src/share/vm/code/dependencies.cpp

Tue, 06 Nov 2012 15:09:37 -0500

author
coleenp
date
Tue, 06 Nov 2012 15:09:37 -0500
changeset 4251
18fb7da42534
parent 4245
4735d2c84362
child 4267
bd7a7ce2e264
child 4278
070d523b96a7
permissions
-rw-r--r--

8000725: NPG: method_holder() and pool_holder() and pool_holder field should be InstanceKlass
Summary: Change types of above methods and field to InstanceKlass and remove unneeded casts from the source files.
Reviewed-by: dholmes, coleenp, zgu
Contributed-by: harold.seigel@oracle.com

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciArrayKlass.hpp"
    27 #include "ci/ciEnv.hpp"
    28 #include "ci/ciKlass.hpp"
    29 #include "ci/ciMethod.hpp"
    30 #include "code/dependencies.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/handles.hpp"
    34 #include "runtime/handles.inline.hpp"
    35 #include "utilities/copy.hpp"
    38 #ifdef ASSERT
    39 static bool must_be_in_vm() {
    40   Thread* thread = Thread::current();
    41   if (thread->is_Java_thread())
    42     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
    43   else
    44     return true;  //something like this: thread->is_VM_thread();
    45 }
    46 #endif //ASSERT
    48 void Dependencies::initialize(ciEnv* env) {
    49   Arena* arena = env->arena();
    50   _oop_recorder = env->oop_recorder();
    51   _log = env->log();
    52   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
    53   DEBUG_ONLY(_deps[end_marker] = NULL);
    54   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
    55     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
    56   }
    57   _content_bytes = NULL;
    58   _size_in_bytes = (size_t)-1;
    60   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
    61 }
    63 void Dependencies::assert_evol_method(ciMethod* m) {
    64   assert_common_1(evol_method, m);
    65 }
    67 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
    68   if (ctxk->is_array_klass()) {
    69     // As a special case, support this assertion on an array type,
    70     // which reduces to an assertion on its element type.
    71     // Note that this cannot be done with assertions that
    72     // relate to concreteness or abstractness.
    73     ciType* elemt = ctxk->as_array_klass()->base_element_type();
    74     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
    75     ctxk = elemt->as_instance_klass();
    76     //if (ctxk->is_final())  return;            // Ex:  String[][]
    77   }
    78   check_ctxk(ctxk);
    79   assert_common_1(leaf_type, ctxk);
    80 }
    82 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
    83   check_ctxk_abstract(ctxk);
    84   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
    85 }
    87 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
    88   check_ctxk_abstract(ctxk);
    89   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
    90 }
    92 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
    93   check_ctxk_concrete(ctxk);
    94   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
    95 }
    97 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
    98   check_ctxk(ctxk);
    99   assert_common_2(unique_concrete_method, ctxk, uniqm);
   100 }
   102 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
   103   check_ctxk(ctxk);
   104   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
   105 }
   107 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
   108   check_ctxk(ctxk);
   109   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
   110 }
   112 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
   113   check_ctxk(ctxk);
   114   assert_common_1(no_finalizable_subclasses, ctxk);
   115 }
   117 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
   118   check_ctxk(call_site->klass());
   119   assert_common_2(call_site_target_value, call_site, method_handle);
   120 }
   122 // Helper function.  If we are adding a new dep. under ctxk2,
   123 // try to find an old dep. under a broader* ctxk1.  If there is
   124 //
   125 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
   126                                     int ctxk_i, ciKlass* ctxk2) {
   127   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
   128   if (ctxk2->is_subtype_of(ctxk1)) {
   129     return true;  // success, and no need to change
   130   } else if (ctxk1->is_subtype_of(ctxk2)) {
   131     // new context class fully subsumes previous one
   132     deps->at_put(ctxk_i, ctxk2);
   133     return true;
   134   } else {
   135     return false;
   136   }
   137 }
   139 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
   140   assert(dep_args(dept) == 1, "sanity");
   141   log_dependency(dept, x);
   142   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   144   // see if the same (or a similar) dep is already recorded
   145   if (note_dep_seen(dept, x)) {
   146     assert(deps->find(x) >= 0, "sanity");
   147   } else {
   148     deps->append(x);
   149   }
   150 }
   152 void Dependencies::assert_common_2(DepType dept,
   153                                    ciBaseObject* x0, ciBaseObject* x1) {
   154   assert(dep_args(dept) == 2, "sanity");
   155   log_dependency(dept, x0, x1);
   156   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   158   // see if the same (or a similar) dep is already recorded
   159   bool has_ctxk = has_explicit_context_arg(dept);
   160   if (has_ctxk) {
   161     assert(dep_context_arg(dept) == 0, "sanity");
   162     if (note_dep_seen(dept, x1)) {
   163       // look in this bucket for redundant assertions
   164       const int stride = 2;
   165       for (int i = deps->length(); (i -= stride) >= 0; ) {
   166         ciBaseObject* y1 = deps->at(i+1);
   167         if (x1 == y1) {  // same subject; check the context
   168           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
   169             return;
   170           }
   171         }
   172       }
   173     }
   174   } else {
   175     assert(dep_implicit_context_arg(dept) == 0, "sanity");
   176     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
   177       // look in this bucket for redundant assertions
   178       const int stride = 2;
   179       for (int i = deps->length(); (i -= stride) >= 0; ) {
   180         ciBaseObject* y0 = deps->at(i+0);
   181         ciBaseObject* y1 = deps->at(i+1);
   182         if (x0 == y0 && x1 == y1) {
   183           return;
   184         }
   185       }
   186     }
   187   }
   189   // append the assertion in the correct bucket:
   190   deps->append(x0);
   191   deps->append(x1);
   192 }
   194 void Dependencies::assert_common_3(DepType dept,
   195                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
   196   assert(dep_context_arg(dept) == 0, "sanity");
   197   assert(dep_args(dept) == 3, "sanity");
   198   log_dependency(dept, ctxk, x, x2);
   199   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   201   // try to normalize an unordered pair:
   202   bool swap = false;
   203   switch (dept) {
   204   case abstract_with_exclusive_concrete_subtypes_2:
   205     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
   206     break;
   207   case exclusive_concrete_methods_2:
   208     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
   209     break;
   210   }
   211   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
   213   // see if the same (or a similar) dep is already recorded
   214   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
   215     // look in this bucket for redundant assertions
   216     const int stride = 3;
   217     for (int i = deps->length(); (i -= stride) >= 0; ) {
   218       ciBaseObject* y  = deps->at(i+1);
   219       ciBaseObject* y2 = deps->at(i+2);
   220       if (x == y && x2 == y2) {  // same subjects; check the context
   221         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
   222           return;
   223         }
   224       }
   225     }
   226   }
   227   // append the assertion in the correct bucket:
   228   deps->append(ctxk);
   229   deps->append(x);
   230   deps->append(x2);
   231 }
   233 /// Support for encoding dependencies into an nmethod:
   235 void Dependencies::copy_to(nmethod* nm) {
   236   address beg = nm->dependencies_begin();
   237   address end = nm->dependencies_end();
   238   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
   239   Copy::disjoint_words((HeapWord*) content_bytes(),
   240                        (HeapWord*) beg,
   241                        size_in_bytes() / sizeof(HeapWord));
   242   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
   243 }
   245 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
   246   for (int i = 0; i < narg; i++) {
   247     int diff = p1[i]->ident() - p2[i]->ident();
   248     if (diff != 0)  return diff;
   249   }
   250   return 0;
   251 }
   252 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
   253 { return sort_dep(p1, p2, 1); }
   254 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
   255 { return sort_dep(p1, p2, 2); }
   256 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
   257 { return sort_dep(p1, p2, 3); }
   259 void Dependencies::sort_all_deps() {
   260   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   261     DepType dept = (DepType)deptv;
   262     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   263     if (deps->length() <= 1)  continue;
   264     switch (dep_args(dept)) {
   265     case 1: deps->sort(sort_dep_arg_1, 1); break;
   266     case 2: deps->sort(sort_dep_arg_2, 2); break;
   267     case 3: deps->sort(sort_dep_arg_3, 3); break;
   268     default: ShouldNotReachHere();
   269     }
   270   }
   271 }
   273 size_t Dependencies::estimate_size_in_bytes() {
   274   size_t est_size = 100;
   275   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   276     DepType dept = (DepType)deptv;
   277     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   278     est_size += deps->length()*2;  // tags and argument(s)
   279   }
   280   return est_size;
   281 }
   283 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
   284   switch (dept) {
   285   case abstract_with_exclusive_concrete_subtypes_2:
   286     return x->as_metadata()->as_klass();
   287   case unique_concrete_method:
   288   case exclusive_concrete_methods_2:
   289     return x->as_metadata()->as_method()->holder();
   290   }
   291   return NULL;  // let NULL be NULL
   292 }
   294 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
   295   assert(must_be_in_vm(), "raw oops here");
   296   switch (dept) {
   297   case abstract_with_exclusive_concrete_subtypes_2:
   298     assert(x->is_klass(), "sanity");
   299     return (Klass*) x;
   300   case unique_concrete_method:
   301   case exclusive_concrete_methods_2:
   302     assert(x->is_method(), "sanity");
   303     return ((Method*)x)->method_holder();
   304   }
   305   return NULL;  // let NULL be NULL
   306 }
   308 void Dependencies::encode_content_bytes() {
   309   sort_all_deps();
   311   // cast is safe, no deps can overflow INT_MAX
   312   CompressedWriteStream bytes((int)estimate_size_in_bytes());
   314   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   315     DepType dept = (DepType)deptv;
   316     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   317     if (deps->length() == 0)  continue;
   318     int stride = dep_args(dept);
   319     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
   320     assert(stride > 0, "sanity");
   321     for (int i = 0; i < deps->length(); i += stride) {
   322       jbyte code_byte = (jbyte)dept;
   323       int skipj = -1;
   324       if (ctxkj >= 0 && ctxkj+1 < stride) {
   325         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
   326         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
   327         if (ctxk == ctxk_encoded_as_null(dept, x)) {
   328           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
   329           code_byte |= default_context_type_bit;
   330         }
   331       }
   332       bytes.write_byte(code_byte);
   333       for (int j = 0; j < stride; j++) {
   334         if (j == skipj)  continue;
   335         ciBaseObject* v = deps->at(i+j);
   336         int idx;
   337         if (v->is_object()) {
   338           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
   339         } else {
   340           ciMetadata* meta = v->as_metadata();
   341           idx = _oop_recorder->find_index(meta->constant_encoding());
   342         }
   343         bytes.write_int(idx);
   344       }
   345     }
   346   }
   348   // write a sentinel byte to mark the end
   349   bytes.write_byte(end_marker);
   351   // round it out to a word boundary
   352   while (bytes.position() % sizeof(HeapWord) != 0) {
   353     bytes.write_byte(end_marker);
   354   }
   356   // check whether the dept byte encoding really works
   357   assert((jbyte)default_context_type_bit != 0, "byte overflow");
   359   _content_bytes = bytes.buffer();
   360   _size_in_bytes = bytes.position();
   361 }
   364 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
   365   "end_marker",
   366   "evol_method",
   367   "leaf_type",
   368   "abstract_with_unique_concrete_subtype",
   369   "abstract_with_no_concrete_subtype",
   370   "concrete_with_no_concrete_subtype",
   371   "unique_concrete_method",
   372   "abstract_with_exclusive_concrete_subtypes_2",
   373   "exclusive_concrete_methods_2",
   374   "no_finalizable_subclasses",
   375   "call_site_target_value"
   376 };
   378 int Dependencies::_dep_args[TYPE_LIMIT] = {
   379   -1,// end_marker
   380   1, // evol_method m
   381   1, // leaf_type ctxk
   382   2, // abstract_with_unique_concrete_subtype ctxk, k
   383   1, // abstract_with_no_concrete_subtype ctxk
   384   1, // concrete_with_no_concrete_subtype ctxk
   385   2, // unique_concrete_method ctxk, m
   386   3, // unique_concrete_subtypes_2 ctxk, k1, k2
   387   3, // unique_concrete_methods_2 ctxk, m1, m2
   388   1, // no_finalizable_subclasses ctxk
   389   2  // call_site_target_value call_site, method_handle
   390 };
   392 const char* Dependencies::dep_name(Dependencies::DepType dept) {
   393   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
   394   return _dep_name[dept];
   395 }
   397 int Dependencies::dep_args(Dependencies::DepType dept) {
   398   if (!dept_in_mask(dept, all_types))  return -1;
   399   return _dep_args[dept];
   400 }
   402 void Dependencies::check_valid_dependency_type(DepType dept) {
   403   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
   404 }
   406 // for the sake of the compiler log, print out current dependencies:
   407 void Dependencies::log_all_dependencies() {
   408   if (log() == NULL)  return;
   409   ciBaseObject* args[max_arg_count];
   410   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   411     DepType dept = (DepType)deptv;
   412     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   413     if (deps->length() == 0)  continue;
   414     int stride = dep_args(dept);
   415     for (int i = 0; i < deps->length(); i += stride) {
   416       for (int j = 0; j < stride; j++) {
   417         // flush out the identities before printing
   418         args[j] = deps->at(i+j);
   419       }
   420       write_dependency_to(log(), dept, stride, args);
   421     }
   422   }
   423 }
   425 void Dependencies::write_dependency_to(CompileLog* log,
   426                                        DepType dept,
   427                                        int nargs, DepArgument args[],
   428                                        Klass* witness) {
   429   if (log == NULL) {
   430     return;
   431   }
   432   ciEnv* env = ciEnv::current();
   433   ciBaseObject* ciargs[max_arg_count];
   434   assert(nargs <= max_arg_count, "oob");
   435   for (int j = 0; j < nargs; j++) {
   436     if (args[j].is_oop()) {
   437       ciargs[j] = env->get_object(args[j].oop_value());
   438     } else {
   439       ciargs[j] = env->get_metadata(args[j].metadata_value());
   440     }
   441   }
   442   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
   443 }
   445 void Dependencies::write_dependency_to(CompileLog* log,
   446                                        DepType dept,
   447                                        int nargs, ciBaseObject* args[],
   448                                        Klass* witness) {
   449   if (log == NULL)  return;
   450   assert(nargs <= max_arg_count, "oob");
   451   int argids[max_arg_count];
   452   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   453   int j;
   454   for (j = 0; j < nargs; j++) {
   455     if (args[j]->is_object()) {
   456       argids[j] = log->identify(args[j]->as_object());
   457     } else {
   458       argids[j] = log->identify(args[j]->as_metadata());
   459     }
   460   }
   461   if (witness != NULL) {
   462     log->begin_elem("dependency_failed");
   463   } else {
   464     log->begin_elem("dependency");
   465   }
   466   log->print(" type='%s'", dep_name(dept));
   467   if (ctxkj >= 0) {
   468     log->print(" ctxk='%d'", argids[ctxkj]);
   469   }
   470   // write remaining arguments, if any.
   471   for (j = 0; j < nargs; j++) {
   472     if (j == ctxkj)  continue;  // already logged
   473     if (j == 1) {
   474       log->print(  " x='%d'",    argids[j]);
   475     } else {
   476       log->print(" x%d='%d'", j, argids[j]);
   477     }
   478   }
   479   if (witness != NULL) {
   480     log->object("witness", witness);
   481     log->stamp();
   482   }
   483   log->end_elem();
   484 }
   486 void Dependencies::write_dependency_to(xmlStream* xtty,
   487                                        DepType dept,
   488                                        int nargs, DepArgument args[],
   489                                        Klass* witness) {
   490   if (xtty == NULL)  return;
   491   ttyLocker ttyl;
   492   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   493   if (witness != NULL) {
   494     xtty->begin_elem("dependency_failed");
   495   } else {
   496     xtty->begin_elem("dependency");
   497   }
   498   xtty->print(" type='%s'", dep_name(dept));
   499   if (ctxkj >= 0) {
   500     xtty->object("ctxk", args[ctxkj].metadata_value());
   501   }
   502   // write remaining arguments, if any.
   503   for (int j = 0; j < nargs; j++) {
   504     if (j == ctxkj)  continue;  // already logged
   505     if (j == 1) {
   506       if (args[j].is_oop()) {
   507         xtty->object("x", args[j].oop_value());
   508       } else {
   509         xtty->object("x", args[j].metadata_value());
   510       }
   511     } else {
   512       char xn[10]; sprintf(xn, "x%d", j);
   513       if (args[j].is_oop()) {
   514         xtty->object(xn, args[j].oop_value());
   515       } else {
   516         xtty->object(xn, args[j].metadata_value());
   517       }
   518     }
   519   }
   520   if (witness != NULL) {
   521     xtty->object("witness", witness);
   522     xtty->stamp();
   523   }
   524   xtty->end_elem();
   525 }
   527 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
   528                                     Klass* witness) {
   529   ResourceMark rm;
   530   ttyLocker ttyl;   // keep the following output all in one block
   531   tty->print_cr("%s of type %s",
   532                 (witness == NULL)? "Dependency": "Failed dependency",
   533                 dep_name(dept));
   534   // print arguments
   535   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   536   for (int j = 0; j < nargs; j++) {
   537     DepArgument arg = args[j];
   538     bool put_star = false;
   539     if (arg.is_null())  continue;
   540     const char* what;
   541     if (j == ctxkj) {
   542       assert(arg.is_metadata(), "must be");
   543       what = "context";
   544       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
   545     } else if (arg.is_method()) {
   546       what = "method ";
   547       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
   548     } else if (arg.is_klass()) {
   549       what = "class  ";
   550     } else {
   551       what = "object ";
   552     }
   553     tty->print("  %s = %s", what, (put_star? "*": ""));
   554     if (arg.is_klass())
   555       tty->print("%s", Klass::cast((Klass*)arg.metadata_value())->external_name());
   556     else if (arg.is_method())
   557       ((Method*)arg.metadata_value())->print_value();
   558     else
   559       ShouldNotReachHere(); // Provide impl for this type.
   560     tty->cr();
   561   }
   562   if (witness != NULL) {
   563     bool put_star = !Dependencies::is_concrete_klass(witness);
   564     tty->print_cr("  witness = %s%s",
   565                   (put_star? "*": ""),
   566                   Klass::cast(witness)->external_name());
   567   }
   568 }
   570 void Dependencies::DepStream::log_dependency(Klass* witness) {
   571   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
   572   int nargs = argument_count();
   573   DepArgument args[max_arg_count];
   574   for (int j = 0; j < nargs; j++) {
   575     if (type() == call_site_target_value) {
   576       args[j] = argument_oop(j);
   577     } else {
   578       args[j] = argument(j);
   579     }
   580   }
   581   if (_deps != NULL && _deps->log() != NULL) {
   582     Dependencies::write_dependency_to(_deps->log(),
   583                                       type(), nargs, args, witness);
   584   } else {
   585     Dependencies::write_dependency_to(xtty,
   586                                       type(), nargs, args, witness);
   587   }
   588 }
   590 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
   591   int nargs = argument_count();
   592   DepArgument args[max_arg_count];
   593   for (int j = 0; j < nargs; j++) {
   594     args[j] = argument(j);
   595   }
   596   Dependencies::print_dependency(type(), nargs, args, witness);
   597   if (verbose) {
   598     if (_code != NULL) {
   599       tty->print("  code: ");
   600       _code->print_value_on(tty);
   601       tty->cr();
   602     }
   603   }
   604 }
   607 /// Dependency stream support (decodes dependencies from an nmethod):
   609 #ifdef ASSERT
   610 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
   611   assert(must_be_in_vm(), "raw oops here");
   612   _byte_limit = byte_limit;
   613   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
   614   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
   615 }
   616 #endif //ASSERT
   618 bool Dependencies::DepStream::next() {
   619   assert(_type != end_marker, "already at end");
   620   if (_bytes.position() == 0 && _code != NULL
   621       && _code->dependencies_size() == 0) {
   622     // Method has no dependencies at all.
   623     return false;
   624   }
   625   int code_byte = (_bytes.read_byte() & 0xFF);
   626   if (code_byte == end_marker) {
   627     DEBUG_ONLY(_type = end_marker);
   628     return false;
   629   } else {
   630     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
   631     code_byte -= ctxk_bit;
   632     DepType dept = (DepType)code_byte;
   633     _type = dept;
   634     Dependencies::check_valid_dependency_type(dept);
   635     int stride = _dep_args[dept];
   636     assert(stride == dep_args(dept), "sanity");
   637     int skipj = -1;
   638     if (ctxk_bit != 0) {
   639       skipj = 0;  // currently the only context argument is at zero
   640       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
   641     }
   642     for (int j = 0; j < stride; j++) {
   643       _xi[j] = (j == skipj)? 0: _bytes.read_int();
   644     }
   645     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
   646     return true;
   647   }
   648 }
   650 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
   651   Metadata* o = NULL;
   652   if (_code != NULL) {
   653     o = _code->metadata_at(i);
   654   } else {
   655     o = _deps->oop_recorder()->metadata_at(i);
   656   }
   657   assert(o == NULL || o->is_metadata(),
   658          err_msg("Should be perm " PTR_FORMAT, o));
   659   return o;
   660 }
   662 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
   663   return (_code != NULL)
   664          ? _code->oop_at(i)
   665     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
   666 }
   668 Metadata* Dependencies::DepStream::argument(int i) {
   669   Metadata* result = recorded_metadata_at(argument_index(i));
   671   if (result == NULL) { // Explicit context argument can be compressed
   672     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   673     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
   674       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
   675     }
   676   }
   678   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
   679   return result;
   680 }
   682 oop Dependencies::DepStream::argument_oop(int i) {
   683   oop result = recorded_oop_at(argument_index(i));
   684   assert(result == NULL || result->is_oop(), "must be");
   685   return result;
   686 }
   688 Klass* Dependencies::DepStream::context_type() {
   689   assert(must_be_in_vm(), "raw oops here");
   691   // Most dependencies have an explicit context type argument.
   692   {
   693     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   694     if (ctxkj >= 0) {
   695       Metadata* k = argument(ctxkj);
   696       assert(k != NULL && k->is_klass(), "type check");
   697       return (Klass*)k;
   698     }
   699   }
   701   // Some dependencies are using the klass of the first object
   702   // argument as implicit context type (e.g. call_site_target_value).
   703   {
   704     int ctxkj = dep_implicit_context_arg(type());
   705     if (ctxkj >= 0) {
   706       Klass* k = argument_oop(ctxkj)->klass();
   707       assert(k != NULL && k->is_klass(), "type check");
   708       return (Klass*) k;
   709     }
   710   }
   712   // And some dependencies don't have a context type at all,
   713   // e.g. evol_method.
   714   return NULL;
   715 }
   717 /// Checking dependencies:
   719 // This hierarchy walker inspects subtypes of a given type,
   720 // trying to find a "bad" class which breaks a dependency.
   721 // Such a class is called a "witness" to the broken dependency.
   722 // While searching around, we ignore "participants", which
   723 // are already known to the dependency.
   724 class ClassHierarchyWalker {
   725  public:
   726   enum { PARTICIPANT_LIMIT = 3 };
   728  private:
   729   // optional method descriptor to check for:
   730   Symbol* _name;
   731   Symbol* _signature;
   733   // special classes which are not allowed to be witnesses:
   734   Klass*    _participants[PARTICIPANT_LIMIT+1];
   735   int       _num_participants;
   737   // cache of method lookups
   738   Method* _found_methods[PARTICIPANT_LIMIT+1];
   740   // if non-zero, tells how many witnesses to convert to participants
   741   int       _record_witnesses;
   743   void initialize(Klass* participant) {
   744     _record_witnesses = 0;
   745     _participants[0]  = participant;
   746     _found_methods[0] = NULL;
   747     _num_participants = 0;
   748     if (participant != NULL) {
   749       // Terminating NULL.
   750       _participants[1] = NULL;
   751       _found_methods[1] = NULL;
   752       _num_participants = 1;
   753     }
   754   }
   756   void initialize_from_method(Method* m) {
   757     assert(m != NULL && m->is_method(), "sanity");
   758     _name      = m->name();
   759     _signature = m->signature();
   760   }
   762  public:
   763   // The walker is initialized to recognize certain methods and/or types
   764   // as friendly participants.
   765   ClassHierarchyWalker(Klass* participant, Method* m) {
   766     initialize_from_method(m);
   767     initialize(participant);
   768   }
   769   ClassHierarchyWalker(Method* m) {
   770     initialize_from_method(m);
   771     initialize(NULL);
   772   }
   773   ClassHierarchyWalker(Klass* participant = NULL) {
   774     _name      = NULL;
   775     _signature = NULL;
   776     initialize(participant);
   777   }
   779   // This is common code for two searches:  One for concrete subtypes,
   780   // the other for concrete method implementations and overrides.
   781   bool doing_subtype_search() {
   782     return _name == NULL;
   783   }
   785   int num_participants() { return _num_participants; }
   786   Klass* participant(int n) {
   787     assert((uint)n <= (uint)_num_participants, "oob");
   788     return _participants[n];
   789   }
   791   // Note:  If n==num_participants, returns NULL.
   792   Method* found_method(int n) {
   793     assert((uint)n <= (uint)_num_participants, "oob");
   794     Method* fm = _found_methods[n];
   795     assert(n == _num_participants || fm != NULL, "proper usage");
   796     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
   797     return fm;
   798   }
   800 #ifdef ASSERT
   801   // Assert that m is inherited into ctxk, without intervening overrides.
   802   // (May return true even if this is not true, in corner cases where we punt.)
   803   bool check_method_context(Klass* ctxk, Method* m) {
   804     if (m->method_holder() == ctxk)
   805       return true;  // Quick win.
   806     if (m->is_private())
   807       return false; // Quick lose.  Should not happen.
   808     if (!(m->is_public() || m->is_protected()))
   809       // The override story is complex when packages get involved.
   810       return true;  // Must punt the assertion to true.
   811     Klass* k = Klass::cast(ctxk);
   812     Method* lm = k->lookup_method(m->name(), m->signature());
   813     if (lm == NULL && k->oop_is_instance()) {
   814       // It might be an abstract interface method, devoid of mirandas.
   815       lm = ((InstanceKlass*)k)->lookup_method_in_all_interfaces(m->name(),
   816                                                                 m->signature());
   817     }
   818     if (lm == m)
   819       // Method m is inherited into ctxk.
   820       return true;
   821     if (lm != NULL) {
   822       if (!(lm->is_public() || lm->is_protected())) {
   823         // Method is [package-]private, so the override story is complex.
   824         return true;  // Must punt the assertion to true.
   825       }
   826       if (lm->is_static()) {
   827         // Static methods don't override non-static so punt
   828         return true;
   829       }
   830       if (   !Dependencies::is_concrete_method(lm)
   831           && !Dependencies::is_concrete_method(m)
   832           && lm->method_holder()->is_subtype_of(m->method_holder()))
   833         // Method m is overridden by lm, but both are non-concrete.
   834         return true;
   835     }
   836     ResourceMark rm;
   837     tty->print_cr("Dependency method not found in the associated context:");
   838     tty->print_cr("  context = %s", Klass::cast(ctxk)->external_name());
   839     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
   840     if (lm != NULL) {
   841       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
   842     }
   843     return false;
   844   }
   845 #endif
   847   void add_participant(Klass* participant) {
   848     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
   849     int np = _num_participants++;
   850     _participants[np] = participant;
   851     _participants[np+1] = NULL;
   852     _found_methods[np+1] = NULL;
   853   }
   855   void record_witnesses(int add) {
   856     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
   857     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
   858     _record_witnesses = add;
   859   }
   861   bool is_witness(Klass* k) {
   862     if (doing_subtype_search()) {
   863       return Dependencies::is_concrete_klass(k);
   864     } else {
   865       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
   866       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
   867       _found_methods[_num_participants] = m;
   868       // Note:  If add_participant(k) is called,
   869       // the method m will already be memoized for it.
   870       return true;
   871     }
   872   }
   874   bool is_participant(Klass* k) {
   875     if (k == _participants[0]) {
   876       return true;
   877     } else if (_num_participants <= 1) {
   878       return false;
   879     } else {
   880       return in_list(k, &_participants[1]);
   881     }
   882   }
   883   bool ignore_witness(Klass* witness) {
   884     if (_record_witnesses == 0) {
   885       return false;
   886     } else {
   887       --_record_witnesses;
   888       add_participant(witness);
   889       return true;
   890     }
   891   }
   892   static bool in_list(Klass* x, Klass** list) {
   893     for (int i = 0; ; i++) {
   894       Klass* y = list[i];
   895       if (y == NULL)  break;
   896       if (y == x)  return true;
   897     }
   898     return false;  // not in list
   899   }
   901  private:
   902   // the actual search method:
   903   Klass* find_witness_anywhere(Klass* context_type,
   904                                  bool participants_hide_witnesses,
   905                                  bool top_level_call = true);
   906   // the spot-checking version:
   907   Klass* find_witness_in(KlassDepChange& changes,
   908                          Klass* context_type,
   909                            bool participants_hide_witnesses);
   910  public:
   911   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
   912     assert(doing_subtype_search(), "must set up a subtype search");
   913     // When looking for unexpected concrete types,
   914     // do not look beneath expected ones.
   915     const bool participants_hide_witnesses = true;
   916     // CX > CC > C' is OK, even if C' is new.
   917     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
   918     if (changes != NULL) {
   919       return find_witness_in(*changes, context_type, participants_hide_witnesses);
   920     } else {
   921       return find_witness_anywhere(context_type, participants_hide_witnesses);
   922     }
   923   }
   924   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
   925     assert(!doing_subtype_search(), "must set up a method definer search");
   926     // When looking for unexpected concrete methods,
   927     // look beneath expected ones, to see if there are overrides.
   928     const bool participants_hide_witnesses = true;
   929     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
   930     if (changes != NULL) {
   931       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
   932     } else {
   933       return find_witness_anywhere(context_type, !participants_hide_witnesses);
   934     }
   935   }
   936 };
   938 #ifndef PRODUCT
   939 static int deps_find_witness_calls = 0;
   940 static int deps_find_witness_steps = 0;
   941 static int deps_find_witness_recursions = 0;
   942 static int deps_find_witness_singles = 0;
   943 static int deps_find_witness_print = 0; // set to -1 to force a final print
   944 static bool count_find_witness_calls() {
   945   if (TraceDependencies || LogCompilation) {
   946     int pcount = deps_find_witness_print + 1;
   947     bool final_stats      = (pcount == 0);
   948     bool initial_call     = (pcount == 1);
   949     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
   950     if (pcount < 0)  pcount = 1; // crude overflow protection
   951     deps_find_witness_print = pcount;
   952     if (VerifyDependencies && initial_call) {
   953       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
   954     }
   955     if (occasional_print || final_stats) {
   956       // Every now and then dump a little info about dependency searching.
   957       if (xtty != NULL) {
   958        ttyLocker ttyl;
   959        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
   960                    deps_find_witness_calls,
   961                    deps_find_witness_steps,
   962                    deps_find_witness_recursions,
   963                    deps_find_witness_singles);
   964       }
   965       if (final_stats || (TraceDependencies && WizardMode)) {
   966         ttyLocker ttyl;
   967         tty->print_cr("Dependency check (find_witness) "
   968                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
   969                       deps_find_witness_calls,
   970                       deps_find_witness_steps,
   971                       (double)deps_find_witness_steps / deps_find_witness_calls,
   972                       deps_find_witness_recursions,
   973                       deps_find_witness_singles);
   974       }
   975     }
   976     return true;
   977   }
   978   return false;
   979 }
   980 #else
   981 #define count_find_witness_calls() (0)
   982 #endif //PRODUCT
   985 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
   986                                                Klass* context_type,
   987                                                bool participants_hide_witnesses) {
   988   assert(changes.involves_context(context_type), "irrelevant dependency");
   989   Klass* new_type = changes.new_type();
   991   count_find_witness_calls();
   992   NOT_PRODUCT(deps_find_witness_singles++);
   994   // Current thread must be in VM (not native mode, as in CI):
   995   assert(must_be_in_vm(), "raw oops here");
   996   // Must not move the class hierarchy during this check:
   997   assert_locked_or_safepoint(Compile_lock);
   999   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1000   if (nof_impls > 1) {
  1001     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1002     // %%% Until this is fixed more systematically, bail out.
  1003     // See corresponding comment in find_witness_anywhere.
  1004     return context_type;
  1007   assert(!is_participant(new_type), "only old classes are participants");
  1008   if (participants_hide_witnesses) {
  1009     // If the new type is a subtype of a participant, we are done.
  1010     for (int i = 0; i < num_participants(); i++) {
  1011       Klass* part = participant(i);
  1012       if (part == NULL)  continue;
  1013       assert(changes.involves_context(part) == Klass::cast(new_type)->is_subtype_of(part),
  1014              "correct marking of participants, b/c new_type is unique");
  1015       if (changes.involves_context(part)) {
  1016         // new guy is protected from this check by previous participant
  1017         return NULL;
  1022   if (is_witness(new_type) &&
  1023       !ignore_witness(new_type)) {
  1024     return new_type;
  1027   return NULL;
  1031 // Walk hierarchy under a context type, looking for unexpected types.
  1032 // Do not report participant types, and recursively walk beneath
  1033 // them only if participants_hide_witnesses is false.
  1034 // If top_level_call is false, skip testing the context type,
  1035 // because the caller has already considered it.
  1036 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
  1037                                                      bool participants_hide_witnesses,
  1038                                                      bool top_level_call) {
  1039   // Current thread must be in VM (not native mode, as in CI):
  1040   assert(must_be_in_vm(), "raw oops here");
  1041   // Must not move the class hierarchy during this check:
  1042   assert_locked_or_safepoint(Compile_lock);
  1044   bool do_counts = count_find_witness_calls();
  1046   // Check the root of the sub-hierarchy first.
  1047   if (top_level_call) {
  1048     if (do_counts) {
  1049       NOT_PRODUCT(deps_find_witness_calls++);
  1050       NOT_PRODUCT(deps_find_witness_steps++);
  1052     if (is_participant(context_type)) {
  1053       if (participants_hide_witnesses)  return NULL;
  1054       // else fall through to search loop...
  1055     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
  1056       // The context is an abstract class or interface, to start with.
  1057       return context_type;
  1061   // Now we must check each implementor and each subclass.
  1062   // Use a short worklist to avoid blowing the stack.
  1063   // Each worklist entry is a *chain* of subklass siblings to process.
  1064   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
  1065   Klass* chains[CHAINMAX];
  1066   int    chaini = 0;  // index into worklist
  1067   Klass* chain;       // scratch variable
  1068 #define ADD_SUBCLASS_CHAIN(k)                     {  \
  1069     assert(chaini < CHAINMAX, "oob");                \
  1070     chain = InstanceKlass::cast(k)->subklass();      \
  1071     if (chain != NULL)  chains[chaini++] = chain;    }
  1073   // Look for non-abstract subclasses.
  1074   // (Note:  Interfaces do not have subclasses.)
  1075   ADD_SUBCLASS_CHAIN(context_type);
  1077   // If it is an interface, search its direct implementors.
  1078   // (Their subclasses are additional indirect implementors.
  1079   // See InstanceKlass::add_implementor.)
  1080   // (Note:  nof_implementors is always zero for non-interfaces.)
  1081   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1082   if (nof_impls > 1) {
  1083     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1084     // Here, I.m has 2 concrete implementations, but m appears unique
  1085     // as A.m, because the search misses B.m when checking C.
  1086     // The inherited method B.m was getting missed by the walker
  1087     // when interface 'I' was the starting point.
  1088     // %%% Until this is fixed more systematically, bail out.
  1089     // (Old CHA had the same limitation.)
  1090     return context_type;
  1092   if (nof_impls > 0) {
  1093     Klass* impl = InstanceKlass::cast(context_type)->implementor();
  1094     assert(impl != NULL, "just checking");
  1095     // If impl is the same as the context_type, then more than one
  1096     // implementor has seen. No exact info in this case.
  1097     if (impl == context_type) {
  1098       return context_type;  // report an inexact witness to this sad affair
  1100     if (do_counts)
  1101       { NOT_PRODUCT(deps_find_witness_steps++); }
  1102     if (is_participant(impl)) {
  1103       if (!participants_hide_witnesses) {
  1104         ADD_SUBCLASS_CHAIN(impl);
  1106     } else if (is_witness(impl) && !ignore_witness(impl)) {
  1107       return impl;
  1108     } else {
  1109       ADD_SUBCLASS_CHAIN(impl);
  1113   // Recursively process each non-trivial sibling chain.
  1114   while (chaini > 0) {
  1115     Klass* chain = chains[--chaini];
  1116     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
  1117       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
  1118       if (is_participant(sub)) {
  1119         if (participants_hide_witnesses)  continue;
  1120         // else fall through to process this guy's subclasses
  1121       } else if (is_witness(sub) && !ignore_witness(sub)) {
  1122         return sub;
  1124       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
  1125         // Fast path.  (Partially disabled if VerifyDependencies.)
  1126         ADD_SUBCLASS_CHAIN(sub);
  1127       } else {
  1128         // Worklist overflow.  Do a recursive call.  Should be rare.
  1129         // The recursive call will have its own worklist, of course.
  1130         // (Note that sub has already been tested, so that there is
  1131         // no need for the recursive call to re-test.  That's handy,
  1132         // since the recursive call sees sub as the context_type.)
  1133         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
  1134         Klass* witness = find_witness_anywhere(sub,
  1135                                                  participants_hide_witnesses,
  1136                                                  /*top_level_call=*/ false);
  1137         if (witness != NULL)  return witness;
  1142   // No witness found.  The dependency remains unbroken.
  1143   return NULL;
  1144 #undef ADD_SUBCLASS_CHAIN
  1148 bool Dependencies::is_concrete_klass(Klass* k) {
  1149   if (Klass::cast(k)->is_abstract())  return false;
  1150   // %%% We could treat classes which are concrete but
  1151   // have not yet been instantiated as virtually abstract.
  1152   // This would require a deoptimization barrier on first instantiation.
  1153   //if (k->is_not_instantiated())  return false;
  1154   return true;
  1157 bool Dependencies::is_concrete_method(Method* m) {
  1158   // Statics are irrelevant to virtual call sites.
  1159   if (m->is_static())  return false;
  1161   // We could also return false if m does not yet appear to be
  1162   // executed, if the VM version supports this distinction also.
  1163   return !m->is_abstract() &&
  1164          !InstanceKlass::cast(m->method_holder())->is_interface();
  1165          // TODO: investigate whether default methods should be
  1166          // considered as "concrete" in this situation.  For now they
  1167          // are not.
  1171 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
  1172   if (k->is_interface())  return NULL;
  1173   if (k->has_finalizer()) return k;
  1174   k = k->subklass();
  1175   while (k != NULL) {
  1176     Klass* result = find_finalizable_subclass(k);
  1177     if (result != NULL) return result;
  1178     k = k->next_sibling();
  1180   return NULL;
  1184 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
  1185   if (k->is_abstract())  return false;
  1186   // We could also return false if k does not yet appear to be
  1187   // instantiated, if the VM version supports this distinction also.
  1188   //if (k->is_not_instantiated())  return false;
  1189   return true;
  1192 bool Dependencies::is_concrete_method(ciMethod* m) {
  1193   // Statics are irrelevant to virtual call sites.
  1194   if (m->is_static())  return false;
  1196   // We could also return false if m does not yet appear to be
  1197   // executed, if the VM version supports this distinction also.
  1198   return !m->is_abstract();
  1202 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
  1203   return k->has_finalizable_subclass();
  1207 // Any use of the contents (bytecodes) of a method must be
  1208 // marked by an "evol_method" dependency, if those contents
  1209 // can change.  (Note: A method is always dependent on itself.)
  1210 Klass* Dependencies::check_evol_method(Method* m) {
  1211   assert(must_be_in_vm(), "raw oops here");
  1212   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
  1213   // Or is there a now a breakpoint?
  1214   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
  1215   if (m->is_old()
  1216       || m->number_of_breakpoints() > 0) {
  1217     return m->method_holder();
  1218   } else {
  1219     return NULL;
  1223 // This is a strong assertion:  It is that the given type
  1224 // has no subtypes whatever.  It is most useful for
  1225 // optimizing checks on reflected types or on array types.
  1226 // (Checks on types which are derived from real instances
  1227 // can be optimized more strongly than this, because we
  1228 // know that the checked type comes from a concrete type,
  1229 // and therefore we can disregard abstract types.)
  1230 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
  1231   assert(must_be_in_vm(), "raw oops here");
  1232   assert_locked_or_safepoint(Compile_lock);
  1233   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
  1234   Klass* sub = ctx->subklass();
  1235   if (sub != NULL) {
  1236     return sub;
  1237   } else if (ctx->nof_implementors() != 0) {
  1238     // if it is an interface, it must be unimplemented
  1239     // (if it is not an interface, nof_implementors is always zero)
  1240     Klass* impl = ctx->implementor();
  1241     assert(impl != NULL, "must be set");
  1242     return impl;
  1243   } else {
  1244     return NULL;
  1248 // Test the assertion that conck is the only concrete subtype* of ctxk.
  1249 // The type conck itself is allowed to have have further concrete subtypes.
  1250 // This allows the compiler to narrow occurrences of ctxk by conck,
  1251 // when dealing with the types of actual instances.
  1252 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
  1253                                                                    Klass* conck,
  1254                                                                    KlassDepChange* changes) {
  1255   ClassHierarchyWalker wf(conck);
  1256   return wf.find_witness_subtype(ctxk, changes);
  1259 // If a non-concrete class has no concrete subtypes, it is not (yet)
  1260 // instantiatable.  This can allow the compiler to make some paths go
  1261 // dead, if they are gated by a test of the type.
  1262 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
  1263                                                                KlassDepChange* changes) {
  1264   // Find any concrete subtype, with no participants:
  1265   ClassHierarchyWalker wf;
  1266   return wf.find_witness_subtype(ctxk, changes);
  1270 // If a concrete class has no concrete subtypes, it can always be
  1271 // exactly typed.  This allows the use of a cheaper type test.
  1272 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
  1273                                                                KlassDepChange* changes) {
  1274   // Find any concrete subtype, with only the ctxk as participant:
  1275   ClassHierarchyWalker wf(ctxk);
  1276   return wf.find_witness_subtype(ctxk, changes);
  1280 // Find the unique concrete proper subtype of ctxk, or NULL if there
  1281 // is more than one concrete proper subtype.  If there are no concrete
  1282 // proper subtypes, return ctxk itself, whether it is concrete or not.
  1283 // The returned subtype is allowed to have have further concrete subtypes.
  1284 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
  1285 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
  1286   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
  1287   wf.record_witnesses(1);          // Record one other witness when walking.
  1288   Klass* wit = wf.find_witness_subtype(ctxk);
  1289   if (wit != NULL)  return NULL;   // Too many witnesses.
  1290   Klass* conck = wf.participant(0);
  1291   if (conck == NULL) {
  1292 #ifndef PRODUCT
  1293     // Make sure the dependency mechanism will pass this discovery:
  1294     if (VerifyDependencies) {
  1295       // Turn off dependency tracing while actually testing deps.
  1296       FlagSetting fs(TraceDependencies, false);
  1297       if (!Dependencies::is_concrete_klass(ctxk)) {
  1298         guarantee(NULL ==
  1299                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1300                   "verify dep.");
  1301       } else {
  1302         guarantee(NULL ==
  1303                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
  1304                   "verify dep.");
  1307 #endif //PRODUCT
  1308     return ctxk;                   // Return ctxk as a flag for "no subtypes".
  1309   } else {
  1310 #ifndef PRODUCT
  1311     // Make sure the dependency mechanism will pass this discovery:
  1312     if (VerifyDependencies) {
  1313       // Turn off dependency tracing while actually testing deps.
  1314       FlagSetting fs(TraceDependencies, false);
  1315       if (!Dependencies::is_concrete_klass(ctxk)) {
  1316         guarantee(NULL == (void *)
  1317                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
  1318                   "verify dep.");
  1321 #endif //PRODUCT
  1322     return conck;
  1326 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
  1327 // except possibly for further subtypes of k[12] themselves.
  1328 // The context type must be abstract.  The types k1 and k2 are themselves
  1329 // allowed to have further concrete subtypes.
  1330 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
  1331                                                 Klass* ctxk,
  1332                                                 Klass* k1,
  1333                                                 Klass* k2,
  1334                                                 KlassDepChange* changes) {
  1335   ClassHierarchyWalker wf;
  1336   wf.add_participant(k1);
  1337   wf.add_participant(k2);
  1338   return wf.find_witness_subtype(ctxk, changes);
  1341 // Search ctxk for concrete implementations.  If there are klen or fewer,
  1342 // pack them into the given array and return the number.
  1343 // Otherwise, return -1, meaning the given array would overflow.
  1344 // (Note that a return of 0 means there are exactly no concrete subtypes.)
  1345 // In this search, if ctxk is concrete, it will be reported alone.
  1346 // For any type CC reported, no proper subtypes of CC will be reported.
  1347 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
  1348                                                    int klen,
  1349                                                    Klass* karray[]) {
  1350   ClassHierarchyWalker wf;
  1351   wf.record_witnesses(klen);
  1352   Klass* wit = wf.find_witness_subtype(ctxk);
  1353   if (wit != NULL)  return -1;  // Too many witnesses.
  1354   int num = wf.num_participants();
  1355   assert(num <= klen, "oob");
  1356   // Pack the result array with the good news.
  1357   for (int i = 0; i < num; i++)
  1358     karray[i] = wf.participant(i);
  1359 #ifndef PRODUCT
  1360   // Make sure the dependency mechanism will pass this discovery:
  1361   if (VerifyDependencies) {
  1362     // Turn off dependency tracing while actually testing deps.
  1363     FlagSetting fs(TraceDependencies, false);
  1364     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
  1365     case -1: // ctxk was itself concrete
  1366       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
  1367       break;
  1368     case 0:
  1369       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1370                 "verify dep.");
  1371       break;
  1372     case 1:
  1373       guarantee(NULL == (void *)
  1374                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
  1375                 "verify dep.");
  1376       break;
  1377     case 2:
  1378       guarantee(NULL == (void *)
  1379                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
  1380                                                                 karray[0],
  1381                                                                 karray[1]),
  1382                 "verify dep.");
  1383       break;
  1384     default:
  1385       ShouldNotReachHere();  // klen > 2 yet supported
  1388 #endif //PRODUCT
  1389   return num;
  1392 // If a class (or interface) has a unique concrete method uniqm, return NULL.
  1393 // Otherwise, return a class that contains an interfering method.
  1394 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
  1395                                                     KlassDepChange* changes) {
  1396   // Here is a missing optimization:  If uniqm->is_final(),
  1397   // we don't really need to search beneath it for overrides.
  1398   // This is probably not important, since we don't use dependencies
  1399   // to track final methods.  (They can't be "definalized".)
  1400   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
  1401   return wf.find_witness_definer(ctxk, changes);
  1404 // Find the set of all non-abstract methods under ctxk that match m.
  1405 // (The method m must be defined or inherited in ctxk.)
  1406 // Include m itself in the set, unless it is abstract.
  1407 // If this set has exactly one element, return that element.
  1408 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
  1409   ClassHierarchyWalker wf(m);
  1410   assert(wf.check_method_context(ctxk, m), "proper context");
  1411   wf.record_witnesses(1);
  1412   Klass* wit = wf.find_witness_definer(ctxk);
  1413   if (wit != NULL)  return NULL;  // Too many witnesses.
  1414   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
  1415   if (Dependencies::is_concrete_method(m)) {
  1416     if (fm == NULL) {
  1417       // It turns out that m was always the only implementation.
  1418       fm = m;
  1419     } else if (fm != m) {
  1420       // Two conflicting implementations after all.
  1421       // (This can happen if m is inherited into ctxk and fm overrides it.)
  1422       return NULL;
  1425 #ifndef PRODUCT
  1426   // Make sure the dependency mechanism will pass this discovery:
  1427   if (VerifyDependencies && fm != NULL) {
  1428     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
  1429               "verify dep.");
  1431 #endif //PRODUCT
  1432   return fm;
  1435 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
  1436                                                         Method* m1,
  1437                                                         Method* m2,
  1438                                                         KlassDepChange* changes) {
  1439   ClassHierarchyWalker wf(m1);
  1440   wf.add_participant(m1->method_holder());
  1441   wf.add_participant(m2->method_holder());
  1442   return wf.find_witness_definer(ctxk, changes);
  1445 // Find the set of all non-abstract methods under ctxk that match m[0].
  1446 // (The method m[0] must be defined or inherited in ctxk.)
  1447 // Include m itself in the set, unless it is abstract.
  1448 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
  1449 // (The length may be zero if no concrete methods are found anywhere.)
  1450 // If there are too many concrete methods to fit in marray, return -1.
  1451 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
  1452                                                   int mlen,
  1453                                                   Method* marray[]) {
  1454   Method* m0 = marray[0];
  1455   ClassHierarchyWalker wf(m0);
  1456   assert(wf.check_method_context(ctxk, m0), "proper context");
  1457   wf.record_witnesses(mlen);
  1458   bool participants_hide_witnesses = true;
  1459   Klass* wit = wf.find_witness_definer(ctxk);
  1460   if (wit != NULL)  return -1;  // Too many witnesses.
  1461   int num = wf.num_participants();
  1462   assert(num <= mlen, "oob");
  1463   // Keep track of whether m is also part of the result set.
  1464   int mfill = 0;
  1465   assert(marray[mfill] == m0, "sanity");
  1466   if (Dependencies::is_concrete_method(m0))
  1467     mfill++;  // keep m0 as marray[0], the first result
  1468   for (int i = 0; i < num; i++) {
  1469     Method* fm = wf.found_method(i);
  1470     if (fm == m0)  continue;  // Already put this guy in the list.
  1471     if (mfill == mlen) {
  1472       return -1;              // Oops.  Too many methods after all!
  1474     marray[mfill++] = fm;
  1476 #ifndef PRODUCT
  1477   // Make sure the dependency mechanism will pass this discovery:
  1478   if (VerifyDependencies) {
  1479     // Turn off dependency tracing while actually testing deps.
  1480     FlagSetting fs(TraceDependencies, false);
  1481     switch (mfill) {
  1482     case 1:
  1483       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
  1484                 "verify dep.");
  1485       break;
  1486     case 2:
  1487       guarantee(NULL == (void *)
  1488                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
  1489                 "verify dep.");
  1490       break;
  1491     default:
  1492       ShouldNotReachHere();  // mlen > 2 yet supported
  1495 #endif //PRODUCT
  1496   return mfill;
  1500 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
  1501   Klass* search_at = ctxk;
  1502   if (changes != NULL)
  1503     search_at = changes->new_type(); // just look at the new bit
  1504   return find_finalizable_subclass(search_at);
  1508 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
  1509   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
  1510   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
  1511   if (changes == NULL) {
  1512     // Validate all CallSites
  1513     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
  1514       return call_site->klass();  // assertion failed
  1515   } else {
  1516     // Validate the given CallSite
  1517     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
  1518       assert(method_handle != changes->method_handle(), "must be");
  1519       return call_site->klass();  // assertion failed
  1522   return NULL;  // assertion still valid
  1526 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
  1527   if (witness != NULL) {
  1528     if (TraceDependencies) {
  1529       print_dependency(witness, /*verbose=*/ true);
  1531     // The following is a no-op unless logging is enabled:
  1532     log_dependency(witness);
  1537 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
  1538   assert_locked_or_safepoint(Compile_lock);
  1539   Dependencies::check_valid_dependency_type(type());
  1541   Klass* witness = NULL;
  1542   switch (type()) {
  1543   case evol_method:
  1544     witness = check_evol_method(method_argument(0));
  1545     break;
  1546   case leaf_type:
  1547     witness = check_leaf_type(context_type());
  1548     break;
  1549   case abstract_with_unique_concrete_subtype:
  1550     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
  1551     break;
  1552   case abstract_with_no_concrete_subtype:
  1553     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
  1554     break;
  1555   case concrete_with_no_concrete_subtype:
  1556     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
  1557     break;
  1558   case unique_concrete_method:
  1559     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
  1560     break;
  1561   case abstract_with_exclusive_concrete_subtypes_2:
  1562     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
  1563     break;
  1564   case exclusive_concrete_methods_2:
  1565     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
  1566     break;
  1567   case no_finalizable_subclasses:
  1568     witness = check_has_no_finalizable_subclasses(context_type(), changes);
  1569     break;
  1570   default:
  1571     witness = NULL;
  1572     break;
  1574   trace_and_log_witness(witness);
  1575   return witness;
  1579 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
  1580   assert_locked_or_safepoint(Compile_lock);
  1581   Dependencies::check_valid_dependency_type(type());
  1583   Klass* witness = NULL;
  1584   switch (type()) {
  1585   case call_site_target_value:
  1586     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
  1587     break;
  1588   default:
  1589     witness = NULL;
  1590     break;
  1592   trace_and_log_witness(witness);
  1593   return witness;
  1597 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
  1598   // Handle klass dependency
  1599   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
  1600     return check_klass_dependency(changes.as_klass_change());
  1602   // Handle CallSite dependency
  1603   if (changes.is_call_site_change())
  1604     return check_call_site_dependency(changes.as_call_site_change());
  1606   // irrelevant dependency; skip it
  1607   return NULL;
  1611 void DepChange::print() {
  1612   int nsup = 0, nint = 0;
  1613   for (ContextStream str(*this); str.next(); ) {
  1614     Klass* k = str.klass();
  1615     switch (str.change_type()) {
  1616     case Change_new_type:
  1617       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
  1618       break;
  1619     case Change_new_sub:
  1620       if (!WizardMode) {
  1621         ++nsup;
  1622       } else {
  1623         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
  1625       break;
  1626     case Change_new_impl:
  1627       if (!WizardMode) {
  1628         ++nint;
  1629       } else {
  1630         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
  1632       break;
  1635   if (nsup + nint != 0) {
  1636     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
  1640 void DepChange::ContextStream::start() {
  1641   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
  1642   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
  1643   _klass = new_type;
  1644   _ti_base = NULL;
  1645   _ti_index = 0;
  1646   _ti_limit = 0;
  1649 bool DepChange::ContextStream::next() {
  1650   switch (_change_type) {
  1651   case Start_Klass:             // initial state; _klass is the new type
  1652     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
  1653     _ti_index = 0;
  1654     _change_type = Change_new_type;
  1655     return true;
  1656   case Change_new_type:
  1657     // fall through:
  1658     _change_type = Change_new_sub;
  1659   case Change_new_sub:
  1660     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
  1662       _klass = InstanceKlass::cast(_klass)->super();
  1663       if (_klass != NULL) {
  1664         return true;
  1667     // else set up _ti_limit and fall through:
  1668     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
  1669     _change_type = Change_new_impl;
  1670   case Change_new_impl:
  1671     if (_ti_index < _ti_limit) {
  1672       _klass = _ti_base->at(_ti_index++);
  1673       return true;
  1675     // fall through:
  1676     _change_type = NO_CHANGE;  // iterator is exhausted
  1677   case NO_CHANGE:
  1678     break;
  1679   default:
  1680     ShouldNotReachHere();
  1682   return false;
  1685 void KlassDepChange::initialize() {
  1686   // entire transaction must be under this lock:
  1687   assert_lock_strong(Compile_lock);
  1689   // Mark all dependee and all its superclasses
  1690   // Mark transitive interfaces
  1691   for (ContextStream str(*this); str.next(); ) {
  1692     Klass* d = str.klass();
  1693     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
  1694     InstanceKlass::cast(d)->set_is_marked_dependent(true);
  1698 KlassDepChange::~KlassDepChange() {
  1699   // Unmark all dependee and all its superclasses
  1700   // Unmark transitive interfaces
  1701   for (ContextStream str(*this); str.next(); ) {
  1702     Klass* d = str.klass();
  1703     InstanceKlass::cast(d)->set_is_marked_dependent(false);
  1707 bool KlassDepChange::involves_context(Klass* k) {
  1708   if (k == NULL || !Klass::cast(k)->oop_is_instance()) {
  1709     return false;
  1711   InstanceKlass* ik = InstanceKlass::cast(k);
  1712   bool is_contained = ik->is_marked_dependent();
  1713   assert(is_contained == Klass::cast(new_type())->is_subtype_of(k),
  1714          "correct marking of potential context types");
  1715   return is_contained;
  1718 #ifndef PRODUCT
  1719 void Dependencies::print_statistics() {
  1720   if (deps_find_witness_print != 0) {
  1721     // Call one final time, to flush out the data.
  1722     deps_find_witness_print = -1;
  1723     count_find_witness_calls();
  1726 #endif

mercurial