the callee.
  1490 bool Matcher::can_be_java_arg( int reg ) {
  1491   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1492   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1493   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1494   return false;
  1497 bool Matcher::is_spillable_arg( int reg ) {
  1498   return can_be_java_arg(reg);
  1501 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1502   // Use hardware integer DIV instruction when
  1503   // it is faster than a code which use multiply.
  1504   // Only when constant divisor fits into 32 bit
  1505   // (min_jint is excluded to get only correct
  1506   // positive 32 bit values from negative).
  1507   return VM_Version::has_fast_idiv() &&
  1508          (divisor == (int)divisor && divisor != min_jint);
  1511 // Register for DIVI projection of divmodI
  1512 RegMask Matcher::divI_proj_mask() {
  1513   return EAX_REG_mask();
  1516 // Register for MODI projection of divmodI
  1517 RegMask Matcher::modI_proj_mask() {
  1518   return EDX_REG_mask();
  1521 // Register for DIVL projection of divmodL
  1522 RegMask Matcher::divL_proj_mask() {
  1523   ShouldNotReachHere();
  1524   return RegMask();
  1527 // Register for MODL projection of divmodL
  1528 RegMask Matcher::modL_proj_mask() {
  1529   ShouldNotReachHere();
  1530   return RegMask();
  1533 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1534   return EBP_REG_mask();
  1537 // Returns true if the high 32 bits of the value is known to be zero.
  1538 bool is_operand_hi32_zero(Node* n) {
  1539   int opc = n->Opcode();
  1540   if (opc == Op_AndL) {
  1541     Node* o2 = n->in(2);
  1542     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1543       return true;
  1546   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1547     return true;
  1549   return false;
  1552 %}
  1554 //----------ENCODING BLOCK-----------------------------------------------------
  1555 // This block specifies the encoding classes used by the compiler to output
  1556 // byte streams.  Encoding classes generate functions which are called by
  1557 // Machine Instruction Nodes in order to generate the bit encoding of the
  1558 // instruction.  Operands specify their base encoding interface with the
  1559 // interface keyword.  There are currently supported four interfaces,
  1560 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1561 // operand to generate a function which returns its register number when
  1562 // queried.   CONST_INTER causes an operand to generate a function which
  1563 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1564 // operand to generate four functions which return the Base Register, the
  1565 // Index Register, the Scale Value, and the Offset Value of the operand when
  1566 // queried.  COND_INTER causes an operand to generate six functions which
  1567 // return the encoding code (ie - encoding bits for the instruction)
  1568 // associated with each basic boolean condition for a conditional instruction.
  1569 // Instructions specify two basic values for encoding.  They use the
  1570 // ins_encode keyword to specify their encoding class (which must be one of
  1571 // the class names specified in the encoding block), and they use the
  1572 // opcode keyword to specify, in order, their primary, secondary, and
  1573 // tertiary opcode.  Only the opcode sections which a particular instruction
  1574 // needs for encoding need to be specified.
  1575 encode %{
  1576   // Build emit functions for each basic byte or larger field in the intel
  1577   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1578   // code in the enc_class source block.  Emit functions will live in the
  1579   // main source block for now.  In future, we can generalize this by
  1580   // adding a syntax that specifies the sizes of fields in an order,
  1581   // so that the adlc can build the emit functions automagically
  1583   // Emit primary opcode
  1584   enc_class OpcP %{
  1585     emit_opcode(cbuf, $primary);
  1586   %}
  1588   // Emit secondary opcode
  1589   enc_class OpcS %{
  1590     emit_opcode(cbuf, $secondary);
  1591   %}
  1593   // Emit opcode directly
  1594   enc_class Opcode(immI d8) %{
  1595     emit_opcode(cbuf, $d8$$constant);
  1596   %}
  1598   enc_class SizePrefix %{
  1599     emit_opcode(cbuf,0x66);
  1600   %}
  1602   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1603     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1604   %}
  1606   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1607     emit_opcode(cbuf,$opcode$$constant);
  1608     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1609   %}
  1611   enc_class mov_r32_imm0( rRegI dst ) %{
  1612     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1613     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1614   %}
  1616   enc_class cdq_enc %{
  1617     // Full implementation of Java idiv and irem; checks for
  1618     // special case as described in JVM spec., p.243 & p.271.
  1619     //
  1620     //         normal case                           special case
  1621     //
  1622     // input : rax,: dividend                         min_int
  1623     //         reg: divisor                          -1
  1624     //
  1625     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1626     //         rdx: remainder (= rax, irem reg)       0
  1627     //
  1628     //  Code sequnce:
  1629     //
  1630     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1631     //  0F 85 0B 00 00 00    jne         normal_case
  1632     //  33 D2                xor         rdx,edx
  1633     //  83 F9 FF             cmp         rcx,0FFh
  1634     //  0F 84 03 00 00 00    je          done
  1635     //                  normal_case:
  1636     //  99                   cdq
  1637     //  F7 F9                idiv        rax,ecx
  1638     //                  done:
  1639     //
  1640     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1641     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1643     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1644     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1645     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1646     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1647     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1648     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1649     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1650     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1651     // normal_case:
  1652     emit_opcode(cbuf,0x99);                                         // cdq
  1653     // idiv (note: must be emitted by the user of this rule)
  1654     // normal:
  1655   %}
  1657   // Dense encoding for older common ops
  1658   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1659     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1660   %}
  1663   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1664   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1665     // Check for 8-bit immediate, and set sign extend bit in opcode
  1666     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1667       emit_opcode(cbuf, $primary | 0x02);
  1669     else {                          // If 32-bit immediate
  1670       emit_opcode(cbuf, $primary);
  1672   %}
  1674   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1675     // Emit primary opcode and set sign-extend bit
  1676     // Check for 8-bit immediate, and set sign extend bit in opcode
  1677     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1678       emit_opcode(cbuf, $primary | 0x02);    }
  1679     else {                          // If 32-bit immediate
  1680       emit_opcode(cbuf, $primary);
  1682     // Emit r/m byte with secondary opcode, after primary opcode.
  1683     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1684   %}
  1686   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1687     // Check for 8-bit immediate, and set sign extend bit in opcode
  1688     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1689       $$$emit8$imm$$constant;
  1691     else {                          // If 32-bit immediate
  1692       // Output immediate
  1693       $$$emit32$imm$$constant;
  1695   %}
  1697   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1698     // Emit primary opcode and set sign-extend bit
  1699     // Check for 8-bit immediate, and set sign extend bit in opcode
  1700     int con = (int)$imm$$constant; // Throw away top bits
  1701     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1702     // Emit r/m byte with secondary opcode, after primary opcode.
  1703     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1704     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1705     else                               emit_d32(cbuf,con);
  1706   %}
  1708   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1709     // Emit primary opcode and set sign-extend bit
  1710     // Check for 8-bit immediate, and set sign extend bit in opcode
  1711     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1712     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1713     // Emit r/m byte with tertiary opcode, after primary opcode.
  1714     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1715     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1716     else                               emit_d32(cbuf,con);
  1717   %}
  1719   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1720     emit_cc(cbuf, $secondary, $dst$$reg );
  1721   %}
  1723   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1724     int destlo = $dst$$reg;
  1725     int desthi = HIGH_FROM_LOW(destlo);
  1726     // bswap lo
  1727     emit_opcode(cbuf, 0x0F);
  1728     emit_cc(cbuf, 0xC8, destlo);
  1729     // bswap hi
  1730     emit_opcode(cbuf, 0x0F);
  1731     emit_cc(cbuf, 0xC8, desthi);
  1732     // xchg lo and hi
  1733     emit_opcode(cbuf, 0x87);
  1734     emit_rm(cbuf, 0x3, destlo, desthi);
  1735   %}
  1737   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1738     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1739   %}
  1741   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1742     $$$emit8$primary;
  1743     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1744   %}
  1746   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1747     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1748     emit_d8(cbuf, op >> 8 );
  1749     emit_d8(cbuf, op & 255);
  1750   %}
  1752   // emulate a CMOV with a conditional branch around a MOV
  1753   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1754     // Invert sense of branch from sense of CMOV
  1755     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1756     emit_d8( cbuf, $brOffs$$constant );
  1757   %}
  1759   enc_class enc_PartialSubtypeCheck( ) %{
  1760     Register Redi = as_Register(EDI_enc); // result register
  1761     Register Reax = as_Register(EAX_enc); // super class
  1762     Register Recx = as_Register(ECX_enc); // killed
  1763     Register Resi = as_Register(ESI_enc); // sub class
  1764     Label miss;
  1766     MacroAssembler _masm(&cbuf);
  1767     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1768                                      NULL, &miss,
  1769                                      /*set_cond_codes:*/ true);
  1770     if ($primary) {
  1771       __ xorptr(Redi, Redi);
  1773     __ bind(miss);
  1774   %}
  1776   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1777     MacroAssembler masm(&cbuf);
  1778     int start = masm.offset();
  1779     if (UseSSE >= 2) {
  1780       if (VerifyFPU) {
  1781         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1783     } else {
  1784       // External c_calling_convention expects the FPU stack to be 'clean'.
  1785       // Compiled code leaves it dirty.  Do cleanup now.
  1786       masm.empty_FPU_stack();
  1788     if (sizeof_FFree_Float_Stack_All == -1) {
  1789       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1790     } else {
  1791       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1793   %}
  1795   enc_class Verify_FPU_For_Leaf %{
  1796     if( VerifyFPU ) {
  1797       MacroAssembler masm(&cbuf);
  1798       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1800   %}
  1802   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1803     // This is the instruction starting address for relocation info.
  1804     cbuf.set_insts_mark();
  1805     $$$emit8$primary;
  1806     // CALL directly to the runtime
  1807     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1808                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1810     if (UseSSE >= 2) {
  1811       MacroAssembler _masm(&cbuf);
  1812       BasicType rt = tf()->return_type();
  1814       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1815         // A C runtime call where the return value is unused.  In SSE2+
  1816         // mode the result needs to be removed from the FPU stack.  It's
  1817         // likely that this function call could be removed by the
  1818         // optimizer if the C function is a pure function.
  1819         __ ffree(0);
  1820       } else if (rt == T_FLOAT) {
  1821         __ lea(rsp, Address(rsp, -4));
  1822         __ fstp_s(Address(rsp, 0));
  1823         __ movflt(xmm0, Address(rsp, 0));
  1824         __ lea(rsp, Address(rsp,  4));
  1825       } else if (rt == T_DOUBLE) {
  1826         __ lea(rsp, Address(rsp, -8));
  1827         __ fstp_d(Address(rsp, 0));
  1828         __ movdbl(xmm0, Address(rsp, 0));
  1829         __ lea(rsp, Address(rsp,  8));
  1832   %}
  1835   enc_class pre_call_resets %{
  1836     // If method sets FPU control word restore it here
  1837     debug_only(int off0 = cbuf.insts_size());
  1838     if (ra_->C->in_24_bit_fp_mode()) {
  1839       MacroAssembler _masm(&cbuf);
  1840       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1842     if (ra_->C->max_vector_size() > 16) {
  1843       // Clear upper bits of YMM registers when current compiled code uses
  1844       // wide vectors to avoid AVX <-> SSE transition penalty during call.
  1845       MacroAssembler _masm(&cbuf);
  1846       __ vzeroupper();
  1848     debug_only(int off1 = cbuf.insts_size());
  1849     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
  1850   %}
  1852   enc_class post_call_FPU %{
  1853     // If method sets FPU control word do it here also
  1854     if (Compile::current()->in_24_bit_fp_mode()) {
  1855       MacroAssembler masm(&cbuf);
  1856       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1858   %}
  1860   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1861     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1862     // who we intended to call.
  1863     cbuf.set_insts_mark();
  1864     $$$emit8$primary;
  1865     if (!_method) {
  1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1867                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1868     } else if (_optimized_virtual) {
  1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1870                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1871     } else {
  1872       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1873                      static_call_Relocation::spec(), RELOC_IMM32 );
  1875     if (_method) {  // Emit stub for static call.
  1876       CompiledStaticCall::emit_to_interp_stub(cbuf);
  1878   %}
  1880   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1881     MacroAssembler _masm(&cbuf);
  1882     __ ic_call((address)$meth$$method);
  1883   %}
  1885   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1886     int disp = in_bytes(Method::from_compiled_offset());
  1887     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1889     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1890     cbuf.set_insts_mark();
  1891     $$$emit8$primary;
  1892     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1893     emit_d8(cbuf, disp);             // Displacement
  1895   %}
  1897 //   Following encoding is no longer used, but may be restored if calling
  1898 //   convention changes significantly.
  1899 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1900 //
  1901 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1902 //     // int ic_reg     = Matcher::inline_cache_reg();
  1903 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1904 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1905 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1906 //
  1907 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1908 //     // // so we load it immediately before the call
  1909 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1910 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1911 //
  1912 //     // xor rbp,ebp
  1913 //     emit_opcode(cbuf, 0x33);
  1914 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1915 //
  1916 //     // CALL to interpreter.
  1917 //     cbuf.set_insts_mark();
  1918 //     $$$emit8$primary;
  1919 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1920 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1921 //   %}
  1923   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1924     $$$emit8$primary;
  1925     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1926     $$$emit8$shift$$constant;
  1927   %}
  1929   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1930     // Load immediate does not have a zero or sign extended version
  1931     // for 8-bit immediates
  1932     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1933     $$$emit32$src$$constant;
  1934   %}
  1936   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1937     // Load immediate does not have a zero or sign extended version
  1938     // for 8-bit immediates
  1939     emit_opcode(cbuf, $primary + $dst$$reg);
  1940     $$$emit32$src$$constant;
  1941   %}
  1943   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1944     // Load immediate does not have a zero or sign extended version
  1945     // for 8-bit immediates
  1946     int dst_enc = $dst$$reg;
  1947     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1948     if (src_con == 0) {
  1949       // xor dst, dst
  1950       emit_opcode(cbuf, 0x33);
  1951       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1952     } else {
  1953       emit_opcode(cbuf, $primary + dst_enc);
  1954       emit_d32(cbuf, src_con);
  1956   %}
  1958   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1959     // Load immediate does not have a zero or sign extended version
  1960     // for 8-bit immediates
  1961     int dst_enc = $dst$$reg + 2;
  1962     int src_con = ((julong)($src$$constant)) >> 32;
  1963     if (src_con == 0) {
  1964       // xor dst, dst
  1965       emit_opcode(cbuf, 0x33);
  1966       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1967     } else {
  1968       emit_opcode(cbuf, $primary + dst_enc);
  1969       emit_d32(cbuf, src_con);
  1971   %}
  1974   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1975   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1976     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1977   %}
  1979   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  1980     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1981   %}
  1983   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1985   %}
  1987   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1988     $$$emit8$primary;
  1989     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1990   %}
  1992   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1993     $$$emit8$secondary;
  1994     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1995   %}
  1997   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1998     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1999   %}
  2001   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2002     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2003   %}
  2005   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  2006     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2007   %}
  2009   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2010     // Output immediate
  2011     $$$emit32$src$$constant;
  2012   %}
  2014   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2015     // Output Float immediate bits
  2016     jfloat jf = $src$$constant;
  2017     int    jf_as_bits = jint_cast( jf );
  2018     emit_d32(cbuf, jf_as_bits);
  2019   %}
  2021   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2022     // Output Float immediate bits
  2023     jfloat jf = $src$$constant;
  2024     int    jf_as_bits = jint_cast( jf );
  2025     emit_d32(cbuf, jf_as_bits);
  2026   %}
  2028   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2029     // Output immediate
  2030     $$$emit16$src$$constant;
  2031   %}
  2033   enc_class Con_d32(immI src) %{
  2034     emit_d32(cbuf,$src$$constant);
  2035   %}
  2037   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2038     // Output immediate memory reference
  2039     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2040     emit_d32(cbuf, 0x00);
  2041   %}
  2043   enc_class lock_prefix( ) %{
  2044     if( os::is_MP() )
  2045       emit_opcode(cbuf,0xF0);         // [Lock]
  2046   %}
  2048   // Cmp-xchg long value.
  2049   // Note: we need to swap rbx, and rcx before and after the
  2050   //       cmpxchg8 instruction because the instruction uses
  2051   //       rcx as the high order word of the new value to store but
  2052   //       our register encoding uses rbx,.
  2053   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2055     // XCHG  rbx,ecx
  2056     emit_opcode(cbuf,0x87);
  2057     emit_opcode(cbuf,0xD9);
  2058     // [Lock]
  2059     if( os::is_MP() )
  2060       emit_opcode(cbuf,0xF0);
  2061     // CMPXCHG8 [Eptr]
  2062     emit_opcode(cbuf,0x0F);
  2063     emit_opcode(cbuf,0xC7);
  2064     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2065     // XCHG  rbx,ecx
  2066     emit_opcode(cbuf,0x87);
  2067     emit_opcode(cbuf,0xD9);
  2068   %}
  2070   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2071     // [Lock]
  2072     if( os::is_MP() )
  2073       emit_opcode(cbuf,0xF0);
  2075     // CMPXCHG [Eptr]
  2076     emit_opcode(cbuf,0x0F);
  2077     emit_opcode(cbuf,0xB1);
  2078     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2079   %}
  2081   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2082     int res_encoding = $res$$reg;
  2084     // MOV  res,0
  2085     emit_opcode( cbuf, 0xB8 + res_encoding);
  2086     emit_d32( cbuf, 0 );
  2087     // JNE,s  fail
  2088     emit_opcode(cbuf,0x75);
  2089     emit_d8(cbuf, 5 );
  2090     // MOV  res,1
  2091     emit_opcode( cbuf, 0xB8 + res_encoding);
  2092     emit_d32( cbuf, 1 );
  2093     // fail:
  2094   %}
  2096   enc_class set_instruction_start( ) %{
  2097     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2098   %}
  2100   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2101     int reg_encoding = $ereg$$reg;
  2102     int base  = $mem$$base;
  2103     int index = $mem$$index;
  2104     int scale = $mem$$scale;
  2105     int displace = $mem$$disp;
  2106     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2107     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2108   %}
  2110   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2111     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2112     int base  = $mem$$base;
  2113     int index = $mem$$index;
  2114     int scale = $mem$$scale;
  2115     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2116     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2117     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2118   %}
  2120   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2121     int r1, r2;
  2122     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2123     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2124     emit_opcode(cbuf,0x0F);
  2125     emit_opcode(cbuf,$tertiary);
  2126     emit_rm(cbuf, 0x3, r1, r2);
  2127     emit_d8(cbuf,$cnt$$constant);
  2128     emit_d8(cbuf,$primary);
  2129     emit_rm(cbuf, 0x3, $secondary, r1);
  2130     emit_d8(cbuf,$cnt$$constant);
  2131   %}
  2133   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2134     emit_opcode( cbuf, 0x8B ); // Move
  2135     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2136     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2137       emit_d8(cbuf,$primary);
  2138       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2139       emit_d8(cbuf,$cnt$$constant-32);
  2141     emit_d8(cbuf,$primary);
  2142     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2143     emit_d8(cbuf,31);
  2144   %}
  2146   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2147     int r1, r2;
  2148     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2149     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2151     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2152     emit_rm(cbuf, 0x3, r1, r2);
  2153     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2154       emit_opcode(cbuf,$primary);
  2155       emit_rm(cbuf, 0x3, $secondary, r1);
  2156       emit_d8(cbuf,$cnt$$constant-32);
  2158     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2159     emit_rm(cbuf, 0x3, r2, r2);
  2160   %}
  2162   // Clone of RegMem but accepts an extra parameter to access each
  2163   // half of a double in memory; it never needs relocation info.
  2164   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2165     emit_opcode(cbuf,$opcode$$constant);
  2166     int reg_encoding = $rm_reg$$reg;
  2167     int base     = $mem$$base;
  2168     int index    = $mem$$index;
  2169     int scale    = $mem$$scale;
  2170     int displace = $mem$$disp + $disp_for_half$$constant;
  2171     relocInfo::relocType disp_reloc = relocInfo::none;
  2172     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2173   %}
  2175   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2176   //
  2177   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2178   // and it never needs relocation information.
  2179   // Frequently used to move data between FPU's Stack Top and memory.
  2180   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2181     int rm_byte_opcode = $rm_opcode$$constant;
  2182     int base     = $mem$$base;
  2183     int index    = $mem$$index;
  2184     int scale    = $mem$$scale;
  2185     int displace = $mem$$disp;
  2186     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2187     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2188   %}
  2190   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2191     int rm_byte_opcode = $rm_opcode$$constant;
  2192     int base     = $mem$$base;
  2193     int index    = $mem$$index;
  2194     int scale    = $mem$$scale;
  2195     int displace = $mem$$disp;
  2196     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2197     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2198   %}
  2200   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2201     int reg_encoding = $dst$$reg;
  2202     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2203     int index        = 0x04;            // 0x04 indicates no index
  2204     int scale        = 0x00;            // 0x00 indicates no scale
  2205     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2206     relocInfo::relocType disp_reloc = relocInfo::none;
  2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2208   %}
  2210   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2211     // Compare dst,src
  2212     emit_opcode(cbuf,0x3B);
  2213     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2214     // jmp dst < src around move
  2215     emit_opcode(cbuf,0x7C);
  2216     emit_d8(cbuf,2);
  2217     // move dst,src
  2218     emit_opcode(cbuf,0x8B);
  2219     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2220   %}
  2222   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2223     // Compare dst,src
  2224     emit_opcode(cbuf,0x3B);
  2225     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2226     // jmp dst > src around move
  2227     emit_opcode(cbuf,0x7F);
  2228     emit_d8(cbuf,2);
  2229     // move dst,src
  2230     emit_opcode(cbuf,0x8B);
  2231     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2232   %}
  2234   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2235     // If src is FPR1, we can just FST to store it.
  2236     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2237     int reg_encoding = 0x2; // Just store
  2238     int base  = $mem$$base;
  2239     int index = $mem$$index;
  2240     int scale = $mem$$scale;
  2241     int displace = $mem$$disp;
  2242     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2243     if( $src$$reg != FPR1L_enc ) {
  2244       reg_encoding = 0x3;  // Store & pop
  2245       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2246       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2248     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2249     emit_opcode(cbuf,$primary);
  2250     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2251   %}
  2253   enc_class neg_reg(rRegI dst) %{
  2254     // NEG $dst
  2255     emit_opcode(cbuf,0xF7);
  2256     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2257   %}
  2259   enc_class setLT_reg(eCXRegI dst) %{
  2260     // SETLT $dst
  2261     emit_opcode(cbuf,0x0F);
  2262     emit_opcode(cbuf,0x9C);
  2263     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2264   %}
  2266   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2267     int tmpReg = $tmp$$reg;
  2269     // SUB $p,$q
  2270     emit_opcode(cbuf,0x2B);
  2271     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2272     // SBB $tmp,$tmp
  2273     emit_opcode(cbuf,0x1B);
  2274     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2275     // AND $tmp,$y
  2276     emit_opcode(cbuf,0x23);
  2277     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2278     // ADD $p,$tmp
  2279     emit_opcode(cbuf,0x03);
  2280     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2281   %}
  2283   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2284     // TEST shift,32
  2285     emit_opcode(cbuf,0xF7);
  2286     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2287     emit_d32(cbuf,0x20);
  2288     // JEQ,s small
  2289     emit_opcode(cbuf, 0x74);
  2290     emit_d8(cbuf, 0x04);
  2291     // MOV    $dst.hi,$dst.lo
  2292     emit_opcode( cbuf, 0x8B );
  2293     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2294     // CLR    $dst.lo
  2295     emit_opcode(cbuf, 0x33);
  2296     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2297 // small:
  2298     // SHLD   $dst.hi,$dst.lo,$shift
  2299     emit_opcode(cbuf,0x0F);
  2300     emit_opcode(cbuf,0xA5);
  2301     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2302     // SHL    $dst.lo,$shift"
  2303     emit_opcode(cbuf,0xD3);
  2304     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2305   %}
  2307   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2308     // TEST shift,32
  2309     emit_opcode(cbuf,0xF7);
  2310     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2311     emit_d32(cbuf,0x20);
  2312     // JEQ,s small
  2313     emit_opcode(cbuf, 0x74);
  2314     emit_d8(cbuf, 0x04);
  2315     // MOV    $dst.lo,$dst.hi
  2316     emit_opcode( cbuf, 0x8B );
  2317     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2318     // CLR    $dst.hi
  2319     emit_opcode(cbuf, 0x33);
  2320     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2321 // small:
  2322     // SHRD   $dst.lo,$dst.hi,$shift
  2323     emit_opcode(cbuf,0x0F);
  2324     emit_opcode(cbuf,0xAD);
  2325     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2326     // SHR    $dst.hi,$shift"
  2327     emit_opcode(cbuf,0xD3);
  2328     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2329   %}
  2331   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2332     // TEST shift,32
  2333     emit_opcode(cbuf,0xF7);
  2334     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2335     emit_d32(cbuf,0x20);
  2336     // JEQ,s small
  2337     emit_opcode(cbuf, 0x74);
  2338     emit_d8(cbuf, 0x05);
  2339     // MOV    $dst.lo,$dst.hi
  2340     emit_opcode( cbuf, 0x8B );
  2341     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2342     // SAR    $dst.hi,31
  2343     emit_opcode(cbuf, 0xC1);
  2344     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2345     emit_d8(cbuf, 0x1F );
  2346 // small:
  2347     // SHRD   $dst.lo,$dst.hi,$shift
  2348     emit_opcode(cbuf,0x0F);
  2349     emit_opcode(cbuf,0xAD);
  2350     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2351     // SAR    $dst.hi,$shift"
  2352     emit_opcode(cbuf,0xD3);
  2353     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2354   %}
  2357   // ----------------- Encodings for floating point unit -----------------
  2358   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2359   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2360     $$$emit8$primary;
  2361     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2362   %}
  2364   // Pop argument in FPR0 with FSTP ST(0)
  2365   enc_class PopFPU() %{
  2366     emit_opcode( cbuf, 0xDD );
  2367     emit_d8( cbuf, 0xD8 );
  2368   %}
  2370   // !!!!! equivalent to Pop_Reg_F
  2371   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2372     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2373     emit_d8( cbuf, 0xD8+$dst$$reg );
  2374   %}
  2376   enc_class Push_Reg_DPR( regDPR dst ) %{
  2377     emit_opcode( cbuf, 0xD9 );
  2378     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2379   %}
  2381   enc_class strictfp_bias1( regDPR dst ) %{
  2382     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2383     emit_opcode( cbuf, 0x2D );
  2384     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2385     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2386     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2387   %}
  2389   enc_class strictfp_bias2( regDPR dst ) %{
  2390     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2391     emit_opcode( cbuf, 0x2D );
  2392     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2393     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2394     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2395   %}
  2397   // Special case for moving an integer register to a stack slot.
  2398   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2399     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2400   %}
  2402   // Special case for moving a register to a stack slot.
  2403   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2404     // Opcode already emitted
  2405     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2406     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2407     emit_d32(cbuf, $dst$$disp);   // Displacement
  2408   %}
  2410   // Push the integer in stackSlot 'src' onto FP-stack
  2411   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2412     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2413   %}
  2415   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2416   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2417     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2418   %}
  2420   // Same as Pop_Mem_F except for opcode
  2421   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2422   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2423     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2424   %}
  2426   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2427     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2428     emit_d8( cbuf, 0xD8+$dst$$reg );
  2429   %}
  2431   enc_class Push_Reg_FPR( regFPR dst ) %{
  2432     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2433     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2434   %}
  2436   // Push FPU's float to a stack-slot, and pop FPU-stack
  2437   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2438     int pop = 0x02;
  2439     if ($src$$reg != FPR1L_enc) {
  2440       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2441       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2442       pop = 0x03;
  2444     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2445   %}
  2447   // Push FPU's double to a stack-slot, and pop FPU-stack
  2448   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2449     int pop = 0x02;
  2450     if ($src$$reg != FPR1L_enc) {
  2451       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2452       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2453       pop = 0x03;
  2455     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2456   %}
  2458   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2459   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2460     int pop = 0xD0 - 1; // -1 since we skip FLD
  2461     if ($src$$reg != FPR1L_enc) {
  2462       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2463       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2464       pop = 0xD8;
  2466     emit_opcode( cbuf, 0xDD );
  2467     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2468   %}
  2471   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2472     // load dst in FPR0
  2473     emit_opcode( cbuf, 0xD9 );
  2474     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2475     if ($src$$reg != FPR1L_enc) {
  2476       // fincstp
  2477       emit_opcode (cbuf, 0xD9);
  2478       emit_opcode (cbuf, 0xF7);
  2479       // swap src with FPR1:
  2480       // FXCH FPR1 with src
  2481       emit_opcode(cbuf, 0xD9);
  2482       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2483       // fdecstp
  2484       emit_opcode (cbuf, 0xD9);
  2485       emit_opcode (cbuf, 0xF6);
  2487   %}
  2489   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2490     MacroAssembler _masm(&cbuf);
  2491     __ subptr(rsp, 8);
  2492     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2493     __ fld_d(Address(rsp, 0));
  2494     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2495     __ fld_d(Address(rsp, 0));
  2496   %}
  2498   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2499     MacroAssembler _masm(&cbuf);
  2500     __ subptr(rsp, 4);
  2501     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2502     __ fld_s(Address(rsp, 0));
  2503     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2504     __ fld_s(Address(rsp, 0));
  2505   %}
  2507   enc_class Push_ResultD(regD dst) %{
  2508     MacroAssembler _masm(&cbuf);
  2509     __ fstp_d(Address(rsp, 0));
  2510     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2511     __ addptr(rsp, 8);
  2512   %}
  2514   enc_class Push_ResultF(regF dst, immI d8) %{
  2515     MacroAssembler _masm(&cbuf);
  2516     __ fstp_s(Address(rsp, 0));
  2517     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2518     __ addptr(rsp, $d8$$constant);
  2519   %}
  2521   enc_class Push_SrcD(regD src) %{
  2522     MacroAssembler _masm(&cbuf);
  2523     __ subptr(rsp, 8);
  2524     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2525     __ fld_d(Address(rsp, 0));
  2526   %}
  2528   enc_class push_stack_temp_qword() %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ subptr(rsp, 8);
  2531   %}
  2533   enc_class pop_stack_temp_qword() %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ addptr(rsp, 8);
  2536   %}
  2538   enc_class push_xmm_to_fpr1(regD src) %{
  2539     MacroAssembler _masm(&cbuf);
  2540     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2541     __ fld_d(Address(rsp, 0));
  2542   %}
  2544   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2545     if ($src$$reg != FPR1L_enc) {
  2546       // fincstp
  2547       emit_opcode (cbuf, 0xD9);
  2548       emit_opcode (cbuf, 0xF7);
  2549       // FXCH FPR1 with src
  2550       emit_opcode(cbuf, 0xD9);
  2551       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2552       // fdecstp
  2553       emit_opcode (cbuf, 0xD9);
  2554       emit_opcode (cbuf, 0xF6);
  2556     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2557     // // FSTP   FPR$dst$$reg
  2558     // emit_opcode( cbuf, 0xDD );
  2559     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2560   %}
  2562   enc_class fnstsw_sahf_skip_parity() %{
  2563     // fnstsw ax
  2564     emit_opcode( cbuf, 0xDF );
  2565     emit_opcode( cbuf, 0xE0 );
  2566     // sahf
  2567     emit_opcode( cbuf, 0x9E );
  2568     // jnp  ::skip
  2569     emit_opcode( cbuf, 0x7B );
  2570     emit_opcode( cbuf, 0x05 );
  2571   %}
  2573   enc_class emitModDPR() %{
  2574     // fprem must be iterative
  2575     // :: loop
  2576     // fprem
  2577     emit_opcode( cbuf, 0xD9 );
  2578     emit_opcode( cbuf, 0xF8 );
  2579     // wait
  2580     emit_opcode( cbuf, 0x9b );
  2581     // fnstsw ax
  2582     emit_opcode( cbuf, 0xDF );
  2583     emit_opcode( cbuf, 0xE0 );
  2584     // sahf
  2585     emit_opcode( cbuf, 0x9E );
  2586     // jp  ::loop
  2587     emit_opcode( cbuf, 0x0F );
  2588     emit_opcode( cbuf, 0x8A );
  2589     emit_opcode( cbuf, 0xF4 );
  2590     emit_opcode( cbuf, 0xFF );
  2591     emit_opcode( cbuf, 0xFF );
  2592     emit_opcode( cbuf, 0xFF );
  2593   %}
  2595   enc_class fpu_flags() %{
  2596     // fnstsw_ax
  2597     emit_opcode( cbuf, 0xDF);
  2598     emit_opcode( cbuf, 0xE0);
  2599     // test ax,0x0400
  2600     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2601     emit_opcode( cbuf, 0xA9 );
  2602     emit_d16   ( cbuf, 0x0400 );
  2603     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2604     // // test rax,0x0400
  2605     // emit_opcode( cbuf, 0xA9 );
  2606     // emit_d32   ( cbuf, 0x00000400 );
  2607     //
  2608     // jz exit (no unordered comparison)
  2609     emit_opcode( cbuf, 0x74 );
  2610     emit_d8    ( cbuf, 0x02 );
  2611     // mov ah,1 - treat as LT case (set carry flag)
  2612     emit_opcode( cbuf, 0xB4 );
  2613     emit_d8    ( cbuf, 0x01 );
  2614     // sahf
  2615     emit_opcode( cbuf, 0x9E);
  2616   %}
  2618   enc_class cmpF_P6_fixup() %{
  2619     // Fixup the integer flags in case comparison involved a NaN
  2620     //
  2621     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2622     emit_opcode( cbuf, 0x7B );
  2623     emit_d8    ( cbuf, 0x03 );
  2624     // MOV AH,1 - treat as LT case (set carry flag)
  2625     emit_opcode( cbuf, 0xB4 );
  2626     emit_d8    ( cbuf, 0x01 );
  2627     // SAHF
  2628     emit_opcode( cbuf, 0x9E);
  2629     // NOP     // target for branch to avoid branch to branch
  2630     emit_opcode( cbuf, 0x90);
  2631   %}
  2633 //     fnstsw_ax();
  2634 //     sahf();
  2635 //     movl(dst, nan_result);
  2636 //     jcc(Assembler::parity, exit);
  2637 //     movl(dst, less_result);
  2638 //     jcc(Assembler::below, exit);
  2639 //     movl(dst, equal_result);
  2640 //     jcc(Assembler::equal, exit);
  2641 //     movl(dst, greater_result);
  2643 // less_result     =  1;
  2644 // greater_result  = -1;
  2645 // equal_result    = 0;
  2646 // nan_result      = -1;
  2648   enc_class CmpF_Result(rRegI dst) %{
  2649     // fnstsw_ax();
  2650     emit_opcode( cbuf, 0xDF);
  2651     emit_opcode( cbuf, 0xE0);
  2652     // sahf
  2653     emit_opcode( cbuf, 0x9E);
  2654     // movl(dst, nan_result);
  2655     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2656     emit_d32( cbuf, -1 );
  2657     // jcc(Assembler::parity, exit);
  2658     emit_opcode( cbuf, 0x7A );
  2659     emit_d8    ( cbuf, 0x13 );
  2660     // movl(dst, less_result);
  2661     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2662     emit_d32( cbuf, -1 );
  2663     // jcc(Assembler::below, exit);
  2664     emit_opcode( cbuf, 0x72 );
  2665     emit_d8    ( cbuf, 0x0C );
  2666     // movl(dst, equal_result);
  2667     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2668     emit_d32( cbuf, 0 );
  2669     // jcc(Assembler::equal, exit);
  2670     emit_opcode( cbuf, 0x74 );
  2671     emit_d8    ( cbuf, 0x05 );
  2672     // movl(dst, greater_result);
  2673     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2674     emit_d32( cbuf, 1 );
  2675   %}
  2678   // Compare the longs and set flags
  2679   // BROKEN!  Do Not use as-is
  2680   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2681     // CMP    $src1.hi,$src2.hi
  2682     emit_opcode( cbuf, 0x3B );
  2683     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2684     // JNE,s  done
  2685     emit_opcode(cbuf,0x75);
  2686     emit_d8(cbuf, 2 );
  2687     // CMP    $src1.lo,$src2.lo
  2688     emit_opcode( cbuf, 0x3B );
  2689     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2690 // done:
  2691   %}
  2693   enc_class convert_int_long( regL dst, rRegI src ) %{
  2694     // mov $dst.lo,$src
  2695     int dst_encoding = $dst$$reg;
  2696     int src_encoding = $src$$reg;
  2697     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2698     // mov $dst.hi,$src
  2699     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2700     // sar $dst.hi,31
  2701     emit_opcode( cbuf, 0xC1 );
  2702     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2703     emit_d8(cbuf, 0x1F );
  2704   %}
  2706   enc_class convert_long_double( eRegL src ) %{
  2707     // push $src.hi
  2708     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2709     // push $src.lo
  2710     emit_opcode(cbuf, 0x50+$src$$reg  );
  2711     // fild 64-bits at [SP]
  2712     emit_opcode(cbuf,0xdf);
  2713     emit_d8(cbuf, 0x6C);
  2714     emit_d8(cbuf, 0x24);
  2715     emit_d8(cbuf, 0x00);
  2716     // pop stack
  2717     emit_opcode(cbuf, 0x83); // add  SP, #8
  2718     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2719     emit_d8(cbuf, 0x8);
  2720   %}
  2722   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2723     // IMUL   EDX:EAX,$src1
  2724     emit_opcode( cbuf, 0xF7 );
  2725     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2726     // SAR    EDX,$cnt-32
  2727     int shift_count = ((int)$cnt$$constant) - 32;
  2728     if (shift_count > 0) {
  2729       emit_opcode(cbuf, 0xC1);
  2730       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2731       emit_d8(cbuf, shift_count);
  2733   %}
  2735   // this version doesn't have add sp, 8
  2736   enc_class convert_long_double2( eRegL src ) %{
  2737     // push $src.hi
  2738     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2739     // push $src.lo
  2740     emit_opcode(cbuf, 0x50+$src$$reg  );
  2741     // fild 64-bits at [SP]
  2742     emit_opcode(cbuf,0xdf);
  2743     emit_d8(cbuf, 0x6C);
  2744     emit_d8(cbuf, 0x24);
  2745     emit_d8(cbuf, 0x00);
  2746   %}
  2748   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2749     // Basic idea: long = (long)int * (long)int
  2750     // IMUL EDX:EAX, src
  2751     emit_opcode( cbuf, 0xF7 );
  2752     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2753   %}
  2755   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2756     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2757     // MUL EDX:EAX, src
  2758     emit_opcode( cbuf, 0xF7 );
  2759     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2760   %}
  2762   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2763     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2764     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2765     // MOV    $tmp,$src.lo
  2766     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2767     // IMUL   $tmp,EDX
  2768     emit_opcode( cbuf, 0x0F );
  2769     emit_opcode( cbuf, 0xAF );
  2770     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2771     // MOV    EDX,$src.hi
  2772     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2773     // IMUL   EDX,EAX
  2774     emit_opcode( cbuf, 0x0F );
  2775     emit_opcode( cbuf, 0xAF );
  2776     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2777     // ADD    $tmp,EDX
  2778     emit_opcode( cbuf, 0x03 );
  2779     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2780     // MUL   EDX:EAX,$src.lo
  2781     emit_opcode( cbuf, 0xF7 );
  2782     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2783     // ADD    EDX,ESI
  2784     emit_opcode( cbuf, 0x03 );
  2785     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2786   %}
  2788   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2789     // Basic idea: lo(result) = lo(src * y_lo)
  2790     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2791     // IMUL   $tmp,EDX,$src
  2792     emit_opcode( cbuf, 0x6B );
  2793     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2794     emit_d8( cbuf, (int)$src$$constant );
  2795     // MOV    EDX,$src
  2796     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2797     emit_d32( cbuf, (int)$src$$constant );
  2798     // MUL   EDX:EAX,EDX
  2799     emit_opcode( cbuf, 0xF7 );
  2800     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2801     // ADD    EDX,ESI
  2802     emit_opcode( cbuf, 0x03 );
  2803     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2804   %}
  2806   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2807     // PUSH src1.hi
  2808     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2809     // PUSH src1.lo
  2810     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2811     // PUSH src2.hi
  2812     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2813     // PUSH src2.lo
  2814     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2815     // CALL directly to the runtime
  2816     cbuf.set_insts_mark();
  2817     emit_opcode(cbuf,0xE8);       // Call into runtime
  2818     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2819     // Restore stack
  2820     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2821     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2822     emit_d8(cbuf, 4*4);
  2823   %}
  2825   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2826     // PUSH src1.hi
  2827     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2828     // PUSH src1.lo
  2829     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2830     // PUSH src2.hi
  2831     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2832     // PUSH src2.lo
  2833     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2834     // CALL directly to the runtime
  2835     cbuf.set_insts_mark();
  2836     emit_opcode(cbuf,0xE8);       // Call into runtime
  2837     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2838     // Restore stack
  2839     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2840     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2841     emit_d8(cbuf, 4*4);
  2842   %}
  2844   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2845     // MOV   $tmp,$src.lo
  2846     emit_opcode(cbuf, 0x8B);
  2847     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2848     // OR    $tmp,$src.hi
  2849     emit_opcode(cbuf, 0x0B);
  2850     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2851   %}
  2853   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2854     // CMP    $src1.lo,$src2.lo
  2855     emit_opcode( cbuf, 0x3B );
  2856     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2857     // JNE,s  skip
  2858     emit_cc(cbuf, 0x70, 0x5);
  2859     emit_d8(cbuf,2);
  2860     // CMP    $src1.hi,$src2.hi
  2861     emit_opcode( cbuf, 0x3B );
  2862     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2863   %}
  2865   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2866     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2867     emit_opcode( cbuf, 0x3B );
  2868     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2869     // MOV    $tmp,$src1.hi
  2870     emit_opcode( cbuf, 0x8B );
  2871     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2872     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2873     emit_opcode( cbuf, 0x1B );
  2874     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2875   %}
  2877   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2878     // XOR    $tmp,$tmp
  2879     emit_opcode(cbuf,0x33);  // XOR
  2880     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2881     // CMP    $tmp,$src.lo
  2882     emit_opcode( cbuf, 0x3B );
  2883     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2884     // SBB    $tmp,$src.hi
  2885     emit_opcode( cbuf, 0x1B );
  2886     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2887   %}
  2889  // Sniff, sniff... smells like Gnu Superoptimizer
  2890   enc_class neg_long( eRegL dst ) %{
  2891     emit_opcode(cbuf,0xF7);    // NEG hi
  2892     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2893     emit_opcode(cbuf,0xF7);    // NEG lo
  2894     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2895     emit_opcode(cbuf,0x83);    // SBB hi,0
  2896     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2897     emit_d8    (cbuf,0 );
  2898   %}
  2901   // Because the transitions from emitted code to the runtime
  2902   // monitorenter/exit helper stubs are so slow it's critical that
  2903   // we inline both the stack-locking fast-path and the inflated fast path.
  2904   //
  2905   // See also: cmpFastLock and cmpFastUnlock.
  2906   //
  2907   // What follows is a specialized inline transliteration of the code
  2908   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2909   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2910   // at startup-time.  These methods would accept arguments as
  2911   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2912   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2913   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2914   // In practice, however, the # of lock sites is bounded and is usually small.
  2915   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2916   // if the processor uses simple bimodal branch predictors keyed by EIP
  2917   // Since the helper routines would be called from multiple synchronization
  2918   // sites.
  2919   //
  2920   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2921   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2922   // to those specialized methods.  That'd give us a mostly platform-independent
  2923   // implementation that the JITs could optimize and inline at their pleasure.
  2924   // Done correctly, the only time we'd need to cross to native could would be
  2925   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2926   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2927   // (b) explicit barriers or fence operations.
  2928   //
  2929   // TODO:
  2930   //
  2931   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2932   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2933   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2934   //    the lock operators would typically be faster than reifying Self.
  2935   //
  2936   // *  Ideally I'd define the primitives as:
  2937   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2938   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2939   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2940   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2941   //    Furthermore the register assignments are overconstrained, possibly resulting in
  2942   //    sub-optimal code near the synchronization site.
  2943   //
  2944   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2945   //    Alternately, use a better sp-proximity test.
  2946   //
  2947   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2948   //    Either one is sufficient to uniquely identify a thread.
  2949   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2950   //
  2951   // *  Intrinsify notify() and notifyAll() for the common cases where the
  2952   //    object is locked by the calling thread but the waitlist is empty.
  2953   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2954   //
  2955   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2956   //    But beware of excessive branch density on AMD Opterons.
  2957   //
  2958   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2959   //    or failure of the fast-path.  If the fast-path fails then we pass
  2960   //    control to the slow-path, typically in C.  In Fast_Lock and
  2961   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2962   //    will emit a conditional branch immediately after the node.
  2963   //    So we have branches to branches and lots of ICC.ZF games.
  2964   //    Instead, it might be better to have C2 pass a "FailureLabel"
  2965   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2966   //    will drop through the node.  ICC.ZF is undefined at exit.
  2967   //    In the case of failure, the node will branch directly to the
  2968   //    FailureLabel
  2971   // obj: object to lock
  2972   // box: on-stack box address (displaced header location) - KILLED
  2973   // rax,: tmp -- KILLED
  2974   // scr: tmp -- KILLED
  2975   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  2977     Register objReg = as_Register($obj$$reg);
  2978     Register boxReg = as_Register($box$$reg);
  2979     Register tmpReg = as_Register($tmp$$reg);
  2980     Register scrReg = as_Register($scr$$reg);
  2982     // Ensure the register assignents are disjoint
  2983     guarantee (objReg != boxReg, "") ;
  2984     guarantee (objReg != tmpReg, "") ;
  2985     guarantee (objReg != scrReg, "") ;
  2986     guarantee (boxReg != tmpReg, "") ;
  2987     guarantee (boxReg != scrReg, "") ;
  2988     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  2990     MacroAssembler masm(&cbuf);
  2992     if (_counters != NULL) {
  2993       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  2995     if (EmitSync & 1) {
  2996         // set box->dhw = unused_mark (3)
  2997         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  2998         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  2999         masm.cmpptr (rsp, (int32_t)0) ;                        
  3000     } else 
  3001     if (EmitSync & 2) { 
  3002         Label DONE_LABEL ;           
  3003         if (UseBiasedLocking) {
  3004            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3005            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3008         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3009         masm.orptr (tmpReg, 0x1);
  3010         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3011         if (os::is_MP()) { masm.lock();  }
  3012         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3013         masm.jcc(Assembler::equal, DONE_LABEL);
  3014         // Recursive locking
  3015         masm.subptr(tmpReg, rsp);
  3016         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3017         masm.movptr(Address(boxReg, 0), tmpReg);
  3018         masm.bind(DONE_LABEL) ; 
  3019     } else {  
  3020       // Possible cases that we'll encounter in fast_lock 
  3021       // ------------------------------------------------
  3022       // * Inflated
  3023       //    -- unlocked
  3024       //    -- Locked
  3025       //       = by self
  3026       //       = by other
  3027       // * biased
  3028       //    -- by Self
  3029       //    -- by other
  3030       // * neutral
  3031       // * stack-locked
  3032       //    -- by self
  3033       //       = sp-proximity test hits
  3034       //       = sp-proximity test generates false-negative
  3035       //    -- by other
  3036       //
  3038       Label IsInflated, DONE_LABEL, PopDone ;
  3040       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3041       // order to reduce the number of conditional branches in the most common cases.
  3042       // Beware -- there's a subtle invariant that fetch of the markword
  3043       // at [FETCH], below, will never observe a biased encoding (*101b).
  3044       // If this invariant is not held we risk exclusion (safety) failure.
  3045       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3046         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3049       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3050       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3051       masm.jccb  (Assembler::notZero, IsInflated) ;
  3053       // Attempt stack-locking ...
  3054       masm.orptr (tmpReg, 0x1);
  3055       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3056       if (os::is_MP()) { masm.lock();  }
  3057       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3058       if (_counters != NULL) {
  3059         masm.cond_inc32(Assembler::equal,
  3060                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3062       masm.jccb (Assembler::equal, DONE_LABEL);
  3064       // Recursive locking
  3065       masm.subptr(tmpReg, rsp);
  3066       masm.andptr(tmpReg, 0xFFFFF003 );
  3067       masm.movptr(Address(boxReg, 0), tmpReg);
  3068       if (_counters != NULL) {
  3069         masm.cond_inc32(Assembler::equal,
  3070                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3072       masm.jmp  (DONE_LABEL) ;
  3074       masm.bind (IsInflated) ;
  3076       // The object is inflated.
  3077       //
  3078       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3079       //   Use markOopDesc::monitor_value instead of "2".
  3080       //   use markOop::unused_mark() instead of "3".
  3081       // The tmpReg value is an objectMonitor reference ORed with
  3082       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3083       // objectmonitor pointer by masking off the "2" bit or we can just
  3084       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3085       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3086       //
  3087       // I use the latter as it avoids AGI stalls.
  3088       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3089       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3090       //
  3091       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3093       // boxReg refers to the on-stack BasicLock in the current frame.
  3094       // We'd like to write:
  3095       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3096       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3097       // additional latency as we have another ST in the store buffer that must drain.
  3099       if (EmitSync & 8192) { 
  3100          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3101          masm.get_thread (scrReg) ; 
  3102          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3103          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3104          if (os::is_MP()) { masm.lock(); } 
  3105          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3106       } else 
  3107       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3108          masm.movptr(scrReg, boxReg) ; 
  3109          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3111          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3112          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3113             // prefetchw [eax + Offset(_owner)-2]
  3114             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3117          if ((EmitSync & 64) == 0) {
  3118            // Optimistic form: consider XORL tmpReg,tmpReg
  3119            masm.movptr(tmpReg, NULL_WORD) ; 
  3120          } else { 
  3121            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3122            // Test-And-CAS instead of CAS
  3123            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3124            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3125            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3128          // Appears unlocked - try to swing _owner from null to non-null.
  3129          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3130          // to CAS the register containing Self into m->Owner.
  3131          // But we don't have enough registers, so instead we can either try to CAS
  3132          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3133          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3134          // (rsp or the address of the box) into  m->owner is harmless.
  3135          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3136          if (os::is_MP()) { masm.lock();  }
  3137          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3138          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3139          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3140          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3141          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3142          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3144          // If the CAS fails we can either retry or pass control to the slow-path.  
  3145          // We use the latter tactic.  
  3146          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3147          // If the CAS was successful ...
  3148          //   Self has acquired the lock
  3149          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3150          // Intentional fall-through into DONE_LABEL ...
  3151       } else {
  3152          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3153          masm.movptr(boxReg, tmpReg) ; 
  3155          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3156          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3157             // prefetchw [eax + Offset(_owner)-2]
  3158             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3161          if ((EmitSync & 64) == 0) {
  3162            // Optimistic form
  3163            masm.xorptr  (tmpReg, tmpReg) ; 
  3164          } else { 
  3165            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3166            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3167            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3168            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3171          // Appears unlocked - try to swing _owner from null to non-null.
  3172          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3173          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3174          masm.get_thread (scrReg) ;
  3175          if (os::is_MP()) { masm.lock(); }
  3176          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3178          // If the CAS fails we can either retry or pass control to the slow-path.
  3179          // We use the latter tactic.
  3180          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3181          // If the CAS was successful ...
  3182          //   Self has acquired the lock
  3183          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3184          // Intentional fall-through into DONE_LABEL ...
  3187       // DONE_LABEL is a hot target - we'd really like to place it at the
  3188       // start of cache line by padding with NOPs.
  3189       // See the AMD and Intel software optimization manuals for the
  3190       // most efficient "long" NOP encodings.
  3191       // Unfortunately none of our alignment mechanisms suffice.
  3192       masm.bind(DONE_LABEL);
  3194       // Avoid branch-to-branch on AMD processors
  3195       // This appears to be superstition.
  3196       if (EmitSync & 32) masm.nop() ;
  3199       // At DONE_LABEL the icc ZFlag is set as follows ...
  3200       // Fast_Unlock uses the same protocol.
  3201       // ZFlag == 1 -> Success
  3202       // ZFlag == 0 -> Failure - force control through the slow-path
  3204   %}
  3206   // obj: object to unlock
  3207   // box: box address (displaced header location), killed.  Must be EAX.
  3208   // rbx,: killed tmp; cannot be obj nor box.
  3209   //
  3210   // Some commentary on balanced locking:
  3211   //
  3212   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3213   // Methods that don't have provably balanced locking are forced to run in the
  3214   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3215   // The interpreter provides two properties:
  3216   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3217   //      objects acquired the current activation (frame).  Recall that the
  3218   //      interpreter maintains an on-stack list of locks currently held by
  3219   //      a frame.
  3220   // I2:  If a method attempts to unlock an object that is not held by the
  3221   //      the frame the interpreter throws IMSX.
  3222   //
  3223   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3224   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3225   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3226   // is still locked by A().
  3227   //
  3228   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3229   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3230   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3231   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3233   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3235     Register objReg = as_Register($obj$$reg);
  3236     Register boxReg = as_Register($box$$reg);
  3237     Register tmpReg = as_Register($tmp$$reg);
  3239     guarantee (objReg != boxReg, "") ;
  3240     guarantee (objReg != tmpReg, "") ;
  3241     guarantee (boxReg != tmpReg, "") ;
  3242     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3243     MacroAssembler masm(&cbuf);
  3245     if (EmitSync & 4) {
  3246       // Disable - inhibit all inlining.  Force control through the slow-path
  3247       masm.cmpptr (rsp, 0) ; 
  3248     } else 
  3249     if (EmitSync & 8) {
  3250       Label DONE_LABEL ;
  3251       if (UseBiasedLocking) {
  3252          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3254       // classic stack-locking code ...
  3255       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3256       masm.testptr(tmpReg, tmpReg) ;
  3257       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3258       if (os::is_MP()) { masm.lock(); }
  3259       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3260       masm.bind(DONE_LABEL);
  3261     } else {
  3262       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3264       // Critically, the biased locking test must have precedence over
  3265       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3266       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3267          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3270       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3271       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3272       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3274       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3275       masm.jccb  (Assembler::zero, Stacked) ;
  3277       masm.bind  (Inflated) ;
  3278       // It's inflated.
  3279       // Despite our balanced locking property we still check that m->_owner == Self
  3280       // as java routines or native JNI code called by this thread might
  3281       // have released the lock.
  3282       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3283       // state in _succ so we can avoid fetching EntryList|cxq.
  3284       //
  3285       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3286       // such as recursive enter and exit -- but we have to be wary of
  3287       // I$ bloat, T$ effects and BP$ effects.
  3288       //
  3289       // If there's no contention try a 1-0 exit.  That is, exit without
  3290       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3291       // we detect and recover from the race that the 1-0 exit admits.
  3292       //
  3293       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3294       // before it STs null into _owner, releasing the lock.  Updates
  3295       // to data protected by the critical section must be visible before
  3296       // we drop the lock (and thus before any other thread could acquire
  3297       // the lock and observe the fields protected by the lock).
  3298       // IA32's memory-model is SPO, so STs are ordered with respect to
  3299       // each other and there's no need for an explicit barrier (fence).
  3300       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3302       masm.get_thread (boxReg) ;
  3303       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3304         // prefetchw [ebx + Offset(_owner)-2]
  3305         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3308       // Note that we could employ various encoding schemes to reduce
  3309       // the number of loads below (currently 4) to just 2 or 3.
  3310       // Refer to the comments in synchronizer.cpp.
  3311       // In practice the chain of fetches doesn't seem to impact performance, however.
  3312       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3313          // Attempt to reduce branch density - AMD's branch predictor.
  3314          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3315          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3316          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3317          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3318          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3319          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3320          masm.jmpb  (DONE_LABEL) ; 
  3321       } else { 
  3322          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3323          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3324          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3325          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3326          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3327          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3328          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3329          masm.jmpb  (DONE_LABEL) ; 
  3332       // The Following code fragment (EmitSync & 65536) improves the performance of
  3333       // contended applications and contended synchronization microbenchmarks.
  3334       // Unfortunately the emission of the code - even though not executed - causes regressions
  3335       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3336       // with an equal number of never-executed NOPs results in the same regression.
  3337       // We leave it off by default.
  3339       if ((EmitSync & 65536) != 0) {
  3340          Label LSuccess, LGoSlowPath ;
  3342          masm.bind  (CheckSucc) ;
  3344          // Optional pre-test ... it's safe to elide this
  3345          if ((EmitSync & 16) == 0) { 
  3346             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3347             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3350          // We have a classic Dekker-style idiom:
  3351          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3352          // There are a number of ways to implement the barrier:
  3353          // (1) lock:andl &m->_owner, 0
  3354          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3355          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3356          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3357          // (2) If supported, an explicit MFENCE is appealing.
  3358          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3359          //     particularly if the write-buffer is full as might be the case if
  3360          //     if stores closely precede the fence or fence-equivalent instruction.
  3361          //     In more modern implementations MFENCE appears faster, however.
  3362          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3363          //     The $lines underlying the top-of-stack should be in M-state.
  3364          //     The locked add instruction is serializing, of course.
  3365          // (4) Use xchg, which is serializing
  3366          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3367          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3368          //     The integer condition codes will tell us if succ was 0.
  3369          //     Since _succ and _owner should reside in the same $line and
  3370          //     we just stored into _owner, it's likely that the $line
  3371          //     remains in M-state for the lock:orl.
  3372          //
  3373          // We currently use (3), although it's likely that switching to (2)
  3374          // is correct for the future.
  3376          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3377          if (os::is_MP()) { 
  3378             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3379               masm.mfence();
  3380             } else { 
  3381               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3384          // Ratify _succ remains non-null
  3385          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3386          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3388          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3389          if (os::is_MP()) { masm.lock(); }
  3390          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3391          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3392          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3393          // Now install Self over rsp.  This is safe as we're transitioning from
  3394          // non-null to non=null
  3395          masm.get_thread (boxReg) ;
  3396          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3397          // Intentional fall-through into LGoSlowPath ...
  3399          masm.bind  (LGoSlowPath) ; 
  3400          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3401          masm.jmpb  (DONE_LABEL) ; 
  3403          masm.bind  (LSuccess) ; 
  3404          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3405          masm.jmpb  (DONE_LABEL) ; 
  3408       masm.bind (Stacked) ;
  3409       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3410       // It must be stack-locked.
  3411       // Try to reset the header to displaced header.
  3412       // The "box" value on the stack is stable, so we can reload
  3413       // and be assured we observe the same value as above.
  3414       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3415       if (os::is_MP()) {   masm.lock();    }
  3416       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3417       // Intention fall-thru into DONE_LABEL
  3420       // DONE_LABEL is a hot target - we'd really like to place it at the
  3421       // start of cache line by padding with NOPs.
  3422       // See the AMD and Intel software optimization manuals for the
  3423       // most efficient "long" NOP encodings.
  3424       // Unfortunately none of our alignment mechanisms suffice.
  3425       if ((EmitSync & 65536) == 0) {
  3426          masm.bind (CheckSucc) ;
  3428       masm.bind(DONE_LABEL);
  3430       // Avoid branch to branch on AMD processors
  3431       if (EmitSync & 32768) { masm.nop() ; }
  3433   %}
  3436   enc_class enc_pop_rdx() %{
  3437     emit_opcode(cbuf,0x5A);
  3438   %}
  3440   enc_class enc_rethrow() %{
  3441     cbuf.set_insts_mark();
  3442     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3443     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3444                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3445   %}
  3448   // Convert a double to an int.  Java semantics require we do complex
  3449   // manglelations in the corner cases.  So we set the rounding mode to
  3450   // 'zero', store the darned double down as an int, and reset the
  3451   // rounding mode to 'nearest'.  The hardware throws an exception which
  3452   // patches up the correct value directly to the stack.
  3453   enc_class DPR2I_encoding( regDPR src ) %{
  3454     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3455     // exceptions here, so that a NAN or other corner-case value will
  3456     // thrown an exception (but normal values get converted at full speed).
  3457     // However, I2C adapters and other float-stack manglers leave pending
  3458     // invalid-op exceptions hanging.  We would have to clear them before
  3459     // enabling them and that is more expensive than just testing for the
  3460     // invalid value Intel stores down in the corner cases.
  3461     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3462     emit_opcode(cbuf,0x2D);
  3463     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3464     // Allocate a word
  3465     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3466     emit_opcode(cbuf,0xEC);
  3467     emit_d8(cbuf,0x04);
  3468     // Encoding assumes a double has been pushed into FPR0.
  3469     // Store down the double as an int, popping the FPU stack
  3470     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3471     emit_opcode(cbuf,0x1C);
  3472     emit_d8(cbuf,0x24);
  3473     // Restore the rounding mode; mask the exception
  3474     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3475     emit_opcode(cbuf,0x2D);
  3476     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3477         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3478         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3480     // Load the converted int; adjust CPU stack
  3481     emit_opcode(cbuf,0x58);       // POP EAX
  3482     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3483     emit_d32   (cbuf,0x80000000); //         0x80000000
  3484     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3485     emit_d8    (cbuf,0x07);       // Size of slow_call
  3486     // Push src onto stack slow-path
  3487     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3488     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3489     // CALL directly to the runtime
  3490     cbuf.set_insts_mark();
  3491     emit_opcode(cbuf,0xE8);       // Call into runtime
  3492     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3493     // Carry on here...
  3494   %}
  3496   enc_class DPR2L_encoding( regDPR src ) %{
  3497     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3498     emit_opcode(cbuf,0x2D);
  3499     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3500     // Allocate a word
  3501     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3502     emit_opcode(cbuf,0xEC);
  3503     emit_d8(cbuf,0x08);
  3504     // Encoding assumes a double has been pushed into FPR0.
  3505     // Store down the double as a long, popping the FPU stack
  3506     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3507     emit_opcode(cbuf,0x3C);
  3508     emit_d8(cbuf,0x24);
  3509     // Restore the rounding mode; mask the exception
  3510     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3511     emit_opcode(cbuf,0x2D);
  3512     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3513         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3514         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3516     // Load the converted int; adjust CPU stack
  3517     emit_opcode(cbuf,0x58);       // POP EAX
  3518     emit_opcode(cbuf,0x5A);       // POP EDX
  3519     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3520     emit_d8    (cbuf,0xFA);       // rdx
  3521     emit_d32   (cbuf,0x80000000); //         0x80000000
  3522     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3523     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3524     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3525     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3526     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3527     emit_d8    (cbuf,0x07);       // Size of slow_call
  3528     // Push src onto stack slow-path
  3529     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3530     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3531     // CALL directly to the runtime
  3532     cbuf.set_insts_mark();
  3533     emit_opcode(cbuf,0xE8);       // Call into runtime
  3534     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3535     // Carry on here...
  3536   %}
  3538   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3539     // Operand was loaded from memory into fp ST (stack top)
  3540     // FMUL   ST,$src  /* D8 C8+i */
  3541     emit_opcode(cbuf, 0xD8);
  3542     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3543   %}
  3545   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3546     // FADDP  ST,src2  /* D8 C0+i */
  3547     emit_opcode(cbuf, 0xD8);
  3548     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3549     //could use FADDP  src2,fpST  /* DE C0+i */
  3550   %}
  3552   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3553     // FADDP  src2,ST  /* DE C0+i */
  3554     emit_opcode(cbuf, 0xDE);
  3555     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3556   %}
  3558   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3559     // Operand has been loaded into fp ST (stack top)
  3560       // FSUB   ST,$src1
  3561       emit_opcode(cbuf, 0xD8);
  3562       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3564       // FDIV
  3565       emit_opcode(cbuf, 0xD8);
  3566       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3567   %}
  3569   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3570     // Operand was loaded from memory into fp ST (stack top)
  3571     // FADD   ST,$src  /* D8 C0+i */
  3572     emit_opcode(cbuf, 0xD8);
  3573     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3575     // FMUL  ST,src2  /* D8 C*+i */
  3576     emit_opcode(cbuf, 0xD8);
  3577     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3578   %}
  3581   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3582     // Operand was loaded from memory into fp ST (stack top)
  3583     // FADD   ST,$src  /* D8 C0+i */
  3584     emit_opcode(cbuf, 0xD8);
  3585     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3587     // FMULP  src2,ST  /* DE C8+i */
  3588     emit_opcode(cbuf, 0xDE);
  3589     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3590   %}
  3592   // Atomically load the volatile long
  3593   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3594     emit_opcode(cbuf,0xDF);
  3595     int rm_byte_opcode = 0x05;
  3596     int base     = $mem$$base;
  3597     int index    = $mem$$index;
  3598     int scale    = $mem$$scale;
  3599     int displace = $mem$$disp;
  3600     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3601     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3602     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3603   %}
  3605   // Volatile Store Long.  Must be atomic, so move it into
  3606   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3607   // target address before the store (for null-ptr checks)
  3608   // so the memory operand is used twice in the encoding.
  3609   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3610     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3611     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3612     emit_opcode(cbuf,0xDF);
  3613     int rm_byte_opcode = 0x07;
  3614     int base     = $mem$$base;
  3615     int index    = $mem$$index;
  3616     int scale    = $mem$$scale;
  3617     int displace = $mem$$disp;
  3618     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3619     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3620   %}
  3622   // Safepoint Poll.  This polls the safepoint page, and causes an
  3623   // exception if it is not readable. Unfortunately, it kills the condition code
  3624   // in the process
  3625   // We current use TESTL [spp],EDI
  3626   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3628   enc_class Safepoint_Poll() %{
  3629     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3630     emit_opcode(cbuf,0x85);
  3631     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3632     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3633   %}
  3634 %}
  3637 //----------FRAME--------------------------------------------------------------
  3638 // Definition of frame structure and management information.
  3639 //
  3640 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3641 //                             |   (to get allocators register number
  3642 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3643 //  r   CALLER     |        |
  3644 //  o     |        +--------+      pad to even-align allocators stack-slot
  3645 //  w     V        |  pad0  |        numbers; owned by CALLER
  3646 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3647 //  h     ^        |   in   |  5
  3648 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3649 //  |     |        |        |  3
  3650 //  |     |        +--------+
  3651 //  V     |        | old out|      Empty on Intel, window on Sparc
  3652 //        |    old |preserve|      Must be even aligned.
  3653 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3654 //        |        |   in   |  3   area for Intel ret address
  3655 //     Owned by    |preserve|      Empty on Sparc.
  3656 //       SELF      +--------+
  3657 //        |        |  pad2  |  2   pad to align old SP
  3658 //        |        +--------+  1
  3659 //        |        | locks  |  0
  3660 //        |        +--------+----> OptoReg::stack0(), even aligned
  3661 //        |        |  pad1  | 11   pad to align new SP
  3662 //        |        +--------+
  3663 //        |        |        | 10
  3664 //        |        | spills |  9   spills
  3665 //        V        |        |  8   (pad0 slot for callee)
  3666 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3667 //        ^        |  out   |  7
  3668 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3669 //     Owned by    +--------+
  3670 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3671 //        |    new |preserve|      Must be even-aligned.
  3672 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3673 //        |        |        |
  3674 //
  3675 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3676 //         known from SELF's arguments and the Java calling convention.
  3677 //         Region 6-7 is determined per call site.
  3678 // Note 2: If the calling convention leaves holes in the incoming argument
  3679 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3680 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3681 //         incoming area, as the Java calling convention is completely under
  3682 //         the control of the AD file.  Doubles can be sorted and packed to
  3683 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3684 //         varargs C calling conventions.
  3685 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3686 //         even aligned with pad0 as needed.
  3687 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3688 //         region 6-11 is even aligned; it may be padded out more so that
  3689 //         the region from SP to FP meets the minimum stack alignment.
  3691 frame %{
  3692   // What direction does stack grow in (assumed to be same for C & Java)
  3693   stack_direction(TOWARDS_LOW);
  3695   // These three registers define part of the calling convention
  3696   // between compiled code and the interpreter.
  3697   inline_cache_reg(EAX);                // Inline Cache Register
  3698   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3700   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3701   cisc_spilling_operand_name(indOffset32);
  3703   // Number of stack slots consumed by locking an object
  3704   sync_stack_slots(1);
  3706   // Compiled code's Frame Pointer
  3707   frame_pointer(ESP);
  3708   // Interpreter stores its frame pointer in a register which is
  3709   // stored to the stack by I2CAdaptors.
  3710   // I2CAdaptors convert from interpreted java to compiled java.
  3711   interpreter_frame_pointer(EBP);
  3713   // Stack alignment requirement
  3714   // Alignment size in bytes (128-bit -> 16 bytes)
  3715   stack_alignment(StackAlignmentInBytes);
  3717   // Number of stack slots between incoming argument block and the start of
  3718   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3719   // EPILOG must remove this many slots.  Intel needs one slot for
  3720   // return address and one for rbp, (must save rbp)
  3721   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3723   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3724   // for calls to C.  Supports the var-args backing area for register parms.
  3725   varargs_C_out_slots_killed(0);
  3727   // The after-PROLOG location of the return address.  Location of
  3728   // return address specifies a type (REG or STACK) and a number
  3729   // representing the register number (i.e. - use a register name) or
  3730   // stack slot.
  3731   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3732   // Otherwise, it is above the locks and verification slot and alignment word
  3733   return_addr(STACK - 1 +
  3734               round_to((Compile::current()->in_preserve_stack_slots() +
  3735                         Compile::current()->fixed_slots()),
  3736                        stack_alignment_in_slots()));
  3738   // Body of function which returns an integer array locating
  3739   // arguments either in registers or in stack slots.  Passed an array
  3740   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3741   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3742   // arguments for a CALLEE.  Incoming stack arguments are
  3743   // automatically biased by the preserve_stack_slots field above.
  3744   calling_convention %{
  3745     // No difference between ingoing/outgoing just pass false
  3746     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3747   %}
  3750   // Body of function which returns an integer array locating
  3751   // arguments either in registers or in stack slots.  Passed an array
  3752   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3753   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3754   // arguments for a CALLEE.  Incoming stack arguments are
  3755   // automatically biased by the preserve_stack_slots field above.
  3756   c_calling_convention %{
  3757     // This is obviously always outgoing
  3758     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3759   %}
  3761   // Location of C & interpreter return values
  3762   c_return_value %{
  3763     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3764     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3765     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3767     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3768     // that C functions return float and double results in XMM0.
  3769     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3770       return OptoRegPair(XMM0b_num,XMM0_num);
  3771     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3772       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3774     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3775   %}
  3777   // Location of return values
  3778   return_value %{
  3779     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3780     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3781     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3782     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3783       return OptoRegPair(XMM0b_num,XMM0_num);
  3784     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3785       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3786     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3787   %}
  3789 %}
  3791 //----------ATTRIBUTES---------------------------------------------------------
  3792 //----------Operand Attributes-------------------------------------------------
  3793 op_attrib op_cost(0);        // Required cost attribute
  3795 //----------Instruction Attributes---------------------------------------------
  3796 ins_attrib ins_cost(100);       // Required cost attribute
  3797 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3798 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3799                                 // non-matching short branch variant of some
  3800                                                             // long branch?
  3801 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3802                                 // specifies the alignment that some part of the instruction (not
  3803                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3804                                 // function must be provided for the instruction
  3806 //----------OPERANDS-----------------------------------------------------------
  3807 // Operand definitions must precede instruction definitions for correct parsing
  3808 // in the ADLC because operands constitute user defined types which are used in
  3809 // instruction definitions.
  3811 //----------Simple Operands----------------------------------------------------
  3812 // Immediate Operands
  3813 // Integer Immediate
  3814 operand immI() %{
  3815   match(ConI);
  3817   op_cost(10);
  3818   format %{ %}
  3819   interface(CONST_INTER);
  3820 %}
  3822 // Constant for test vs zero
  3823 operand immI0() %{
  3824   predicate(n->get_int() == 0);
  3825   match(ConI);
  3827   op_cost(0);
  3828   format %{ %}
  3829   interface(CONST_INTER);
  3830 %}
  3832 // Constant for increment
  3833 operand immI1() %{
  3834   predicate(n->get_int() == 1);
  3835   match(ConI);
  3837   op_cost(0);
  3838   format %{ %}
  3839   interface(CONST_INTER);
  3840 %}
  3842 // Constant for decrement
  3843 operand immI_M1() %{
  3844   predicate(n->get_int() == -1);
  3845   match(ConI);
  3847   op_cost(0);
  3848   format %{ %}
  3849   interface(CONST_INTER);
  3850 %}
  3852 // Valid scale values for addressing modes
  3853 operand immI2() %{
  3854   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3855   match(ConI);
  3857   format %{ %}
  3858   interface(CONST_INTER);
  3859 %}
  3861 operand immI8() %{
  3862   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3863   match(ConI);
  3865   op_cost(5);
  3866   format %{ %}
  3867   interface(CONST_INTER);
  3868 %}
  3870 operand immI16() %{
  3871   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3872   match(ConI);
  3874   op_cost(10);
  3875   format %{ %}
  3876   interface(CONST_INTER);
  3877 %}
  3879 // Constant for long shifts
  3880 operand immI_32() %{
  3881   predicate( n->get_int() == 32 );
  3882   match(ConI);
  3884   op_cost(0);
  3885   format %{ %}
  3886   interface(CONST_INTER);
  3887 %}
  3889 operand immI_1_31() %{
  3890   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3891   match(ConI);
  3893   op_cost(0);
  3894   format %{ %}
  3895   interface(CONST_INTER);
  3896 %}
  3898 operand immI_32_63() %{
  3899   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3900   match(ConI);
  3901   op_cost(0);
  3903   format %{ %}
  3904   interface(CONST_INTER);
  3905 %}
  3907 operand immI_1() %{
  3908   predicate( n->get_int() == 1 );
  3909   match(ConI);
  3911   op_cost(0);
  3912   format %{ %}
  3913   interface(CONST_INTER);
  3914 %}
  3916 operand immI_2() %{
  3917   predicate( n->get_int() == 2 );
  3918   match(ConI);
  3920   op_cost(0);
  3921   format %{ %}
  3922   interface(CONST_INTER);
  3923 %}
  3925 operand immI_3() %{
  3926   predicate( n->get_int() == 3 );
  3927   match(ConI);
  3929   op_cost(0);
  3930   format %{ %}
  3931   interface(CONST_INTER);
  3932 %}
  3934 // Pointer Immediate
  3935 operand immP() %{
  3936   match(ConP);
  3938   op_cost(10);
  3939   format %{ %}
  3940   interface(CONST_INTER);
  3941 %}
  3943 // NULL Pointer Immediate
  3944 operand immP0() %{
  3945   predicate( n->get_ptr() == 0 );
  3946   match(ConP);
  3947   op_cost(0);
  3949   format %{ %}
  3950   interface(CONST_INTER);
  3951 %}
  3953 // Long Immediate
  3954 operand immL() %{
  3955   match(ConL);
  3957   op_cost(20);
  3958   format %{ %}
  3959   interface(CONST_INTER);
  3960 %}
  3962 // Long Immediate zero
  3963 operand immL0() %{
  3964   predicate( n->get_long() == 0L );
  3965   match(ConL);
  3966   op_cost(0);
  3968   format %{ %}
  3969   interface(CONST_INTER);
  3970 %}
  3972 // Long Immediate zero
  3973 operand immL_M1() %{
  3974   predicate( n->get_long() == -1L );
  3975   match(ConL);
  3976   op_cost(0);
  3978   format %{ %}
  3979   interface(CONST_INTER);
  3980 %}
  3982 // Long immediate from 0 to 127.
  3983 // Used for a shorter form of long mul by 10.
  3984 operand immL_127() %{
  3985   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3986   match(ConL);
  3987   op_cost(0);
  3989   format %{ %}
  3990   interface(CONST_INTER);
  3991 %}
  3993 // Long Immediate: low 32-bit mask
  3994 operand immL_32bits() %{
  3995   predicate(n->get_long() == 0xFFFFFFFFL);
  3996   match(ConL);
  3997   op_cost(0);
  3999   format %{ %}
  4000   interface(CONST_INTER);
  4001 %}
  4003 // Long Immediate: low 32-bit mask
  4004 operand immL32() %{
  4005   predicate(n->get_long() == (int)(n->get_long()));
  4006   match(ConL);
  4007   op_cost(20);
  4009   format %{ %}
  4010   interface(CONST_INTER);
  4011 %}
  4013 //Double Immediate zero
  4014 operand immDPR0() %{
  4015   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4016   // bug that generates code such that NaNs compare equal to 0.0
  4017   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4018   match(ConD);
  4020   op_cost(5);
  4021   format %{ %}
  4022   interface(CONST_INTER);
  4023 %}
  4025 // Double Immediate one
  4026 operand immDPR1() %{
  4027   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4028   match(ConD);
  4030   op_cost(5);
  4031   format %{ %}
  4032   interface(CONST_INTER);
  4033 %}
  4035 // Double Immediate
  4036 operand immDPR() %{
  4037   predicate(UseSSE<=1);
  4038   match(ConD);
  4040   op_cost(5);
  4041   format %{ %}
  4042   interface(CONST_INTER);
  4043 %}
  4045 operand immD() %{
  4046   predicate(UseSSE>=2);
  4047   match(ConD);
  4049   op_cost(5);
  4050   format %{ %}
  4051   interface(CONST_INTER);
  4052 %}
  4054 // Double Immediate zero
  4055 operand immD0() %{
  4056   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4057   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4058   // compare equal to -0.0.
  4059   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4060   match(ConD);
  4062   format %{ %}
  4063   interface(CONST_INTER);
  4064 %}
  4066 // Float Immediate zero
  4067 operand immFPR0() %{
  4068   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4069   match(ConF);
  4071   op_cost(5);
  4072   format %{ %}
  4073   interface(CONST_INTER);
  4074 %}
  4076 // Float Immediate one
  4077 operand immFPR1() %{
  4078   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4079   match(ConF);
  4081   op_cost(5);
  4082   format %{ %}
  4083   interface(CONST_INTER);
  4084 %}
  4086 // Float Immediate
  4087 operand immFPR() %{
  4088   predicate( UseSSE == 0 );
  4089   match(ConF);
  4091   op_cost(5);
  4092   format %{ %}
  4093   interface(CONST_INTER);
  4094 %}
  4096 // Float Immediate
  4097 operand immF() %{
  4098   predicate(UseSSE >= 1);
  4099   match(ConF);
  4101   op_cost(5);
  4102   format %{ %}
  4103   interface(CONST_INTER);
  4104 %}
  4106 // Float Immediate zero.  Zero and not -0.0
  4107 operand immF0() %{
  4108   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4109   match(ConF);
  4111   op_cost(5);
  4112   format %{ %}
  4113   interface(CONST_INTER);
  4114 %}
  4116 // Immediates for special shifts (sign extend)
  4118 // Constants for increment
  4119 operand immI_16() %{
  4120   predicate( n->get_int() == 16 );
  4121   match(ConI);
  4123   format %{ %}
  4124   interface(CONST_INTER);
  4125 %}
  4127 operand immI_24() %{
  4128   predicate( n->get_int() == 24 );
  4129   match(ConI);
  4131   format %{ %}
  4132   interface(CONST_INTER);
  4133 %}
  4135 // Constant for byte-wide masking
  4136 operand immI_255() %{
  4137   predicate( n->get_int() == 255 );
  4138   match(ConI);
  4140   format %{ %}
  4141   interface(CONST_INTER);
  4142 %}
  4144 // Constant for short-wide masking
  4145 operand immI_65535() %{
  4146   predicate(n->get_int() == 65535);
  4147   match(ConI);
  4149   format %{ %}
  4150   interface(CONST_INTER);
  4151 %}
  4153 // Register Operands
  4154 // Integer Register
  4155 operand rRegI() %{
  4156   constraint(ALLOC_IN_RC(int_reg));
  4157   match(RegI);
  4158   match(xRegI);
  4159   match(eAXRegI);
  4160   match(eBXRegI);
  4161   match(eCXRegI);
  4162   match(eDXRegI);
  4163   match(eDIRegI);
  4164   match(eSIRegI);
  4166   format %{ %}
  4167   interface(REG_INTER);
  4168 %}
  4170 // Subset of Integer Register
  4171 operand xRegI(rRegI reg) %{
  4172   constraint(ALLOC_IN_RC(int_x_reg));
  4173   match(reg);
  4174   match(eAXRegI);
  4175   match(eBXRegI);
  4176   match(eCXRegI);
  4177   match(eDXRegI);
  4179   format %{ %}
  4180   interface(REG_INTER);
  4181 %}
  4183 // Special Registers
  4184 operand eAXRegI(xRegI reg) %{
  4185   constraint(ALLOC_IN_RC(eax_reg));
  4186   match(reg);
  4187   match(rRegI);
  4189   format %{ "EAX" %}
  4190   interface(REG_INTER);
  4191 %}
  4193 // Special Registers
  4194 operand eBXRegI(xRegI reg) %{
  4195   constraint(ALLOC_IN_RC(ebx_reg));
  4196   match(reg);
  4197   match(rRegI);
  4199   format %{ "EBX" %}
  4200   interface(REG_INTER);
  4201 %}
  4203 operand eCXRegI(xRegI reg) %{
  4204   constraint(ALLOC_IN_RC(ecx_reg));
  4205   match(reg);
  4206   match(rRegI);
  4208   format %{ "ECX" %}
  4209   interface(REG_INTER);
  4210 %}
  4212 operand eDXRegI(xRegI reg) %{
  4213   constraint(ALLOC_IN_RC(edx_reg));
  4214   match(reg);
  4215   match(rRegI);
  4217   format %{ "EDX" %}
  4218   interface(REG_INTER);
  4219 %}
  4221 operand eDIRegI(xRegI reg) %{
  4222   constraint(ALLOC_IN_RC(edi_reg));
  4223   match(reg);
  4224   match(rRegI);
  4226   format %{ "EDI" %}
  4227   interface(REG_INTER);
  4228 %}
  4230 operand naxRegI() %{
  4231   constraint(ALLOC_IN_RC(nax_reg));
  4232   match(RegI);
  4233   match(eCXRegI);
  4234   match(eDXRegI);
  4235   match(eSIRegI);
  4236   match(eDIRegI);
  4238   format %{ %}
  4239   interface(REG_INTER);
  4240 %}
  4242 operand nadxRegI() %{
  4243   constraint(ALLOC_IN_RC(nadx_reg));
  4244   match(RegI);
  4245   match(eBXRegI);
  4246   match(eCXRegI);
  4247   match(eSIRegI);
  4248   match(eDIRegI);
  4250   format %{ %}
  4251   interface(REG_INTER);
  4252 %}
  4254 operand ncxRegI() %{
  4255   constraint(ALLOC_IN_RC(ncx_reg));
  4256   match(RegI);
  4257   match(eAXRegI);
  4258   match(eDXRegI);
  4259   match(eSIRegI);
  4260   match(eDIRegI);
  4262   format %{ %}
  4263   interface(REG_INTER);
  4264 %}
  4266 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4267 // //
  4268 operand eSIRegI(xRegI reg) %{
  4269    constraint(ALLOC_IN_RC(esi_reg));
  4270    match(reg);
  4271    match(rRegI);
  4273    format %{ "ESI" %}
  4274    interface(REG_INTER);
  4275 %}
  4277 // Pointer Register
  4278 operand anyRegP() %{
  4279   constraint(ALLOC_IN_RC(any_reg));
  4280   match(RegP);
  4281   match(eAXRegP);
  4282   match(eBXRegP);
  4283   match(eCXRegP);
  4284   match(eDIRegP);
  4285   match(eRegP);
  4287   format %{ %}
  4288   interface(REG_INTER);
  4289 %}
  4291 operand eRegP() %{
  4292   constraint(ALLOC_IN_RC(int_reg));
  4293   match(RegP);
  4294   match(eAXRegP);
  4295   match(eBXRegP);
  4296   match(eCXRegP);
  4297   match(eDIRegP);
  4299   format %{ %}
  4300   interface(REG_INTER);
  4301 %}
  4303 // On windows95, EBP is not safe to use for implicit null tests.
  4304 operand eRegP_no_EBP() %{
  4305   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  4306   match(RegP);
  4307   match(eAXRegP);
  4308   match(eBXRegP);
  4309   match(eCXRegP);
  4310   match(eDIRegP);
  4312   op_cost(100);
  4313   format %{ %}
  4314   interface(REG_INTER);
  4315 %}
  4317 operand naxRegP() %{
  4318   constraint(ALLOC_IN_RC(nax_reg));
  4319   match(RegP);
  4320   match(eBXRegP);
  4321   match(eDXRegP);
  4322   match(eCXRegP);
  4323   match(eSIRegP);
  4324   match(eDIRegP);
  4326   format %{ %}
  4327   interface(REG_INTER);
  4328 %}
  4330 operand nabxRegP() %{
  4331   constraint(ALLOC_IN_RC(nabx_reg));
  4332   match(RegP);
  4333   match(eCXRegP);
  4334   match(eDXRegP);
  4335   match(eSIRegP);
  4336   match(eDIRegP);
  4338   format %{ %}
  4339   interface(REG_INTER);
  4340 %}
  4342 operand pRegP() %{
  4343   constraint(ALLOC_IN_RC(p_reg));
  4344   match(RegP);
  4345   match(eBXRegP);
  4346   match(eDXRegP);
  4347   match(eSIRegP);
  4348   match(eDIRegP);
  4350   format %{ %}
  4351   interface(REG_INTER);
  4352 %}
  4354 // Special Registers
  4355 // Return a pointer value
  4356 operand eAXRegP(eRegP reg) %{
  4357   constraint(ALLOC_IN_RC(eax_reg));
  4358   match(reg);
  4359   format %{ "EAX" %}
  4360   interface(REG_INTER);
  4361 %}
  4363 // Used in AtomicAdd
  4364 operand eBXRegP(eRegP reg) %{
  4365   constraint(ALLOC_IN_RC(ebx_reg));
  4366   match(reg);
  4367   format %{ "EBX" %}
  4368   interface(REG_INTER);
  4369 %}
  4371 // Tail-call (interprocedural jump) to interpreter
  4372 operand eCXRegP(eRegP reg) %{
  4373   constraint(ALLOC_IN_RC(ecx_reg));
  4374   match(reg);
  4375   format %{ "ECX" %}
  4376   interface(REG_INTER);
  4377 %}
  4379 operand eSIRegP(eRegP reg) %{
  4380   constraint(ALLOC_IN_RC(esi_reg));
  4381   match(reg);
  4382   format %{ "ESI" %}
  4383   interface(REG_INTER);
  4384 %}
  4386 // Used in rep stosw
  4387 operand eDIRegP(eRegP reg) %{
  4388   constraint(ALLOC_IN_RC(edi_reg));
  4389   match(reg);
  4390   format %{ "EDI" %}
  4391   interface(REG_INTER);
  4392 %}
  4394 operand eBPRegP() %{
  4395   constraint(ALLOC_IN_RC(ebp_reg));
  4396   match(RegP);
  4397   format %{ "EBP" %}
  4398   interface(REG_INTER);
  4399 %}
  4401 operand eRegL() %{
  4402   constraint(ALLOC_IN_RC(long_reg));
  4403   match(RegL);
  4404   match(eADXRegL);
  4406   format %{ %}
  4407   interface(REG_INTER);
  4408 %}
  4410 operand eADXRegL( eRegL reg ) %{
  4411   constraint(ALLOC_IN_RC(eadx_reg));
  4412   match(reg);
  4414   format %{ "EDX:EAX" %}
  4415   interface(REG_INTER);
  4416 %}
  4418 operand eBCXRegL( eRegL reg ) %{
  4419   constraint(ALLOC_IN_RC(ebcx_reg));
  4420   match(reg);
  4422   format %{ "EBX:ECX" %}
  4423   interface(REG_INTER);
  4424 %}
  4426 // Special case for integer high multiply
  4427 operand eADXRegL_low_only() %{
  4428   constraint(ALLOC_IN_RC(eadx_reg));
  4429   match(RegL);
  4431   format %{ "EAX" %}
  4432   interface(REG_INTER);
  4433 %}
  4435 // Flags register, used as output of compare instructions
  4436 operand eFlagsReg() %{
  4437   constraint(ALLOC_IN_RC(int_flags));
  4438   match(RegFlags);
  4440   format %{ "EFLAGS" %}
  4441   interface(REG_INTER);
  4442 %}
  4444 // Flags register, used as output of FLOATING POINT compare instructions
  4445 operand eFlagsRegU() %{
  4446   constraint(ALLOC_IN_RC(int_flags));
  4447   match(RegFlags);
  4449   format %{ "EFLAGS_U" %}
  4450   interface(REG_INTER);
  4451 %}
  4453 operand eFlagsRegUCF() %{
  4454   constraint(ALLOC_IN_RC(int_flags));
  4455   match(RegFlags);
  4456   predicate(false);
  4458   format %{ "EFLAGS_U_CF" %}
  4459   interface(REG_INTER);
  4460 %}
  4462 // Condition Code Register used by long compare
  4463 operand flagsReg_long_LTGE() %{
  4464   constraint(ALLOC_IN_RC(int_flags));
  4465   match(RegFlags);
  4466   format %{ "FLAGS_LTGE" %}
  4467   interface(REG_INTER);
  4468 %}
  4469 operand flagsReg_long_EQNE() %{
  4470   constraint(ALLOC_IN_RC(int_flags));
  4471   match(RegFlags);
  4472   format %{ "FLAGS_EQNE" %}
  4473   interface(REG_INTER);
  4474 %}
  4475 operand flagsReg_long_LEGT() %{
  4476   constraint(ALLOC_IN_RC(int_flags));
  4477   match(RegFlags);
  4478   format %{ "FLAGS_LEGT" %}
  4479   interface(REG_INTER);
  4480 %}
  4482 // Float register operands
  4483 operand regDPR() %{
  4484   predicate( UseSSE < 2 );
  4485   constraint(ALLOC_IN_RC(fp_dbl_reg));
  4486   match(RegD);
  4487   match(regDPR1);
  4488   match(regDPR2);
  4489   format %{ %}
  4490   interface(REG_INTER);
  4491 %}
  4493 operand regDPR1(regDPR reg) %{
  4494   predicate( UseSSE < 2 );
  4495   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  4496   match(reg);
  4497   format %{ "FPR1" %}
  4498   interface(REG_INTER);
  4499 %}
  4501 operand regDPR2(regDPR reg) %{
  4502   predicate( UseSSE < 2 );
  4503   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  4504   match(reg);
  4505   format %{ "FPR2" %}
  4506   interface(REG_INTER);
  4507 %}
  4509 operand regnotDPR1(regDPR reg) %{
  4510   predicate( UseSSE < 2 );
  4511   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  4512   match(reg);
  4513   format %{ %}
  4514   interface(REG_INTER);
  4515 %}
  4517 // Float register operands
  4518 operand regFPR() %{
  4519   predicate( UseSSE < 2 );
  4520   constraint(ALLOC_IN_RC(fp_flt_reg));
  4521   match(RegF);
  4522   match(regFPR1);
  4523   format %{ %}
  4524   interface(REG_INTER);
  4525 %}
  4527 // Float register operands
  4528 operand regFPR1(regFPR reg) %{
  4529   predicate( UseSSE < 2 );
  4530   constraint(ALLOC_IN_RC(fp_flt_reg0));
  4531   match(reg);
  4532   format %{ "FPR1" %}
  4533   interface(REG_INTER);
  4534 %}
  4536 // XMM Float register operands
  4537 operand regF() %{
  4538   predicate( UseSSE>=1 );
  4539   constraint(ALLOC_IN_RC(float_reg));
  4540   match(RegF);
  4541   format %{ %}
  4542   interface(REG_INTER);
  4543 %}
  4545 // XMM Double register operands
  4546 operand regD() %{
  4547   predicate( UseSSE>=2 );
  4548   constraint(ALLOC_IN_RC(double_reg));
  4549   match(RegD);
  4550   format %{ %}
  4551   interface(REG_INTER);
  4552 %}
  4555 //----------Memory Operands----------------------------------------------------
  4556 // Direct Memory Operand
  4557 operand direct(immP addr) %{
  4558   match(addr);
  4560   format %{ "[$addr]" %}
  4561   interface(MEMORY_INTER) %{
  4562     base(0xFFFFFFFF);
  4563     index(0x4);
  4564     scale(0x0);
  4565     disp($addr);
  4566   %}
  4567 %}
  4569 // Indirect Memory Operand
  4570 operand indirect(eRegP reg) %{
  4571   constraint(ALLOC_IN_RC(int_reg));
  4572   match(reg);
  4574   format %{ "[$reg]" %}
  4575   interface(MEMORY_INTER) %{
  4576     base($reg);
  4577     index(0x4);
  4578     scale(0x0);
  4579     disp(0x0);
  4580   %}
  4581 %}
  4583 // Indirect Memory Plus Short Offset Operand
  4584 operand indOffset8(eRegP reg, immI8 off) %{
  4585   match(AddP reg off);
  4587   format %{ "[$reg + $off]" %}
  4588   interface(MEMORY_INTER) %{
  4589     base($reg);
  4590     index(0x4);
  4591     scale(0x0);
  4592     disp($off);
  4593   %}
  4594 %}
  4596 // Indirect Memory Plus Long Offset Operand
  4597 operand indOffset32(eRegP reg, immI off) %{
  4598   match(AddP reg off);
  4600   format %{ "[$reg + $off]" %}
  4601   interface(MEMORY_INTER) %{
  4602     base($reg);
  4603     index(0x4);
  4604     scale(0x0);
  4605     disp($off);
  4606   %}
  4607 %}
  4609 // Indirect Memory Plus Long Offset Operand
  4610 operand indOffset32X(rRegI reg, immP off) %{
  4611   match(AddP off reg);
  4613   format %{ "[$reg + $off]" %}
  4614   interface(MEMORY_INTER) %{
  4615     base($reg);
  4616     index(0x4);
  4617     scale(0x0);
  4618     disp($off);
  4619   %}
  4620 %}
  4622 // Indirect Memory Plus Index Register Plus Offset Operand
  4623 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4624   match(AddP (AddP reg ireg) off);
  4626   op_cost(10);
  4627   format %{"[$reg + $off + $ireg]" %}
  4628   interface(MEMORY_INTER) %{
  4629     base($reg);
  4630     index($ireg);
  4631     scale(0x0);
  4632     disp($off);
  4633   %}
  4634 %}
  4636 // Indirect Memory Plus Index Register Plus Offset Operand
  4637 operand indIndex(eRegP reg, rRegI ireg) %{
  4638   match(AddP reg ireg);
  4640   op_cost(10);
  4641   format %{"[$reg + $ireg]" %}
  4642   interface(MEMORY_INTER) %{
  4643     base($reg);
  4644     index($ireg);
  4645     scale(0x0);
  4646     disp(0x0);
  4647   %}
  4648 %}
  4650 // // -------------------------------------------------------------------------
  4651 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4652 // // -------------------------------------------------------------------------
  4653 // // Scaled Memory Operands
  4654 // // Indirect Memory Times Scale Plus Offset Operand
  4655 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4656 //   match(AddP off (LShiftI ireg scale));
  4657 //
  4658 //   op_cost(10);
  4659 //   format %{"[$off + $ireg << $scale]" %}
  4660 //   interface(MEMORY_INTER) %{
  4661 //     base(0x4);
  4662 //     index($ireg);
  4663 //     scale($scale);
  4664 //     disp($off);
  4665 //   %}
  4666 // %}
  4668 // Indirect Memory Times Scale Plus Index Register
  4669 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4670   match(AddP reg (LShiftI ireg scale));
  4672   op_cost(10);
  4673   format %{"[$reg + $ireg << $scale]" %}
  4674   interface(MEMORY_INTER) %{
  4675     base($reg);
  4676     index($ireg);
  4677     scale($scale);
  4678     disp(0x0);
  4679   %}
  4680 %}
  4682 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4683 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4684   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4686   op_cost(10);
  4687   format %{"[$reg + $off + $ireg << $scale]" %}
  4688   interface(MEMORY_INTER) %{
  4689     base($reg);
  4690     index($ireg);
  4691     scale($scale);
  4692     disp($off);
  4693   %}
  4694 %}
  4696 //----------Load Long Memory Operands------------------------------------------
  4697 // The load-long idiom will use it's address expression again after loading
  4698 // the first word of the long.  If the load-long destination overlaps with
  4699 // registers used in the addressing expression, the 2nd half will be loaded
  4700 // from a clobbered address.  Fix this by requiring that load-long use
  4701 // address registers that do not overlap with the load-long target.
  4703 // load-long support
  4704 operand load_long_RegP() %{
  4705   constraint(ALLOC_IN_RC(esi_reg));
  4706   match(RegP);
  4707   match(eSIRegP);
  4708   op_cost(100);
  4709   format %{  %}
  4710   interface(REG_INTER);
  4711 %}
  4713 // Indirect Memory Operand Long
  4714 operand load_long_indirect(load_long_RegP reg) %{
  4715   constraint(ALLOC_IN_RC(esi_reg));
  4716   match(reg);
  4718   format %{ "[$reg]" %}
  4719   interface(MEMORY_INTER) %{
  4720     base($reg);
  4721     index(0x4);
  4722     scale(0x0);
  4723     disp(0x0);
  4724   %}
  4725 %}
  4727 // Indirect Memory Plus Long Offset Operand
  4728 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4729   match(AddP reg off);
  4731   format %{ "[$reg + $off]" %}
  4732   interface(MEMORY_INTER) %{
  4733     base($reg);
  4734     index(0x4);
  4735     scale(0x0);
  4736     disp($off);
  4737   %}
  4738 %}
  4740 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4743 //----------Special Memory Operands--------------------------------------------
  4744 // Stack Slot Operand - This operand is used for loading and storing temporary
  4745 //                      values on the stack where a match requires a value to
  4746 //                      flow through memory.
  4747 operand stackSlotP(sRegP reg) %{
  4748   constraint(ALLOC_IN_RC(stack_slots));
  4749   // No match rule because this operand is only generated in matching
  4750   format %{ "[$reg]" %}
  4751   interface(MEMORY_INTER) %{
  4752     base(0x4);   // ESP
  4753     index(0x4);  // No Index
  4754     scale(0x0);  // No Scale
  4755     disp($reg);  // Stack Offset
  4756   %}
  4757 %}
  4759 operand stackSlotI(sRegI reg) %{
  4760   constraint(ALLOC_IN_RC(stack_slots));
  4761   // No match rule because this operand is only generated in matching
  4762   format %{ "[$reg]" %}
  4763   interface(MEMORY_INTER) %{
  4764     base(0x4);   // ESP
  4765     index(0x4);  // No Index
  4766     scale(0x0);  // No Scale
  4767     disp($reg);  // Stack Offset
  4768   %}
  4769 %}
  4771 operand stackSlotF(sRegF reg) %{
  4772   constraint(ALLOC_IN_RC(stack_slots));
  4773   // No match rule because this operand is only generated in matching
  4774   format %{ "[$reg]" %}
  4775   interface(MEMORY_INTER) %{
  4776     base(0x4);   // ESP
  4777     index(0x4);  // No Index
  4778     scale(0x0);  // No Scale
  4779     disp($reg);  // Stack Offset
  4780   %}
  4781 %}
  4783 operand stackSlotD(sRegD reg) %{
  4784   constraint(ALLOC_IN_RC(stack_slots));
  4785   // No match rule because this operand is only generated in matching
  4786   format %{ "[$reg]" %}
  4787   interface(MEMORY_INTER) %{
  4788     base(0x4);   // ESP
  4789     index(0x4);  // No Index
  4790     scale(0x0);  // No Scale
  4791     disp($reg);  // Stack Offset
  4792   %}
  4793 %}
  4795 operand stackSlotL(sRegL reg) %{
  4796   constraint(ALLOC_IN_RC(stack_slots));
  4797   // No match rule because this operand is only generated in matching
  4798   format %{ "[$reg]" %}
  4799   interface(MEMORY_INTER) %{
  4800     base(0x4);   // ESP
  4801     index(0x4);  // No Index
  4802     scale(0x0);  // No Scale
  4803     disp($reg);  // Stack Offset
  4804   %}
  4805 %}
  4807 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4808 // Indirect Memory Operand
  4809 operand indirect_win95_safe(eRegP_no_EBP reg)
  4810 %{
  4811   constraint(ALLOC_IN_RC(int_reg));
  4812   match(reg);
  4814   op_cost(100);
  4815   format %{ "[$reg]" %}
  4816   interface(MEMORY_INTER) %{
  4817     base($reg);
  4818     index(0x4);
  4819     scale(0x0);
  4820     disp(0x0);
  4821   %}
  4822 %}
  4824 // Indirect Memory Plus Short Offset Operand
  4825 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4826 %{
  4827   match(AddP reg off);
  4829   op_cost(100);
  4830   format %{ "[$reg + $off]" %}
  4831   interface(MEMORY_INTER) %{
  4832     base($reg);
  4833     index(0x4);
  4834     scale(0x0);
  4835     disp($off);
  4836   %}
  4837 %}
  4839 // Indirect Memory Plus Long Offset Operand
  4840 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4841 %{
  4842   match(AddP reg off);
  4844   op_cost(100);
  4845   format %{ "[$reg + $off]" %}
  4846   interface(MEMORY_INTER) %{
  4847     base($reg);
  4848     index(0x4);
  4849     scale(0x0);
  4850     disp($off);
  4851   %}
  4852 %}
  4854 // Indirect Memory Plus Index Register Plus Offset Operand
  4855 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4856 %{
  4857   match(AddP (AddP reg ireg) off);
  4859   op_cost(100);
  4860   format %{"[$reg + $off + $ireg]" %}
  4861   interface(MEMORY_INTER) %{
  4862     base($reg);
  4863     index($ireg);
  4864     scale(0x0);
  4865     disp($off);
  4866   %}
  4867 %}
  4869 // Indirect Memory Times Scale Plus Index Register
  4870 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4871 %{
  4872   match(AddP reg (LShiftI ireg scale));
  4874   op_cost(100);
  4875   format %{"[$reg + $ireg << $scale]" %}
  4876   interface(MEMORY_INTER) %{
  4877     base($reg);
  4878     index($ireg);
  4879     scale($scale);
  4880     disp(0x0);
  4881   %}
  4882 %}
  4884 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4885 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4886 %{
  4887   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4889   op_cost(100);
  4890   format %{"[$reg + $off + $ireg << $scale]" %}
  4891   interface(MEMORY_INTER) %{
  4892     base($reg);
  4893     index($ireg);
  4894     scale($scale);
  4895     disp($off);
  4896   %}
  4897 %}
  4899 //----------Conditional Branch Operands----------------------------------------
  4900 // Comparison Op  - This is the operation of the comparison, and is limited to
  4901 //                  the following set of codes:
  4902 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4903 //
  4904 // Other attributes of the comparison, such as unsignedness, are specified
  4905 // by the comparison instruction that sets a condition code flags register.
  4906 // That result is represented by a flags operand whose subtype is appropriate
  4907 // to the unsignedness (etc.) of the comparison.
  4908 //
  4909 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4910 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4911 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4913 // Comparision Code
  4914 operand cmpOp() %{
  4915   match(Bool);
  4917   format %{ "" %}
  4918   interface(COND_INTER) %{
  4919     equal(0x4, "e");
  4920     not_equal(0x5, "ne");
  4921     less(0xC, "l");
  4922     greater_equal(0xD, "ge");
  4923     less_equal(0xE, "le");
  4924     greater(0xF, "g");
  4925   %}
  4926 %}
  4928 // Comparison Code, unsigned compare.  Used by FP also, with
  4929 // C2 (unordered) turned into GT or LT already.  The other bits
  4930 // C0 and C3 are turned into Carry & Zero flags.
  4931 operand cmpOpU() %{
  4932   match(Bool);
  4934   format %{ "" %}
  4935   interface(COND_INTER) %{
  4936     equal(0x4, "e");
  4937     not_equal(0x5, "ne");
  4938     less(0x2, "b");
  4939     greater_equal(0x3, "nb");
  4940     less_equal(0x6, "be");
  4941     greater(0x7, "nbe");
  4942   %}
  4943 %}
  4945 // Floating comparisons that don't require any fixup for the unordered case
  4946 operand cmpOpUCF() %{
  4947   match(Bool);
  4948   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4949             n->as_Bool()->_test._test == BoolTest::ge ||
  4950             n->as_Bool()->_test._test == BoolTest::le ||
  4951             n->as_Bool()->_test._test == BoolTest::gt);
  4952   format %{ "" %}
  4953   interface(COND_INTER) %{
  4954     equal(0x4, "e");
  4955     not_equal(0x5, "ne");
  4956     less(0x2, "b");
  4957     greater_equal(0x3, "nb");
  4958     less_equal(0x6, "be");
  4959     greater(0x7, "nbe");
  4960   %}
  4961 %}
  4964 // Floating comparisons that can be fixed up with extra conditional jumps
  4965 operand cmpOpUCF2() %{
  4966   match(Bool);
  4967   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4968             n->as_Bool()->_test._test == BoolTest::eq);
  4969   format %{ "" %}
  4970   interface(COND_INTER) %{
  4971     equal(0x4, "e");
  4972     not_equal(0x5, "ne");
  4973     less(0x2, "b");
  4974     greater_equal(0x3, "nb");
  4975     less_equal(0x6, "be");
  4976     greater(0x7, "nbe");
  4977   %}
  4978 %}
  4980 // Comparison Code for FP conditional move
  4981 operand cmpOp_fcmov() %{
  4982   match(Bool);
  4984   format %{ "" %}
  4985   interface(COND_INTER) %{
  4986     equal        (0x0C8);
  4987     not_equal    (0x1C8);
  4988     less         (0x0C0);
  4989     greater_equal(0x1C0);
  4990     less_equal   (0x0D0);
  4991     greater      (0x1D0);
  4992   %}
  4993 %}
  4995 // Comparision Code used in long compares
  4996 operand cmpOp_commute() %{
  4997   match(Bool);
  4999   format %{ "" %}
  5000   interface(COND_INTER) %{
  5001     equal(0x4, "e");
  5002     not_equal(0x5, "ne");
  5003     less(0xF, "g");
  5004     greater_equal(0xE, "le");
  5005     less_equal(0xD, "ge");
  5006     greater(0xC, "l");
  5007   %}
  5008 %}
  5010 //----------OPERAND CLASSES----------------------------------------------------
  5011 // Operand Classes are groups of operands that are used as to simplify
  5012 // instruction definitions by not requiring the AD writer to specify separate
  5013 // instructions for every form of operand when the instruction accepts
  5014 // multiple operand types with the same basic encoding and format.  The classic
  5015 // case of this is memory operands.
  5017 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5018                indIndex, indIndexScale, indIndexScaleOffset);
  5020 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5021 // This means some kind of offset is always required and you cannot use
  5022 // an oop as the offset (done when working on static globals).
  5023 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5024                     indIndex, indIndexScale, indIndexScaleOffset);
  5027 //----------PIPELINE-----------------------------------------------------------
  5028 // Rules which define the behavior of the target architectures pipeline.
  5029 pipeline %{
  5031 //----------ATTRIBUTES---------------------------------------------------------
  5032 attributes %{
  5033   variable_size_instructions;        // Fixed size instructions
  5034   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5035   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5036   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5037   instruction_fetch_units = 1;       // of 16 bytes
  5039   // List of nop instructions
  5040   nops( MachNop );
  5041 %}
  5043 //----------RESOURCES----------------------------------------------------------
  5044 // Resources are the functional units available to the machine
  5046 // Generic P2/P3 pipeline
  5047 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5048 // 3 instructions decoded per cycle.
  5049 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5050 // 2 ALU op, only ALU0 handles mul/div instructions.
  5051 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5052            MS0, MS1, MEM = MS0 | MS1,
  5053            BR, FPU,
  5054            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5056 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5057 // Pipeline Description specifies the stages in the machine's pipeline
  5059 // Generic P2/P3 pipeline
  5060 pipe_desc(S0, S1, S2, S3, S4, S5);
  5062 //----------PIPELINE CLASSES---------------------------------------------------
  5063 // Pipeline Classes describe the stages in which input and output are
  5064 // referenced by the hardware pipeline.
  5066 // Naming convention: ialu or fpu
  5067 // Then: _reg
  5068 // Then: _reg if there is a 2nd register
  5069 // Then: _long if it's a pair of instructions implementing a long
  5070 // Then: _fat if it requires the big decoder
  5071 //   Or: _mem if it requires the big decoder and a memory unit.
  5073 // Integer ALU reg operation
  5074 pipe_class ialu_reg(rRegI dst) %{
  5075     single_instruction;
  5076     dst    : S4(write);
  5077     dst    : S3(read);
  5078     DECODE : S0;        // any decoder
  5079     ALU    : S3;        // any alu
  5080 %}
  5082 // Long ALU reg operation
  5083 pipe_class ialu_reg_long(eRegL dst) %{
  5084     instruction_count(2);
  5085     dst    : S4(write);
  5086     dst    : S3(read);
  5087     DECODE : S0(2);     // any 2 decoders
  5088     ALU    : S3(2);     // both alus
  5089 %}
  5091 // Integer ALU reg operation using big decoder
  5092 pipe_class ialu_reg_fat(rRegI dst) %{
  5093     single_instruction;
  5094     dst    : S4(write);
  5095     dst    : S3(read);
  5096     D0     : S0;        // big decoder only
  5097     ALU    : S3;        // any alu
  5098 %}
  5100 // Long ALU reg operation using big decoder
  5101 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5102     instruction_count(2);
  5103     dst    : S4(write);
  5104     dst    : S3(read);
  5105     D0     : S0(2);     // big decoder only; twice
  5106     ALU    : S3(2);     // any 2 alus
  5107 %}
  5109 // Integer ALU reg-reg operation
  5110 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  5111     single_instruction;
  5112     dst    : S4(write);
  5113     src    : S3(read);
  5114     DECODE : S0;        // any decoder
  5115     ALU    : S3;        // any alu
  5116 %}
  5118 // Long ALU reg-reg operation
  5119 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5120     instruction_count(2);
  5121     dst    : S4(write);
  5122     src    : S3(read);
  5123     DECODE : S0(2);     // any 2 decoders
  5124     ALU    : S3(2);     // both alus
  5125 %}
  5127 // Integer ALU reg-reg operation
  5128 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  5129     single_instruction;
  5130     dst    : S4(write);
  5131     src    : S3(read);
  5132     D0     : S0;        // big decoder only
  5133     ALU    : S3;        // any alu
  5134 %}
  5136 // Long ALU reg-reg operation
  5137 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5138     instruction_count(2);
  5139     dst    : S4(write);
  5140     src    : S3(read);
  5141     D0     : S0(2);     // big decoder only; twice
  5142     ALU    : S3(2);     // both alus
  5143 %}
  5145 // Integer ALU reg-mem operation
  5146 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  5147     single_instruction;
  5148     dst    : S5(write);
  5149     mem    : S3(read);
  5150     D0     : S0;        // big decoder only
  5151     ALU    : S4;        // any alu
  5152     MEM    : S3;        // any mem
  5153 %}
  5155 // Long ALU reg-mem operation
  5156 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5157     instruction_count(2);
  5158     dst    : S5(write);
  5159     mem    : S3(read);
  5160     D0     : S0(2);     // big decoder only; twice
  5161     ALU    : S4(2);     // any 2 alus
  5162     MEM    : S3(2);     // both mems
  5163 %}
  5165 // Integer mem operation (prefetch)
  5166 pipe_class ialu_mem(memory mem)
  5167 %{
  5168     single_instruction;
  5169     mem    : S3(read);
  5170     D0     : S0;        // big decoder only
  5171     MEM    : S3;        // any mem
  5172 %}
  5174 // Integer Store to Memory
  5175 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  5176     single_instruction;
  5177     mem    : S3(read);
  5178     src    : S5(read);
  5179     D0     : S0;        // big decoder only
  5180     ALU    : S4;        // any alu
  5181     MEM    : S3;
  5182 %}
  5184 // Long Store to Memory
  5185 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5186     instruction_count(2);
  5187     mem    : S3(read);
  5188     src    : S5(read);
  5189     D0     : S0(2);     // big decoder only; twice
  5190     ALU    : S4(2);     // any 2 alus
  5191     MEM    : S3(2);     // Both mems
  5192 %}
  5194 // Integer Store to Memory
  5195 pipe_class ialu_mem_imm(memory mem) %{
  5196     single_instruction;
  5197     mem    : S3(read);
  5198     D0     : S0;        // big decoder only
  5199     ALU    : S4;        // any alu
  5200     MEM    : S3;
  5201 %}
  5203 // Integer ALU0 reg-reg operation
  5204 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  5205     single_instruction;
  5206     dst    : S4(write);
  5207     src    : S3(read);
  5208     D0     : S0;        // Big decoder only
  5209     ALU0   : S3;        // only alu0
  5210 %}
  5212 // Integer ALU0 reg-mem operation
  5213 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  5214     single_instruction;
  5215     dst    : S5(write);
  5216     mem    : S3(read);
  5217     D0     : S0;        // big decoder only
  5218     ALU0   : S4;        // ALU0 only
  5219     MEM    : S3;        // any mem
  5220 %}
  5222 // Integer ALU reg-reg operation
  5223 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  5224     single_instruction;
  5225     cr     : S4(write);
  5226     src1   : S3(read);
  5227     src2   : S3(read);
  5228     DECODE : S0;        // any decoder
  5229     ALU    : S3;        // any alu
  5230 %}
  5232 // Integer ALU reg-imm operation
  5233 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  5234     single_instruction;
  5235     cr     : S4(write);
  5236     src1   : S3(read);
  5237     DECODE : S0;        // any decoder
  5238     ALU    : S3;        // any alu
  5239 %}
  5241 // Integer ALU reg-mem operation
  5242 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  5243     single_instruction;
  5244     cr     : S4(write);
  5245     src1   : S3(read);
  5246     src2   : S3(read);
  5247     D0     : S0;        // big decoder only
  5248     ALU    : S4;        // any alu
  5249     MEM    : S3;
  5250 %}
  5252 // Conditional move reg-reg
  5253 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  5254     instruction_count(4);
  5255     y      : S4(read);
  5256     q      : S3(read);
  5257     p      : S3(read);
  5258     DECODE : S0(4);     // any decoder
  5259 %}
  5261 // Conditional move reg-reg
  5262 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  5263     single_instruction;
  5264     dst    : S4(write);
  5265     src    : S3(read);
  5266     cr     : S3(read);
  5267     DECODE : S0;        // any decoder
  5268 %}
  5270 // Conditional move reg-mem
  5271 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  5272     single_instruction;
  5273     dst    : S4(write);
  5274     src    : S3(read);
  5275     cr     : S3(read);
  5276     DECODE : S0;        // any decoder
  5277     MEM    : S3;
  5278 %}
  5280 // Conditional move reg-reg long
  5281 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5282     single_instruction;
  5283     dst    : S4(write);
  5284     src    : S3(read);
  5285     cr     : S3(read);
  5286     DECODE : S0(2);     // any 2 decoders
  5287 %}
  5289 // Conditional move double reg-reg
  5290 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5291     single_instruction;
  5292     dst    : S4(write);
  5293     src    : S3(read);
  5294     cr     : S3(read);
  5295     DECODE : S0;        // any decoder
  5296 %}
  5298 // Float reg-reg operation
  5299 pipe_class fpu_reg(regDPR dst) %{
  5300     instruction_count(2);
  5301     dst    : S3(read);
  5302     DECODE : S0(2);     // any 2 decoders
  5303     FPU    : S3;
  5304 %}
  5306 // Float reg-reg operation
  5307 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5308     instruction_count(2);
  5309     dst    : S4(write);
  5310     src    : S3(read);
  5311     DECODE : S0(2);     // any 2 decoders
  5312     FPU    : S3;
  5313 %}
  5315 // Float reg-reg operation
  5316 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5317     instruction_count(3);
  5318     dst    : S4(write);
  5319     src1   : S3(read);
  5320     src2   : S3(read);
  5321     DECODE : S0(3);     // any 3 decoders
  5322     FPU    : S3(2);
  5323 %}
  5325 // Float reg-reg operation
  5326 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5327     instruction_count(4);
  5328     dst    : S4(write);
  5329     src1   : S3(read);
  5330     src2   : S3(read);
  5331     src3   : S3(read);
  5332     DECODE : S0(4);     // any 3 decoders
  5333     FPU    : S3(2);
  5334 %}
  5336 // Float reg-reg operation
  5337 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5338     instruction_count(4);
  5339     dst    : S4(write);
  5340     src1   : S3(read);
  5341     src2   : S3(read);
  5342     src3   : S3(read);
  5343     DECODE : S1(3);     // any 3 decoders
  5344     D0     : S0;        // Big decoder only
  5345     FPU    : S3(2);
  5346     MEM    : S3;
  5347 %}
  5349 // Float reg-mem operation
  5350 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5351     instruction_count(2);
  5352     dst    : S5(write);
  5353     mem    : S3(read);
  5354     D0     : S0;        // big decoder only
  5355     DECODE : S1;        // any decoder for FPU POP
  5356     FPU    : S4;
  5357     MEM    : S3;        // any mem
  5358 %}
  5360 // Float reg-mem operation
  5361 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5362     instruction_count(3);
  5363     dst    : S5(write);
  5364     src1   : S3(read);
  5365     mem    : S3(read);
  5366     D0     : S0;        // big decoder only
  5367     DECODE : S1(2);     // any decoder for FPU POP
  5368     FPU    : S4;
  5369     MEM    : S3;        // any mem
  5370 %}
  5372 // Float mem-reg operation
  5373 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5374     instruction_count(2);
  5375     src    : S5(read);
  5376     mem    : S3(read);
  5377     DECODE : S0;        // any decoder for FPU PUSH
  5378     D0     : S1;        // big decoder only
  5379     FPU    : S4;
  5380     MEM    : S3;        // any mem
  5381 %}
  5383 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5384     instruction_count(3);
  5385     src1   : S3(read);
  5386     src2   : S3(read);
  5387     mem    : S3(read);
  5388     DECODE : S0(2);     // any decoder for FPU PUSH
  5389     D0     : S1;        // big decoder only
  5390     FPU    : S4;
  5391     MEM    : S3;        // any mem
  5392 %}
  5394 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5395     instruction_count(3);
  5396     src1   : S3(read);
  5397     src2   : S3(read);
  5398     mem    : S4(read);
  5399     DECODE : S0;        // any decoder for FPU PUSH
  5400     D0     : S0(2);     // big decoder only
  5401     FPU    : S4;
  5402     MEM    : S3(2);     // any mem
  5403 %}
  5405 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5406     instruction_count(2);
  5407     src1   : S3(read);
  5408     dst    : S4(read);
  5409     D0     : S0(2);     // big decoder only
  5410     MEM    : S3(2);     // any mem
  5411 %}
  5413 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5414     instruction_count(3);
  5415     src1   : S3(read);
  5416     src2   : S3(read);
  5417     dst    : S4(read);
  5418     D0     : S0(3);     // big decoder only
  5419     FPU    : S4;
  5420     MEM    : S3(3);     // any mem
  5421 %}
  5423 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5424     instruction_count(3);
  5425     src1   : S4(read);
  5426     mem    : S4(read);
  5427     DECODE : S0;        // any decoder for FPU PUSH
  5428     D0     : S0(2);     // big decoder only
  5429     FPU    : S4;
  5430     MEM    : S3(2);     // any mem
  5431 %}
  5433 // Float load constant
  5434 pipe_class fpu_reg_con(regDPR dst) %{
  5435     instruction_count(2);
  5436     dst    : S5(write);
  5437     D0     : S0;        // big decoder only for the load
  5438     DECODE : S1;        // any decoder for FPU POP
  5439     FPU    : S4;
  5440     MEM    : S3;        // any mem
  5441 %}
  5443 // Float load constant
  5444 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5445     instruction_count(3);
  5446     dst    : S5(write);
  5447     src    : S3(read);
  5448     D0     : S0;        // big decoder only for the load
  5449     DECODE : S1(2);     // any decoder for FPU POP
  5450     FPU    : S4;
  5451     MEM    : S3;        // any mem
  5452 %}
  5454 // UnConditional branch
  5455 pipe_class pipe_jmp( label labl ) %{
  5456     single_instruction;
  5457     BR   : S3;
  5458 %}
  5460 // Conditional branch
  5461 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5462     single_instruction;
  5463     cr    : S1(read);
  5464     BR    : S3;
  5465 %}
  5467 // Allocation idiom
  5468 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5469     instruction_count(1); force_serialization;
  5470     fixed_latency(6);
  5471     heap_ptr : S3(read);
  5472     DECODE   : S0(3);
  5473     D0       : S2;
  5474     MEM      : S3;
  5475     ALU      : S3(2);
  5476     dst      : S5(write);
  5477     BR       : S5;
  5478 %}
  5480 // Generic big/slow expanded idiom
  5481 pipe_class pipe_slow(  ) %{
  5482     instruction_count(10); multiple_bundles; force_serialization;
  5483     fixed_latency(100);
  5484     D0  : S0(2);
  5485     MEM : S3(2);
  5486 %}
  5488 // The real do-nothing guy
  5489 pipe_class empty( ) %{
  5490     instruction_count(0);
  5491 %}
  5493 // Define the class for the Nop node
  5494 define %{
  5495    MachNop = empty;
  5496 %}
  5498 %}
  5500 //----------INSTRUCTIONS-------------------------------------------------------
  5501 //
  5502 // match      -- States which machine-independent subtree may be replaced
  5503 //               by this instruction.
  5504 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5505 //               selection to identify a minimum cost tree of machine
  5506 //               instructions that matches a tree of machine-independent
  5507 //               instructions.
  5508 // format     -- A string providing the disassembly for this instruction.
  5509 //               The value of an instruction's operand may be inserted
  5510 //               by referring to it with a '$' prefix.
  5511 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5512 //               to within an encode class as $primary, $secondary, and $tertiary
  5513 //               respectively.  The primary opcode is commonly used to
  5514 //               indicate the type of machine instruction, while secondary
  5515 //               and tertiary are often used for prefix options or addressing
  5516 //               modes.
  5517 // ins_encode -- A list of encode classes with parameters. The encode class
  5518 //               name must have been defined in an 'enc_class' specification
  5519 //               in the encode section of the architecture description.
  5521 //----------BSWAP-Instruction--------------------------------------------------
  5522 instruct bytes_reverse_int(rRegI dst) %{
  5523   match(Set dst (ReverseBytesI dst));
  5525   format %{ "BSWAP  $dst" %}
  5526   opcode(0x0F, 0xC8);
  5527   ins_encode( OpcP, OpcSReg(dst) );
  5528   ins_pipe( ialu_reg );
  5529 %}
  5531 instruct bytes_reverse_long(eRegL dst) %{
  5532   match(Set dst (ReverseBytesL dst));
  5534   format %{ "BSWAP  $dst.lo\n\t"
  5535             "BSWAP  $dst.hi\n\t"
  5536             "XCHG   $dst.lo $dst.hi" %}
  5538   ins_cost(125);
  5539   ins_encode( bswap_long_bytes(dst) );
  5540   ins_pipe( ialu_reg_reg);
  5541 %}
  5543 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  5544   match(Set dst (ReverseBytesUS dst));
  5545   effect(KILL cr);
  5547   format %{ "BSWAP  $dst\n\t" 
  5548             "SHR    $dst,16\n\t" %}
  5549   ins_encode %{
  5550     __ bswapl($dst$$Register);
  5551     __ shrl($dst$$Register, 16); 
  5552   %}
  5553   ins_pipe( ialu_reg );
  5554 %}
  5556 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5557   match(Set dst (ReverseBytesS dst));
  5558   effect(KILL cr);
  5560   format %{ "BSWAP  $dst\n\t" 
  5561             "SAR    $dst,16\n\t" %}
  5562   ins_encode %{
  5563     __ bswapl($dst$$Register);
  5564     __ sarl($dst$$Register, 16); 
  5565   %}
  5566   ins_pipe( ialu_reg );
  5567 %}
  5570 //---------- Zeros Count Instructions ------------------------------------------
  5572 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5573   predicate(UseCountLeadingZerosInstruction);
  5574   match(Set dst (CountLeadingZerosI src));
  5575   effect(KILL cr);
  5577   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5578   ins_encode %{
  5579     __ lzcntl($dst$$Register, $src$$Register);
  5580   %}
  5581   ins_pipe(ialu_reg);
  5582 %}
  5584 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5585   predicate(!UseCountLeadingZerosInstruction);
  5586   match(Set dst (CountLeadingZerosI src));
  5587   effect(KILL cr);
  5589   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5590             "JNZ    skip\n\t"
  5591             "MOV    $dst, -1\n"
  5592       "skip:\n\t"
  5593             "NEG    $dst\n\t"
  5594             "ADD    $dst, 31" %}
  5595   ins_encode %{
  5596     Register Rdst = $dst$$Register;
  5597     Register Rsrc = $src$$Register;
  5598     Label skip;
  5599     __ bsrl(Rdst, Rsrc);
  5600     __ jccb(Assembler::notZero, skip);
  5601     __ movl(Rdst, -1);
  5602     __ bind(skip);
  5603     __ negl(Rdst);
  5604     __ addl(Rdst, BitsPerInt - 1);
  5605   %}
  5606   ins_pipe(ialu_reg);
  5607 %}
  5609 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5610   predicate(UseCountLeadingZerosInstruction);
  5611   match(Set dst (CountLeadingZerosL src));
  5612   effect(TEMP dst, KILL cr);
  5614   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5615             "JNC    done\n\t"
  5616             "LZCNT  $dst, $src.lo\n\t"
  5617             "ADD    $dst, 32\n"
  5618       "done:" %}
  5619   ins_encode %{
  5620     Register Rdst = $dst$$Register;
  5621     Register Rsrc = $src$$Register;
  5622     Label done;
  5623     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5624     __ jccb(Assembler::carryClear, done);
  5625     __ lzcntl(Rdst, Rsrc);
  5626     __ addl(Rdst, BitsPerInt);
  5627     __ bind(done);
  5628   %}
  5629   ins_pipe(ialu_reg);
  5630 %}
  5632 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5633   predicate(!UseCountLeadingZerosInstruction);
  5634   match(Set dst (CountLeadingZerosL src));
  5635   effect(TEMP dst, KILL cr);
  5637   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5638             "JZ     msw_is_zero\n\t"
  5639             "ADD    $dst, 32\n\t"
  5640             "JMP    not_zero\n"
  5641       "msw_is_zero:\n\t"
  5642             "BSR    $dst, $src.lo\n\t"
  5643             "JNZ    not_zero\n\t"
  5644             "MOV    $dst, -1\n"
  5645       "not_zero:\n\t"
  5646             "NEG    $dst\n\t"
  5647             "ADD    $dst, 63\n" %}
  5648  ins_encode %{
  5649     Register Rdst = $dst$$Register;
  5650     Register Rsrc = $src$$Register;
  5651     Label msw_is_zero;
  5652     Label not_zero;
  5653     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5654     __ jccb(Assembler::zero, msw_is_zero);
  5655     __ addl(Rdst, BitsPerInt);
  5656     __ jmpb(not_zero);
  5657     __ bind(msw_is_zero);
  5658     __ bsrl(Rdst, Rsrc);
  5659     __ jccb(Assembler::notZero, not_zero);
  5660     __ movl(Rdst, -1);
  5661     __ bind(not_zero);
  5662     __ negl(Rdst);
  5663     __ addl(Rdst, BitsPerLong - 1);
  5664   %}
  5665   ins_pipe(ialu_reg);
  5666 %}
  5668 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5669   match(Set dst (CountTrailingZerosI src));
  5670   effect(KILL cr);
  5672   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5673             "JNZ    done\n\t"
  5674             "MOV    $dst, 32\n"
  5675       "done:" %}
  5676   ins_encode %{
  5677     Register Rdst = $dst$$Register;
  5678     Label done;
  5679     __ bsfl(Rdst, $src$$Register);
  5680     __ jccb(Assembler::notZero, done);
  5681     __ movl(Rdst, BitsPerInt);
  5682     __ bind(done);
  5683   %}
  5684   ins_pipe(ialu_reg);
  5685 %}
  5687 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5688   match(Set dst (CountTrailingZerosL src));
  5689   effect(TEMP dst, KILL cr);
  5691   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5692             "JNZ    done\n\t"
  5693             "BSF    $dst, $src.hi\n\t"
  5694             "JNZ    msw_not_zero\n\t"
  5695             "MOV    $dst, 32\n"
  5696       "msw_not_zero:\n\t"
  5697             "ADD    $dst, 32\n"
  5698       "done:" %}
  5699   ins_encode %{
  5700     Register Rdst = $dst$$Register;
  5701     Register Rsrc = $src$$Register;
  5702     Label msw_not_zero;
  5703     Label done;
  5704     __ bsfl(Rdst, Rsrc);
  5705     __ jccb(Assembler::notZero, done);
  5706     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5707     __ jccb(Assembler::notZero, msw_not_zero);
  5708     __ movl(Rdst, BitsPerInt);
  5709     __ bind(msw_not_zero);
  5710     __ addl(Rdst, BitsPerInt);
  5711     __ bind(done);
  5712   %}
  5713   ins_pipe(ialu_reg);
  5714 %}
  5717 //---------- Population Count Instructions -------------------------------------
  5719 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5720   predicate(UsePopCountInstruction);
  5721   match(Set dst (PopCountI src));
  5722   effect(KILL cr);
  5724   format %{ "POPCNT $dst, $src" %}
  5725   ins_encode %{
  5726     __ popcntl($dst$$Register, $src$$Register);
  5727   %}
  5728   ins_pipe(ialu_reg);
  5729 %}
  5731 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5732   predicate(UsePopCountInstruction);
  5733   match(Set dst (PopCountI (LoadI mem)));
  5734   effect(KILL cr);
  5736   format %{ "POPCNT $dst, $mem" %}
  5737   ins_encode %{
  5738     __ popcntl($dst$$Register, $mem$$Address);
  5739   %}
  5740   ins_pipe(ialu_reg);
  5741 %}
  5743 // Note: Long.bitCount(long) returns an int.
  5744 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5745   predicate(UsePopCountInstruction);
  5746   match(Set dst (PopCountL src));
  5747   effect(KILL cr, TEMP tmp, TEMP dst);
  5749   format %{ "POPCNT $dst, $src.lo\n\t"
  5750             "POPCNT $tmp, $src.hi\n\t"
  5751             "ADD    $dst, $tmp" %}
  5752   ins_encode %{
  5753     __ popcntl($dst$$Register, $src$$Register);
  5754     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5755     __ addl($dst$$Register, $tmp$$Register);
  5756   %}
  5757   ins_pipe(ialu_reg);
  5758 %}
  5760 // Note: Long.bitCount(long) returns an int.
  5761 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5762   predicate(UsePopCountInstruction);
  5763   match(Set dst (PopCountL (LoadL mem)));
  5764   effect(KILL cr, TEMP tmp, TEMP dst);
  5766   format %{ "POPCNT $dst, $mem\n\t"
  5767             "POPCNT $tmp, $mem+4\n\t"
  5768             "ADD    $dst, $tmp" %}
  5769   ins_encode %{
  5770     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5771     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5772     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5773     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5774     __ addl($dst$$Register, $tmp$$Register);
  5775   %}
  5776   ins_pipe(ialu_reg);
  5777 %}
  5780 //----------Load/Store/Move Instructions---------------------------------------
  5781 //----------Load Instructions--------------------------------------------------
  5782 // Load Byte (8bit signed)
  5783 instruct loadB(xRegI dst, memory mem) %{
  5784   match(Set dst (LoadB mem));
  5786   ins_cost(125);
  5787   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5789   ins_encode %{
  5790     __ movsbl($dst$$Register, $mem$$Address);
  5791   %}
  5793   ins_pipe(ialu_reg_mem);
  5794 %}
  5796 // Load Byte (8bit signed) into Long Register
  5797 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5798   match(Set dst (ConvI2L (LoadB mem)));
  5799   effect(KILL cr);
  5801   ins_cost(375);
  5802   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5803             "MOV    $dst.hi,$dst.lo\n\t"
  5804             "SAR    $dst.hi,7" %}
  5806   ins_encode %{
  5807     __ movsbl($dst$$Register, $mem$$Address);
  5808     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5809     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5810   %}
  5812   ins_pipe(ialu_reg_mem);
  5813 %}
  5815 // Load Unsigned Byte (8bit UNsigned)
  5816 instruct loadUB(xRegI dst, memory mem) %{
  5817   match(Set dst (LoadUB mem));
  5819   ins_cost(125);
  5820   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5822   ins_encode %{
  5823     __ movzbl($dst$$Register, $mem$$Address);
  5824   %}
  5826   ins_pipe(ialu_reg_mem);
  5827 %}
  5829 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5830 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5831   match(Set dst (ConvI2L (LoadUB mem)));
  5832   effect(KILL cr);
  5834   ins_cost(250);
  5835   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5836             "XOR    $dst.hi,$dst.hi" %}
  5838   ins_encode %{
  5839     Register Rdst = $dst$$Register;
  5840     __ movzbl(Rdst, $mem$$Address);
  5841     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5842   %}
  5844   ins_pipe(ialu_reg_mem);
  5845 %}
  5847 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5848 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5849   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5850   effect(KILL cr);
  5852   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5853             "XOR    $dst.hi,$dst.hi\n\t"
  5854             "AND    $dst.lo,$mask" %}
  5855   ins_encode %{
  5856     Register Rdst = $dst$$Register;
  5857     __ movzbl(Rdst, $mem$$Address);
  5858     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5859     __ andl(Rdst, $mask$$constant);
  5860   %}
  5861   ins_pipe(ialu_reg_mem);
  5862 %}
  5864 // Load Short (16bit signed)
  5865 instruct loadS(rRegI dst, memory mem) %{
  5866   match(Set dst (LoadS mem));
  5868   ins_cost(125);
  5869   format %{ "MOVSX  $dst,$mem\t# short" %}
  5871   ins_encode %{
  5872     __ movswl($dst$$Register, $mem$$Address);
  5873   %}
  5875   ins_pipe(ialu_reg_mem);
  5876 %}
  5878 // Load Short (16 bit signed) to Byte (8 bit signed)
  5879 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5880   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5882   ins_cost(125);
  5883   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5884   ins_encode %{
  5885     __ movsbl($dst$$Register, $mem$$Address);
  5886   %}
  5887   ins_pipe(ialu_reg_mem);
  5888 %}
  5890 // Load Short (16bit signed) into Long Register
  5891 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5892   match(Set dst (ConvI2L (LoadS mem)));
  5893   effect(KILL cr);
  5895   ins_cost(375);
  5896   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5897             "MOV    $dst.hi,$dst.lo\n\t"
  5898             "SAR    $dst.hi,15" %}
  5900   ins_encode %{
  5901     __ movswl($dst$$Register, $mem$$Address);
  5902     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5903     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5904   %}
  5906   ins_pipe(ialu_reg_mem);
  5907 %}
  5909 // Load Unsigned Short/Char (16bit unsigned)
  5910 instruct loadUS(rRegI dst, memory mem) %{
  5911   match(Set dst (LoadUS mem));
  5913   ins_cost(125);
  5914   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5916   ins_encode %{
  5917     __ movzwl($dst$$Register, $mem$$Address);
  5918   %}
  5920   ins_pipe(ialu_reg_mem);
  5921 %}
  5923 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5924 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5925   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5927   ins_cost(125);
  5928   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5929   ins_encode %{
  5930     __ movsbl($dst$$Register, $mem$$Address);
  5931   %}
  5932   ins_pipe(ialu_reg_mem);
  5933 %}
  5935 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5936 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5937   match(Set dst (ConvI2L (LoadUS mem)));
  5938   effect(KILL cr);
  5940   ins_cost(250);
  5941   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5942             "XOR    $dst.hi,$dst.hi" %}
  5944   ins_encode %{
  5945     __ movzwl($dst$$Register, $mem$$Address);
  5946     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5947   %}
  5949   ins_pipe(ialu_reg_mem);
  5950 %}
  5952 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5953 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5954   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5955   effect(KILL cr);
  5957   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5958             "XOR    $dst.hi,$dst.hi" %}
  5959   ins_encode %{
  5960     Register Rdst = $dst$$Register;
  5961     __ movzbl(Rdst, $mem$$Address);
  5962     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5963   %}
  5964   ins_pipe(ialu_reg_mem);
  5965 %}
  5967 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  5968 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  5969   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5970   effect(KILL cr);
  5972   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  5973             "XOR    $dst.hi,$dst.hi\n\t"
  5974             "AND    $dst.lo,$mask" %}
  5975   ins_encode %{
  5976     Register Rdst = $dst$$Register;
  5977     __ movzwl(Rdst, $mem$$Address);
  5978     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5979     __ andl(Rdst, $mask$$constant);
  5980   %}
  5981   ins_pipe(ialu_reg_mem);
  5982 %}
  5984 // Load Integer
  5985 instruct loadI(rRegI dst, memory mem) %{
  5986   match(Set dst (LoadI mem));
  5988   ins_cost(125);
  5989   format %{ "MOV    $dst,$mem\t# int" %}
  5991   ins_encode %{
  5992     __ movl($dst$$Register, $mem$$Address);
  5993   %}
  5995   ins_pipe(ialu_reg_mem);
  5996 %}
  5998 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5999 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6000   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6002   ins_cost(125);
  6003   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6004   ins_encode %{
  6005     __ movsbl($dst$$Register, $mem$$Address);
  6006   %}
  6007   ins_pipe(ialu_reg_mem);
  6008 %}
  6010 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6011 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  6012   match(Set dst (AndI (LoadI mem) mask));
  6014   ins_cost(125);
  6015   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6016   ins_encode %{
  6017     __ movzbl($dst$$Register, $mem$$Address);
  6018   %}
  6019   ins_pipe(ialu_reg_mem);
  6020 %}
  6022 // Load Integer (32 bit signed) to Short (16 bit signed)
  6023 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  6024   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6026   ins_cost(125);
  6027   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6028   ins_encode %{
  6029     __ movswl($dst$$Register, $mem$$Address);
  6030   %}
  6031   ins_pipe(ialu_reg_mem);
  6032 %}
  6034 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6035 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  6036   match(Set dst (AndI (LoadI mem) mask));
  6038   ins_cost(125);
  6039   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6040   ins_encode %{
  6041     __ movzwl($dst$$Register, $mem$$Address);
  6042   %}
  6043   ins_pipe(ialu_reg_mem);
  6044 %}
  6046 // Load Integer into Long Register
  6047 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6048   match(Set dst (ConvI2L (LoadI mem)));
  6049   effect(KILL cr);
  6051   ins_cost(375);
  6052   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6053             "MOV    $dst.hi,$dst.lo\n\t"
  6054             "SAR    $dst.hi,31" %}
  6056   ins_encode %{
  6057     __ movl($dst$$Register, $mem$$Address);
  6058     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6059     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6060   %}
  6062   ins_pipe(ialu_reg_mem);
  6063 %}
  6065 // Load Integer with mask 0xFF into Long Register
  6066 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6067   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6068   effect(KILL cr);
  6070   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6071             "XOR    $dst.hi,$dst.hi" %}
  6072   ins_encode %{
  6073     Register Rdst = $dst$$Register;
  6074     __ movzbl(Rdst, $mem$$Address);
  6075     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6076   %}
  6077   ins_pipe(ialu_reg_mem);
  6078 %}
  6080 // Load Integer with mask 0xFFFF into Long Register
  6081 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6082   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6083   effect(KILL cr);
  6085   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6086             "XOR    $dst.hi,$dst.hi" %}
  6087   ins_encode %{
  6088     Register Rdst = $dst$$Register;
  6089     __ movzwl(Rdst, $mem$$Address);
  6090     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6091   %}
  6092   ins_pipe(ialu_reg_mem);
  6093 %}
  6095 // Load Integer with 32-bit mask into Long Register
  6096 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6097   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6098   effect(KILL cr);
  6100   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6101             "XOR    $dst.hi,$dst.hi\n\t"
  6102             "AND    $dst.lo,$mask" %}
  6103   ins_encode %{
  6104     Register Rdst = $dst$$Register;
  6105     __ movl(Rdst, $mem$$Address);
  6106     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6107     __ andl(Rdst, $mask$$constant);
  6108   %}
  6109   ins_pipe(ialu_reg_mem);
  6110 %}
  6112 // Load Unsigned Integer into Long Register
  6113 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  6114   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  6115   effect(KILL cr);
  6117   ins_cost(250);
  6118   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6119             "XOR    $dst.hi,$dst.hi" %}
  6121   ins_encode %{
  6122     __ movl($dst$$Register, $mem$$Address);
  6123     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6124   %}
  6126   ins_pipe(ialu_reg_mem);
  6127 %}
  6129 // Load Long.  Cannot clobber address while loading, so restrict address
  6130 // register to ESI
  6131 instruct loadL(eRegL dst, load_long_memory mem) %{
  6132   predicate(!((LoadLNode*)n)->require_atomic_access());
  6133   match(Set dst (LoadL mem));
  6135   ins_cost(250);
  6136   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6137             "MOV    $dst.hi,$mem+4" %}
  6139   ins_encode %{
  6140     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  6141     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  6142     __ movl($dst$$Register, Amemlo);
  6143     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6144   %}
  6146   ins_pipe(ialu_reg_long_mem);
  6147 %}
  6149 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6150 // then store it down to the stack and reload on the int
  6151 // side.
  6152 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6153   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6154   match(Set dst (LoadL mem));
  6156   ins_cost(200);
  6157   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6158             "FISTp  $dst" %}
  6159   ins_encode(enc_loadL_volatile(mem,dst));
  6160   ins_pipe( fpu_reg_mem );
  6161 %}
  6163 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6164   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6165   match(Set dst (LoadL mem));
  6166   effect(TEMP tmp);
  6167   ins_cost(180);
  6168   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6169             "MOVSD  $dst,$tmp" %}
  6170   ins_encode %{
  6171     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6172     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6173   %}
  6174   ins_pipe( pipe_slow );
  6175 %}
  6177 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6178   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6179   match(Set dst (LoadL mem));
  6180   effect(TEMP tmp);
  6181   ins_cost(160);
  6182   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6183             "MOVD   $dst.lo,$tmp\n\t"
  6184             "PSRLQ  $tmp,32\n\t"
  6185             "MOVD   $dst.hi,$tmp" %}
  6186   ins_encode %{
  6187     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6188     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6189     __ psrlq($tmp$$XMMRegister, 32);
  6190     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6191   %}
  6192   ins_pipe( pipe_slow );
  6193 %}
  6195 // Load Range
  6196 instruct loadRange(rRegI dst, memory mem) %{
  6197   match(Set dst (LoadRange mem));
  6199   ins_cost(125);
  6200   format %{ "MOV    $dst,$mem" %}
  6201   opcode(0x8B);
  6202   ins_encode( OpcP, RegMem(dst,mem));
  6203   ins_pipe( ialu_reg_mem );
  6204 %}
  6207 // Load Pointer
  6208 instruct loadP(eRegP dst, memory mem) %{
  6209   match(Set dst (LoadP mem));
  6211   ins_cost(125);
  6212   format %{ "MOV    $dst,$mem" %}
  6213   opcode(0x8B);
  6214   ins_encode( OpcP, RegMem(dst,mem));
  6215   ins_pipe( ialu_reg_mem );
  6216 %}
  6218 // Load Klass Pointer
  6219 instruct loadKlass(eRegP dst, memory mem) %{
  6220   match(Set dst (LoadKlass mem));
  6222   ins_cost(125);
  6223   format %{ "MOV    $dst,$mem" %}
  6224   opcode(0x8B);
  6225   ins_encode( OpcP, RegMem(dst,mem));
  6226   ins_pipe( ialu_reg_mem );
  6227 %}
  6229 // Load Double
  6230 instruct loadDPR(regDPR dst, memory mem) %{
  6231   predicate(UseSSE<=1);
  6232   match(Set dst (LoadD mem));
  6234   ins_cost(150);
  6235   format %{ "FLD_D  ST,$mem\n\t"
  6236             "FSTP   $dst" %}
  6237   opcode(0xDD);               /* DD /0 */
  6238   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6239               Pop_Reg_DPR(dst) );
  6240   ins_pipe( fpu_reg_mem );
  6241 %}
  6243 // Load Double to XMM
  6244 instruct loadD(regD dst, memory mem) %{
  6245   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6246   match(Set dst (LoadD mem));
  6247   ins_cost(145);
  6248   format %{ "MOVSD  $dst,$mem" %}
  6249   ins_encode %{
  6250     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6251   %}
  6252   ins_pipe( pipe_slow );
  6253 %}
  6255 instruct loadD_partial(regD dst, memory mem) %{
  6256   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6257   match(Set dst (LoadD mem));
  6258   ins_cost(145);
  6259   format %{ "MOVLPD $dst,$mem" %}
  6260   ins_encode %{
  6261     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6262   %}
  6263   ins_pipe( pipe_slow );
  6264 %}
  6266 // Load to XMM register (single-precision floating point)
  6267 // MOVSS instruction
  6268 instruct loadF(regF dst, memory mem) %{
  6269   predicate(UseSSE>=1);
  6270   match(Set dst (LoadF mem));
  6271   ins_cost(145);
  6272   format %{ "MOVSS  $dst,$mem" %}
  6273   ins_encode %{
  6274     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6275   %}
  6276   ins_pipe( pipe_slow );
  6277 %}
  6279 // Load Float
  6280 instruct loadFPR(regFPR dst, memory mem) %{
  6281   predicate(UseSSE==0);
  6282   match(Set dst (LoadF mem));
  6284   ins_cost(150);
  6285   format %{ "FLD_S  ST,$mem\n\t"
  6286             "FSTP   $dst" %}
  6287   opcode(0xD9);               /* D9 /0 */
  6288   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6289               Pop_Reg_FPR(dst) );
  6290   ins_pipe( fpu_reg_mem );
  6291 %}
  6293 // Load Effective Address
  6294 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6295   match(Set dst mem);
  6297   ins_cost(110);
  6298   format %{ "LEA    $dst,$mem" %}
  6299   opcode(0x8D);
  6300   ins_encode( OpcP, RegMem(dst,mem));
  6301   ins_pipe( ialu_reg_reg_fat );
  6302 %}
  6304 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6305   match(Set dst mem);
  6307   ins_cost(110);
  6308   format %{ "LEA    $dst,$mem" %}
  6309   opcode(0x8D);
  6310   ins_encode( OpcP, RegMem(dst,mem));
  6311   ins_pipe( ialu_reg_reg_fat );
  6312 %}
  6314 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6315   match(Set dst mem);
  6317   ins_cost(110);
  6318   format %{ "LEA    $dst,$mem" %}
  6319   opcode(0x8D);
  6320   ins_encode( OpcP, RegMem(dst,mem));
  6321   ins_pipe( ialu_reg_reg_fat );
  6322 %}
  6324 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6325   match(Set dst mem);
  6327   ins_cost(110);
  6328   format %{ "LEA    $dst,$mem" %}
  6329   opcode(0x8D);
  6330   ins_encode( OpcP, RegMem(dst,mem));
  6331   ins_pipe( ialu_reg_reg_fat );
  6332 %}
  6334 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6335   match(Set dst mem);
  6337   ins_cost(110);
  6338   format %{ "LEA    $dst,$mem" %}
  6339   opcode(0x8D);
  6340   ins_encode( OpcP, RegMem(dst,mem));
  6341   ins_pipe( ialu_reg_reg_fat );
  6342 %}
  6344 // Load Constant
  6345 instruct loadConI(rRegI dst, immI src) %{
  6346   match(Set dst src);
  6348   format %{ "MOV    $dst,$src" %}
  6349   ins_encode( LdImmI(dst, src) );
  6350   ins_pipe( ialu_reg_fat );
  6351 %}
  6353 // Load Constant zero
  6354 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  6355   match(Set dst src);
  6356   effect(KILL cr);
  6358   ins_cost(50);
  6359   format %{ "XOR    $dst,$dst" %}
  6360   opcode(0x33);  /* + rd */
  6361   ins_encode( OpcP, RegReg( dst, dst ) );
  6362   ins_pipe( ialu_reg );
  6363 %}
  6365 instruct loadConP(eRegP dst, immP src) %{
  6366   match(Set dst src);
  6368   format %{ "MOV    $dst,$src" %}
  6369   opcode(0xB8);  /* + rd */
  6370   ins_encode( LdImmP(dst, src) );
  6371   ins_pipe( ialu_reg_fat );
  6372 %}
  6374 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6375   match(Set dst src);
  6376   effect(KILL cr);
  6377   ins_cost(200);
  6378   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6379             "MOV    $dst.hi,$src.hi" %}
  6380   opcode(0xB8);
  6381   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6382   ins_pipe( ialu_reg_long_fat );
  6383 %}
  6385 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6386   match(Set dst src);
  6387   effect(KILL cr);
  6388   ins_cost(150);
  6389   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6390             "XOR    $dst.hi,$dst.hi" %}
  6391   opcode(0x33,0x33);
  6392   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6393   ins_pipe( ialu_reg_long );
  6394 %}
  6396 // The instruction usage is guarded by predicate in operand immFPR().
  6397 instruct loadConFPR(regFPR dst, immFPR con) %{
  6398   match(Set dst con);
  6399   ins_cost(125);
  6400   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6401             "FSTP   $dst" %}
  6402   ins_encode %{
  6403     __ fld_s($constantaddress($con));
  6404     __ fstp_d($dst$$reg);
  6405   %}
  6406   ins_pipe(fpu_reg_con);
  6407 %}
  6409 // The instruction usage is guarded by predicate in operand immFPR0().
  6410 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6411   match(Set dst con);
  6412   ins_cost(125);
  6413   format %{ "FLDZ   ST\n\t"
  6414             "FSTP   $dst" %}
  6415   ins_encode %{
  6416     __ fldz();
  6417     __ fstp_d($dst$$reg);
  6418   %}
  6419   ins_pipe(fpu_reg_con);
  6420 %}
  6422 // The instruction usage is guarded by predicate in operand immFPR1().
  6423 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6424   match(Set dst con);
  6425   ins_cost(125);
  6426   format %{ "FLD1   ST\n\t"
  6427             "FSTP   $dst" %}
  6428   ins_encode %{
  6429     __ fld1();
  6430     __ fstp_d($dst$$reg);
  6431   %}
  6432   ins_pipe(fpu_reg_con);
  6433 %}
  6435 // The instruction usage is guarded by predicate in operand immF().
  6436 instruct loadConF(regF dst, immF con) %{
  6437   match(Set dst con);
  6438   ins_cost(125);
  6439   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6440   ins_encode %{
  6441     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6442   %}
  6443   ins_pipe(pipe_slow);
  6444 %}
  6446 // The instruction usage is guarded by predicate in operand immF0().
  6447 instruct loadConF0(regF dst, immF0 src) %{
  6448   match(Set dst src);
  6449   ins_cost(100);
  6450   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6451   ins_encode %{
  6452     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6453   %}
  6454   ins_pipe(pipe_slow);
  6455 %}
  6457 // The instruction usage is guarded by predicate in operand immDPR().
  6458 instruct loadConDPR(regDPR dst, immDPR con) %{
  6459   match(Set dst con);
  6460   ins_cost(125);
  6462   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6463             "FSTP   $dst" %}
  6464   ins_encode %{
  6465     __ fld_d($constantaddress($con));
  6466     __ fstp_d($dst$$reg);
  6467   %}
  6468   ins_pipe(fpu_reg_con);
  6469 %}
  6471 // The instruction usage is guarded by predicate in operand immDPR0().
  6472 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6473   match(Set dst con);
  6474   ins_cost(125);
  6476   format %{ "FLDZ   ST\n\t"
  6477             "FSTP   $dst" %}
  6478   ins_encode %{
  6479     __ fldz();
  6480     __ fstp_d($dst$$reg);
  6481   %}
  6482   ins_pipe(fpu_reg_con);
  6483 %}
  6485 // The instruction usage is guarded by predicate in operand immDPR1().
  6486 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6487   match(Set dst con);
  6488   ins_cost(125);
  6490   format %{ "FLD1   ST\n\t"
  6491             "FSTP   $dst" %}
  6492   ins_encode %{
  6493     __ fld1();
  6494     __ fstp_d($dst$$reg);
  6495   %}
  6496   ins_pipe(fpu_reg_con);
  6497 %}
  6499 // The instruction usage is guarded by predicate in operand immD().
  6500 instruct loadConD(regD dst, immD con) %{
  6501   match(Set dst con);
  6502   ins_cost(125);
  6503   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6504   ins_encode %{
  6505     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6506   %}
  6507   ins_pipe(pipe_slow);
  6508 %}
  6510 // The instruction usage is guarded by predicate in operand immD0().
  6511 instruct loadConD0(regD dst, immD0 src) %{
  6512   match(Set dst src);
  6513   ins_cost(100);
  6514   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6515   ins_encode %{
  6516     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6517   %}
  6518   ins_pipe( pipe_slow );
  6519 %}
  6521 // Load Stack Slot
  6522 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6523   match(Set dst src);
  6524   ins_cost(125);
  6526   format %{ "MOV    $dst,$src" %}
  6527   opcode(0x8B);
  6528   ins_encode( OpcP, RegMem(dst,src));
  6529   ins_pipe( ialu_reg_mem );
  6530 %}
  6532 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6533   match(Set dst src);
  6535   ins_cost(200);
  6536   format %{ "MOV    $dst,$src.lo\n\t"
  6537             "MOV    $dst+4,$src.hi" %}
  6538   opcode(0x8B, 0x8B);
  6539   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6540   ins_pipe( ialu_mem_long_reg );
  6541 %}
  6543 // Load Stack Slot
  6544 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6545   match(Set dst src);
  6546   ins_cost(125);
  6548   format %{ "MOV    $dst,$src" %}
  6549   opcode(0x8B);
  6550   ins_encode( OpcP, RegMem(dst,src));
  6551   ins_pipe( ialu_reg_mem );
  6552 %}
  6554 // Load Stack Slot
  6555 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6556   match(Set dst src);
  6557   ins_cost(125);
  6559   format %{ "FLD_S  $src\n\t"
  6560             "FSTP   $dst" %}
  6561   opcode(0xD9);               /* D9 /0, FLD m32real */
  6562   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6563               Pop_Reg_FPR(dst) );
  6564   ins_pipe( fpu_reg_mem );
  6565 %}
  6567 // Load Stack Slot
  6568 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6569   match(Set dst src);
  6570   ins_cost(125);
  6572   format %{ "FLD_D  $src\n\t"
  6573             "FSTP   $dst" %}
  6574   opcode(0xDD);               /* DD /0, FLD m64real */
  6575   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6576               Pop_Reg_DPR(dst) );
  6577   ins_pipe( fpu_reg_mem );
  6578 %}
  6580 // Prefetch instructions.
  6581 // Must be safe to execute with invalid address (cannot fault).
  6583 instruct prefetchr0( memory mem ) %{
  6584   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6585   match(PrefetchRead mem);
  6586   ins_cost(0);
  6587   size(0);
  6588   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6589   ins_encode();
  6590   ins_pipe(empty);
  6591 %}
  6593 instruct prefetchr( memory mem ) %{
  6594   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6595   match(PrefetchRead mem);
  6596   ins_cost(100);
  6598   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6599   ins_encode %{
  6600     __ prefetchr($mem$$Address);
  6601   %}
  6602   ins_pipe(ialu_mem);
  6603 %}
  6605 instruct prefetchrNTA( memory mem ) %{
  6606   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6607   match(PrefetchRead mem);
  6608   ins_cost(100);
  6610   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6611   ins_encode %{
  6612     __ prefetchnta($mem$$Address);
  6613   %}
  6614   ins_pipe(ialu_mem);
  6615 %}
  6617 instruct prefetchrT0( memory mem ) %{
  6618   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6619   match(PrefetchRead mem);
  6620   ins_cost(100);
  6622   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6623   ins_encode %{
  6624     __ prefetcht0($mem$$Address);
  6625   %}
  6626   ins_pipe(ialu_mem);
  6627 %}
  6629 instruct prefetchrT2( memory mem ) %{
  6630   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6631   match(PrefetchRead mem);
  6632   ins_cost(100);
  6634   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6635   ins_encode %{
  6636     __ prefetcht2($mem$$Address);
  6637   %}
  6638   ins_pipe(ialu_mem);
  6639 %}
  6641 instruct prefetchw0( memory mem ) %{
  6642   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6643   match(PrefetchWrite mem);
  6644   ins_cost(0);
  6645   size(0);
  6646   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6647   ins_encode();
  6648   ins_pipe(empty);
  6649 %}
  6651 instruct prefetchw( memory mem ) %{
  6652   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6653   match( PrefetchWrite mem );
  6654   ins_cost(100);
  6656   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6657   ins_encode %{
  6658     __ prefetchw($mem$$Address);
  6659   %}
  6660   ins_pipe(ialu_mem);
  6661 %}
  6663 instruct prefetchwNTA( memory mem ) %{
  6664   predicate(UseSSE>=1);
  6665   match(PrefetchWrite mem);
  6666   ins_cost(100);
  6668   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6669   ins_encode %{
  6670     __ prefetchnta($mem$$Address);
  6671   %}
  6672   ins_pipe(ialu_mem);
  6673 %}
  6675 // Prefetch instructions for allocation.
  6677 instruct prefetchAlloc0( memory mem ) %{
  6678   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6679   match(PrefetchAllocation mem);
  6680   ins_cost(0);
  6681   size(0);
  6682   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6683   ins_encode();
  6684   ins_pipe(empty);
  6685 %}
  6687 instruct prefetchAlloc( memory mem ) %{
  6688   predicate(AllocatePrefetchInstr==3);
  6689   match( PrefetchAllocation mem );
  6690   ins_cost(100);
  6692   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6693   ins_encode %{
  6694     __ prefetchw($mem$$Address);
  6695   %}
  6696   ins_pipe(ialu_mem);
  6697 %}
  6699 instruct prefetchAllocNTA( memory mem ) %{
  6700   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6701   match(PrefetchAllocation mem);
  6702   ins_cost(100);
  6704   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6705   ins_encode %{
  6706     __ prefetchnta($mem$$Address);
  6707   %}
  6708   ins_pipe(ialu_mem);
  6709 %}
  6711 instruct prefetchAllocT0( memory mem ) %{
  6712   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6713   match(PrefetchAllocation mem);
  6714   ins_cost(100);
  6716   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6717   ins_encode %{
  6718     __ prefetcht0($mem$$Address);
  6719   %}
  6720   ins_pipe(ialu_mem);
  6721 %}
  6723 instruct prefetchAllocT2( memory mem ) %{
  6724   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6725   match(PrefetchAllocation mem);
  6726   ins_cost(100);
  6728   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6729   ins_encode %{
  6730     __ prefetcht2($mem$$Address);
  6731   %}
  6732   ins_pipe(ialu_mem);
  6733 %}
  6735 //----------Store Instructions-------------------------------------------------
  6737 // Store Byte
  6738 instruct storeB(memory mem, xRegI src) %{
  6739   match(Set mem (StoreB mem src));
  6741   ins_cost(125);
  6742   format %{ "MOV8   $mem,$src" %}
  6743   opcode(0x88);
  6744   ins_encode( OpcP, RegMem( src, mem ) );
  6745   ins_pipe( ialu_mem_reg );
  6746 %}
  6748 // Store Char/Short
  6749 instruct storeC(memory mem, rRegI src) %{
  6750   match(Set mem (StoreC mem src));
  6752   ins_cost(125);
  6753   format %{ "MOV16  $mem,$src" %}
  6754   opcode(0x89, 0x66);
  6755   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6756   ins_pipe( ialu_mem_reg );
  6757 %}
  6759 // Store Integer
  6760 instruct storeI(memory mem, rRegI src) %{
  6761   match(Set mem (StoreI mem src));
  6763   ins_cost(125);
  6764   format %{ "MOV    $mem,$src" %}
  6765   opcode(0x89);
  6766   ins_encode( OpcP, RegMem( src, mem ) );
  6767   ins_pipe( ialu_mem_reg );
  6768 %}
  6770 // Store Long
  6771 instruct storeL(long_memory mem, eRegL src) %{
  6772   predicate(!((StoreLNode*)n)->require_atomic_access());
  6773   match(Set mem (StoreL mem src));
  6775   ins_cost(200);
  6776   format %{ "MOV    $mem,$src.lo\n\t"
  6777             "MOV    $mem+4,$src.hi" %}
  6778   opcode(0x89, 0x89);
  6779   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6780   ins_pipe( ialu_mem_long_reg );
  6781 %}
  6783 // Store Long to Integer
  6784 instruct storeL2I(memory mem, eRegL src) %{
  6785   match(Set mem (StoreI mem (ConvL2I src)));
  6787   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6788   ins_encode %{
  6789     __ movl($mem$$Address, $src$$Register);
  6790   %}
  6791   ins_pipe(ialu_mem_reg);
  6792 %}
  6794 // Volatile Store Long.  Must be atomic, so move it into
  6795 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6796 // target address before the store (for null-ptr checks)
  6797 // so the memory operand is used twice in the encoding.
  6798 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6799   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6800   match(Set mem (StoreL mem src));
  6801   effect( KILL cr );
  6802   ins_cost(400);
  6803   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6804             "FILD   $src\n\t"
  6805             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6806   opcode(0x3B);
  6807   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6808   ins_pipe( fpu_reg_mem );
  6809 %}
  6811 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6812   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6813   match(Set mem (StoreL mem src));
  6814   effect( TEMP tmp, KILL cr );
  6815   ins_cost(380);
  6816   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6817             "MOVSD  $tmp,$src\n\t"
  6818             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6819   ins_encode %{
  6820     __ cmpl(rax, $mem$$Address);
  6821     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6822     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6823   %}
  6824   ins_pipe( pipe_slow );
  6825 %}
  6827 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6828   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6829   match(Set mem (StoreL mem src));
  6830   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6831   ins_cost(360);
  6832   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6833             "MOVD   $tmp,$src.lo\n\t"
  6834             "MOVD   $tmp2,$src.hi\n\t"
  6835             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6836             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6837   ins_encode %{
  6838     __ cmpl(rax, $mem$$Address);
  6839     __ movdl($tmp$$XMMRegister, $src$$Register);
  6840     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6841     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6842     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6843   %}
  6844   ins_pipe( pipe_slow );
  6845 %}
  6847 // Store Pointer; for storing unknown oops and raw pointers
  6848 instruct storeP(memory mem, anyRegP src) %{
  6849   match(Set mem (StoreP mem src));
  6851   ins_cost(125);
  6852   format %{ "MOV    $mem,$src" %}
  6853   opcode(0x89);
  6854   ins_encode( OpcP, RegMem( src, mem ) );
  6855   ins_pipe( ialu_mem_reg );
  6856 %}
  6858 // Store Integer Immediate
  6859 instruct storeImmI(memory mem, immI src) %{
  6860   match(Set mem (StoreI mem src));
  6862   ins_cost(150);
  6863   format %{ "MOV    $mem,$src" %}
  6864   opcode(0xC7);               /* C7 /0 */
  6865   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6866   ins_pipe( ialu_mem_imm );
  6867 %}
  6869 // Store Short/Char Immediate
  6870 instruct storeImmI16(memory mem, immI16 src) %{
  6871   predicate(UseStoreImmI16);
  6872   match(Set mem (StoreC mem src));
  6874   ins_cost(150);
  6875   format %{ "MOV16  $mem,$src" %}
  6876   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6877   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6878   ins_pipe( ialu_mem_imm );
  6879 %}
  6881 // Store Pointer Immediate; null pointers or constant oops that do not
  6882 // need card-mark barriers.
  6883 instruct storeImmP(memory mem, immP src) %{
  6884   match(Set mem (StoreP mem src));
  6886   ins_cost(150);
  6887   format %{ "MOV    $mem,$src" %}
  6888   opcode(0xC7);               /* C7 /0 */
  6889   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6890   ins_pipe( ialu_mem_imm );
  6891 %}
  6893 // Store Byte Immediate
  6894 instruct storeImmB(memory mem, immI8 src) %{
  6895   match(Set mem (StoreB mem src));
  6897   ins_cost(150);
  6898   format %{ "MOV8   $mem,$src" %}
  6899   opcode(0xC6);               /* C6 /0 */
  6900   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6901   ins_pipe( ialu_mem_imm );
  6902 %}
  6904 // Store CMS card-mark Immediate
  6905 instruct storeImmCM(memory mem, immI8 src) %{
  6906   match(Set mem (StoreCM mem src));
  6908   ins_cost(150);
  6909   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6910   opcode(0xC6);               /* C6 /0 */
  6911   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6912   ins_pipe( ialu_mem_imm );
  6913 %}
  6915 // Store Double
  6916 instruct storeDPR( memory mem, regDPR1 src) %{
  6917   predicate(UseSSE<=1);
  6918   match(Set mem (StoreD mem src));
  6920   ins_cost(100);
  6921   format %{ "FST_D  $mem,$src" %}
  6922   opcode(0xDD);       /* DD /2 */
  6923   ins_encode( enc_FPR_store(mem,src) );
  6924   ins_pipe( fpu_mem_reg );
  6925 %}
  6927 // Store double does rounding on x86
  6928 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6929   predicate(UseSSE<=1);
  6930   match(Set mem (StoreD mem (RoundDouble src)));
  6932   ins_cost(100);
  6933   format %{ "FST_D  $mem,$src\t# round" %}
  6934   opcode(0xDD);       /* DD /2 */
  6935   ins_encode( enc_FPR_store(mem,src) );
  6936   ins_pipe( fpu_mem_reg );
  6937 %}
  6939 // Store XMM register to memory (double-precision floating points)
  6940 // MOVSD instruction
  6941 instruct storeD(memory mem, regD src) %{
  6942   predicate(UseSSE>=2);
  6943   match(Set mem (StoreD mem src));
  6944   ins_cost(95);
  6945   format %{ "MOVSD  $mem,$src" %}
  6946   ins_encode %{
  6947     __ movdbl($mem$$Address, $src$$XMMRegister);
  6948   %}
  6949   ins_pipe( pipe_slow );
  6950 %}
  6952 // Store XMM register to memory (single-precision floating point)
  6953 // MOVSS instruction
  6954 instruct storeF(memory mem, regF src) %{
  6955   predicate(UseSSE>=1);
  6956   match(Set mem (StoreF mem src));
  6957   ins_cost(95);
  6958   format %{ "MOVSS  $mem,$src" %}
  6959   ins_encode %{
  6960     __ movflt($mem$$Address, $src$$XMMRegister);
  6961   %}
  6962   ins_pipe( pipe_slow );
  6963 %}
  6965 // Store Float
  6966 instruct storeFPR( memory mem, regFPR1 src) %{
  6967   predicate(UseSSE==0);
  6968   match(Set mem (StoreF mem src));
  6970   ins_cost(100);
  6971   format %{ "FST_S  $mem,$src" %}
  6972   opcode(0xD9);       /* D9 /2 */
  6973   ins_encode( enc_FPR_store(mem,src) );
  6974   ins_pipe( fpu_mem_reg );
  6975 %}
  6977 // Store Float does rounding on x86
  6978 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  6979   predicate(UseSSE==0);
  6980   match(Set mem (StoreF mem (RoundFloat src)));
  6982   ins_cost(100);
  6983   format %{ "FST_S  $mem,$src\t# round" %}
  6984   opcode(0xD9);       /* D9 /2 */
  6985   ins_encode( enc_FPR_store(mem,src) );
  6986   ins_pipe( fpu_mem_reg );
  6987 %}
  6989 // Store Float does rounding on x86
  6990 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  6991   predicate(UseSSE<=1);
  6992   match(Set mem (StoreF mem (ConvD2F src)));
  6994   ins_cost(100);
  6995   format %{ "FST_S  $mem,$src\t# D-round" %}
  6996   opcode(0xD9);       /* D9 /2 */
  6997   ins_encode( enc_FPR_store(mem,src) );
  6998   ins_pipe( fpu_mem_reg );
  6999 %}
  7001 // Store immediate Float value (it is faster than store from FPU register)
  7002 // The instruction usage is guarded by predicate in operand immFPR().
  7003 instruct storeFPR_imm( memory mem, immFPR src) %{
  7004   match(Set mem (StoreF mem src));
  7006   ins_cost(50);
  7007   format %{ "MOV    $mem,$src\t# store float" %}
  7008   opcode(0xC7);               /* C7 /0 */
  7009   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7010   ins_pipe( ialu_mem_imm );
  7011 %}
  7013 // Store immediate Float value (it is faster than store from XMM register)
  7014 // The instruction usage is guarded by predicate in operand immF().
  7015 instruct storeF_imm( memory mem, immF src) %{
  7016   match(Set mem (StoreF mem src));
  7018   ins_cost(50);
  7019   format %{ "MOV    $mem,$src\t# store float" %}
  7020   opcode(0xC7);               /* C7 /0 */
  7021   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7022   ins_pipe( ialu_mem_imm );
  7023 %}
  7025 // Store Integer to stack slot
  7026 instruct storeSSI(stackSlotI dst, rRegI src) %{
  7027   match(Set dst src);
  7029   ins_cost(100);
  7030   format %{ "MOV    $dst,$src" %}
  7031   opcode(0x89);
  7032   ins_encode( OpcPRegSS( dst, src ) );
  7033   ins_pipe( ialu_mem_reg );
  7034 %}
  7036 // Store Integer to stack slot
  7037 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7038   match(Set dst src);
  7040   ins_cost(100);
  7041   format %{ "MOV    $dst,$src" %}
  7042   opcode(0x89);
  7043   ins_encode( OpcPRegSS( dst, src ) );
  7044   ins_pipe( ialu_mem_reg );
  7045 %}
  7047 // Store Long to stack slot
  7048 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7049   match(Set dst src);
  7051   ins_cost(200);
  7052   format %{ "MOV    $dst,$src.lo\n\t"
  7053             "MOV    $dst+4,$src.hi" %}
  7054   opcode(0x89, 0x89);
  7055   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7056   ins_pipe( ialu_mem_long_reg );
  7057 %}
  7059 //----------MemBar Instructions-----------------------------------------------
  7060 // Memory barrier flavors
  7062 instruct membar_acquire() %{
  7063   match(MemBarAcquire);
  7064   ins_cost(400);
  7066   size(0);
  7067   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7068   ins_encode();
  7069   ins_pipe(empty);
  7070 %}
  7072 instruct membar_acquire_lock() %{
  7073   match(MemBarAcquireLock);
  7074   ins_cost(0);
  7076   size(0);
  7077   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7078   ins_encode( );
  7079   ins_pipe(empty);
  7080 %}
  7082 instruct membar_release() %{
  7083   match(MemBarRelease);
  7084   ins_cost(400);
  7086   size(0);
  7087   format %{ "MEMBAR-release ! (empty encoding)" %}
  7088   ins_encode( );
  7089   ins_pipe(empty);
  7090 %}
  7092 instruct membar_release_lock() %{
  7093   match(MemBarReleaseLock);
  7094   ins_cost(0);
  7096   size(0);
  7097   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7098   ins_encode( );
  7099   ins_pipe(empty);
  7100 %}
  7102 instruct membar_volatile(eFlagsReg cr) %{
  7103   match(MemBarVolatile);
  7104   effect(KILL cr);
  7105   ins_cost(400);
  7107   format %{ 
  7108     $$template
  7109     if (os::is_MP()) {
  7110       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7111     } else {
  7112       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7114   %}
  7115   ins_encode %{
  7116     __ membar(Assembler::StoreLoad);
  7117   %}
  7118   ins_pipe(pipe_slow);
  7119 %}
  7121 instruct unnecessary_membar_volatile() %{
  7122   match(MemBarVolatile);
  7123   predicate(Matcher::post_store_load_barrier(n));
  7124   ins_cost(0);
  7126   size(0);
  7127   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7128   ins_encode( );
  7129   ins_pipe(empty);
  7130 %}
  7132 instruct membar_storestore() %{
  7133   match(MemBarStoreStore);
  7134   ins_cost(0);
  7136   size(0);
  7137   format %{ "MEMBAR-storestore (empty encoding)" %}
  7138   ins_encode( );
  7139   ins_pipe(empty);
  7140 %}
  7142 //----------Move Instructions--------------------------------------------------
  7143 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7144   match(Set dst (CastX2P src));
  7145   format %{ "# X2P  $dst, $src" %}
  7146   ins_encode( /*empty encoding*/ );
  7147   ins_cost(0);
  7148   ins_pipe(empty);
  7149 %}
  7151 instruct castP2X(rRegI dst, eRegP src ) %{
  7152   match(Set dst (CastP2X src));
  7153   ins_cost(50);
  7154   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7155   ins_encode( enc_Copy( dst, src) );
  7156   ins_pipe( ialu_reg_reg );
  7157 %}
  7159 //----------Conditional Move---------------------------------------------------
  7160 // Conditional move
  7161 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  7162   predicate(!VM_Version::supports_cmov() );
  7163   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7164   ins_cost(200);
  7165   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7166             "MOV    $dst,$src\n"
  7167       "skip:" %}
  7168   ins_encode %{
  7169     Label Lskip;
  7170     // Invert sense of branch from sense of CMOV
  7171     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7172     __ movl($dst$$Register, $src$$Register);
  7173     __ bind(Lskip);
  7174   %}
  7175   ins_pipe( pipe_cmov_reg );
  7176 %}
  7178 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  7179   predicate(!VM_Version::supports_cmov() );
  7180   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7181   ins_cost(200);
  7182   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7183             "MOV    $dst,$src\n"
  7184       "skip:" %}
  7185   ins_encode %{
  7186     Label Lskip;
  7187     // Invert sense of branch from sense of CMOV
  7188     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7189     __ movl($dst$$Register, $src$$Register);
  7190     __ bind(Lskip);
  7191   %}
  7192   ins_pipe( pipe_cmov_reg );
  7193 %}
  7195 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  7196   predicate(VM_Version::supports_cmov() );
  7197   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7198   ins_cost(200);
  7199   format %{ "CMOV$cop $dst,$src" %}
  7200   opcode(0x0F,0x40);
  7201   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7202   ins_pipe( pipe_cmov_reg );
  7203 %}
  7205 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  7206   predicate(VM_Version::supports_cmov() );
  7207   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7208   ins_cost(200);
  7209   format %{ "CMOV$cop $dst,$src" %}
  7210   opcode(0x0F,0x40);
  7211   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7212   ins_pipe( pipe_cmov_reg );
  7213 %}
  7215 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  7216   predicate(VM_Version::supports_cmov() );
  7217   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7218   ins_cost(200);
  7219   expand %{
  7220     cmovI_regU(cop, cr, dst, src);
  7221   %}
  7222 %}
  7224 // Conditional move
  7225 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  7226   predicate(VM_Version::supports_cmov() );
  7227   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7228   ins_cost(250);
  7229   format %{ "CMOV$cop $dst,$src" %}
  7230   opcode(0x0F,0x40);
  7231   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7232   ins_pipe( pipe_cmov_mem );
  7233 %}
  7235 // Conditional move
  7236 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  7237   predicate(VM_Version::supports_cmov() );
  7238   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7239   ins_cost(250);
  7240   format %{ "CMOV$cop $dst,$src" %}
  7241   opcode(0x0F,0x40);
  7242   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7243   ins_pipe( pipe_cmov_mem );
  7244 %}
  7246 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  7247   predicate(VM_Version::supports_cmov() );
  7248   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7249   ins_cost(250);
  7250   expand %{
  7251     cmovI_memU(cop, cr, dst, src);
  7252   %}
  7253 %}
  7255 // Conditional move
  7256 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7257   predicate(VM_Version::supports_cmov() );
  7258   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7259   ins_cost(200);
  7260   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7261   opcode(0x0F,0x40);
  7262   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7263   ins_pipe( pipe_cmov_reg );
  7264 %}
  7266 // Conditional move (non-P6 version)
  7267 // Note:  a CMoveP is generated for  stubs and native wrappers
  7268 //        regardless of whether we are on a P6, so we
  7269 //        emulate a cmov here
  7270 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7271   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7272   ins_cost(300);
  7273   format %{ "Jn$cop   skip\n\t"
  7274           "MOV    $dst,$src\t# pointer\n"
  7275       "skip:" %}
  7276   opcode(0x8b);
  7277   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7278   ins_pipe( pipe_cmov_reg );
  7279 %}
  7281 // Conditional move
  7282 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7283   predicate(VM_Version::supports_cmov() );
  7284   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7285   ins_cost(200);
  7286   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7287   opcode(0x0F,0x40);
  7288   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7289   ins_pipe( pipe_cmov_reg );
  7290 %}
  7292 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7293   predicate(VM_Version::supports_cmov() );
  7294   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7295   ins_cost(200);
  7296   expand %{
  7297     cmovP_regU(cop, cr, dst, src);
  7298   %}
  7299 %}
  7301 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7302 // correctly meets the two pointer arguments; one is an incoming
  7303 // register but the other is a memory operand.  ALSO appears to
  7304 // be buggy with implicit null checks.
  7305 //
  7306 //// Conditional move
  7307 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7308 //  predicate(VM_Version::supports_cmov() );
  7309 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7310 //  ins_cost(250);
  7311 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7312 //  opcode(0x0F,0x40);
  7313 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7314 //  ins_pipe( pipe_cmov_mem );
  7315 //%}
  7316 //
  7317 //// Conditional move
  7318 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7319 //  predicate(VM_Version::supports_cmov() );
  7320 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7321 //  ins_cost(250);
  7322 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7323 //  opcode(0x0F,0x40);
  7324 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7325 //  ins_pipe( pipe_cmov_mem );
  7326 //%}
  7328 // Conditional move
  7329 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7330   predicate(UseSSE<=1);
  7331   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7332   ins_cost(200);
  7333   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7334   opcode(0xDA);
  7335   ins_encode( enc_cmov_dpr(cop,src) );
  7336   ins_pipe( pipe_cmovDPR_reg );
  7337 %}
  7339 // Conditional move
  7340 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7341   predicate(UseSSE==0);
  7342   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7343   ins_cost(200);
  7344   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7345   opcode(0xDA);
  7346   ins_encode( enc_cmov_dpr(cop,src) );
  7347   ins_pipe( pipe_cmovDPR_reg );
  7348 %}
  7350 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7351 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7352   predicate(UseSSE<=1);
  7353   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7354   ins_cost(200);
  7355   format %{ "Jn$cop   skip\n\t"
  7356             "MOV    $dst,$src\t# double\n"
  7357       "skip:" %}
  7358   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7359   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7360   ins_pipe( pipe_cmovDPR_reg );
  7361 %}
  7363 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7364 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7365   predicate(UseSSE==0);
  7366   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7367   ins_cost(200);
  7368   format %{ "Jn$cop    skip\n\t"
  7369             "MOV    $dst,$src\t# float\n"
  7370       "skip:" %}
  7371   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7372   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7373   ins_pipe( pipe_cmovDPR_reg );
  7374 %}
  7376 // No CMOVE with SSE/SSE2
  7377 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7378   predicate (UseSSE>=1);
  7379   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7380   ins_cost(200);
  7381   format %{ "Jn$cop   skip\n\t"
  7382             "MOVSS  $dst,$src\t# float\n"
  7383       "skip:" %}
  7384   ins_encode %{
  7385     Label skip;
  7386     // Invert sense of branch from sense of CMOV
  7387     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7388     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7389     __ bind(skip);
  7390   %}
  7391   ins_pipe( pipe_slow );
  7392 %}
  7394 // No CMOVE with SSE/SSE2
  7395 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7396   predicate (UseSSE>=2);
  7397   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7398   ins_cost(200);
  7399   format %{ "Jn$cop   skip\n\t"
  7400             "MOVSD  $dst,$src\t# float\n"
  7401       "skip:" %}
  7402   ins_encode %{
  7403     Label skip;
  7404     // Invert sense of branch from sense of CMOV
  7405     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7406     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7407     __ bind(skip);
  7408   %}
  7409   ins_pipe( pipe_slow );
  7410 %}
  7412 // unsigned version
  7413 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7414   predicate (UseSSE>=1);
  7415   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7416   ins_cost(200);
  7417   format %{ "Jn$cop   skip\n\t"
  7418             "MOVSS  $dst,$src\t# float\n"
  7419       "skip:" %}
  7420   ins_encode %{
  7421     Label skip;
  7422     // Invert sense of branch from sense of CMOV
  7423     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7424     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7425     __ bind(skip);
  7426   %}
  7427   ins_pipe( pipe_slow );
  7428 %}
  7430 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7431   predicate (UseSSE>=1);
  7432   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7433   ins_cost(200);
  7434   expand %{
  7435     fcmovF_regU(cop, cr, dst, src);
  7436   %}
  7437 %}
  7439 // unsigned version
  7440 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7441   predicate (UseSSE>=2);
  7442   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7443   ins_cost(200);
  7444   format %{ "Jn$cop   skip\n\t"
  7445             "MOVSD  $dst,$src\t# float\n"
  7446       "skip:" %}
  7447   ins_encode %{
  7448     Label skip;
  7449     // Invert sense of branch from sense of CMOV
  7450     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7451     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7452     __ bind(skip);
  7453   %}
  7454   ins_pipe( pipe_slow );
  7455 %}
  7457 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7458   predicate (UseSSE>=2);
  7459   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7460   ins_cost(200);
  7461   expand %{
  7462     fcmovD_regU(cop, cr, dst, src);
  7463   %}
  7464 %}
  7466 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7467   predicate(VM_Version::supports_cmov() );
  7468   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7469   ins_cost(200);
  7470   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7471             "CMOV$cop $dst.hi,$src.hi" %}
  7472   opcode(0x0F,0x40);
  7473   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7474   ins_pipe( pipe_cmov_reg_long );
  7475 %}
  7477 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7478   predicate(VM_Version::supports_cmov() );
  7479   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7480   ins_cost(200);
  7481   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7482             "CMOV$cop $dst.hi,$src.hi" %}
  7483   opcode(0x0F,0x40);
  7484   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7485   ins_pipe( pipe_cmov_reg_long );
  7486 %}
  7488 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7489   predicate(VM_Version::supports_cmov() );
  7490   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7491   ins_cost(200);
  7492   expand %{
  7493     cmovL_regU(cop, cr, dst, src);
  7494   %}
  7495 %}
  7497 //----------Arithmetic Instructions--------------------------------------------
  7498 //----------Addition Instructions----------------------------------------------
  7499 // Integer Addition Instructions
  7500 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7501   match(Set dst (AddI dst src));
  7502   effect(KILL cr);
  7504   size(2);
  7505   format %{ "ADD    $dst,$src" %}
  7506   opcode(0x03);
  7507   ins_encode( OpcP, RegReg( dst, src) );
  7508   ins_pipe( ialu_reg_reg );
  7509 %}
  7511 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7512   match(Set dst (AddI dst src));
  7513   effect(KILL cr);
  7515   format %{ "ADD    $dst,$src" %}
  7516   opcode(0x81, 0x00); /* /0 id */
  7517   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7518   ins_pipe( ialu_reg );
  7519 %}
  7521 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7522   predicate(UseIncDec);
  7523   match(Set dst (AddI dst src));
  7524   effect(KILL cr);
  7526   size(1);
  7527   format %{ "INC    $dst" %}
  7528   opcode(0x40); /*  */
  7529   ins_encode( Opc_plus( primary, dst ) );
  7530   ins_pipe( ialu_reg );
  7531 %}
  7533 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7534   match(Set dst (AddI src0 src1));
  7535   ins_cost(110);
  7537   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7538   opcode(0x8D); /* 0x8D /r */
  7539   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7540   ins_pipe( ialu_reg_reg );
  7541 %}
  7543 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7544   match(Set dst (AddP src0 src1));
  7545   ins_cost(110);
  7547   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7548   opcode(0x8D); /* 0x8D /r */
  7549   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7550   ins_pipe( ialu_reg_reg );
  7551 %}
  7553 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7554   predicate(UseIncDec);
  7555   match(Set dst (AddI dst src));
  7556   effect(KILL cr);
  7558   size(1);
  7559   format %{ "DEC    $dst" %}
  7560   opcode(0x48); /*  */
  7561   ins_encode( Opc_plus( primary, dst ) );
  7562   ins_pipe( ialu_reg );
  7563 %}
  7565 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7566   match(Set dst (AddP dst src));
  7567   effect(KILL cr);
  7569   size(2);
  7570   format %{ "ADD    $dst,$src" %}
  7571   opcode(0x03);
  7572   ins_encode( OpcP, RegReg( dst, src) );
  7573   ins_pipe( ialu_reg_reg );
  7574 %}
  7576 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7577   match(Set dst (AddP dst src));
  7578   effect(KILL cr);
  7580   format %{ "ADD    $dst,$src" %}
  7581   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7582   // ins_encode( RegImm( dst, src) );
  7583   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7584   ins_pipe( ialu_reg );
  7585 %}
  7587 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7588   match(Set dst (AddI dst (LoadI src)));
  7589   effect(KILL cr);
  7591   ins_cost(125);
  7592   format %{ "ADD    $dst,$src" %}
  7593   opcode(0x03);
  7594   ins_encode( OpcP, RegMem( dst, src) );
  7595   ins_pipe( ialu_reg_mem );
  7596 %}
  7598 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7599   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7600   effect(KILL cr);
  7602   ins_cost(150);
  7603   format %{ "ADD    $dst,$src" %}
  7604   opcode(0x01);  /* Opcode 01 /r */
  7605   ins_encode( OpcP, RegMem( src, dst ) );
  7606   ins_pipe( ialu_mem_reg );
  7607 %}
  7609 // Add Memory with Immediate
  7610 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7611   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7612   effect(KILL cr);
  7614   ins_cost(125);
  7615   format %{ "ADD    $dst,$src" %}
  7616   opcode(0x81);               /* Opcode 81 /0 id */
  7617   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7618   ins_pipe( ialu_mem_imm );
  7619 %}
  7621 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7622   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7623   effect(KILL cr);
  7625   ins_cost(125);
  7626   format %{ "INC    $dst" %}
  7627   opcode(0xFF);               /* Opcode FF /0 */
  7628   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7629   ins_pipe( ialu_mem_imm );
  7630 %}
  7632 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7633   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7634   effect(KILL cr);
  7636   ins_cost(125);
  7637   format %{ "DEC    $dst" %}
  7638   opcode(0xFF);               /* Opcode FF /1 */
  7639   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7640   ins_pipe( ialu_mem_imm );
  7641 %}
  7644 instruct checkCastPP( eRegP dst ) %{
  7645   match(Set dst (CheckCastPP dst));
  7647   size(0);
  7648   format %{ "#checkcastPP of $dst" %}
  7649   ins_encode( /*empty encoding*/ );
  7650   ins_pipe( empty );
  7651 %}
  7653 instruct castPP( eRegP dst ) %{
  7654   match(Set dst (CastPP dst));
  7655   format %{ "#castPP of $dst" %}
  7656   ins_encode( /*empty encoding*/ );
  7657   ins_pipe( empty );
  7658 %}
  7660 instruct castII( rRegI dst ) %{
  7661   match(Set dst (CastII dst));
  7662   format %{ "#castII of $dst" %}
  7663   ins_encode( /*empty encoding*/ );
  7664   ins_cost(0);
  7665   ins_pipe( empty );
  7666 %}
  7669 // Load-locked - same as a regular pointer load when used with compare-swap
  7670 instruct loadPLocked(eRegP dst, memory mem) %{
  7671   match(Set dst (LoadPLocked mem));
  7673   ins_cost(125);
  7674   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7675   opcode(0x8B);
  7676   ins_encode( OpcP, RegMem(dst,mem));
  7677   ins_pipe( ialu_reg_mem );
  7678 %}
  7680 // Conditional-store of the updated heap-top.
  7681 // Used during allocation of the shared heap.
  7682 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7683 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7684   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7685   // EAX is killed if there is contention, but then it's also unused.
  7686   // In the common case of no contention, EAX holds the new oop address.
  7687   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7688   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7689   ins_pipe( pipe_cmpxchg );
  7690 %}
  7692 // Conditional-store of an int value.
  7693 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7694 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7695   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7696   effect(KILL oldval);
  7697   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7698   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7699   ins_pipe( pipe_cmpxchg );
  7700 %}
  7702 // Conditional-store of a long value.
  7703 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7704 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7705   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7706   effect(KILL oldval);
  7707   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7708             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7709             "XCHG   EBX,ECX"
  7710   %}
  7711   ins_encode %{
  7712     // Note: we need to swap rbx, and rcx before and after the
  7713     //       cmpxchg8 instruction because the instruction uses
  7714     //       rcx as the high order word of the new value to store but
  7715     //       our register encoding uses rbx.
  7716     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7717     if( os::is_MP() )
  7718       __ lock();
  7719     __ cmpxchg8($mem$$Address);
  7720     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7721   %}
  7722   ins_pipe( pipe_cmpxchg );
  7723 %}
  7725 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7727 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7728   predicate(VM_Version::supports_cx8());
  7729   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7730   effect(KILL cr, KILL oldval);
  7731   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7732             "MOV    $res,0\n\t"
  7733             "JNE,s  fail\n\t"
  7734             "MOV    $res,1\n"
  7735           "fail:" %}
  7736   ins_encode( enc_cmpxchg8(mem_ptr),
  7737               enc_flags_ne_to_boolean(res) );
  7738   ins_pipe( pipe_cmpxchg );
  7739 %}
  7741 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7742   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7743   effect(KILL cr, KILL oldval);
  7744   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7745             "MOV    $res,0\n\t"
  7746             "JNE,s  fail\n\t"
  7747             "MOV    $res,1\n"
  7748           "fail:" %}
  7749   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7750   ins_pipe( pipe_cmpxchg );
  7751 %}
  7753 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7754   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7755   effect(KILL cr, KILL oldval);
  7756   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7757             "MOV    $res,0\n\t"
  7758             "JNE,s  fail\n\t"
  7759             "MOV    $res,1\n"
  7760           "fail:" %}
  7761   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7762   ins_pipe( pipe_cmpxchg );
  7763 %}
  7765 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7766   predicate(n->as_LoadStore()->result_not_used());
  7767   match(Set dummy (GetAndAddI mem add));
  7768   effect(KILL cr);
  7769   format %{ "ADDL  [$mem],$add" %}
  7770   ins_encode %{
  7771     if (os::is_MP()) { __ lock(); }
  7772     __ addl($mem$$Address, $add$$constant);
  7773   %}
  7774   ins_pipe( pipe_cmpxchg );
  7775 %}
  7777 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7778   match(Set newval (GetAndAddI mem newval));
  7779   effect(KILL cr);
  7780   format %{ "XADDL  [$mem],$newval" %}
  7781   ins_encode %{
  7782     if (os::is_MP()) { __ lock(); }
  7783     __ xaddl($mem$$Address, $newval$$Register);
  7784   %}
  7785   ins_pipe( pipe_cmpxchg );
  7786 %}
  7788 instruct xchgI( memory mem, rRegI newval) %{
  7789   match(Set newval (GetAndSetI mem newval));
  7790   format %{ "XCHGL  $newval,[$mem]" %}
  7791   ins_encode %{
  7792     __ xchgl($newval$$Register, $mem$$Address);
  7793   %}
  7794   ins_pipe( pipe_cmpxchg );
  7795 %}
  7797 instruct xchgP( memory mem, pRegP newval) %{
  7798   match(Set newval (GetAndSetP mem newval));
  7799   format %{ "XCHGL  $newval,[$mem]" %}
  7800   ins_encode %{
  7801     __ xchgl($newval$$Register, $mem$$Address);
  7802   %}
  7803   ins_pipe( pipe_cmpxchg );
  7804 %}
  7806 //----------Subtraction Instructions-------------------------------------------
  7807 // Integer Subtraction Instructions
  7808 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7809   match(Set dst (SubI dst src));
  7810   effect(KILL cr);
  7812   size(2);
  7813   format %{ "SUB    $dst,$src" %}
  7814   opcode(0x2B);
  7815   ins_encode( OpcP, RegReg( dst, src) );
  7816   ins_pipe( ialu_reg_reg );
  7817 %}
  7819 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7820   match(Set dst (SubI dst src));
  7821   effect(KILL cr);
  7823   format %{ "SUB    $dst,$src" %}
  7824   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7825   // ins_encode( RegImm( dst, src) );
  7826   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7827   ins_pipe( ialu_reg );
  7828 %}
  7830 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7831   match(Set dst (SubI dst (LoadI src)));
  7832   effect(KILL cr);
  7834   ins_cost(125);
  7835   format %{ "SUB    $dst,$src" %}
  7836   opcode(0x2B);
  7837   ins_encode( OpcP, RegMem( dst, src) );
  7838   ins_pipe( ialu_reg_mem );
  7839 %}
  7841 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7842   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7843   effect(KILL cr);
  7845   ins_cost(150);
  7846   format %{ "SUB    $dst,$src" %}
  7847   opcode(0x29);  /* Opcode 29 /r */
  7848   ins_encode( OpcP, RegMem( src, dst ) );
  7849   ins_pipe( ialu_mem_reg );
  7850 %}
  7852 // Subtract from a pointer
  7853 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7854   match(Set dst (AddP dst (SubI zero src)));
  7855   effect(KILL cr);
  7857   size(2);
  7858   format %{ "SUB    $dst,$src" %}
  7859   opcode(0x2B);
  7860   ins_encode( OpcP, RegReg( dst, src) );
  7861   ins_pipe( ialu_reg_reg );
  7862 %}
  7864 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7865   match(Set dst (SubI zero dst));
  7866   effect(KILL cr);
  7868   size(2);
  7869   format %{ "NEG    $dst" %}
  7870   opcode(0xF7,0x03);  // Opcode F7 /3
  7871   ins_encode( OpcP, RegOpc( dst ) );
  7872   ins_pipe( ialu_reg );
  7873 %}
  7876 //----------Multiplication/Division Instructions-------------------------------
  7877 // Integer Multiplication Instructions
  7878 // Multiply Register
  7879 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7880   match(Set dst (MulI dst src));
  7881   effect(KILL cr);
  7883   size(3);
  7884   ins_cost(300);
  7885   format %{ "IMUL   $dst,$src" %}
  7886   opcode(0xAF, 0x0F);
  7887   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7888   ins_pipe( ialu_reg_reg_alu0 );
  7889 %}
  7891 // Multiply 32-bit Immediate
  7892 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7893   match(Set dst (MulI src imm));
  7894   effect(KILL cr);
  7896   ins_cost(300);
  7897   format %{ "IMUL   $dst,$src,$imm" %}
  7898   opcode(0x69);  /* 69 /r id */
  7899   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7900   ins_pipe( ialu_reg_reg_alu0 );
  7901 %}
  7903 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7904   match(Set dst src);
  7905   effect(KILL cr);
  7907   // Note that this is artificially increased to make it more expensive than loadConL
  7908   ins_cost(250);
  7909   format %{ "MOV    EAX,$src\t// low word only" %}
  7910   opcode(0xB8);
  7911   ins_encode( LdImmL_Lo(dst, src) );
  7912   ins_pipe( ialu_reg_fat );
  7913 %}
  7915 // Multiply by 32-bit Immediate, taking the shifted high order results
  7916 //  (special case for shift by 32)
  7917 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7918   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7919   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7920              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7921              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7922   effect(USE src1, KILL cr);
  7924   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7925   ins_cost(0*100 + 1*400 - 150);
  7926   format %{ "IMUL   EDX:EAX,$src1" %}
  7927   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7928   ins_pipe( pipe_slow );
  7929 %}
  7931 // Multiply by 32-bit Immediate, taking the shifted high order results
  7932 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7933   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7934   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7935              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7936              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7937   effect(USE src1, KILL cr);
  7939   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7940   ins_cost(1*100 + 1*400 - 150);
  7941   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7942             "SAR    EDX,$cnt-32" %}
  7943   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7944   ins_pipe( pipe_slow );
  7945 %}
  7947 // Multiply Memory 32-bit Immediate
  7948 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7949   match(Set dst (MulI (LoadI src) imm));
  7950   effect(KILL cr);
  7952   ins_cost(300);
  7953   format %{ "IMUL   $dst,$src,$imm" %}
  7954   opcode(0x69);  /* 69 /r id */
  7955   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7956   ins_pipe( ialu_reg_mem_alu0 );
  7957 %}
  7959 // Multiply Memory
  7960 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  7961   match(Set dst (MulI dst (LoadI src)));
  7962   effect(KILL cr);
  7964   ins_cost(350);
  7965   format %{ "IMUL   $dst,$src" %}
  7966   opcode(0xAF, 0x0F);
  7967   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  7968   ins_pipe( ialu_reg_mem_alu0 );
  7969 %}
  7971 // Multiply Register Int to Long
  7972 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  7973   // Basic Idea: long = (long)int * (long)int
  7974   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  7975   effect(DEF dst, USE src, USE src1, KILL flags);
  7977   ins_cost(300);
  7978   format %{ "IMUL   $dst,$src1" %}
  7980   ins_encode( long_int_multiply( dst, src1 ) );
  7981   ins_pipe( ialu_reg_reg_alu0 );
  7982 %}
  7984 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  7985   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  7986   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  7987   effect(KILL flags);
  7989   ins_cost(300);
  7990   format %{ "MUL    $dst,$src1" %}
  7992   ins_encode( long_uint_multiply(dst, src1) );
  7993   ins_pipe( ialu_reg_reg_alu0 );
  7994 %}
  7996 // Multiply Register Long
  7997 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7998   match(Set dst (MulL dst src));
  7999   effect(KILL cr, TEMP tmp);
  8000   ins_cost(4*100+3*400);
  8001 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8002 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8003   format %{ "MOV    $tmp,$src.lo\n\t"
  8004             "IMUL   $tmp,EDX\n\t"
  8005             "MOV    EDX,$src.hi\n\t"
  8006             "IMUL   EDX,EAX\n\t"
  8007             "ADD    $tmp,EDX\n\t"
  8008             "MUL    EDX:EAX,$src.lo\n\t"
  8009             "ADD    EDX,$tmp" %}
  8010   ins_encode( long_multiply( dst, src, tmp ) );
  8011   ins_pipe( pipe_slow );
  8012 %}
  8014 // Multiply Register Long where the left operand's high 32 bits are zero
  8015 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8016   predicate(is_operand_hi32_zero(n->in(1)));
  8017   match(Set dst (MulL dst src));
  8018   effect(KILL cr, TEMP tmp);
  8019   ins_cost(2*100+2*400);
  8020 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8021 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8022   format %{ "MOV    $tmp,$src.hi\n\t"
  8023             "IMUL   $tmp,EAX\n\t"
  8024             "MUL    EDX:EAX,$src.lo\n\t"
  8025             "ADD    EDX,$tmp" %}
  8026   ins_encode %{
  8027     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8028     __ imull($tmp$$Register, rax);
  8029     __ mull($src$$Register);
  8030     __ addl(rdx, $tmp$$Register);
  8031   %}
  8032   ins_pipe( pipe_slow );
  8033 %}
  8035 // Multiply Register Long where the right operand's high 32 bits are zero
  8036 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8037   predicate(is_operand_hi32_zero(n->in(2)));
  8038   match(Set dst (MulL dst src));
  8039   effect(KILL cr, TEMP tmp);
  8040   ins_cost(2*100+2*400);
  8041 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8042 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8043   format %{ "MOV    $tmp,$src.lo\n\t"
  8044             "IMUL   $tmp,EDX\n\t"
  8045             "MUL    EDX:EAX,$src.lo\n\t"
  8046             "ADD    EDX,$tmp" %}
  8047   ins_encode %{
  8048     __ movl($tmp$$Register, $src$$Register);
  8049     __ imull($tmp$$Register, rdx);
  8050     __ mull($src$$Register);
  8051     __ addl(rdx, $tmp$$Register);
  8052   %}
  8053   ins_pipe( pipe_slow );
  8054 %}
  8056 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8057 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8058   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8059   match(Set dst (MulL dst src));
  8060   effect(KILL cr);
  8061   ins_cost(1*400);
  8062 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8063 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8064   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8065   ins_encode %{
  8066     __ mull($src$$Register);
  8067   %}
  8068   ins_pipe( pipe_slow );
  8069 %}
  8071 // Multiply Register Long by small constant
  8072 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  8073   match(Set dst (MulL dst src));
  8074   effect(KILL cr, TEMP tmp);
  8075   ins_cost(2*100+2*400);
  8076   size(12);
  8077 // Basic idea: lo(result) = lo(src * EAX)
  8078 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8079   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8080             "MOV    EDX,$src\n\t"
  8081             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8082             "ADD    EDX,$tmp" %}
  8083   ins_encode( long_multiply_con( dst, src, tmp ) );
  8084   ins_pipe( pipe_slow );
  8085 %}
  8087 // Integer DIV with Register
  8088 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8089   match(Set rax (DivI rax div));
  8090   effect(KILL rdx, KILL cr);
  8091   size(26);
  8092   ins_cost(30*100+10*100);
  8093   format %{ "CMP    EAX,0x80000000\n\t"
  8094             "JNE,s  normal\n\t"
  8095             "XOR    EDX,EDX\n\t"
  8096             "CMP    ECX,-1\n\t"
  8097             "JE,s   done\n"
  8098     "normal: CDQ\n\t"
  8099             "IDIV   $div\n\t"
  8100     "done:"        %}
  8101   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8102   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8103   ins_pipe( ialu_reg_reg_alu0 );
  8104 %}
  8106 // Divide Register Long
  8107 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8108   match(Set dst (DivL src1 src2));
  8109   effect( KILL cr, KILL cx, KILL bx );
  8110   ins_cost(10000);
  8111   format %{ "PUSH   $src1.hi\n\t"
  8112             "PUSH   $src1.lo\n\t"
  8113             "PUSH   $src2.hi\n\t"
  8114             "PUSH   $src2.lo\n\t"
  8115             "CALL   SharedRuntime::ldiv\n\t"
  8116             "ADD    ESP,16" %}
  8117   ins_encode( long_div(src1,src2) );
  8118   ins_pipe( pipe_slow );
  8119 %}
  8121 // Integer DIVMOD with Register, both quotient and mod results
  8122 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8123   match(DivModI rax div);
  8124   effect(KILL cr);
  8125   size(26);
  8126   ins_cost(30*100+10*100);
  8127   format %{ "CMP    EAX,0x80000000\n\t"
  8128             "JNE,s  normal\n\t"
  8129             "XOR    EDX,EDX\n\t"
  8130             "CMP    ECX,-1\n\t"
  8131             "JE,s   done\n"
  8132     "normal: CDQ\n\t"
  8133             "IDIV   $div\n\t"
  8134     "done:"        %}
  8135   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8136   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8137   ins_pipe( pipe_slow );
  8138 %}
  8140 // Integer MOD with Register
  8141 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8142   match(Set rdx (ModI rax div));
  8143   effect(KILL rax, KILL cr);
  8145   size(26);
  8146   ins_cost(300);
  8147   format %{ "CDQ\n\t"
  8148             "IDIV   $div" %}
  8149   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8150   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8151   ins_pipe( ialu_reg_reg_alu0 );
  8152 %}
  8154 // Remainder Register Long
  8155 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8156   match(Set dst (ModL src1 src2));
  8157   effect( KILL cr, KILL cx, KILL bx );
  8158   ins_cost(10000);
  8159   format %{ "PUSH   $src1.hi\n\t"
  8160             "PUSH   $src1.lo\n\t"
  8161             "PUSH   $src2.hi\n\t"
  8162             "PUSH   $src2.lo\n\t"
  8163             "CALL   SharedRuntime::lrem\n\t"
  8164             "ADD    ESP,16" %}
  8165   ins_encode( long_mod(src1,src2) );
  8166   ins_pipe( pipe_slow );
  8167 %}
  8169 // Divide Register Long (no special case since divisor != -1)
  8170 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8171   match(Set dst (DivL dst imm));
  8172   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8173   ins_cost(1000);
  8174   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8175             "XOR    $tmp2,$tmp2\n\t"
  8176             "CMP    $tmp,EDX\n\t"
  8177             "JA,s   fast\n\t"
  8178             "MOV    $tmp2,EAX\n\t"
  8179             "MOV    EAX,EDX\n\t"
  8180             "MOV    EDX,0\n\t"
  8181             "JLE,s  pos\n\t"
  8182             "LNEG   EAX : $tmp2\n\t"
  8183             "DIV    $tmp # unsigned division\n\t"
  8184             "XCHG   EAX,$tmp2\n\t"
  8185             "DIV    $tmp\n\t"
  8186             "LNEG   $tmp2 : EAX\n\t"
  8187             "JMP,s  done\n"
  8188     "pos:\n\t"
  8189             "DIV    $tmp\n\t"
  8190             "XCHG   EAX,$tmp2\n"
  8191     "fast:\n\t"
  8192             "DIV    $tmp\n"
  8193     "done:\n\t"
  8194             "MOV    EDX,$tmp2\n\t"
  8195             "NEG    EDX:EAX # if $imm < 0" %}
  8196   ins_encode %{
  8197     int con = (int)$imm$$constant;
  8198     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8199     int pcon = (con > 0) ? con : -con;
  8200     Label Lfast, Lpos, Ldone;
  8202     __ movl($tmp$$Register, pcon);
  8203     __ xorl($tmp2$$Register,$tmp2$$Register);
  8204     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8205     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8207     __ movl($tmp2$$Register, $dst$$Register); // save
  8208     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8209     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8210     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8212     // Negative dividend.
  8213     // convert value to positive to use unsigned division
  8214     __ lneg($dst$$Register, $tmp2$$Register);
  8215     __ divl($tmp$$Register);
  8216     __ xchgl($dst$$Register, $tmp2$$Register);
  8217     __ divl($tmp$$Register);
  8218     // revert result back to negative
  8219     __ lneg($tmp2$$Register, $dst$$Register);
  8220     __ jmpb(Ldone);
  8222     __ bind(Lpos);
  8223     __ divl($tmp$$Register); // Use unsigned division
  8224     __ xchgl($dst$$Register, $tmp2$$Register);
  8225     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8227     __ bind(Lfast);
  8228     // fast path: src is positive
  8229     __ divl($tmp$$Register); // Use unsigned division
  8231     __ bind(Ldone);
  8232     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8233     if (con < 0) {
  8234       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8236   %}
  8237   ins_pipe( pipe_slow );
  8238 %}
  8240 // Remainder Register Long (remainder fit into 32 bits)
  8241 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8242   match(Set dst (ModL dst imm));
  8243   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8244   ins_cost(1000);
  8245   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8246             "CMP    $tmp,EDX\n\t"
  8247             "JA,s   fast\n\t"
  8248             "MOV    $tmp2,EAX\n\t"
  8249             "MOV    EAX,EDX\n\t"
  8250             "MOV    EDX,0\n\t"
  8251             "JLE,s  pos\n\t"
  8252             "LNEG   EAX : $tmp2\n\t"
  8253             "DIV    $tmp # unsigned division\n\t"
  8254             "MOV    EAX,$tmp2\n\t"
  8255             "DIV    $tmp\n\t"
  8256             "NEG    EDX\n\t"
  8257             "JMP,s  done\n"
  8258     "pos:\n\t"
  8259             "DIV    $tmp\n\t"
  8260             "MOV    EAX,$tmp2\n"
  8261     "fast:\n\t"
  8262             "DIV    $tmp\n"
  8263     "done:\n\t"
  8264             "MOV    EAX,EDX\n\t"
  8265             "SAR    EDX,31\n\t" %}
  8266   ins_encode %{
  8267     int con = (int)$imm$$constant;
  8268     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8269     int pcon = (con > 0) ? con : -con;
  8270     Label  Lfast, Lpos, Ldone;
  8272     __ movl($tmp$$Register, pcon);
  8273     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8274     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8276     __ movl($tmp2$$Register, $dst$$Register); // save
  8277     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8278     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8279     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8281     // Negative dividend.
  8282     // convert value to positive to use unsigned division
  8283     __ lneg($dst$$Register, $tmp2$$Register);
  8284     __ divl($tmp$$Register);
  8285     __ movl($dst$$Register, $tmp2$$Register);
  8286     __ divl($tmp$$Register);
  8287     // revert remainder back to negative
  8288     __ negl(HIGH_FROM_LOW($dst$$Register));
  8289     __ jmpb(Ldone);
  8291     __ bind(Lpos);
  8292     __ divl($tmp$$Register);
  8293     __ movl($dst$$Register, $tmp2$$Register);
  8295     __ bind(Lfast);
  8296     // fast path: src is positive
  8297     __ divl($tmp$$Register);
  8299     __ bind(Ldone);
  8300     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8301     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8303   %}
  8304   ins_pipe( pipe_slow );
  8305 %}
  8307 // Integer Shift Instructions
  8308 // Shift Left by one
  8309 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8310   match(Set dst (LShiftI dst shift));
  8311   effect(KILL cr);
  8313   size(2);
  8314   format %{ "SHL    $dst,$shift" %}
  8315   opcode(0xD1, 0x4);  /* D1 /4 */
  8316   ins_encode( OpcP, RegOpc( dst ) );
  8317   ins_pipe( ialu_reg );
  8318 %}
  8320 // Shift Left by 8-bit immediate
  8321 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8322   match(Set dst (LShiftI dst shift));
  8323   effect(KILL cr);
  8325   size(3);
  8326   format %{ "SHL    $dst,$shift" %}
  8327   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8328   ins_encode( RegOpcImm( dst, shift) );
  8329   ins_pipe( ialu_reg );
  8330 %}
  8332 // Shift Left by variable
  8333 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8334   match(Set dst (LShiftI dst shift));
  8335   effect(KILL cr);
  8337   size(2);
  8338   format %{ "SHL    $dst,$shift" %}
  8339   opcode(0xD3, 0x4);  /* D3 /4 */
  8340   ins_encode( OpcP, RegOpc( dst ) );
  8341   ins_pipe( ialu_reg_reg );
  8342 %}
  8344 // Arithmetic shift right by one
  8345 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8346   match(Set dst (RShiftI dst shift));
  8347   effect(KILL cr);
  8349   size(2);
  8350   format %{ "SAR    $dst,$shift" %}
  8351   opcode(0xD1, 0x7);  /* D1 /7 */
  8352   ins_encode( OpcP, RegOpc( dst ) );
  8353   ins_pipe( ialu_reg );
  8354 %}
  8356 // Arithmetic shift right by one
  8357 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8358   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8359   effect(KILL cr);
  8360   format %{ "SAR    $dst,$shift" %}
  8361   opcode(0xD1, 0x7);  /* D1 /7 */
  8362   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8363   ins_pipe( ialu_mem_imm );
  8364 %}
  8366 // Arithmetic Shift Right by 8-bit immediate
  8367 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8368   match(Set dst (RShiftI dst shift));
  8369   effect(KILL cr);
  8371   size(3);
  8372   format %{ "SAR    $dst,$shift" %}
  8373   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8374   ins_encode( RegOpcImm( dst, shift ) );
  8375   ins_pipe( ialu_mem_imm );
  8376 %}
  8378 // Arithmetic Shift Right by 8-bit immediate
  8379 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8380   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8381   effect(KILL cr);
  8383   format %{ "SAR    $dst,$shift" %}
  8384   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8385   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8386   ins_pipe( ialu_mem_imm );
  8387 %}
  8389 // Arithmetic Shift Right by variable
  8390 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8391   match(Set dst (RShiftI dst shift));
  8392   effect(KILL cr);
  8394   size(2);
  8395   format %{ "SAR    $dst,$shift" %}
  8396   opcode(0xD3, 0x7);  /* D3 /7 */
  8397   ins_encode( OpcP, RegOpc( dst ) );
  8398   ins_pipe( ialu_reg_reg );
  8399 %}
  8401 // Logical shift right by one
  8402 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8403   match(Set dst (URShiftI dst shift));
  8404   effect(KILL cr);
  8406   size(2);
  8407   format %{ "SHR    $dst,$shift" %}
  8408   opcode(0xD1, 0x5);  /* D1 /5 */
  8409   ins_encode( OpcP, RegOpc( dst ) );
  8410   ins_pipe( ialu_reg );
  8411 %}
  8413 // Logical Shift Right by 8-bit immediate
  8414 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8415   match(Set dst (URShiftI dst shift));
  8416   effect(KILL cr);
  8418   size(3);
  8419   format %{ "SHR    $dst,$shift" %}
  8420   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8421   ins_encode( RegOpcImm( dst, shift) );
  8422   ins_pipe( ialu_reg );
  8423 %}
  8426 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8427 // This idiom is used by the compiler for the i2b bytecode.
  8428 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  8429   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8431   size(3);
  8432   format %{ "MOVSX  $dst,$src :8" %}
  8433   ins_encode %{
  8434     __ movsbl($dst$$Register, $src$$Register);
  8435   %}
  8436   ins_pipe(ialu_reg_reg);
  8437 %}
  8439 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8440 // This idiom is used by the compiler the i2s bytecode.
  8441 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  8442   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8444   size(3);
  8445   format %{ "MOVSX  $dst,$src :16" %}
  8446   ins_encode %{
  8447     __ movswl($dst$$Register, $src$$Register);
  8448   %}
  8449   ins_pipe(ialu_reg_reg);
  8450 %}
  8453 // Logical Shift Right by variable
  8454 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8455   match(Set dst (URShiftI dst shift));
  8456   effect(KILL cr);
  8458   size(2);
  8459   format %{ "SHR    $dst,$shift" %}
  8460   opcode(0xD3, 0x5);  /* D3 /5 */
  8461   ins_encode( OpcP, RegOpc( dst ) );
  8462   ins_pipe( ialu_reg_reg );
  8463 %}
  8466 //----------Logical Instructions-----------------------------------------------
  8467 //----------Integer Logical Instructions---------------------------------------
  8468 // And Instructions
  8469 // And Register with Register
  8470 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8471   match(Set dst (AndI dst src));
  8472   effect(KILL cr);
  8474   size(2);
  8475   format %{ "AND    $dst,$src" %}
  8476   opcode(0x23);
  8477   ins_encode( OpcP, RegReg( dst, src) );
  8478   ins_pipe( ialu_reg_reg );
  8479 %}
  8481 // And Register with Immediate
  8482 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8483   match(Set dst (AndI dst src));
  8484   effect(KILL cr);
  8486   format %{ "AND    $dst,$src" %}
  8487   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8488   // ins_encode( RegImm( dst, src) );
  8489   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8490   ins_pipe( ialu_reg );
  8491 %}
  8493 // And Register with Memory
  8494 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8495   match(Set dst (AndI dst (LoadI src)));
  8496   effect(KILL cr);
  8498   ins_cost(125);
  8499   format %{ "AND    $dst,$src" %}
  8500   opcode(0x23);
  8501   ins_encode( OpcP, RegMem( dst, src) );
  8502   ins_pipe( ialu_reg_mem );
  8503 %}
  8505 // And Memory with Register
  8506 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8507   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8508   effect(KILL cr);
  8510   ins_cost(150);
  8511   format %{ "AND    $dst,$src" %}
  8512   opcode(0x21);  /* Opcode 21 /r */
  8513   ins_encode( OpcP, RegMem( src, dst ) );
  8514   ins_pipe( ialu_mem_reg );
  8515 %}
  8517 // And Memory with Immediate
  8518 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8519   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8520   effect(KILL cr);
  8522   ins_cost(125);
  8523   format %{ "AND    $dst,$src" %}
  8524   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8525   // ins_encode( MemImm( dst, src) );
  8526   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8527   ins_pipe( ialu_mem_imm );
  8528 %}
  8530 // Or Instructions
  8531 // Or Register with Register
  8532 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8533   match(Set dst (OrI dst src));
  8534   effect(KILL cr);
  8536   size(2);
  8537   format %{ "OR     $dst,$src" %}
  8538   opcode(0x0B);
  8539   ins_encode( OpcP, RegReg( dst, src) );
  8540   ins_pipe( ialu_reg_reg );
  8541 %}
  8543 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8544   match(Set dst (OrI dst (CastP2X src)));
  8545   effect(KILL cr);
  8547   size(2);
  8548   format %{ "OR     $dst,$src" %}
  8549   opcode(0x0B);
  8550   ins_encode( OpcP, RegReg( dst, src) );
  8551   ins_pipe( ialu_reg_reg );
  8552 %}
  8555 // Or Register with Immediate
  8556 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8557   match(Set dst (OrI dst src));
  8558   effect(KILL cr);
  8560   format %{ "OR     $dst,$src" %}
  8561   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8562   // ins_encode( RegImm( dst, src) );
  8563   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8564   ins_pipe( ialu_reg );
  8565 %}
  8567 // Or Register with Memory
  8568 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8569   match(Set dst (OrI dst (LoadI src)));
  8570   effect(KILL cr);
  8572   ins_cost(125);
  8573   format %{ "OR     $dst,$src" %}
  8574   opcode(0x0B);
  8575   ins_encode( OpcP, RegMem( dst, src) );
  8576   ins_pipe( ialu_reg_mem );
  8577 %}
  8579 // Or Memory with Register
  8580 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8581   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8582   effect(KILL cr);
  8584   ins_cost(150);
  8585   format %{ "OR     $dst,$src" %}
  8586   opcode(0x09);  /* Opcode 09 /r */
  8587   ins_encode( OpcP, RegMem( src, dst ) );
  8588   ins_pipe( ialu_mem_reg );
  8589 %}
  8591 // Or Memory with Immediate
  8592 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8593   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8594   effect(KILL cr);
  8596   ins_cost(125);
  8597   format %{ "OR     $dst,$src" %}
  8598   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8599   // ins_encode( MemImm( dst, src) );
  8600   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8601   ins_pipe( ialu_mem_imm );
  8602 %}
  8604 // ROL/ROR
  8605 // ROL expand
  8606 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8607   effect(USE_DEF dst, USE shift, KILL cr);
  8609   format %{ "ROL    $dst, $shift" %}
  8610   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8611   ins_encode( OpcP, RegOpc( dst ));
  8612   ins_pipe( ialu_reg );
  8613 %}
  8615 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8616   effect(USE_DEF dst, USE shift, KILL cr);
  8618   format %{ "ROL    $dst, $shift" %}
  8619   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8620   ins_encode( RegOpcImm(dst, shift) );
  8621   ins_pipe(ialu_reg);
  8622 %}
  8624 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8625   effect(USE_DEF dst, USE shift, KILL cr);
  8627   format %{ "ROL    $dst, $shift" %}
  8628   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8629   ins_encode(OpcP, RegOpc(dst));
  8630   ins_pipe( ialu_reg_reg );
  8631 %}
  8632 // end of ROL expand
  8634 // ROL 32bit by one once
  8635 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8636   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8638   expand %{
  8639     rolI_eReg_imm1(dst, lshift, cr);
  8640   %}
  8641 %}
  8643 // ROL 32bit var by imm8 once
  8644 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8645   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8646   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8648   expand %{
  8649     rolI_eReg_imm8(dst, lshift, cr);
  8650   %}
  8651 %}
  8653 // ROL 32bit var by var once
  8654 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8655   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8657   expand %{
  8658     rolI_eReg_CL(dst, shift, cr);
  8659   %}
  8660 %}
  8662 // ROL 32bit var by var once
  8663 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8664   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8666   expand %{
  8667     rolI_eReg_CL(dst, shift, cr);
  8668   %}
  8669 %}
  8671 // ROR expand
  8672 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8673   effect(USE_DEF dst, USE shift, KILL cr);
  8675   format %{ "ROR    $dst, $shift" %}
  8676   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8677   ins_encode( OpcP, RegOpc( dst ) );
  8678   ins_pipe( ialu_reg );
  8679 %}
  8681 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8682   effect (USE_DEF dst, USE shift, KILL cr);
  8684   format %{ "ROR    $dst, $shift" %}
  8685   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8686   ins_encode( RegOpcImm(dst, shift) );
  8687   ins_pipe( ialu_reg );
  8688 %}
  8690 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8691   effect(USE_DEF dst, USE shift, KILL cr);
  8693   format %{ "ROR    $dst, $shift" %}
  8694   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8695   ins_encode(OpcP, RegOpc(dst));
  8696   ins_pipe( ialu_reg_reg );
  8697 %}
  8698 // end of ROR expand
  8700 // ROR right once
  8701 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8702   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8704   expand %{
  8705     rorI_eReg_imm1(dst, rshift, cr);
  8706   %}
  8707 %}
  8709 // ROR 32bit by immI8 once
  8710 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8711   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8712   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8714   expand %{
  8715     rorI_eReg_imm8(dst, rshift, cr);
  8716   %}
  8717 %}
  8719 // ROR 32bit var by var once
  8720 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8721   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8723   expand %{
  8724     rorI_eReg_CL(dst, shift, cr);
  8725   %}
  8726 %}
  8728 // ROR 32bit var by var once
  8729 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8730   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8732   expand %{
  8733     rorI_eReg_CL(dst, shift, cr);
  8734   %}
  8735 %}
  8737 // Xor Instructions
  8738 // Xor Register with Register
  8739 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8740   match(Set dst (XorI dst src));
  8741   effect(KILL cr);
  8743   size(2);
  8744   format %{ "XOR    $dst,$src" %}
  8745   opcode(0x33);
  8746   ins_encode( OpcP, RegReg( dst, src) );
  8747   ins_pipe( ialu_reg_reg );
  8748 %}
  8750 // Xor Register with Immediate -1
  8751 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8752   match(Set dst (XorI dst imm));  
  8754   size(2);
  8755   format %{ "NOT    $dst" %}  
  8756   ins_encode %{
  8757      __ notl($dst$$Register);
  8758   %}
  8759   ins_pipe( ialu_reg );
  8760 %}
  8762 // Xor Register with Immediate
  8763 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8764   match(Set dst (XorI dst src));
  8765   effect(KILL cr);
  8767   format %{ "XOR    $dst,$src" %}
  8768   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8769   // ins_encode( RegImm( dst, src) );
  8770   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8771   ins_pipe( ialu_reg );
  8772 %}
  8774 // Xor Register with Memory
  8775 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8776   match(Set dst (XorI dst (LoadI src)));
  8777   effect(KILL cr);
  8779   ins_cost(125);
  8780   format %{ "XOR    $dst,$src" %}
  8781   opcode(0x33);
  8782   ins_encode( OpcP, RegMem(dst, src) );
  8783   ins_pipe( ialu_reg_mem );
  8784 %}
  8786 // Xor Memory with Register
  8787 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8788   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8789   effect(KILL cr);
  8791   ins_cost(150);
  8792   format %{ "XOR    $dst,$src" %}
  8793   opcode(0x31);  /* Opcode 31 /r */
  8794   ins_encode( OpcP, RegMem( src, dst ) );
  8795   ins_pipe( ialu_mem_reg );
  8796 %}
  8798 // Xor Memory with Immediate
  8799 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8800   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8801   effect(KILL cr);
  8803   ins_cost(125);
  8804   format %{ "XOR    $dst,$src" %}
  8805   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8806   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8807   ins_pipe( ialu_mem_imm );
  8808 %}
  8810 //----------Convert Int to Boolean---------------------------------------------
  8812 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8813   effect( DEF dst, USE src );
  8814   format %{ "MOV    $dst,$src" %}
  8815   ins_encode( enc_Copy( dst, src) );
  8816   ins_pipe( ialu_reg_reg );
  8817 %}
  8819 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8820   effect( USE_DEF dst, USE src, KILL cr );
  8822   size(4);
  8823   format %{ "NEG    $dst\n\t"
  8824             "ADC    $dst,$src" %}
  8825   ins_encode( neg_reg(dst),
  8826               OpcRegReg(0x13,dst,src) );
  8827   ins_pipe( ialu_reg_reg_long );
  8828 %}
  8830 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8831   match(Set dst (Conv2B src));
  8833   expand %{
  8834     movI_nocopy(dst,src);
  8835     ci2b(dst,src,cr);
  8836   %}
  8837 %}
  8839 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8840   effect( DEF dst, USE src );
  8841   format %{ "MOV    $dst,$src" %}
  8842   ins_encode( enc_Copy( dst, src) );
  8843   ins_pipe( ialu_reg_reg );
  8844 %}
  8846 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8847   effect( USE_DEF dst, USE src, KILL cr );
  8848   format %{ "NEG    $dst\n\t"
  8849             "ADC    $dst,$src" %}
  8850   ins_encode( neg_reg(dst),
  8851               OpcRegReg(0x13,dst,src) );
  8852   ins_pipe( ialu_reg_reg_long );
  8853 %}
  8855 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8856   match(Set dst (Conv2B src));
  8858   expand %{
  8859     movP_nocopy(dst,src);
  8860     cp2b(dst,src,cr);
  8861   %}
  8862 %}
  8864 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
  8865   match(Set dst (CmpLTMask p q));
  8866   effect(KILL cr);
  8867   ins_cost(400);
  8869   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8870   format %{ "XOR    $dst,$dst\n\t"
  8871             "CMP    $p,$q\n\t"
  8872             "SETlt  $dst\n\t"
  8873             "NEG    $dst" %}
  8874   ins_encode %{
  8875     Register Rp = $p$$Register;
  8876     Register Rq = $q$$Register;
  8877     Register Rd = $dst$$Register;
  8878     Label done;
  8879     __ xorl(Rd, Rd);
  8880     __ cmpl(Rp, Rq);
  8881     __ setb(Assembler::less, Rd);
  8882     __ negl(Rd);
  8883   %}
  8885   ins_pipe(pipe_slow);
  8886 %}
  8888 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
  8889   match(Set dst (CmpLTMask dst zero));
  8890   effect(DEF dst, KILL cr);
  8891   ins_cost(100);
  8893   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
  8894   ins_encode %{
  8895   __ sarl($dst$$Register, 31);
  8896   %}
  8897   ins_pipe(ialu_reg);
  8898 %}
  8900 /* better to save a register than avoid a branch */
  8901 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8902   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8903   effect(KILL cr);
  8904   ins_cost(400);
  8905   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
  8906             "JGE    done\n\t"
  8907             "ADD    $p,$y\n"
  8908             "done:  " %}
  8909   ins_encode %{
  8910     Register Rp = $p$$Register;
  8911     Register Rq = $q$$Register;
  8912     Register Ry = $y$$Register;
  8913     Label done;
  8914     __ subl(Rp, Rq);
  8915     __ jccb(Assembler::greaterEqual, done);
  8916     __ addl(Rp, Ry);
  8917     __ bind(done);
  8918   %}
  8920   ins_pipe(pipe_cmplt);
  8921 %}
  8923 /* better to save a register than avoid a branch */
  8924 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8925   match(Set y (AndI (CmpLTMask p q) y));
  8926   effect(KILL cr);
  8928   ins_cost(300);
  8930   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
  8931             "JLT      done\n\t"
  8932             "XORL     $y, $y\n"
  8933             "done:  " %}
  8934   ins_encode %{
  8935     Register Rp = $p$$Register;
  8936     Register Rq = $q$$Register;
  8937     Register Ry = $y$$Register;
  8938     Label done;
  8939     __ cmpl(Rp, Rq);
  8940     __ jccb(Assembler::less, done);
  8941     __ xorl(Ry, Ry);
  8942     __ bind(done);
  8943   %}
  8945   ins_pipe(pipe_cmplt);
  8946 %}
  8948 /* If I enable this, I encourage spilling in the inner loop of compress.
  8949 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
  8950   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8951 */
  8953 //----------Long Instructions------------------------------------------------
  8954 // Add Long Register with Register
  8955 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8956   match(Set dst (AddL dst src));
  8957   effect(KILL cr);
  8958   ins_cost(200);
  8959   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8960             "ADC    $dst.hi,$src.hi" %}
  8961   opcode(0x03, 0x13);
  8962   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8963   ins_pipe( ialu_reg_reg_long );
  8964 %}
  8966 // Add Long Register with Immediate
  8967 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8968   match(Set dst (AddL dst src));
  8969   effect(KILL cr);
  8970   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8971             "ADC    $dst.hi,$src.hi" %}
  8972   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8973   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8974   ins_pipe( ialu_reg_long );
  8975 %}
  8977 // Add Long Register with Memory
  8978 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8979   match(Set dst (AddL dst (LoadL mem)));
  8980   effect(KILL cr);
  8981   ins_cost(125);
  8982   format %{ "ADD    $dst.lo,$mem\n\t"
  8983             "ADC    $dst.hi,$mem+4" %}
  8984   opcode(0x03, 0x13);
  8985   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8986   ins_pipe( ialu_reg_long_mem );
  8987 %}
  8989 // Subtract Long Register with Register.
  8990 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8991   match(Set dst (SubL dst src));
  8992   effect(KILL cr);
  8993   ins_cost(200);
  8994   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8995             "SBB    $dst.hi,$src.hi" %}
  8996   opcode(0x2B, 0x1B);
  8997   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8998   ins_pipe( ialu_reg_reg_long );
  8999 %}
  9001 // Subtract Long Register with Immediate
  9002 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9003   match(Set dst (SubL dst src));
  9004   effect(KILL cr);
  9005   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9006             "SBB    $dst.hi,$src.hi" %}
  9007   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9008   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9009   ins_pipe( ialu_reg_long );
  9010 %}
  9012 // Subtract Long Register with Memory
  9013 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9014   match(Set dst (SubL dst (LoadL mem)));
  9015   effect(KILL cr);
  9016   ins_cost(125);
  9017   format %{ "SUB    $dst.lo,$mem\n\t"
  9018             "SBB    $dst.hi,$mem+4" %}
  9019   opcode(0x2B, 0x1B);
  9020   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9021   ins_pipe( ialu_reg_long_mem );
  9022 %}
  9024 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9025   match(Set dst (SubL zero dst));
  9026   effect(KILL cr);
  9027   ins_cost(300);
  9028   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9029   ins_encode( neg_long(dst) );
  9030   ins_pipe( ialu_reg_reg_long );
  9031 %}
  9033 // And Long Register with Register
  9034 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9035   match(Set dst (AndL dst src));
  9036   effect(KILL cr);
  9037   format %{ "AND    $dst.lo,$src.lo\n\t"
  9038             "AND    $dst.hi,$src.hi" %}
  9039   opcode(0x23,0x23);
  9040   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9041   ins_pipe( ialu_reg_reg_long );
  9042 %}
  9044 // And Long Register with Immediate
  9045 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9046   match(Set dst (AndL dst src));
  9047   effect(KILL cr);
  9048   format %{ "AND    $dst.lo,$src.lo\n\t"
  9049             "AND    $dst.hi,$src.hi" %}
  9050   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9051   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9052   ins_pipe( ialu_reg_long );
  9053 %}
  9055 // And Long Register with Memory
  9056 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9057   match(Set dst (AndL dst (LoadL mem)));
  9058   effect(KILL cr);
  9059   ins_cost(125);
  9060   format %{ "AND    $dst.lo,$mem\n\t"
  9061             "AND    $dst.hi,$mem+4" %}
  9062   opcode(0x23, 0x23);
  9063   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9064   ins_pipe( ialu_reg_long_mem );
  9065 %}
  9067 // Or Long Register with Register
  9068 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9069   match(Set dst (OrL dst src));
  9070   effect(KILL cr);
  9071   format %{ "OR     $dst.lo,$src.lo\n\t"
  9072             "OR     $dst.hi,$src.hi" %}
  9073   opcode(0x0B,0x0B);
  9074   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9075   ins_pipe( ialu_reg_reg_long );
  9076 %}
  9078 // Or Long Register with Immediate
  9079 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9080   match(Set dst (OrL dst src));
  9081   effect(KILL cr);
  9082   format %{ "OR     $dst.lo,$src.lo\n\t"
  9083             "OR     $dst.hi,$src.hi" %}
  9084   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9085   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9086   ins_pipe( ialu_reg_long );
  9087 %}
  9089 // Or Long Register with Memory
  9090 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9091   match(Set dst (OrL dst (LoadL mem)));
  9092   effect(KILL cr);
  9093   ins_cost(125);
  9094   format %{ "OR     $dst.lo,$mem\n\t"
  9095             "OR     $dst.hi,$mem+4" %}
  9096   opcode(0x0B,0x0B);
  9097   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9098   ins_pipe( ialu_reg_long_mem );
  9099 %}
  9101 // Xor Long Register with Register
  9102 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9103   match(Set dst (XorL dst src));
  9104   effect(KILL cr);
  9105   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9106             "XOR    $dst.hi,$src.hi" %}
  9107   opcode(0x33,0x33);
  9108   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9109   ins_pipe( ialu_reg_reg_long );
  9110 %}
  9112 // Xor Long Register with Immediate -1
  9113 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9114   match(Set dst (XorL dst imm));  
  9115   format %{ "NOT    $dst.lo\n\t"
  9116             "NOT    $dst.hi" %}
  9117   ins_encode %{
  9118      __ notl($dst$$Register);
  9119      __ notl(HIGH_FROM_LOW($dst$$Register));
  9120   %}
  9121   ins_pipe( ialu_reg_long );
  9122 %}
  9124 // Xor Long Register with Immediate
  9125 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9126   match(Set dst (XorL dst src));
  9127   effect(KILL cr);
  9128   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9129             "XOR    $dst.hi,$src.hi" %}
  9130   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9131   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9132   ins_pipe( ialu_reg_long );
  9133 %}
  9135 // Xor Long Register with Memory
  9136 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9137   match(Set dst (XorL dst (LoadL mem)));
  9138   effect(KILL cr);
  9139   ins_cost(125);
  9140   format %{ "XOR    $dst.lo,$mem\n\t"
  9141             "XOR    $dst.hi,$mem+4" %}
  9142   opcode(0x33,0x33);
  9143   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9144   ins_pipe( ialu_reg_long_mem );
  9145 %}
  9147 // Shift Left Long by 1
  9148 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9149   predicate(UseNewLongLShift);
  9150   match(Set dst (LShiftL dst cnt));
  9151   effect(KILL cr);
  9152   ins_cost(100);
  9153   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9154             "ADC    $dst.hi,$dst.hi" %}
  9155   ins_encode %{
  9156     __ addl($dst$$Register,$dst$$Register);
  9157     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9158   %}
  9159   ins_pipe( ialu_reg_long );
  9160 %}
  9162 // Shift Left Long by 2
  9163 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9164   predicate(UseNewLongLShift);
  9165   match(Set dst (LShiftL dst cnt));
  9166   effect(KILL cr);
  9167   ins_cost(100);
  9168   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9169             "ADC    $dst.hi,$dst.hi\n\t" 
  9170             "ADD    $dst.lo,$dst.lo\n\t"
  9171             "ADC    $dst.hi,$dst.hi" %}
  9172   ins_encode %{
  9173     __ addl($dst$$Register,$dst$$Register);
  9174     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9175     __ addl($dst$$Register,$dst$$Register);
  9176     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9177   %}
  9178   ins_pipe( ialu_reg_long );
  9179 %}
  9181 // Shift Left Long by 3
  9182 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9183   predicate(UseNewLongLShift);
  9184   match(Set dst (LShiftL dst cnt));
  9185   effect(KILL cr);
  9186   ins_cost(100);
  9187   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9188             "ADC    $dst.hi,$dst.hi\n\t" 
  9189             "ADD    $dst.lo,$dst.lo\n\t"
  9190             "ADC    $dst.hi,$dst.hi\n\t" 
  9191             "ADD    $dst.lo,$dst.lo\n\t"
  9192             "ADC    $dst.hi,$dst.hi" %}
  9193   ins_encode %{
  9194     __ addl($dst$$Register,$dst$$Register);
  9195     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9196     __ addl($dst$$Register,$dst$$Register);
  9197     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9198     __ addl($dst$$Register,$dst$$Register);
  9199     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9200   %}
  9201   ins_pipe( ialu_reg_long );
  9202 %}
  9204 // Shift Left Long by 1-31
  9205 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9206   match(Set dst (LShiftL dst cnt));
  9207   effect(KILL cr);
  9208   ins_cost(200);
  9209   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9210             "SHL    $dst.lo,$cnt" %}
  9211   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9212   ins_encode( move_long_small_shift(dst,cnt) );
  9213   ins_pipe( ialu_reg_long );
  9214 %}
  9216 // Shift Left Long by 32-63
  9217 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9218   match(Set dst (LShiftL dst cnt));
  9219   effect(KILL cr);
  9220   ins_cost(300);
  9221   format %{ "MOV    $dst.hi,$dst.lo\n"
  9222           "\tSHL    $dst.hi,$cnt-32\n"
  9223           "\tXOR    $dst.lo,$dst.lo" %}
  9224   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9225   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9226   ins_pipe( ialu_reg_long );
  9227 %}
  9229 // Shift Left Long by variable
  9230 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9231   match(Set dst (LShiftL dst shift));
  9232   effect(KILL cr);
  9233   ins_cost(500+200);
  9234   size(17);
  9235   format %{ "TEST   $shift,32\n\t"
  9236             "JEQ,s  small\n\t"
  9237             "MOV    $dst.hi,$dst.lo\n\t"
  9238             "XOR    $dst.lo,$dst.lo\n"
  9239     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9240             "SHL    $dst.lo,$shift" %}
  9241   ins_encode( shift_left_long( dst, shift ) );
  9242   ins_pipe( pipe_slow );
  9243 %}
  9245 // Shift Right Long by 1-31
  9246 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9247   match(Set dst (URShiftL dst cnt));
  9248   effect(KILL cr);
  9249   ins_cost(200);
  9250   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9251             "SHR    $dst.hi,$cnt" %}
  9252   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9253   ins_encode( move_long_small_shift(dst,cnt) );
  9254   ins_pipe( ialu_reg_long );
  9255 %}
  9257 // Shift Right Long by 32-63
  9258 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9259   match(Set dst (URShiftL dst cnt));
  9260   effect(KILL cr);
  9261   ins_cost(300);
  9262   format %{ "MOV    $dst.lo,$dst.hi\n"
  9263           "\tSHR    $dst.lo,$cnt-32\n"
  9264           "\tXOR    $dst.hi,$dst.hi" %}
  9265   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9266   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9267   ins_pipe( ialu_reg_long );
  9268 %}
  9270 // Shift Right Long by variable
  9271 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9272   match(Set dst (URShiftL dst shift));
  9273   effect(KILL cr);
  9274   ins_cost(600);
  9275   size(17);
  9276   format %{ "TEST   $shift,32\n\t"
  9277             "JEQ,s  small\n\t"
  9278             "MOV    $dst.lo,$dst.hi\n\t"
  9279             "XOR    $dst.hi,$dst.hi\n"
  9280     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9281             "SHR    $dst.hi,$shift" %}
  9282   ins_encode( shift_right_long( dst, shift ) );
  9283   ins_pipe( pipe_slow );
  9284 %}
  9286 // Shift Right Long by 1-31
  9287 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9288   match(Set dst (RShiftL dst cnt));
  9289   effect(KILL cr);
  9290   ins_cost(200);
  9291   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9292             "SAR    $dst.hi,$cnt" %}
  9293   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9294   ins_encode( move_long_small_shift(dst,cnt) );
  9295   ins_pipe( ialu_reg_long );
  9296 %}
  9298 // Shift Right Long by 32-63
  9299 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9300   match(Set dst (RShiftL dst cnt));
  9301   effect(KILL cr);
  9302   ins_cost(300);
  9303   format %{ "MOV    $dst.lo,$dst.hi\n"
  9304           "\tSAR    $dst.lo,$cnt-32\n"
  9305           "\tSAR    $dst.hi,31" %}
  9306   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9307   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9308   ins_pipe( ialu_reg_long );
  9309 %}
  9311 // Shift Right arithmetic Long by variable
  9312 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9313   match(Set dst (RShiftL dst shift));
  9314   effect(KILL cr);
  9315   ins_cost(600);
  9316   size(18);
  9317   format %{ "TEST   $shift,32\n\t"
  9318             "JEQ,s  small\n\t"
  9319             "MOV    $dst.lo,$dst.hi\n\t"
  9320             "SAR    $dst.hi,31\n"
  9321     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9322             "SAR    $dst.hi,$shift" %}
  9323   ins_encode( shift_right_arith_long( dst, shift ) );
  9324   ins_pipe( pipe_slow );
  9325 %}
  9328 //----------Double Instructions------------------------------------------------
  9329 // Double Math
  9331 // Compare & branch
  9333 // P6 version of float compare, sets condition codes in EFLAGS
  9334 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9335   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9336   match(Set cr (CmpD src1 src2));
  9337   effect(KILL rax);
  9338   ins_cost(150);
  9339   format %{ "FLD    $src1\n\t"
  9340             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9341             "JNP    exit\n\t"
  9342             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9343             "SAHF\n"
  9344      "exit:\tNOP               // avoid branch to branch" %}
  9345   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9346   ins_encode( Push_Reg_DPR(src1),
  9347               OpcP, RegOpc(src2),
  9348               cmpF_P6_fixup );
  9349   ins_pipe( pipe_slow );
  9350 %}
  9352 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9353   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9354   match(Set cr (CmpD src1 src2));
  9355   ins_cost(150);
  9356   format %{ "FLD    $src1\n\t"
  9357             "FUCOMIP ST,$src2  // P6 instruction" %}
  9358   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9359   ins_encode( Push_Reg_DPR(src1),
  9360               OpcP, RegOpc(src2));
  9361   ins_pipe( pipe_slow );
  9362 %}
  9364 // Compare & branch
  9365 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9366   predicate(UseSSE<=1);
  9367   match(Set cr (CmpD src1 src2));
  9368   effect(KILL rax);
  9369   ins_cost(200);
  9370   format %{ "FLD    $src1\n\t"
  9371             "FCOMp  $src2\n\t"
  9372             "FNSTSW AX\n\t"
  9373             "TEST   AX,0x400\n\t"
  9374             "JZ,s   flags\n\t"
  9375             "MOV    AH,1\t# unordered treat as LT\n"
  9376     "flags:\tSAHF" %}
  9377   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9378   ins_encode( Push_Reg_DPR(src1),
  9379               OpcP, RegOpc(src2),
  9380               fpu_flags);
  9381   ins_pipe( pipe_slow );
  9382 %}
  9384 // Compare vs zero into -1,0,1
  9385 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9386   predicate(UseSSE<=1);
  9387   match(Set dst (CmpD3 src1 zero));
  9388   effect(KILL cr, KILL rax);
  9389   ins_cost(280);
  9390   format %{ "FTSTD  $dst,$src1" %}
  9391   opcode(0xE4, 0xD9);
  9392   ins_encode( Push_Reg_DPR(src1),
  9393               OpcS, OpcP, PopFPU,
  9394               CmpF_Result(dst));
  9395   ins_pipe( pipe_slow );
  9396 %}
  9398 // Compare into -1,0,1
  9399 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9400   predicate(UseSSE<=1);
  9401   match(Set dst (CmpD3 src1 src2));
  9402   effect(KILL cr, KILL rax);
  9403   ins_cost(300);
  9404   format %{ "FCMPD  $dst,$src1,$src2" %}
  9405   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9406   ins_encode( Push_Reg_DPR(src1),
  9407               OpcP, RegOpc(src2),
  9408               CmpF_Result(dst));
  9409   ins_pipe( pipe_slow );
  9410 %}
  9412 // float compare and set condition codes in EFLAGS by XMM regs
  9413 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9414   predicate(UseSSE>=2);
  9415   match(Set cr (CmpD src1 src2));
  9416   ins_cost(145);
  9417   format %{ "UCOMISD $src1,$src2\n\t"
  9418             "JNP,s   exit\n\t"
  9419             "PUSHF\t# saw NaN, set CF\n\t"
  9420             "AND     [rsp], #0xffffff2b\n\t"
  9421             "POPF\n"
  9422     "exit:" %}
  9423   ins_encode %{
  9424     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9425     emit_cmpfp_fixup(_masm);
  9426   %}
  9427   ins_pipe( pipe_slow );
  9428 %}
  9430 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9431   predicate(UseSSE>=2);
  9432   match(Set cr (CmpD src1 src2));
  9433   ins_cost(100);
  9434   format %{ "UCOMISD $src1,$src2" %}
  9435   ins_encode %{
  9436     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9437   %}
  9438   ins_pipe( pipe_slow );
  9439 %}
  9441 // float compare and set condition codes in EFLAGS by XMM regs
  9442 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9443   predicate(UseSSE>=2);
  9444   match(Set cr (CmpD src1 (LoadD src2)));
  9445   ins_cost(145);
  9446   format %{ "UCOMISD $src1,$src2\n\t"
  9447             "JNP,s   exit\n\t"
  9448             "PUSHF\t# saw NaN, set CF\n\t"
  9449             "AND     [rsp], #0xffffff2b\n\t"
  9450             "POPF\n"
  9451     "exit:" %}
  9452   ins_encode %{
  9453     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9454     emit_cmpfp_fixup(_masm);
  9455   %}
  9456   ins_pipe( pipe_slow );
  9457 %}
  9459 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9460   predicate(UseSSE>=2);
  9461   match(Set cr (CmpD src1 (LoadD src2)));
  9462   ins_cost(100);
  9463   format %{ "UCOMISD $src1,$src2" %}
  9464   ins_encode %{
  9465     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9466   %}
  9467   ins_pipe( pipe_slow );
  9468 %}
  9470 // Compare into -1,0,1 in XMM
  9471 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9472   predicate(UseSSE>=2);
  9473   match(Set dst (CmpD3 src1 src2));
  9474   effect(KILL cr);
  9475   ins_cost(255);
  9476   format %{ "UCOMISD $src1, $src2\n\t"
  9477             "MOV     $dst, #-1\n\t"
  9478             "JP,s    done\n\t"
  9479             "JB,s    done\n\t"
  9480             "SETNE   $dst\n\t"
  9481             "MOVZB   $dst, $dst\n"
  9482     "done:" %}
  9483   ins_encode %{
  9484     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9485     emit_cmpfp3(_masm, $dst$$Register);
  9486   %}
  9487   ins_pipe( pipe_slow );
  9488 %}
  9490 // Compare into -1,0,1 in XMM and memory
  9491 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9492   predicate(UseSSE>=2);
  9493   match(Set dst (CmpD3 src1 (LoadD src2)));
  9494   effect(KILL cr);
  9495   ins_cost(275);
  9496   format %{ "UCOMISD $src1, $src2\n\t"
  9497             "MOV     $dst, #-1\n\t"
  9498             "JP,s    done\n\t"
  9499             "JB,s    done\n\t"
  9500             "SETNE   $dst\n\t"
  9501             "MOVZB   $dst, $dst\n"
  9502     "done:" %}
  9503   ins_encode %{
  9504     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9505     emit_cmpfp3(_masm, $dst$$Register);
  9506   %}
  9507   ins_pipe( pipe_slow );
  9508 %}
  9511 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9512   predicate (UseSSE <=1);
  9513   match(Set dst (SubD dst src));
  9515   format %{ "FLD    $src\n\t"
  9516             "DSUBp  $dst,ST" %}
  9517   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9518   ins_cost(150);
  9519   ins_encode( Push_Reg_DPR(src),
  9520               OpcP, RegOpc(dst) );
  9521   ins_pipe( fpu_reg_reg );
  9522 %}
  9524 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9525   predicate (UseSSE <=1);
  9526   match(Set dst (RoundDouble (SubD src1 src2)));
  9527   ins_cost(250);
  9529   format %{ "FLD    $src2\n\t"
  9530             "DSUB   ST,$src1\n\t"
  9531             "FSTP_D $dst\t# D-round" %}
  9532   opcode(0xD8, 0x5);
  9533   ins_encode( Push_Reg_DPR(src2),
  9534               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9535   ins_pipe( fpu_mem_reg_reg );
  9536 %}
  9539 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9540   predicate (UseSSE <=1);
  9541   match(Set dst (SubD dst (LoadD src)));
  9542   ins_cost(150);
  9544   format %{ "FLD    $src\n\t"
  9545             "DSUBp  $dst,ST" %}
  9546   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9547   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9548               OpcP, RegOpc(dst) );
  9549   ins_pipe( fpu_reg_mem );
  9550 %}
  9552 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9553   predicate (UseSSE<=1);
  9554   match(Set dst (AbsD src));
  9555   ins_cost(100);
  9556   format %{ "FABS" %}
  9557   opcode(0xE1, 0xD9);
  9558   ins_encode( OpcS, OpcP );
  9559   ins_pipe( fpu_reg_reg );
  9560 %}
  9562 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9563   predicate(UseSSE<=1);
  9564   match(Set dst (NegD src));
  9565   ins_cost(100);
  9566   format %{ "FCHS" %}
  9567   opcode(0xE0, 0xD9);
  9568   ins_encode( OpcS, OpcP );
  9569   ins_pipe( fpu_reg_reg );
  9570 %}
  9572 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9573   predicate(UseSSE<=1);
  9574   match(Set dst (AddD dst src));
  9575   format %{ "FLD    $src\n\t"
  9576             "DADD   $dst,ST" %}
  9577   size(4);
  9578   ins_cost(150);
  9579   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9580   ins_encode( Push_Reg_DPR(src),
  9581               OpcP, RegOpc(dst) );
  9582   ins_pipe( fpu_reg_reg );
  9583 %}
  9586 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9587   predicate(UseSSE<=1);
  9588   match(Set dst (RoundDouble (AddD src1 src2)));
  9589   ins_cost(250);
  9591   format %{ "FLD    $src2\n\t"
  9592             "DADD   ST,$src1\n\t"
  9593             "FSTP_D $dst\t# D-round" %}
  9594   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9595   ins_encode( Push_Reg_DPR(src2),
  9596               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9597   ins_pipe( fpu_mem_reg_reg );
  9598 %}
  9601 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9602   predicate(UseSSE<=1);
  9603   match(Set dst (AddD dst (LoadD src)));
  9604   ins_cost(150);
  9606   format %{ "FLD    $src\n\t"
  9607             "DADDp  $dst,ST" %}
  9608   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9609   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9610               OpcP, RegOpc(dst) );
  9611   ins_pipe( fpu_reg_mem );
  9612 %}
  9614 // add-to-memory
  9615 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9616   predicate(UseSSE<=1);
  9617   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9618   ins_cost(150);
  9620   format %{ "FLD_D  $dst\n\t"
  9621             "DADD   ST,$src\n\t"
  9622             "FST_D  $dst" %}
  9623   opcode(0xDD, 0x0);
  9624   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9625               Opcode(0xD8), RegOpc(src),
  9626               set_instruction_start,
  9627               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9628   ins_pipe( fpu_reg_mem );
  9629 %}
  9631 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9632   predicate(UseSSE<=1);
  9633   match(Set dst (AddD dst con));
  9634   ins_cost(125);
  9635   format %{ "FLD1\n\t"
  9636             "DADDp  $dst,ST" %}
  9637   ins_encode %{
  9638     __ fld1();
  9639     __ faddp($dst$$reg);
  9640   %}
  9641   ins_pipe(fpu_reg);
  9642 %}
  9644 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9645   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9646   match(Set dst (AddD dst con));
  9647   ins_cost(200);
  9648   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9649             "DADDp  $dst,ST" %}
  9650   ins_encode %{
  9651     __ fld_d($constantaddress($con));
  9652     __ faddp($dst$$reg);
  9653   %}
  9654   ins_pipe(fpu_reg_mem);
  9655 %}
  9657 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9658   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9659   match(Set dst (RoundDouble (AddD src con)));
  9660   ins_cost(200);
  9661   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9662             "DADD   ST,$src\n\t"
  9663             "FSTP_D $dst\t# D-round" %}
  9664   ins_encode %{
  9665     __ fld_d($constantaddress($con));
  9666     __ fadd($src$$reg);
  9667     __ fstp_d(Address(rsp, $dst$$disp));
  9668   %}
  9669   ins_pipe(fpu_mem_reg_con);
  9670 %}
  9672 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9673   predicate(UseSSE<=1);
  9674   match(Set dst (MulD dst src));
  9675   format %{ "FLD    $src\n\t"
  9676             "DMULp  $dst,ST" %}
  9677   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9678   ins_cost(150);
  9679   ins_encode( Push_Reg_DPR(src),
  9680               OpcP, RegOpc(dst) );
  9681   ins_pipe( fpu_reg_reg );
  9682 %}
  9684 // Strict FP instruction biases argument before multiply then
  9685 // biases result to avoid double rounding of subnormals.
  9686 //
  9687 // scale arg1 by multiplying arg1 by 2^(-15360)
  9688 // load arg2
  9689 // multiply scaled arg1 by arg2
  9690 // rescale product by 2^(15360)
  9691 //
  9692 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9693   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9694   match(Set dst (MulD dst src));
  9695   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9697   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9698             "DMULp  $dst,ST\n\t"
  9699             "FLD    $src\n\t"
  9700             "DMULp  $dst,ST\n\t"
  9701             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9702             "DMULp  $dst,ST\n\t" %}
  9703   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9704   ins_encode( strictfp_bias1(dst),
  9705               Push_Reg_DPR(src),
  9706               OpcP, RegOpc(dst),
  9707               strictfp_bias2(dst) );
  9708   ins_pipe( fpu_reg_reg );
  9709 %}
  9711 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9712   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9713   match(Set dst (MulD dst con));
  9714   ins_cost(200);
  9715   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9716             "DMULp  $dst,ST" %}
  9717   ins_encode %{
  9718     __ fld_d($constantaddress($con));
  9719     __ fmulp($dst$$reg);
  9720   %}
  9721   ins_pipe(fpu_reg_mem);
  9722 %}
  9725 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9726   predicate( UseSSE<=1 );
  9727   match(Set dst (MulD dst (LoadD src)));
  9728   ins_cost(200);
  9729   format %{ "FLD_D  $src\n\t"
  9730             "DMULp  $dst,ST" %}
  9731   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9732   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9733               OpcP, RegOpc(dst) );
  9734   ins_pipe( fpu_reg_mem );
  9735 %}
  9737 //
  9738 // Cisc-alternate to reg-reg multiply
  9739 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9740   predicate( UseSSE<=1 );
  9741   match(Set dst (MulD src (LoadD mem)));
  9742   ins_cost(250);
  9743   format %{ "FLD_D  $mem\n\t"
  9744             "DMUL   ST,$src\n\t"
  9745             "FSTP_D $dst" %}
  9746   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9747   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9748               OpcReg_FPR(src),
  9749               Pop_Reg_DPR(dst) );
  9750   ins_pipe( fpu_reg_reg_mem );
  9751 %}
  9754 // MACRO3 -- addDPR a mulDPR
  9755 // This instruction is a '2-address' instruction in that the result goes
  9756 // back to src2.  This eliminates a move from the macro; possibly the
  9757 // register allocator will have to add it back (and maybe not).
  9758 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9759   predicate( UseSSE<=1 );
  9760   match(Set src2 (AddD (MulD src0 src1) src2));
  9761   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9762             "DMUL   ST,$src1\n\t"
  9763             "DADDp  $src2,ST" %}
  9764   ins_cost(250);
  9765   opcode(0xDD); /* LoadD DD /0 */
  9766   ins_encode( Push_Reg_FPR(src0),
  9767               FMul_ST_reg(src1),
  9768               FAddP_reg_ST(src2) );
  9769   ins_pipe( fpu_reg_reg_reg );
  9770 %}
  9773 // MACRO3 -- subDPR a mulDPR
  9774 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9775   predicate( UseSSE<=1 );
  9776   match(Set src2 (SubD (MulD src0 src1) src2));
  9777   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9778             "DMUL   ST,$src1\n\t"
  9779             "DSUBRp $src2,ST" %}
  9780   ins_cost(250);
  9781   ins_encode( Push_Reg_FPR(src0),
  9782               FMul_ST_reg(src1),
  9783               Opcode(0xDE), Opc_plus(0xE0,src2));
  9784   ins_pipe( fpu_reg_reg_reg );
  9785 %}
  9788 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9789   predicate( UseSSE<=1 );
  9790   match(Set dst (DivD dst src));
  9792   format %{ "FLD    $src\n\t"
  9793             "FDIVp  $dst,ST" %}
  9794   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9795   ins_cost(150);
  9796   ins_encode( Push_Reg_DPR(src),
  9797               OpcP, RegOpc(dst) );
  9798   ins_pipe( fpu_reg_reg );
  9799 %}
  9801 // Strict FP instruction biases argument before division then
  9802 // biases result, to avoid double rounding of subnormals.
  9803 //
  9804 // scale dividend by multiplying dividend by 2^(-15360)
  9805 // load divisor
  9806 // divide scaled dividend by divisor
  9807 // rescale quotient by 2^(15360)
  9808 //
  9809 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9810   predicate (UseSSE<=1);
  9811   match(Set dst (DivD dst src));
  9812   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9813   ins_cost(01);
  9815   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9816             "DMULp  $dst,ST\n\t"
  9817             "FLD    $src\n\t"
  9818             "FDIVp  $dst,ST\n\t"
  9819             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9820             "DMULp  $dst,ST\n\t" %}
  9821   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9822   ins_encode( strictfp_bias1(dst),
  9823               Push_Reg_DPR(src),
  9824               OpcP, RegOpc(dst),
  9825               strictfp_bias2(dst) );
  9826   ins_pipe( fpu_reg_reg );
  9827 %}
  9829 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9830   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9831   match(Set dst (RoundDouble (DivD src1 src2)));
  9833   format %{ "FLD    $src1\n\t"
  9834             "FDIV   ST,$src2\n\t"
  9835             "FSTP_D $dst\t# D-round" %}
  9836   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9837   ins_encode( Push_Reg_DPR(src1),
  9838               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9839   ins_pipe( fpu_mem_reg_reg );
  9840 %}
  9843 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9844   predicate(UseSSE<=1);
  9845   match(Set dst (ModD dst src));
  9846   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9848   format %{ "DMOD   $dst,$src" %}
  9849   ins_cost(250);
  9850   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9851               emitModDPR(),
  9852               Push_Result_Mod_DPR(src),
  9853               Pop_Reg_DPR(dst));
  9854   ins_pipe( pipe_slow );
  9855 %}
  9857 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9858   predicate(UseSSE>=2);
  9859   match(Set dst (ModD src0 src1));
  9860   effect(KILL rax, KILL cr);
  9862   format %{ "SUB    ESP,8\t # DMOD\n"
  9863           "\tMOVSD  [ESP+0],$src1\n"
  9864           "\tFLD_D  [ESP+0]\n"
  9865           "\tMOVSD  [ESP+0],$src0\n"
  9866           "\tFLD_D  [ESP+0]\n"
  9867      "loop:\tFPREM\n"
  9868           "\tFWAIT\n"
  9869           "\tFNSTSW AX\n"
  9870           "\tSAHF\n"
  9871           "\tJP     loop\n"
  9872           "\tFSTP_D [ESP+0]\n"
  9873           "\tMOVSD  $dst,[ESP+0]\n"
  9874           "\tADD    ESP,8\n"
  9875           "\tFSTP   ST0\t # Restore FPU Stack"
  9876     %}
  9877   ins_cost(250);
  9878   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9879   ins_pipe( pipe_slow );
  9880 %}
  9882 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9883   predicate (UseSSE<=1);
  9884   match(Set dst (SinD src));
  9885   ins_cost(1800);
  9886   format %{ "DSIN   $dst" %}
  9887   opcode(0xD9, 0xFE);
  9888   ins_encode( OpcP, OpcS );
  9889   ins_pipe( pipe_slow );
  9890 %}
  9892 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9893   predicate (UseSSE>=2);
  9894   match(Set dst (SinD dst));
  9895   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9896   ins_cost(1800);
  9897   format %{ "DSIN   $dst" %}
  9898   opcode(0xD9, 0xFE);
  9899   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9900   ins_pipe( pipe_slow );
  9901 %}
  9903 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9904   predicate (UseSSE<=1);
  9905   match(Set dst (CosD src));
  9906   ins_cost(1800);
  9907   format %{ "DCOS   $dst" %}
  9908   opcode(0xD9, 0xFF);
  9909   ins_encode( OpcP, OpcS );
  9910   ins_pipe( pipe_slow );
  9911 %}
  9913 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9914   predicate (UseSSE>=2);
  9915   match(Set dst (CosD dst));
  9916   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9917   ins_cost(1800);
  9918   format %{ "DCOS   $dst" %}
  9919   opcode(0xD9, 0xFF);
  9920   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9921   ins_pipe( pipe_slow );
  9922 %}
  9924 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9925   predicate (UseSSE<=1);
  9926   match(Set dst(TanD src));
  9927   format %{ "DTAN   $dst" %}
  9928   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9929               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9930   ins_pipe( pipe_slow );
  9931 %}
  9933 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9934   predicate (UseSSE>=2);
  9935   match(Set dst(TanD dst));
  9936   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9937   format %{ "DTAN   $dst" %}
  9938   ins_encode( Push_SrcD(dst),
  9939               Opcode(0xD9), Opcode(0xF2),    // fptan
  9940               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9941               Push_ResultD(dst) );
  9942   ins_pipe( pipe_slow );
  9943 %}
  9945 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9946   predicate (UseSSE<=1);
  9947   match(Set dst(AtanD dst src));
  9948   format %{ "DATA   $dst,$src" %}
  9949   opcode(0xD9, 0xF3);
  9950   ins_encode( Push_Reg_DPR(src),
  9951               OpcP, OpcS, RegOpc(dst) );
  9952   ins_pipe( pipe_slow );
  9953 %}
  9955 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9956   predicate (UseSSE>=2);
  9957   match(Set dst(AtanD dst src));
  9958   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9959   format %{ "DATA   $dst,$src" %}
  9960   opcode(0xD9, 0xF3);
  9961   ins_encode( Push_SrcD(src),
  9962               OpcP, OpcS, Push_ResultD(dst) );
  9963   ins_pipe( pipe_slow );
  9964 %}
  9966 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9967   predicate (UseSSE<=1);
  9968   match(Set dst (SqrtD src));
  9969   format %{ "DSQRT  $dst,$src" %}
  9970   opcode(0xFA, 0xD9);
  9971   ins_encode( Push_Reg_DPR(src),
  9972               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9973   ins_pipe( pipe_slow );
  9974 %}
  9976 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9977   predicate (UseSSE<=1);
  9978   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9979   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9980   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9981   ins_encode %{
  9982     __ subptr(rsp, 8);
  9983     __ fld_s($X$$reg - 1);
  9984     __ fast_pow();
  9985     __ addptr(rsp, 8);
  9986   %}
  9987   ins_pipe( pipe_slow );
  9988 %}
  9990 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9991   predicate (UseSSE>=2);
  9992   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9993   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9994   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
  9995   ins_encode %{
  9996     __ subptr(rsp, 8);
  9997     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  9998     __ fld_d(Address(rsp, 0));
  9999     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
 10000     __ fld_d(Address(rsp, 0));
 10001     __ fast_pow();
 10002     __ fstp_d(Address(rsp, 0));
 10003     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10004     __ addptr(rsp, 8);
 10005   %}
 10006   ins_pipe( pipe_slow );
 10007 %}
 10010 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10011   predicate (UseSSE<=1);
 10012   match(Set dpr1 (ExpD dpr1));
 10013   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10014   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
 10015   ins_encode %{
 10016     __ fast_exp();
 10017   %}
 10018   ins_pipe( pipe_slow );
 10019 %}
 10021 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10022   predicate (UseSSE>=2);
 10023   match(Set dst (ExpD src));
 10024   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10025   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
 10026   ins_encode %{
 10027     __ subptr(rsp, 8);
 10028     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10029     __ fld_d(Address(rsp, 0));
 10030     __ fast_exp();
 10031     __ fstp_d(Address(rsp, 0));
 10032     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10033     __ addptr(rsp, 8);
 10034   %}
 10035   ins_pipe( pipe_slow );
 10036 %}
 10038 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10039   predicate (UseSSE<=1);
 10040   // The source Double operand on FPU stack
 10041   match(Set dst (Log10D src));
 10042   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10043   // fxch         ; swap ST(0) with ST(1)
 10044   // fyl2x        ; compute log_10(2) * log_2(x)
 10045   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10046             "FXCH   \n\t"
 10047             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10048          %}
 10049   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10050               Opcode(0xD9), Opcode(0xC9),   // fxch
 10051               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10053   ins_pipe( pipe_slow );
 10054 %}
 10056 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10057   predicate (UseSSE>=2);
 10058   effect(KILL cr);
 10059   match(Set dst (Log10D src));
 10060   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10061   // fyl2x        ; compute log_10(2) * log_2(x)
 10062   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10063             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10064          %}
 10065   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10066               Push_SrcD(src),
 10067               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10068               Push_ResultD(dst));
 10070   ins_pipe( pipe_slow );
 10071 %}
 10073 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10074   predicate (UseSSE<=1);
 10075   // The source Double operand on FPU stack
 10076   match(Set dst (LogD src));
 10077   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10078   // fxch         ; swap ST(0) with ST(1)
 10079   // fyl2x        ; compute log_e(2) * log_2(x)
 10080   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10081             "FXCH   \n\t"
 10082             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10083          %}
 10084   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10085               Opcode(0xD9), Opcode(0xC9),   // fxch
 10086               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10088   ins_pipe( pipe_slow );
 10089 %}
 10091 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10092   predicate (UseSSE>=2);
 10093   effect(KILL cr);
 10094   // The source and result Double operands in XMM registers
 10095   match(Set dst (LogD src));
 10096   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10097   // fyl2x        ; compute log_e(2) * log_2(x)
 10098   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10099             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10100          %}
 10101   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10102               Push_SrcD(src),
 10103               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10104               Push_ResultD(dst));
 10105   ins_pipe( pipe_slow );
 10106 %}
 10108 //-------------Float Instructions-------------------------------
 10109 // Float Math
 10111 // Code for float compare:
 10112 //     fcompp();
 10113 //     fwait(); fnstsw_ax();
 10114 //     sahf();
 10115 //     movl(dst, unordered_result);
 10116 //     jcc(Assembler::parity, exit);
 10117 //     movl(dst, less_result);
 10118 //     jcc(Assembler::below, exit);
 10119 //     movl(dst, equal_result);
 10120 //     jcc(Assembler::equal, exit);
 10121 //     movl(dst, greater_result);
 10122 //   exit:
 10124 // P6 version of float compare, sets condition codes in EFLAGS
 10125 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10126   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10127   match(Set cr (CmpF src1 src2));
 10128   effect(KILL rax);
 10129   ins_cost(150);
 10130   format %{ "FLD    $src1\n\t"
 10131             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10132             "JNP    exit\n\t"
 10133             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10134             "SAHF\n"
 10135      "exit:\tNOP               // avoid branch to branch" %}
 10136   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10137   ins_encode( Push_Reg_DPR(src1),
 10138               OpcP, RegOpc(src2),
 10139               cmpF_P6_fixup );
 10140   ins_pipe( pipe_slow );
 10141 %}
 10143 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10144   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10145   match(Set cr (CmpF src1 src2));
 10146   ins_cost(100);
 10147   format %{ "FLD    $src1\n\t"
 10148             "FUCOMIP ST,$src2  // P6 instruction" %}
 10149   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10150   ins_encode( Push_Reg_DPR(src1),
 10151               OpcP, RegOpc(src2));
 10152   ins_pipe( pipe_slow );
 10153 %}
 10156 // Compare & branch
 10157 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10158   predicate(UseSSE == 0);
 10159   match(Set cr (CmpF src1 src2));
 10160   effect(KILL rax);
 10161   ins_cost(200);
 10162   format %{ "FLD    $src1\n\t"
 10163             "FCOMp  $src2\n\t"
 10164             "FNSTSW AX\n\t"
 10165             "TEST   AX,0x400\n\t"
 10166             "JZ,s   flags\n\t"
 10167             "MOV    AH,1\t# unordered treat as LT\n"
 10168     "flags:\tSAHF" %}
 10169   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10170   ins_encode( Push_Reg_DPR(src1),
 10171               OpcP, RegOpc(src2),
 10172               fpu_flags);
 10173   ins_pipe( pipe_slow );
 10174 %}
 10176 // Compare vs zero into -1,0,1
 10177 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10178   predicate(UseSSE == 0);
 10179   match(Set dst (CmpF3 src1 zero));
 10180   effect(KILL cr, KILL rax);
 10181   ins_cost(280);
 10182   format %{ "FTSTF  $dst,$src1" %}
 10183   opcode(0xE4, 0xD9);
 10184   ins_encode( Push_Reg_DPR(src1),
 10185               OpcS, OpcP, PopFPU,
 10186               CmpF_Result(dst));
 10187   ins_pipe( pipe_slow );
 10188 %}
 10190 // Compare into -1,0,1
 10191 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10192   predicate(UseSSE == 0);
 10193   match(Set dst (CmpF3 src1 src2));
 10194   effect(KILL cr, KILL rax);
 10195   ins_cost(300);
 10196   format %{ "FCMPF  $dst,$src1,$src2" %}
 10197   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10198   ins_encode( Push_Reg_DPR(src1),
 10199               OpcP, RegOpc(src2),
 10200               CmpF_Result(dst));
 10201   ins_pipe( pipe_slow );
 10202 %}
 10204 // float compare and set condition codes in EFLAGS by XMM regs
 10205 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10206   predicate(UseSSE>=1);
 10207   match(Set cr (CmpF src1 src2));
 10208   ins_cost(145);
 10209   format %{ "UCOMISS $src1,$src2\n\t"
 10210             "JNP,s   exit\n\t"
 10211             "PUSHF\t# saw NaN, set CF\n\t"
 10212             "AND     [rsp], #0xffffff2b\n\t"
 10213             "POPF\n"
 10214     "exit:" %}
 10215   ins_encode %{
 10216     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10217     emit_cmpfp_fixup(_masm);
 10218   %}
 10219   ins_pipe( pipe_slow );
 10220 %}
 10222 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10223   predicate(UseSSE>=1);
 10224   match(Set cr (CmpF src1 src2));
 10225   ins_cost(100);
 10226   format %{ "UCOMISS $src1,$src2" %}
 10227   ins_encode %{
 10228     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10229   %}
 10230   ins_pipe( pipe_slow );
 10231 %}
 10233 // float compare and set condition codes in EFLAGS by XMM regs
 10234 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10235   predicate(UseSSE>=1);
 10236   match(Set cr (CmpF src1 (LoadF src2)));
 10237   ins_cost(165);
 10238   format %{ "UCOMISS $src1,$src2\n\t"
 10239             "JNP,s   exit\n\t"
 10240             "PUSHF\t# saw NaN, set CF\n\t"
 10241             "AND     [rsp], #0xffffff2b\n\t"
 10242             "POPF\n"
 10243     "exit:" %}
 10244   ins_encode %{
 10245     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10246     emit_cmpfp_fixup(_masm);
 10247   %}
 10248   ins_pipe( pipe_slow );
 10249 %}
 10251 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10252   predicate(UseSSE>=1);
 10253   match(Set cr (CmpF src1 (LoadF src2)));
 10254   ins_cost(100);
 10255   format %{ "UCOMISS $src1,$src2" %}
 10256   ins_encode %{
 10257     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10258   %}
 10259   ins_pipe( pipe_slow );
 10260 %}
 10262 // Compare into -1,0,1 in XMM
 10263 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10264   predicate(UseSSE>=1);
 10265   match(Set dst (CmpF3 src1 src2));
 10266   effect(KILL cr);
 10267   ins_cost(255);
 10268   format %{ "UCOMISS $src1, $src2\n\t"
 10269             "MOV     $dst, #-1\n\t"
 10270             "JP,s    done\n\t"
 10271             "JB,s    done\n\t"
 10272             "SETNE   $dst\n\t"
 10273             "MOVZB   $dst, $dst\n"
 10274     "done:" %}
 10275   ins_encode %{
 10276     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10277     emit_cmpfp3(_masm, $dst$$Register);
 10278   %}
 10279   ins_pipe( pipe_slow );
 10280 %}
 10282 // Compare into -1,0,1 in XMM and memory
 10283 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10284   predicate(UseSSE>=1);
 10285   match(Set dst (CmpF3 src1 (LoadF src2)));
 10286   effect(KILL cr);
 10287   ins_cost(275);
 10288   format %{ "UCOMISS $src1, $src2\n\t"
 10289             "MOV     $dst, #-1\n\t"
 10290             "JP,s    done\n\t"
 10291             "JB,s    done\n\t"
 10292             "SETNE   $dst\n\t"
 10293             "MOVZB   $dst, $dst\n"
 10294     "done:" %}
 10295   ins_encode %{
 10296     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10297     emit_cmpfp3(_masm, $dst$$Register);
 10298   %}
 10299   ins_pipe( pipe_slow );
 10300 %}
 10302 // Spill to obtain 24-bit precision
 10303 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10304   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10305   match(Set dst (SubF src1 src2));
 10307   format %{ "FSUB   $dst,$src1 - $src2" %}
 10308   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10309   ins_encode( Push_Reg_FPR(src1),
 10310               OpcReg_FPR(src2),
 10311               Pop_Mem_FPR(dst) );
 10312   ins_pipe( fpu_mem_reg_reg );
 10313 %}
 10314 //
 10315 // This instruction does not round to 24-bits
 10316 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10317   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10318   match(Set dst (SubF dst src));
 10320   format %{ "FSUB   $dst,$src" %}
 10321   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10322   ins_encode( Push_Reg_FPR(src),
 10323               OpcP, RegOpc(dst) );
 10324   ins_pipe( fpu_reg_reg );
 10325 %}
 10327 // Spill to obtain 24-bit precision
 10328 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10329   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10330   match(Set dst (AddF src1 src2));
 10332   format %{ "FADD   $dst,$src1,$src2" %}
 10333   opcode(0xD8, 0x0); /* D8 C0+i */
 10334   ins_encode( Push_Reg_FPR(src2),
 10335               OpcReg_FPR(src1),
 10336               Pop_Mem_FPR(dst) );
 10337   ins_pipe( fpu_mem_reg_reg );
 10338 %}
 10339 //
 10340 // This instruction does not round to 24-bits
 10341 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10342   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10343   match(Set dst (AddF dst src));
 10345   format %{ "FLD    $src\n\t"
 10346             "FADDp  $dst,ST" %}
 10347   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10348   ins_encode( Push_Reg_FPR(src),
 10349               OpcP, RegOpc(dst) );
 10350   ins_pipe( fpu_reg_reg );
 10351 %}
 10353 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10354   predicate(UseSSE==0);
 10355   match(Set dst (AbsF src));
 10356   ins_cost(100);
 10357   format %{ "FABS" %}
 10358   opcode(0xE1, 0xD9);
 10359   ins_encode( OpcS, OpcP );
 10360   ins_pipe( fpu_reg_reg );
 10361 %}
 10363 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10364   predicate(UseSSE==0);
 10365   match(Set dst (NegF src));
 10366   ins_cost(100);
 10367   format %{ "FCHS" %}
 10368   opcode(0xE0, 0xD9);
 10369   ins_encode( OpcS, OpcP );
 10370   ins_pipe( fpu_reg_reg );
 10371 %}
 10373 // Cisc-alternate to addFPR_reg
 10374 // Spill to obtain 24-bit precision
 10375 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10376   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10377   match(Set dst (AddF src1 (LoadF src2)));
 10379   format %{ "FLD    $src2\n\t"
 10380             "FADD   ST,$src1\n\t"
 10381             "FSTP_S $dst" %}
 10382   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10383   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10384               OpcReg_FPR(src1),
 10385               Pop_Mem_FPR(dst) );
 10386   ins_pipe( fpu_mem_reg_mem );
 10387 %}
 10388 //
 10389 // Cisc-alternate to addFPR_reg
 10390 // This instruction does not round to 24-bits
 10391 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10392   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10393   match(Set dst (AddF dst (LoadF src)));
 10395   format %{ "FADD   $dst,$src" %}
 10396   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10397   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10398               OpcP, RegOpc(dst) );
 10399   ins_pipe( fpu_reg_mem );
 10400 %}
 10402 // // Following two instructions for _222_mpegaudio
 10403 // Spill to obtain 24-bit precision
 10404 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10405   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10406   match(Set dst (AddF src1 src2));
 10408   format %{ "FADD   $dst,$src1,$src2" %}
 10409   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10410   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10411               OpcReg_FPR(src2),
 10412               Pop_Mem_FPR(dst) );
 10413   ins_pipe( fpu_mem_reg_mem );
 10414 %}
 10416 // Cisc-spill variant
 10417 // Spill to obtain 24-bit precision
 10418 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10419   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10420   match(Set dst (AddF src1 (LoadF src2)));
 10422   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10423   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10424   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10425               set_instruction_start,
 10426               OpcP, RMopc_Mem(secondary,src1),
 10427               Pop_Mem_FPR(dst) );
 10428   ins_pipe( fpu_mem_mem_mem );
 10429 %}
 10431 // Spill to obtain 24-bit precision
 10432 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10433   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10434   match(Set dst (AddF src1 src2));
 10436   format %{ "FADD   $dst,$src1,$src2" %}
 10437   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10438   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10439               set_instruction_start,
 10440               OpcP, RMopc_Mem(secondary,src1),
 10441               Pop_Mem_FPR(dst) );
 10442   ins_pipe( fpu_mem_mem_mem );
 10443 %}
 10446 // Spill to obtain 24-bit precision
 10447 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10448   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10449   match(Set dst (AddF src con));
 10450   format %{ "FLD    $src\n\t"
 10451             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10452             "FSTP_S $dst"  %}
 10453   ins_encode %{
 10454     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10455     __ fadd_s($constantaddress($con));
 10456     __ fstp_s(Address(rsp, $dst$$disp));
 10457   %}
 10458   ins_pipe(fpu_mem_reg_con);
 10459 %}
 10460 //
 10461 // This instruction does not round to 24-bits
 10462 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10463   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10464   match(Set dst (AddF src con));
 10465   format %{ "FLD    $src\n\t"
 10466             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10467             "FSTP   $dst"  %}
 10468   ins_encode %{
 10469     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10470     __ fadd_s($constantaddress($con));
 10471     __ fstp_d($dst$$reg);
 10472   %}
 10473   ins_pipe(fpu_reg_reg_con);
 10474 %}
 10476 // Spill to obtain 24-bit precision
 10477 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10478   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10479   match(Set dst (MulF src1 src2));
 10481   format %{ "FLD    $src1\n\t"
 10482             "FMUL   $src2\n\t"
 10483             "FSTP_S $dst"  %}
 10484   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10485   ins_encode( Push_Reg_FPR(src1),
 10486               OpcReg_FPR(src2),
 10487               Pop_Mem_FPR(dst) );
 10488   ins_pipe( fpu_mem_reg_reg );
 10489 %}
 10490 //
 10491 // This instruction does not round to 24-bits
 10492 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10493   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10494   match(Set dst (MulF src1 src2));
 10496   format %{ "FLD    $src1\n\t"
 10497             "FMUL   $src2\n\t"
 10498             "FSTP_S $dst"  %}
 10499   opcode(0xD8, 0x1); /* D8 C8+i */
 10500   ins_encode( Push_Reg_FPR(src2),
 10501               OpcReg_FPR(src1),
 10502               Pop_Reg_FPR(dst) );
 10503   ins_pipe( fpu_reg_reg_reg );
 10504 %}
 10507 // Spill to obtain 24-bit precision
 10508 // Cisc-alternate to reg-reg multiply
 10509 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10510   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10511   match(Set dst (MulF src1 (LoadF src2)));
 10513   format %{ "FLD_S  $src2\n\t"
 10514             "FMUL   $src1\n\t"
 10515             "FSTP_S $dst"  %}
 10516   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10517   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10518               OpcReg_FPR(src1),
 10519               Pop_Mem_FPR(dst) );
 10520   ins_pipe( fpu_mem_reg_mem );
 10521 %}
 10522 //
 10523 // This instruction does not round to 24-bits
 10524 // Cisc-alternate to reg-reg multiply
 10525 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10526   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10527   match(Set dst (MulF src1 (LoadF src2)));
 10529   format %{ "FMUL   $dst,$src1,$src2" %}
 10530   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10531   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10532               OpcReg_FPR(src1),
 10533               Pop_Reg_FPR(dst) );
 10534   ins_pipe( fpu_reg_reg_mem );
 10535 %}
 10537 // Spill to obtain 24-bit precision
 10538 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10539   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10540   match(Set dst (MulF src1 src2));
 10542   format %{ "FMUL   $dst,$src1,$src2" %}
 10543   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10544   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10545               set_instruction_start,
 10546               OpcP, RMopc_Mem(secondary,src1),
 10547               Pop_Mem_FPR(dst) );
 10548   ins_pipe( fpu_mem_mem_mem );
 10549 %}
 10551 // Spill to obtain 24-bit precision
 10552 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10553   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10554   match(Set dst (MulF src con));
 10556   format %{ "FLD    $src\n\t"
 10557             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10558             "FSTP_S $dst"  %}
 10559   ins_encode %{
 10560     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10561     __ fmul_s($constantaddress($con));
 10562     __ fstp_s(Address(rsp, $dst$$disp));
 10563   %}
 10564   ins_pipe(fpu_mem_reg_con);
 10565 %}
 10566 //
 10567 // This instruction does not round to 24-bits
 10568 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10569   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10570   match(Set dst (MulF src con));
 10572   format %{ "FLD    $src\n\t"
 10573             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10574             "FSTP   $dst"  %}
 10575   ins_encode %{
 10576     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10577     __ fmul_s($constantaddress($con));
 10578     __ fstp_d($dst$$reg);
 10579   %}
 10580   ins_pipe(fpu_reg_reg_con);
 10581 %}
 10584 //
 10585 // MACRO1 -- subsume unshared load into mulFPR
 10586 // This instruction does not round to 24-bits
 10587 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10588   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10589   match(Set dst (MulF (LoadF mem1) src));
 10591   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10592             "FMUL   ST,$src\n\t"
 10593             "FSTP   $dst" %}
 10594   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10595   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10596               OpcReg_FPR(src),
 10597               Pop_Reg_FPR(dst) );
 10598   ins_pipe( fpu_reg_reg_mem );
 10599 %}
 10600 //
 10601 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10602 // This instruction does not round to 24-bits
 10603 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10604   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10605   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10606   ins_cost(95);
 10608   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10609             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10610             "FADD   ST,$src2\n\t"
 10611             "FSTP   $dst" %}
 10612   opcode(0xD9); /* LoadF D9 /0 */
 10613   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10614               FMul_ST_reg(src1),
 10615               FAdd_ST_reg(src2),
 10616               Pop_Reg_FPR(dst) );
 10617   ins_pipe( fpu_reg_mem_reg_reg );
 10618 %}
 10620 // MACRO3 -- addFPR a mulFPR
 10621 // This instruction does not round to 24-bits.  It is a '2-address'
 10622 // instruction in that the result goes back to src2.  This eliminates
 10623 // a move from the macro; possibly the register allocator will have
 10624 // to add it back (and maybe not).
 10625 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10626   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10627   match(Set src2 (AddF (MulF src0 src1) src2));
 10629   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10630             "FMUL   ST,$src1\n\t"
 10631             "FADDP  $src2,ST" %}
 10632   opcode(0xD9); /* LoadF D9 /0 */
 10633   ins_encode( Push_Reg_FPR(src0),
 10634               FMul_ST_reg(src1),
 10635               FAddP_reg_ST(src2) );
 10636   ins_pipe( fpu_reg_reg_reg );
 10637 %}
 10639 // MACRO4 -- divFPR subFPR
 10640 // This instruction does not round to 24-bits
 10641 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10642   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10643   match(Set dst (DivF (SubF src2 src1) src3));
 10645   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10646             "FSUB   ST,$src1\n\t"
 10647             "FDIV   ST,$src3\n\t"
 10648             "FSTP  $dst" %}
 10649   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10650   ins_encode( Push_Reg_FPR(src2),
 10651               subFPR_divFPR_encode(src1,src3),
 10652               Pop_Reg_FPR(dst) );
 10653   ins_pipe( fpu_reg_reg_reg_reg );
 10654 %}
 10656 // Spill to obtain 24-bit precision
 10657 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10658   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10659   match(Set dst (DivF src1 src2));
 10661   format %{ "FDIV   $dst,$src1,$src2" %}
 10662   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10663   ins_encode( Push_Reg_FPR(src1),
 10664               OpcReg_FPR(src2),
 10665               Pop_Mem_FPR(dst) );
 10666   ins_pipe( fpu_mem_reg_reg );
 10667 %}
 10668 //
 10669 // This instruction does not round to 24-bits
 10670 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10671   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10672   match(Set dst (DivF dst src));
 10674   format %{ "FDIV   $dst,$src" %}
 10675   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10676   ins_encode( Push_Reg_FPR(src),
 10677               OpcP, RegOpc(dst) );
 10678   ins_pipe( fpu_reg_reg );
 10679 %}
 10682 // Spill to obtain 24-bit precision
 10683 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10684   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10685   match(Set dst (ModF src1 src2));
 10686   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10688   format %{ "FMOD   $dst,$src1,$src2" %}
 10689   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10690               emitModDPR(),
 10691               Push_Result_Mod_DPR(src2),
 10692               Pop_Mem_FPR(dst));
 10693   ins_pipe( pipe_slow );
 10694 %}
 10695 //
 10696 // This instruction does not round to 24-bits
 10697 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10698   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10699   match(Set dst (ModF dst src));
 10700   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10702   format %{ "FMOD   $dst,$src" %}
 10703   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10704               emitModDPR(),
 10705               Push_Result_Mod_DPR(src),
 10706               Pop_Reg_FPR(dst));
 10707   ins_pipe( pipe_slow );
 10708 %}
 10710 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10711   predicate(UseSSE>=1);
 10712   match(Set dst (ModF src0 src1));
 10713   effect(KILL rax, KILL cr);
 10714   format %{ "SUB    ESP,4\t # FMOD\n"
 10715           "\tMOVSS  [ESP+0],$src1\n"
 10716           "\tFLD_S  [ESP+0]\n"
 10717           "\tMOVSS  [ESP+0],$src0\n"
 10718           "\tFLD_S  [ESP+0]\n"
 10719      "loop:\tFPREM\n"
 10720           "\tFWAIT\n"
 10721           "\tFNSTSW AX\n"
 10722           "\tSAHF\n"
 10723           "\tJP     loop\n"
 10724           "\tFSTP_S [ESP+0]\n"
 10725           "\tMOVSS  $dst,[ESP+0]\n"
 10726           "\tADD    ESP,4\n"
 10727           "\tFSTP   ST0\t # Restore FPU Stack"
 10728     %}
 10729   ins_cost(250);
 10730   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10731   ins_pipe( pipe_slow );
 10732 %}
 10735 //----------Arithmetic Conversion Instructions---------------------------------
 10736 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10738 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10739   predicate(UseSSE==0);
 10740   match(Set dst (RoundFloat src));
 10741   ins_cost(125);
 10742   format %{ "FST_S  $dst,$src\t# F-round" %}
 10743   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10744   ins_pipe( fpu_mem_reg );
 10745 %}
 10747 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10748   predicate(UseSSE<=1);
 10749   match(Set dst (RoundDouble src));
 10750   ins_cost(125);
 10751   format %{ "FST_D  $dst,$src\t# D-round" %}
 10752   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10753   ins_pipe( fpu_mem_reg );
 10754 %}
 10756 // Force rounding to 24-bit precision and 6-bit exponent
 10757 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10758   predicate(UseSSE==0);
 10759   match(Set dst (ConvD2F src));
 10760   format %{ "FST_S  $dst,$src\t# F-round" %}
 10761   expand %{
 10762     roundFloat_mem_reg(dst,src);
 10763   %}
 10764 %}
 10766 // Force rounding to 24-bit precision and 6-bit exponent
 10767 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10768   predicate(UseSSE==1);
 10769   match(Set dst (ConvD2F src));
 10770   effect( KILL cr );
 10771   format %{ "SUB    ESP,4\n\t"
 10772             "FST_S  [ESP],$src\t# F-round\n\t"
 10773             "MOVSS  $dst,[ESP]\n\t"
 10774             "ADD ESP,4" %}
 10775   ins_encode %{
 10776     __ subptr(rsp, 4);
 10777     if ($src$$reg != FPR1L_enc) {
 10778       __ fld_s($src$$reg-1);
 10779       __ fstp_s(Address(rsp, 0));
 10780     } else {
 10781       __ fst_s(Address(rsp, 0));
 10783     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10784     __ addptr(rsp, 4);
 10785   %}
 10786   ins_pipe( pipe_slow );
 10787 %}
 10789 // Force rounding double precision to single precision
 10790 instruct convD2F_reg(regF dst, regD src) %{
 10791   predicate(UseSSE>=2);
 10792   match(Set dst (ConvD2F src));
 10793   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10794   ins_encode %{
 10795     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10796   %}
 10797   ins_pipe( pipe_slow );
 10798 %}
 10800 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10801   predicate(UseSSE==0);
 10802   match(Set dst (ConvF2D src));
 10803   format %{ "FST_S  $dst,$src\t# D-round" %}
 10804   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10805   ins_pipe( fpu_reg_reg );
 10806 %}
 10808 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10809   predicate(UseSSE==1);
 10810   match(Set dst (ConvF2D src));
 10811   format %{ "FST_D  $dst,$src\t# D-round" %}
 10812   expand %{
 10813     roundDouble_mem_reg(dst,src);
 10814   %}
 10815 %}
 10817 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10818   predicate(UseSSE==1);
 10819   match(Set dst (ConvF2D src));
 10820   effect( KILL cr );
 10821   format %{ "SUB    ESP,4\n\t"
 10822             "MOVSS  [ESP] $src\n\t"
 10823             "FLD_S  [ESP]\n\t"
 10824             "ADD    ESP,4\n\t"
 10825             "FSTP   $dst\t# D-round" %}
 10826   ins_encode %{
 10827     __ subptr(rsp, 4);
 10828     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10829     __ fld_s(Address(rsp, 0));
 10830     __ addptr(rsp, 4);
 10831     __ fstp_d($dst$$reg);
 10832   %}
 10833   ins_pipe( pipe_slow );
 10834 %}
 10836 instruct convF2D_reg(regD dst, regF src) %{
 10837   predicate(UseSSE>=2);
 10838   match(Set dst (ConvF2D src));
 10839   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10840   ins_encode %{
 10841     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10842   %}
 10843   ins_pipe( pipe_slow );
 10844 %}
 10846 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10847 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10848   predicate(UseSSE<=1);
 10849   match(Set dst (ConvD2I src));
 10850   effect( KILL tmp, KILL cr );
 10851   format %{ "FLD    $src\t# Convert double to int \n\t"
 10852             "FLDCW  trunc mode\n\t"
 10853             "SUB    ESP,4\n\t"
 10854             "FISTp  [ESP + #0]\n\t"
 10855             "FLDCW  std/24-bit mode\n\t"
 10856             "POP    EAX\n\t"
 10857             "CMP    EAX,0x80000000\n\t"
 10858             "JNE,s  fast\n\t"
 10859             "FLD_D  $src\n\t"
 10860             "CALL   d2i_wrapper\n"
 10861       "fast:" %}
 10862   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10863   ins_pipe( pipe_slow );
 10864 %}
 10866 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10867 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10868   predicate(UseSSE>=2);
 10869   match(Set dst (ConvD2I src));
 10870   effect( KILL tmp, KILL cr );
 10871   format %{ "CVTTSD2SI $dst, $src\n\t"
 10872             "CMP    $dst,0x80000000\n\t"
 10873             "JNE,s  fast\n\t"
 10874             "SUB    ESP, 8\n\t"
 10875             "MOVSD  [ESP], $src\n\t"
 10876             "FLD_D  [ESP]\n\t"
 10877             "ADD    ESP, 8\n\t"
 10878             "CALL   d2i_wrapper\n"
 10879       "fast:" %}
 10880   ins_encode %{
 10881     Label fast;
 10882     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10883     __ cmpl($dst$$Register, 0x80000000);
 10884     __ jccb(Assembler::notEqual, fast);
 10885     __ subptr(rsp, 8);
 10886     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10887     __ fld_d(Address(rsp, 0));
 10888     __ addptr(rsp, 8);
 10889     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10890     __ bind(fast);
 10891   %}
 10892   ins_pipe( pipe_slow );
 10893 %}
 10895 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10896   predicate(UseSSE<=1);
 10897   match(Set dst (ConvD2L src));
 10898   effect( KILL cr );
 10899   format %{ "FLD    $src\t# Convert double to long\n\t"
 10900             "FLDCW  trunc mode\n\t"
 10901             "SUB    ESP,8\n\t"
 10902             "FISTp  [ESP + #0]\n\t"
 10903             "FLDCW  std/24-bit mode\n\t"
 10904             "POP    EAX\n\t"
 10905             "POP    EDX\n\t"
 10906             "CMP    EDX,0x80000000\n\t"
 10907             "JNE,s  fast\n\t"
 10908             "TEST   EAX,EAX\n\t"
 10909             "JNE,s  fast\n\t"
 10910             "FLD    $src\n\t"
 10911             "CALL   d2l_wrapper\n"
 10912       "fast:" %}
 10913   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10914   ins_pipe( pipe_slow );
 10915 %}
 10917 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10918 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10919   predicate (UseSSE>=2);
 10920   match(Set dst (ConvD2L src));
 10921   effect( KILL cr );
 10922   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10923             "MOVSD  [ESP],$src\n\t"
 10924             "FLD_D  [ESP]\n\t"
 10925             "FLDCW  trunc mode\n\t"
 10926             "FISTp  [ESP + #0]\n\t"
 10927             "FLDCW  std/24-bit mode\n\t"
 10928             "POP    EAX\n\t"
 10929             "POP    EDX\n\t"
 10930             "CMP    EDX,0x80000000\n\t"
 10931             "JNE,s  fast\n\t"
 10932             "TEST   EAX,EAX\n\t"
 10933             "JNE,s  fast\n\t"
 10934             "SUB    ESP,8\n\t"
 10935             "MOVSD  [ESP],$src\n\t"
 10936             "FLD_D  [ESP]\n\t"
 10937             "ADD    ESP,8\n\t"
 10938             "CALL   d2l_wrapper\n"
 10939       "fast:" %}
 10940   ins_encode %{
 10941     Label fast;
 10942     __ subptr(rsp, 8);
 10943     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10944     __ fld_d(Address(rsp, 0));
 10945     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10946     __ fistp_d(Address(rsp, 0));
 10947     // Restore the rounding mode, mask the exception
 10948     if (Compile::current()->in_24_bit_fp_mode()) {
 10949       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10950     } else {
 10951       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10953     // Load the converted long, adjust CPU stack
 10954     __ pop(rax);
 10955     __ pop(rdx);
 10956     __ cmpl(rdx, 0x80000000);
 10957     __ jccb(Assembler::notEqual, fast);
 10958     __ testl(rax, rax);
 10959     __ jccb(Assembler::notEqual, fast);
 10960     __ subptr(rsp, 8);
 10961     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10962     __ fld_d(Address(rsp, 0));
 10963     __ addptr(rsp, 8);
 10964     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10965     __ bind(fast);
 10966   %}
 10967   ins_pipe( pipe_slow );
 10968 %}
 10970 // Convert a double to an int.  Java semantics require we do complex
 10971 // manglations in the corner cases.  So we set the rounding mode to
 10972 // 'zero', store the darned double down as an int, and reset the
 10973 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10974 // if we would overflow or converted a NAN; we check for this and
 10975 // and go the slow path if needed.
 10976 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10977   predicate(UseSSE==0);
 10978   match(Set dst (ConvF2I src));
 10979   effect( KILL tmp, KILL cr );
 10980   format %{ "FLD    $src\t# Convert float to int \n\t"
 10981             "FLDCW  trunc mode\n\t"
 10982             "SUB    ESP,4\n\t"
 10983             "FISTp  [ESP + #0]\n\t"
 10984             "FLDCW  std/24-bit mode\n\t"
 10985             "POP    EAX\n\t"
 10986             "CMP    EAX,0x80000000\n\t"
 10987             "JNE,s  fast\n\t"
 10988             "FLD    $src\n\t"
 10989             "CALL   d2i_wrapper\n"
 10990       "fast:" %}
 10991   // DPR2I_encoding works for FPR2I
 10992   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10993   ins_pipe( pipe_slow );
 10994 %}
 10996 // Convert a float in xmm to an int reg.
 10997 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 10998   predicate(UseSSE>=1);
 10999   match(Set dst (ConvF2I src));
 11000   effect( KILL tmp, KILL cr );
 11001   format %{ "CVTTSS2SI $dst, $src\n\t"
 11002             "CMP    $dst,0x80000000\n\t"
 11003             "JNE,s  fast\n\t"
 11004             "SUB    ESP, 4\n\t"
 11005             "MOVSS  [ESP], $src\n\t"
 11006             "FLD    [ESP]\n\t"
 11007             "ADD    ESP, 4\n\t"
 11008             "CALL   d2i_wrapper\n"
 11009       "fast:" %}
 11010   ins_encode %{
 11011     Label fast;
 11012     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11013     __ cmpl($dst$$Register, 0x80000000);
 11014     __ jccb(Assembler::notEqual, fast);
 11015     __ subptr(rsp, 4);
 11016     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11017     __ fld_s(Address(rsp, 0));
 11018     __ addptr(rsp, 4);
 11019     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11020     __ bind(fast);
 11021   %}
 11022   ins_pipe( pipe_slow );
 11023 %}
 11025 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11026   predicate(UseSSE==0);
 11027   match(Set dst (ConvF2L src));
 11028   effect( KILL cr );
 11029   format %{ "FLD    $src\t# Convert float to long\n\t"
 11030             "FLDCW  trunc mode\n\t"
 11031             "SUB    ESP,8\n\t"
 11032             "FISTp  [ESP + #0]\n\t"
 11033             "FLDCW  std/24-bit mode\n\t"
 11034             "POP    EAX\n\t"
 11035             "POP    EDX\n\t"
 11036             "CMP    EDX,0x80000000\n\t"
 11037             "JNE,s  fast\n\t"
 11038             "TEST   EAX,EAX\n\t"
 11039             "JNE,s  fast\n\t"
 11040             "FLD    $src\n\t"
 11041             "CALL   d2l_wrapper\n"
 11042       "fast:" %}
 11043   // DPR2L_encoding works for FPR2L
 11044   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11045   ins_pipe( pipe_slow );
 11046 %}
 11048 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11049 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11050   predicate (UseSSE>=1);
 11051   match(Set dst (ConvF2L src));
 11052   effect( KILL cr );
 11053   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11054             "MOVSS  [ESP],$src\n\t"
 11055             "FLD_S  [ESP]\n\t"
 11056             "FLDCW  trunc mode\n\t"
 11057             "FISTp  [ESP + #0]\n\t"
 11058             "FLDCW  std/24-bit mode\n\t"
 11059             "POP    EAX\n\t"
 11060             "POP    EDX\n\t"
 11061             "CMP    EDX,0x80000000\n\t"
 11062             "JNE,s  fast\n\t"
 11063             "TEST   EAX,EAX\n\t"
 11064             "JNE,s  fast\n\t"
 11065             "SUB    ESP,4\t# Convert float to long\n\t"
 11066             "MOVSS  [ESP],$src\n\t"
 11067             "FLD_S  [ESP]\n\t"
 11068             "ADD    ESP,4\n\t"
 11069             "CALL   d2l_wrapper\n"
 11070       "fast:" %}
 11071   ins_encode %{
 11072     Label fast;
 11073     __ subptr(rsp, 8);
 11074     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11075     __ fld_s(Address(rsp, 0));
 11076     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11077     __ fistp_d(Address(rsp, 0));
 11078     // Restore the rounding mode, mask the exception
 11079     if (Compile::current()->in_24_bit_fp_mode()) {
 11080       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11081     } else {
 11082       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11084     // Load the converted long, adjust CPU stack
 11085     __ pop(rax);
 11086     __ pop(rdx);
 11087     __ cmpl(rdx, 0x80000000);
 11088     __ jccb(Assembler::notEqual, fast);
 11089     __ testl(rax, rax);
 11090     __ jccb(Assembler::notEqual, fast);
 11091     __ subptr(rsp, 4);
 11092     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11093     __ fld_s(Address(rsp, 0));
 11094     __ addptr(rsp, 4);
 11095     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11096     __ bind(fast);
 11097   %}
 11098   ins_pipe( pipe_slow );
 11099 %}
 11101 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11102   predicate( UseSSE<=1 );
 11103   match(Set dst (ConvI2D src));
 11104   format %{ "FILD   $src\n\t"
 11105             "FSTP   $dst" %}
 11106   opcode(0xDB, 0x0);  /* DB /0 */
 11107   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11108   ins_pipe( fpu_reg_mem );
 11109 %}
 11111 instruct convI2D_reg(regD dst, rRegI src) %{
 11112   predicate( UseSSE>=2 && !UseXmmI2D );
 11113   match(Set dst (ConvI2D src));
 11114   format %{ "CVTSI2SD $dst,$src" %}
 11115   ins_encode %{
 11116     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11117   %}
 11118   ins_pipe( pipe_slow );
 11119 %}
 11121 instruct convI2D_mem(regD dst, memory mem) %{
 11122   predicate( UseSSE>=2 );
 11123   match(Set dst (ConvI2D (LoadI mem)));
 11124   format %{ "CVTSI2SD $dst,$mem" %}
 11125   ins_encode %{
 11126     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11127   %}
 11128   ins_pipe( pipe_slow );
 11129 %}
 11131 instruct convXI2D_reg(regD dst, rRegI src)
 11132 %{
 11133   predicate( UseSSE>=2 && UseXmmI2D );
 11134   match(Set dst (ConvI2D src));
 11136   format %{ "MOVD  $dst,$src\n\t"
 11137             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11138   ins_encode %{
 11139     __ movdl($dst$$XMMRegister, $src$$Register);
 11140     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11141   %}
 11142   ins_pipe(pipe_slow); // XXX
 11143 %}
 11145 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11146   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11147   match(Set dst (ConvI2D (LoadI mem)));
 11148   format %{ "FILD   $mem\n\t"
 11149             "FSTP   $dst" %}
 11150   opcode(0xDB);      /* DB /0 */
 11151   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11152               Pop_Reg_DPR(dst));
 11153   ins_pipe( fpu_reg_mem );
 11154 %}
 11156 // Convert a byte to a float; no rounding step needed.
 11157 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11158   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11159   match(Set dst (ConvI2F src));
 11160   format %{ "FILD   $src\n\t"
 11161             "FSTP   $dst" %}
 11163   opcode(0xDB, 0x0);  /* DB /0 */
 11164   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11165   ins_pipe( fpu_reg_mem );
 11166 %}
 11168 // In 24-bit mode, force exponent rounding by storing back out
 11169 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11170   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11171   match(Set dst (ConvI2F src));
 11172   ins_cost(200);
 11173   format %{ "FILD   $src\n\t"
 11174             "FSTP_S $dst" %}
 11175   opcode(0xDB, 0x0);  /* DB /0 */
 11176   ins_encode( Push_Mem_I(src),
 11177               Pop_Mem_FPR(dst));
 11178   ins_pipe( fpu_mem_mem );
 11179 %}
 11181 // In 24-bit mode, force exponent rounding by storing back out
 11182 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11183   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11184   match(Set dst (ConvI2F (LoadI mem)));
 11185   ins_cost(200);
 11186   format %{ "FILD   $mem\n\t"
 11187             "FSTP_S $dst" %}
 11188   opcode(0xDB);  /* DB /0 */
 11189   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11190               Pop_Mem_FPR(dst));
 11191   ins_pipe( fpu_mem_mem );
 11192 %}
 11194 // This instruction does not round to 24-bits
 11195 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11196   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11197   match(Set dst (ConvI2F src));
 11198   format %{ "FILD   $src\n\t"
 11199             "FSTP   $dst" %}
 11200   opcode(0xDB, 0x0);  /* DB /0 */
 11201   ins_encode( Push_Mem_I(src),
 11202               Pop_Reg_FPR(dst));
 11203   ins_pipe( fpu_reg_mem );
 11204 %}
 11206 // This instruction does not round to 24-bits
 11207 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11208   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11209   match(Set dst (ConvI2F (LoadI mem)));
 11210   format %{ "FILD   $mem\n\t"
 11211             "FSTP   $dst" %}
 11212   opcode(0xDB);      /* DB /0 */
 11213   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11214               Pop_Reg_FPR(dst));
 11215   ins_pipe( fpu_reg_mem );
 11216 %}
 11218 // Convert an int to a float in xmm; no rounding step needed.
 11219 instruct convI2F_reg(regF dst, rRegI src) %{
 11220   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11221   match(Set dst (ConvI2F src));
 11222   format %{ "CVTSI2SS $dst, $src" %}
 11223   ins_encode %{
 11224     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11225   %}
 11226   ins_pipe( pipe_slow );
 11227 %}
 11229  instruct convXI2F_reg(regF dst, rRegI src)
 11230 %{
 11231   predicate( UseSSE>=2 && UseXmmI2F );
 11232   match(Set dst (ConvI2F src));
 11234   format %{ "MOVD  $dst,$src\n\t"
 11235             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11236   ins_encode %{
 11237     __ movdl($dst$$XMMRegister, $src$$Register);
 11238     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11239   %}
 11240   ins_pipe(pipe_slow); // XXX
 11241 %}
 11243 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11244   match(Set dst (ConvI2L src));
 11245   effect(KILL cr);
 11246   ins_cost(375);
 11247   format %{ "MOV    $dst.lo,$src\n\t"
 11248             "MOV    $dst.hi,$src\n\t"
 11249             "SAR    $dst.hi,31" %}
 11250   ins_encode(convert_int_long(dst,src));
 11251   ins_pipe( ialu_reg_reg_long );
 11252 %}
 11254 // Zero-extend convert int to long
 11255 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11256   match(Set dst (AndL (ConvI2L src) mask) );
 11257   effect( KILL flags );
 11258   ins_cost(250);
 11259   format %{ "MOV    $dst.lo,$src\n\t"
 11260             "XOR    $dst.hi,$dst.hi" %}
 11261   opcode(0x33); // XOR
 11262   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11263   ins_pipe( ialu_reg_reg_long );
 11264 %}
 11266 // Zero-extend long
 11267 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11268   match(Set dst (AndL src mask) );
 11269   effect( KILL flags );
 11270   ins_cost(250);
 11271   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11272             "XOR    $dst.hi,$dst.hi\n\t" %}
 11273   opcode(0x33); // XOR
 11274   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11275   ins_pipe( ialu_reg_reg_long );
 11276 %}
 11278 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11279   predicate (UseSSE<=1);
 11280   match(Set dst (ConvL2D src));
 11281   effect( KILL cr );
 11282   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11283             "PUSH   $src.lo\n\t"
 11284             "FILD   ST,[ESP + #0]\n\t"
 11285             "ADD    ESP,8\n\t"
 11286             "FSTP_D $dst\t# D-round" %}
 11287   opcode(0xDF, 0x5);  /* DF /5 */
 11288   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11289   ins_pipe( pipe_slow );
 11290 %}
 11292 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11293   predicate (UseSSE>=2);
 11294   match(Set dst (ConvL2D src));
 11295   effect( KILL cr );
 11296   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11297             "PUSH   $src.lo\n\t"
 11298             "FILD_D [ESP]\n\t"
 11299             "FSTP_D [ESP]\n\t"
 11300             "MOVSD  $dst,[ESP]\n\t"
 11301             "ADD    ESP,8" %}
 11302   opcode(0xDF, 0x5);  /* DF /5 */
 11303   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11304   ins_pipe( pipe_slow );
 11305 %}
 11307 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11308   predicate (UseSSE>=1);
 11309   match(Set dst (ConvL2F src));
 11310   effect( KILL cr );
 11311   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11312             "PUSH   $src.lo\n\t"
 11313             "FILD_D [ESP]\n\t"
 11314             "FSTP_S [ESP]\n\t"
 11315             "MOVSS  $dst,[ESP]\n\t"
 11316             "ADD    ESP,8" %}
 11317   opcode(0xDF, 0x5);  /* DF /5 */
 11318   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11319   ins_pipe( pipe_slow );
 11320 %}
 11322 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11323   match(Set dst (ConvL2F src));
 11324   effect( KILL cr );
 11325   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11326             "PUSH   $src.lo\n\t"
 11327             "FILD   ST,[ESP + #0]\n\t"
 11328             "ADD    ESP,8\n\t"
 11329             "FSTP_S $dst\t# F-round" %}
 11330   opcode(0xDF, 0x5);  /* DF /5 */
 11331   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11332   ins_pipe( pipe_slow );
 11333 %}
 11335 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11336   match(Set dst (ConvL2I src));
 11337   effect( DEF dst, USE src );
 11338   format %{ "MOV    $dst,$src.lo" %}
 11339   ins_encode(enc_CopyL_Lo(dst,src));
 11340   ins_pipe( ialu_reg_reg );
 11341 %}
 11344 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11345   match(Set dst (MoveF2I src));
 11346   effect( DEF dst, USE src );
 11347   ins_cost(100);
 11348   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11349   ins_encode %{
 11350     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11351   %}
 11352   ins_pipe( ialu_reg_mem );
 11353 %}
 11355 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11356   predicate(UseSSE==0);
 11357   match(Set dst (MoveF2I src));
 11358   effect( DEF dst, USE src );
 11360   ins_cost(125);
 11361   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11362   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11363   ins_pipe( fpu_mem_reg );
 11364 %}
 11366 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11367   predicate(UseSSE>=1);
 11368   match(Set dst (MoveF2I src));
 11369   effect( DEF dst, USE src );
 11371   ins_cost(95);
 11372   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11373   ins_encode %{
 11374     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11375   %}
 11376   ins_pipe( pipe_slow );
 11377 %}
 11379 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11380   predicate(UseSSE>=2);
 11381   match(Set dst (MoveF2I src));
 11382   effect( DEF dst, USE src );
 11383   ins_cost(85);
 11384   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11385   ins_encode %{
 11386     __ movdl($dst$$Register, $src$$XMMRegister);
 11387   %}
 11388   ins_pipe( pipe_slow );
 11389 %}
 11391 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11392   match(Set dst (MoveI2F src));
 11393   effect( DEF dst, USE src );
 11395   ins_cost(100);
 11396   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11397   ins_encode %{
 11398     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11399   %}
 11400   ins_pipe( ialu_mem_reg );
 11401 %}
 11404 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11405   predicate(UseSSE==0);
 11406   match(Set dst (MoveI2F src));
 11407   effect(DEF dst, USE src);
 11409   ins_cost(125);
 11410   format %{ "FLD_S  $src\n\t"
 11411             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11412   opcode(0xD9);               /* D9 /0, FLD m32real */
 11413   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11414               Pop_Reg_FPR(dst) );
 11415   ins_pipe( fpu_reg_mem );
 11416 %}
 11418 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11419   predicate(UseSSE>=1);
 11420   match(Set dst (MoveI2F src));
 11421   effect( DEF dst, USE src );
 11423   ins_cost(95);
 11424   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11425   ins_encode %{
 11426     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11427   %}
 11428   ins_pipe( pipe_slow );
 11429 %}
 11431 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11432   predicate(UseSSE>=2);
 11433   match(Set dst (MoveI2F src));
 11434   effect( DEF dst, USE src );
 11436   ins_cost(85);
 11437   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11438   ins_encode %{
 11439     __ movdl($dst$$XMMRegister, $src$$Register);
 11440   %}
 11441   ins_pipe( pipe_slow );
 11442 %}
 11444 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11445   match(Set dst (MoveD2L src));
 11446   effect(DEF dst, USE src);
 11448   ins_cost(250);
 11449   format %{ "MOV    $dst.lo,$src\n\t"
 11450             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11451   opcode(0x8B, 0x8B);
 11452   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11453   ins_pipe( ialu_mem_long_reg );
 11454 %}
 11456 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11457   predicate(UseSSE<=1);
 11458   match(Set dst (MoveD2L src));
 11459   effect(DEF dst, USE src);
 11461   ins_cost(125);
 11462   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11463   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11464   ins_pipe( fpu_mem_reg );
 11465 %}
 11467 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11468   predicate(UseSSE>=2);
 11469   match(Set dst (MoveD2L src));
 11470   effect(DEF dst, USE src);
 11471   ins_cost(95);
 11472   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11473   ins_encode %{
 11474     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11475   %}
 11476   ins_pipe( pipe_slow );
 11477 %}
 11479 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11480   predicate(UseSSE>=2);
 11481   match(Set dst (MoveD2L src));
 11482   effect(DEF dst, USE src, TEMP tmp);
 11483   ins_cost(85);
 11484   format %{ "MOVD   $dst.lo,$src\n\t"
 11485             "PSHUFLW $tmp,$src,0x4E\n\t"
 11486             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11487   ins_encode %{
 11488     __ movdl($dst$$Register, $src$$XMMRegister);
 11489     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11490     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11491   %}
 11492   ins_pipe( pipe_slow );
 11493 %}
 11495 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11496   match(Set dst (MoveL2D src));
 11497   effect(DEF dst, USE src);
 11499   ins_cost(200);
 11500   format %{ "MOV    $dst,$src.lo\n\t"
 11501             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11502   opcode(0x89, 0x89);
 11503   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11504   ins_pipe( ialu_mem_long_reg );
 11505 %}
 11508 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11509   predicate(UseSSE<=1);
 11510   match(Set dst (MoveL2D src));
 11511   effect(DEF dst, USE src);
 11512   ins_cost(125);
 11514   format %{ "FLD_D  $src\n\t"
 11515             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11516   opcode(0xDD);               /* DD /0, FLD m64real */
 11517   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11518               Pop_Reg_DPR(dst) );
 11519   ins_pipe( fpu_reg_mem );
 11520 %}
 11523 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11524   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11525   match(Set dst (MoveL2D src));
 11526   effect(DEF dst, USE src);
 11528   ins_cost(95);
 11529   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11530   ins_encode %{
 11531     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11532   %}
 11533   ins_pipe( pipe_slow );
 11534 %}
 11536 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11537   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11538   match(Set dst (MoveL2D src));
 11539   effect(DEF dst, USE src);
 11541   ins_cost(95);
 11542   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11543   ins_encode %{
 11544     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11545   %}
 11546   ins_pipe( pipe_slow );
 11547 %}
 11549 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11550   predicate(UseSSE>=2);
 11551   match(Set dst (MoveL2D src));
 11552   effect(TEMP dst, USE src, TEMP tmp);
 11553   ins_cost(85);
 11554   format %{ "MOVD   $dst,$src.lo\n\t"
 11555             "MOVD   $tmp,$src.hi\n\t"
 11556             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11557   ins_encode %{
 11558     __ movdl($dst$$XMMRegister, $src$$Register);
 11559     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11560     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11561   %}
 11562   ins_pipe( pipe_slow );
 11563 %}
 11566 // =======================================================================
 11567 // fast clearing of an array
 11568 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11569   predicate(!UseFastStosb);
 11570   match(Set dummy (ClearArray cnt base));
 11571   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11572   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11573             "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11574             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11575   ins_encode %{ 
 11576     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11577   %}
 11578   ins_pipe( pipe_slow );
 11579 %}
 11581 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11582   predicate(UseFastStosb);
 11583   match(Set dummy (ClearArray cnt base));
 11584   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11585   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11586             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
 11587             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
 11588   ins_encode %{ 
 11589     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11590   %}
 11591   ins_pipe( pipe_slow );
 11592 %}
 11594 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11595                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11596   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11597   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11599   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11600   ins_encode %{
 11601     __ string_compare($str1$$Register, $str2$$Register,
 11602                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11603                       $tmp1$$XMMRegister);
 11604   %}
 11605   ins_pipe( pipe_slow );
 11606 %}
 11608 // fast string equals
 11609 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11610                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11611   match(Set result (StrEquals (Binary str1 str2) cnt));
 11612   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11614   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11615   ins_encode %{
 11616     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11617                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11618                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11619   %}
 11620   ins_pipe( pipe_slow );
 11621 %}
 11623 // fast search of substring with known size.
 11624 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11625                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11626   predicate(UseSSE42Intrinsics);
 11627   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11628   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11630   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11631   ins_encode %{
 11632     int icnt2 = (int)$int_cnt2$$constant;
 11633     if (icnt2 >= 8) {
 11634       // IndexOf for constant substrings with size >= 8 elements
 11635       // which don't need to be loaded through stack.
 11636       __ string_indexofC8($str1$$Register, $str2$$Register,
 11637                           $cnt1$$Register, $cnt2$$Register,
 11638                           icnt2, $result$$Register,
 11639                           $vec$$XMMRegister, $tmp$$Register);
 11640     } else {
 11641       // Small strings are loaded through stack if they cross page boundary.
 11642       __ string_indexof($str1$$Register, $str2$$Register,
 11643                         $cnt1$$Register, $cnt2$$Register,
 11644                         icnt2, $result$$Register,
 11645                         $vec$$XMMRegister, $tmp$$Register);
 11647   %}
 11648   ins_pipe( pipe_slow );
 11649 %}
 11651 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11652                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11653   predicate(UseSSE42Intrinsics);
 11654   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11655   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11657   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11658   ins_encode %{
 11659     __ string_indexof($str1$$Register, $str2$$Register,
 11660                       $cnt1$$Register, $cnt2$$Register,
 11661                       (-1), $result$$Register,
 11662                       $vec$$XMMRegister, $tmp$$Register);
 11663   %}
 11664   ins_pipe( pipe_slow );
 11665 %}
 11667 // fast array equals
 11668 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11669                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11670 %{
 11671   match(Set result (AryEq ary1 ary2));
 11672   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11673   //ins_cost(300);
 11675   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11676   ins_encode %{
 11677     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11678                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11679                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11680   %}
 11681   ins_pipe( pipe_slow );
 11682 %}
 11684 // encode char[] to byte[] in ISO_8859_1
 11685 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
 11686                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
 11687                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
 11688   match(Set result (EncodeISOArray src (Binary dst len)));
 11689   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
 11691   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
 11692   ins_encode %{
 11693     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
 11694                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
 11695                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
 11696   %}
 11697   ins_pipe( pipe_slow );
 11698 %}
 11701 //----------Control Flow Instructions------------------------------------------
 11702 // Signed compare Instructions
 11703 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11704   match(Set cr (CmpI op1 op2));
 11705   effect( DEF cr, USE op1, USE op2 );
 11706   format %{ "CMP    $op1,$op2" %}
 11707   opcode(0x3B);  /* Opcode 3B /r */
 11708   ins_encode( OpcP, RegReg( op1, op2) );
 11709   ins_pipe( ialu_cr_reg_reg );
 11710 %}
 11712 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11713   match(Set cr (CmpI op1 op2));
 11714   effect( DEF cr, USE op1 );
 11715   format %{ "CMP    $op1,$op2" %}
 11716   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11717   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11718   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11719   ins_pipe( ialu_cr_reg_imm );
 11720 %}
 11722 // Cisc-spilled version of cmpI_eReg
 11723 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11724   match(Set cr (CmpI op1 (LoadI op2)));
 11726   format %{ "CMP    $op1,$op2" %}
 11727   ins_cost(500);
 11728   opcode(0x3B);  /* Opcode 3B /r */
 11729   ins_encode( OpcP, RegMem( op1, op2) );
 11730   ins_pipe( ialu_cr_reg_mem );
 11731 %}
 11733 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11734   match(Set cr (CmpI src zero));
 11735   effect( DEF cr, USE src );
 11737   format %{ "TEST   $src,$src" %}
 11738   opcode(0x85);
 11739   ins_encode( OpcP, RegReg( src, src ) );
 11740   ins_pipe( ialu_cr_reg_imm );
 11741 %}
 11743 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11744   match(Set cr (CmpI (AndI src con) zero));
 11746   format %{ "TEST   $src,$con" %}
 11747   opcode(0xF7,0x00);
 11748   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11749   ins_pipe( ialu_cr_reg_imm );
 11750 %}
 11752 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11753   match(Set cr (CmpI (AndI src mem) zero));
 11755   format %{ "TEST   $src,$mem" %}
 11756   opcode(0x85);
 11757   ins_encode( OpcP, RegMem( src, mem ) );
 11758   ins_pipe( ialu_cr_reg_mem );
 11759 %}
 11761 // Unsigned compare Instructions; really, same as signed except they
 11762 // produce an eFlagsRegU instead of eFlagsReg.
 11763 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11764   match(Set cr (CmpU op1 op2));
 11766   format %{ "CMPu   $op1,$op2" %}
 11767   opcode(0x3B);  /* Opcode 3B /r */
 11768   ins_encode( OpcP, RegReg( op1, op2) );
 11769   ins_pipe( ialu_cr_reg_reg );
 11770 %}
 11772 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11773   match(Set cr (CmpU op1 op2));
 11775   format %{ "CMPu   $op1,$op2" %}
 11776   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11777   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11778   ins_pipe( ialu_cr_reg_imm );
 11779 %}
 11781 // // Cisc-spilled version of cmpU_eReg
 11782 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11783   match(Set cr (CmpU op1 (LoadI op2)));
 11785   format %{ "CMPu   $op1,$op2" %}
 11786   ins_cost(500);
 11787   opcode(0x3B);  /* Opcode 3B /r */
 11788   ins_encode( OpcP, RegMem( op1, op2) );
 11789   ins_pipe( ialu_cr_reg_mem );
 11790 %}
 11792 // // Cisc-spilled version of cmpU_eReg
 11793 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11794 //  match(Set cr (CmpU (LoadI op1) op2));
 11795 //
 11796 //  format %{ "CMPu   $op1,$op2" %}
 11797 //  ins_cost(500);
 11798 //  opcode(0x39);  /* Opcode 39 /r */
 11799 //  ins_encode( OpcP, RegMem( op1, op2) );
 11800 //%}
 11802 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11803   match(Set cr (CmpU src zero));
 11805   format %{ "TESTu  $src,$src" %}
 11806   opcode(0x85);
 11807   ins_encode( OpcP, RegReg( src, src ) );
 11808   ins_pipe( ialu_cr_reg_imm );
 11809 %}
 11811 // Unsigned pointer compare Instructions
 11812 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11813   match(Set cr (CmpP op1 op2));
 11815   format %{ "CMPu   $op1,$op2" %}
 11816   opcode(0x3B);  /* Opcode 3B /r */
 11817   ins_encode( OpcP, RegReg( op1, op2) );
 11818   ins_pipe( ialu_cr_reg_reg );
 11819 %}
 11821 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11822   match(Set cr (CmpP op1 op2));
 11824   format %{ "CMPu   $op1,$op2" %}
 11825   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11826   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11827   ins_pipe( ialu_cr_reg_imm );
 11828 %}
 11830 // // Cisc-spilled version of cmpP_eReg
 11831 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11832   match(Set cr (CmpP op1 (LoadP op2)));
 11834   format %{ "CMPu   $op1,$op2" %}
 11835   ins_cost(500);
 11836   opcode(0x3B);  /* Opcode 3B /r */
 11837   ins_encode( OpcP, RegMem( op1, op2) );
 11838   ins_pipe( ialu_cr_reg_mem );
 11839 %}
 11841 // // Cisc-spilled version of cmpP_eReg
 11842 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11843 //  match(Set cr (CmpP (LoadP op1) op2));
 11844 //
 11845 //  format %{ "CMPu   $op1,$op2" %}
 11846 //  ins_cost(500);
 11847 //  opcode(0x39);  /* Opcode 39 /r */
 11848 //  ins_encode( OpcP, RegMem( op1, op2) );
 11849 //%}
 11851 // Compare raw pointer (used in out-of-heap check).
 11852 // Only works because non-oop pointers must be raw pointers
 11853 // and raw pointers have no anti-dependencies.
 11854 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11855   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 11856   match(Set cr (CmpP op1 (LoadP op2)));
 11858   format %{ "CMPu   $op1,$op2" %}
 11859   opcode(0x3B);  /* Opcode 3B /r */
 11860   ins_encode( OpcP, RegMem( op1, op2) );
 11861   ins_pipe( ialu_cr_reg_mem );
 11862 %}
 11864 //
 11865 // This will generate a signed flags result. This should be ok
 11866 // since any compare to a zero should be eq/neq.
 11867 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11868   match(Set cr (CmpP src zero));
 11870   format %{ "TEST   $src,$src" %}
 11871   opcode(0x85);
 11872   ins_encode( OpcP, RegReg( src, src ) );
 11873   ins_pipe( ialu_cr_reg_imm );
 11874 %}
 11876 // Cisc-spilled version of testP_reg
 11877 // This will generate a signed flags result. This should be ok
 11878 // since any compare to a zero should be eq/neq.
 11879 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11880   match(Set cr (CmpP (LoadP op) zero));
 11882   format %{ "TEST   $op,0xFFFFFFFF" %}
 11883   ins_cost(500);
 11884   opcode(0xF7);               /* Opcode F7 /0 */
 11885   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11886   ins_pipe( ialu_cr_reg_imm );
 11887 %}
 11889 // Yanked all unsigned pointer compare operations.
 11890 // Pointer compares are done with CmpP which is already unsigned.
 11892 //----------Max and Min--------------------------------------------------------
 11893 // Min Instructions
 11894 ////
 11895 //   *** Min and Max using the conditional move are slower than the
 11896 //   *** branch version on a Pentium III.
 11897 // // Conditional move for min
 11898 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11899 //  effect( USE_DEF op2, USE op1, USE cr );
 11900 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11901 //  opcode(0x4C,0x0F);
 11902 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11903 //  ins_pipe( pipe_cmov_reg );
 11904 //%}
 11905 //
 11906 //// Min Register with Register (P6 version)
 11907 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11908 //  predicate(VM_Version::supports_cmov() );
 11909 //  match(Set op2 (MinI op1 op2));
 11910 //  ins_cost(200);
 11911 //  expand %{
 11912 //    eFlagsReg cr;
 11913 //    compI_eReg(cr,op1,op2);
 11914 //    cmovI_reg_lt(op2,op1,cr);
 11915 //  %}
 11916 //%}
 11918 // Min Register with Register (generic version)
 11919 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11920   match(Set dst (MinI dst src));
 11921   effect(KILL flags);
 11922   ins_cost(300);
 11924   format %{ "MIN    $dst,$src" %}
 11925   opcode(0xCC);
 11926   ins_encode( min_enc(dst,src) );
 11927   ins_pipe( pipe_slow );
 11928 %}
 11930 // Max Register with Register
 11931 //   *** Min and Max using the conditional move are slower than the
 11932 //   *** branch version on a Pentium III.
 11933 // // Conditional move for max
 11934 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11935 //  effect( USE_DEF op2, USE op1, USE cr );
 11936 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11937 //  opcode(0x4F,0x0F);
 11938 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11939 //  ins_pipe( pipe_cmov_reg );
 11940 //%}
 11941 //
 11942 // // Max Register with Register (P6 version)
 11943 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11944 //  predicate(VM_Version::supports_cmov() );
 11945 //  match(Set op2 (MaxI op1 op2));
 11946 //  ins_cost(200);
 11947 //  expand %{
 11948 //    eFlagsReg cr;
 11949 //    compI_eReg(cr,op1,op2);
 11950 //    cmovI_reg_gt(op2,op1,cr);
 11951 //  %}
 11952 //%}
 11954 // Max Register with Register (generic version)
 11955 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11956   match(Set dst (MaxI dst src));
 11957   effect(KILL flags);
 11958   ins_cost(300);
 11960   format %{ "MAX    $dst,$src" %}
 11961   opcode(0xCC);
 11962   ins_encode( max_enc(dst,src) );
 11963   ins_pipe( pipe_slow );
 11964 %}
 11966 // ============================================================================
 11967 // Counted Loop limit node which represents exact final iterator value.
 11968 // Note: the resulting value should fit into integer range since
 11969 // counted loops have limit check on overflow.
 11970 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11971   match(Set limit (LoopLimit (Binary init limit) stride));
 11972   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11973   ins_cost(300);
 11975   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11976   ins_encode %{
 11977     int strd = (int)$stride$$constant;
 11978     assert(strd != 1 && strd != -1, "sanity");
 11979     int m1 = (strd > 0) ? 1 : -1;
 11980     // Convert limit to long (EAX:EDX)
 11981     __ cdql();
 11982     // Convert init to long (init:tmp)
 11983     __ movl($tmp$$Register, $init$$Register);
 11984     __ sarl($tmp$$Register, 31);
 11985     // $limit - $init
 11986     __ subl($limit$$Register, $init$$Register);
 11987     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11988     // + ($stride - 1)
 11989     if (strd > 0) {
 11990       __ addl($limit$$Register, (strd - 1));
 11991       __ adcl($limit_hi$$Register, 0);
 11992       __ movl($tmp$$Register, strd);
 11993     } else {
 11994       __ addl($limit$$Register, (strd + 1));
 11995       __ adcl($limit_hi$$Register, -1);
 11996       __ lneg($limit_hi$$Register, $limit$$Register);
 11997       __ movl($tmp$$Register, -strd);
 11999     // signed devision: (EAX:EDX) / pos_stride
 12000     __ idivl($tmp$$Register);
 12001     if (strd < 0) {
 12002       // restore sign
 12003       __ negl($tmp$$Register);
 12005     // (EAX) * stride
 12006     __ mull($tmp$$Register);
 12007     // + init (ignore upper bits)
 12008     __ addl($limit$$Register, $init$$Register);
 12009   %}
 12010   ins_pipe( pipe_slow );
 12011 %}
 12013 // ============================================================================
 12014 // Branch Instructions
 12015 // Jump Table
 12016 instruct jumpXtnd(rRegI switch_val) %{
 12017   match(Jump switch_val);
 12018   ins_cost(350);
 12019   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12020   ins_encode %{
 12021     // Jump to Address(table_base + switch_reg)
 12022     Address index(noreg, $switch_val$$Register, Address::times_1);
 12023     __ jump(ArrayAddress($constantaddress, index));
 12024   %}
 12025   ins_pipe(pipe_jmp);
 12026 %}
 12028 // Jump Direct - Label defines a relative address from JMP+1
 12029 instruct jmpDir(label labl) %{
 12030   match(Goto);
 12031   effect(USE labl);
 12033   ins_cost(300);
 12034   format %{ "JMP    $labl" %}
 12035   size(5);
 12036   ins_encode %{
 12037     Label* L = $labl$$label;
 12038     __ jmp(*L, false); // Always long jump
 12039   %}
 12040   ins_pipe( pipe_jmp );
 12041 %}
 12043 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12044 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12045   match(If cop cr);
 12046   effect(USE labl);
 12048   ins_cost(300);
 12049   format %{ "J$cop    $labl" %}
 12050   size(6);
 12051   ins_encode %{
 12052     Label* L = $labl$$label;
 12053     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12054   %}
 12055   ins_pipe( pipe_jcc );
 12056 %}
 12058 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12059 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12060   match(CountedLoopEnd cop cr);
 12061   effect(USE labl);
 12063   ins_cost(300);
 12064   format %{ "J$cop    $labl\t# Loop end" %}
 12065   size(6);
 12066   ins_encode %{
 12067     Label* L = $labl$$label;
 12068     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12069   %}
 12070   ins_pipe( pipe_jcc );
 12071 %}
 12073 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12074 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12075   match(CountedLoopEnd cop cmp);
 12076   effect(USE labl);
 12078   ins_cost(300);
 12079   format %{ "J$cop,u  $labl\t# Loop end" %}
 12080   size(6);
 12081   ins_encode %{
 12082     Label* L = $labl$$label;
 12083     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12084   %}
 12085   ins_pipe( pipe_jcc );
 12086 %}
 12088 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12089   match(CountedLoopEnd cop cmp);
 12090   effect(USE labl);
 12092   ins_cost(200);
 12093   format %{ "J$cop,u  $labl\t# Loop end" %}
 12094   size(6);
 12095   ins_encode %{
 12096     Label* L = $labl$$label;
 12097     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12098   %}
 12099   ins_pipe( pipe_jcc );
 12100 %}
 12102 // Jump Direct Conditional - using unsigned comparison
 12103 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12104   match(If cop cmp);
 12105   effect(USE labl);
 12107   ins_cost(300);
 12108   format %{ "J$cop,u  $labl" %}
 12109   size(6);
 12110   ins_encode %{
 12111     Label* L = $labl$$label;
 12112     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12113   %}
 12114   ins_pipe(pipe_jcc);
 12115 %}
 12117 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12118   match(If cop cmp);
 12119   effect(USE labl);
 12121   ins_cost(200);
 12122   format %{ "J$cop,u  $labl" %}
 12123   size(6);
 12124   ins_encode %{
 12125     Label* L = $labl$$label;
 12126     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12127   %}
 12128   ins_pipe(pipe_jcc);
 12129 %}
 12131 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12132   match(If cop cmp);
 12133   effect(USE labl);
 12135   ins_cost(200);
 12136   format %{ $$template
 12137     if ($cop$$cmpcode == Assembler::notEqual) {
 12138       $$emit$$"JP,u   $labl\n\t"
 12139       $$emit$$"J$cop,u   $labl"
 12140     } else {
 12141       $$emit$$"JP,u   done\n\t"
 12142       $$emit$$"J$cop,u   $labl\n\t"
 12143       $$emit$$"done:"
 12145   %}
 12146   ins_encode %{
 12147     Label* l = $labl$$label;
 12148     if ($cop$$cmpcode == Assembler::notEqual) {
 12149       __ jcc(Assembler::parity, *l, false);
 12150       __ jcc(Assembler::notEqual, *l, false);
 12151     } else if ($cop$$cmpcode == Assembler::equal) {
 12152       Label done;
 12153       __ jccb(Assembler::parity, done);
 12154       __ jcc(Assembler::equal, *l, false);
 12155       __ bind(done);
 12156     } else {
 12157        ShouldNotReachHere();
 12159   %}
 12160   ins_pipe(pipe_jcc);
 12161 %}
 12163 // ============================================================================
 12164 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12165 // array for an instance of the superklass.  Set a hidden internal cache on a
 12166 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12167 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12168 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12169   match(Set result (PartialSubtypeCheck sub super));
 12170   effect( KILL rcx, KILL cr );
 12172   ins_cost(1100);  // slightly larger than the next version
 12173   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12174             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12175             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12176             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12177             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12178             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12179             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12180      "miss:\t" %}
 12182   opcode(0x1); // Force a XOR of EDI
 12183   ins_encode( enc_PartialSubtypeCheck() );
 12184   ins_pipe( pipe_slow );
 12185 %}
 12187 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12188   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12189   effect( KILL rcx, KILL result );
 12191   ins_cost(1000);
 12192   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12193             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12194             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12195             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12196             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12197             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12198      "miss:\t" %}
 12200   opcode(0x0);  // No need to XOR EDI
 12201   ins_encode( enc_PartialSubtypeCheck() );
 12202   ins_pipe( pipe_slow );
 12203 %}
 12205 // ============================================================================
 12206 // Branch Instructions -- short offset versions
 12207 //
 12208 // These instructions are used to replace jumps of a long offset (the default
 12209 // match) with jumps of a shorter offset.  These instructions are all tagged
 12210 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12211 // match rules in general matching.  Instead, the ADLC generates a conversion
 12212 // method in the MachNode which can be used to do in-place replacement of the
 12213 // long variant with the shorter variant.  The compiler will determine if a
 12214 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12215 // specific code section of the file.
 12217 // Jump Direct - Label defines a relative address from JMP+1
 12218 instruct jmpDir_short(label labl) %{
 12219   match(Goto);
 12220   effect(USE labl);
 12222   ins_cost(300);
 12223   format %{ "JMP,s  $labl" %}
 12224   size(2);
 12225   ins_encode %{
 12226     Label* L = $labl$$label;
 12227     __ jmpb(*L);
 12228   %}
 12229   ins_pipe( pipe_jmp );
 12230   ins_short_branch(1);
 12231 %}
 12233 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12234 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12235   match(If cop cr);
 12236   effect(USE labl);
 12238   ins_cost(300);
 12239   format %{ "J$cop,s  $labl" %}
 12240   size(2);
 12241   ins_encode %{
 12242     Label* L = $labl$$label;
 12243     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12244   %}
 12245   ins_pipe( pipe_jcc );
 12246   ins_short_branch(1);
 12247 %}
 12249 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12250 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12251   match(CountedLoopEnd cop cr);
 12252   effect(USE labl);
 12254   ins_cost(300);
 12255   format %{ "J$cop,s  $labl\t# Loop end" %}
 12256   size(2);
 12257   ins_encode %{
 12258     Label* L = $labl$$label;
 12259     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12260   %}
 12261   ins_pipe( pipe_jcc );
 12262   ins_short_branch(1);
 12263 %}
 12265 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12266 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12267   match(CountedLoopEnd cop cmp);
 12268   effect(USE labl);
 12270   ins_cost(300);
 12271   format %{ "J$cop,us $labl\t# Loop end" %}
 12272   size(2);
 12273   ins_encode %{
 12274     Label* L = $labl$$label;
 12275     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12276   %}
 12277   ins_pipe( pipe_jcc );
 12278   ins_short_branch(1);
 12279 %}
 12281 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12282   match(CountedLoopEnd cop cmp);
 12283   effect(USE labl);
 12285   ins_cost(300);
 12286   format %{ "J$cop,us $labl\t# Loop end" %}
 12287   size(2);
 12288   ins_encode %{
 12289     Label* L = $labl$$label;
 12290     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12291   %}
 12292   ins_pipe( pipe_jcc );
 12293   ins_short_branch(1);
 12294 %}
 12296 // Jump Direct Conditional - using unsigned comparison
 12297 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12298   match(If cop cmp);
 12299   effect(USE labl);
 12301   ins_cost(300);
 12302   format %{ "J$cop,us $labl" %}
 12303   size(2);
 12304   ins_encode %{
 12305     Label* L = $labl$$label;
 12306     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12307   %}
 12308   ins_pipe( pipe_jcc );
 12309   ins_short_branch(1);
 12310 %}
 12312 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12313   match(If cop cmp);
 12314   effect(USE labl);
 12316   ins_cost(300);
 12317   format %{ "J$cop,us $labl" %}
 12318   size(2);
 12319   ins_encode %{
 12320     Label* L = $labl$$label;
 12321     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12322   %}
 12323   ins_pipe( pipe_jcc );
 12324   ins_short_branch(1);
 12325 %}
 12327 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12328   match(If cop cmp);
 12329   effect(USE labl);
 12331   ins_cost(300);
 12332   format %{ $$template
 12333     if ($cop$$cmpcode == Assembler::notEqual) {
 12334       $$emit$$"JP,u,s   $labl\n\t"
 12335       $$emit$$"J$cop,u,s   $labl"
 12336     } else {
 12337       $$emit$$"JP,u,s   done\n\t"
 12338       $$emit$$"J$cop,u,s  $labl\n\t"
 12339       $$emit$$"done:"
 12341   %}
 12342   size(4);
 12343   ins_encode %{
 12344     Label* l = $labl$$label;
 12345     if ($cop$$cmpcode == Assembler::notEqual) {
 12346       __ jccb(Assembler::parity, *l);
 12347       __ jccb(Assembler::notEqual, *l);
 12348     } else if ($cop$$cmpcode == Assembler::equal) {
 12349       Label done;
 12350       __ jccb(Assembler::parity, done);
 12351       __ jccb(Assembler::equal, *l);
 12352       __ bind(done);
 12353     } else {
 12354        ShouldNotReachHere();
 12356   %}
 12357   ins_pipe(pipe_jcc);
 12358   ins_short_branch(1);
 12359 %}
 12361 // ============================================================================
 12362 // Long Compare
 12363 //
 12364 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12365 // is tricky.  The flavor of compare used depends on whether we are testing
 12366 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12367 // The GE test is the negated LT test.  The LE test can be had by commuting
 12368 // the operands (yielding a GE test) and then negating; negate again for the
 12369 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12370 // NE test is negated from that.
 12372 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12373 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12374 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12375 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12376 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12377 // foo match ends up with the wrong leaf.  One fix is to not match both
 12378 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12379 // both forms beat the trinary form of long-compare and both are very useful
 12380 // on Intel which has so few registers.
 12382 // Manifest a CmpL result in an integer register.  Very painful.
 12383 // This is the test to avoid.
 12384 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12385   match(Set dst (CmpL3 src1 src2));
 12386   effect( KILL flags );
 12387   ins_cost(1000);
 12388   format %{ "XOR    $dst,$dst\n\t"
 12389             "CMP    $src1.hi,$src2.hi\n\t"
 12390             "JLT,s  m_one\n\t"
 12391             "JGT,s  p_one\n\t"
 12392             "CMP    $src1.lo,$src2.lo\n\t"
 12393             "JB,s   m_one\n\t"
 12394             "JEQ,s  done\n"
 12395     "p_one:\tINC    $dst\n\t"
 12396             "JMP,s  done\n"
 12397     "m_one:\tDEC    $dst\n"
 12398      "done:" %}
 12399   ins_encode %{
 12400     Label p_one, m_one, done;
 12401     __ xorptr($dst$$Register, $dst$$Register);
 12402     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12403     __ jccb(Assembler::less,    m_one);
 12404     __ jccb(Assembler::greater, p_one);
 12405     __ cmpl($src1$$Register, $src2$$Register);
 12406     __ jccb(Assembler::below,   m_one);
 12407     __ jccb(Assembler::equal,   done);
 12408     __ bind(p_one);
 12409     __ incrementl($dst$$Register);
 12410     __ jmpb(done);
 12411     __ bind(m_one);
 12412     __ decrementl($dst$$Register);
 12413     __ bind(done);
 12414   %}
 12415   ins_pipe( pipe_slow );
 12416 %}
 12418 //======
 12419 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12420 // compares.  Can be used for LE or GT compares by reversing arguments.
 12421 // NOT GOOD FOR EQ/NE tests.
 12422 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12423   match( Set flags (CmpL src zero ));
 12424   ins_cost(100);
 12425   format %{ "TEST   $src.hi,$src.hi" %}
 12426   opcode(0x85);
 12427   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12428   ins_pipe( ialu_cr_reg_reg );
 12429 %}
 12431 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12432 // compares.  Can be used for LE or GT compares by reversing arguments.
 12433 // NOT GOOD FOR EQ/NE tests.
 12434 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12435   match( Set flags (CmpL src1 src2 ));
 12436   effect( TEMP tmp );
 12437   ins_cost(300);
 12438   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12439             "MOV    $tmp,$src1.hi\n\t"
 12440             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12441   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12442   ins_pipe( ialu_cr_reg_reg );
 12443 %}
 12445 // Long compares reg < zero/req OR reg >= zero/req.
 12446 // Just a wrapper for a normal branch, plus the predicate test.
 12447 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12448   match(If cmp flags);
 12449   effect(USE labl);
 12450   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12451   expand %{
 12452     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12453   %}
 12454 %}
 12456 // Compare 2 longs and CMOVE longs.
 12457 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12458   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12459   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12460   ins_cost(400);
 12461   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12462             "CMOV$cmp $dst.hi,$src.hi" %}
 12463   opcode(0x0F,0x40);
 12464   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12465   ins_pipe( pipe_cmov_reg_long );
 12466 %}
 12468 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12469   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12470   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12471   ins_cost(500);
 12472   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12473             "CMOV$cmp $dst.hi,$src.hi" %}
 12474   opcode(0x0F,0x40);
 12475   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12476   ins_pipe( pipe_cmov_reg_long );
 12477 %}
 12479 // Compare 2 longs and CMOVE ints.
 12480 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12481   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12482   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12483   ins_cost(200);
 12484   format %{ "CMOV$cmp $dst,$src" %}
 12485   opcode(0x0F,0x40);
 12486   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12487   ins_pipe( pipe_cmov_reg );
 12488 %}
 12490 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12491   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12492   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12493   ins_cost(250);
 12494   format %{ "CMOV$cmp $dst,$src" %}
 12495   opcode(0x0F,0x40);
 12496   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12497   ins_pipe( pipe_cmov_mem );
 12498 %}
 12500 // Compare 2 longs and CMOVE ints.
 12501 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12502   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12503   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12504   ins_cost(200);
 12505   format %{ "CMOV$cmp $dst,$src" %}
 12506   opcode(0x0F,0x40);
 12507   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12508   ins_pipe( pipe_cmov_reg );
 12509 %}
 12511 // Compare 2 longs and CMOVE doubles
 12512 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12513   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12514   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12515   ins_cost(200);
 12516   expand %{
 12517     fcmovDPR_regS(cmp,flags,dst,src);
 12518   %}
 12519 %}
 12521 // Compare 2 longs and CMOVE doubles
 12522 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12523   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12524   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12525   ins_cost(200);
 12526   expand %{
 12527     fcmovD_regS(cmp,flags,dst,src);
 12528   %}
 12529 %}
 12531 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12532   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12533   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12534   ins_cost(200);
 12535   expand %{
 12536     fcmovFPR_regS(cmp,flags,dst,src);
 12537   %}
 12538 %}
 12540 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12541   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12542   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12543   ins_cost(200);
 12544   expand %{
 12545     fcmovF_regS(cmp,flags,dst,src);
 12546   %}
 12547 %}
 12549 //======
 12550 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12551 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12552   match( Set flags (CmpL src zero ));
 12553   effect(TEMP tmp);
 12554   ins_cost(200);
 12555   format %{ "MOV    $tmp,$src.lo\n\t"
 12556             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12557   ins_encode( long_cmp_flags0( src, tmp ) );
 12558   ins_pipe( ialu_reg_reg_long );
 12559 %}
 12561 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12562 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12563   match( Set flags (CmpL src1 src2 ));
 12564   ins_cost(200+300);
 12565   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12566             "JNE,s  skip\n\t"
 12567             "CMP    $src1.hi,$src2.hi\n\t"
 12568      "skip:\t" %}
 12569   ins_encode( long_cmp_flags1( src1, src2 ) );
 12570   ins_pipe( ialu_cr_reg_reg );
 12571 %}
 12573 // Long compare reg == zero/reg OR reg != zero/reg
 12574 // Just a wrapper for a normal branch, plus the predicate test.
 12575 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12576   match(If cmp flags);
 12577   effect(USE labl);
 12578   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12579   expand %{
 12580     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12581   %}
 12582 %}
 12584 // Compare 2 longs and CMOVE longs.
 12585 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12586   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12587   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12588   ins_cost(400);
 12589   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12590             "CMOV$cmp $dst.hi,$src.hi" %}
 12591   opcode(0x0F,0x40);
 12592   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12593   ins_pipe( pipe_cmov_reg_long );
 12594 %}
 12596 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12597   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12598   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12599   ins_cost(500);
 12600   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12601             "CMOV$cmp $dst.hi,$src.hi" %}
 12602   opcode(0x0F,0x40);
 12603   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12604   ins_pipe( pipe_cmov_reg_long );
 12605 %}
 12607 // Compare 2 longs and CMOVE ints.
 12608 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12609   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12610   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12611   ins_cost(200);
 12612   format %{ "CMOV$cmp $dst,$src" %}
 12613   opcode(0x0F,0x40);
 12614   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12615   ins_pipe( pipe_cmov_reg );
 12616 %}
 12618 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12619   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12620   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12621   ins_cost(250);
 12622   format %{ "CMOV$cmp $dst,$src" %}
 12623   opcode(0x0F,0x40);
 12624   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12625   ins_pipe( pipe_cmov_mem );
 12626 %}
 12628 // Compare 2 longs and CMOVE ints.
 12629 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12630   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12631   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12632   ins_cost(200);
 12633   format %{ "CMOV$cmp $dst,$src" %}
 12634   opcode(0x0F,0x40);
 12635   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12636   ins_pipe( pipe_cmov_reg );
 12637 %}
 12639 // Compare 2 longs and CMOVE doubles
 12640 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12641   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12642   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12643   ins_cost(200);
 12644   expand %{
 12645     fcmovDPR_regS(cmp,flags,dst,src);
 12646   %}
 12647 %}
 12649 // Compare 2 longs and CMOVE doubles
 12650 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12651   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12652   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12653   ins_cost(200);
 12654   expand %{
 12655     fcmovD_regS(cmp,flags,dst,src);
 12656   %}
 12657 %}
 12659 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12660   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12661   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12662   ins_cost(200);
 12663   expand %{
 12664     fcmovFPR_regS(cmp,flags,dst,src);
 12665   %}
 12666 %}
 12668 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12669   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12670   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12671   ins_cost(200);
 12672   expand %{
 12673     fcmovF_regS(cmp,flags,dst,src);
 12674   %}
 12675 %}
 12677 //======
 12678 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12679 // Same as cmpL_reg_flags_LEGT except must negate src
 12680 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12681   match( Set flags (CmpL src zero ));
 12682   effect( TEMP tmp );
 12683   ins_cost(300);
 12684   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12685             "CMP    $tmp,$src.lo\n\t"
 12686             "SBB    $tmp,$src.hi\n\t" %}
 12687   ins_encode( long_cmp_flags3(src, tmp) );
 12688   ins_pipe( ialu_reg_reg_long );
 12689 %}
 12691 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12692 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12693 // requires a commuted test to get the same result.
 12694 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12695   match( Set flags (CmpL src1 src2 ));
 12696   effect( TEMP tmp );
 12697   ins_cost(300);
 12698   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12699             "MOV    $tmp,$src2.hi\n\t"
 12700             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12701   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12702   ins_pipe( ialu_cr_reg_reg );
 12703 %}
 12705 // Long compares reg < zero/req OR reg >= zero/req.
 12706 // Just a wrapper for a normal branch, plus the predicate test
 12707 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12708   match(If cmp flags);
 12709   effect(USE labl);
 12710   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12711   ins_cost(300);
 12712   expand %{
 12713     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12714   %}
 12715 %}
 12717 // Compare 2 longs and CMOVE longs.
 12718 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12719   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12720   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12721   ins_cost(400);
 12722   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12723             "CMOV$cmp $dst.hi,$src.hi" %}
 12724   opcode(0x0F,0x40);
 12725   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12726   ins_pipe( pipe_cmov_reg_long );
 12727 %}
 12729 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12730   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12731   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12732   ins_cost(500);
 12733   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12734             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12735   opcode(0x0F,0x40);
 12736   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12737   ins_pipe( pipe_cmov_reg_long );
 12738 %}
 12740 // Compare 2 longs and CMOVE ints.
 12741 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12742   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12743   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12744   ins_cost(200);
 12745   format %{ "CMOV$cmp $dst,$src" %}
 12746   opcode(0x0F,0x40);
 12747   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12748   ins_pipe( pipe_cmov_reg );
 12749 %}
 12751 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12752   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12753   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12754   ins_cost(250);
 12755   format %{ "CMOV$cmp $dst,$src" %}
 12756   opcode(0x0F,0x40);
 12757   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12758   ins_pipe( pipe_cmov_mem );
 12759 %}
 12761 // Compare 2 longs and CMOVE ptrs.
 12762 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12763   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12764   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12765   ins_cost(200);
 12766   format %{ "CMOV$cmp $dst,$src" %}
 12767   opcode(0x0F,0x40);
 12768   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12769   ins_pipe( pipe_cmov_reg );
 12770 %}
 12772 // Compare 2 longs and CMOVE doubles
 12773 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12774   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12775   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12776   ins_cost(200);
 12777   expand %{
 12778     fcmovDPR_regS(cmp,flags,dst,src);
 12779   %}
 12780 %}
 12782 // Compare 2 longs and CMOVE doubles
 12783 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12784   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12785   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12786   ins_cost(200);
 12787   expand %{
 12788     fcmovD_regS(cmp,flags,dst,src);
 12789   %}
 12790 %}
 12792 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12793   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12794   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12795   ins_cost(200);
 12796   expand %{
 12797     fcmovFPR_regS(cmp,flags,dst,src);
 12798   %}
 12799 %}
 12802 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12803   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12804   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12805   ins_cost(200);
 12806   expand %{
 12807     fcmovF_regS(cmp,flags,dst,src);
 12808   %}
 12809 %}
 12812 // ============================================================================
 12813 // Procedure Call/Return Instructions
 12814 // Call Java Static Instruction
 12815 // Note: If this code changes, the corresponding ret_addr_offset() and
 12816 //       compute_padding() functions will have to be adjusted.
 12817 instruct CallStaticJavaDirect(method meth) %{
 12818   match(CallStaticJava);
 12819   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12820   effect(USE meth);
 12822   ins_cost(300);
 12823   format %{ "CALL,static " %}
 12824   opcode(0xE8); /* E8 cd */
 12825   ins_encode( pre_call_resets,
 12826               Java_Static_Call( meth ),
 12827               call_epilog,
 12828               post_call_FPU );
 12829   ins_pipe( pipe_slow );
 12830   ins_alignment(4);
 12831 %}
 12833 // Call Java Static Instruction (method handle version)
 12834 // Note: If this code changes, the corresponding ret_addr_offset() and
 12835 //       compute_padding() functions will have to be adjusted.
 12836 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 12837   match(CallStaticJava);
 12838   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12839   effect(USE meth);
 12840   // EBP is saved by all callees (for interpreter stack correction).
 12841   // We use it here for a similar purpose, in {preserve,restore}_SP.
 12843   ins_cost(300);
 12844   format %{ "CALL,static/MethodHandle " %}
 12845   opcode(0xE8); /* E8 cd */
 12846   ins_encode( pre_call_resets,
 12847               preserve_SP,
 12848               Java_Static_Call( meth ),
 12849               restore_SP,
 12850               call_epilog,
 12851               post_call_FPU );
 12852   ins_pipe( pipe_slow );
 12853   ins_alignment(4);
 12854 %}
 12856 // Call Java Dynamic Instruction
 12857 // Note: If this code changes, the corresponding ret_addr_offset() and
 12858 //       compute_padding() functions will have to be adjusted.
 12859 instruct CallDynamicJavaDirect(method meth) %{
 12860   match(CallDynamicJava);
 12861   effect(USE meth);
 12863   ins_cost(300);
 12864   format %{ "MOV    EAX,(oop)-1\n\t"
 12865             "CALL,dynamic" %}
 12866   opcode(0xE8); /* E8 cd */
 12867   ins_encode( pre_call_resets,
 12868               Java_Dynamic_Call( meth ),
 12869               call_epilog,
 12870               post_call_FPU );
 12871   ins_pipe( pipe_slow );
 12872   ins_alignment(4);
 12873 %}
 12875 // Call Runtime Instruction
 12876 instruct CallRuntimeDirect(method meth) %{
 12877   match(CallRuntime );
 12878   effect(USE meth);
 12880   ins_cost(300);
 12881   format %{ "CALL,runtime " %}
 12882   opcode(0xE8); /* E8 cd */
 12883   // Use FFREEs to clear entries in float stack
 12884   ins_encode( pre_call_resets,
 12885               FFree_Float_Stack_All,
 12886               Java_To_Runtime( meth ),
 12887               post_call_FPU );
 12888   ins_pipe( pipe_slow );
 12889 %}
 12891 // Call runtime without safepoint
 12892 instruct CallLeafDirect(method meth) %{
 12893   match(CallLeaf);
 12894   effect(USE meth);
 12896   ins_cost(300);
 12897   format %{ "CALL_LEAF,runtime " %}
 12898   opcode(0xE8); /* E8 cd */
 12899   ins_encode( pre_call_resets,
 12900               FFree_Float_Stack_All,
 12901               Java_To_Runtime( meth ),
 12902               Verify_FPU_For_Leaf, post_call_FPU );
 12903   ins_pipe( pipe_slow );
 12904 %}
 12906 instruct CallLeafNoFPDirect(method meth) %{
 12907   match(CallLeafNoFP);
 12908   effect(USE meth);
 12910   ins_cost(300);
 12911   format %{ "CALL_LEAF_NOFP,runtime " %}
 12912   opcode(0xE8); /* E8 cd */
 12913   ins_encode(Java_To_Runtime(meth));
 12914   ins_pipe( pipe_slow );
 12915 %}
 12918 // Return Instruction
 12919 // Remove the return address & jump to it.
 12920 instruct Ret() %{
 12921   match(Return);
 12922   format %{ "RET" %}
 12923   opcode(0xC3);
 12924   ins_encode(OpcP);
 12925   ins_pipe( pipe_jmp );
 12926 %}
 12928 // Tail Call; Jump from runtime stub to Java code.
 12929 // Also known as an 'interprocedural jump'.
 12930 // Target of jump will eventually return to caller.
 12931 // TailJump below removes the return address.
 12932 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12933   match(TailCall jump_target method_oop );
 12934   ins_cost(300);
 12935   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12936   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12937   ins_encode( OpcP, RegOpc(jump_target) );
 12938   ins_pipe( pipe_jmp );
 12939 %}
 12942 // Tail Jump; remove the return address; jump to target.
 12943 // TailCall above leaves the return address around.
 12944 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 12945   match( TailJump jump_target ex_oop );
 12946   ins_cost(300);
 12947   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 12948             "JMP    $jump_target " %}
 12949   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12950   ins_encode( enc_pop_rdx,
 12951               OpcP, RegOpc(jump_target) );
 12952   ins_pipe( pipe_jmp );
 12953 %}
 12955 // Create exception oop: created by stack-crawling runtime code.
 12956 // Created exception is now available to this handler, and is setup
 12957 // just prior to jumping to this handler.  No code emitted.
 12958 instruct CreateException( eAXRegP ex_oop )
 12959 %{
 12960   match(Set ex_oop (CreateEx));
 12962   size(0);
 12963   // use the following format syntax
 12964   format %{ "# exception oop is in EAX; no code emitted" %}
 12965   ins_encode();
 12966   ins_pipe( empty );
 12967 %}
 12970 // Rethrow exception:
 12971 // The exception oop will come in the first argument position.
 12972 // Then JUMP (not call) to the rethrow stub code.
 12973 instruct RethrowException()
 12974 %{
 12975   match(Rethrow);
 12977   // use the following format syntax
 12978   format %{ "JMP    rethrow_stub" %}
 12979   ins_encode(enc_rethrow);
 12980   ins_pipe( pipe_jmp );
 12981 %}
 12983 // inlined locking and unlocking
 12986 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 12987   match( Set cr (FastLock object box) );
 12988   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12989   ins_cost(300);
 12990   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 12991   ins_encode( Fast_Lock(object,box,tmp,scr) );
 12992   ins_pipe( pipe_slow );
 12993 %}
 12995 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 12996   match( Set cr (FastUnlock object box) );
 12997   effect( TEMP tmp, USE_KILL box );
 12998   ins_cost(300);
 12999   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 13000   ins_encode( Fast_Unlock(object,box,tmp) );
 13001   ins_pipe( pipe_slow );
 13002 %}
 13006 // ============================================================================
 13007 // Safepoint Instruction
 13008 instruct safePoint_poll(eFlagsReg cr) %{
 13009   match(SafePoint);
 13010   effect(KILL cr);
 13012   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13013   // On SPARC that might be acceptable as we can generate the address with
 13014   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13015   // putting additional pressure on the index-0 in the D$.  Because of
 13016   // alignment (just like the situation at hand) the lower indices tend
 13017   // to see more traffic.  It'd be better to change the polling address
 13018   // to offset 0 of the last $line in the polling page.
 13020   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13021   ins_cost(125);
 13022   size(6) ;
 13023   ins_encode( Safepoint_Poll() );
 13024   ins_pipe( ialu_reg_mem );
 13025 %}
 13028 // ============================================================================
 13029 // This name is KNOWN by the ADLC and cannot be changed.
 13030 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 13031 // for this guy.
 13032 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 13033   match(Set dst (ThreadLocal));
 13034   effect(DEF dst, KILL cr);
 13036   format %{ "MOV    $dst, Thread::current()" %}
 13037   ins_encode %{
 13038     Register dstReg = as_Register($dst$$reg);
 13039     __ get_thread(dstReg);
 13040   %}
 13041   ins_pipe( ialu_reg_fat );
 13042 %}
 13046 //----------PEEPHOLE RULES-----------------------------------------------------
 13047 // These must follow all instruction definitions as they use the names
 13048 // defined in the instructions definitions.
 13049 //
 13050 // peepmatch ( root_instr_name [preceding_instruction]* );
 13051 //
 13052 // peepconstraint %{
 13053 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13054 //  [, ...] );
 13055 // // instruction numbers are zero-based using left to right order in peepmatch
 13056 //
 13057 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13058 // // provide an instruction_number.operand_name for each operand that appears
 13059 // // in the replacement instruction's match rule
 13060 //
 13061 // ---------VM FLAGS---------------------------------------------------------
 13062 //
 13063 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13064 //
 13065 // Each peephole rule is given an identifying number starting with zero and
 13066 // increasing by one in the order seen by the parser.  An individual peephole
 13067 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13068 // on the command-line.
 13069 //
 13070 // ---------CURRENT LIMITATIONS----------------------------------------------
 13071 //
 13072 // Only match adjacent instructions in same basic block
 13073 // Only equality constraints
 13074 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13075 // Only one replacement instruction
 13076 //
 13077 // ---------EXAMPLE----------------------------------------------------------
 13078 //
 13079 // // pertinent parts of existing instructions in architecture description
 13080 // instruct movI(rRegI dst, rRegI src) %{
 13081 //   match(Set dst (CopyI src));
 13082 // %}
 13083 //
 13084 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 13085 //   match(Set dst (AddI dst src));
 13086 //   effect(KILL cr);
 13087 // %}
 13088 //
 13089 // // Change (inc mov) to lea
 13090 // peephole %{
 13091 //   // increment preceeded by register-register move
 13092 //   peepmatch ( incI_eReg movI );
 13093 //   // require that the destination register of the increment
 13094 //   // match the destination register of the move
 13095 //   peepconstraint ( 0.dst == 1.dst );
 13096 //   // construct a replacement instruction that sets
 13097 //   // the destination to ( move's source register + one )
 13098 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13099 // %}
 13100 //
 13101 // Implementation no longer uses movX instructions since
 13102 // machine-independent system no longer uses CopyX nodes.
 13103 //
 13104 // peephole %{
 13105 //   peepmatch ( incI_eReg movI );
 13106 //   peepconstraint ( 0.dst == 1.dst );
 13107 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13108 // %}
 13109 //
 13110 // peephole %{
 13111 //   peepmatch ( decI_eReg movI );
 13112 //   peepconstraint ( 0.dst == 1.dst );
 13113 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13114 // %}
 13115 //
 13116 // peephole %{
 13117 //   peepmatch ( addI_eReg_imm movI );
 13118 //   peepconstraint ( 0.dst == 1.dst );
 13119 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13120 // %}
 13121 //
 13122 // peephole %{
 13123 //   peepmatch ( addP_eReg_imm movP );
 13124 //   peepconstraint ( 0.dst == 1.dst );
 13125 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13126 // %}
 13128 // // Change load of spilled value to only a spill
 13129 // instruct storeI(memory mem, rRegI src) %{
 13130 //   match(Set mem (StoreI mem src));
 13131 // %}
 13132 //
 13133 // instruct loadI(rRegI dst, memory mem) %{
 13134 //   match(Set dst (LoadI mem));
 13135 // %}
 13136 //
 13137 peephole %{
 13138   peepmatch ( loadI storeI );
 13139   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13140   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13141 %}
 13143 //----------SMARTSPILL RULES---------------------------------------------------
 13144 // These must follow all instruction definitions as they use the names
 13145 // defined in the instructions definitions.

mercurial