src/share/vm/runtime/thread.cpp

Tue, 06 Nov 2012 15:09:37 -0500

author
coleenp
date
Tue, 06 Nov 2012 15:09:37 -0500
changeset 4251
18fb7da42534
parent 4250
c284cf4781f0
child 4262
d9a84e246cce
child 4278
070d523b96a7
permissions
-rw-r--r--

8000725: NPG: method_holder() and pool_holder() and pool_holder field should be InstanceKlass
Summary: Change types of above methods and field to InstanceKlass and remove unneeded casts from the source files.
Reviewed-by: dholmes, coleenp, zgu
Contributed-by: harold.seigel@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/aprofiler.hpp"
    49 #include "runtime/arguments.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/deoptimization.hpp"
    52 #include "runtime/fprofiler.hpp"
    53 #include "runtime/frame.inline.hpp"
    54 #include "runtime/init.hpp"
    55 #include "runtime/interfaceSupport.hpp"
    56 #include "runtime/java.hpp"
    57 #include "runtime/javaCalls.hpp"
    58 #include "runtime/jniPeriodicChecker.hpp"
    59 #include "runtime/memprofiler.hpp"
    60 #include "runtime/mutexLocker.hpp"
    61 #include "runtime/objectMonitor.hpp"
    62 #include "runtime/osThread.hpp"
    63 #include "runtime/safepoint.hpp"
    64 #include "runtime/sharedRuntime.hpp"
    65 #include "runtime/statSampler.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/task.hpp"
    68 #include "runtime/threadCritical.hpp"
    69 #include "runtime/threadLocalStorage.hpp"
    70 #include "runtime/vframe.hpp"
    71 #include "runtime/vframeArray.hpp"
    72 #include "runtime/vframe_hp.hpp"
    73 #include "runtime/vmThread.hpp"
    74 #include "runtime/vm_operations.hpp"
    75 #include "services/attachListener.hpp"
    76 #include "services/management.hpp"
    77 #include "services/memTracker.hpp"
    78 #include "services/threadService.hpp"
    79 #include "trace/traceEventTypes.hpp"
    80 #include "utilities/defaultStream.hpp"
    81 #include "utilities/dtrace.hpp"
    82 #include "utilities/events.hpp"
    83 #include "utilities/preserveException.hpp"
    84 #ifdef TARGET_OS_FAMILY_linux
    85 # include "os_linux.inline.hpp"
    86 # include "thread_linux.inline.hpp"
    87 #endif
    88 #ifdef TARGET_OS_FAMILY_solaris
    89 # include "os_solaris.inline.hpp"
    90 # include "thread_solaris.inline.hpp"
    91 #endif
    92 #ifdef TARGET_OS_FAMILY_windows
    93 # include "os_windows.inline.hpp"
    94 # include "thread_windows.inline.hpp"
    95 #endif
    96 #ifdef TARGET_OS_FAMILY_bsd
    97 # include "os_bsd.inline.hpp"
    98 # include "thread_bsd.inline.hpp"
    99 #endif
   100 #ifndef SERIALGC
   101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   104 #endif
   105 #ifdef COMPILER1
   106 #include "c1/c1_Compiler.hpp"
   107 #endif
   108 #ifdef COMPILER2
   109 #include "opto/c2compiler.hpp"
   110 #include "opto/idealGraphPrinter.hpp"
   111 #endif
   113 #ifdef DTRACE_ENABLED
   115 // Only bother with this argument setup if dtrace is available
   117 #ifndef USDT2
   118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   121   intptr_t, intptr_t, bool);
   122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   123   intptr_t, intptr_t, bool);
   125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   126   {                                                                        \
   127     ResourceMark rm(this);                                                 \
   128     int len = 0;                                                           \
   129     const char* name = (javathread)->get_thread_name();                    \
   130     len = strlen(name);                                                    \
   131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   132       name, len,                                                           \
   133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   134       (javathread)->osthread()->thread_id(),                               \
   135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   136   }
   138 #else /* USDT2 */
   140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   144   {                                                                        \
   145     ResourceMark rm(this);                                                 \
   146     int len = 0;                                                           \
   147     const char* name = (javathread)->get_thread_name();                    \
   148     len = strlen(name);                                                    \
   149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   150       (char *) name, len,                                                           \
   151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   154   }
   156 #endif /* USDT2 */
   158 #else //  ndef DTRACE_ENABLED
   160 #define DTRACE_THREAD_PROBE(probe, javathread)
   162 #endif // ndef DTRACE_ENABLED
   165 // Class hierarchy
   166 // - Thread
   167 //   - VMThread
   168 //   - WatcherThread
   169 //   - ConcurrentMarkSweepThread
   170 //   - JavaThread
   171 //     - CompilerThread
   173 // ======= Thread ========
   174 // Support for forcing alignment of thread objects for biased locking
   175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   176   if (UseBiasedLocking) {
   177     const int alignment = markOopDesc::biased_lock_alignment;
   178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   181                                               AllocFailStrategy::RETURN_NULL);
   182     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   185            "JavaThread alignment code overflowed allocated storage");
   186     if (TraceBiasedLocking) {
   187       if (aligned_addr != real_malloc_addr)
   188         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   189                       real_malloc_addr, aligned_addr);
   190     }
   191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   192     return aligned_addr;
   193   } else {
   194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   196   }
   197 }
   199 void Thread::operator delete(void* p) {
   200   if (UseBiasedLocking) {
   201     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   202     FreeHeap(real_malloc_addr, mtThread);
   203   } else {
   204     FreeHeap(p, mtThread);
   205   }
   206 }
   209 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   210 // JavaThread
   213 Thread::Thread() {
   214   // stack and get_thread
   215   set_stack_base(NULL);
   216   set_stack_size(0);
   217   set_self_raw_id(0);
   218   set_lgrp_id(-1);
   220   // allocated data structures
   221   set_osthread(NULL);
   222   set_resource_area(new (mtThread)ResourceArea());
   223   set_handle_area(new (mtThread) HandleArea(NULL));
   224   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
   225   set_active_handles(NULL);
   226   set_free_handle_block(NULL);
   227   set_last_handle_mark(NULL);
   229   // This initial value ==> never claimed.
   230   _oops_do_parity = 0;
   232   // the handle mark links itself to last_handle_mark
   233   new HandleMark(this);
   235   // plain initialization
   236   debug_only(_owned_locks = NULL;)
   237   debug_only(_allow_allocation_count = 0;)
   238   NOT_PRODUCT(_allow_safepoint_count = 0;)
   239   NOT_PRODUCT(_skip_gcalot = false;)
   240   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   241   _jvmti_env_iteration_count = 0;
   242   set_allocated_bytes(0);
   243   set_trace_buffer(NULL);
   244   _vm_operation_started_count = 0;
   245   _vm_operation_completed_count = 0;
   246   _current_pending_monitor = NULL;
   247   _current_pending_monitor_is_from_java = true;
   248   _current_waiting_monitor = NULL;
   249   _num_nested_signal = 0;
   250   omFreeList = NULL ;
   251   omFreeCount = 0 ;
   252   omFreeProvision = 32 ;
   253   omInUseList = NULL ;
   254   omInUseCount = 0 ;
   256 #ifdef ASSERT
   257   _visited_for_critical_count = false;
   258 #endif
   260   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   261   _suspend_flags = 0;
   263   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   264   _hashStateX = os::random() ;
   265   _hashStateY = 842502087 ;
   266   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   267   _hashStateW = 273326509 ;
   269   _OnTrap   = 0 ;
   270   _schedctl = NULL ;
   271   _Stalled  = 0 ;
   272   _TypeTag  = 0x2BAD ;
   274   // Many of the following fields are effectively final - immutable
   275   // Note that nascent threads can't use the Native Monitor-Mutex
   276   // construct until the _MutexEvent is initialized ...
   277   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   278   // we might instead use a stack of ParkEvents that we could provision on-demand.
   279   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   280   // and ::Release()
   281   _ParkEvent   = ParkEvent::Allocate (this) ;
   282   _SleepEvent  = ParkEvent::Allocate (this) ;
   283   _MutexEvent  = ParkEvent::Allocate (this) ;
   284   _MuxEvent    = ParkEvent::Allocate (this) ;
   286 #ifdef CHECK_UNHANDLED_OOPS
   287   if (CheckUnhandledOops) {
   288     _unhandled_oops = new UnhandledOops(this);
   289   }
   290 #endif // CHECK_UNHANDLED_OOPS
   291 #ifdef ASSERT
   292   if (UseBiasedLocking) {
   293     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   294     assert(this == _real_malloc_address ||
   295            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   296            "bug in forced alignment of thread objects");
   297   }
   298 #endif /* ASSERT */
   299 }
   301 void Thread::initialize_thread_local_storage() {
   302   // Note: Make sure this method only calls
   303   // non-blocking operations. Otherwise, it might not work
   304   // with the thread-startup/safepoint interaction.
   306   // During Java thread startup, safepoint code should allow this
   307   // method to complete because it may need to allocate memory to
   308   // store information for the new thread.
   310   // initialize structure dependent on thread local storage
   311   ThreadLocalStorage::set_thread(this);
   312 }
   314 void Thread::record_stack_base_and_size() {
   315   set_stack_base(os::current_stack_base());
   316   set_stack_size(os::current_stack_size());
   317   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   318   // in initialize_thread(). Without the adjustment, stack size is
   319   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   320   // So far, only Solaris has real implementation of initialize_thread().
   321   //
   322   // set up any platform-specific state.
   323   os::initialize_thread(this);
   325 #if INCLUDE_NMT
   326   // record thread's native stack, stack grows downward
   327   address stack_low_addr = stack_base() - stack_size();
   328   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
   329       CURRENT_PC);
   330 #endif // INCLUDE_NMT
   331 }
   334 Thread::~Thread() {
   335   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   336   ObjectSynchronizer::omFlush (this) ;
   338   // stack_base can be NULL if the thread is never started or exited before
   339   // record_stack_base_and_size called. Although, we would like to ensure
   340   // that all started threads do call record_stack_base_and_size(), there is
   341   // not proper way to enforce that.
   342 #if INCLUDE_NMT
   343   if (_stack_base != NULL) {
   344     address low_stack_addr = stack_base() - stack_size();
   345     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
   346 #ifdef ASSERT
   347     set_stack_base(NULL);
   348 #endif
   349   }
   350 #endif // INCLUDE_NMT
   352   // deallocate data structures
   353   delete resource_area();
   354   // since the handle marks are using the handle area, we have to deallocated the root
   355   // handle mark before deallocating the thread's handle area,
   356   assert(last_handle_mark() != NULL, "check we have an element");
   357   delete last_handle_mark();
   358   assert(last_handle_mark() == NULL, "check we have reached the end");
   360   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   361   // We NULL out the fields for good hygiene.
   362   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   363   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   364   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   365   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   367   delete handle_area();
   368   delete metadata_handles();
   370   // osthread() can be NULL, if creation of thread failed.
   371   if (osthread() != NULL) os::free_thread(osthread());
   373   delete _SR_lock;
   375   // clear thread local storage if the Thread is deleting itself
   376   if (this == Thread::current()) {
   377     ThreadLocalStorage::set_thread(NULL);
   378   } else {
   379     // In the case where we're not the current thread, invalidate all the
   380     // caches in case some code tries to get the current thread or the
   381     // thread that was destroyed, and gets stale information.
   382     ThreadLocalStorage::invalidate_all();
   383   }
   384   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   385 }
   387 // NOTE: dummy function for assertion purpose.
   388 void Thread::run() {
   389   ShouldNotReachHere();
   390 }
   392 #ifdef ASSERT
   393 // Private method to check for dangling thread pointer
   394 void check_for_dangling_thread_pointer(Thread *thread) {
   395  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   396          "possibility of dangling Thread pointer");
   397 }
   398 #endif
   401 #ifndef PRODUCT
   402 // Tracing method for basic thread operations
   403 void Thread::trace(const char* msg, const Thread* const thread) {
   404   if (!TraceThreadEvents) return;
   405   ResourceMark rm;
   406   ThreadCritical tc;
   407   const char *name = "non-Java thread";
   408   int prio = -1;
   409   if (thread->is_Java_thread()
   410       && !thread->is_Compiler_thread()) {
   411     // The Threads_lock must be held to get information about
   412     // this thread but may not be in some situations when
   413     // tracing  thread events.
   414     bool release_Threads_lock = false;
   415     if (!Threads_lock->owned_by_self()) {
   416       Threads_lock->lock();
   417       release_Threads_lock = true;
   418     }
   419     JavaThread* jt = (JavaThread *)thread;
   420     name = (char *)jt->get_thread_name();
   421     oop thread_oop = jt->threadObj();
   422     if (thread_oop != NULL) {
   423       prio = java_lang_Thread::priority(thread_oop);
   424     }
   425     if (release_Threads_lock) {
   426       Threads_lock->unlock();
   427     }
   428   }
   429   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   430 }
   431 #endif
   434 ThreadPriority Thread::get_priority(const Thread* const thread) {
   435   trace("get priority", thread);
   436   ThreadPriority priority;
   437   // Can return an error!
   438   (void)os::get_priority(thread, priority);
   439   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   440   return priority;
   441 }
   443 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   444   trace("set priority", thread);
   445   debug_only(check_for_dangling_thread_pointer(thread);)
   446   // Can return an error!
   447   (void)os::set_priority(thread, priority);
   448 }
   451 void Thread::start(Thread* thread) {
   452   trace("start", thread);
   453   // Start is different from resume in that its safety is guaranteed by context or
   454   // being called from a Java method synchronized on the Thread object.
   455   if (!DisableStartThread) {
   456     if (thread->is_Java_thread()) {
   457       // Initialize the thread state to RUNNABLE before starting this thread.
   458       // Can not set it after the thread started because we do not know the
   459       // exact thread state at that time. It could be in MONITOR_WAIT or
   460       // in SLEEPING or some other state.
   461       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   462                                           java_lang_Thread::RUNNABLE);
   463     }
   464     os::start_thread(thread);
   465   }
   466 }
   468 // Enqueue a VM_Operation to do the job for us - sometime later
   469 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   470   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   471   VMThread::execute(vm_stop);
   472 }
   475 //
   476 // Check if an external suspend request has completed (or has been
   477 // cancelled). Returns true if the thread is externally suspended and
   478 // false otherwise.
   479 //
   480 // The bits parameter returns information about the code path through
   481 // the routine. Useful for debugging:
   482 //
   483 // set in is_ext_suspend_completed():
   484 // 0x00000001 - routine was entered
   485 // 0x00000010 - routine return false at end
   486 // 0x00000100 - thread exited (return false)
   487 // 0x00000200 - suspend request cancelled (return false)
   488 // 0x00000400 - thread suspended (return true)
   489 // 0x00001000 - thread is in a suspend equivalent state (return true)
   490 // 0x00002000 - thread is native and walkable (return true)
   491 // 0x00004000 - thread is native_trans and walkable (needed retry)
   492 //
   493 // set in wait_for_ext_suspend_completion():
   494 // 0x00010000 - routine was entered
   495 // 0x00020000 - suspend request cancelled before loop (return false)
   496 // 0x00040000 - thread suspended before loop (return true)
   497 // 0x00080000 - suspend request cancelled in loop (return false)
   498 // 0x00100000 - thread suspended in loop (return true)
   499 // 0x00200000 - suspend not completed during retry loop (return false)
   500 //
   502 // Helper class for tracing suspend wait debug bits.
   503 //
   504 // 0x00000100 indicates that the target thread exited before it could
   505 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   506 // 0x00080000 each indicate a cancelled suspend request so they don't
   507 // count as wait failures either.
   508 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   510 class TraceSuspendDebugBits : public StackObj {
   511  private:
   512   JavaThread * jt;
   513   bool         is_wait;
   514   bool         called_by_wait;  // meaningful when !is_wait
   515   uint32_t *   bits;
   517  public:
   518   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   519                         uint32_t *_bits) {
   520     jt             = _jt;
   521     is_wait        = _is_wait;
   522     called_by_wait = _called_by_wait;
   523     bits           = _bits;
   524   }
   526   ~TraceSuspendDebugBits() {
   527     if (!is_wait) {
   528 #if 1
   529       // By default, don't trace bits for is_ext_suspend_completed() calls.
   530       // That trace is very chatty.
   531       return;
   532 #else
   533       if (!called_by_wait) {
   534         // If tracing for is_ext_suspend_completed() is enabled, then only
   535         // trace calls to it from wait_for_ext_suspend_completion()
   536         return;
   537       }
   538 #endif
   539     }
   541     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   542       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   543         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   544         ResourceMark rm;
   546         tty->print_cr(
   547             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   548             jt->get_thread_name(), *bits);
   550         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   551       }
   552     }
   553   }
   554 };
   555 #undef DEBUG_FALSE_BITS
   558 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   559   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   561   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   562   bool do_trans_retry;           // flag to force the retry
   564   *bits |= 0x00000001;
   566   do {
   567     do_trans_retry = false;
   569     if (is_exiting()) {
   570       // Thread is in the process of exiting. This is always checked
   571       // first to reduce the risk of dereferencing a freed JavaThread.
   572       *bits |= 0x00000100;
   573       return false;
   574     }
   576     if (!is_external_suspend()) {
   577       // Suspend request is cancelled. This is always checked before
   578       // is_ext_suspended() to reduce the risk of a rogue resume
   579       // confusing the thread that made the suspend request.
   580       *bits |= 0x00000200;
   581       return false;
   582     }
   584     if (is_ext_suspended()) {
   585       // thread is suspended
   586       *bits |= 0x00000400;
   587       return true;
   588     }
   590     // Now that we no longer do hard suspends of threads running
   591     // native code, the target thread can be changing thread state
   592     // while we are in this routine:
   593     //
   594     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   595     //
   596     // We save a copy of the thread state as observed at this moment
   597     // and make our decision about suspend completeness based on the
   598     // copy. This closes the race where the thread state is seen as
   599     // _thread_in_native_trans in the if-thread_blocked check, but is
   600     // seen as _thread_blocked in if-thread_in_native_trans check.
   601     JavaThreadState save_state = thread_state();
   603     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   604       // If the thread's state is _thread_blocked and this blocking
   605       // condition is known to be equivalent to a suspend, then we can
   606       // consider the thread to be externally suspended. This means that
   607       // the code that sets _thread_blocked has been modified to do
   608       // self-suspension if the blocking condition releases. We also
   609       // used to check for CONDVAR_WAIT here, but that is now covered by
   610       // the _thread_blocked with self-suspension check.
   611       //
   612       // Return true since we wouldn't be here unless there was still an
   613       // external suspend request.
   614       *bits |= 0x00001000;
   615       return true;
   616     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   617       // Threads running native code will self-suspend on native==>VM/Java
   618       // transitions. If its stack is walkable (should always be the case
   619       // unless this function is called before the actual java_suspend()
   620       // call), then the wait is done.
   621       *bits |= 0x00002000;
   622       return true;
   623     } else if (!called_by_wait && !did_trans_retry &&
   624                save_state == _thread_in_native_trans &&
   625                frame_anchor()->walkable()) {
   626       // The thread is transitioning from thread_in_native to another
   627       // thread state. check_safepoint_and_suspend_for_native_trans()
   628       // will force the thread to self-suspend. If it hasn't gotten
   629       // there yet we may have caught the thread in-between the native
   630       // code check above and the self-suspend. Lucky us. If we were
   631       // called by wait_for_ext_suspend_completion(), then it
   632       // will be doing the retries so we don't have to.
   633       //
   634       // Since we use the saved thread state in the if-statement above,
   635       // there is a chance that the thread has already transitioned to
   636       // _thread_blocked by the time we get here. In that case, we will
   637       // make a single unnecessary pass through the logic below. This
   638       // doesn't hurt anything since we still do the trans retry.
   640       *bits |= 0x00004000;
   642       // Once the thread leaves thread_in_native_trans for another
   643       // thread state, we break out of this retry loop. We shouldn't
   644       // need this flag to prevent us from getting back here, but
   645       // sometimes paranoia is good.
   646       did_trans_retry = true;
   648       // We wait for the thread to transition to a more usable state.
   649       for (int i = 1; i <= SuspendRetryCount; i++) {
   650         // We used to do an "os::yield_all(i)" call here with the intention
   651         // that yielding would increase on each retry. However, the parameter
   652         // is ignored on Linux which means the yield didn't scale up. Waiting
   653         // on the SR_lock below provides a much more predictable scale up for
   654         // the delay. It also provides a simple/direct point to check for any
   655         // safepoint requests from the VMThread
   657         // temporarily drops SR_lock while doing wait with safepoint check
   658         // (if we're a JavaThread - the WatcherThread can also call this)
   659         // and increase delay with each retry
   660         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   662         // check the actual thread state instead of what we saved above
   663         if (thread_state() != _thread_in_native_trans) {
   664           // the thread has transitioned to another thread state so
   665           // try all the checks (except this one) one more time.
   666           do_trans_retry = true;
   667           break;
   668         }
   669       } // end retry loop
   672     }
   673   } while (do_trans_retry);
   675   *bits |= 0x00000010;
   676   return false;
   677 }
   679 //
   680 // Wait for an external suspend request to complete (or be cancelled).
   681 // Returns true if the thread is externally suspended and false otherwise.
   682 //
   683 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   684        uint32_t *bits) {
   685   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   686                              false /* !called_by_wait */, bits);
   688   // local flag copies to minimize SR_lock hold time
   689   bool is_suspended;
   690   bool pending;
   691   uint32_t reset_bits;
   693   // set a marker so is_ext_suspend_completed() knows we are the caller
   694   *bits |= 0x00010000;
   696   // We use reset_bits to reinitialize the bits value at the top of
   697   // each retry loop. This allows the caller to make use of any
   698   // unused bits for their own marking purposes.
   699   reset_bits = *bits;
   701   {
   702     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   703     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   704                                             delay, bits);
   705     pending = is_external_suspend();
   706   }
   707   // must release SR_lock to allow suspension to complete
   709   if (!pending) {
   710     // A cancelled suspend request is the only false return from
   711     // is_ext_suspend_completed() that keeps us from entering the
   712     // retry loop.
   713     *bits |= 0x00020000;
   714     return false;
   715   }
   717   if (is_suspended) {
   718     *bits |= 0x00040000;
   719     return true;
   720   }
   722   for (int i = 1; i <= retries; i++) {
   723     *bits = reset_bits;  // reinit to only track last retry
   725     // We used to do an "os::yield_all(i)" call here with the intention
   726     // that yielding would increase on each retry. However, the parameter
   727     // is ignored on Linux which means the yield didn't scale up. Waiting
   728     // on the SR_lock below provides a much more predictable scale up for
   729     // the delay. It also provides a simple/direct point to check for any
   730     // safepoint requests from the VMThread
   732     {
   733       MutexLocker ml(SR_lock());
   734       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   735       // can also call this)  and increase delay with each retry
   736       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   738       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   739                                               delay, bits);
   741       // It is possible for the external suspend request to be cancelled
   742       // (by a resume) before the actual suspend operation is completed.
   743       // Refresh our local copy to see if we still need to wait.
   744       pending = is_external_suspend();
   745     }
   747     if (!pending) {
   748       // A cancelled suspend request is the only false return from
   749       // is_ext_suspend_completed() that keeps us from staying in the
   750       // retry loop.
   751       *bits |= 0x00080000;
   752       return false;
   753     }
   755     if (is_suspended) {
   756       *bits |= 0x00100000;
   757       return true;
   758     }
   759   } // end retry loop
   761   // thread did not suspend after all our retries
   762   *bits |= 0x00200000;
   763   return false;
   764 }
   766 #ifndef PRODUCT
   767 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   769   // This should not need to be atomic as the only way for simultaneous
   770   // updates is via interrupts. Even then this should be rare or non-existant
   771   // and we don't care that much anyway.
   773   int index = _jmp_ring_index;
   774   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   775   _jmp_ring[index]._target = (intptr_t) target;
   776   _jmp_ring[index]._instruction = (intptr_t) instr;
   777   _jmp_ring[index]._file = file;
   778   _jmp_ring[index]._line = line;
   779 }
   780 #endif /* PRODUCT */
   782 // Called by flat profiler
   783 // Callers have already called wait_for_ext_suspend_completion
   784 // The assertion for that is currently too complex to put here:
   785 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   786   bool gotframe = false;
   787   // self suspension saves needed state.
   788   if (has_last_Java_frame() && _anchor.walkable()) {
   789      *_fr = pd_last_frame();
   790      gotframe = true;
   791   }
   792   return gotframe;
   793 }
   795 void Thread::interrupt(Thread* thread) {
   796   trace("interrupt", thread);
   797   debug_only(check_for_dangling_thread_pointer(thread);)
   798   os::interrupt(thread);
   799 }
   801 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   802   trace("is_interrupted", thread);
   803   debug_only(check_for_dangling_thread_pointer(thread);)
   804   // Note:  If clear_interrupted==false, this simply fetches and
   805   // returns the value of the field osthread()->interrupted().
   806   return os::is_interrupted(thread, clear_interrupted);
   807 }
   810 // GC Support
   811 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   812   jint thread_parity = _oops_do_parity;
   813   if (thread_parity != strong_roots_parity) {
   814     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   815     if (res == thread_parity) {
   816       return true;
   817     } else {
   818       guarantee(res == strong_roots_parity, "Or else what?");
   819       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   820          "Should only fail when parallel.");
   821       return false;
   822     }
   823   }
   824   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   825          "Should only fail when parallel.");
   826   return false;
   827 }
   829 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   830   active_handles()->oops_do(f);
   831   // Do oop for ThreadShadow
   832   f->do_oop((oop*)&_pending_exception);
   833   handle_area()->oops_do(f);
   834 }
   836 void Thread::nmethods_do(CodeBlobClosure* cf) {
   837   // no nmethods in a generic thread...
   838 }
   840 void Thread::metadata_do(void f(Metadata*)) {
   841   if (metadata_handles() != NULL) {
   842     for (int i = 0; i< metadata_handles()->length(); i++) {
   843       f(metadata_handles()->at(i));
   844     }
   845   }
   846 }
   848 void Thread::print_on(outputStream* st) const {
   849   // get_priority assumes osthread initialized
   850   if (osthread() != NULL) {
   851     int os_prio;
   852     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   853       st->print("os_prio=%d ", os_prio);
   854     }
   855     st->print("tid=" INTPTR_FORMAT " ", this);
   856     osthread()->print_on(st);
   857   }
   858   debug_only(if (WizardMode) print_owned_locks_on(st);)
   859 }
   861 // Thread::print_on_error() is called by fatal error handler. Don't use
   862 // any lock or allocate memory.
   863 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   864   if      (is_VM_thread())                  st->print("VMThread");
   865   else if (is_Compiler_thread())            st->print("CompilerThread");
   866   else if (is_Java_thread())                st->print("JavaThread");
   867   else if (is_GC_task_thread())             st->print("GCTaskThread");
   868   else if (is_Watcher_thread())             st->print("WatcherThread");
   869   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   870   else st->print("Thread");
   872   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   873             _stack_base - _stack_size, _stack_base);
   875   if (osthread()) {
   876     st->print(" [id=%d]", osthread()->thread_id());
   877   }
   878 }
   880 #ifdef ASSERT
   881 void Thread::print_owned_locks_on(outputStream* st) const {
   882   Monitor *cur = _owned_locks;
   883   if (cur == NULL) {
   884     st->print(" (no locks) ");
   885   } else {
   886     st->print_cr(" Locks owned:");
   887     while(cur) {
   888       cur->print_on(st);
   889       cur = cur->next();
   890     }
   891   }
   892 }
   894 static int ref_use_count  = 0;
   896 bool Thread::owns_locks_but_compiled_lock() const {
   897   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   898     if (cur != Compile_lock) return true;
   899   }
   900   return false;
   901 }
   904 #endif
   906 #ifndef PRODUCT
   908 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   909 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   910 // no threads which allow_vm_block's are held
   911 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   912     // Check if current thread is allowed to block at a safepoint
   913     if (!(_allow_safepoint_count == 0))
   914       fatal("Possible safepoint reached by thread that does not allow it");
   915     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   916       fatal("LEAF method calling lock?");
   917     }
   919 #ifdef ASSERT
   920     if (potential_vm_operation && is_Java_thread()
   921         && !Universe::is_bootstrapping()) {
   922       // Make sure we do not hold any locks that the VM thread also uses.
   923       // This could potentially lead to deadlocks
   924       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   925         // Threads_lock is special, since the safepoint synchronization will not start before this is
   926         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   927         // since it is used to transfer control between JavaThreads and the VMThread
   928         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   929         if ( (cur->allow_vm_block() &&
   930               cur != Threads_lock &&
   931               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   932               cur != VMOperationRequest_lock &&
   933               cur != VMOperationQueue_lock) ||
   934               cur->rank() == Mutex::special) {
   935           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   936         }
   937       }
   938     }
   940     if (GCALotAtAllSafepoints) {
   941       // We could enter a safepoint here and thus have a gc
   942       InterfaceSupport::check_gc_alot();
   943     }
   944 #endif
   945 }
   946 #endif
   948 bool Thread::is_in_stack(address adr) const {
   949   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   950   address end = os::current_stack_pointer();
   951   // Allow non Java threads to call this without stack_base
   952   if (_stack_base == NULL) return true;
   953   if (stack_base() >= adr && adr >= end) return true;
   955   return false;
   956 }
   959 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   960 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   961 // used for compilation in the future. If that change is made, the need for these methods
   962 // should be revisited, and they should be removed if possible.
   964 bool Thread::is_lock_owned(address adr) const {
   965   return on_local_stack(adr);
   966 }
   968 bool Thread::set_as_starting_thread() {
   969  // NOTE: this must be called inside the main thread.
   970   return os::create_main_thread((JavaThread*)this);
   971 }
   973 static void initialize_class(Symbol* class_name, TRAPS) {
   974   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   975   InstanceKlass::cast(klass)->initialize(CHECK);
   976 }
   979 // Creates the initial ThreadGroup
   980 static Handle create_initial_thread_group(TRAPS) {
   981   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   982   instanceKlassHandle klass (THREAD, k);
   984   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   985   {
   986     JavaValue result(T_VOID);
   987     JavaCalls::call_special(&result,
   988                             system_instance,
   989                             klass,
   990                             vmSymbols::object_initializer_name(),
   991                             vmSymbols::void_method_signature(),
   992                             CHECK_NH);
   993   }
   994   Universe::set_system_thread_group(system_instance());
   996   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   997   {
   998     JavaValue result(T_VOID);
   999     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1000     JavaCalls::call_special(&result,
  1001                             main_instance,
  1002                             klass,
  1003                             vmSymbols::object_initializer_name(),
  1004                             vmSymbols::threadgroup_string_void_signature(),
  1005                             system_instance,
  1006                             string,
  1007                             CHECK_NH);
  1009   return main_instance;
  1012 // Creates the initial Thread
  1013 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1014   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1015   instanceKlassHandle klass (THREAD, k);
  1016   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1018   java_lang_Thread::set_thread(thread_oop(), thread);
  1019   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1020   thread->set_threadObj(thread_oop());
  1022   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1024   JavaValue result(T_VOID);
  1025   JavaCalls::call_special(&result, thread_oop,
  1026                                    klass,
  1027                                    vmSymbols::object_initializer_name(),
  1028                                    vmSymbols::threadgroup_string_void_signature(),
  1029                                    thread_group,
  1030                                    string,
  1031                                    CHECK_NULL);
  1032   return thread_oop();
  1035 static void call_initializeSystemClass(TRAPS) {
  1036   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1037   instanceKlassHandle klass (THREAD, k);
  1039   JavaValue result(T_VOID);
  1040   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1041                                          vmSymbols::void_method_signature(), CHECK);
  1044 char java_runtime_name[128] = "";
  1045 char java_runtime_version[128] = "";
  1047 // extract the JRE name from sun.misc.Version.java_runtime_name
  1048 static const char* get_java_runtime_name(TRAPS) {
  1049   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1050                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1051   fieldDescriptor fd;
  1052   bool found = k != NULL &&
  1053                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1054                                                         vmSymbols::string_signature(), &fd);
  1055   if (found) {
  1056     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1057     if (name_oop == NULL)
  1058       return NULL;
  1059     const char* name = java_lang_String::as_utf8_string(name_oop,
  1060                                                         java_runtime_name,
  1061                                                         sizeof(java_runtime_name));
  1062     return name;
  1063   } else {
  1064     return NULL;
  1068 // extract the JRE version from sun.misc.Version.java_runtime_version
  1069 static const char* get_java_runtime_version(TRAPS) {
  1070   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1071                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1072   fieldDescriptor fd;
  1073   bool found = k != NULL &&
  1074                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1075                                                         vmSymbols::string_signature(), &fd);
  1076   if (found) {
  1077     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1078     if (name_oop == NULL)
  1079       return NULL;
  1080     const char* name = java_lang_String::as_utf8_string(name_oop,
  1081                                                         java_runtime_version,
  1082                                                         sizeof(java_runtime_version));
  1083     return name;
  1084   } else {
  1085     return NULL;
  1089 // General purpose hook into Java code, run once when the VM is initialized.
  1090 // The Java library method itself may be changed independently from the VM.
  1091 static void call_postVMInitHook(TRAPS) {
  1092   Klass* k = SystemDictionary::PostVMInitHook_klass();
  1093   instanceKlassHandle klass (THREAD, k);
  1094   if (klass.not_null()) {
  1095     JavaValue result(T_VOID);
  1096     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1097                                            vmSymbols::void_method_signature(),
  1098                                            CHECK);
  1102 static void reset_vm_info_property(TRAPS) {
  1103   // the vm info string
  1104   ResourceMark rm(THREAD);
  1105   const char *vm_info = VM_Version::vm_info_string();
  1107   // java.lang.System class
  1108   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1109   instanceKlassHandle klass (THREAD, k);
  1111   // setProperty arguments
  1112   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1113   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1115   // return value
  1116   JavaValue r(T_OBJECT);
  1118   // public static String setProperty(String key, String value);
  1119   JavaCalls::call_static(&r,
  1120                          klass,
  1121                          vmSymbols::setProperty_name(),
  1122                          vmSymbols::string_string_string_signature(),
  1123                          key_str,
  1124                          value_str,
  1125                          CHECK);
  1129 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1130   assert(thread_group.not_null(), "thread group should be specified");
  1131   assert(threadObj() == NULL, "should only create Java thread object once");
  1133   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1134   instanceKlassHandle klass (THREAD, k);
  1135   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1137   java_lang_Thread::set_thread(thread_oop(), this);
  1138   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1139   set_threadObj(thread_oop());
  1141   JavaValue result(T_VOID);
  1142   if (thread_name != NULL) {
  1143     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1144     // Thread gets assigned specified name and null target
  1145     JavaCalls::call_special(&result,
  1146                             thread_oop,
  1147                             klass,
  1148                             vmSymbols::object_initializer_name(),
  1149                             vmSymbols::threadgroup_string_void_signature(),
  1150                             thread_group, // Argument 1
  1151                             name,         // Argument 2
  1152                             THREAD);
  1153   } else {
  1154     // Thread gets assigned name "Thread-nnn" and null target
  1155     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1156     JavaCalls::call_special(&result,
  1157                             thread_oop,
  1158                             klass,
  1159                             vmSymbols::object_initializer_name(),
  1160                             vmSymbols::threadgroup_runnable_void_signature(),
  1161                             thread_group, // Argument 1
  1162                             Handle(),     // Argument 2
  1163                             THREAD);
  1167   if (daemon) {
  1168       java_lang_Thread::set_daemon(thread_oop());
  1171   if (HAS_PENDING_EXCEPTION) {
  1172     return;
  1175   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1176   Handle threadObj(this, this->threadObj());
  1178   JavaCalls::call_special(&result,
  1179                          thread_group,
  1180                          group,
  1181                          vmSymbols::add_method_name(),
  1182                          vmSymbols::thread_void_signature(),
  1183                          threadObj,          // Arg 1
  1184                          THREAD);
  1189 // NamedThread --  non-JavaThread subclasses with multiple
  1190 // uniquely named instances should derive from this.
  1191 NamedThread::NamedThread() : Thread() {
  1192   _name = NULL;
  1193   _processed_thread = NULL;
  1196 NamedThread::~NamedThread() {
  1197   if (_name != NULL) {
  1198     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1199     _name = NULL;
  1203 void NamedThread::set_name(const char* format, ...) {
  1204   guarantee(_name == NULL, "Only get to set name once.");
  1205   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1206   guarantee(_name != NULL, "alloc failure");
  1207   va_list ap;
  1208   va_start(ap, format);
  1209   jio_vsnprintf(_name, max_name_len, format, ap);
  1210   va_end(ap);
  1213 // ======= WatcherThread ========
  1215 // The watcher thread exists to simulate timer interrupts.  It should
  1216 // be replaced by an abstraction over whatever native support for
  1217 // timer interrupts exists on the platform.
  1219 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1220 bool WatcherThread::_startable = false;
  1221 volatile bool  WatcherThread::_should_terminate = false;
  1223 WatcherThread::WatcherThread() : Thread() {
  1224   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1225   if (os::create_thread(this, os::watcher_thread)) {
  1226     _watcher_thread = this;
  1228     // Set the watcher thread to the highest OS priority which should not be
  1229     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1230     // is created. The only normal thread using this priority is the reference
  1231     // handler thread, which runs for very short intervals only.
  1232     // If the VMThread's priority is not lower than the WatcherThread profiling
  1233     // will be inaccurate.
  1234     os::set_priority(this, MaxPriority);
  1235     if (!DisableStartThread) {
  1236       os::start_thread(this);
  1241 int WatcherThread::sleep() const {
  1242   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1244   // remaining will be zero if there are no tasks,
  1245   // causing the WatcherThread to sleep until a task is
  1246   // enrolled
  1247   int remaining = PeriodicTask::time_to_wait();
  1248   int time_slept = 0;
  1250   // we expect this to timeout - we only ever get unparked when
  1251   // we should terminate or when a new task has been enrolled
  1252   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1254   jlong time_before_loop = os::javaTimeNanos();
  1256   for (;;) {
  1257     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1258     jlong now = os::javaTimeNanos();
  1260     if (remaining == 0) {
  1261         // if we didn't have any tasks we could have waited for a long time
  1262         // consider the time_slept zero and reset time_before_loop
  1263         time_slept = 0;
  1264         time_before_loop = now;
  1265     } else {
  1266         // need to recalulate since we might have new tasks in _tasks
  1267         time_slept = (int) ((now - time_before_loop) / 1000000);
  1270     // Change to task list or spurious wakeup of some kind
  1271     if (timedout || _should_terminate) {
  1272         break;
  1275     remaining = PeriodicTask::time_to_wait();
  1276     if (remaining == 0) {
  1277         // Last task was just disenrolled so loop around and wait until
  1278         // another task gets enrolled
  1279         continue;
  1282     remaining -= time_slept;
  1283     if (remaining <= 0)
  1284       break;
  1287   return time_slept;
  1290 void WatcherThread::run() {
  1291   assert(this == watcher_thread(), "just checking");
  1293   this->record_stack_base_and_size();
  1294   this->initialize_thread_local_storage();
  1295   this->set_active_handles(JNIHandleBlock::allocate_block());
  1296   while(!_should_terminate) {
  1297     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1298     assert(watcher_thread() == this,  "thread consistency check");
  1300     // Calculate how long it'll be until the next PeriodicTask work
  1301     // should be done, and sleep that amount of time.
  1302     int time_waited = sleep();
  1304     if (is_error_reported()) {
  1305       // A fatal error has happened, the error handler(VMError::report_and_die)
  1306       // should abort JVM after creating an error log file. However in some
  1307       // rare cases, the error handler itself might deadlock. Here we try to
  1308       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1309       //
  1310       // This code is in WatcherThread because WatcherThread wakes up
  1311       // periodically so the fatal error handler doesn't need to do anything;
  1312       // also because the WatcherThread is less likely to crash than other
  1313       // threads.
  1315       for (;;) {
  1316         if (!ShowMessageBoxOnError
  1317          && (OnError == NULL || OnError[0] == '\0')
  1318          && Arguments::abort_hook() == NULL) {
  1319              os::sleep(this, 2 * 60 * 1000, false);
  1320              fdStream err(defaultStream::output_fd());
  1321              err.print_raw_cr("# [ timer expired, abort... ]");
  1322              // skip atexit/vm_exit/vm_abort hooks
  1323              os::die();
  1326         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1327         // ShowMessageBoxOnError when it is ready to abort.
  1328         os::sleep(this, 5 * 1000, false);
  1332     PeriodicTask::real_time_tick(time_waited);
  1335   // Signal that it is terminated
  1337     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1338     _watcher_thread = NULL;
  1339     Terminator_lock->notify();
  1342   // Thread destructor usually does this..
  1343   ThreadLocalStorage::set_thread(NULL);
  1346 void WatcherThread::start() {
  1347   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1349   if (watcher_thread() == NULL && _startable) {
  1350     _should_terminate = false;
  1351     // Create the single instance of WatcherThread
  1352     new WatcherThread();
  1356 void WatcherThread::make_startable() {
  1357   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1358   _startable = true;
  1361 void WatcherThread::stop() {
  1363     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1364     _should_terminate = true;
  1365     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1367     WatcherThread* watcher = watcher_thread();
  1368     if (watcher != NULL)
  1369       watcher->unpark();
  1372   // it is ok to take late safepoints here, if needed
  1373   MutexLocker mu(Terminator_lock);
  1375   while(watcher_thread() != NULL) {
  1376     // This wait should make safepoint checks, wait without a timeout,
  1377     // and wait as a suspend-equivalent condition.
  1378     //
  1379     // Note: If the FlatProfiler is running, then this thread is waiting
  1380     // for the WatcherThread to terminate and the WatcherThread, via the
  1381     // FlatProfiler task, is waiting for the external suspend request on
  1382     // this thread to complete. wait_for_ext_suspend_completion() will
  1383     // eventually timeout, but that takes time. Making this wait a
  1384     // suspend-equivalent condition solves that timeout problem.
  1385     //
  1386     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1387                           Mutex::_as_suspend_equivalent_flag);
  1391 void WatcherThread::unpark() {
  1392   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1393   PeriodicTask_lock->notify();
  1396 void WatcherThread::print_on(outputStream* st) const {
  1397   st->print("\"%s\" ", name());
  1398   Thread::print_on(st);
  1399   st->cr();
  1402 // ======= JavaThread ========
  1404 // A JavaThread is a normal Java thread
  1406 void JavaThread::initialize() {
  1407   // Initialize fields
  1409   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1410   set_claimed_par_id(-1);
  1412   set_saved_exception_pc(NULL);
  1413   set_threadObj(NULL);
  1414   _anchor.clear();
  1415   set_entry_point(NULL);
  1416   set_jni_functions(jni_functions());
  1417   set_callee_target(NULL);
  1418   set_vm_result(NULL);
  1419   set_vm_result_2(NULL);
  1420   set_vframe_array_head(NULL);
  1421   set_vframe_array_last(NULL);
  1422   set_deferred_locals(NULL);
  1423   set_deopt_mark(NULL);
  1424   set_deopt_nmethod(NULL);
  1425   clear_must_deopt_id();
  1426   set_monitor_chunks(NULL);
  1427   set_next(NULL);
  1428   set_thread_state(_thread_new);
  1429 #if INCLUDE_NMT
  1430   set_recorder(NULL);
  1431 #endif
  1432   _terminated = _not_terminated;
  1433   _privileged_stack_top = NULL;
  1434   _array_for_gc = NULL;
  1435   _suspend_equivalent = false;
  1436   _in_deopt_handler = 0;
  1437   _doing_unsafe_access = false;
  1438   _stack_guard_state = stack_guard_unused;
  1439   _exception_oop = NULL;
  1440   _exception_pc  = 0;
  1441   _exception_handler_pc = 0;
  1442   _is_method_handle_return = 0;
  1443   _jvmti_thread_state= NULL;
  1444   _should_post_on_exceptions_flag = JNI_FALSE;
  1445   _jvmti_get_loaded_classes_closure = NULL;
  1446   _interp_only_mode    = 0;
  1447   _special_runtime_exit_condition = _no_async_condition;
  1448   _pending_async_exception = NULL;
  1449   _is_compiling = false;
  1450   _thread_stat = NULL;
  1451   _thread_stat = new ThreadStatistics();
  1452   _blocked_on_compilation = false;
  1453   _jni_active_critical = 0;
  1454   _do_not_unlock_if_synchronized = false;
  1455   _cached_monitor_info = NULL;
  1456   _parker = Parker::Allocate(this) ;
  1458 #ifndef PRODUCT
  1459   _jmp_ring_index = 0;
  1460   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1461     record_jump(NULL, NULL, NULL, 0);
  1463 #endif /* PRODUCT */
  1465   set_thread_profiler(NULL);
  1466   if (FlatProfiler::is_active()) {
  1467     // This is where we would decide to either give each thread it's own profiler
  1468     // or use one global one from FlatProfiler,
  1469     // or up to some count of the number of profiled threads, etc.
  1470     ThreadProfiler* pp = new ThreadProfiler();
  1471     pp->engage();
  1472     set_thread_profiler(pp);
  1475   // Setup safepoint state info for this thread
  1476   ThreadSafepointState::create(this);
  1478   debug_only(_java_call_counter = 0);
  1480   // JVMTI PopFrame support
  1481   _popframe_condition = popframe_inactive;
  1482   _popframe_preserved_args = NULL;
  1483   _popframe_preserved_args_size = 0;
  1485   pd_initialize();
  1488 #ifndef SERIALGC
  1489 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1490 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1491 #endif // !SERIALGC
  1493 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1494   Thread()
  1495 #ifndef SERIALGC
  1496   , _satb_mark_queue(&_satb_mark_queue_set),
  1497   _dirty_card_queue(&_dirty_card_queue_set)
  1498 #endif // !SERIALGC
  1500   initialize();
  1501   if (is_attaching_via_jni) {
  1502     _jni_attach_state = _attaching_via_jni;
  1503   } else {
  1504     _jni_attach_state = _not_attaching_via_jni;
  1506   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1507   _safepoint_visible = false;
  1510 bool JavaThread::reguard_stack(address cur_sp) {
  1511   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1512     return true; // Stack already guarded or guard pages not needed.
  1515   if (register_stack_overflow()) {
  1516     // For those architectures which have separate register and
  1517     // memory stacks, we must check the register stack to see if
  1518     // it has overflowed.
  1519     return false;
  1522   // Java code never executes within the yellow zone: the latter is only
  1523   // there to provoke an exception during stack banging.  If java code
  1524   // is executing there, either StackShadowPages should be larger, or
  1525   // some exception code in c1, c2 or the interpreter isn't unwinding
  1526   // when it should.
  1527   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1529   enable_stack_yellow_zone();
  1530   return true;
  1533 bool JavaThread::reguard_stack(void) {
  1534   return reguard_stack(os::current_stack_pointer());
  1538 void JavaThread::block_if_vm_exited() {
  1539   if (_terminated == _vm_exited) {
  1540     // _vm_exited is set at safepoint, and Threads_lock is never released
  1541     // we will block here forever
  1542     Threads_lock->lock_without_safepoint_check();
  1543     ShouldNotReachHere();
  1548 // Remove this ifdef when C1 is ported to the compiler interface.
  1549 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1551 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1552   Thread()
  1553 #ifndef SERIALGC
  1554   , _satb_mark_queue(&_satb_mark_queue_set),
  1555   _dirty_card_queue(&_dirty_card_queue_set)
  1556 #endif // !SERIALGC
  1558   if (TraceThreadEvents) {
  1559     tty->print_cr("creating thread %p", this);
  1561   initialize();
  1562   _jni_attach_state = _not_attaching_via_jni;
  1563   set_entry_point(entry_point);
  1564   // Create the native thread itself.
  1565   // %note runtime_23
  1566   os::ThreadType thr_type = os::java_thread;
  1567   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1568                                                      os::java_thread;
  1569   os::create_thread(this, thr_type, stack_sz);
  1570   _safepoint_visible = false;
  1571   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1572   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1573   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1574   // the exception consists of creating the exception object & initializing it, initialization
  1575   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1576   //
  1577   // The thread is still suspended when we reach here. Thread must be explicit started
  1578   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1579   // by calling Threads:add. The reason why this is not done here, is because the thread
  1580   // object must be fully initialized (take a look at JVM_Start)
  1583 JavaThread::~JavaThread() {
  1584   if (TraceThreadEvents) {
  1585       tty->print_cr("terminate thread %p", this);
  1588   // By now, this thread should already be invisible to safepoint,
  1589   // and its per-thread recorder also collected.
  1590   assert(!is_safepoint_visible(), "wrong state");
  1591 #if INCLUDE_NMT
  1592   assert(get_recorder() == NULL, "Already collected");
  1593 #endif // INCLUDE_NMT
  1595   // JSR166 -- return the parker to the free list
  1596   Parker::Release(_parker);
  1597   _parker = NULL ;
  1599   // Free any remaining  previous UnrollBlock
  1600   vframeArray* old_array = vframe_array_last();
  1602   if (old_array != NULL) {
  1603     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1604     old_array->set_unroll_block(NULL);
  1605     delete old_info;
  1606     delete old_array;
  1609   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1610   if (deferred != NULL) {
  1611     // This can only happen if thread is destroyed before deoptimization occurs.
  1612     assert(deferred->length() != 0, "empty array!");
  1613     do {
  1614       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1615       deferred->remove_at(0);
  1616       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1617       delete dlv;
  1618     } while (deferred->length() != 0);
  1619     delete deferred;
  1622   // All Java related clean up happens in exit
  1623   ThreadSafepointState::destroy(this);
  1624   if (_thread_profiler != NULL) delete _thread_profiler;
  1625   if (_thread_stat != NULL) delete _thread_stat;
  1629 // The first routine called by a new Java thread
  1630 void JavaThread::run() {
  1631   // initialize thread-local alloc buffer related fields
  1632   this->initialize_tlab();
  1634   // used to test validitity of stack trace backs
  1635   this->record_base_of_stack_pointer();
  1637   // Record real stack base and size.
  1638   this->record_stack_base_and_size();
  1640   // Initialize thread local storage; set before calling MutexLocker
  1641   this->initialize_thread_local_storage();
  1643   this->create_stack_guard_pages();
  1645   this->cache_global_variables();
  1647   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1648   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1649   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1651   assert(JavaThread::current() == this, "sanity check");
  1652   assert(!Thread::current()->owns_locks(), "sanity check");
  1654   DTRACE_THREAD_PROBE(start, this);
  1656   // This operation might block. We call that after all safepoint checks for a new thread has
  1657   // been completed.
  1658   this->set_active_handles(JNIHandleBlock::allocate_block());
  1660   if (JvmtiExport::should_post_thread_life()) {
  1661     JvmtiExport::post_thread_start(this);
  1664   EVENT_BEGIN(TraceEventThreadStart, event);
  1665   EVENT_COMMIT(event,
  1666      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1668   // We call another function to do the rest so we are sure that the stack addresses used
  1669   // from there will be lower than the stack base just computed
  1670   thread_main_inner();
  1672   // Note, thread is no longer valid at this point!
  1676 void JavaThread::thread_main_inner() {
  1677   assert(JavaThread::current() == this, "sanity check");
  1678   assert(this->threadObj() != NULL, "just checking");
  1680   // Execute thread entry point unless this thread has a pending exception
  1681   // or has been stopped before starting.
  1682   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1683   if (!this->has_pending_exception() &&
  1684       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1686       ResourceMark rm(this);
  1687       this->set_native_thread_name(this->get_thread_name());
  1689     HandleMark hm(this);
  1690     this->entry_point()(this, this);
  1693   DTRACE_THREAD_PROBE(stop, this);
  1695   this->exit(false);
  1696   delete this;
  1700 static void ensure_join(JavaThread* thread) {
  1701   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1702   Handle threadObj(thread, thread->threadObj());
  1703   assert(threadObj.not_null(), "java thread object must exist");
  1704   ObjectLocker lock(threadObj, thread);
  1705   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1706   thread->clear_pending_exception();
  1707   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1708   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1709   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1710   // to complete once we've done the notify_all below
  1711   java_lang_Thread::set_thread(threadObj(), NULL);
  1712   lock.notify_all(thread);
  1713   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1714   thread->clear_pending_exception();
  1718 // For any new cleanup additions, please check to see if they need to be applied to
  1719 // cleanup_failed_attach_current_thread as well.
  1720 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1721   assert(this == JavaThread::current(),  "thread consistency check");
  1722   if (!InitializeJavaLangSystem) return;
  1724   HandleMark hm(this);
  1725   Handle uncaught_exception(this, this->pending_exception());
  1726   this->clear_pending_exception();
  1727   Handle threadObj(this, this->threadObj());
  1728   assert(threadObj.not_null(), "Java thread object should be created");
  1730   if (get_thread_profiler() != NULL) {
  1731     get_thread_profiler()->disengage();
  1732     ResourceMark rm;
  1733     get_thread_profiler()->print(get_thread_name());
  1737   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1739     EXCEPTION_MARK;
  1741     CLEAR_PENDING_EXCEPTION;
  1743   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1744   // has to be fixed by a runtime query method
  1745   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1746     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1747     // java.lang.Thread.dispatchUncaughtException
  1748     if (uncaught_exception.not_null()) {
  1749       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1751         EXCEPTION_MARK;
  1752         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1753         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1754         // so call ThreadGroup.uncaughtException()
  1755         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1756         CallInfo callinfo;
  1757         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1758         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1759                                            vmSymbols::dispatchUncaughtException_name(),
  1760                                            vmSymbols::throwable_void_signature(),
  1761                                            KlassHandle(), false, false, THREAD);
  1762         CLEAR_PENDING_EXCEPTION;
  1763         methodHandle method = callinfo.selected_method();
  1764         if (method.not_null()) {
  1765           JavaValue result(T_VOID);
  1766           JavaCalls::call_virtual(&result,
  1767                                   threadObj, thread_klass,
  1768                                   vmSymbols::dispatchUncaughtException_name(),
  1769                                   vmSymbols::throwable_void_signature(),
  1770                                   uncaught_exception,
  1771                                   THREAD);
  1772         } else {
  1773           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1774           JavaValue result(T_VOID);
  1775           JavaCalls::call_virtual(&result,
  1776                                   group, thread_group,
  1777                                   vmSymbols::uncaughtException_name(),
  1778                                   vmSymbols::thread_throwable_void_signature(),
  1779                                   threadObj,           // Arg 1
  1780                                   uncaught_exception,  // Arg 2
  1781                                   THREAD);
  1783         if (HAS_PENDING_EXCEPTION) {
  1784           ResourceMark rm(this);
  1785           jio_fprintf(defaultStream::error_stream(),
  1786                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1787                 " in thread \"%s\"\n",
  1788                 Klass::cast(pending_exception()->klass())->external_name(),
  1789                 get_thread_name());
  1790           CLEAR_PENDING_EXCEPTION;
  1795     // Called before the java thread exit since we want to read info
  1796     // from java_lang_Thread object
  1797     EVENT_BEGIN(TraceEventThreadEnd, event);
  1798     EVENT_COMMIT(event,
  1799         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1801     // Call after last event on thread
  1802     EVENT_THREAD_EXIT(this);
  1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1806     // is deprecated anyhow.
  1807     { int count = 3;
  1808       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1809         EXCEPTION_MARK;
  1810         JavaValue result(T_VOID);
  1811         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1812         JavaCalls::call_virtual(&result,
  1813                               threadObj, thread_klass,
  1814                               vmSymbols::exit_method_name(),
  1815                               vmSymbols::void_method_signature(),
  1816                               THREAD);
  1817         CLEAR_PENDING_EXCEPTION;
  1821     // notify JVMTI
  1822     if (JvmtiExport::should_post_thread_life()) {
  1823       JvmtiExport::post_thread_end(this);
  1826     // We have notified the agents that we are exiting, before we go on,
  1827     // we must check for a pending external suspend request and honor it
  1828     // in order to not surprise the thread that made the suspend request.
  1829     while (true) {
  1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1832         if (!is_external_suspend()) {
  1833           set_terminated(_thread_exiting);
  1834           ThreadService::current_thread_exiting(this);
  1835           break;
  1837         // Implied else:
  1838         // Things get a little tricky here. We have a pending external
  1839         // suspend request, but we are holding the SR_lock so we
  1840         // can't just self-suspend. So we temporarily drop the lock
  1841         // and then self-suspend.
  1844       ThreadBlockInVM tbivm(this);
  1845       java_suspend_self();
  1847       // We're done with this suspend request, but we have to loop around
  1848       // and check again. Eventually we will get SR_lock without a pending
  1849       // external suspend request and will be able to mark ourselves as
  1850       // exiting.
  1852     // no more external suspends are allowed at this point
  1853   } else {
  1854     // before_exit() has already posted JVMTI THREAD_END events
  1857   // Notify waiters on thread object. This has to be done after exit() is called
  1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1859   // group should have the destroyed bit set before waiters are notified).
  1860   ensure_join(this);
  1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1864   // held by this thread must be released.  A detach operation must only
  1865   // get here if there are no Java frames on the stack.  Therefore, any
  1866   // owned monitors at this point MUST be JNI-acquired monitors which are
  1867   // pre-inflated and in the monitor cache.
  1868   //
  1869   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1870   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1871     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1872     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1873     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1876   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1877   // is in a consistent state, in case GC happens
  1878   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1880   if (active_handles() != NULL) {
  1881     JNIHandleBlock* block = active_handles();
  1882     set_active_handles(NULL);
  1883     JNIHandleBlock::release_block(block);
  1886   if (free_handle_block() != NULL) {
  1887     JNIHandleBlock* block = free_handle_block();
  1888     set_free_handle_block(NULL);
  1889     JNIHandleBlock::release_block(block);
  1892   // These have to be removed while this is still a valid thread.
  1893   remove_stack_guard_pages();
  1895   if (UseTLAB) {
  1896     tlab().make_parsable(true);  // retire TLAB
  1899   if (JvmtiEnv::environments_might_exist()) {
  1900     JvmtiExport::cleanup_thread(this);
  1903 #ifndef SERIALGC
  1904   // We must flush G1-related buffers before removing a thread from
  1905   // the list of active threads.
  1906   if (UseG1GC) {
  1907     flush_barrier_queues();
  1909 #endif
  1911   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1912   Threads::remove(this);
  1915 #ifndef SERIALGC
  1916 // Flush G1-related queues.
  1917 void JavaThread::flush_barrier_queues() {
  1918   satb_mark_queue().flush();
  1919   dirty_card_queue().flush();
  1922 void JavaThread::initialize_queues() {
  1923   assert(!SafepointSynchronize::is_at_safepoint(),
  1924          "we should not be at a safepoint");
  1926   ObjPtrQueue& satb_queue = satb_mark_queue();
  1927   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1928   // The SATB queue should have been constructed with its active
  1929   // field set to false.
  1930   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1931   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1932   // If we are creating the thread during a marking cycle, we should
  1933   // set the active field of the SATB queue to true.
  1934   if (satb_queue_set.is_active()) {
  1935     satb_queue.set_active(true);
  1938   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1939   // The dirty card queue should have been constructed with its
  1940   // active field set to true.
  1941   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1943 #endif // !SERIALGC
  1945 void JavaThread::cleanup_failed_attach_current_thread() {
  1946   if (get_thread_profiler() != NULL) {
  1947     get_thread_profiler()->disengage();
  1948     ResourceMark rm;
  1949     get_thread_profiler()->print(get_thread_name());
  1952   if (active_handles() != NULL) {
  1953     JNIHandleBlock* block = active_handles();
  1954     set_active_handles(NULL);
  1955     JNIHandleBlock::release_block(block);
  1958   if (free_handle_block() != NULL) {
  1959     JNIHandleBlock* block = free_handle_block();
  1960     set_free_handle_block(NULL);
  1961     JNIHandleBlock::release_block(block);
  1964   // These have to be removed while this is still a valid thread.
  1965   remove_stack_guard_pages();
  1967   if (UseTLAB) {
  1968     tlab().make_parsable(true);  // retire TLAB, if any
  1971 #ifndef SERIALGC
  1972   if (UseG1GC) {
  1973     flush_barrier_queues();
  1975 #endif
  1977   Threads::remove(this);
  1978   delete this;
  1984 JavaThread* JavaThread::active() {
  1985   Thread* thread = ThreadLocalStorage::thread();
  1986   assert(thread != NULL, "just checking");
  1987   if (thread->is_Java_thread()) {
  1988     return (JavaThread*) thread;
  1989   } else {
  1990     assert(thread->is_VM_thread(), "this must be a vm thread");
  1991     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1992     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1993     assert(ret->is_Java_thread(), "must be a Java thread");
  1994     return ret;
  1998 bool JavaThread::is_lock_owned(address adr) const {
  1999   if (Thread::is_lock_owned(adr)) return true;
  2001   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2002     if (chunk->contains(adr)) return true;
  2005   return false;
  2009 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2010   chunk->set_next(monitor_chunks());
  2011   set_monitor_chunks(chunk);
  2014 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2015   guarantee(monitor_chunks() != NULL, "must be non empty");
  2016   if (monitor_chunks() == chunk) {
  2017     set_monitor_chunks(chunk->next());
  2018   } else {
  2019     MonitorChunk* prev = monitor_chunks();
  2020     while (prev->next() != chunk) prev = prev->next();
  2021     prev->set_next(chunk->next());
  2025 // JVM support.
  2027 // Note: this function shouldn't block if it's called in
  2028 // _thread_in_native_trans state (such as from
  2029 // check_special_condition_for_native_trans()).
  2030 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2032   if (has_last_Java_frame() && has_async_condition()) {
  2033     // If we are at a polling page safepoint (not a poll return)
  2034     // then we must defer async exception because live registers
  2035     // will be clobbered by the exception path. Poll return is
  2036     // ok because the call we a returning from already collides
  2037     // with exception handling registers and so there is no issue.
  2038     // (The exception handling path kills call result registers but
  2039     //  this is ok since the exception kills the result anyway).
  2041     if (is_at_poll_safepoint()) {
  2042       // if the code we are returning to has deoptimized we must defer
  2043       // the exception otherwise live registers get clobbered on the
  2044       // exception path before deoptimization is able to retrieve them.
  2045       //
  2046       RegisterMap map(this, false);
  2047       frame caller_fr = last_frame().sender(&map);
  2048       assert(caller_fr.is_compiled_frame(), "what?");
  2049       if (caller_fr.is_deoptimized_frame()) {
  2050         if (TraceExceptions) {
  2051           ResourceMark rm;
  2052           tty->print_cr("deferred async exception at compiled safepoint");
  2054         return;
  2059   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2060   if (condition == _no_async_condition) {
  2061     // Conditions have changed since has_special_runtime_exit_condition()
  2062     // was called:
  2063     // - if we were here only because of an external suspend request,
  2064     //   then that was taken care of above (or cancelled) so we are done
  2065     // - if we were here because of another async request, then it has
  2066     //   been cleared between the has_special_runtime_exit_condition()
  2067     //   and now so again we are done
  2068     return;
  2071   // Check for pending async. exception
  2072   if (_pending_async_exception != NULL) {
  2073     // Only overwrite an already pending exception, if it is not a threadDeath.
  2074     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2076       // We cannot call Exceptions::_throw(...) here because we cannot block
  2077       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2079       if (TraceExceptions) {
  2080         ResourceMark rm;
  2081         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2082         if (has_last_Java_frame() ) {
  2083           frame f = last_frame();
  2084           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2086         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2088       _pending_async_exception = NULL;
  2089       clear_has_async_exception();
  2093   if (check_unsafe_error &&
  2094       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2095     condition = _no_async_condition;  // done
  2096     switch (thread_state()) {
  2097     case _thread_in_vm:
  2099         JavaThread* THREAD = this;
  2100         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2102     case _thread_in_native:
  2104         ThreadInVMfromNative tiv(this);
  2105         JavaThread* THREAD = this;
  2106         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2108     case _thread_in_Java:
  2110         ThreadInVMfromJava tiv(this);
  2111         JavaThread* THREAD = this;
  2112         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2114     default:
  2115       ShouldNotReachHere();
  2119   assert(condition == _no_async_condition || has_pending_exception() ||
  2120          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2121          "must have handled the async condition, if no exception");
  2124 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2125   //
  2126   // Check for pending external suspend. Internal suspend requests do
  2127   // not use handle_special_runtime_exit_condition().
  2128   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2129   // thread is not the current thread. In older versions of jdbx, jdbx
  2130   // threads could call into the VM with another thread's JNIEnv so we
  2131   // can be here operating on behalf of a suspended thread (4432884).
  2132   bool do_self_suspend = is_external_suspend_with_lock();
  2133   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2134     //
  2135     // Because thread is external suspended the safepoint code will count
  2136     // thread as at a safepoint. This can be odd because we can be here
  2137     // as _thread_in_Java which would normally transition to _thread_blocked
  2138     // at a safepoint. We would like to mark the thread as _thread_blocked
  2139     // before calling java_suspend_self like all other callers of it but
  2140     // we must then observe proper safepoint protocol. (We can't leave
  2141     // _thread_blocked with a safepoint in progress). However we can be
  2142     // here as _thread_in_native_trans so we can't use a normal transition
  2143     // constructor/destructor pair because they assert on that type of
  2144     // transition. We could do something like:
  2145     //
  2146     // JavaThreadState state = thread_state();
  2147     // set_thread_state(_thread_in_vm);
  2148     // {
  2149     //   ThreadBlockInVM tbivm(this);
  2150     //   java_suspend_self()
  2151     // }
  2152     // set_thread_state(_thread_in_vm_trans);
  2153     // if (safepoint) block;
  2154     // set_thread_state(state);
  2155     //
  2156     // but that is pretty messy. Instead we just go with the way the
  2157     // code has worked before and note that this is the only path to
  2158     // java_suspend_self that doesn't put the thread in _thread_blocked
  2159     // mode.
  2161     frame_anchor()->make_walkable(this);
  2162     java_suspend_self();
  2164     // We might be here for reasons in addition to the self-suspend request
  2165     // so check for other async requests.
  2168   if (check_asyncs) {
  2169     check_and_handle_async_exceptions();
  2173 void JavaThread::send_thread_stop(oop java_throwable)  {
  2174   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2175   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2176   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2178   // Do not throw asynchronous exceptions against the compiler thread
  2179   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2180   if (is_Compiler_thread()) return;
  2183     // Actually throw the Throwable against the target Thread - however
  2184     // only if there is no thread death exception installed already.
  2185     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2186       // If the topmost frame is a runtime stub, then we are calling into
  2187       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2188       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2189       // may not be valid
  2190       if (has_last_Java_frame()) {
  2191         frame f = last_frame();
  2192         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2193           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2194           RegisterMap reg_map(this, UseBiasedLocking);
  2195           frame compiled_frame = f.sender(&reg_map);
  2196           if (compiled_frame.can_be_deoptimized()) {
  2197             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2202       // Set async. pending exception in thread.
  2203       set_pending_async_exception(java_throwable);
  2205       if (TraceExceptions) {
  2206        ResourceMark rm;
  2207        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2209       // for AbortVMOnException flag
  2210       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2215   // Interrupt thread so it will wake up from a potential wait()
  2216   Thread::interrupt(this);
  2219 // External suspension mechanism.
  2220 //
  2221 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2222 // to any VM_locks and it is at a transition
  2223 // Self-suspension will happen on the transition out of the vm.
  2224 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2225 //
  2226 // Guarantees on return:
  2227 //   + Target thread will not execute any new bytecode (that's why we need to
  2228 //     force a safepoint)
  2229 //   + Target thread will not enter any new monitors
  2230 //
  2231 void JavaThread::java_suspend() {
  2232   { MutexLocker mu(Threads_lock);
  2233     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2234        return;
  2238   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2239     if (!is_external_suspend()) {
  2240       // a racing resume has cancelled us; bail out now
  2241       return;
  2244     // suspend is done
  2245     uint32_t debug_bits = 0;
  2246     // Warning: is_ext_suspend_completed() may temporarily drop the
  2247     // SR_lock to allow the thread to reach a stable thread state if
  2248     // it is currently in a transient thread state.
  2249     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2250                                  SuspendRetryDelay, &debug_bits) ) {
  2251       return;
  2255   VM_ForceSafepoint vm_suspend;
  2256   VMThread::execute(&vm_suspend);
  2259 // Part II of external suspension.
  2260 // A JavaThread self suspends when it detects a pending external suspend
  2261 // request. This is usually on transitions. It is also done in places
  2262 // where continuing to the next transition would surprise the caller,
  2263 // e.g., monitor entry.
  2264 //
  2265 // Returns the number of times that the thread self-suspended.
  2266 //
  2267 // Note: DO NOT call java_suspend_self() when you just want to block current
  2268 //       thread. java_suspend_self() is the second stage of cooperative
  2269 //       suspension for external suspend requests and should only be used
  2270 //       to complete an external suspend request.
  2271 //
  2272 int JavaThread::java_suspend_self() {
  2273   int ret = 0;
  2275   // we are in the process of exiting so don't suspend
  2276   if (is_exiting()) {
  2277      clear_external_suspend();
  2278      return ret;
  2281   assert(_anchor.walkable() ||
  2282     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2283     "must have walkable stack");
  2285   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2287   assert(!this->is_ext_suspended(),
  2288     "a thread trying to self-suspend should not already be suspended");
  2290   if (this->is_suspend_equivalent()) {
  2291     // If we are self-suspending as a result of the lifting of a
  2292     // suspend equivalent condition, then the suspend_equivalent
  2293     // flag is not cleared until we set the ext_suspended flag so
  2294     // that wait_for_ext_suspend_completion() returns consistent
  2295     // results.
  2296     this->clear_suspend_equivalent();
  2299   // A racing resume may have cancelled us before we grabbed SR_lock
  2300   // above. Or another external suspend request could be waiting for us
  2301   // by the time we return from SR_lock()->wait(). The thread
  2302   // that requested the suspension may already be trying to walk our
  2303   // stack and if we return now, we can change the stack out from under
  2304   // it. This would be a "bad thing (TM)" and cause the stack walker
  2305   // to crash. We stay self-suspended until there are no more pending
  2306   // external suspend requests.
  2307   while (is_external_suspend()) {
  2308     ret++;
  2309     this->set_ext_suspended();
  2311     // _ext_suspended flag is cleared by java_resume()
  2312     while (is_ext_suspended()) {
  2313       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2317   return ret;
  2320 #ifdef ASSERT
  2321 // verify the JavaThread has not yet been published in the Threads::list, and
  2322 // hence doesn't need protection from concurrent access at this stage
  2323 void JavaThread::verify_not_published() {
  2324   if (!Threads_lock->owned_by_self()) {
  2325    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2326    assert( !Threads::includes(this),
  2327            "java thread shouldn't have been published yet!");
  2329   else {
  2330    assert( !Threads::includes(this),
  2331            "java thread shouldn't have been published yet!");
  2334 #endif
  2336 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2337 // progress or when _suspend_flags is non-zero.
  2338 // Current thread needs to self-suspend if there is a suspend request and/or
  2339 // block if a safepoint is in progress.
  2340 // Async exception ISN'T checked.
  2341 // Note only the ThreadInVMfromNative transition can call this function
  2342 // directly and when thread state is _thread_in_native_trans
  2343 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2344   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2346   JavaThread *curJT = JavaThread::current();
  2347   bool do_self_suspend = thread->is_external_suspend();
  2349   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2351   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2352   // thread is not the current thread. In older versions of jdbx, jdbx
  2353   // threads could call into the VM with another thread's JNIEnv so we
  2354   // can be here operating on behalf of a suspended thread (4432884).
  2355   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2356     JavaThreadState state = thread->thread_state();
  2358     // We mark this thread_blocked state as a suspend-equivalent so
  2359     // that a caller to is_ext_suspend_completed() won't be confused.
  2360     // The suspend-equivalent state is cleared by java_suspend_self().
  2361     thread->set_suspend_equivalent();
  2363     // If the safepoint code sees the _thread_in_native_trans state, it will
  2364     // wait until the thread changes to other thread state. There is no
  2365     // guarantee on how soon we can obtain the SR_lock and complete the
  2366     // self-suspend request. It would be a bad idea to let safepoint wait for
  2367     // too long. Temporarily change the state to _thread_blocked to
  2368     // let the VM thread know that this thread is ready for GC. The problem
  2369     // of changing thread state is that safepoint could happen just after
  2370     // java_suspend_self() returns after being resumed, and VM thread will
  2371     // see the _thread_blocked state. We must check for safepoint
  2372     // after restoring the state and make sure we won't leave while a safepoint
  2373     // is in progress.
  2374     thread->set_thread_state(_thread_blocked);
  2375     thread->java_suspend_self();
  2376     thread->set_thread_state(state);
  2377     // Make sure new state is seen by VM thread
  2378     if (os::is_MP()) {
  2379       if (UseMembar) {
  2380         // Force a fence between the write above and read below
  2381         OrderAccess::fence();
  2382       } else {
  2383         // Must use this rather than serialization page in particular on Windows
  2384         InterfaceSupport::serialize_memory(thread);
  2389   if (SafepointSynchronize::do_call_back()) {
  2390     // If we are safepointing, then block the caller which may not be
  2391     // the same as the target thread (see above).
  2392     SafepointSynchronize::block(curJT);
  2395   if (thread->is_deopt_suspend()) {
  2396     thread->clear_deopt_suspend();
  2397     RegisterMap map(thread, false);
  2398     frame f = thread->last_frame();
  2399     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2400       f = f.sender(&map);
  2402     if (f.id() == thread->must_deopt_id()) {
  2403       thread->clear_must_deopt_id();
  2404       f.deoptimize(thread);
  2405     } else {
  2406       fatal("missed deoptimization!");
  2411 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2412 // progress or when _suspend_flags is non-zero.
  2413 // Current thread needs to self-suspend if there is a suspend request and/or
  2414 // block if a safepoint is in progress.
  2415 // Also check for pending async exception (not including unsafe access error).
  2416 // Note only the native==>VM/Java barriers can call this function and when
  2417 // thread state is _thread_in_native_trans.
  2418 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2419   check_safepoint_and_suspend_for_native_trans(thread);
  2421   if (thread->has_async_exception()) {
  2422     // We are in _thread_in_native_trans state, don't handle unsafe
  2423     // access error since that may block.
  2424     thread->check_and_handle_async_exceptions(false);
  2428 // This is a variant of the normal
  2429 // check_special_condition_for_native_trans with slightly different
  2430 // semantics for use by critical native wrappers.  It does all the
  2431 // normal checks but also performs the transition back into
  2432 // thread_in_Java state.  This is required so that critical natives
  2433 // can potentially block and perform a GC if they are the last thread
  2434 // exiting the GC_locker.
  2435 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2436   check_special_condition_for_native_trans(thread);
  2438   // Finish the transition
  2439   thread->set_thread_state(_thread_in_Java);
  2441   if (thread->do_critical_native_unlock()) {
  2442     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2443     GC_locker::unlock_critical(thread);
  2444     thread->clear_critical_native_unlock();
  2448 // We need to guarantee the Threads_lock here, since resumes are not
  2449 // allowed during safepoint synchronization
  2450 // Can only resume from an external suspension
  2451 void JavaThread::java_resume() {
  2452   assert_locked_or_safepoint(Threads_lock);
  2454   // Sanity check: thread is gone, has started exiting or the thread
  2455   // was not externally suspended.
  2456   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2457     return;
  2460   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2462   clear_external_suspend();
  2464   if (is_ext_suspended()) {
  2465     clear_ext_suspended();
  2466     SR_lock()->notify_all();
  2470 void JavaThread::create_stack_guard_pages() {
  2471   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2472   address low_addr = stack_base() - stack_size();
  2473   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2475   int allocate = os::allocate_stack_guard_pages();
  2476   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2478   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2479     warning("Attempt to allocate stack guard pages failed.");
  2480     return;
  2483   if (os::guard_memory((char *) low_addr, len)) {
  2484     _stack_guard_state = stack_guard_enabled;
  2485   } else {
  2486     warning("Attempt to protect stack guard pages failed.");
  2487     if (os::uncommit_memory((char *) low_addr, len)) {
  2488       warning("Attempt to deallocate stack guard pages failed.");
  2493 void JavaThread::remove_stack_guard_pages() {
  2494   assert(Thread::current() == this, "from different thread");
  2495   if (_stack_guard_state == stack_guard_unused) return;
  2496   address low_addr = stack_base() - stack_size();
  2497   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2499   if (os::allocate_stack_guard_pages()) {
  2500     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2501       _stack_guard_state = stack_guard_unused;
  2502     } else {
  2503       warning("Attempt to deallocate stack guard pages failed.");
  2505   } else {
  2506     if (_stack_guard_state == stack_guard_unused) return;
  2507     if (os::unguard_memory((char *) low_addr, len)) {
  2508       _stack_guard_state = stack_guard_unused;
  2509     } else {
  2510         warning("Attempt to unprotect stack guard pages failed.");
  2515 void JavaThread::enable_stack_yellow_zone() {
  2516   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2517   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2519   // The base notation is from the stacks point of view, growing downward.
  2520   // We need to adjust it to work correctly with guard_memory()
  2521   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2523   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2524   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2526   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2527     _stack_guard_state = stack_guard_enabled;
  2528   } else {
  2529     warning("Attempt to guard stack yellow zone failed.");
  2531   enable_register_stack_guard();
  2534 void JavaThread::disable_stack_yellow_zone() {
  2535   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2536   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2538   // Simply return if called for a thread that does not use guard pages.
  2539   if (_stack_guard_state == stack_guard_unused) return;
  2541   // The base notation is from the stacks point of view, growing downward.
  2542   // We need to adjust it to work correctly with guard_memory()
  2543   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2545   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2546     _stack_guard_state = stack_guard_yellow_disabled;
  2547   } else {
  2548     warning("Attempt to unguard stack yellow zone failed.");
  2550   disable_register_stack_guard();
  2553 void JavaThread::enable_stack_red_zone() {
  2554   // The base notation is from the stacks point of view, growing downward.
  2555   // We need to adjust it to work correctly with guard_memory()
  2556   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2557   address base = stack_red_zone_base() - stack_red_zone_size();
  2559   guarantee(base < stack_base(),"Error calculating stack red zone");
  2560   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2562   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2563     warning("Attempt to guard stack red zone failed.");
  2567 void JavaThread::disable_stack_red_zone() {
  2568   // The base notation is from the stacks point of view, growing downward.
  2569   // We need to adjust it to work correctly with guard_memory()
  2570   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2571   address base = stack_red_zone_base() - stack_red_zone_size();
  2572   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2573     warning("Attempt to unguard stack red zone failed.");
  2577 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2578   // ignore is there is no stack
  2579   if (!has_last_Java_frame()) return;
  2580   // traverse the stack frames. Starts from top frame.
  2581   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2582     frame* fr = fst.current();
  2583     f(fr, fst.register_map());
  2588 #ifndef PRODUCT
  2589 // Deoptimization
  2590 // Function for testing deoptimization
  2591 void JavaThread::deoptimize() {
  2592   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2593   StackFrameStream fst(this, UseBiasedLocking);
  2594   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2595   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2596   // Iterate over all frames in the thread and deoptimize
  2597   for(; !fst.is_done(); fst.next()) {
  2598     if(fst.current()->can_be_deoptimized()) {
  2600       if (only_at) {
  2601         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2602         // consists of comma or carriage return separated numbers so
  2603         // search for the current bci in that string.
  2604         address pc = fst.current()->pc();
  2605         nmethod* nm =  (nmethod*) fst.current()->cb();
  2606         ScopeDesc* sd = nm->scope_desc_at( pc);
  2607         char buffer[8];
  2608         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2609         size_t len = strlen(buffer);
  2610         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2611         while (found != NULL) {
  2612           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2613               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2614             // Check that the bci found is bracketed by terminators.
  2615             break;
  2617           found = strstr(found + 1, buffer);
  2619         if (!found) {
  2620           continue;
  2624       if (DebugDeoptimization && !deopt) {
  2625         deopt = true; // One-time only print before deopt
  2626         tty->print_cr("[BEFORE Deoptimization]");
  2627         trace_frames();
  2628         trace_stack();
  2630       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2634   if (DebugDeoptimization && deopt) {
  2635     tty->print_cr("[AFTER Deoptimization]");
  2636     trace_frames();
  2641 // Make zombies
  2642 void JavaThread::make_zombies() {
  2643   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2644     if (fst.current()->can_be_deoptimized()) {
  2645       // it is a Java nmethod
  2646       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2647       nm->make_not_entrant();
  2651 #endif // PRODUCT
  2654 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2655   if (!has_last_Java_frame()) return;
  2656   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2657   StackFrameStream fst(this, UseBiasedLocking);
  2658   for(; !fst.is_done(); fst.next()) {
  2659     if (fst.current()->should_be_deoptimized()) {
  2660       if (LogCompilation && xtty != NULL) {
  2661         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2662         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2663                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2666       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2672 // GC support
  2673 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2675 void JavaThread::gc_epilogue() {
  2676   frames_do(frame_gc_epilogue);
  2680 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2682 void JavaThread::gc_prologue() {
  2683   frames_do(frame_gc_prologue);
  2686 // If the caller is a NamedThread, then remember, in the current scope,
  2687 // the given JavaThread in its _processed_thread field.
  2688 class RememberProcessedThread: public StackObj {
  2689   NamedThread* _cur_thr;
  2690 public:
  2691   RememberProcessedThread(JavaThread* jthr) {
  2692     Thread* thread = Thread::current();
  2693     if (thread->is_Named_thread()) {
  2694       _cur_thr = (NamedThread *)thread;
  2695       _cur_thr->set_processed_thread(jthr);
  2696     } else {
  2697       _cur_thr = NULL;
  2701   ~RememberProcessedThread() {
  2702     if (_cur_thr) {
  2703       _cur_thr->set_processed_thread(NULL);
  2706 };
  2708 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2709   // Verify that the deferred card marks have been flushed.
  2710   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2712   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2713   // since there may be more than one thread using each ThreadProfiler.
  2715   // Traverse the GCHandles
  2716   Thread::oops_do(f, cf);
  2718   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2719           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2721   if (has_last_Java_frame()) {
  2722     // Record JavaThread to GC thread
  2723     RememberProcessedThread rpt(this);
  2725     // Traverse the privileged stack
  2726     if (_privileged_stack_top != NULL) {
  2727       _privileged_stack_top->oops_do(f);
  2730     // traverse the registered growable array
  2731     if (_array_for_gc != NULL) {
  2732       for (int index = 0; index < _array_for_gc->length(); index++) {
  2733         f->do_oop(_array_for_gc->adr_at(index));
  2737     // Traverse the monitor chunks
  2738     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2739       chunk->oops_do(f);
  2742     // Traverse the execution stack
  2743     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2744       fst.current()->oops_do(f, cf, fst.register_map());
  2748   // callee_target is never live across a gc point so NULL it here should
  2749   // it still contain a methdOop.
  2751   set_callee_target(NULL);
  2753   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2754   // If we have deferred set_locals there might be oops waiting to be
  2755   // written
  2756   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2757   if (list != NULL) {
  2758     for (int i = 0; i < list->length(); i++) {
  2759       list->at(i)->oops_do(f);
  2763   // Traverse instance variables at the end since the GC may be moving things
  2764   // around using this function
  2765   f->do_oop((oop*) &_threadObj);
  2766   f->do_oop((oop*) &_vm_result);
  2767   f->do_oop((oop*) &_exception_oop);
  2768   f->do_oop((oop*) &_pending_async_exception);
  2770   if (jvmti_thread_state() != NULL) {
  2771     jvmti_thread_state()->oops_do(f);
  2775 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2776   Thread::nmethods_do(cf);  // (super method is a no-op)
  2778   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2779           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2781   if (has_last_Java_frame()) {
  2782     // Traverse the execution stack
  2783     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2784       fst.current()->nmethods_do(cf);
  2789 void JavaThread::metadata_do(void f(Metadata*)) {
  2790   Thread::metadata_do(f);
  2791   if (has_last_Java_frame()) {
  2792     // Traverse the execution stack to call f() on the methods in the stack
  2793     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2794       fst.current()->metadata_do(f);
  2796   } else if (is_Compiler_thread()) {
  2797     // need to walk ciMetadata in current compile tasks to keep alive.
  2798     CompilerThread* ct = (CompilerThread*)this;
  2799     if (ct->env() != NULL) {
  2800       ct->env()->metadata_do(f);
  2805 // Printing
  2806 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2807   switch (_thread_state) {
  2808   case _thread_uninitialized:     return "_thread_uninitialized";
  2809   case _thread_new:               return "_thread_new";
  2810   case _thread_new_trans:         return "_thread_new_trans";
  2811   case _thread_in_native:         return "_thread_in_native";
  2812   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2813   case _thread_in_vm:             return "_thread_in_vm";
  2814   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2815   case _thread_in_Java:           return "_thread_in_Java";
  2816   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2817   case _thread_blocked:           return "_thread_blocked";
  2818   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2819   default:                        return "unknown thread state";
  2823 #ifndef PRODUCT
  2824 void JavaThread::print_thread_state_on(outputStream *st) const {
  2825   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2826 };
  2827 void JavaThread::print_thread_state() const {
  2828   print_thread_state_on(tty);
  2829 };
  2830 #endif // PRODUCT
  2832 // Called by Threads::print() for VM_PrintThreads operation
  2833 void JavaThread::print_on(outputStream *st) const {
  2834   st->print("\"%s\" ", get_thread_name());
  2835   oop thread_oop = threadObj();
  2836   if (thread_oop != NULL) {
  2837     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2838     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2839     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2841   Thread::print_on(st);
  2842   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2843   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2844   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2845     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2847 #ifndef PRODUCT
  2848   print_thread_state_on(st);
  2849   _safepoint_state->print_on(st);
  2850 #endif // PRODUCT
  2853 // Called by fatal error handler. The difference between this and
  2854 // JavaThread::print() is that we can't grab lock or allocate memory.
  2855 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2856   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2857   oop thread_obj = threadObj();
  2858   if (thread_obj != NULL) {
  2859      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2861   st->print(" [");
  2862   st->print("%s", _get_thread_state_name(_thread_state));
  2863   if (osthread()) {
  2864     st->print(", id=%d", osthread()->thread_id());
  2866   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2867             _stack_base - _stack_size, _stack_base);
  2868   st->print("]");
  2869   return;
  2872 // Verification
  2874 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2876 void JavaThread::verify() {
  2877   // Verify oops in the thread.
  2878   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2880   // Verify the stack frames.
  2881   frames_do(frame_verify);
  2884 // CR 6300358 (sub-CR 2137150)
  2885 // Most callers of this method assume that it can't return NULL but a
  2886 // thread may not have a name whilst it is in the process of attaching to
  2887 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2888 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2889 // if vm exit occurs during initialization). These cases can all be accounted
  2890 // for such that this method never returns NULL.
  2891 const char* JavaThread::get_thread_name() const {
  2892 #ifdef ASSERT
  2893   // early safepoints can hit while current thread does not yet have TLS
  2894   if (!SafepointSynchronize::is_at_safepoint()) {
  2895     Thread *cur = Thread::current();
  2896     if (!(cur->is_Java_thread() && cur == this)) {
  2897       // Current JavaThreads are allowed to get their own name without
  2898       // the Threads_lock.
  2899       assert_locked_or_safepoint(Threads_lock);
  2902 #endif // ASSERT
  2903     return get_thread_name_string();
  2906 // Returns a non-NULL representation of this thread's name, or a suitable
  2907 // descriptive string if there is no set name
  2908 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2909   const char* name_str;
  2910   oop thread_obj = threadObj();
  2911   if (thread_obj != NULL) {
  2912     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2913     if (name != NULL) {
  2914       if (buf == NULL) {
  2915         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2917       else {
  2918         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2921     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2922       name_str = "<no-name - thread is attaching>";
  2924     else {
  2925       name_str = Thread::name();
  2928   else {
  2929     name_str = Thread::name();
  2931   assert(name_str != NULL, "unexpected NULL thread name");
  2932   return name_str;
  2936 const char* JavaThread::get_threadgroup_name() const {
  2937   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2938   oop thread_obj = threadObj();
  2939   if (thread_obj != NULL) {
  2940     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2941     if (thread_group != NULL) {
  2942       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2943       // ThreadGroup.name can be null
  2944       if (name != NULL) {
  2945         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2946         return str;
  2950   return NULL;
  2953 const char* JavaThread::get_parent_name() const {
  2954   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2955   oop thread_obj = threadObj();
  2956   if (thread_obj != NULL) {
  2957     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2958     if (thread_group != NULL) {
  2959       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2960       if (parent != NULL) {
  2961         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2962         // ThreadGroup.name can be null
  2963         if (name != NULL) {
  2964           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2965           return str;
  2970   return NULL;
  2973 ThreadPriority JavaThread::java_priority() const {
  2974   oop thr_oop = threadObj();
  2975   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2976   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2977   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2978   return priority;
  2981 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2983   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2984   // Link Java Thread object <-> C++ Thread
  2986   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2987   // and put it into a new Handle.  The Handle "thread_oop" can then
  2988   // be used to pass the C++ thread object to other methods.
  2990   // Set the Java level thread object (jthread) field of the
  2991   // new thread (a JavaThread *) to C++ thread object using the
  2992   // "thread_oop" handle.
  2994   // Set the thread field (a JavaThread *) of the
  2995   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2997   Handle thread_oop(Thread::current(),
  2998                     JNIHandles::resolve_non_null(jni_thread));
  2999   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3000     "must be initialized");
  3001   set_threadObj(thread_oop());
  3002   java_lang_Thread::set_thread(thread_oop(), this);
  3004   if (prio == NoPriority) {
  3005     prio = java_lang_Thread::priority(thread_oop());
  3006     assert(prio != NoPriority, "A valid priority should be present");
  3009   // Push the Java priority down to the native thread; needs Threads_lock
  3010   Thread::set_priority(this, prio);
  3012   // Add the new thread to the Threads list and set it in motion.
  3013   // We must have threads lock in order to call Threads::add.
  3014   // It is crucial that we do not block before the thread is
  3015   // added to the Threads list for if a GC happens, then the java_thread oop
  3016   // will not be visited by GC.
  3017   Threads::add(this);
  3020 oop JavaThread::current_park_blocker() {
  3021   // Support for JSR-166 locks
  3022   oop thread_oop = threadObj();
  3023   if (thread_oop != NULL &&
  3024       JDK_Version::current().supports_thread_park_blocker()) {
  3025     return java_lang_Thread::park_blocker(thread_oop);
  3027   return NULL;
  3031 void JavaThread::print_stack_on(outputStream* st) {
  3032   if (!has_last_Java_frame()) return;
  3033   ResourceMark rm;
  3034   HandleMark   hm;
  3036   RegisterMap reg_map(this);
  3037   vframe* start_vf = last_java_vframe(&reg_map);
  3038   int count = 0;
  3039   for (vframe* f = start_vf; f; f = f->sender() ) {
  3040     if (f->is_java_frame()) {
  3041       javaVFrame* jvf = javaVFrame::cast(f);
  3042       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3044       // Print out lock information
  3045       if (JavaMonitorsInStackTrace) {
  3046         jvf->print_lock_info_on(st, count);
  3048     } else {
  3049       // Ignore non-Java frames
  3052     // Bail-out case for too deep stacks
  3053     count++;
  3054     if (MaxJavaStackTraceDepth == count) return;
  3059 // JVMTI PopFrame support
  3060 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3061   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3062   if (in_bytes(size_in_bytes) != 0) {
  3063     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3064     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3065     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3069 void* JavaThread::popframe_preserved_args() {
  3070   return _popframe_preserved_args;
  3073 ByteSize JavaThread::popframe_preserved_args_size() {
  3074   return in_ByteSize(_popframe_preserved_args_size);
  3077 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3078   int sz = in_bytes(popframe_preserved_args_size());
  3079   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3080   return in_WordSize(sz / wordSize);
  3083 void JavaThread::popframe_free_preserved_args() {
  3084   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3085   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3086   _popframe_preserved_args = NULL;
  3087   _popframe_preserved_args_size = 0;
  3090 #ifndef PRODUCT
  3092 void JavaThread::trace_frames() {
  3093   tty->print_cr("[Describe stack]");
  3094   int frame_no = 1;
  3095   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3096     tty->print("  %d. ", frame_no++);
  3097     fst.current()->print_value_on(tty,this);
  3098     tty->cr();
  3102 class PrintAndVerifyOopClosure: public OopClosure {
  3103  protected:
  3104   template <class T> inline void do_oop_work(T* p) {
  3105     oop obj = oopDesc::load_decode_heap_oop(p);
  3106     if (obj == NULL) return;
  3107     tty->print(INTPTR_FORMAT ": ", p);
  3108     if (obj->is_oop_or_null()) {
  3109       if (obj->is_objArray()) {
  3110         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3111       } else {
  3112         obj->print();
  3114     } else {
  3115       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3117     tty->cr();
  3119  public:
  3120   virtual void do_oop(oop* p) { do_oop_work(p); }
  3121   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3122 };
  3125 static void oops_print(frame* f, const RegisterMap *map) {
  3126   PrintAndVerifyOopClosure print;
  3127   f->print_value();
  3128   f->oops_do(&print, NULL, (RegisterMap*)map);
  3131 // Print our all the locations that contain oops and whether they are
  3132 // valid or not.  This useful when trying to find the oldest frame
  3133 // where an oop has gone bad since the frame walk is from youngest to
  3134 // oldest.
  3135 void JavaThread::trace_oops() {
  3136   tty->print_cr("[Trace oops]");
  3137   frames_do(oops_print);
  3141 #ifdef ASSERT
  3142 // Print or validate the layout of stack frames
  3143 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3144   ResourceMark rm;
  3145   PRESERVE_EXCEPTION_MARK;
  3146   FrameValues values;
  3147   int frame_no = 0;
  3148   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3149     fst.current()->describe(values, ++frame_no);
  3150     if (depth == frame_no) break;
  3152   if (validate_only) {
  3153     values.validate();
  3154   } else {
  3155     tty->print_cr("[Describe stack layout]");
  3156     values.print(this);
  3159 #endif
  3161 void JavaThread::trace_stack_from(vframe* start_vf) {
  3162   ResourceMark rm;
  3163   int vframe_no = 1;
  3164   for (vframe* f = start_vf; f; f = f->sender() ) {
  3165     if (f->is_java_frame()) {
  3166       javaVFrame::cast(f)->print_activation(vframe_no++);
  3167     } else {
  3168       f->print();
  3170     if (vframe_no > StackPrintLimit) {
  3171       tty->print_cr("...<more frames>...");
  3172       return;
  3178 void JavaThread::trace_stack() {
  3179   if (!has_last_Java_frame()) return;
  3180   ResourceMark rm;
  3181   HandleMark   hm;
  3182   RegisterMap reg_map(this);
  3183   trace_stack_from(last_java_vframe(&reg_map));
  3187 #endif // PRODUCT
  3190 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3191   assert(reg_map != NULL, "a map must be given");
  3192   frame f = last_frame();
  3193   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3194     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3196   return NULL;
  3200 Klass* JavaThread::security_get_caller_class(int depth) {
  3201   vframeStream vfst(this);
  3202   vfst.security_get_caller_frame(depth);
  3203   if (!vfst.at_end()) {
  3204     return vfst.method()->method_holder();
  3206   return NULL;
  3209 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3210   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3211   CompileBroker::compiler_thread_loop();
  3214 // Create a CompilerThread
  3215 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3216 : JavaThread(&compiler_thread_entry) {
  3217   _env   = NULL;
  3218   _log   = NULL;
  3219   _task  = NULL;
  3220   _queue = queue;
  3221   _counters = counters;
  3222   _buffer_blob = NULL;
  3223   _scanned_nmethod = NULL;
  3225 #ifndef PRODUCT
  3226   _ideal_graph_printer = NULL;
  3227 #endif
  3230 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3231   JavaThread::oops_do(f, cf);
  3232   if (_scanned_nmethod != NULL && cf != NULL) {
  3233     // Safepoints can occur when the sweeper is scanning an nmethod so
  3234     // process it here to make sure it isn't unloaded in the middle of
  3235     // a scan.
  3236     cf->do_code_blob(_scanned_nmethod);
  3240 // ======= Threads ========
  3242 // The Threads class links together all active threads, and provides
  3243 // operations over all threads.  It is protected by its own Mutex
  3244 // lock, which is also used in other contexts to protect thread
  3245 // operations from having the thread being operated on from exiting
  3246 // and going away unexpectedly (e.g., safepoint synchronization)
  3248 JavaThread* Threads::_thread_list = NULL;
  3249 int         Threads::_number_of_threads = 0;
  3250 int         Threads::_number_of_non_daemon_threads = 0;
  3251 int         Threads::_return_code = 0;
  3252 size_t      JavaThread::_stack_size_at_create = 0;
  3253 #ifdef ASSERT
  3254 bool        Threads::_vm_complete = false;
  3255 #endif
  3257 // All JavaThreads
  3258 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3260 void os_stream();
  3262 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3263 void Threads::threads_do(ThreadClosure* tc) {
  3264   assert_locked_or_safepoint(Threads_lock);
  3265   // ALL_JAVA_THREADS iterates through all JavaThreads
  3266   ALL_JAVA_THREADS(p) {
  3267     tc->do_thread(p);
  3269   // Someday we could have a table or list of all non-JavaThreads.
  3270   // For now, just manually iterate through them.
  3271   tc->do_thread(VMThread::vm_thread());
  3272   Universe::heap()->gc_threads_do(tc);
  3273   WatcherThread *wt = WatcherThread::watcher_thread();
  3274   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3275   // the data for WatcherThread is still valid upon being examined. However,
  3276   // considering that WatchThread terminates when the VM is on the way to
  3277   // exit at safepoint, the chance of the above is extremely small. The right
  3278   // way to prevent termination of WatcherThread would be to acquire
  3279   // Terminator_lock, but we can't do that without violating the lock rank
  3280   // checking in some cases.
  3281   if (wt != NULL)
  3282     tc->do_thread(wt);
  3284   // If CompilerThreads ever become non-JavaThreads, add them here
  3287 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3289   extern void JDK_Version_init();
  3291   // Check version
  3292   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3294   // Initialize the output stream module
  3295   ostream_init();
  3297   // Process java launcher properties.
  3298   Arguments::process_sun_java_launcher_properties(args);
  3300   // Initialize the os module before using TLS
  3301   os::init();
  3303   // Initialize system properties.
  3304   Arguments::init_system_properties();
  3306   // So that JDK version can be used as a discrimintor when parsing arguments
  3307   JDK_Version_init();
  3309   // Update/Initialize System properties after JDK version number is known
  3310   Arguments::init_version_specific_system_properties();
  3312   // Parse arguments
  3313   jint parse_result = Arguments::parse(args);
  3314   if (parse_result != JNI_OK) return parse_result;
  3316   if (PauseAtStartup) {
  3317     os::pause();
  3320 #ifndef USDT2
  3321   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3322 #else /* USDT2 */
  3323   HOTSPOT_VM_INIT_BEGIN();
  3324 #endif /* USDT2 */
  3326   // Record VM creation timing statistics
  3327   TraceVmCreationTime create_vm_timer;
  3328   create_vm_timer.start();
  3330   // Timing (must come after argument parsing)
  3331   TraceTime timer("Create VM", TraceStartupTime);
  3333   // Initialize the os module after parsing the args
  3334   jint os_init_2_result = os::init_2();
  3335   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3337   // intialize TLS
  3338   ThreadLocalStorage::init();
  3340   // Bootstrap native memory tracking, so it can start recording memory
  3341   // activities before worker thread is started. This is the first phase
  3342   // of bootstrapping, VM is currently running in single-thread mode.
  3343   MemTracker::bootstrap_single_thread();
  3345   // Initialize output stream logging
  3346   ostream_init_log();
  3348   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3349   // Must be before create_vm_init_agents()
  3350   if (Arguments::init_libraries_at_startup()) {
  3351     convert_vm_init_libraries_to_agents();
  3354   // Launch -agentlib/-agentpath and converted -Xrun agents
  3355   if (Arguments::init_agents_at_startup()) {
  3356     create_vm_init_agents();
  3359   // Initialize Threads state
  3360   _thread_list = NULL;
  3361   _number_of_threads = 0;
  3362   _number_of_non_daemon_threads = 0;
  3364   // Initialize global data structures and create system classes in heap
  3365   vm_init_globals();
  3367   // Attach the main thread to this os thread
  3368   JavaThread* main_thread = new JavaThread();
  3369   main_thread->set_thread_state(_thread_in_vm);
  3370   // must do this before set_active_handles and initialize_thread_local_storage
  3371   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3372   // change the stack size recorded here to one based on the java thread
  3373   // stacksize. This adjusted size is what is used to figure the placement
  3374   // of the guard pages.
  3375   main_thread->record_stack_base_and_size();
  3376   main_thread->initialize_thread_local_storage();
  3378   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3380   if (!main_thread->set_as_starting_thread()) {
  3381     vm_shutdown_during_initialization(
  3382       "Failed necessary internal allocation. Out of swap space");
  3383     delete main_thread;
  3384     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3385     return JNI_ENOMEM;
  3388   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3389   // crash Linux VM, see notes in os_linux.cpp.
  3390   main_thread->create_stack_guard_pages();
  3392   // Initialize Java-Level synchronization subsystem
  3393   ObjectMonitor::Initialize() ;
  3395   // Second phase of bootstrapping, VM is about entering multi-thread mode
  3396   MemTracker::bootstrap_multi_thread();
  3398   // Initialize global modules
  3399   jint status = init_globals();
  3400   if (status != JNI_OK) {
  3401     delete main_thread;
  3402     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3403     return status;
  3406   // Should be done after the heap is fully created
  3407   main_thread->cache_global_variables();
  3409   HandleMark hm;
  3411   { MutexLocker mu(Threads_lock);
  3412     Threads::add(main_thread);
  3415   // Any JVMTI raw monitors entered in onload will transition into
  3416   // real raw monitor. VM is setup enough here for raw monitor enter.
  3417   JvmtiExport::transition_pending_onload_raw_monitors();
  3419   if (VerifyBeforeGC &&
  3420       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3421     Universe::heap()->prepare_for_verify();
  3422     Universe::verify();   // make sure we're starting with a clean slate
  3425   // Fully start NMT
  3426   MemTracker::start();
  3428   // Create the VMThread
  3429   { TraceTime timer("Start VMThread", TraceStartupTime);
  3430     VMThread::create();
  3431     Thread* vmthread = VMThread::vm_thread();
  3433     if (!os::create_thread(vmthread, os::vm_thread))
  3434       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3436     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3437     // Monitors can have spurious returns, must always check another state flag
  3439       MutexLocker ml(Notify_lock);
  3440       os::start_thread(vmthread);
  3441       while (vmthread->active_handles() == NULL) {
  3442         Notify_lock->wait();
  3447   assert (Universe::is_fully_initialized(), "not initialized");
  3448   EXCEPTION_MARK;
  3450   // At this point, the Universe is initialized, but we have not executed
  3451   // any byte code.  Now is a good time (the only time) to dump out the
  3452   // internal state of the JVM for sharing.
  3453   if (DumpSharedSpaces) {
  3454     MetaspaceShared::preload_and_dump(CHECK_0);
  3455     ShouldNotReachHere();
  3458   // Always call even when there are not JVMTI environments yet, since environments
  3459   // may be attached late and JVMTI must track phases of VM execution
  3460   JvmtiExport::enter_start_phase();
  3462   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3463   JvmtiExport::post_vm_start();
  3466     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3468     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3469       create_vm_init_libraries();
  3472     if (InitializeJavaLangString) {
  3473       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3474     } else {
  3475       warning("java.lang.String not initialized");
  3478     if (AggressiveOpts) {
  3480         // Forcibly initialize java/util/HashMap and mutate the private
  3481         // static final "frontCacheEnabled" field before we start creating instances
  3482 #ifdef ASSERT
  3483         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3484         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3485 #endif
  3486         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3487         KlassHandle k = KlassHandle(THREAD, k_o);
  3488         guarantee(k.not_null(), "Must find java/util/HashMap");
  3489         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3490         ik->initialize(CHECK_0);
  3491         fieldDescriptor fd;
  3492         // Possible we might not find this field; if so, don't break
  3493         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3494           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3498       if (UseStringCache) {
  3499         // Forcibly initialize java/lang/StringValue and mutate the private
  3500         // static final "stringCacheEnabled" field before we start creating instances
  3501         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3502         // Possible that StringValue isn't present: if so, silently don't break
  3503         if (k_o != NULL) {
  3504           KlassHandle k = KlassHandle(THREAD, k_o);
  3505           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3506           ik->initialize(CHECK_0);
  3507           fieldDescriptor fd;
  3508           // Possible we might not find this field: if so, silently don't break
  3509           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3510             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3516     // Initialize java_lang.System (needed before creating the thread)
  3517     if (InitializeJavaLangSystem) {
  3518       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3519       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3520       Handle thread_group = create_initial_thread_group(CHECK_0);
  3521       Universe::set_main_thread_group(thread_group());
  3522       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3523       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3524       main_thread->set_threadObj(thread_object);
  3525       // Set thread status to running since main thread has
  3526       // been started and running.
  3527       java_lang_Thread::set_thread_status(thread_object,
  3528                                           java_lang_Thread::RUNNABLE);
  3530       // The VM preresolve methods to these classes. Make sure that get initialized
  3531       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3532       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3533       // The VM creates & returns objects of this class. Make sure it's initialized.
  3534       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3535       call_initializeSystemClass(CHECK_0);
  3537       // get the Java runtime name after java.lang.System is initialized
  3538       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3539       JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3540     } else {
  3541       warning("java.lang.System not initialized");
  3544     // an instance of OutOfMemory exception has been allocated earlier
  3545     if (InitializeJavaLangExceptionsErrors) {
  3546       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3547       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3548       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3549       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3550       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3551       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3552       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3553       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3554     } else {
  3555       warning("java.lang.OutOfMemoryError has not been initialized");
  3556       warning("java.lang.NullPointerException has not been initialized");
  3557       warning("java.lang.ClassCastException has not been initialized");
  3558       warning("java.lang.ArrayStoreException has not been initialized");
  3559       warning("java.lang.ArithmeticException has not been initialized");
  3560       warning("java.lang.StackOverflowError has not been initialized");
  3561       warning("java.lang.IllegalArgumentException has not been initialized");
  3565   // See        : bugid 4211085.
  3566   // Background : the static initializer of java.lang.Compiler tries to read
  3567   //              property"java.compiler" and read & write property "java.vm.info".
  3568   //              When a security manager is installed through the command line
  3569   //              option "-Djava.security.manager", the above properties are not
  3570   //              readable and the static initializer for java.lang.Compiler fails
  3571   //              resulting in a NoClassDefFoundError.  This can happen in any
  3572   //              user code which calls methods in java.lang.Compiler.
  3573   // Hack :       the hack is to pre-load and initialize this class, so that only
  3574   //              system domains are on the stack when the properties are read.
  3575   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3576   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3577   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3578   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3579   //              Once that is done, we should remove this hack.
  3580   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3582   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3583   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3584   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3585   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3586   // This should also be taken out as soon as 4211383 gets fixed.
  3587   reset_vm_info_property(CHECK_0);
  3589   quicken_jni_functions();
  3591   // Must be run after init_ft which initializes ft_enabled
  3592   if (TRACE_INITIALIZE() != JNI_OK) {
  3593     vm_exit_during_initialization("Failed to initialize tracing backend");
  3596   // Set flag that basic initialization has completed. Used by exceptions and various
  3597   // debug stuff, that does not work until all basic classes have been initialized.
  3598   set_init_completed();
  3600 #ifndef USDT2
  3601   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3602 #else /* USDT2 */
  3603   HOTSPOT_VM_INIT_END();
  3604 #endif /* USDT2 */
  3606   // record VM initialization completion time
  3607 #if INCLUDE_MANAGEMENT
  3608   Management::record_vm_init_completed();
  3609 #endif // INCLUDE_MANAGEMENT
  3611   // Compute system loader. Note that this has to occur after set_init_completed, since
  3612   // valid exceptions may be thrown in the process.
  3613   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3614   // set_init_completed has just been called, causing exceptions not to be shortcut
  3615   // anymore. We call vm_exit_during_initialization directly instead.
  3616   SystemDictionary::compute_java_system_loader(THREAD);
  3617   if (HAS_PENDING_EXCEPTION) {
  3618     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3621 #ifndef SERIALGC
  3622   // Support for ConcurrentMarkSweep. This should be cleaned up
  3623   // and better encapsulated. The ugly nested if test would go away
  3624   // once things are properly refactored. XXX YSR
  3625   if (UseConcMarkSweepGC || UseG1GC) {
  3626     if (UseConcMarkSweepGC) {
  3627       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3628     } else {
  3629       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3631     if (HAS_PENDING_EXCEPTION) {
  3632       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3635 #endif // SERIALGC
  3637   // Always call even when there are not JVMTI environments yet, since environments
  3638   // may be attached late and JVMTI must track phases of VM execution
  3639   JvmtiExport::enter_live_phase();
  3641   // Signal Dispatcher needs to be started before VMInit event is posted
  3642   os::signal_init();
  3644   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3645   if (!DisableAttachMechanism) {
  3646     if (StartAttachListener || AttachListener::init_at_startup()) {
  3647       AttachListener::init();
  3651   // Launch -Xrun agents
  3652   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3653   // back-end can launch with -Xdebug -Xrunjdwp.
  3654   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3655     create_vm_init_libraries();
  3658   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3659   JvmtiExport::post_vm_initialized();
  3661   if (!TRACE_START()) {
  3662     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3665   if (CleanChunkPoolAsync) {
  3666     Chunk::start_chunk_pool_cleaner_task();
  3669   // initialize compiler(s)
  3670 #if defined(COMPILER1) || defined(COMPILER2)
  3671   CompileBroker::compilation_init();
  3672 #endif
  3674 #if INCLUDE_MANAGEMENT
  3675   Management::initialize(THREAD);
  3676 #endif // INCLUDE_MANAGEMENT
  3678   if (HAS_PENDING_EXCEPTION) {
  3679     // management agent fails to start possibly due to
  3680     // configuration problem and is responsible for printing
  3681     // stack trace if appropriate. Simply exit VM.
  3682     vm_exit(1);
  3685   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3686   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3687   if (MemProfiling)                   MemProfiler::engage();
  3688   StatSampler::engage();
  3689   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3691   BiasedLocking::init();
  3693   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3694     call_postVMInitHook(THREAD);
  3695     // The Java side of PostVMInitHook.run must deal with all
  3696     // exceptions and provide means of diagnosis.
  3697     if (HAS_PENDING_EXCEPTION) {
  3698       CLEAR_PENDING_EXCEPTION;
  3703       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3704       // Make sure the watcher thread can be started by WatcherThread::start()
  3705       // or by dynamic enrollment.
  3706       WatcherThread::make_startable();
  3707       // Start up the WatcherThread if there are any periodic tasks
  3708       // NOTE:  All PeriodicTasks should be registered by now. If they
  3709       //   aren't, late joiners might appear to start slowly (we might
  3710       //   take a while to process their first tick).
  3711       if (PeriodicTask::num_tasks() > 0) {
  3712           WatcherThread::start();
  3716   // Give os specific code one last chance to start
  3717   os::init_3();
  3719   create_vm_timer.end();
  3720 #ifdef ASSERT
  3721   _vm_complete = true;
  3722 #endif
  3723   return JNI_OK;
  3726 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3727 extern "C" {
  3728   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3730 // Find a command line agent library and return its entry point for
  3731 //         -agentlib:  -agentpath:   -Xrun
  3732 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3733 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3734   OnLoadEntry_t on_load_entry = NULL;
  3735   void *library = agent->os_lib();  // check if we have looked it up before
  3737   if (library == NULL) {
  3738     char buffer[JVM_MAXPATHLEN];
  3739     char ebuf[1024];
  3740     const char *name = agent->name();
  3741     const char *msg = "Could not find agent library ";
  3743     if (agent->is_absolute_path()) {
  3744       library = os::dll_load(name, ebuf, sizeof ebuf);
  3745       if (library == NULL) {
  3746         const char *sub_msg = " in absolute path, with error: ";
  3747         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3748         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3749         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3750         // If we can't find the agent, exit.
  3751         vm_exit_during_initialization(buf, NULL);
  3752         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3754     } else {
  3755       // Try to load the agent from the standard dll directory
  3756       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3757       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3758 #ifdef KERNEL
  3759       // Download instrument dll
  3760       if (library == NULL && strcmp(name, "instrument") == 0) {
  3761         char *props = Arguments::get_kernel_properties();
  3762         char *home  = Arguments::get_java_home();
  3763         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3764                       " sun.jkernel.DownloadManager -download client_jvm";
  3765         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3766         char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
  3767         jio_snprintf(cmd, length, fmt, home, props);
  3768         int status = os::fork_and_exec(cmd);
  3769         FreeHeap(props);
  3770         if (status == -1) {
  3771           warning(cmd);
  3772           vm_exit_during_initialization("fork_and_exec failed: %s",
  3773                                          strerror(errno));
  3775         FREE_C_HEAP_ARRAY(char, cmd, mtThread);
  3776         // when this comes back the instrument.dll should be where it belongs.
  3777         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3779 #endif // KERNEL
  3780       if (library == NULL) { // Try the local directory
  3781         char ns[1] = {0};
  3782         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3783         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3784         if (library == NULL) {
  3785           const char *sub_msg = " on the library path, with error: ";
  3786           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3787           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3788           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3789           // If we can't find the agent, exit.
  3790           vm_exit_during_initialization(buf, NULL);
  3791           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3795     agent->set_os_lib(library);
  3798   // Find the OnLoad function.
  3799   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3800     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3801     if (on_load_entry != NULL) break;
  3803   return on_load_entry;
  3806 // Find the JVM_OnLoad entry point
  3807 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3808   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3809   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3812 // Find the Agent_OnLoad entry point
  3813 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3814   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3815   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3818 // For backwards compatibility with -Xrun
  3819 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3820 // treated like -agentpath:
  3821 // Must be called before agent libraries are created
  3822 void Threads::convert_vm_init_libraries_to_agents() {
  3823   AgentLibrary* agent;
  3824   AgentLibrary* next;
  3826   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3827     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3828     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3830     // If there is an JVM_OnLoad function it will get called later,
  3831     // otherwise see if there is an Agent_OnLoad
  3832     if (on_load_entry == NULL) {
  3833       on_load_entry = lookup_agent_on_load(agent);
  3834       if (on_load_entry != NULL) {
  3835         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3836         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3837         Arguments::convert_library_to_agent(agent);
  3838       } else {
  3839         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3845 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3846 // Invokes Agent_OnLoad
  3847 // Called very early -- before JavaThreads exist
  3848 void Threads::create_vm_init_agents() {
  3849   extern struct JavaVM_ main_vm;
  3850   AgentLibrary* agent;
  3852   JvmtiExport::enter_onload_phase();
  3854   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3855     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3857     if (on_load_entry != NULL) {
  3858       // Invoke the Agent_OnLoad function
  3859       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3860       if (err != JNI_OK) {
  3861         vm_exit_during_initialization("agent library failed to init", agent->name());
  3863     } else {
  3864       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3867   JvmtiExport::enter_primordial_phase();
  3870 extern "C" {
  3871   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3874 void Threads::shutdown_vm_agents() {
  3875   // Send any Agent_OnUnload notifications
  3876   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3877   extern struct JavaVM_ main_vm;
  3878   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3880     // Find the Agent_OnUnload function.
  3881     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3882       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3883                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3885       // Invoke the Agent_OnUnload function
  3886       if (unload_entry != NULL) {
  3887         JavaThread* thread = JavaThread::current();
  3888         ThreadToNativeFromVM ttn(thread);
  3889         HandleMark hm(thread);
  3890         (*unload_entry)(&main_vm);
  3891         break;
  3897 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3898 // Invokes JVM_OnLoad
  3899 void Threads::create_vm_init_libraries() {
  3900   extern struct JavaVM_ main_vm;
  3901   AgentLibrary* agent;
  3903   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3904     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3906     if (on_load_entry != NULL) {
  3907       // Invoke the JVM_OnLoad function
  3908       JavaThread* thread = JavaThread::current();
  3909       ThreadToNativeFromVM ttn(thread);
  3910       HandleMark hm(thread);
  3911       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3912       if (err != JNI_OK) {
  3913         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3915     } else {
  3916       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3921 // Last thread running calls java.lang.Shutdown.shutdown()
  3922 void JavaThread::invoke_shutdown_hooks() {
  3923   HandleMark hm(this);
  3925   // We could get here with a pending exception, if so clear it now.
  3926   if (this->has_pending_exception()) {
  3927     this->clear_pending_exception();
  3930   EXCEPTION_MARK;
  3931   Klass* k =
  3932     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3933                                       THREAD);
  3934   if (k != NULL) {
  3935     // SystemDictionary::resolve_or_null will return null if there was
  3936     // an exception.  If we cannot load the Shutdown class, just don't
  3937     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3938     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3939     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3940     // was called, the Shutdown class would have already been loaded
  3941     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3942     instanceKlassHandle shutdown_klass (THREAD, k);
  3943     JavaValue result(T_VOID);
  3944     JavaCalls::call_static(&result,
  3945                            shutdown_klass,
  3946                            vmSymbols::shutdown_method_name(),
  3947                            vmSymbols::void_method_signature(),
  3948                            THREAD);
  3950   CLEAR_PENDING_EXCEPTION;
  3953 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3954 // the program falls off the end of main(). Another VM exit path is through
  3955 // vm_exit() when the program calls System.exit() to return a value or when
  3956 // there is a serious error in VM. The two shutdown paths are not exactly
  3957 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3958 // and VM_Exit op at VM level.
  3959 //
  3960 // Shutdown sequence:
  3961 //   + Shutdown native memory tracking if it is on
  3962 //   + Wait until we are the last non-daemon thread to execute
  3963 //     <-- every thing is still working at this moment -->
  3964 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3965 //        shutdown hooks, run finalizers if finalization-on-exit
  3966 //   + Call before_exit(), prepare for VM exit
  3967 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3968 //        currently the only user of this mechanism is File.deleteOnExit())
  3969 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3970 //        post thread end and vm death events to JVMTI,
  3971 //        stop signal thread
  3972 //   + Call JavaThread::exit(), it will:
  3973 //      > release JNI handle blocks, remove stack guard pages
  3974 //      > remove this thread from Threads list
  3975 //     <-- no more Java code from this thread after this point -->
  3976 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3977 //     the compiler threads at safepoint
  3978 //     <-- do not use anything that could get blocked by Safepoint -->
  3979 //   + Disable tracing at JNI/JVM barriers
  3980 //   + Set _vm_exited flag for threads that are still running native code
  3981 //   + Delete this thread
  3982 //   + Call exit_globals()
  3983 //      > deletes tty
  3984 //      > deletes PerfMemory resources
  3985 //   + Return to caller
  3987 bool Threads::destroy_vm() {
  3988   JavaThread* thread = JavaThread::current();
  3990 #ifdef ASSERT
  3991   _vm_complete = false;
  3992 #endif
  3993   // Wait until we are the last non-daemon thread to execute
  3994   { MutexLocker nu(Threads_lock);
  3995     while (Threads::number_of_non_daemon_threads() > 1 )
  3996       // This wait should make safepoint checks, wait without a timeout,
  3997       // and wait as a suspend-equivalent condition.
  3998       //
  3999       // Note: If the FlatProfiler is running and this thread is waiting
  4000       // for another non-daemon thread to finish, then the FlatProfiler
  4001       // is waiting for the external suspend request on this thread to
  4002       // complete. wait_for_ext_suspend_completion() will eventually
  4003       // timeout, but that takes time. Making this wait a suspend-
  4004       // equivalent condition solves that timeout problem.
  4005       //
  4006       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  4007                          Mutex::_as_suspend_equivalent_flag);
  4010   // Shutdown NMT before exit. Otherwise,
  4011   // it will run into trouble when system destroys static variables.
  4012   MemTracker::shutdown(MemTracker::NMT_normal);
  4014   // Hang forever on exit if we are reporting an error.
  4015   if (ShowMessageBoxOnError && is_error_reported()) {
  4016     os::infinite_sleep();
  4018   os::wait_for_keypress_at_exit();
  4020   if (JDK_Version::is_jdk12x_version()) {
  4021     // We are the last thread running, so check if finalizers should be run.
  4022     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  4023     HandleMark rm(thread);
  4024     Universe::run_finalizers_on_exit();
  4025   } else {
  4026     // run Java level shutdown hooks
  4027     thread->invoke_shutdown_hooks();
  4030   before_exit(thread);
  4032   thread->exit(true);
  4034   // Stop VM thread.
  4036     // 4945125 The vm thread comes to a safepoint during exit.
  4037     // GC vm_operations can get caught at the safepoint, and the
  4038     // heap is unparseable if they are caught. Grab the Heap_lock
  4039     // to prevent this. The GC vm_operations will not be able to
  4040     // queue until after the vm thread is dead.
  4041     // After this point, we'll never emerge out of the safepoint before
  4042     // the VM exits, so concurrent GC threads do not need to be explicitly
  4043     // stopped; they remain inactive until the process exits.
  4044     // Note: some concurrent G1 threads may be running during a safepoint,
  4045     // but these will not be accessing the heap, just some G1-specific side
  4046     // data structures that are not accessed by any other threads but them
  4047     // after this point in a terminal safepoint.
  4049     MutexLocker ml(Heap_lock);
  4051     VMThread::wait_for_vm_thread_exit();
  4052     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4053     VMThread::destroy();
  4056   // clean up ideal graph printers
  4057 #if defined(COMPILER2) && !defined(PRODUCT)
  4058   IdealGraphPrinter::clean_up();
  4059 #endif
  4061   // Now, all Java threads are gone except daemon threads. Daemon threads
  4062   // running Java code or in VM are stopped by the Safepoint. However,
  4063   // daemon threads executing native code are still running.  But they
  4064   // will be stopped at native=>Java/VM barriers. Note that we can't
  4065   // simply kill or suspend them, as it is inherently deadlock-prone.
  4067 #ifndef PRODUCT
  4068   // disable function tracing at JNI/JVM barriers
  4069   TraceJNICalls = false;
  4070   TraceJVMCalls = false;
  4071   TraceRuntimeCalls = false;
  4072 #endif
  4074   VM_Exit::set_vm_exited();
  4076   notify_vm_shutdown();
  4078   delete thread;
  4080   // exit_globals() will delete tty
  4081   exit_globals();
  4083   return true;
  4087 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4088   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4089   return is_supported_jni_version(version);
  4093 jboolean Threads::is_supported_jni_version(jint version) {
  4094   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4095   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4096   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4097   return JNI_FALSE;
  4101 void Threads::add(JavaThread* p, bool force_daemon) {
  4102   // The threads lock must be owned at this point
  4103   assert_locked_or_safepoint(Threads_lock);
  4105   // See the comment for this method in thread.hpp for its purpose and
  4106   // why it is called here.
  4107   p->initialize_queues();
  4108   p->set_next(_thread_list);
  4109   _thread_list = p;
  4110   _number_of_threads++;
  4111   oop threadObj = p->threadObj();
  4112   bool daemon = true;
  4113   // Bootstrapping problem: threadObj can be null for initial
  4114   // JavaThread (or for threads attached via JNI)
  4115   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4116     _number_of_non_daemon_threads++;
  4117     daemon = false;
  4120   p->set_safepoint_visible(true);
  4122   ThreadService::add_thread(p, daemon);
  4124   // Possible GC point.
  4125   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4128 void Threads::remove(JavaThread* p) {
  4129   // Extra scope needed for Thread_lock, so we can check
  4130   // that we do not remove thread without safepoint code notice
  4131   { MutexLocker ml(Threads_lock);
  4133     assert(includes(p), "p must be present");
  4135     JavaThread* current = _thread_list;
  4136     JavaThread* prev    = NULL;
  4138     while (current != p) {
  4139       prev    = current;
  4140       current = current->next();
  4143     if (prev) {
  4144       prev->set_next(current->next());
  4145     } else {
  4146       _thread_list = p->next();
  4148     _number_of_threads--;
  4149     oop threadObj = p->threadObj();
  4150     bool daemon = true;
  4151     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4152       _number_of_non_daemon_threads--;
  4153       daemon = false;
  4155       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4156       // on destroy_vm will wake up.
  4157       if (number_of_non_daemon_threads() == 1)
  4158         Threads_lock->notify_all();
  4160     ThreadService::remove_thread(p, daemon);
  4162     // Make sure that safepoint code disregard this thread. This is needed since
  4163     // the thread might mess around with locks after this point. This can cause it
  4164     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4165     // of this thread since it is removed from the queue.
  4166     p->set_terminated_value();
  4168     // Now, this thread is not visible to safepoint
  4169     p->set_safepoint_visible(false);
  4170     // once the thread becomes safepoint invisible, we can not use its per-thread
  4171     // recorder. And Threads::do_threads() no longer walks this thread, so we have
  4172     // to release its per-thread recorder here.
  4173     MemTracker::thread_exiting(p);
  4174   } // unlock Threads_lock
  4176   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4177   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4180 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4181 bool Threads::includes(JavaThread* p) {
  4182   assert(Threads_lock->is_locked(), "sanity check");
  4183   ALL_JAVA_THREADS(q) {
  4184     if (q == p ) {
  4185       return true;
  4188   return false;
  4191 // Operations on the Threads list for GC.  These are not explicitly locked,
  4192 // but the garbage collector must provide a safe context for them to run.
  4193 // In particular, these things should never be called when the Threads_lock
  4194 // is held by some other thread. (Note: the Safepoint abstraction also
  4195 // uses the Threads_lock to gurantee this property. It also makes sure that
  4196 // all threads gets blocked when exiting or starting).
  4198 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  4199   ALL_JAVA_THREADS(p) {
  4200     p->oops_do(f, cf);
  4202   VMThread::vm_thread()->oops_do(f, cf);
  4205 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  4206   // Introduce a mechanism allowing parallel threads to claim threads as
  4207   // root groups.  Overhead should be small enough to use all the time,
  4208   // even in sequential code.
  4209   SharedHeap* sh = SharedHeap::heap();
  4210   // Cannot yet substitute active_workers for n_par_threads
  4211   // because of G1CollectedHeap::verify() use of
  4212   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  4213   // turn off parallelism in process_strong_roots while active_workers
  4214   // is being used for parallelism elsewhere.
  4215   bool is_par = sh->n_par_threads() > 0;
  4216   assert(!is_par ||
  4217          (SharedHeap::heap()->n_par_threads() ==
  4218           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4219   int cp = SharedHeap::heap()->strong_roots_parity();
  4220   ALL_JAVA_THREADS(p) {
  4221     if (p->claim_oops_do(is_par, cp)) {
  4222       p->oops_do(f, cf);
  4225   VMThread* vmt = VMThread::vm_thread();
  4226   if (vmt->claim_oops_do(is_par, cp)) {
  4227     vmt->oops_do(f, cf);
  4231 #ifndef SERIALGC
  4232 // Used by ParallelScavenge
  4233 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4234   ALL_JAVA_THREADS(p) {
  4235     q->enqueue(new ThreadRootsTask(p));
  4237   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4240 // Used by Parallel Old
  4241 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4242   ALL_JAVA_THREADS(p) {
  4243     q->enqueue(new ThreadRootsMarkingTask(p));
  4245   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4247 #endif // SERIALGC
  4249 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4250   ALL_JAVA_THREADS(p) {
  4251     p->nmethods_do(cf);
  4253   VMThread::vm_thread()->nmethods_do(cf);
  4256 void Threads::metadata_do(void f(Metadata*)) {
  4257   ALL_JAVA_THREADS(p) {
  4258     p->metadata_do(f);
  4262 void Threads::gc_epilogue() {
  4263   ALL_JAVA_THREADS(p) {
  4264     p->gc_epilogue();
  4268 void Threads::gc_prologue() {
  4269   ALL_JAVA_THREADS(p) {
  4270     p->gc_prologue();
  4274 void Threads::deoptimized_wrt_marked_nmethods() {
  4275   ALL_JAVA_THREADS(p) {
  4276     p->deoptimized_wrt_marked_nmethods();
  4281 // Get count Java threads that are waiting to enter the specified monitor.
  4282 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4283   address monitor, bool doLock) {
  4284   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4285     "must grab Threads_lock or be at safepoint");
  4286   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4288   int i = 0;
  4290     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4291     ALL_JAVA_THREADS(p) {
  4292       if (p->is_Compiler_thread()) continue;
  4294       address pending = (address)p->current_pending_monitor();
  4295       if (pending == monitor) {             // found a match
  4296         if (i < count) result->append(p);   // save the first count matches
  4297         i++;
  4301   return result;
  4305 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4306   assert(doLock ||
  4307          Threads_lock->owned_by_self() ||
  4308          SafepointSynchronize::is_at_safepoint(),
  4309          "must grab Threads_lock or be at safepoint");
  4311   // NULL owner means not locked so we can skip the search
  4312   if (owner == NULL) return NULL;
  4315     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4316     ALL_JAVA_THREADS(p) {
  4317       // first, see if owner is the address of a Java thread
  4318       if (owner == (address)p) return p;
  4321   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4322   if (UseHeavyMonitors) return NULL;
  4324   //
  4325   // If we didn't find a matching Java thread and we didn't force use of
  4326   // heavyweight monitors, then the owner is the stack address of the
  4327   // Lock Word in the owning Java thread's stack.
  4328   //
  4329   JavaThread* the_owner = NULL;
  4331     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4332     ALL_JAVA_THREADS(q) {
  4333       if (q->is_lock_owned(owner)) {
  4334         the_owner = q;
  4335         break;
  4339   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4340   return the_owner;
  4343 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4344 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4345   char buf[32];
  4346   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4348   st->print_cr("Full thread dump %s (%s %s):",
  4349                 Abstract_VM_Version::vm_name(),
  4350                 Abstract_VM_Version::vm_release(),
  4351                 Abstract_VM_Version::vm_info_string()
  4352                );
  4353   st->cr();
  4355 #ifndef SERIALGC
  4356   // Dump concurrent locks
  4357   ConcurrentLocksDump concurrent_locks;
  4358   if (print_concurrent_locks) {
  4359     concurrent_locks.dump_at_safepoint();
  4361 #endif // SERIALGC
  4363   ALL_JAVA_THREADS(p) {
  4364     ResourceMark rm;
  4365     p->print_on(st);
  4366     if (print_stacks) {
  4367       if (internal_format) {
  4368         p->trace_stack();
  4369       } else {
  4370         p->print_stack_on(st);
  4373     st->cr();
  4374 #ifndef SERIALGC
  4375     if (print_concurrent_locks) {
  4376       concurrent_locks.print_locks_on(p, st);
  4378 #endif // SERIALGC
  4381   VMThread::vm_thread()->print_on(st);
  4382   st->cr();
  4383   Universe::heap()->print_gc_threads_on(st);
  4384   WatcherThread* wt = WatcherThread::watcher_thread();
  4385   if (wt != NULL) {
  4386     wt->print_on(st);
  4387     st->cr();
  4389   CompileBroker::print_compiler_threads_on(st);
  4390   st->flush();
  4393 // Threads::print_on_error() is called by fatal error handler. It's possible
  4394 // that VM is not at safepoint and/or current thread is inside signal handler.
  4395 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4396 // memory (even in resource area), it might deadlock the error handler.
  4397 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4398   bool found_current = false;
  4399   st->print_cr("Java Threads: ( => current thread )");
  4400   ALL_JAVA_THREADS(thread) {
  4401     bool is_current = (current == thread);
  4402     found_current = found_current || is_current;
  4404     st->print("%s", is_current ? "=>" : "  ");
  4406     st->print(PTR_FORMAT, thread);
  4407     st->print(" ");
  4408     thread->print_on_error(st, buf, buflen);
  4409     st->cr();
  4411   st->cr();
  4413   st->print_cr("Other Threads:");
  4414   if (VMThread::vm_thread()) {
  4415     bool is_current = (current == VMThread::vm_thread());
  4416     found_current = found_current || is_current;
  4417     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4419     st->print(PTR_FORMAT, VMThread::vm_thread());
  4420     st->print(" ");
  4421     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4422     st->cr();
  4424   WatcherThread* wt = WatcherThread::watcher_thread();
  4425   if (wt != NULL) {
  4426     bool is_current = (current == wt);
  4427     found_current = found_current || is_current;
  4428     st->print("%s", is_current ? "=>" : "  ");
  4430     st->print(PTR_FORMAT, wt);
  4431     st->print(" ");
  4432     wt->print_on_error(st, buf, buflen);
  4433     st->cr();
  4435   if (!found_current) {
  4436     st->cr();
  4437     st->print("=>" PTR_FORMAT " (exited) ", current);
  4438     current->print_on_error(st, buf, buflen);
  4439     st->cr();
  4443 // Internal SpinLock and Mutex
  4444 // Based on ParkEvent
  4446 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4447 //
  4448 // We employ SpinLocks _only for low-contention, fixed-length
  4449 // short-duration critical sections where we're concerned
  4450 // about native mutex_t or HotSpot Mutex:: latency.
  4451 // The mux construct provides a spin-then-block mutual exclusion
  4452 // mechanism.
  4453 //
  4454 // Testing has shown that contention on the ListLock guarding gFreeList
  4455 // is common.  If we implement ListLock as a simple SpinLock it's common
  4456 // for the JVM to devolve to yielding with little progress.  This is true
  4457 // despite the fact that the critical sections protected by ListLock are
  4458 // extremely short.
  4459 //
  4460 // TODO-FIXME: ListLock should be of type SpinLock.
  4461 // We should make this a 1st-class type, integrated into the lock
  4462 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4463 // should have sufficient padding to avoid false-sharing and excessive
  4464 // cache-coherency traffic.
  4467 typedef volatile int SpinLockT ;
  4469 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4470   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4471      return ;   // normal fast-path return
  4474   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4475   TEVENT (SpinAcquire - ctx) ;
  4476   int ctr = 0 ;
  4477   int Yields = 0 ;
  4478   for (;;) {
  4479      while (*adr != 0) {
  4480         ++ctr ;
  4481         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4482            if (Yields > 5) {
  4483              // Consider using a simple NakedSleep() instead.
  4484              // Then SpinAcquire could be called by non-JVM threads
  4485              Thread::current()->_ParkEvent->park(1) ;
  4486            } else {
  4487              os::NakedYield() ;
  4488              ++Yields ;
  4490         } else {
  4491            SpinPause() ;
  4494      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4498 void Thread::SpinRelease (volatile int * adr) {
  4499   assert (*adr != 0, "invariant") ;
  4500   OrderAccess::fence() ;      // guarantee at least release consistency.
  4501   // Roach-motel semantics.
  4502   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4503   // but prior LDs and STs within the critical section can't be allowed
  4504   // to reorder or float past the ST that releases the lock.
  4505   *adr = 0 ;
  4508 // muxAcquire and muxRelease:
  4509 //
  4510 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4511 //    The LSB of the word is set IFF the lock is held.
  4512 //    The remainder of the word points to the head of a singly-linked list
  4513 //    of threads blocked on the lock.
  4514 //
  4515 // *  The current implementation of muxAcquire-muxRelease uses its own
  4516 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4517 //    minimizing the peak number of extant ParkEvent instances then
  4518 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4519 //    as certain invariants were satisfied.  Specifically, care would need
  4520 //    to be taken with regards to consuming unpark() "permits".
  4521 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4522 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4523 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4524 //    consume an unpark() permit intended for monitorenter, for instance.
  4525 //    One way around this would be to widen the restricted-range semaphore
  4526 //    implemented in park().  Another alternative would be to provide
  4527 //    multiple instances of the PlatformEvent() for each thread.  One
  4528 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4529 //
  4530 // *  Usage:
  4531 //    -- Only as leaf locks
  4532 //    -- for short-term locking only as muxAcquire does not perform
  4533 //       thread state transitions.
  4534 //
  4535 // Alternatives:
  4536 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4537 //    but with parking or spin-then-park instead of pure spinning.
  4538 // *  Use Taura-Oyama-Yonenzawa locks.
  4539 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4540 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4541 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4542 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4543 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4544 //    boundaries by using placement-new.
  4545 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4546 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4547 //    The validity of the backlinks must be ratified before we trust the value.
  4548 //    If the backlinks are invalid the exiting thread must back-track through the
  4549 //    the forward links, which are always trustworthy.
  4550 // *  Add a successor indication.  The LockWord is currently encoded as
  4551 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4552 //    to provide the usual futile-wakeup optimization.
  4553 //    See RTStt for details.
  4554 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4555 //
  4558 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4559 enum MuxBits { LOCKBIT = 1 } ;
  4561 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4562   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4563   if (w == 0) return ;
  4564   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4565      return ;
  4568   TEVENT (muxAcquire - Contention) ;
  4569   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4570   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4571   for (;;) {
  4572      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4574      // Optional spin phase: spin-then-park strategy
  4575      while (--its >= 0) {
  4576        w = *Lock ;
  4577        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4578           return ;
  4582      Self->reset() ;
  4583      Self->OnList = intptr_t(Lock) ;
  4584      // The following fence() isn't _strictly necessary as the subsequent
  4585      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4586      OrderAccess::fence();
  4587      for (;;) {
  4588         w = *Lock ;
  4589         if ((w & LOCKBIT) == 0) {
  4590             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4591                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4592                 return ;
  4594             continue ;      // Interference -- *Lock changed -- Just retry
  4596         assert (w & LOCKBIT, "invariant") ;
  4597         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4598         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4601      while (Self->OnList != 0) {
  4602         Self->park() ;
  4607 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4608   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4609   if (w == 0) return ;
  4610   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4611     return ;
  4614   TEVENT (muxAcquire - Contention) ;
  4615   ParkEvent * ReleaseAfter = NULL ;
  4616   if (ev == NULL) {
  4617     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4619   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4620   for (;;) {
  4621     guarantee (ev->OnList == 0, "invariant") ;
  4622     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4624     // Optional spin phase: spin-then-park strategy
  4625     while (--its >= 0) {
  4626       w = *Lock ;
  4627       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4628         if (ReleaseAfter != NULL) {
  4629           ParkEvent::Release (ReleaseAfter) ;
  4631         return ;
  4635     ev->reset() ;
  4636     ev->OnList = intptr_t(Lock) ;
  4637     // The following fence() isn't _strictly necessary as the subsequent
  4638     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4639     OrderAccess::fence();
  4640     for (;;) {
  4641       w = *Lock ;
  4642       if ((w & LOCKBIT) == 0) {
  4643         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4644           ev->OnList = 0 ;
  4645           // We call ::Release while holding the outer lock, thus
  4646           // artificially lengthening the critical section.
  4647           // Consider deferring the ::Release() until the subsequent unlock(),
  4648           // after we've dropped the outer lock.
  4649           if (ReleaseAfter != NULL) {
  4650             ParkEvent::Release (ReleaseAfter) ;
  4652           return ;
  4654         continue ;      // Interference -- *Lock changed -- Just retry
  4656       assert (w & LOCKBIT, "invariant") ;
  4657       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4658       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4661     while (ev->OnList != 0) {
  4662       ev->park() ;
  4667 // Release() must extract a successor from the list and then wake that thread.
  4668 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4669 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4670 // Release() would :
  4671 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4672 // (B) Extract a successor from the private list "in-hand"
  4673 // (C) attempt to CAS() the residual back into *Lock over null.
  4674 //     If there were any newly arrived threads and the CAS() would fail.
  4675 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4676 //     with the RATs and repeat as needed.  Alternately, Release() might
  4677 //     detach and extract a successor, but then pass the residual list to the wakee.
  4678 //     The wakee would be responsible for reattaching and remerging before it
  4679 //     competed for the lock.
  4680 //
  4681 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4682 // multiple concurrent pushers, but only one popper or detacher.
  4683 // This implementation pops from the head of the list.  This is unfair,
  4684 // but tends to provide excellent throughput as hot threads remain hot.
  4685 // (We wake recently run threads first).
  4687 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4688   for (;;) {
  4689     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4690     assert (w & LOCKBIT, "invariant") ;
  4691     if (w == LOCKBIT) return ;
  4692     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4693     assert (List != NULL, "invariant") ;
  4694     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4695     ParkEvent * nxt = List->ListNext ;
  4697     // The following CAS() releases the lock and pops the head element.
  4698     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4699       continue ;
  4701     List->OnList = 0 ;
  4702     OrderAccess::fence() ;
  4703     List->unpark () ;
  4704     return ;
  4709 void Threads::verify() {
  4710   ALL_JAVA_THREADS(p) {
  4711     p->verify();
  4713   VMThread* thread = VMThread::vm_thread();
  4714   if (thread != NULL) thread->verify();

mercurial