src/share/vm/opto/output.cpp

Wed, 29 Jul 2009 16:00:35 -0700

author
trims
date
Wed, 29 Jul 2009 16:00:35 -0700
changeset 1301
18f526145aea
parent 1294
ea3f9723b5cf
parent 1279
bd02caa94611
child 1338
15bbd3f505c0
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_output.cpp.incl"
    28 extern uint size_java_to_interp();
    29 extern uint reloc_java_to_interp();
    30 extern uint size_exception_handler();
    31 extern uint size_deopt_handler();
    33 #ifndef PRODUCT
    34 #define DEBUG_ARG(x) , x
    35 #else
    36 #define DEBUG_ARG(x)
    37 #endif
    39 extern int emit_exception_handler(CodeBuffer &cbuf);
    40 extern int emit_deopt_handler(CodeBuffer &cbuf);
    42 //------------------------------Output-----------------------------------------
    43 // Convert Nodes to instruction bits and pass off to the VM
    44 void Compile::Output() {
    45   // RootNode goes
    46   assert( _cfg->_broot->_nodes.size() == 0, "" );
    48   // Initialize the space for the BufferBlob used to find and verify
    49   // instruction size in MachNode::emit_size()
    50   init_scratch_buffer_blob();
    51   if (failing())  return; // Out of memory
    53   // The number of new nodes (mostly MachNop) is proportional to
    54   // the number of java calls and inner loops which are aligned.
    55   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    56                             C->inner_loops()*(OptoLoopAlignment-1)),
    57                            "out of nodes before code generation" ) ) {
    58     return;
    59   }
    60   // Make sure I can find the Start Node
    61   Block_Array& bbs = _cfg->_bbs;
    62   Block *entry = _cfg->_blocks[1];
    63   Block *broot = _cfg->_broot;
    65   const StartNode *start = entry->_nodes[0]->as_Start();
    67   // Replace StartNode with prolog
    68   MachPrologNode *prolog = new (this) MachPrologNode();
    69   entry->_nodes.map( 0, prolog );
    70   bbs.map( prolog->_idx, entry );
    71   bbs.map( start->_idx, NULL ); // start is no longer in any block
    73   // Virtual methods need an unverified entry point
    75   if( is_osr_compilation() ) {
    76     if( PoisonOSREntry ) {
    77       // TODO: Should use a ShouldNotReachHereNode...
    78       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    79     }
    80   } else {
    81     if( _method && !_method->flags().is_static() ) {
    82       // Insert unvalidated entry point
    83       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    84     }
    86   }
    89   // Break before main entry point
    90   if( (_method && _method->break_at_execute())
    91 #ifndef PRODUCT
    92     ||(OptoBreakpoint && is_method_compilation())
    93     ||(OptoBreakpointOSR && is_osr_compilation())
    94     ||(OptoBreakpointC2R && !_method)
    95 #endif
    96     ) {
    97     // checking for _method means that OptoBreakpoint does not apply to
    98     // runtime stubs or frame converters
    99     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   100   }
   102   // Insert epilogs before every return
   103   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   104     Block *b = _cfg->_blocks[i];
   105     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
   106       Node *m = b->end();
   107       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   108         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   109         b->add_inst( epilog );
   110         bbs.map(epilog->_idx, b);
   111         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   112       }
   113     }
   114   }
   116 # ifdef ENABLE_ZAP_DEAD_LOCALS
   117   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   118 # endif
   120   ScheduleAndBundle();
   122 #ifndef PRODUCT
   123   if (trace_opto_output()) {
   124     tty->print("\n---- After ScheduleAndBundle ----\n");
   125     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   126       tty->print("\nBB#%03d:\n", i);
   127       Block *bb = _cfg->_blocks[i];
   128       for (uint j = 0; j < bb->_nodes.size(); j++) {
   129         Node *n = bb->_nodes[j];
   130         OptoReg::Name reg = _regalloc->get_reg_first(n);
   131         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   132         n->dump();
   133       }
   134     }
   135   }
   136 #endif
   138   if (failing())  return;
   140   BuildOopMaps();
   142   if (failing())  return;
   144   Fill_buffer();
   145 }
   147 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   148   // Determine if we need to generate a stack overflow check.
   149   // Do it if the method is not a stub function and
   150   // has java calls or has frame size > vm_page_size/8.
   151   return (stub_function() == NULL &&
   152           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   153 }
   155 bool Compile::need_register_stack_bang() const {
   156   // Determine if we need to generate a register stack overflow check.
   157   // This is only used on architectures which have split register
   158   // and memory stacks (ie. IA64).
   159   // Bang if the method is not a stub function and has java calls
   160   return (stub_function() == NULL && has_java_calls());
   161 }
   163 # ifdef ENABLE_ZAP_DEAD_LOCALS
   166 // In order to catch compiler oop-map bugs, we have implemented
   167 // a debugging mode called ZapDeadCompilerLocals.
   168 // This mode causes the compiler to insert a call to a runtime routine,
   169 // "zap_dead_locals", right before each place in compiled code
   170 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   171 // The runtime routine checks that locations mapped as oops are really
   172 // oops, that locations mapped as values do not look like oops,
   173 // and that locations mapped as dead are not used later
   174 // (by zapping them to an invalid address).
   176 int Compile::_CompiledZap_count = 0;
   178 void Compile::Insert_zap_nodes() {
   179   bool skip = false;
   182   // Dink with static counts because code code without the extra
   183   // runtime calls is MUCH faster for debugging purposes
   185        if ( CompileZapFirst  ==  0  ) ; // nothing special
   186   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   187   else if ( CompileZapFirst  == CompiledZap_count() )
   188     warning("starting zap compilation after skipping");
   190        if ( CompileZapLast  ==  -1  ) ; // nothing special
   191   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   192   else if ( CompileZapLast  ==  CompiledZap_count() )
   193     warning("about to compile last zap");
   195   ++_CompiledZap_count; // counts skipped zaps, too
   197   if ( skip )  return;
   200   if ( _method == NULL )
   201     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   203   // Insert call to zap runtime stub before every node with an oop map
   204   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   205     Block *b = _cfg->_blocks[i];
   206     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   207       Node *n = b->_nodes[j];
   209       // Determining if we should insert a zap-a-lot node in output.
   210       // We do that for all nodes that has oopmap info, except for calls
   211       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   212       // and expect the C code to reset it.  Hence, there can be no safepoints between
   213       // the inlined-allocation and the call to new_Java, etc.
   214       // We also cannot zap monitor calls, as they must hold the microlock
   215       // during the call to Zap, which also wants to grab the microlock.
   216       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   217       if ( insert ) { // it is MachSafePoint
   218         if ( !n->is_MachCall() ) {
   219           insert = false;
   220         } else if ( n->is_MachCall() ) {
   221           MachCallNode* call = n->as_MachCall();
   222           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   223               call->entry_point() == OptoRuntime::new_array_Java() ||
   224               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   225               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   226               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   227               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   228               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   229               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   230               ) {
   231             insert = false;
   232           }
   233         }
   234         if (insert) {
   235           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   236           b->_nodes.insert( j, zap );
   237           _cfg->_bbs.map( zap->_idx, b );
   238           ++j;
   239         }
   240       }
   241     }
   242   }
   243 }
   246 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   247   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   248   CallStaticJavaNode* ideal_node =
   249     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   250          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   251                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   252   // We need to copy the OopMap from the site we're zapping at.
   253   // We have to make a copy, because the zap site might not be
   254   // a call site, and zap_dead is a call site.
   255   OopMap* clone = node_to_check->oop_map()->deep_copy();
   257   // Add the cloned OopMap to the zap node
   258   ideal_node->set_oop_map(clone);
   259   return _matcher->match_sfpt(ideal_node);
   260 }
   262 //------------------------------is_node_getting_a_safepoint--------------------
   263 bool Compile::is_node_getting_a_safepoint( Node* n) {
   264   // This code duplicates the logic prior to the call of add_safepoint
   265   // below in this file.
   266   if( n->is_MachSafePoint() ) return true;
   267   return false;
   268 }
   270 # endif // ENABLE_ZAP_DEAD_LOCALS
   272 //------------------------------compute_loop_first_inst_sizes------------------
   273 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   274 // of a loop. When aligning a loop we need to provide enough instructions
   275 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   276 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   277 // By default, the size is set to 999999 by Block's constructor so that
   278 // a loop will be aligned if the size is not reset here.
   279 //
   280 // Note: Mach instructions could contain several HW instructions
   281 // so the size is estimated only.
   282 //
   283 void Compile::compute_loop_first_inst_sizes() {
   284   // The next condition is used to gate the loop alignment optimization.
   285   // Don't aligned a loop if there are enough instructions at the head of a loop
   286   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   287   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   288   // equal to 11 bytes which is the largest address NOP instruction.
   289   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   290     uint last_block = _cfg->_num_blocks-1;
   291     for( uint i=1; i <= last_block; i++ ) {
   292       Block *b = _cfg->_blocks[i];
   293       // Check the first loop's block which requires an alignment.
   294       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   295         uint sum_size = 0;
   296         uint inst_cnt = NumberOfLoopInstrToAlign;
   297         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   299         // Check subsequent fallthrough blocks if the loop's first
   300         // block(s) does not have enough instructions.
   301         Block *nb = b;
   302         while( inst_cnt > 0 &&
   303                i < last_block &&
   304                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   305                !nb->has_successor(b) ) {
   306           i++;
   307           nb = _cfg->_blocks[i];
   308           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   309         } // while( inst_cnt > 0 && i < last_block  )
   311         b->set_first_inst_size(sum_size);
   312       } // f( b->head()->is_Loop() )
   313     } // for( i <= last_block )
   314   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   315 }
   317 //----------------------Shorten_branches---------------------------------------
   318 // The architecture description provides short branch variants for some long
   319 // branch instructions. Replace eligible long branches with short branches.
   320 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
   322   // fill in the nop array for bundling computations
   323   MachNode *_nop_list[Bundle::_nop_count];
   324   Bundle::initialize_nops(_nop_list, this);
   326   // ------------------
   327   // Compute size of each block, method size, and relocation information size
   328   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   329   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   330   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   331   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   332   blk_starts[0]    = 0;
   334   // Initialize the sizes to 0
   335   code_size  = 0;          // Size in bytes of generated code
   336   stub_size  = 0;          // Size in bytes of all stub entries
   337   // Size in bytes of all relocation entries, including those in local stubs.
   338   // Start with 2-bytes of reloc info for the unvalidated entry point
   339   reloc_size = 1;          // Number of relocation entries
   340   const_size = 0;          // size of fp constants in words
   342   // Make three passes.  The first computes pessimistic blk_starts,
   343   // relative jmp_end, reloc_size and const_size information.
   344   // The second performs short branch substitution using the pessimistic
   345   // sizing. The third inserts nops where needed.
   347   Node *nj; // tmp
   349   // Step one, perform a pessimistic sizing pass.
   350   uint i;
   351   uint min_offset_from_last_call = 1;  // init to a positive value
   352   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   353   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   354     Block *b = _cfg->_blocks[i];
   356     // Sum all instruction sizes to compute block size
   357     uint last_inst = b->_nodes.size();
   358     uint blk_size = 0;
   359     for( uint j = 0; j<last_inst; j++ ) {
   360       nj = b->_nodes[j];
   361       uint inst_size = nj->size(_regalloc);
   362       blk_size += inst_size;
   363       // Handle machine instruction nodes
   364       if( nj->is_Mach() ) {
   365         MachNode *mach = nj->as_Mach();
   366         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   367         reloc_size += mach->reloc();
   368         const_size += mach->const_size();
   369         if( mach->is_MachCall() ) {
   370           MachCallNode *mcall = mach->as_MachCall();
   371           // This destination address is NOT PC-relative
   373           mcall->method_set((intptr_t)mcall->entry_point());
   375           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   376             stub_size  += size_java_to_interp();
   377             reloc_size += reloc_java_to_interp();
   378           }
   379         } else if (mach->is_MachSafePoint()) {
   380           // If call/safepoint are adjacent, account for possible
   381           // nop to disambiguate the two safepoints.
   382           if (min_offset_from_last_call == 0) {
   383             blk_size += nop_size;
   384           }
   385         }
   386       }
   387       min_offset_from_last_call += inst_size;
   388       // Remember end of call offset
   389       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   390         min_offset_from_last_call = 0;
   391       }
   392     }
   394     // During short branch replacement, we store the relative (to blk_starts)
   395     // end of jump in jmp_end, rather than the absolute end of jump.  This
   396     // is so that we do not need to recompute sizes of all nodes when we compute
   397     // correct blk_starts in our next sizing pass.
   398     jmp_end[i] = blk_size;
   399     DEBUG_ONLY( jmp_target[i] = 0; )
   401     // When the next block starts a loop, we may insert pad NOP
   402     // instructions.  Since we cannot know our future alignment,
   403     // assume the worst.
   404     if( i<_cfg->_num_blocks-1 ) {
   405       Block *nb = _cfg->_blocks[i+1];
   406       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   407       if( max_loop_pad > 0 ) {
   408         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   409         blk_size += max_loop_pad;
   410       }
   411     }
   413     // Save block size; update total method size
   414     blk_starts[i+1] = blk_starts[i]+blk_size;
   415   }
   417   // Step two, replace eligible long jumps.
   419   // Note: this will only get the long branches within short branch
   420   //   range. Another pass might detect more branches that became
   421   //   candidates because the shortening in the first pass exposed
   422   //   more opportunities. Unfortunately, this would require
   423   //   recomputing the starting and ending positions for the blocks
   424   for( i=0; i<_cfg->_num_blocks; i++ ) {
   425     Block *b = _cfg->_blocks[i];
   427     int j;
   428     // Find the branch; ignore trailing NOPs.
   429     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   430       nj = b->_nodes[j];
   431       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   432         break;
   433     }
   435     if (j >= 0) {
   436       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   437         MachNode *mach = nj->as_Mach();
   438         // This requires the TRUE branch target be in succs[0]
   439         uint bnum = b->non_connector_successor(0)->_pre_order;
   440         uintptr_t target = blk_starts[bnum];
   441         if( mach->is_pc_relative() ) {
   442           int offset = target-(blk_starts[i] + jmp_end[i]);
   443           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
   444             // We've got a winner.  Replace this branch.
   445             MachNode* replacement = mach->short_branch_version(this);
   446             b->_nodes.map(j, replacement);
   447             mach->subsume_by(replacement);
   449             // Update the jmp_end size to save time in our
   450             // next pass.
   451             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   452             DEBUG_ONLY( jmp_target[i] = bnum; );
   453             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   454           }
   455         } else {
   456 #ifndef PRODUCT
   457           mach->dump(3);
   458 #endif
   459           Unimplemented();
   460         }
   461       }
   462     }
   463   }
   465   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   466   // of a loop. It is used to determine the padding for loop alignment.
   467   compute_loop_first_inst_sizes();
   469   // Step 3, compute the offsets of all the labels
   470   uint last_call_adr = max_uint;
   471   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   472     // copy the offset of the beginning to the corresponding label
   473     assert(labels[i].is_unused(), "cannot patch at this point");
   474     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   476     // insert padding for any instructions that need it
   477     Block *b = _cfg->_blocks[i];
   478     uint last_inst = b->_nodes.size();
   479     uint adr = blk_starts[i];
   480     for( uint j = 0; j<last_inst; j++ ) {
   481       nj = b->_nodes[j];
   482       if( nj->is_Mach() ) {
   483         int padding = nj->as_Mach()->compute_padding(adr);
   484         // If call/safepoint are adjacent insert a nop (5010568)
   485         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   486             adr == last_call_adr ) {
   487           padding = nop_size;
   488         }
   489         if(padding > 0) {
   490           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   491           int nops_cnt = padding / nop_size;
   492           MachNode *nop = new (this) MachNopNode(nops_cnt);
   493           b->_nodes.insert(j++, nop);
   494           _cfg->_bbs.map( nop->_idx, b );
   495           adr += padding;
   496           last_inst++;
   497         }
   498       }
   499       adr += nj->size(_regalloc);
   501       // Remember end of call offset
   502       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   503         last_call_adr = adr;
   504       }
   505     }
   507     if ( i != _cfg->_num_blocks-1) {
   508       // Get the size of the block
   509       uint blk_size = adr - blk_starts[i];
   511       // When the next block is the top of a loop, we may insert pad NOP
   512       // instructions.
   513       Block *nb = _cfg->_blocks[i+1];
   514       int current_offset = blk_starts[i] + blk_size;
   515       current_offset += nb->alignment_padding(current_offset);
   516       // Save block size; update total method size
   517       blk_starts[i+1] = current_offset;
   518     }
   519   }
   521 #ifdef ASSERT
   522   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   523     if( jmp_target[i] != 0 ) {
   524       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   525       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
   526         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   527       }
   528       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
   529     }
   530   }
   531 #endif
   533   // ------------------
   534   // Compute size for code buffer
   535   code_size   = blk_starts[i-1] + jmp_end[i-1];
   537   // Relocation records
   538   reloc_size += 1;              // Relo entry for exception handler
   540   // Adjust reloc_size to number of record of relocation info
   541   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   542   // a relocation index.
   543   // The CodeBuffer will expand the locs array if this estimate is too low.
   544   reloc_size   *= 10 / sizeof(relocInfo);
   546   // Adjust const_size to number of bytes
   547   const_size   *= 2*jintSize; // both float and double take two words per entry
   549 }
   551 //------------------------------FillLocArray-----------------------------------
   552 // Create a bit of debug info and append it to the array.  The mapping is from
   553 // Java local or expression stack to constant, register or stack-slot.  For
   554 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   555 // entry has been taken care of and caller should skip it).
   556 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   557   // This should never have accepted Bad before
   558   assert(OptoReg::is_valid(regnum), "location must be valid");
   559   return (OptoReg::is_reg(regnum))
   560     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   561     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   562 }
   565 ObjectValue*
   566 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   567   for (int i = 0; i < objs->length(); i++) {
   568     assert(objs->at(i)->is_object(), "corrupt object cache");
   569     ObjectValue* sv = (ObjectValue*) objs->at(i);
   570     if (sv->id() == id) {
   571       return sv;
   572     }
   573   }
   574   // Otherwise..
   575   return NULL;
   576 }
   578 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   579                                      ObjectValue* sv ) {
   580   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   581   objs->append(sv);
   582 }
   585 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   586                             GrowableArray<ScopeValue*> *array,
   587                             GrowableArray<ScopeValue*> *objs ) {
   588   assert( local, "use _top instead of null" );
   589   if (array->length() != idx) {
   590     assert(array->length() == idx + 1, "Unexpected array count");
   591     // Old functionality:
   592     //   return
   593     // New functionality:
   594     //   Assert if the local is not top. In product mode let the new node
   595     //   override the old entry.
   596     assert(local == top(), "LocArray collision");
   597     if (local == top()) {
   598       return;
   599     }
   600     array->pop();
   601   }
   602   const Type *t = local->bottom_type();
   604   // Is it a safepoint scalar object node?
   605   if (local->is_SafePointScalarObject()) {
   606     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   608     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   609     if (sv == NULL) {
   610       ciKlass* cik = t->is_oopptr()->klass();
   611       assert(cik->is_instance_klass() ||
   612              cik->is_array_klass(), "Not supported allocation.");
   613       sv = new ObjectValue(spobj->_idx,
   614                            new ConstantOopWriteValue(cik->encoding()));
   615       Compile::set_sv_for_object_node(objs, sv);
   617       uint first_ind = spobj->first_index();
   618       for (uint i = 0; i < spobj->n_fields(); i++) {
   619         Node* fld_node = sfpt->in(first_ind+i);
   620         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   621       }
   622     }
   623     array->append(sv);
   624     return;
   625   }
   627   // Grab the register number for the local
   628   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   629   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   630     // Record the double as two float registers.
   631     // The register mask for such a value always specifies two adjacent
   632     // float registers, with the lower register number even.
   633     // Normally, the allocation of high and low words to these registers
   634     // is irrelevant, because nearly all operations on register pairs
   635     // (e.g., StoreD) treat them as a single unit.
   636     // Here, we assume in addition that the words in these two registers
   637     // stored "naturally" (by operations like StoreD and double stores
   638     // within the interpreter) such that the lower-numbered register
   639     // is written to the lower memory address.  This may seem like
   640     // a machine dependency, but it is not--it is a requirement on
   641     // the author of the <arch>.ad file to ensure that, for every
   642     // even/odd double-register pair to which a double may be allocated,
   643     // the word in the even single-register is stored to the first
   644     // memory word.  (Note that register numbers are completely
   645     // arbitrary, and are not tied to any machine-level encodings.)
   646 #ifdef _LP64
   647     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   648       array->append(new ConstantIntValue(0));
   649       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   650     } else if ( t->base() == Type::Long ) {
   651       array->append(new ConstantIntValue(0));
   652       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   653     } else if ( t->base() == Type::RawPtr ) {
   654       // jsr/ret return address which must be restored into a the full
   655       // width 64-bit stack slot.
   656       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   657     }
   658 #else //_LP64
   659 #ifdef SPARC
   660     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   661       // For SPARC we have to swap high and low words for
   662       // long values stored in a single-register (g0-g7).
   663       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   664       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   665     } else
   666 #endif //SPARC
   667     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   668       // Repack the double/long as two jints.
   669       // The convention the interpreter uses is that the second local
   670       // holds the first raw word of the native double representation.
   671       // This is actually reasonable, since locals and stack arrays
   672       // grow downwards in all implementations.
   673       // (If, on some machine, the interpreter's Java locals or stack
   674       // were to grow upwards, the embedded doubles would be word-swapped.)
   675       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   676       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   677     }
   678 #endif //_LP64
   679     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   680                OptoReg::is_reg(regnum) ) {
   681       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
   682                                    ? Location::float_in_dbl : Location::normal ));
   683     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   684       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   685                                    ? Location::int_in_long : Location::normal ));
   686     } else if( t->base() == Type::NarrowOop ) {
   687       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   688     } else {
   689       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   690     }
   691     return;
   692   }
   694   // No register.  It must be constant data.
   695   switch (t->base()) {
   696   case Type::Half:              // Second half of a double
   697     ShouldNotReachHere();       // Caller should skip 2nd halves
   698     break;
   699   case Type::AnyPtr:
   700     array->append(new ConstantOopWriteValue(NULL));
   701     break;
   702   case Type::AryPtr:
   703   case Type::InstPtr:
   704   case Type::KlassPtr:          // fall through
   705     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
   706     break;
   707   case Type::NarrowOop:
   708     if (t == TypeNarrowOop::NULL_PTR) {
   709       array->append(new ConstantOopWriteValue(NULL));
   710     } else {
   711       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->encoding()));
   712     }
   713     break;
   714   case Type::Int:
   715     array->append(new ConstantIntValue(t->is_int()->get_con()));
   716     break;
   717   case Type::RawPtr:
   718     // A return address (T_ADDRESS).
   719     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   720 #ifdef _LP64
   721     // Must be restored to the full-width 64-bit stack slot.
   722     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   723 #else
   724     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   725 #endif
   726     break;
   727   case Type::FloatCon: {
   728     float f = t->is_float_constant()->getf();
   729     array->append(new ConstantIntValue(jint_cast(f)));
   730     break;
   731   }
   732   case Type::DoubleCon: {
   733     jdouble d = t->is_double_constant()->getd();
   734 #ifdef _LP64
   735     array->append(new ConstantIntValue(0));
   736     array->append(new ConstantDoubleValue(d));
   737 #else
   738     // Repack the double as two jints.
   739     // The convention the interpreter uses is that the second local
   740     // holds the first raw word of the native double representation.
   741     // This is actually reasonable, since locals and stack arrays
   742     // grow downwards in all implementations.
   743     // (If, on some machine, the interpreter's Java locals or stack
   744     // were to grow upwards, the embedded doubles would be word-swapped.)
   745     jint   *dp = (jint*)&d;
   746     array->append(new ConstantIntValue(dp[1]));
   747     array->append(new ConstantIntValue(dp[0]));
   748 #endif
   749     break;
   750   }
   751   case Type::Long: {
   752     jlong d = t->is_long()->get_con();
   753 #ifdef _LP64
   754     array->append(new ConstantIntValue(0));
   755     array->append(new ConstantLongValue(d));
   756 #else
   757     // Repack the long as two jints.
   758     // The convention the interpreter uses is that the second local
   759     // holds the first raw word of the native double representation.
   760     // This is actually reasonable, since locals and stack arrays
   761     // grow downwards in all implementations.
   762     // (If, on some machine, the interpreter's Java locals or stack
   763     // were to grow upwards, the embedded doubles would be word-swapped.)
   764     jint *dp = (jint*)&d;
   765     array->append(new ConstantIntValue(dp[1]));
   766     array->append(new ConstantIntValue(dp[0]));
   767 #endif
   768     break;
   769   }
   770   case Type::Top:               // Add an illegal value here
   771     array->append(new LocationValue(Location()));
   772     break;
   773   default:
   774     ShouldNotReachHere();
   775     break;
   776   }
   777 }
   779 // Determine if this node starts a bundle
   780 bool Compile::starts_bundle(const Node *n) const {
   781   return (_node_bundling_limit > n->_idx &&
   782           _node_bundling_base[n->_idx].starts_bundle());
   783 }
   785 //--------------------------Process_OopMap_Node--------------------------------
   786 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   788   // Handle special safepoint nodes for synchronization
   789   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   790   MachCallNode      *mcall;
   792 #ifdef ENABLE_ZAP_DEAD_LOCALS
   793   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   794 #endif
   796   int safepoint_pc_offset = current_offset;
   798   // Add the safepoint in the DebugInfoRecorder
   799   if( !mach->is_MachCall() ) {
   800     mcall = NULL;
   801     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   802   } else {
   803     mcall = mach->as_MachCall();
   804     safepoint_pc_offset += mcall->ret_addr_offset();
   805     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   806   }
   808   // Loop over the JVMState list to add scope information
   809   // Do not skip safepoints with a NULL method, they need monitor info
   810   JVMState* youngest_jvms = sfn->jvms();
   811   int max_depth = youngest_jvms->depth();
   813   // Allocate the object pool for scalar-replaced objects -- the map from
   814   // small-integer keys (which can be recorded in the local and ostack
   815   // arrays) to descriptions of the object state.
   816   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   818   // Visit scopes from oldest to youngest.
   819   for (int depth = 1; depth <= max_depth; depth++) {
   820     JVMState* jvms = youngest_jvms->of_depth(depth);
   821     int idx;
   822     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   823     // Safepoints that do not have method() set only provide oop-map and monitor info
   824     // to support GC; these do not support deoptimization.
   825     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   826     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   827     int num_mon  = jvms->nof_monitors();
   828     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   829            "JVMS local count must match that of the method");
   831     // Add Local and Expression Stack Information
   833     // Insert locals into the locarray
   834     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   835     for( idx = 0; idx < num_locs; idx++ ) {
   836       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   837     }
   839     // Insert expression stack entries into the exparray
   840     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   841     for( idx = 0; idx < num_exps; idx++ ) {
   842       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   843     }
   845     // Add in mappings of the monitors
   846     assert( !method ||
   847             !method->is_synchronized() ||
   848             method->is_native() ||
   849             num_mon > 0 ||
   850             !GenerateSynchronizationCode,
   851             "monitors must always exist for synchronized methods");
   853     // Build the growable array of ScopeValues for exp stack
   854     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   856     // Loop over monitors and insert into array
   857     for(idx = 0; idx < num_mon; idx++) {
   858       // Grab the node that defines this monitor
   859       Node* box_node = sfn->monitor_box(jvms, idx);
   860       Node* obj_node = sfn->monitor_obj(jvms, idx);
   862       // Create ScopeValue for object
   863       ScopeValue *scval = NULL;
   865       if( obj_node->is_SafePointScalarObject() ) {
   866         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   867         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   868         if (scval == NULL) {
   869           const Type *t = obj_node->bottom_type();
   870           ciKlass* cik = t->is_oopptr()->klass();
   871           assert(cik->is_instance_klass() ||
   872                  cik->is_array_klass(), "Not supported allocation.");
   873           ObjectValue* sv = new ObjectValue(spobj->_idx,
   874                                 new ConstantOopWriteValue(cik->encoding()));
   875           Compile::set_sv_for_object_node(objs, sv);
   877           uint first_ind = spobj->first_index();
   878           for (uint i = 0; i < spobj->n_fields(); i++) {
   879             Node* fld_node = sfn->in(first_ind+i);
   880             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   881           }
   882           scval = sv;
   883         }
   884       } else if( !obj_node->is_Con() ) {
   885         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   886         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   887           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   888         } else {
   889           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   890         }
   891       } else {
   892         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   893         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->encoding());
   894       }
   896       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   897       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   898       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
   899       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
   900     }
   902     // We dump the object pool first, since deoptimization reads it in first.
   903     debug_info()->dump_object_pool(objs);
   905     // Build first class objects to pass to scope
   906     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   907     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   908     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   910     // Make method available for all Safepoints
   911     ciMethod* scope_method = method ? method : _method;
   912     // Describe the scope here
   913     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   914     // Now we can describe the scope.
   915     debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
   916   } // End jvms loop
   918   // Mark the end of the scope set.
   919   debug_info()->end_safepoint(safepoint_pc_offset);
   920 }
   924 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   925 class NonSafepointEmitter {
   926   Compile*  C;
   927   JVMState* _pending_jvms;
   928   int       _pending_offset;
   930   void emit_non_safepoint();
   932  public:
   933   NonSafepointEmitter(Compile* compile) {
   934     this->C = compile;
   935     _pending_jvms = NULL;
   936     _pending_offset = 0;
   937   }
   939   void observe_instruction(Node* n, int pc_offset) {
   940     if (!C->debug_info()->recording_non_safepoints())  return;
   942     Node_Notes* nn = C->node_notes_at(n->_idx);
   943     if (nn == NULL || nn->jvms() == NULL)  return;
   944     if (_pending_jvms != NULL &&
   945         _pending_jvms->same_calls_as(nn->jvms())) {
   946       // Repeated JVMS?  Stretch it up here.
   947       _pending_offset = pc_offset;
   948     } else {
   949       if (_pending_jvms != NULL &&
   950           _pending_offset < pc_offset) {
   951         emit_non_safepoint();
   952       }
   953       _pending_jvms = NULL;
   954       if (pc_offset > C->debug_info()->last_pc_offset()) {
   955         // This is the only way _pending_jvms can become non-NULL:
   956         _pending_jvms = nn->jvms();
   957         _pending_offset = pc_offset;
   958       }
   959     }
   960   }
   962   // Stay out of the way of real safepoints:
   963   void observe_safepoint(JVMState* jvms, int pc_offset) {
   964     if (_pending_jvms != NULL &&
   965         !_pending_jvms->same_calls_as(jvms) &&
   966         _pending_offset < pc_offset) {
   967       emit_non_safepoint();
   968     }
   969     _pending_jvms = NULL;
   970   }
   972   void flush_at_end() {
   973     if (_pending_jvms != NULL) {
   974       emit_non_safepoint();
   975     }
   976     _pending_jvms = NULL;
   977   }
   978 };
   980 void NonSafepointEmitter::emit_non_safepoint() {
   981   JVMState* youngest_jvms = _pending_jvms;
   982   int       pc_offset     = _pending_offset;
   984   // Clear it now:
   985   _pending_jvms = NULL;
   987   DebugInformationRecorder* debug_info = C->debug_info();
   988   assert(debug_info->recording_non_safepoints(), "sanity");
   990   debug_info->add_non_safepoint(pc_offset);
   991   int max_depth = youngest_jvms->depth();
   993   // Visit scopes from oldest to youngest.
   994   for (int depth = 1; depth <= max_depth; depth++) {
   995     JVMState* jvms = youngest_jvms->of_depth(depth);
   996     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   997     debug_info->describe_scope(pc_offset, method, jvms->bci());
   998   }
  1000   // Mark the end of the scope set.
  1001   debug_info->end_non_safepoint(pc_offset);
  1006 // helper for Fill_buffer bailout logic
  1007 static void turn_off_compiler(Compile* C) {
  1008   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
  1009     // Do not turn off compilation if a single giant method has
  1010     // blown the code cache size.
  1011     C->record_failure("excessive request to CodeCache");
  1012   } else {
  1013     // Let CompilerBroker disable further compilations.
  1014     C->record_failure("CodeCache is full");
  1019 //------------------------------Fill_buffer------------------------------------
  1020 void Compile::Fill_buffer() {
  1022   // Set the initially allocated size
  1023   int  code_req   = initial_code_capacity;
  1024   int  locs_req   = initial_locs_capacity;
  1025   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1026   int  const_req  = initial_const_capacity;
  1027   bool labels_not_set = true;
  1029   int  pad_req    = NativeCall::instruction_size;
  1030   // The extra spacing after the code is necessary on some platforms.
  1031   // Sometimes we need to patch in a jump after the last instruction,
  1032   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1034   uint i;
  1035   // Compute the byte offset where we can store the deopt pc.
  1036   if (fixed_slots() != 0) {
  1037     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1040   // Compute prolog code size
  1041   _method_size = 0;
  1042   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1043 #ifdef IA64
  1044   if (save_argument_registers()) {
  1045     // 4815101: this is a stub with implicit and unknown precision fp args.
  1046     // The usual spill mechanism can only generate stfd's in this case, which
  1047     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1048     // Instead, we hack around the normal spill mechanism using stfspill's and
  1049     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1050     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1051     //
  1052     // If we ever implement 16-byte 'registers' == stack slots, we can
  1053     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1054     // instead of stfd/stfs/ldfd/ldfs.
  1055     _frame_slots += 8*(16/BytesPerInt);
  1057 #endif
  1058   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
  1060   // Create an array of unused labels, one for each basic block
  1061   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
  1063   for( i=0; i <= _cfg->_num_blocks; i++ ) {
  1064     blk_labels[i].init();
  1067   // If this machine supports different size branch offsets, then pre-compute
  1068   // the length of the blocks
  1069   if( _matcher->is_short_branch_offset(-1, 0) ) {
  1070     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
  1071     labels_not_set = false;
  1074   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1075   int exception_handler_req = size_exception_handler();
  1076   int deopt_handler_req = size_deopt_handler();
  1077   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1078   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1079   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1080   code_req += MAX_inst_size;    // ensure per-instruction margin
  1081   if (StressCodeBuffers)
  1082     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1083   int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
  1084   CodeBuffer* cb = code_buffer();
  1085   cb->initialize(total_req, locs_req);
  1087   // Have we run out of code space?
  1088   if (cb->blob() == NULL) {
  1089     turn_off_compiler(this);
  1090     return;
  1092   // Configure the code buffer.
  1093   cb->initialize_consts_size(const_req);
  1094   cb->initialize_stubs_size(stub_req);
  1095   cb->initialize_oop_recorder(env()->oop_recorder());
  1097   // fill in the nop array for bundling computations
  1098   MachNode *_nop_list[Bundle::_nop_count];
  1099   Bundle::initialize_nops(_nop_list, this);
  1101   // Create oopmap set.
  1102   _oop_map_set = new OopMapSet();
  1104   // !!!!! This preserves old handling of oopmaps for now
  1105   debug_info()->set_oopmaps(_oop_map_set);
  1107   // Count and start of implicit null check instructions
  1108   uint inct_cnt = 0;
  1109   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1111   // Count and start of calls
  1112   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1114   uint  return_offset = 0;
  1115   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1117   int previous_offset = 0;
  1118   int current_offset  = 0;
  1119   int last_call_offset = -1;
  1121   // Create an array of unused labels, one for each basic block, if printing is enabled
  1122 #ifndef PRODUCT
  1123   int *node_offsets      = NULL;
  1124   uint  node_offset_limit = unique();
  1127   if ( print_assembly() )
  1128     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1129 #endif
  1131   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1133   // ------------------
  1134   // Now fill in the code buffer
  1135   Node *delay_slot = NULL;
  1137   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1138     Block *b = _cfg->_blocks[i];
  1140     Node *head = b->head();
  1142     // If this block needs to start aligned (i.e, can be reached other
  1143     // than by falling-thru from the previous block), then force the
  1144     // start of a new bundle.
  1145     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1146       cb->flush_bundle(true);
  1148     // Define the label at the beginning of the basic block
  1149     if( labels_not_set )
  1150       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
  1152     else
  1153       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
  1154               "label position does not match code offset" );
  1156     uint last_inst = b->_nodes.size();
  1158     // Emit block normally, except for last instruction.
  1159     // Emit means "dump code bits into code buffer".
  1160     for( uint j = 0; j<last_inst; j++ ) {
  1162       // Get the node
  1163       Node* n = b->_nodes[j];
  1165       // See if delay slots are supported
  1166       if (valid_bundle_info(n) &&
  1167           node_bundling(n)->used_in_unconditional_delay()) {
  1168         assert(delay_slot == NULL, "no use of delay slot node");
  1169         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1171         delay_slot = n;
  1172         continue;
  1175       // If this starts a new instruction group, then flush the current one
  1176       // (but allow split bundles)
  1177       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1178         cb->flush_bundle(false);
  1180       // The following logic is duplicated in the code ifdeffed for
  1181       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1182       // should be factored out.  Or maybe dispersed to the nodes?
  1184       // Special handling for SafePoint/Call Nodes
  1185       bool is_mcall = false;
  1186       if( n->is_Mach() ) {
  1187         MachNode *mach = n->as_Mach();
  1188         is_mcall = n->is_MachCall();
  1189         bool is_sfn = n->is_MachSafePoint();
  1191         // If this requires all previous instructions be flushed, then do so
  1192         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1193           cb->flush_bundle(true);
  1194           current_offset = cb->code_size();
  1197         // align the instruction if necessary
  1198         int padding = mach->compute_padding(current_offset);
  1199         // Make sure safepoint node for polling is distinct from a call's
  1200         // return by adding a nop if needed.
  1201         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1202           padding = nop_size;
  1204         assert( labels_not_set || padding == 0, "instruction should already be aligned")
  1206         if(padding > 0) {
  1207           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1208           int nops_cnt = padding / nop_size;
  1209           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1210           b->_nodes.insert(j++, nop);
  1211           last_inst++;
  1212           _cfg->_bbs.map( nop->_idx, b );
  1213           nop->emit(*cb, _regalloc);
  1214           cb->flush_bundle(true);
  1215           current_offset = cb->code_size();
  1218         // Remember the start of the last call in a basic block
  1219         if (is_mcall) {
  1220           MachCallNode *mcall = mach->as_MachCall();
  1222           // This destination address is NOT PC-relative
  1223           mcall->method_set((intptr_t)mcall->entry_point());
  1225           // Save the return address
  1226           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1228           if (!mcall->is_safepoint_node()) {
  1229             is_mcall = false;
  1230             is_sfn = false;
  1234         // sfn will be valid whenever mcall is valid now because of inheritance
  1235         if( is_sfn || is_mcall ) {
  1237           // Handle special safepoint nodes for synchronization
  1238           if( !is_mcall ) {
  1239             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1240             // !!!!! Stubs only need an oopmap right now, so bail out
  1241             if( sfn->jvms()->method() == NULL) {
  1242               // Write the oopmap directly to the code blob??!!
  1243 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1244               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1245 #             endif
  1246               continue;
  1248           } // End synchronization
  1250           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1251                                            current_offset);
  1252           Process_OopMap_Node(mach, current_offset);
  1253         } // End if safepoint
  1255         // If this is a null check, then add the start of the previous instruction to the list
  1256         else if( mach->is_MachNullCheck() ) {
  1257           inct_starts[inct_cnt++] = previous_offset;
  1260         // If this is a branch, then fill in the label with the target BB's label
  1261         else if ( mach->is_Branch() ) {
  1263           if ( mach->ideal_Opcode() == Op_Jump ) {
  1264             for (uint h = 0; h < b->_num_succs; h++ ) {
  1265               Block* succs_block = b->_succs[h];
  1266               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1267                 Node* jpn = succs_block->pred(j);
  1268                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1269                   uint block_num = succs_block->non_connector()->_pre_order;
  1270                   Label *blkLabel = &blk_labels[block_num];
  1271                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1275           } else {
  1276             // For Branchs
  1277             // This requires the TRUE branch target be in succs[0]
  1278             uint block_num = b->non_connector_successor(0)->_pre_order;
  1279             mach->label_set( blk_labels[block_num], block_num );
  1283 #ifdef ASSERT
  1284         // Check that oop-store precedes the card-mark
  1285         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1286           uint storeCM_idx = j;
  1287           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1288           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1289           uint i4;
  1290           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1291             if( b->_nodes[i4] == oop_store ) break;
  1293           // Note: This test can provide a false failure if other precedence
  1294           // edges have been added to the storeCMNode.
  1295           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1297 #endif
  1299         else if( !n->is_Proj() ) {
  1300           // Remember the beginning of the previous instruction, in case
  1301           // it's followed by a flag-kill and a null-check.  Happens on
  1302           // Intel all the time, with add-to-memory kind of opcodes.
  1303           previous_offset = current_offset;
  1307       // Verify that there is sufficient space remaining
  1308       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1309       if (cb->blob() == NULL) {
  1310         turn_off_compiler(this);
  1311         return;
  1314       // Save the offset for the listing
  1315 #ifndef PRODUCT
  1316       if( node_offsets && n->_idx < node_offset_limit )
  1317         node_offsets[n->_idx] = cb->code_size();
  1318 #endif
  1320       // "Normal" instruction case
  1321       n->emit(*cb, _regalloc);
  1322       current_offset  = cb->code_size();
  1323       non_safepoints.observe_instruction(n, current_offset);
  1325       // mcall is last "call" that can be a safepoint
  1326       // record it so we can see if a poll will directly follow it
  1327       // in which case we'll need a pad to make the PcDesc sites unique
  1328       // see  5010568. This can be slightly inaccurate but conservative
  1329       // in the case that return address is not actually at current_offset.
  1330       // This is a small price to pay.
  1332       if (is_mcall) {
  1333         last_call_offset = current_offset;
  1336       // See if this instruction has a delay slot
  1337       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1338         assert(delay_slot != NULL, "expecting delay slot node");
  1340         // Back up 1 instruction
  1341         cb->set_code_end(
  1342           cb->code_end()-Pipeline::instr_unit_size());
  1344         // Save the offset for the listing
  1345 #ifndef PRODUCT
  1346         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1347           node_offsets[delay_slot->_idx] = cb->code_size();
  1348 #endif
  1350         // Support a SafePoint in the delay slot
  1351         if( delay_slot->is_MachSafePoint() ) {
  1352           MachNode *mach = delay_slot->as_Mach();
  1353           // !!!!! Stubs only need an oopmap right now, so bail out
  1354           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1355             // Write the oopmap directly to the code blob??!!
  1356 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1357             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1358 #           endif
  1359             delay_slot = NULL;
  1360             continue;
  1363           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1364           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1365                                            adjusted_offset);
  1366           // Generate an OopMap entry
  1367           Process_OopMap_Node(mach, adjusted_offset);
  1370         // Insert the delay slot instruction
  1371         delay_slot->emit(*cb, _regalloc);
  1373         // Don't reuse it
  1374         delay_slot = NULL;
  1377     } // End for all instructions in block
  1379     // If the next block is the top of a loop, pad this block out to align
  1380     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1381     if( i<_cfg->_num_blocks-1 ) {
  1382       Block *nb = _cfg->_blocks[i+1];
  1383       uint padding = nb->alignment_padding(current_offset);
  1384       if( padding > 0 ) {
  1385         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1386         b->_nodes.insert( b->_nodes.size(), nop );
  1387         _cfg->_bbs.map( nop->_idx, b );
  1388         nop->emit(*cb, _regalloc);
  1389         current_offset = cb->code_size();
  1393   } // End of for all blocks
  1395   non_safepoints.flush_at_end();
  1397   // Offset too large?
  1398   if (failing())  return;
  1400   // Define a pseudo-label at the end of the code
  1401   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1403   // Compute the size of the first block
  1404   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1406   assert(cb->code_size() < 500000, "method is unreasonably large");
  1408   // ------------------
  1410 #ifndef PRODUCT
  1411   // Information on the size of the method, without the extraneous code
  1412   Scheduling::increment_method_size(cb->code_size());
  1413 #endif
  1415   // ------------------
  1416   // Fill in exception table entries.
  1417   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1419   // Only java methods have exception handlers and deopt handlers
  1420   if (_method) {
  1421     // Emit the exception handler code.
  1422     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1423     // Emit the deopt handler code.
  1424     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1427   // One last check for failed CodeBuffer::expand:
  1428   if (cb->blob() == NULL) {
  1429     turn_off_compiler(this);
  1430     return;
  1433 #ifndef PRODUCT
  1434   // Dump the assembly code, including basic-block numbers
  1435   if (print_assembly()) {
  1436     ttyLocker ttyl;  // keep the following output all in one block
  1437     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1438       // This output goes directly to the tty, not the compiler log.
  1439       // To enable tools to match it up with the compilation activity,
  1440       // be sure to tag this tty output with the compile ID.
  1441       if (xtty != NULL) {
  1442         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1443                    is_osr_compilation()    ? " compile_kind='osr'" :
  1444                    "");
  1446       if (method() != NULL) {
  1447         method()->print_oop();
  1448         print_codes();
  1450       dump_asm(node_offsets, node_offset_limit);
  1451       if (xtty != NULL) {
  1452         xtty->tail("opto_assembly");
  1456 #endif
  1460 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1461   _inc_table.set_size(cnt);
  1463   uint inct_cnt = 0;
  1464   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1465     Block *b = _cfg->_blocks[i];
  1466     Node *n = NULL;
  1467     int j;
  1469     // Find the branch; ignore trailing NOPs.
  1470     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1471       n = b->_nodes[j];
  1472       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1473         break;
  1476     // If we didn't find anything, continue
  1477     if( j < 0 ) continue;
  1479     // Compute ExceptionHandlerTable subtable entry and add it
  1480     // (skip empty blocks)
  1481     if( n->is_Catch() ) {
  1483       // Get the offset of the return from the call
  1484       uint call_return = call_returns[b->_pre_order];
  1485 #ifdef ASSERT
  1486       assert( call_return > 0, "no call seen for this basic block" );
  1487       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1488       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1489 #endif
  1490       // last instruction is a CatchNode, find it's CatchProjNodes
  1491       int nof_succs = b->_num_succs;
  1492       // allocate space
  1493       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1494       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1495       // iterate through all successors
  1496       for (int j = 0; j < nof_succs; j++) {
  1497         Block* s = b->_succs[j];
  1498         bool found_p = false;
  1499         for( uint k = 1; k < s->num_preds(); k++ ) {
  1500           Node *pk = s->pred(k);
  1501           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1502             const CatchProjNode* p = pk->as_CatchProj();
  1503             found_p = true;
  1504             // add the corresponding handler bci & pco information
  1505             if( p->_con != CatchProjNode::fall_through_index ) {
  1506               // p leads to an exception handler (and is not fall through)
  1507               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1508               // no duplicates, please
  1509               if( !handler_bcis.contains(p->handler_bci()) ) {
  1510                 uint block_num = s->non_connector()->_pre_order;
  1511                 handler_bcis.append(p->handler_bci());
  1512                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1517         assert(found_p, "no matching predecessor found");
  1518         // Note:  Due to empty block removal, one block may have
  1519         // several CatchProj inputs, from the same Catch.
  1522       // Set the offset of the return from the call
  1523       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1524       continue;
  1527     // Handle implicit null exception table updates
  1528     if( n->is_MachNullCheck() ) {
  1529       uint block_num = b->non_connector_successor(0)->_pre_order;
  1530       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1531       continue;
  1533   } // End of for all blocks fill in exception table entries
  1536 // Static Variables
  1537 #ifndef PRODUCT
  1538 uint Scheduling::_total_nop_size = 0;
  1539 uint Scheduling::_total_method_size = 0;
  1540 uint Scheduling::_total_branches = 0;
  1541 uint Scheduling::_total_unconditional_delays = 0;
  1542 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1543 #endif
  1545 // Initializer for class Scheduling
  1547 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1548   : _arena(arena),
  1549     _cfg(compile.cfg()),
  1550     _bbs(compile.cfg()->_bbs),
  1551     _regalloc(compile.regalloc()),
  1552     _reg_node(arena),
  1553     _bundle_instr_count(0),
  1554     _bundle_cycle_number(0),
  1555     _scheduled(arena),
  1556     _available(arena),
  1557     _next_node(NULL),
  1558     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1559     _pinch_free_list(arena)
  1560 #ifndef PRODUCT
  1561   , _branches(0)
  1562   , _unconditional_delays(0)
  1563 #endif
  1565   // Create a MachNopNode
  1566   _nop = new (&compile) MachNopNode();
  1568   // Now that the nops are in the array, save the count
  1569   // (but allow entries for the nops)
  1570   _node_bundling_limit = compile.unique();
  1571   uint node_max = _regalloc->node_regs_max_index();
  1573   compile.set_node_bundling_limit(_node_bundling_limit);
  1575   // This one is persistent within the Compile class
  1576   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1578   // Allocate space for fixed-size arrays
  1579   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1580   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1581   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1583   // Clear the arrays
  1584   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1585   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1586   memset(_uses,               0, node_max * sizeof(short));
  1587   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1589   // Clear the bundling information
  1590   memcpy(_bundle_use_elements,
  1591     Pipeline_Use::elaborated_elements,
  1592     sizeof(Pipeline_Use::elaborated_elements));
  1594   // Get the last node
  1595   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1597   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1600 #ifndef PRODUCT
  1601 // Scheduling destructor
  1602 Scheduling::~Scheduling() {
  1603   _total_branches             += _branches;
  1604   _total_unconditional_delays += _unconditional_delays;
  1606 #endif
  1608 // Step ahead "i" cycles
  1609 void Scheduling::step(uint i) {
  1611   Bundle *bundle = node_bundling(_next_node);
  1612   bundle->set_starts_bundle();
  1614   // Update the bundle record, but leave the flags information alone
  1615   if (_bundle_instr_count > 0) {
  1616     bundle->set_instr_count(_bundle_instr_count);
  1617     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1620   // Update the state information
  1621   _bundle_instr_count = 0;
  1622   _bundle_cycle_number += i;
  1623   _bundle_use.step(i);
  1626 void Scheduling::step_and_clear() {
  1627   Bundle *bundle = node_bundling(_next_node);
  1628   bundle->set_starts_bundle();
  1630   // Update the bundle record
  1631   if (_bundle_instr_count > 0) {
  1632     bundle->set_instr_count(_bundle_instr_count);
  1633     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1635     _bundle_cycle_number += 1;
  1638   // Clear the bundling information
  1639   _bundle_instr_count = 0;
  1640   _bundle_use.reset();
  1642   memcpy(_bundle_use_elements,
  1643     Pipeline_Use::elaborated_elements,
  1644     sizeof(Pipeline_Use::elaborated_elements));
  1647 //------------------------------ScheduleAndBundle------------------------------
  1648 // Perform instruction scheduling and bundling over the sequence of
  1649 // instructions in backwards order.
  1650 void Compile::ScheduleAndBundle() {
  1652   // Don't optimize this if it isn't a method
  1653   if (!_method)
  1654     return;
  1656   // Don't optimize this if scheduling is disabled
  1657   if (!do_scheduling())
  1658     return;
  1660   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1662   // Create a data structure for all the scheduling information
  1663   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1665   // Walk backwards over each basic block, computing the needed alignment
  1666   // Walk over all the basic blocks
  1667   scheduling.DoScheduling();
  1670 //------------------------------ComputeLocalLatenciesForward-------------------
  1671 // Compute the latency of all the instructions.  This is fairly simple,
  1672 // because we already have a legal ordering.  Walk over the instructions
  1673 // from first to last, and compute the latency of the instruction based
  1674 // on the latency of the preceding instruction(s).
  1675 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1676 #ifndef PRODUCT
  1677   if (_cfg->C->trace_opto_output())
  1678     tty->print("# -> ComputeLocalLatenciesForward\n");
  1679 #endif
  1681   // Walk over all the schedulable instructions
  1682   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1684     // This is a kludge, forcing all latency calculations to start at 1.
  1685     // Used to allow latency 0 to force an instruction to the beginning
  1686     // of the bb
  1687     uint latency = 1;
  1688     Node *use = bb->_nodes[j];
  1689     uint nlen = use->len();
  1691     // Walk over all the inputs
  1692     for ( uint k=0; k < nlen; k++ ) {
  1693       Node *def = use->in(k);
  1694       if (!def)
  1695         continue;
  1697       uint l = _node_latency[def->_idx] + use->latency(k);
  1698       if (latency < l)
  1699         latency = l;
  1702     _node_latency[use->_idx] = latency;
  1704 #ifndef PRODUCT
  1705     if (_cfg->C->trace_opto_output()) {
  1706       tty->print("# latency %4d: ", latency);
  1707       use->dump();
  1709 #endif
  1712 #ifndef PRODUCT
  1713   if (_cfg->C->trace_opto_output())
  1714     tty->print("# <- ComputeLocalLatenciesForward\n");
  1715 #endif
  1717 } // end ComputeLocalLatenciesForward
  1719 // See if this node fits into the present instruction bundle
  1720 bool Scheduling::NodeFitsInBundle(Node *n) {
  1721   uint n_idx = n->_idx;
  1723   // If this is the unconditional delay instruction, then it fits
  1724   if (n == _unconditional_delay_slot) {
  1725 #ifndef PRODUCT
  1726     if (_cfg->C->trace_opto_output())
  1727       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1728 #endif
  1729     return (true);
  1732   // If the node cannot be scheduled this cycle, skip it
  1733   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1734 #ifndef PRODUCT
  1735     if (_cfg->C->trace_opto_output())
  1736       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1737         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1738 #endif
  1739     return (false);
  1742   const Pipeline *node_pipeline = n->pipeline();
  1744   uint instruction_count = node_pipeline->instructionCount();
  1745   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1746     instruction_count = 0;
  1747   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1748     instruction_count++;
  1750   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1751 #ifndef PRODUCT
  1752     if (_cfg->C->trace_opto_output())
  1753       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1754         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1755 #endif
  1756     return (false);
  1759   // Don't allow non-machine nodes to be handled this way
  1760   if (!n->is_Mach() && instruction_count == 0)
  1761     return (false);
  1763   // See if there is any overlap
  1764   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1766   if (delay > 0) {
  1767 #ifndef PRODUCT
  1768     if (_cfg->C->trace_opto_output())
  1769       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1770 #endif
  1771     return false;
  1774 #ifndef PRODUCT
  1775   if (_cfg->C->trace_opto_output())
  1776     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1777 #endif
  1779   return true;
  1782 Node * Scheduling::ChooseNodeToBundle() {
  1783   uint siz = _available.size();
  1785   if (siz == 0) {
  1787 #ifndef PRODUCT
  1788     if (_cfg->C->trace_opto_output())
  1789       tty->print("#   ChooseNodeToBundle: NULL\n");
  1790 #endif
  1791     return (NULL);
  1794   // Fast path, if only 1 instruction in the bundle
  1795   if (siz == 1) {
  1796 #ifndef PRODUCT
  1797     if (_cfg->C->trace_opto_output()) {
  1798       tty->print("#   ChooseNodeToBundle (only 1): ");
  1799       _available[0]->dump();
  1801 #endif
  1802     return (_available[0]);
  1805   // Don't bother, if the bundle is already full
  1806   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1807     for ( uint i = 0; i < siz; i++ ) {
  1808       Node *n = _available[i];
  1810       // Skip projections, we'll handle them another way
  1811       if (n->is_Proj())
  1812         continue;
  1814       // This presupposed that instructions are inserted into the
  1815       // available list in a legality order; i.e. instructions that
  1816       // must be inserted first are at the head of the list
  1817       if (NodeFitsInBundle(n)) {
  1818 #ifndef PRODUCT
  1819         if (_cfg->C->trace_opto_output()) {
  1820           tty->print("#   ChooseNodeToBundle: ");
  1821           n->dump();
  1823 #endif
  1824         return (n);
  1829   // Nothing fits in this bundle, choose the highest priority
  1830 #ifndef PRODUCT
  1831   if (_cfg->C->trace_opto_output()) {
  1832     tty->print("#   ChooseNodeToBundle: ");
  1833     _available[0]->dump();
  1835 #endif
  1837   return _available[0];
  1840 //------------------------------AddNodeToAvailableList-------------------------
  1841 void Scheduling::AddNodeToAvailableList(Node *n) {
  1842   assert( !n->is_Proj(), "projections never directly made available" );
  1843 #ifndef PRODUCT
  1844   if (_cfg->C->trace_opto_output()) {
  1845     tty->print("#   AddNodeToAvailableList: ");
  1846     n->dump();
  1848 #endif
  1850   int latency = _current_latency[n->_idx];
  1852   // Insert in latency order (insertion sort)
  1853   uint i;
  1854   for ( i=0; i < _available.size(); i++ )
  1855     if (_current_latency[_available[i]->_idx] > latency)
  1856       break;
  1858   // Special Check for compares following branches
  1859   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1860     int op = n->as_Mach()->ideal_Opcode();
  1861     Node *last = _scheduled[0];
  1862     if( last->is_MachIf() && last->in(1) == n &&
  1863         ( op == Op_CmpI ||
  1864           op == Op_CmpU ||
  1865           op == Op_CmpP ||
  1866           op == Op_CmpF ||
  1867           op == Op_CmpD ||
  1868           op == Op_CmpL ) ) {
  1870       // Recalculate position, moving to front of same latency
  1871       for ( i=0 ; i < _available.size(); i++ )
  1872         if (_current_latency[_available[i]->_idx] >= latency)
  1873           break;
  1877   // Insert the node in the available list
  1878   _available.insert(i, n);
  1880 #ifndef PRODUCT
  1881   if (_cfg->C->trace_opto_output())
  1882     dump_available();
  1883 #endif
  1886 //------------------------------DecrementUseCounts-----------------------------
  1887 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1888   for ( uint i=0; i < n->len(); i++ ) {
  1889     Node *def = n->in(i);
  1890     if (!def) continue;
  1891     if( def->is_Proj() )        // If this is a machine projection, then
  1892       def = def->in(0);         // propagate usage thru to the base instruction
  1894     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1895       continue;
  1897     // Compute the latency
  1898     uint l = _bundle_cycle_number + n->latency(i);
  1899     if (_current_latency[def->_idx] < l)
  1900       _current_latency[def->_idx] = l;
  1902     // If this does not have uses then schedule it
  1903     if ((--_uses[def->_idx]) == 0)
  1904       AddNodeToAvailableList(def);
  1908 //------------------------------AddNodeToBundle--------------------------------
  1909 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1910 #ifndef PRODUCT
  1911   if (_cfg->C->trace_opto_output()) {
  1912     tty->print("#   AddNodeToBundle: ");
  1913     n->dump();
  1915 #endif
  1917   // Remove this from the available list
  1918   uint i;
  1919   for (i = 0; i < _available.size(); i++)
  1920     if (_available[i] == n)
  1921       break;
  1922   assert(i < _available.size(), "entry in _available list not found");
  1923   _available.remove(i);
  1925   // See if this fits in the current bundle
  1926   const Pipeline *node_pipeline = n->pipeline();
  1927   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  1929   // Check for instructions to be placed in the delay slot. We
  1930   // do this before we actually schedule the current instruction,
  1931   // because the delay slot follows the current instruction.
  1932   if (Pipeline::_branch_has_delay_slot &&
  1933       node_pipeline->hasBranchDelay() &&
  1934       !_unconditional_delay_slot) {
  1936     uint siz = _available.size();
  1938     // Conditional branches can support an instruction that
  1939     // is unconditionally executed and not dependent by the
  1940     // branch, OR a conditionally executed instruction if
  1941     // the branch is taken.  In practice, this means that
  1942     // the first instruction at the branch target is
  1943     // copied to the delay slot, and the branch goes to
  1944     // the instruction after that at the branch target
  1945     if ( n->is_Mach() && n->is_Branch() ) {
  1947       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  1948       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  1950 #ifndef PRODUCT
  1951       _branches++;
  1952 #endif
  1954       // At least 1 instruction is on the available list
  1955       // that is not dependent on the branch
  1956       for (uint i = 0; i < siz; i++) {
  1957         Node *d = _available[i];
  1958         const Pipeline *avail_pipeline = d->pipeline();
  1960         // Don't allow safepoints in the branch shadow, that will
  1961         // cause a number of difficulties
  1962         if ( avail_pipeline->instructionCount() == 1 &&
  1963             !avail_pipeline->hasMultipleBundles() &&
  1964             !avail_pipeline->hasBranchDelay() &&
  1965             Pipeline::instr_has_unit_size() &&
  1966             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  1967             NodeFitsInBundle(d) &&
  1968             !node_bundling(d)->used_in_delay()) {
  1970           if (d->is_Mach() && !d->is_MachSafePoint()) {
  1971             // A node that fits in the delay slot was found, so we need to
  1972             // set the appropriate bits in the bundle pipeline information so
  1973             // that it correctly indicates resource usage.  Later, when we
  1974             // attempt to add this instruction to the bundle, we will skip
  1975             // setting the resource usage.
  1976             _unconditional_delay_slot = d;
  1977             node_bundling(n)->set_use_unconditional_delay();
  1978             node_bundling(d)->set_used_in_unconditional_delay();
  1979             _bundle_use.add_usage(avail_pipeline->resourceUse());
  1980             _current_latency[d->_idx] = _bundle_cycle_number;
  1981             _next_node = d;
  1982             ++_bundle_instr_count;
  1983 #ifndef PRODUCT
  1984             _unconditional_delays++;
  1985 #endif
  1986             break;
  1992     // No delay slot, add a nop to the usage
  1993     if (!_unconditional_delay_slot) {
  1994       // See if adding an instruction in the delay slot will overflow
  1995       // the bundle.
  1996       if (!NodeFitsInBundle(_nop)) {
  1997 #ifndef PRODUCT
  1998         if (_cfg->C->trace_opto_output())
  1999           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2000 #endif
  2001         step(1);
  2004       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2005       _next_node = _nop;
  2006       ++_bundle_instr_count;
  2009     // See if the instruction in the delay slot requires a
  2010     // step of the bundles
  2011     if (!NodeFitsInBundle(n)) {
  2012 #ifndef PRODUCT
  2013         if (_cfg->C->trace_opto_output())
  2014           tty->print("#  *** STEP(branch won't fit) ***\n");
  2015 #endif
  2016         // Update the state information
  2017         _bundle_instr_count = 0;
  2018         _bundle_cycle_number += 1;
  2019         _bundle_use.step(1);
  2023   // Get the number of instructions
  2024   uint instruction_count = node_pipeline->instructionCount();
  2025   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2026     instruction_count = 0;
  2028   // Compute the latency information
  2029   uint delay = 0;
  2031   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2032     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2033     if (relative_latency < 0)
  2034       relative_latency = 0;
  2036     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2038     // Does not fit in this bundle, start a new one
  2039     if (delay > 0) {
  2040       step(delay);
  2042 #ifndef PRODUCT
  2043       if (_cfg->C->trace_opto_output())
  2044         tty->print("#  *** STEP(%d) ***\n", delay);
  2045 #endif
  2049   // If this was placed in the delay slot, ignore it
  2050   if (n != _unconditional_delay_slot) {
  2052     if (delay == 0) {
  2053       if (node_pipeline->hasMultipleBundles()) {
  2054 #ifndef PRODUCT
  2055         if (_cfg->C->trace_opto_output())
  2056           tty->print("#  *** STEP(multiple instructions) ***\n");
  2057 #endif
  2058         step(1);
  2061       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2062 #ifndef PRODUCT
  2063         if (_cfg->C->trace_opto_output())
  2064           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2065             instruction_count + _bundle_instr_count,
  2066             Pipeline::_max_instrs_per_cycle);
  2067 #endif
  2068         step(1);
  2072     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2073       _bundle_instr_count++;
  2075     // Set the node's latency
  2076     _current_latency[n->_idx] = _bundle_cycle_number;
  2078     // Now merge the functional unit information
  2079     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2080       _bundle_use.add_usage(node_usage);
  2082     // Increment the number of instructions in this bundle
  2083     _bundle_instr_count += instruction_count;
  2085     // Remember this node for later
  2086     if (n->is_Mach())
  2087       _next_node = n;
  2090   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2091   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2092   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2093   // into the block.  All other scheduled nodes get put in the schedule here.
  2094   int op = n->Opcode();
  2095   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2096       (op != Op_Node &&         // Not an unused antidepedence node and
  2097        // not an unallocated boxlock
  2098        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2100     // Push any trailing projections
  2101     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2102       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2103         Node *foi = n->fast_out(i);
  2104         if( foi->is_Proj() )
  2105           _scheduled.push(foi);
  2109     // Put the instruction in the schedule list
  2110     _scheduled.push(n);
  2113 #ifndef PRODUCT
  2114   if (_cfg->C->trace_opto_output())
  2115     dump_available();
  2116 #endif
  2118   // Walk all the definitions, decrementing use counts, and
  2119   // if a definition has a 0 use count, place it in the available list.
  2120   DecrementUseCounts(n,bb);
  2123 //------------------------------ComputeUseCount--------------------------------
  2124 // This method sets the use count within a basic block.  We will ignore all
  2125 // uses outside the current basic block.  As we are doing a backwards walk,
  2126 // any node we reach that has a use count of 0 may be scheduled.  This also
  2127 // avoids the problem of cyclic references from phi nodes, as long as phi
  2128 // nodes are at the front of the basic block.  This method also initializes
  2129 // the available list to the set of instructions that have no uses within this
  2130 // basic block.
  2131 void Scheduling::ComputeUseCount(const Block *bb) {
  2132 #ifndef PRODUCT
  2133   if (_cfg->C->trace_opto_output())
  2134     tty->print("# -> ComputeUseCount\n");
  2135 #endif
  2137   // Clear the list of available and scheduled instructions, just in case
  2138   _available.clear();
  2139   _scheduled.clear();
  2141   // No delay slot specified
  2142   _unconditional_delay_slot = NULL;
  2144 #ifdef ASSERT
  2145   for( uint i=0; i < bb->_nodes.size(); i++ )
  2146     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2147 #endif
  2149   // Force the _uses count to never go to zero for unscheduable pieces
  2150   // of the block
  2151   for( uint k = 0; k < _bb_start; k++ )
  2152     _uses[bb->_nodes[k]->_idx] = 1;
  2153   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2154     _uses[bb->_nodes[l]->_idx] = 1;
  2156   // Iterate backwards over the instructions in the block.  Don't count the
  2157   // branch projections at end or the block header instructions.
  2158   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2159     Node *n = bb->_nodes[j];
  2160     if( n->is_Proj() ) continue; // Projections handled another way
  2162     // Account for all uses
  2163     for ( uint k = 0; k < n->len(); k++ ) {
  2164       Node *inp = n->in(k);
  2165       if (!inp) continue;
  2166       assert(inp != n, "no cycles allowed" );
  2167       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2168         if( inp->is_Proj() )    // Skip through Proj's
  2169           inp = inp->in(0);
  2170         ++_uses[inp->_idx];     // Count 1 block-local use
  2174     // If this instruction has a 0 use count, then it is available
  2175     if (!_uses[n->_idx]) {
  2176       _current_latency[n->_idx] = _bundle_cycle_number;
  2177       AddNodeToAvailableList(n);
  2180 #ifndef PRODUCT
  2181     if (_cfg->C->trace_opto_output()) {
  2182       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2183       n->dump();
  2185 #endif
  2188 #ifndef PRODUCT
  2189   if (_cfg->C->trace_opto_output())
  2190     tty->print("# <- ComputeUseCount\n");
  2191 #endif
  2194 // This routine performs scheduling on each basic block in reverse order,
  2195 // using instruction latencies and taking into account function unit
  2196 // availability.
  2197 void Scheduling::DoScheduling() {
  2198 #ifndef PRODUCT
  2199   if (_cfg->C->trace_opto_output())
  2200     tty->print("# -> DoScheduling\n");
  2201 #endif
  2203   Block *succ_bb = NULL;
  2204   Block *bb;
  2206   // Walk over all the basic blocks in reverse order
  2207   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2208     bb = _cfg->_blocks[i];
  2210 #ifndef PRODUCT
  2211     if (_cfg->C->trace_opto_output()) {
  2212       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2213       for (uint j = 0; j < bb->_nodes.size(); j++)
  2214         bb->_nodes[j]->dump();
  2216 #endif
  2218     // On the head node, skip processing
  2219     if( bb == _cfg->_broot )
  2220       continue;
  2222     // Skip empty, connector blocks
  2223     if (bb->is_connector())
  2224       continue;
  2226     // If the following block is not the sole successor of
  2227     // this one, then reset the pipeline information
  2228     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2229 #ifndef PRODUCT
  2230       if (_cfg->C->trace_opto_output()) {
  2231         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2232                    _next_node->_idx, _bundle_instr_count);
  2234 #endif
  2235       step_and_clear();
  2238     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2239     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2240     _bb_end = bb->_nodes.size()-1;
  2241     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2242       Node *n = bb->_nodes[_bb_start];
  2243       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2244       // Also, MachIdealNodes do not get scheduled
  2245       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2246       MachNode *mach = n->as_Mach();
  2247       int iop = mach->ideal_Opcode();
  2248       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2249       if( iop == Op_Con ) continue;      // Do not schedule Top
  2250       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2251           mach->pipeline() == MachNode::pipeline_class() &&
  2252           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2253         continue;
  2254       break;                    // Funny loop structure to be sure...
  2256     // Compute last "interesting" instruction in block - last instruction we
  2257     // might schedule.  _bb_end points just after last schedulable inst.  We
  2258     // normally schedule conditional branches (despite them being forced last
  2259     // in the block), because they have delay slots we can fill.  Calls all
  2260     // have their delay slots filled in the template expansions, so we don't
  2261     // bother scheduling them.
  2262     Node *last = bb->_nodes[_bb_end];
  2263     if( last->is_Catch() ||
  2264        // Exclude unreachable path case when Halt node is in a separate block.
  2265        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2266       // There must be a prior call.  Skip it.
  2267       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2268         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2270     } else if( last->is_MachNullCheck() ) {
  2271       // Backup so the last null-checked memory instruction is
  2272       // outside the schedulable range. Skip over the nullcheck,
  2273       // projection, and the memory nodes.
  2274       Node *mem = last->in(1);
  2275       do {
  2276         _bb_end--;
  2277       } while (mem != bb->_nodes[_bb_end]);
  2278     } else {
  2279       // Set _bb_end to point after last schedulable inst.
  2280       _bb_end++;
  2283     assert( _bb_start <= _bb_end, "inverted block ends" );
  2285     // Compute the register antidependencies for the basic block
  2286     ComputeRegisterAntidependencies(bb);
  2287     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2289     // Compute intra-bb latencies for the nodes
  2290     ComputeLocalLatenciesForward(bb);
  2292     // Compute the usage within the block, and set the list of all nodes
  2293     // in the block that have no uses within the block.
  2294     ComputeUseCount(bb);
  2296     // Schedule the remaining instructions in the block
  2297     while ( _available.size() > 0 ) {
  2298       Node *n = ChooseNodeToBundle();
  2299       AddNodeToBundle(n,bb);
  2302     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2303 #ifdef ASSERT
  2304     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2305       Node *n = bb->_nodes[l];
  2306       uint m;
  2307       for( m = 0; m < _bb_end-_bb_start; m++ )
  2308         if( _scheduled[m] == n )
  2309           break;
  2310       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2312 #endif
  2314     // Now copy the instructions (in reverse order) back to the block
  2315     for ( uint k = _bb_start; k < _bb_end; k++ )
  2316       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2318 #ifndef PRODUCT
  2319     if (_cfg->C->trace_opto_output()) {
  2320       tty->print("#  Schedule BB#%03d (final)\n", i);
  2321       uint current = 0;
  2322       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2323         Node *n = bb->_nodes[j];
  2324         if( valid_bundle_info(n) ) {
  2325           Bundle *bundle = node_bundling(n);
  2326           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2327             tty->print("*** Bundle: ");
  2328             bundle->dump();
  2330           n->dump();
  2334 #endif
  2335 #ifdef ASSERT
  2336   verify_good_schedule(bb,"after block local scheduling");
  2337 #endif
  2340 #ifndef PRODUCT
  2341   if (_cfg->C->trace_opto_output())
  2342     tty->print("# <- DoScheduling\n");
  2343 #endif
  2345   // Record final node-bundling array location
  2346   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2348 } // end DoScheduling
  2350 //------------------------------verify_good_schedule---------------------------
  2351 // Verify that no live-range used in the block is killed in the block by a
  2352 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2354 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2355 static bool edge_from_to( Node *from, Node *to ) {
  2356   for( uint i=0; i<from->len(); i++ )
  2357     if( from->in(i) == to )
  2358       return true;
  2359   return false;
  2362 #ifdef ASSERT
  2363 //------------------------------verify_do_def----------------------------------
  2364 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2365   // Check for bad kills
  2366   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2367     Node *prior_use = _reg_node[def];
  2368     if( prior_use && !edge_from_to(prior_use,n) ) {
  2369       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2370       n->dump();
  2371       tty->print_cr("...");
  2372       prior_use->dump();
  2373       assert_msg(edge_from_to(prior_use,n),msg);
  2375     _reg_node.map(def,NULL); // Kill live USEs
  2379 //------------------------------verify_good_schedule---------------------------
  2380 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2382   // Zap to something reasonable for the verify code
  2383   _reg_node.clear();
  2385   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2386   // kill a live value (other than the one it's supposed to).  Add each
  2387   // USE to the live set.
  2388   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2389     Node *n = b->_nodes[i];
  2390     int n_op = n->Opcode();
  2391     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2392       // Fat-proj kills a slew of registers
  2393       RegMask rm = n->out_RegMask();// Make local copy
  2394       while( rm.is_NotEmpty() ) {
  2395         OptoReg::Name kill = rm.find_first_elem();
  2396         rm.Remove(kill);
  2397         verify_do_def( n, kill, msg );
  2399     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2400       // Get DEF'd registers the normal way
  2401       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2402       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2405     // Now make all USEs live
  2406     for( uint i=1; i<n->req(); i++ ) {
  2407       Node *def = n->in(i);
  2408       assert(def != 0, "input edge required");
  2409       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2410       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2411       if( OptoReg::is_valid(reg_lo) ) {
  2412         assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
  2413         _reg_node.map(reg_lo,n);
  2415       if( OptoReg::is_valid(reg_hi) ) {
  2416         assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
  2417         _reg_node.map(reg_hi,n);
  2423   // Zap to something reasonable for the Antidependence code
  2424   _reg_node.clear();
  2426 #endif
  2428 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2429 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2430   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2431     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2432     from = from->in(0);
  2434   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2435       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2436     from->add_prec(to);
  2439 //------------------------------anti_do_def------------------------------------
  2440 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2441   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2442     return;
  2444   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2445   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2446       is_def ) {    // Check for a true def (not a kill)
  2447     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2448     return;
  2451   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2452   debug_only( def = (Node*)0xdeadbeef; )
  2454   // After some number of kills there _may_ be a later def
  2455   Node *later_def = NULL;
  2457   // Finding a kill requires a real pinch-point.
  2458   // Check for not already having a pinch-point.
  2459   // Pinch points are Op_Node's.
  2460   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2461     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2462     if ( _pinch_free_list.size() > 0) {
  2463       pinch = _pinch_free_list.pop();
  2464     } else {
  2465       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2467     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2468       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2469       return;
  2471     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2472     _reg_node.map(def_reg,pinch); // Record pinch-point
  2473     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2474     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2475       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2476       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2477       later_def = NULL;           // and no later def
  2479     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2480   } else {                        // Else have valid pinch point
  2481     if( pinch->in(0) )            // If there is a later-def
  2482       later_def = pinch->in(0);   // Get it
  2485   // Add output-dependence edge from later def to kill
  2486   if( later_def )               // If there is some original def
  2487     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2489   // See if current kill is also a use, and so is forced to be the pinch-point.
  2490   if( pinch->Opcode() == Op_Node ) {
  2491     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2492     for( uint i=1; i<uses->req(); i++ ) {
  2493       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2494           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2495         // Yes, found a use/kill pinch-point
  2496         pinch->set_req(0,NULL);  //
  2497         pinch->replace_by(kill); // Move anti-dep edges up
  2498         pinch = kill;
  2499         _reg_node.map(def_reg,pinch);
  2500         return;
  2505   // Add edge from kill to pinch-point
  2506   add_prec_edge_from_to(kill,pinch);
  2509 //------------------------------anti_do_use------------------------------------
  2510 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2511   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2512     return;
  2513   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2514   // Check for no later def_reg/kill in block
  2515   if( pinch && _bbs[pinch->_idx] == b &&
  2516       // Use has to be block-local as well
  2517       _bbs[use->_idx] == b ) {
  2518     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2519         pinch->req() == 1 ) {   // pinch not yet in block?
  2520       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2521       // Insert the pinch-point in the block just after the last use
  2522       b->_nodes.insert(b->find_node(use)+1,pinch);
  2523       _bb_end++;                // Increase size scheduled region in block
  2526     add_prec_edge_from_to(pinch,use);
  2530 //------------------------------ComputeRegisterAntidependences-----------------
  2531 // We insert antidependences between the reads and following write of
  2532 // allocated registers to prevent illegal code motion. Hopefully, the
  2533 // number of added references should be fairly small, especially as we
  2534 // are only adding references within the current basic block.
  2535 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2537 #ifdef ASSERT
  2538   verify_good_schedule(b,"before block local scheduling");
  2539 #endif
  2541   // A valid schedule, for each register independently, is an endless cycle
  2542   // of: a def, then some uses (connected to the def by true dependencies),
  2543   // then some kills (defs with no uses), finally the cycle repeats with a new
  2544   // def.  The uses are allowed to float relative to each other, as are the
  2545   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2546   // antidependencies between all uses of a single def and all kills that
  2547   // follow, up to the next def.  More edges are redundant, because later defs
  2548   // & kills are already serialized with true or antidependencies.  To keep
  2549   // the edge count down, we add a 'pinch point' node if there's more than
  2550   // one use or more than one kill/def.
  2552   // We add dependencies in one bottom-up pass.
  2554   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2556   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2557   // register.  If not, we record the DEF/KILL in _reg_node, the
  2558   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2559   // "pinch point", a new Node that's in the graph but not in the block.
  2560   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2561   // We put the pinch point in _reg_node.  If there's already a pinch point
  2562   // we merely add an edge from the current DEF/KILL to the pinch point.
  2564   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2565   // put an edge from the pinch point to the USE.
  2567   // To be expedient, the _reg_node array is pre-allocated for the whole
  2568   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2569   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2570   // block.  Leftover node from some prior block is treated like a NULL (no
  2571   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2572   // it being in the current block.
  2573   bool fat_proj_seen = false;
  2574   uint last_safept = _bb_end-1;
  2575   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2576   Node* last_safept_node = end_node;
  2577   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2578     Node *n = b->_nodes[i];
  2579     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2580     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2581       // Fat-proj kills a slew of registers
  2582       // This can add edges to 'n' and obscure whether or not it was a def,
  2583       // hence the is_def flag.
  2584       fat_proj_seen = true;
  2585       RegMask rm = n->out_RegMask();// Make local copy
  2586       while( rm.is_NotEmpty() ) {
  2587         OptoReg::Name kill = rm.find_first_elem();
  2588         rm.Remove(kill);
  2589         anti_do_def( b, n, kill, is_def );
  2591     } else {
  2592       // Get DEF'd registers the normal way
  2593       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2594       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2597     // Check each register used by this instruction for a following DEF/KILL
  2598     // that must occur afterward and requires an anti-dependence edge.
  2599     for( uint j=0; j<n->req(); j++ ) {
  2600       Node *def = n->in(j);
  2601       if( def ) {
  2602         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2603         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2604         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2607     // Do not allow defs of new derived values to float above GC
  2608     // points unless the base is definitely available at the GC point.
  2610     Node *m = b->_nodes[i];
  2612     // Add precedence edge from following safepoint to use of derived pointer
  2613     if( last_safept_node != end_node &&
  2614         m != last_safept_node) {
  2615       for (uint k = 1; k < m->req(); k++) {
  2616         const Type *t = m->in(k)->bottom_type();
  2617         if( t->isa_oop_ptr() &&
  2618             t->is_ptr()->offset() != 0 ) {
  2619           last_safept_node->add_prec( m );
  2620           break;
  2625     if( n->jvms() ) {           // Precedence edge from derived to safept
  2626       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2627       if( b->_nodes[last_safept] != last_safept_node ) {
  2628         last_safept = b->find_node(last_safept_node);
  2630       for( uint j=last_safept; j > i; j-- ) {
  2631         Node *mach = b->_nodes[j];
  2632         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2633           mach->add_prec( n );
  2635       last_safept = i;
  2636       last_safept_node = m;
  2640   if (fat_proj_seen) {
  2641     // Garbage collect pinch nodes that were not consumed.
  2642     // They are usually created by a fat kill MachProj for a call.
  2643     garbage_collect_pinch_nodes();
  2647 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2649 // Garbage collect pinch nodes for reuse by other blocks.
  2650 //
  2651 // The block scheduler's insertion of anti-dependence
  2652 // edges creates many pinch nodes when the block contains
  2653 // 2 or more Calls.  A pinch node is used to prevent a
  2654 // combinatorial explosion of edges.  If a set of kills for a
  2655 // register is anti-dependent on a set of uses (or defs), rather
  2656 // than adding an edge in the graph between each pair of kill
  2657 // and use (or def), a pinch is inserted between them:
  2658 //
  2659 //            use1   use2  use3
  2660 //                \   |   /
  2661 //                 \  |  /
  2662 //                  pinch
  2663 //                 /  |  \
  2664 //                /   |   \
  2665 //            kill1 kill2 kill3
  2666 //
  2667 // One pinch node is created per register killed when
  2668 // the second call is encountered during a backwards pass
  2669 // over the block.  Most of these pinch nodes are never
  2670 // wired into the graph because the register is never
  2671 // used or def'ed in the block.
  2672 //
  2673 void Scheduling::garbage_collect_pinch_nodes() {
  2674 #ifndef PRODUCT
  2675     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2676 #endif
  2677     int trace_cnt = 0;
  2678     for (uint k = 0; k < _reg_node.Size(); k++) {
  2679       Node* pinch = _reg_node[k];
  2680       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2681           // no predecence input edges
  2682           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2683         cleanup_pinch(pinch);
  2684         _pinch_free_list.push(pinch);
  2685         _reg_node.map(k, NULL);
  2686 #ifndef PRODUCT
  2687         if (_cfg->C->trace_opto_output()) {
  2688           trace_cnt++;
  2689           if (trace_cnt > 40) {
  2690             tty->print("\n");
  2691             trace_cnt = 0;
  2693           tty->print(" %d", pinch->_idx);
  2695 #endif
  2698 #ifndef PRODUCT
  2699     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2700 #endif
  2703 // Clean up a pinch node for reuse.
  2704 void Scheduling::cleanup_pinch( Node *pinch ) {
  2705   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2707   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2708     Node* use = pinch->last_out(i);
  2709     uint uses_found = 0;
  2710     for (uint j = use->req(); j < use->len(); j++) {
  2711       if (use->in(j) == pinch) {
  2712         use->rm_prec(j);
  2713         uses_found++;
  2716     assert(uses_found > 0, "must be a precedence edge");
  2717     i -= uses_found;    // we deleted 1 or more copies of this edge
  2719   // May have a later_def entry
  2720   pinch->set_req(0, NULL);
  2723 //------------------------------print_statistics-------------------------------
  2724 #ifndef PRODUCT
  2726 void Scheduling::dump_available() const {
  2727   tty->print("#Availist  ");
  2728   for (uint i = 0; i < _available.size(); i++)
  2729     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2730   tty->cr();
  2733 // Print Scheduling Statistics
  2734 void Scheduling::print_statistics() {
  2735   // Print the size added by nops for bundling
  2736   tty->print("Nops added %d bytes to total of %d bytes",
  2737     _total_nop_size, _total_method_size);
  2738   if (_total_method_size > 0)
  2739     tty->print(", for %.2f%%",
  2740       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2741   tty->print("\n");
  2743   // Print the number of branch shadows filled
  2744   if (Pipeline::_branch_has_delay_slot) {
  2745     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2746       _total_branches, _total_unconditional_delays);
  2747     if (_total_branches > 0)
  2748       tty->print(", for %.2f%%",
  2749         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2750     tty->print("\n");
  2753   uint total_instructions = 0, total_bundles = 0;
  2755   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2756     uint bundle_count   = _total_instructions_per_bundle[i];
  2757     total_instructions += bundle_count * i;
  2758     total_bundles      += bundle_count;
  2761   if (total_bundles > 0)
  2762     tty->print("Average ILP (excluding nops) is %.2f\n",
  2763       ((double)total_instructions) / ((double)total_bundles));
  2765 #endif

mercurial