src/share/vm/c1/c1_LinearScan.cpp

Mon, 01 Feb 2010 19:29:46 +0100

author
twisti
date
Mon, 01 Feb 2010 19:29:46 +0100
changeset 1639
18a389214829
parent 1495
323bd24c6520
child 1732
c466efa608d5
permissions
-rw-r--r--

6921352: JSR 292 needs its own deopt handler
Summary: We need to introduce a new MH deopt handler so we can easily determine if the deopt happened at a MH call site or not.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_LinearScan.cpp.incl"
    29 #ifndef PRODUCT
    31   static LinearScanStatistic _stat_before_alloc;
    32   static LinearScanStatistic _stat_after_asign;
    33   static LinearScanStatistic _stat_final;
    35   static LinearScanTimers _total_timer;
    37   // helper macro for short definition of timer
    38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    40   // helper macro for short definition of trace-output inside code
    41   #define TRACE_LINEAR_SCAN(level, code)       \
    42     if (TraceLinearScanLevel >= level) {       \
    43       code;                                    \
    44     }
    46 #else
    48   #define TIME_LINEAR_SCAN(timer_name)
    49   #define TRACE_LINEAR_SCAN(level, code)
    51 #endif
    53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    54 #ifdef _LP64
    55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
    56 #else
    57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
    58 #endif
    61 // Implementation of LinearScan
    63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    64  : _compilation(ir->compilation())
    65  , _ir(ir)
    66  , _gen(gen)
    67  , _frame_map(frame_map)
    68  , _num_virtual_regs(gen->max_virtual_register_number())
    69  , _has_fpu_registers(false)
    70  , _num_calls(-1)
    71  , _max_spills(0)
    72  , _unused_spill_slot(-1)
    73  , _intervals(0)   // initialized later with correct length
    74  , _new_intervals_from_allocation(new IntervalList())
    75  , _sorted_intervals(NULL)
    76  , _lir_ops(0)     // initialized later with correct length
    77  , _block_of_op(0) // initialized later with correct length
    78  , _has_info(0)
    79  , _has_call(0)
    80  , _scope_value_cache(0) // initialized later with correct length
    81  , _interval_in_loop(0, 0) // initialized later with correct length
    82  , _cached_blocks(*ir->linear_scan_order())
    83 #ifdef X86
    84  , _fpu_stack_allocator(NULL)
    85 #endif
    86 {
    87   // note: to use more than on instance of LinearScan at a time this function call has to
    88   //       be moved somewhere outside of this constructor:
    89   Interval::initialize();
    91   assert(this->ir() != NULL,          "check if valid");
    92   assert(this->compilation() != NULL, "check if valid");
    93   assert(this->gen() != NULL,         "check if valid");
    94   assert(this->frame_map() != NULL,   "check if valid");
    95 }
    98 // ********** functions for converting LIR-Operands to register numbers
    99 //
   100 // Emulate a flat register file comprising physical integer registers,
   101 // physical floating-point registers and virtual registers, in that order.
   102 // Virtual registers already have appropriate numbers, since V0 is
   103 // the number of physical registers.
   104 // Returns -1 for hi word if opr is a single word operand.
   105 //
   106 // Note: the inverse operation (calculating an operand for register numbers)
   107 //       is done in calc_operand_for_interval()
   109 int LinearScan::reg_num(LIR_Opr opr) {
   110   assert(opr->is_register(), "should not call this otherwise");
   112   if (opr->is_virtual_register()) {
   113     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   114     return opr->vreg_number();
   115   } else if (opr->is_single_cpu()) {
   116     return opr->cpu_regnr();
   117   } else if (opr->is_double_cpu()) {
   118     return opr->cpu_regnrLo();
   119 #ifdef X86
   120   } else if (opr->is_single_xmm()) {
   121     return opr->fpu_regnr() + pd_first_xmm_reg;
   122   } else if (opr->is_double_xmm()) {
   123     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   124 #endif
   125   } else if (opr->is_single_fpu()) {
   126     return opr->fpu_regnr() + pd_first_fpu_reg;
   127   } else if (opr->is_double_fpu()) {
   128     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   129   } else {
   130     ShouldNotReachHere();
   131     return -1;
   132   }
   133 }
   135 int LinearScan::reg_numHi(LIR_Opr opr) {
   136   assert(opr->is_register(), "should not call this otherwise");
   138   if (opr->is_virtual_register()) {
   139     return -1;
   140   } else if (opr->is_single_cpu()) {
   141     return -1;
   142   } else if (opr->is_double_cpu()) {
   143     return opr->cpu_regnrHi();
   144 #ifdef X86
   145   } else if (opr->is_single_xmm()) {
   146     return -1;
   147   } else if (opr->is_double_xmm()) {
   148     return -1;
   149 #endif
   150   } else if (opr->is_single_fpu()) {
   151     return -1;
   152   } else if (opr->is_double_fpu()) {
   153     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   154   } else {
   155     ShouldNotReachHere();
   156     return -1;
   157   }
   158 }
   161 // ********** functions for classification of intervals
   163 bool LinearScan::is_precolored_interval(const Interval* i) {
   164   return i->reg_num() < LinearScan::nof_regs;
   165 }
   167 bool LinearScan::is_virtual_interval(const Interval* i) {
   168   return i->reg_num() >= LIR_OprDesc::vreg_base;
   169 }
   171 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   172   return i->reg_num() < LinearScan::nof_cpu_regs;
   173 }
   175 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   176   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   177 }
   179 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   180   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   181 }
   183 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   185 }
   187 bool LinearScan::is_in_fpu_register(const Interval* i) {
   188   // fixed intervals not needed for FPU stack allocation
   189   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   190 }
   192 bool LinearScan::is_oop_interval(const Interval* i) {
   193   // fixed intervals never contain oops
   194   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   195 }
   198 // ********** General helper functions
   200 // compute next unused stack index that can be used for spilling
   201 int LinearScan::allocate_spill_slot(bool double_word) {
   202   int spill_slot;
   203   if (double_word) {
   204     if ((_max_spills & 1) == 1) {
   205       // alignment of double-word values
   206       // the hole because of the alignment is filled with the next single-word value
   207       assert(_unused_spill_slot == -1, "wasting a spill slot");
   208       _unused_spill_slot = _max_spills;
   209       _max_spills++;
   210     }
   211     spill_slot = _max_spills;
   212     _max_spills += 2;
   214   } else if (_unused_spill_slot != -1) {
   215     // re-use hole that was the result of a previous double-word alignment
   216     spill_slot = _unused_spill_slot;
   217     _unused_spill_slot = -1;
   219   } else {
   220     spill_slot = _max_spills;
   221     _max_spills++;
   222   }
   224   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   226   // the class OopMapValue uses only 11 bits for storing the name of the
   227   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   228   // that is not reported in product builds. Prevent this by checking the
   229   // spill slot here (altough this value and the later used location name
   230   // are slightly different)
   231   if (result > 2000) {
   232     bailout("too many stack slots used");
   233   }
   235   return result;
   236 }
   238 void LinearScan::assign_spill_slot(Interval* it) {
   239   // assign the canonical spill slot of the parent (if a part of the interval
   240   // is already spilled) or allocate a new spill slot
   241   if (it->canonical_spill_slot() >= 0) {
   242     it->assign_reg(it->canonical_spill_slot());
   243   } else {
   244     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   245     it->set_canonical_spill_slot(spill);
   246     it->assign_reg(spill);
   247   }
   248 }
   250 void LinearScan::propagate_spill_slots() {
   251   if (!frame_map()->finalize_frame(max_spills())) {
   252     bailout("frame too large");
   253   }
   254 }
   256 // create a new interval with a predefined reg_num
   257 // (only used for parent intervals that are created during the building phase)
   258 Interval* LinearScan::create_interval(int reg_num) {
   259   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   261   Interval* interval = new Interval(reg_num);
   262   _intervals.at_put(reg_num, interval);
   264   // assign register number for precolored intervals
   265   if (reg_num < LIR_OprDesc::vreg_base) {
   266     interval->assign_reg(reg_num);
   267   }
   268   return interval;
   269 }
   271 // assign a new reg_num to the interval and append it to the list of intervals
   272 // (only used for child intervals that are created during register allocation)
   273 void LinearScan::append_interval(Interval* it) {
   274   it->set_reg_num(_intervals.length());
   275   _intervals.append(it);
   276   _new_intervals_from_allocation->append(it);
   277 }
   279 // copy the vreg-flags if an interval is split
   280 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   281   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   282     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   283   }
   284   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   285     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   286   }
   288   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   289   //       intervals (only the very beginning of the interval must be in memory)
   290 }
   293 // ********** spill move optimization
   294 // eliminate moves from register to stack if stack slot is known to be correct
   296 // called during building of intervals
   297 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   298   assert(interval->is_split_parent(), "can only be called for split parents");
   300   switch (interval->spill_state()) {
   301     case noDefinitionFound:
   302       assert(interval->spill_definition_pos() == -1, "must no be set before");
   303       interval->set_spill_definition_pos(def_pos);
   304       interval->set_spill_state(oneDefinitionFound);
   305       break;
   307     case oneDefinitionFound:
   308       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   309       if (def_pos < interval->spill_definition_pos() - 2) {
   310         // second definition found, so no spill optimization possible for this interval
   311         interval->set_spill_state(noOptimization);
   312       } else {
   313         // two consecutive definitions (because of two-operand LIR form)
   314         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   315       }
   316       break;
   318     case noOptimization:
   319       // nothing to do
   320       break;
   322     default:
   323       assert(false, "other states not allowed at this time");
   324   }
   325 }
   327 // called during register allocation
   328 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   329   switch (interval->spill_state()) {
   330     case oneDefinitionFound: {
   331       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   332       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   334       if (def_loop_depth < spill_loop_depth) {
   335         // the loop depth of the spilling position is higher then the loop depth
   336         // at the definition of the interval -> move write to memory out of loop
   337         // by storing at definitin of the interval
   338         interval->set_spill_state(storeAtDefinition);
   339       } else {
   340         // the interval is currently spilled only once, so for now there is no
   341         // reason to store the interval at the definition
   342         interval->set_spill_state(oneMoveInserted);
   343       }
   344       break;
   345     }
   347     case oneMoveInserted: {
   348       // the interval is spilled more then once, so it is better to store it to
   349       // memory at the definition
   350       interval->set_spill_state(storeAtDefinition);
   351       break;
   352     }
   354     case storeAtDefinition:
   355     case startInMemory:
   356     case noOptimization:
   357     case noDefinitionFound:
   358       // nothing to do
   359       break;
   361     default:
   362       assert(false, "other states not allowed at this time");
   363   }
   364 }
   367 bool LinearScan::must_store_at_definition(const Interval* i) {
   368   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   369 }
   371 // called once before asignment of register numbers
   372 void LinearScan::eliminate_spill_moves() {
   373   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   374   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   376   // collect all intervals that must be stored after their definion.
   377   // the list is sorted by Interval::spill_definition_pos
   378   Interval* interval;
   379   Interval* temp_list;
   380   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   382 #ifdef ASSERT
   383   Interval* prev = NULL;
   384   Interval* temp = interval;
   385   while (temp != Interval::end()) {
   386     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   387     if (prev != NULL) {
   388       assert(temp->from() >= prev->from(), "intervals not sorted");
   389       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   390     }
   392     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   393     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   394     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   396     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   398     temp = temp->next();
   399   }
   400 #endif
   402   LIR_InsertionBuffer insertion_buffer;
   403   int num_blocks = block_count();
   404   for (int i = 0; i < num_blocks; i++) {
   405     BlockBegin* block = block_at(i);
   406     LIR_OpList* instructions = block->lir()->instructions_list();
   407     int         num_inst = instructions->length();
   408     bool        has_new = false;
   410     // iterate all instructions of the block. skip the first because it is always a label
   411     for (int j = 1; j < num_inst; j++) {
   412       LIR_Op* op = instructions->at(j);
   413       int op_id = op->id();
   415       if (op_id == -1) {
   416         // remove move from register to stack if the stack slot is guaranteed to be correct.
   417         // only moves that have been inserted by LinearScan can be removed.
   418         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   419         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   420         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   422         LIR_Op1* op1 = (LIR_Op1*)op;
   423         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   425         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   426           // move target is a stack slot that is always correct, so eliminate instruction
   427           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   428           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   429         }
   431       } else {
   432         // insert move from register to stack just after the beginning of the interval
   433         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   434         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   436         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   437           if (!has_new) {
   438             // prepare insertion buffer (appended when all instructions of the block are processed)
   439             insertion_buffer.init(block->lir());
   440             has_new = true;
   441           }
   443           LIR_Opr from_opr = operand_for_interval(interval);
   444           LIR_Opr to_opr = canonical_spill_opr(interval);
   445           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   446           assert(to_opr->is_stack(), "to operand must be a stack slot");
   448           insertion_buffer.move(j, from_opr, to_opr);
   449           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   451           interval = interval->next();
   452         }
   453       }
   454     } // end of instruction iteration
   456     if (has_new) {
   457       block->lir()->append(&insertion_buffer);
   458     }
   459   } // end of block iteration
   461   assert(interval == Interval::end(), "missed an interval");
   462 }
   465 // ********** Phase 1: number all instructions in all blocks
   466 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   468 void LinearScan::number_instructions() {
   469   {
   470     // dummy-timer to measure the cost of the timer itself
   471     // (this time is then subtracted from all other timers to get the real value)
   472     TIME_LINEAR_SCAN(timer_do_nothing);
   473   }
   474   TIME_LINEAR_SCAN(timer_number_instructions);
   476   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   477   int num_blocks = block_count();
   478   int num_instructions = 0;
   479   int i;
   480   for (i = 0; i < num_blocks; i++) {
   481     num_instructions += block_at(i)->lir()->instructions_list()->length();
   482   }
   484   // initialize with correct length
   485   _lir_ops = LIR_OpArray(num_instructions);
   486   _block_of_op = BlockBeginArray(num_instructions);
   488   int op_id = 0;
   489   int idx = 0;
   491   for (i = 0; i < num_blocks; i++) {
   492     BlockBegin* block = block_at(i);
   493     block->set_first_lir_instruction_id(op_id);
   494     LIR_OpList* instructions = block->lir()->instructions_list();
   496     int num_inst = instructions->length();
   497     for (int j = 0; j < num_inst; j++) {
   498       LIR_Op* op = instructions->at(j);
   499       op->set_id(op_id);
   501       _lir_ops.at_put(idx, op);
   502       _block_of_op.at_put(idx, block);
   503       assert(lir_op_with_id(op_id) == op, "must match");
   505       idx++;
   506       op_id += 2; // numbering of lir_ops by two
   507     }
   508     block->set_last_lir_instruction_id(op_id - 2);
   509   }
   510   assert(idx == num_instructions, "must match");
   511   assert(idx * 2 == op_id, "must match");
   513   _has_call = BitMap(num_instructions); _has_call.clear();
   514   _has_info = BitMap(num_instructions); _has_info.clear();
   515 }
   518 // ********** Phase 2: compute local live sets separately for each block
   519 // (sets live_gen and live_kill for each block)
   521 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   522   LIR_Opr opr = value->operand();
   523   Constant* con = value->as_Constant();
   525   // check some asumptions about debug information
   526   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   527   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   528   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   530   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   531     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   532     int reg = opr->vreg_number();
   533     if (!live_kill.at(reg)) {
   534       live_gen.set_bit(reg);
   535       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   536     }
   537   }
   538 }
   541 void LinearScan::compute_local_live_sets() {
   542   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   544   int  num_blocks = block_count();
   545   int  live_size = live_set_size();
   546   bool local_has_fpu_registers = false;
   547   int  local_num_calls = 0;
   548   LIR_OpVisitState visitor;
   550   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   551   local_interval_in_loop.clear();
   553   // iterate all blocks
   554   for (int i = 0; i < num_blocks; i++) {
   555     BlockBegin* block = block_at(i);
   557     BitMap live_gen(live_size);  live_gen.clear();
   558     BitMap live_kill(live_size); live_kill.clear();
   560     if (block->is_set(BlockBegin::exception_entry_flag)) {
   561       // Phi functions at the begin of an exception handler are
   562       // implicitly defined (= killed) at the beginning of the block.
   563       for_each_phi_fun(block, phi,
   564         live_kill.set_bit(phi->operand()->vreg_number())
   565       );
   566     }
   568     LIR_OpList* instructions = block->lir()->instructions_list();
   569     int num_inst = instructions->length();
   571     // iterate all instructions of the block. skip the first because it is always a label
   572     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   573     for (int j = 1; j < num_inst; j++) {
   574       LIR_Op* op = instructions->at(j);
   576       // visit operation to collect all operands
   577       visitor.visit(op);
   579       if (visitor.has_call()) {
   580         _has_call.set_bit(op->id() >> 1);
   581         local_num_calls++;
   582       }
   583       if (visitor.info_count() > 0) {
   584         _has_info.set_bit(op->id() >> 1);
   585       }
   587       // iterate input operands of instruction
   588       int k, n, reg;
   589       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   590       for (k = 0; k < n; k++) {
   591         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   592         assert(opr->is_register(), "visitor should only return register operands");
   594         if (opr->is_virtual_register()) {
   595           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   596           reg = opr->vreg_number();
   597           if (!live_kill.at(reg)) {
   598             live_gen.set_bit(reg);
   599             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   600           }
   601           if (block->loop_index() >= 0) {
   602             local_interval_in_loop.set_bit(reg, block->loop_index());
   603           }
   604           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   605         }
   607 #ifdef ASSERT
   608         // fixed intervals are never live at block boundaries, so
   609         // they need not be processed in live sets.
   610         // this is checked by these assertions to be sure about it.
   611         // the entry block may have incoming values in registers, which is ok.
   612         if (!opr->is_virtual_register() && block != ir()->start()) {
   613           reg = reg_num(opr);
   614           if (is_processed_reg_num(reg)) {
   615             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   616           }
   617           reg = reg_numHi(opr);
   618           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   619             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   620           }
   621         }
   622 #endif
   623       }
   625       // Add uses of live locals from interpreter's point of view for proper debug information generation
   626       n = visitor.info_count();
   627       for (k = 0; k < n; k++) {
   628         CodeEmitInfo* info = visitor.info_at(k);
   629         ValueStack* stack = info->stack();
   630         for_each_state_value(stack, value,
   631           set_live_gen_kill(value, op, live_gen, live_kill)
   632         );
   633       }
   635       // iterate temp operands of instruction
   636       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   637       for (k = 0; k < n; k++) {
   638         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   639         assert(opr->is_register(), "visitor should only return register operands");
   641         if (opr->is_virtual_register()) {
   642           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   643           reg = opr->vreg_number();
   644           live_kill.set_bit(reg);
   645           if (block->loop_index() >= 0) {
   646             local_interval_in_loop.set_bit(reg, block->loop_index());
   647           }
   648           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   649         }
   651 #ifdef ASSERT
   652         // fixed intervals are never live at block boundaries, so
   653         // they need not be processed in live sets
   654         // process them only in debug mode so that this can be checked
   655         if (!opr->is_virtual_register()) {
   656           reg = reg_num(opr);
   657           if (is_processed_reg_num(reg)) {
   658             live_kill.set_bit(reg_num(opr));
   659           }
   660           reg = reg_numHi(opr);
   661           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   662             live_kill.set_bit(reg);
   663           }
   664         }
   665 #endif
   666       }
   668       // iterate output operands of instruction
   669       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   670       for (k = 0; k < n; k++) {
   671         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   672         assert(opr->is_register(), "visitor should only return register operands");
   674         if (opr->is_virtual_register()) {
   675           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   676           reg = opr->vreg_number();
   677           live_kill.set_bit(reg);
   678           if (block->loop_index() >= 0) {
   679             local_interval_in_loop.set_bit(reg, block->loop_index());
   680           }
   681           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   682         }
   684 #ifdef ASSERT
   685         // fixed intervals are never live at block boundaries, so
   686         // they need not be processed in live sets
   687         // process them only in debug mode so that this can be checked
   688         if (!opr->is_virtual_register()) {
   689           reg = reg_num(opr);
   690           if (is_processed_reg_num(reg)) {
   691             live_kill.set_bit(reg_num(opr));
   692           }
   693           reg = reg_numHi(opr);
   694           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   695             live_kill.set_bit(reg);
   696           }
   697         }
   698 #endif
   699       }
   700     } // end of instruction iteration
   702     block->set_live_gen (live_gen);
   703     block->set_live_kill(live_kill);
   704     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   705     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   707     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   708     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   709   } // end of block iteration
   711   // propagate local calculated information into LinearScan object
   712   _has_fpu_registers = local_has_fpu_registers;
   713   compilation()->set_has_fpu_code(local_has_fpu_registers);
   715   _num_calls = local_num_calls;
   716   _interval_in_loop = local_interval_in_loop;
   717 }
   720 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   721 // (sets live_in and live_out for each block)
   723 void LinearScan::compute_global_live_sets() {
   724   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   726   int  num_blocks = block_count();
   727   bool change_occurred;
   728   bool change_occurred_in_block;
   729   int  iteration_count = 0;
   730   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   732   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   733   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   734   // Exception handlers must be processed because not all live values are
   735   // present in the state array, e.g. because of global value numbering
   736   do {
   737     change_occurred = false;
   739     // iterate all blocks in reverse order
   740     for (int i = num_blocks - 1; i >= 0; i--) {
   741       BlockBegin* block = block_at(i);
   743       change_occurred_in_block = false;
   745       // live_out(block) is the union of live_in(sux), for successors sux of block
   746       int n = block->number_of_sux();
   747       int e = block->number_of_exception_handlers();
   748       if (n + e > 0) {
   749         // block has successors
   750         if (n > 0) {
   751           live_out.set_from(block->sux_at(0)->live_in());
   752           for (int j = 1; j < n; j++) {
   753             live_out.set_union(block->sux_at(j)->live_in());
   754           }
   755         } else {
   756           live_out.clear();
   757         }
   758         for (int j = 0; j < e; j++) {
   759           live_out.set_union(block->exception_handler_at(j)->live_in());
   760         }
   762         if (!block->live_out().is_same(live_out)) {
   763           // A change occurred.  Swap the old and new live out sets to avoid copying.
   764           BitMap temp = block->live_out();
   765           block->set_live_out(live_out);
   766           live_out = temp;
   768           change_occurred = true;
   769           change_occurred_in_block = true;
   770         }
   771       }
   773       if (iteration_count == 0 || change_occurred_in_block) {
   774         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   775         // note: live_in has to be computed only in first iteration or if live_out has changed!
   776         BitMap live_in = block->live_in();
   777         live_in.set_from(block->live_out());
   778         live_in.set_difference(block->live_kill());
   779         live_in.set_union(block->live_gen());
   780       }
   782 #ifndef PRODUCT
   783       if (TraceLinearScanLevel >= 4) {
   784         char c = ' ';
   785         if (iteration_count == 0 || change_occurred_in_block) {
   786           c = '*';
   787         }
   788         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   789         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   790       }
   791 #endif
   792     }
   793     iteration_count++;
   795     if (change_occurred && iteration_count > 50) {
   796       BAILOUT("too many iterations in compute_global_live_sets");
   797     }
   798   } while (change_occurred);
   801 #ifdef ASSERT
   802   // check that fixed intervals are not live at block boundaries
   803   // (live set must be empty at fixed intervals)
   804   for (int i = 0; i < num_blocks; i++) {
   805     BlockBegin* block = block_at(i);
   806     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   807       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   808       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   809       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   810     }
   811   }
   812 #endif
   814   // check that the live_in set of the first block is empty
   815   BitMap live_in_args(ir()->start()->live_in().size());
   816   live_in_args.clear();
   817   if (!ir()->start()->live_in().is_same(live_in_args)) {
   818 #ifdef ASSERT
   819     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   820     tty->print_cr("affected registers:");
   821     print_bitmap(ir()->start()->live_in());
   823     // print some additional information to simplify debugging
   824     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   825       if (ir()->start()->live_in().at(i)) {
   826         Instruction* instr = gen()->instruction_for_vreg(i);
   827         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   829         for (int j = 0; j < num_blocks; j++) {
   830           BlockBegin* block = block_at(j);
   831           if (block->live_gen().at(i)) {
   832             tty->print_cr("  used in block B%d", block->block_id());
   833           }
   834           if (block->live_kill().at(i)) {
   835             tty->print_cr("  defined in block B%d", block->block_id());
   836           }
   837         }
   838       }
   839     }
   841 #endif
   842     // when this fails, virtual registers are used before they are defined.
   843     assert(false, "live_in set of first block must be empty");
   844     // bailout of if this occurs in product mode.
   845     bailout("live_in set of first block not empty");
   846   }
   847 }
   850 // ********** Phase 4: build intervals
   851 // (fills the list _intervals)
   853 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   854   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   855   LIR_Opr opr = value->operand();
   856   Constant* con = value->as_Constant();
   858   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   859     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   860     add_use(opr, from, to, use_kind);
   861   }
   862 }
   865 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   866   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   867   assert(opr->is_register(), "should not be called otherwise");
   869   if (opr->is_virtual_register()) {
   870     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   871     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   873   } else {
   874     int reg = reg_num(opr);
   875     if (is_processed_reg_num(reg)) {
   876       add_def(reg, def_pos, use_kind, opr->type_register());
   877     }
   878     reg = reg_numHi(opr);
   879     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   880       add_def(reg, def_pos, use_kind, opr->type_register());
   881     }
   882   }
   883 }
   885 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   886   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   887   assert(opr->is_register(), "should not be called otherwise");
   889   if (opr->is_virtual_register()) {
   890     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   891     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   893   } else {
   894     int reg = reg_num(opr);
   895     if (is_processed_reg_num(reg)) {
   896       add_use(reg, from, to, use_kind, opr->type_register());
   897     }
   898     reg = reg_numHi(opr);
   899     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   900       add_use(reg, from, to, use_kind, opr->type_register());
   901     }
   902   }
   903 }
   905 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   906   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   907   assert(opr->is_register(), "should not be called otherwise");
   909   if (opr->is_virtual_register()) {
   910     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   911     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   913   } else {
   914     int reg = reg_num(opr);
   915     if (is_processed_reg_num(reg)) {
   916       add_temp(reg, temp_pos, use_kind, opr->type_register());
   917     }
   918     reg = reg_numHi(opr);
   919     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   920       add_temp(reg, temp_pos, use_kind, opr->type_register());
   921     }
   922   }
   923 }
   926 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   927   Interval* interval = interval_at(reg_num);
   928   if (interval != NULL) {
   929     assert(interval->reg_num() == reg_num, "wrong interval");
   931     if (type != T_ILLEGAL) {
   932       interval->set_type(type);
   933     }
   935     Range* r = interval->first();
   936     if (r->from() <= def_pos) {
   937       // Update the starting point (when a range is first created for a use, its
   938       // start is the beginning of the current block until a def is encountered.)
   939       r->set_from(def_pos);
   940       interval->add_use_pos(def_pos, use_kind);
   942     } else {
   943       // Dead value - make vacuous interval
   944       // also add use_kind for dead intervals
   945       interval->add_range(def_pos, def_pos + 1);
   946       interval->add_use_pos(def_pos, use_kind);
   947       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   948     }
   950   } else {
   951     // Dead value - make vacuous interval
   952     // also add use_kind for dead intervals
   953     interval = create_interval(reg_num);
   954     if (type != T_ILLEGAL) {
   955       interval->set_type(type);
   956     }
   958     interval->add_range(def_pos, def_pos + 1);
   959     interval->add_use_pos(def_pos, use_kind);
   960     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   961   }
   963   change_spill_definition_pos(interval, def_pos);
   964   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
   965         // detection of method-parameters and roundfp-results
   966         // TODO: move this directly to position where use-kind is computed
   967     interval->set_spill_state(startInMemory);
   968   }
   969 }
   971 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
   972   Interval* interval = interval_at(reg_num);
   973   if (interval == NULL) {
   974     interval = create_interval(reg_num);
   975   }
   976   assert(interval->reg_num() == reg_num, "wrong interval");
   978   if (type != T_ILLEGAL) {
   979     interval->set_type(type);
   980   }
   982   interval->add_range(from, to);
   983   interval->add_use_pos(to, use_kind);
   984 }
   986 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
   987   Interval* interval = interval_at(reg_num);
   988   if (interval == NULL) {
   989     interval = create_interval(reg_num);
   990   }
   991   assert(interval->reg_num() == reg_num, "wrong interval");
   993   if (type != T_ILLEGAL) {
   994     interval->set_type(type);
   995   }
   997   interval->add_range(temp_pos, temp_pos + 1);
   998   interval->add_use_pos(temp_pos, use_kind);
   999 }
  1002 // the results of this functions are used for optimizing spilling and reloading
  1003 // if the functions return shouldHaveRegister and the interval is spilled,
  1004 // it is not reloaded to a register.
  1005 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1006   if (op->code() == lir_move) {
  1007     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1008     LIR_Op1* move = (LIR_Op1*)op;
  1009     LIR_Opr res = move->result_opr();
  1010     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1012     if (result_in_memory) {
  1013       // Begin of an interval with must_start_in_memory set.
  1014       // This interval will always get a stack slot first, so return noUse.
  1015       return noUse;
  1017     } else if (move->in_opr()->is_stack()) {
  1018       // method argument (condition must be equal to handle_method_arguments)
  1019       return noUse;
  1021     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1022       // Move from register to register
  1023       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1024         // special handling of phi-function moves inside osr-entry blocks
  1025         // input operand must have a register instead of output operand (leads to better register allocation)
  1026         return shouldHaveRegister;
  1031   if (opr->is_virtual() &&
  1032       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1033     // result is a stack-slot, so prevent immediate reloading
  1034     return noUse;
  1037   // all other operands require a register
  1038   return mustHaveRegister;
  1041 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1042   if (op->code() == lir_move) {
  1043     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1044     LIR_Op1* move = (LIR_Op1*)op;
  1045     LIR_Opr res = move->result_opr();
  1046     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1048     if (result_in_memory) {
  1049       // Move to an interval with must_start_in_memory set.
  1050       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1051       return mustHaveRegister;
  1053     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1054       // Move from register to register
  1055       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1056         // special handling of phi-function moves inside osr-entry blocks
  1057         // input operand must have a register instead of output operand (leads to better register allocation)
  1058         return mustHaveRegister;
  1061       // The input operand is not forced to a register (moves from stack to register are allowed),
  1062       // but it is faster if the input operand is in a register
  1063       return shouldHaveRegister;
  1068 #ifdef X86
  1069   if (op->code() == lir_cmove) {
  1070     // conditional moves can handle stack operands
  1071     assert(op->result_opr()->is_register(), "result must always be in a register");
  1072     return shouldHaveRegister;
  1075   // optimizations for second input operand of arithmehtic operations on Intel
  1076   // this operand is allowed to be on the stack in some cases
  1077   BasicType opr_type = opr->type_register();
  1078   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1079     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1080       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1081       switch (op->code()) {
  1082         case lir_cmp:
  1083         case lir_add:
  1084         case lir_sub:
  1085         case lir_mul:
  1086         case lir_div:
  1088           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1089           LIR_Op2* op2 = (LIR_Op2*)op;
  1090           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1091             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1092             return shouldHaveRegister;
  1096     } else {
  1097       // FPU stack float instruction
  1098       switch (op->code()) {
  1099         case lir_add:
  1100         case lir_sub:
  1101         case lir_mul:
  1102         case lir_div:
  1104           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1105           LIR_Op2* op2 = (LIR_Op2*)op;
  1106           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1107             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1108             return shouldHaveRegister;
  1114   } else if (opr_type != T_LONG) {
  1115     // integer instruction (note: long operands must always be in register)
  1116     switch (op->code()) {
  1117       case lir_cmp:
  1118       case lir_add:
  1119       case lir_sub:
  1120       case lir_logic_and:
  1121       case lir_logic_or:
  1122       case lir_logic_xor:
  1124         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1125         LIR_Op2* op2 = (LIR_Op2*)op;
  1126         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1127           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1128           return shouldHaveRegister;
  1133 #endif // X86
  1135   // all other operands require a register
  1136   return mustHaveRegister;
  1140 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1141   // special handling for method arguments (moves from stack to virtual register):
  1142   // the interval gets no register assigned, but the stack slot.
  1143   // it is split before the first use by the register allocator.
  1145   if (op->code() == lir_move) {
  1146     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1147     LIR_Op1* move = (LIR_Op1*)op;
  1149     if (move->in_opr()->is_stack()) {
  1150 #ifdef ASSERT
  1151       int arg_size = compilation()->method()->arg_size();
  1152       LIR_Opr o = move->in_opr();
  1153       if (o->is_single_stack()) {
  1154         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1155       } else if (o->is_double_stack()) {
  1156         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1157       } else {
  1158         ShouldNotReachHere();
  1161       assert(move->id() > 0, "invalid id");
  1162       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1163       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1165       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1166 #endif
  1168       Interval* interval = interval_at(reg_num(move->result_opr()));
  1170       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1171       interval->set_canonical_spill_slot(stack_slot);
  1172       interval->assign_reg(stack_slot);
  1177 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1178   // special handling for doubleword move from memory to register:
  1179   // in this case the registers of the input address and the result
  1180   // registers must not overlap -> add a temp range for the input registers
  1181   if (op->code() == lir_move) {
  1182     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1183     LIR_Op1* move = (LIR_Op1*)op;
  1185     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1186       LIR_Address* address = move->in_opr()->as_address_ptr();
  1187       if (address != NULL) {
  1188         if (address->base()->is_valid()) {
  1189           add_temp(address->base(), op->id(), noUse);
  1191         if (address->index()->is_valid()) {
  1192           add_temp(address->index(), op->id(), noUse);
  1199 void LinearScan::add_register_hints(LIR_Op* op) {
  1200   switch (op->code()) {
  1201     case lir_move:      // fall through
  1202     case lir_convert: {
  1203       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1204       LIR_Op1* move = (LIR_Op1*)op;
  1206       LIR_Opr move_from = move->in_opr();
  1207       LIR_Opr move_to = move->result_opr();
  1209       if (move_to->is_register() && move_from->is_register()) {
  1210         Interval* from = interval_at(reg_num(move_from));
  1211         Interval* to = interval_at(reg_num(move_to));
  1212         if (from != NULL && to != NULL) {
  1213           to->set_register_hint(from);
  1214           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1217       break;
  1219     case lir_cmove: {
  1220       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1221       LIR_Op2* cmove = (LIR_Op2*)op;
  1223       LIR_Opr move_from = cmove->in_opr1();
  1224       LIR_Opr move_to = cmove->result_opr();
  1226       if (move_to->is_register() && move_from->is_register()) {
  1227         Interval* from = interval_at(reg_num(move_from));
  1228         Interval* to = interval_at(reg_num(move_to));
  1229         if (from != NULL && to != NULL) {
  1230           to->set_register_hint(from);
  1231           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1234       break;
  1240 void LinearScan::build_intervals() {
  1241   TIME_LINEAR_SCAN(timer_build_intervals);
  1243   // initialize interval list with expected number of intervals
  1244   // (32 is added to have some space for split children without having to resize the list)
  1245   _intervals = IntervalList(num_virtual_regs() + 32);
  1246   // initialize all slots that are used by build_intervals
  1247   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1249   // create a list with all caller-save registers (cpu, fpu, xmm)
  1250   // when an instruction is a call, a temp range is created for all these registers
  1251   int num_caller_save_registers = 0;
  1252   int caller_save_registers[LinearScan::nof_regs];
  1254   int i;
  1255   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
  1256     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1257     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1258     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1259     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1262   // temp ranges for fpu registers are only created when the method has
  1263   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1264   // perfomed and so the temp ranges would be useless
  1265   if (has_fpu_registers()) {
  1266 #ifdef X86
  1267     if (UseSSE < 2) {
  1268 #endif
  1269       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1270         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1271         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1272         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1273         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1275 #ifdef X86
  1277     if (UseSSE > 0) {
  1278       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1279         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1280         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1281         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1282         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1285 #endif
  1287   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1290   LIR_OpVisitState visitor;
  1292   // iterate all blocks in reverse order
  1293   for (i = block_count() - 1; i >= 0; i--) {
  1294     BlockBegin* block = block_at(i);
  1295     LIR_OpList* instructions = block->lir()->instructions_list();
  1296     int         block_from =   block->first_lir_instruction_id();
  1297     int         block_to =     block->last_lir_instruction_id();
  1299     assert(block_from == instructions->at(0)->id(), "must be");
  1300     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1302     // Update intervals for registers live at the end of this block;
  1303     BitMap live = block->live_out();
  1304     int size = (int)live.size();
  1305     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
  1306       assert(live.at(number), "should not stop here otherwise");
  1307       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1308       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1310       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1312       // add special use positions for loop-end blocks when the
  1313       // interval is used anywhere inside this loop.  It's possible
  1314       // that the block was part of a non-natural loop, so it might
  1315       // have an invalid loop index.
  1316       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1317           block->loop_index() != -1 &&
  1318           is_interval_in_loop(number, block->loop_index())) {
  1319         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1323     // iterate all instructions of the block in reverse order.
  1324     // skip the first instruction because it is always a label
  1325     // definitions of intervals are processed before uses
  1326     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1327     for (int j = instructions->length() - 1; j >= 1; j--) {
  1328       LIR_Op* op = instructions->at(j);
  1329       int op_id = op->id();
  1331       // visit operation to collect all operands
  1332       visitor.visit(op);
  1334       // add a temp range for each register if operation destroys caller-save registers
  1335       if (visitor.has_call()) {
  1336         for (int k = 0; k < num_caller_save_registers; k++) {
  1337           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1339         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1342       // Add any platform dependent temps
  1343       pd_add_temps(op);
  1345       // visit definitions (output and temp operands)
  1346       int k, n;
  1347       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1348       for (k = 0; k < n; k++) {
  1349         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1350         assert(opr->is_register(), "visitor should only return register operands");
  1351         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1354       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1355       for (k = 0; k < n; k++) {
  1356         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1357         assert(opr->is_register(), "visitor should only return register operands");
  1358         add_temp(opr, op_id, mustHaveRegister);
  1361       // visit uses (input operands)
  1362       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1363       for (k = 0; k < n; k++) {
  1364         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1365         assert(opr->is_register(), "visitor should only return register operands");
  1366         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1369       // Add uses of live locals from interpreter's point of view for proper
  1370       // debug information generation
  1371       // Treat these operands as temp values (if the life range is extended
  1372       // to a call site, the value would be in a register at the call otherwise)
  1373       n = visitor.info_count();
  1374       for (k = 0; k < n; k++) {
  1375         CodeEmitInfo* info = visitor.info_at(k);
  1376         ValueStack* stack = info->stack();
  1377         for_each_state_value(stack, value,
  1378           add_use(value, block_from, op_id + 1, noUse);
  1379         );
  1382       // special steps for some instructions (especially moves)
  1383       handle_method_arguments(op);
  1384       handle_doubleword_moves(op);
  1385       add_register_hints(op);
  1387     } // end of instruction iteration
  1388   } // end of block iteration
  1391   // add the range [0, 1[ to all fixed intervals
  1392   // -> the register allocator need not handle unhandled fixed intervals
  1393   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1394     Interval* interval = interval_at(n);
  1395     if (interval != NULL) {
  1396       interval->add_range(0, 1);
  1402 // ********** Phase 5: actual register allocation
  1404 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1405   if (*a != NULL) {
  1406     if (*b != NULL) {
  1407       return (*a)->from() - (*b)->from();
  1408     } else {
  1409       return -1;
  1411   } else {
  1412     if (*b != NULL) {
  1413       return 1;
  1414     } else {
  1415       return 0;
  1420 #ifndef PRODUCT
  1421 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1422   int from = -1;
  1423   int i, j;
  1424   for (i = 0; i < intervals->length(); i ++) {
  1425     Interval* it = intervals->at(i);
  1426     if (it != NULL) {
  1427       if (from > it->from()) {
  1428         assert(false, "");
  1429         return false;
  1431       from = it->from();
  1435   // check in both directions if sorted list and unsorted list contain same intervals
  1436   for (i = 0; i < interval_count(); i++) {
  1437     if (interval_at(i) != NULL) {
  1438       int num_found = 0;
  1439       for (j = 0; j < intervals->length(); j++) {
  1440         if (interval_at(i) == intervals->at(j)) {
  1441           num_found++;
  1444       assert(num_found == 1, "lists do not contain same intervals");
  1447   for (j = 0; j < intervals->length(); j++) {
  1448     int num_found = 0;
  1449     for (i = 0; i < interval_count(); i++) {
  1450       if (interval_at(i) == intervals->at(j)) {
  1451         num_found++;
  1454     assert(num_found == 1, "lists do not contain same intervals");
  1457   return true;
  1459 #endif
  1461 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1462   if (*prev != NULL) {
  1463     (*prev)->set_next(interval);
  1464   } else {
  1465     *first = interval;
  1467   *prev = interval;
  1470 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1471   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1473   *list1 = *list2 = Interval::end();
  1475   Interval* list1_prev = NULL;
  1476   Interval* list2_prev = NULL;
  1477   Interval* v;
  1479   const int n = _sorted_intervals->length();
  1480   for (int i = 0; i < n; i++) {
  1481     v = _sorted_intervals->at(i);
  1482     if (v == NULL) continue;
  1484     if (is_list1(v)) {
  1485       add_to_list(list1, &list1_prev, v);
  1486     } else if (is_list2 == NULL || is_list2(v)) {
  1487       add_to_list(list2, &list2_prev, v);
  1491   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1492   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1494   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1495   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1499 void LinearScan::sort_intervals_before_allocation() {
  1500   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1502   IntervalList* unsorted_list = &_intervals;
  1503   int unsorted_len = unsorted_list->length();
  1504   int sorted_len = 0;
  1505   int unsorted_idx;
  1506   int sorted_idx = 0;
  1507   int sorted_from_max = -1;
  1509   // calc number of items for sorted list (sorted list must not contain NULL values)
  1510   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1511     if (unsorted_list->at(unsorted_idx) != NULL) {
  1512       sorted_len++;
  1515   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1517   // special sorting algorithm: the original interval-list is almost sorted,
  1518   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1519   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1520     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1522     if (cur_interval != NULL) {
  1523       int cur_from = cur_interval->from();
  1525       if (sorted_from_max <= cur_from) {
  1526         sorted_list->at_put(sorted_idx++, cur_interval);
  1527         sorted_from_max = cur_interval->from();
  1528       } else {
  1529         // the asumption that the intervals are already sorted failed,
  1530         // so this interval must be sorted in manually
  1531         int j;
  1532         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1533           sorted_list->at_put(j + 1, sorted_list->at(j));
  1535         sorted_list->at_put(j + 1, cur_interval);
  1536         sorted_idx++;
  1540   _sorted_intervals = sorted_list;
  1543 void LinearScan::sort_intervals_after_allocation() {
  1544   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1546   IntervalArray* old_list      = _sorted_intervals;
  1547   IntervalList*  new_list      = _new_intervals_from_allocation;
  1548   int old_len = old_list->length();
  1549   int new_len = new_list->length();
  1551   if (new_len == 0) {
  1552     // no intervals have been added during allocation, so sorted list is already up to date
  1553     return;
  1556   // conventional sort-algorithm for new intervals
  1557   new_list->sort(interval_cmp);
  1559   // merge old and new list (both already sorted) into one combined list
  1560   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1561   int old_idx = 0;
  1562   int new_idx = 0;
  1564   while (old_idx + new_idx < old_len + new_len) {
  1565     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1566       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1567       old_idx++;
  1568     } else {
  1569       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1570       new_idx++;
  1574   _sorted_intervals = combined_list;
  1578 void LinearScan::allocate_registers() {
  1579   TIME_LINEAR_SCAN(timer_allocate_registers);
  1581   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1582   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1584   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1585   if (has_fpu_registers()) {
  1586     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1587 #ifdef ASSERT
  1588   } else {
  1589     // fpu register allocation is omitted because no virtual fpu registers are present
  1590     // just check this again...
  1591     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1592     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1593 #endif
  1596   // allocate cpu registers
  1597   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1598   cpu_lsw.walk();
  1599   cpu_lsw.finish_allocation();
  1601   if (has_fpu_registers()) {
  1602     // allocate fpu registers
  1603     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1604     fpu_lsw.walk();
  1605     fpu_lsw.finish_allocation();
  1610 // ********** Phase 6: resolve data flow
  1611 // (insert moves at edges between blocks if intervals have been split)
  1613 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1614 // instead of returning NULL
  1615 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1616   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1617   if (result != NULL) {
  1618     return result;
  1621   assert(false, "must find an interval, but do a clean bailout in product mode");
  1622   result = new Interval(LIR_OprDesc::vreg_base);
  1623   result->assign_reg(0);
  1624   result->set_type(T_INT);
  1625   BAILOUT_("LinearScan: interval is NULL", result);
  1629 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1630   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1631   assert(interval_at(reg_num) != NULL, "no interval found");
  1633   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1636 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1637   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1638   assert(interval_at(reg_num) != NULL, "no interval found");
  1640   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1643 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1644   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1645   assert(interval_at(reg_num) != NULL, "no interval found");
  1647   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1651 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1652   DEBUG_ONLY(move_resolver.check_empty());
  1654   const int num_regs = num_virtual_regs();
  1655   const int size = live_set_size();
  1656   const BitMap live_at_edge = to_block->live_in();
  1658   // visit all registers where the live_at_edge bit is set
  1659   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  1660     assert(r < num_regs, "live information set for not exisiting interval");
  1661     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1663     Interval* from_interval = interval_at_block_end(from_block, r);
  1664     Interval* to_interval = interval_at_block_begin(to_block, r);
  1666     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1667       // need to insert move instruction
  1668       move_resolver.add_mapping(from_interval, to_interval);
  1674 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1675   if (from_block->number_of_sux() <= 1) {
  1676     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1678     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1679     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1680     if (branch != NULL) {
  1681       // insert moves before branch
  1682       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1683       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1684     } else {
  1685       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1688   } else {
  1689     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1690 #ifdef ASSERT
  1691     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1693     // because the number of predecessor edges matches the number of
  1694     // successor edges, blocks which are reached by switch statements
  1695     // may have be more than one predecessor but it will be guaranteed
  1696     // that all predecessors will be the same.
  1697     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1698       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1700 #endif
  1702     move_resolver.set_insert_position(to_block->lir(), 0);
  1707 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1708 void LinearScan::resolve_data_flow() {
  1709   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1711   int num_blocks = block_count();
  1712   MoveResolver move_resolver(this);
  1713   BitMap block_completed(num_blocks);  block_completed.clear();
  1714   BitMap already_resolved(num_blocks); already_resolved.clear();
  1716   int i;
  1717   for (i = 0; i < num_blocks; i++) {
  1718     BlockBegin* block = block_at(i);
  1720     // check if block has only one predecessor and only one successor
  1721     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1722       LIR_OpList* instructions = block->lir()->instructions_list();
  1723       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1724       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1725       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1727       // check if block is empty (only label and branch)
  1728       if (instructions->length() == 2) {
  1729         BlockBegin* pred = block->pred_at(0);
  1730         BlockBegin* sux = block->sux_at(0);
  1732         // prevent optimization of two consecutive blocks
  1733         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1734           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1735           block_completed.set_bit(block->linear_scan_number());
  1737           // directly resolve between pred and sux (without looking at the empty block between)
  1738           resolve_collect_mappings(pred, sux, move_resolver);
  1739           if (move_resolver.has_mappings()) {
  1740             move_resolver.set_insert_position(block->lir(), 0);
  1741             move_resolver.resolve_and_append_moves();
  1749   for (i = 0; i < num_blocks; i++) {
  1750     if (!block_completed.at(i)) {
  1751       BlockBegin* from_block = block_at(i);
  1752       already_resolved.set_from(block_completed);
  1754       int num_sux = from_block->number_of_sux();
  1755       for (int s = 0; s < num_sux; s++) {
  1756         BlockBegin* to_block = from_block->sux_at(s);
  1758         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1759         if (!already_resolved.at(to_block->linear_scan_number())) {
  1760           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1761           already_resolved.set_bit(to_block->linear_scan_number());
  1763           // collect all intervals that have been split between from_block and to_block
  1764           resolve_collect_mappings(from_block, to_block, move_resolver);
  1765           if (move_resolver.has_mappings()) {
  1766             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1767             move_resolver.resolve_and_append_moves();
  1776 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1777   if (interval_at(reg_num) == NULL) {
  1778     // if a phi function is never used, no interval is created -> ignore this
  1779     return;
  1782   Interval* interval = interval_at_block_begin(block, reg_num);
  1783   int reg = interval->assigned_reg();
  1784   int regHi = interval->assigned_regHi();
  1786   if ((reg < nof_regs && interval->always_in_memory()) ||
  1787       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1788     // the interval is split to get a short range that is located on the stack
  1789     // in the following two cases:
  1790     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1791     //   this is an optimization for exception handling that reduces the number of moves that
  1792     //   are necessary for resolving the states when an exception uses this exception handler
  1793     // * the interval would be on the fpu stack at the begin of the exception handler
  1794     //   this is not allowed because of the complicated fpu stack handling on Intel
  1796     // range that will be spilled to memory
  1797     int from_op_id = block->first_lir_instruction_id();
  1798     int to_op_id = from_op_id + 1;  // short live range of length 1
  1799     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1800            "no split allowed between exception entry and first instruction");
  1802     if (interval->from() != from_op_id) {
  1803       // the part before from_op_id is unchanged
  1804       interval = interval->split(from_op_id);
  1805       interval->assign_reg(reg, regHi);
  1806       append_interval(interval);
  1808     assert(interval->from() == from_op_id, "must be true now");
  1810     Interval* spilled_part = interval;
  1811     if (interval->to() != to_op_id) {
  1812       // the part after to_op_id is unchanged
  1813       spilled_part = interval->split_from_start(to_op_id);
  1814       append_interval(spilled_part);
  1815       move_resolver.add_mapping(spilled_part, interval);
  1817     assign_spill_slot(spilled_part);
  1819     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1823 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1824   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1825   DEBUG_ONLY(move_resolver.check_empty());
  1827   // visit all registers where the live_in bit is set
  1828   int size = live_set_size();
  1829   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1830     resolve_exception_entry(block, r, move_resolver);
  1833   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1834   for_each_phi_fun(block, phi,
  1835     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1836   );
  1838   if (move_resolver.has_mappings()) {
  1839     // insert moves after first instruction
  1840     move_resolver.set_insert_position(block->lir(), 1);
  1841     move_resolver.resolve_and_append_moves();
  1846 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1847   if (interval_at(reg_num) == NULL) {
  1848     // if a phi function is never used, no interval is created -> ignore this
  1849     return;
  1852   // the computation of to_interval is equal to resolve_collect_mappings,
  1853   // but from_interval is more complicated because of phi functions
  1854   BlockBegin* to_block = handler->entry_block();
  1855   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1857   if (phi != NULL) {
  1858     // phi function of the exception entry block
  1859     // no moves are created for this phi function in the LIR_Generator, so the
  1860     // interval at the throwing instruction must be searched using the operands
  1861     // of the phi function
  1862     Value from_value = phi->operand_at(handler->phi_operand());
  1864     // with phi functions it can happen that the same from_value is used in
  1865     // multiple mappings, so notify move-resolver that this is allowed
  1866     move_resolver.set_multiple_reads_allowed();
  1868     Constant* con = from_value->as_Constant();
  1869     if (con != NULL && !con->is_pinned()) {
  1870       // unpinned constants may have no register, so add mapping from constant to interval
  1871       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1872     } else {
  1873       // search split child at the throwing op_id
  1874       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1875       move_resolver.add_mapping(from_interval, to_interval);
  1878   } else {
  1879     // no phi function, so use reg_num also for from_interval
  1880     // search split child at the throwing op_id
  1881     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1882     if (from_interval != to_interval) {
  1883       // optimization to reduce number of moves: when to_interval is on stack and
  1884       // the stack slot is known to be always correct, then no move is necessary
  1885       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1886         move_resolver.add_mapping(from_interval, to_interval);
  1892 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1893   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1895   DEBUG_ONLY(move_resolver.check_empty());
  1896   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1897   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1898   assert(handler->entry_code() == NULL, "code already present");
  1900   // visit all registers where the live_in bit is set
  1901   BlockBegin* block = handler->entry_block();
  1902   int size = live_set_size();
  1903   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1904     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1907   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1908   for_each_phi_fun(block, phi,
  1909     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1910   );
  1912   if (move_resolver.has_mappings()) {
  1913     LIR_List* entry_code = new LIR_List(compilation());
  1914     move_resolver.set_insert_position(entry_code, 0);
  1915     move_resolver.resolve_and_append_moves();
  1917     entry_code->jump(handler->entry_block());
  1918     handler->set_entry_code(entry_code);
  1923 void LinearScan::resolve_exception_handlers() {
  1924   MoveResolver move_resolver(this);
  1925   LIR_OpVisitState visitor;
  1926   int num_blocks = block_count();
  1928   int i;
  1929   for (i = 0; i < num_blocks; i++) {
  1930     BlockBegin* block = block_at(i);
  1931     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1932       resolve_exception_entry(block, move_resolver);
  1936   for (i = 0; i < num_blocks; i++) {
  1937     BlockBegin* block = block_at(i);
  1938     LIR_List* ops = block->lir();
  1939     int num_ops = ops->length();
  1941     // iterate all instructions of the block. skip the first because it is always a label
  1942     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  1943     for (int j = 1; j < num_ops; j++) {
  1944       LIR_Op* op = ops->at(j);
  1945       int op_id = op->id();
  1947       if (op_id != -1 && has_info(op_id)) {
  1948         // visit operation to collect all operands
  1949         visitor.visit(op);
  1950         assert(visitor.info_count() > 0, "should not visit otherwise");
  1952         XHandlers* xhandlers = visitor.all_xhandler();
  1953         int n = xhandlers->length();
  1954         for (int k = 0; k < n; k++) {
  1955           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  1958 #ifdef ASSERT
  1959       } else {
  1960         visitor.visit(op);
  1961         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  1962 #endif
  1969 // ********** Phase 7: assign register numbers back to LIR
  1970 // (includes computation of debug information and oop maps)
  1972 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  1973   VMReg reg = interval->cached_vm_reg();
  1974   if (!reg->is_valid() ) {
  1975     reg = vm_reg_for_operand(operand_for_interval(interval));
  1976     interval->set_cached_vm_reg(reg);
  1978   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  1979   return reg;
  1982 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  1983   assert(opr->is_oop(), "currently only implemented for oop operands");
  1984   return frame_map()->regname(opr);
  1988 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  1989   LIR_Opr opr = interval->cached_opr();
  1990   if (opr->is_illegal()) {
  1991     opr = calc_operand_for_interval(interval);
  1992     interval->set_cached_opr(opr);
  1995   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  1996   return opr;
  1999 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  2000   int assigned_reg = interval->assigned_reg();
  2001   BasicType type = interval->type();
  2003   if (assigned_reg >= nof_regs) {
  2004     // stack slot
  2005     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2006     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2008   } else {
  2009     // register
  2010     switch (type) {
  2011       case T_OBJECT: {
  2012         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2013         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2014         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2017       case T_INT: {
  2018         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2019         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2020         return LIR_OprFact::single_cpu(assigned_reg);
  2023       case T_LONG: {
  2024         int assigned_regHi = interval->assigned_regHi();
  2025         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2026         assert(num_physical_regs(T_LONG) == 1 ||
  2027                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2029         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2030         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2031                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2032         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2033         if (requires_adjacent_regs(T_LONG)) {
  2034           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2037 #ifdef _LP64
  2038         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2039 #else
  2040 #ifdef SPARC
  2041         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2042 #else
  2043         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2044 #endif // SPARC
  2045 #endif // LP64
  2048       case T_FLOAT: {
  2049 #ifdef X86
  2050         if (UseSSE >= 1) {
  2051           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2052           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2053           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2055 #endif
  2057         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2058         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2059         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2062       case T_DOUBLE: {
  2063 #ifdef X86
  2064         if (UseSSE >= 2) {
  2065           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2066           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2067           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2069 #endif
  2071 #ifdef SPARC
  2072         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2073         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2074         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2075         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2076 #else
  2077         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2078         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2079         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2080 #endif
  2081         return result;
  2084       default: {
  2085         ShouldNotReachHere();
  2086         return LIR_OprFact::illegalOpr;
  2092 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2093   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2094   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2097 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2098   assert(opr->is_virtual(), "should not call this otherwise");
  2100   Interval* interval = interval_at(opr->vreg_number());
  2101   assert(interval != NULL, "interval must exist");
  2103   if (op_id != -1) {
  2104 #ifdef ASSERT
  2105     BlockBegin* block = block_of_op_with_id(op_id);
  2106     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2107       // check if spill moves could have been appended at the end of this block, but
  2108       // before the branch instruction. So the split child information for this branch would
  2109       // be incorrect.
  2110       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2111       if (branch != NULL) {
  2112         if (block->live_out().at(opr->vreg_number())) {
  2113           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2114           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2118 #endif
  2120     // operands are not changed when an interval is split during allocation,
  2121     // so search the right interval here
  2122     interval = split_child_at_op_id(interval, op_id, mode);
  2125   LIR_Opr res = operand_for_interval(interval);
  2127 #ifdef X86
  2128   // new semantic for is_last_use: not only set on definite end of interval,
  2129   // but also before hole
  2130   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2131   // last use information is completely correct
  2132   // information is only needed for fpu stack allocation
  2133   if (res->is_fpu_register()) {
  2134     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2135       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2136       res = res->make_last_use();
  2139 #endif
  2141   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2143   return res;
  2147 #ifdef ASSERT
  2148 // some methods used to check correctness of debug information
  2150 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2151   if (values == NULL) {
  2152     return;
  2155   for (int i = 0; i < values->length(); i++) {
  2156     ScopeValue* value = values->at(i);
  2158     if (value->is_location()) {
  2159       Location location = ((LocationValue*)value)->location();
  2160       assert(location.where() == Location::on_stack, "value is in register");
  2165 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2166   if (values == NULL) {
  2167     return;
  2170   for (int i = 0; i < values->length(); i++) {
  2171     MonitorValue* value = values->at(i);
  2173     if (value->owner()->is_location()) {
  2174       Location location = ((LocationValue*)value->owner())->location();
  2175       assert(location.where() == Location::on_stack, "owner is in register");
  2177     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2181 void assert_equal(Location l1, Location l2) {
  2182   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2185 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2186   if (v1->is_location()) {
  2187     assert(v2->is_location(), "");
  2188     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2189   } else if (v1->is_constant_int()) {
  2190     assert(v2->is_constant_int(), "");
  2191     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2192   } else if (v1->is_constant_double()) {
  2193     assert(v2->is_constant_double(), "");
  2194     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2195   } else if (v1->is_constant_long()) {
  2196     assert(v2->is_constant_long(), "");
  2197     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2198   } else if (v1->is_constant_oop()) {
  2199     assert(v2->is_constant_oop(), "");
  2200     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2201   } else {
  2202     ShouldNotReachHere();
  2206 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2207   assert_equal(m1->owner(), m2->owner());
  2208   assert_equal(m1->basic_lock(), m2->basic_lock());
  2211 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2212   assert(d1->scope() == d2->scope(), "not equal");
  2213   assert(d1->bci() == d2->bci(), "not equal");
  2215   if (d1->locals() != NULL) {
  2216     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2217     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2218     for (int i = 0; i < d1->locals()->length(); i++) {
  2219       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2221   } else {
  2222     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2225   if (d1->expressions() != NULL) {
  2226     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2227     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2228     for (int i = 0; i < d1->expressions()->length(); i++) {
  2229       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2231   } else {
  2232     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2235   if (d1->monitors() != NULL) {
  2236     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2237     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2238     for (int i = 0; i < d1->monitors()->length(); i++) {
  2239       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2241   } else {
  2242     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2245   if (d1->caller() != NULL) {
  2246     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2247     assert_equal(d1->caller(), d2->caller());
  2248   } else {
  2249     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2253 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2254   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2255     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
  2256     switch (code) {
  2257       case Bytecodes::_ifnull    : // fall through
  2258       case Bytecodes::_ifnonnull : // fall through
  2259       case Bytecodes::_ifeq      : // fall through
  2260       case Bytecodes::_ifne      : // fall through
  2261       case Bytecodes::_iflt      : // fall through
  2262       case Bytecodes::_ifge      : // fall through
  2263       case Bytecodes::_ifgt      : // fall through
  2264       case Bytecodes::_ifle      : // fall through
  2265       case Bytecodes::_if_icmpeq : // fall through
  2266       case Bytecodes::_if_icmpne : // fall through
  2267       case Bytecodes::_if_icmplt : // fall through
  2268       case Bytecodes::_if_icmpge : // fall through
  2269       case Bytecodes::_if_icmpgt : // fall through
  2270       case Bytecodes::_if_icmple : // fall through
  2271       case Bytecodes::_if_acmpeq : // fall through
  2272       case Bytecodes::_if_acmpne :
  2273         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2274         break;
  2279 #endif // ASSERT
  2282 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2283   // setup lists of potential oops for walking
  2284   Interval* oop_intervals;
  2285   Interval* non_oop_intervals;
  2287   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2289   // intervals that have no oops inside need not to be processed
  2290   // to ensure a walking until the last instruction id, add a dummy interval
  2291   // with a high operation id
  2292   non_oop_intervals = new Interval(any_reg);
  2293   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2295   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2299 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2300   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2302   // walk before the current operation -> intervals that start at
  2303   // the operation (= output operands of the operation) are not
  2304   // included in the oop map
  2305   iw->walk_before(op->id());
  2307   int frame_size = frame_map()->framesize();
  2308   int arg_count = frame_map()->oop_map_arg_count();
  2309   OopMap* map = new OopMap(frame_size, arg_count);
  2311   // Check if this is a patch site.
  2312   bool is_patch_info = false;
  2313   if (op->code() == lir_move) {
  2314     assert(!is_call_site, "move must not be a call site");
  2315     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2316     LIR_Op1* move = (LIR_Op1*)op;
  2318     is_patch_info = move->patch_code() != lir_patch_none;
  2321   // Iterate through active intervals
  2322   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2323     int assigned_reg = interval->assigned_reg();
  2325     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2326     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2327     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2329     // Check if this range covers the instruction. Intervals that
  2330     // start or end at the current operation are not included in the
  2331     // oop map, except in the case of patching moves.  For patching
  2332     // moves, any intervals which end at this instruction are included
  2333     // in the oop map since we may safepoint while doing the patch
  2334     // before we've consumed the inputs.
  2335     if (is_patch_info || op->id() < interval->current_to()) {
  2337       // caller-save registers must not be included into oop-maps at calls
  2338       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2340       VMReg name = vm_reg_for_interval(interval);
  2341       map->set_oop(name);
  2343       // Spill optimization: when the stack value is guaranteed to be always correct,
  2344       // then it must be added to the oop map even if the interval is currently in a register
  2345       if (interval->always_in_memory() &&
  2346           op->id() > interval->spill_definition_pos() &&
  2347           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2348         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2349         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2350         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2352         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2357   // add oops from lock stack
  2358   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2359   int locks_count = info->stack()->locks_size();
  2360   for (int i = 0; i < locks_count; i++) {
  2361     map->set_oop(frame_map()->monitor_object_regname(i));
  2364   return map;
  2368 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2369   assert(visitor.info_count() > 0, "no oop map needed");
  2371   // compute oop_map only for first CodeEmitInfo
  2372   // because it is (in most cases) equal for all other infos of the same operation
  2373   CodeEmitInfo* first_info = visitor.info_at(0);
  2374   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2376   for (int i = 0; i < visitor.info_count(); i++) {
  2377     CodeEmitInfo* info = visitor.info_at(i);
  2378     OopMap* oop_map = first_oop_map;
  2380     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2381       // this info has a different number of locks then the precomputed oop map
  2382       // (possible for lock and unlock instructions) -> compute oop map with
  2383       // correct lock information
  2384       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2387     if (info->_oop_map == NULL) {
  2388       info->_oop_map = oop_map;
  2389     } else {
  2390       // a CodeEmitInfo can not be shared between different LIR-instructions
  2391       // because interval splitting can occur anywhere between two instructions
  2392       // and so the oop maps must be different
  2393       // -> check if the already set oop_map is exactly the one calculated for this operation
  2394       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2400 // frequently used constants
  2401 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
  2402 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
  2403 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
  2404 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
  2405 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
  2406 LocationValue         _illegal_value = LocationValue(Location());
  2408 void LinearScan::init_compute_debug_info() {
  2409   // cache for frequently used scope values
  2410   // (cpu registers and stack slots)
  2411   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2414 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2415   Location loc;
  2416   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2417     bailout("too large frame");
  2419   ScopeValue* object_scope_value = new LocationValue(loc);
  2421   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2422     bailout("too large frame");
  2424   return new MonitorValue(object_scope_value, loc);
  2427 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2428   Location loc;
  2429   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2430     bailout("too large frame");
  2432   return new LocationValue(loc);
  2436 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2437   assert(opr->is_constant(), "should not be called otherwise");
  2439   LIR_Const* c = opr->as_constant_ptr();
  2440   BasicType t = c->type();
  2441   switch (t) {
  2442     case T_OBJECT: {
  2443       jobject value = c->as_jobject();
  2444       if (value == NULL) {
  2445         scope_values->append(&_oop_null_scope_value);
  2446       } else {
  2447         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2449       return 1;
  2452     case T_INT: // fall through
  2453     case T_FLOAT: {
  2454       int value = c->as_jint_bits();
  2455       switch (value) {
  2456         case -1: scope_values->append(&_int_m1_scope_value); break;
  2457         case 0:  scope_values->append(&_int_0_scope_value); break;
  2458         case 1:  scope_values->append(&_int_1_scope_value); break;
  2459         case 2:  scope_values->append(&_int_2_scope_value); break;
  2460         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2462       return 1;
  2465     case T_LONG: // fall through
  2466     case T_DOUBLE: {
  2467 #ifdef _LP64
  2468       scope_values->append(&_int_0_scope_value);
  2469       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
  2470 #else
  2471       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2472         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2473         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2474       } else {
  2475         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2476         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2478 #endif
  2479       return 2;
  2482     default:
  2483       ShouldNotReachHere();
  2484       return -1;
  2488 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2489   if (opr->is_single_stack()) {
  2490     int stack_idx = opr->single_stack_ix();
  2491     bool is_oop = opr->is_oop_register();
  2492     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2494     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2495     if (sv == NULL) {
  2496       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2497       sv = location_for_name(stack_idx, loc_type);
  2498       _scope_value_cache.at_put(cache_idx, sv);
  2501     // check if cached value is correct
  2502     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2504     scope_values->append(sv);
  2505     return 1;
  2507   } else if (opr->is_single_cpu()) {
  2508     bool is_oop = opr->is_oop_register();
  2509     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2510     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
  2512     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2513     if (sv == NULL) {
  2514       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
  2515       VMReg rname = frame_map()->regname(opr);
  2516       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2517       _scope_value_cache.at_put(cache_idx, sv);
  2520     // check if cached value is correct
  2521     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
  2523     scope_values->append(sv);
  2524     return 1;
  2526 #ifdef X86
  2527   } else if (opr->is_single_xmm()) {
  2528     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2529     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2531     scope_values->append(sv);
  2532     return 1;
  2533 #endif
  2535   } else if (opr->is_single_fpu()) {
  2536 #ifdef X86
  2537     // the exact location of fpu stack values is only known
  2538     // during fpu stack allocation, so the stack allocator object
  2539     // must be present
  2540     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2541     assert(_fpu_stack_allocator != NULL, "must be present");
  2542     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2543 #endif
  2545     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2546     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2547     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2549     scope_values->append(sv);
  2550     return 1;
  2552   } else {
  2553     // double-size operands
  2555     ScopeValue* first;
  2556     ScopeValue* second;
  2558     if (opr->is_double_stack()) {
  2559 #ifdef _LP64
  2560       Location loc1;
  2561       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
  2562       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
  2563         bailout("too large frame");
  2565       // Does this reverse on x86 vs. sparc?
  2566       first =  new LocationValue(loc1);
  2567       second = &_int_0_scope_value;
  2568 #else
  2569       Location loc1, loc2;
  2570       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2571         bailout("too large frame");
  2573       first =  new LocationValue(loc1);
  2574       second = new LocationValue(loc2);
  2575 #endif // _LP64
  2577     } else if (opr->is_double_cpu()) {
  2578 #ifdef _LP64
  2579       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2580       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2581       second = &_int_0_scope_value;
  2582 #else
  2583       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2584       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2586       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2587         // lo/hi and swapped relative to first and second, so swap them
  2588         VMReg tmp = rname_first;
  2589         rname_first = rname_second;
  2590         rname_second = tmp;
  2593       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2594       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2595 #endif //_LP64
  2598 #ifdef X86
  2599     } else if (opr->is_double_xmm()) {
  2600       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2601       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2602       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2603       // %%% This is probably a waste but we'll keep things as they were for now
  2604       if (true) {
  2605         VMReg rname_second = rname_first->next();
  2606         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2608 #endif
  2610     } else if (opr->is_double_fpu()) {
  2611       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2612       // the double as float registers in the native ordering. On X86,
  2613       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2614       // the low-order word of the double and fpu_regnrLo + 1 is the
  2615       // name for the other half.  *first and *second must represent the
  2616       // least and most significant words, respectively.
  2618 #ifdef X86
  2619       // the exact location of fpu stack values is only known
  2620       // during fpu stack allocation, so the stack allocator object
  2621       // must be present
  2622       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2623       assert(_fpu_stack_allocator != NULL, "must be present");
  2624       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2626       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2627 #endif
  2628 #ifdef SPARC
  2629       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2630 #endif
  2632       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2634       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2635       // %%% This is probably a waste but we'll keep things as they were for now
  2636       if (true) {
  2637         VMReg rname_second = rname_first->next();
  2638         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2641     } else {
  2642       ShouldNotReachHere();
  2643       first = NULL;
  2644       second = NULL;
  2647     assert(first != NULL && second != NULL, "must be set");
  2648     // The convention the interpreter uses is that the second local
  2649     // holds the first raw word of the native double representation.
  2650     // This is actually reasonable, since locals and stack arrays
  2651     // grow downwards in all implementations.
  2652     // (If, on some machine, the interpreter's Java locals or stack
  2653     // were to grow upwards, the embedded doubles would be word-swapped.)
  2654     scope_values->append(second);
  2655     scope_values->append(first);
  2656     return 2;
  2661 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2662   if (value != NULL) {
  2663     LIR_Opr opr = value->operand();
  2664     Constant* con = value->as_Constant();
  2666     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2667     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2669     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2670       // Unpinned constants may have a virtual operand for a part of the lifetime
  2671       // or may be illegal when it was optimized away,
  2672       // so always use a constant operand
  2673       opr = LIR_OprFact::value_type(con->type());
  2675     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2677     if (opr->is_virtual()) {
  2678       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2680       BlockBegin* block = block_of_op_with_id(op_id);
  2681       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2682         // generating debug information for the last instruction of a block.
  2683         // if this instruction is a branch, spill moves are inserted before this branch
  2684         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2685         // considered in the live ranges of intervals)
  2686         // Solution: use the first op_id of the branch target block instead.
  2687         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2688           if (block->live_out().at(opr->vreg_number())) {
  2689             op_id = block->sux_at(0)->first_lir_instruction_id();
  2690             mode = LIR_OpVisitState::outputMode;
  2695       // Get current location of operand
  2696       // The operand must be live because debug information is considered when building the intervals
  2697       // if the interval is not live, color_lir_opr will cause an assertion failure
  2698       opr = color_lir_opr(opr, op_id, mode);
  2699       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2701       // Append to ScopeValue array
  2702       return append_scope_value_for_operand(opr, scope_values);
  2704     } else {
  2705       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2706       assert(opr->is_constant(), "operand must be constant");
  2708       return append_scope_value_for_constant(opr, scope_values);
  2710   } else {
  2711     // append a dummy value because real value not needed
  2712     scope_values->append(&_illegal_value);
  2713     return 1;
  2718 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
  2719   IRScopeDebugInfo* caller_debug_info = NULL;
  2720   int stack_begin, locks_begin;
  2722   ValueStack* caller_state = cur_scope->caller_state();
  2723   if (caller_state != NULL) {
  2724     // process recursively to compute outermost scope first
  2725     stack_begin = caller_state->stack_size();
  2726     locks_begin = caller_state->locks_size();
  2727     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
  2728   } else {
  2729     stack_begin = 0;
  2730     locks_begin = 0;
  2733   // initialize these to null.
  2734   // If we don't need deopt info or there are no locals, expressions or monitors,
  2735   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2736   GrowableArray<ScopeValue*>*   locals      = NULL;
  2737   GrowableArray<ScopeValue*>*   expressions = NULL;
  2738   GrowableArray<MonitorValue*>* monitors    = NULL;
  2740   // describe local variable values
  2741   int nof_locals = cur_scope->method()->max_locals();
  2742   if (nof_locals > 0) {
  2743     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2745     int pos = 0;
  2746     while (pos < nof_locals) {
  2747       assert(pos < cur_state->locals_size(), "why not?");
  2749       Value local = cur_state->local_at(pos);
  2750       pos += append_scope_value(op_id, local, locals);
  2752       assert(locals->length() == pos, "must match");
  2754     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2755     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2759   // describe expression stack
  2760   //
  2761   // When we inline methods containing exception handlers, the
  2762   // "lock_stacks" are changed to preserve expression stack values
  2763   // in caller scopes when exception handlers are present. This
  2764   // can cause callee stacks to be smaller than caller stacks.
  2765   if (stack_end > innermost_state->stack_size()) {
  2766     stack_end = innermost_state->stack_size();
  2771   int nof_stack = stack_end - stack_begin;
  2772   if (nof_stack > 0) {
  2773     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2775     int pos = stack_begin;
  2776     while (pos < stack_end) {
  2777       Value expression = innermost_state->stack_at_inc(pos);
  2778       append_scope_value(op_id, expression, expressions);
  2780       assert(expressions->length() + stack_begin == pos, "must match");
  2784   // describe monitors
  2785   assert(locks_begin <= locks_end, "error in scope iteration");
  2786   int nof_locks = locks_end - locks_begin;
  2787   if (nof_locks > 0) {
  2788     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2789     for (int i = locks_begin; i < locks_end; i++) {
  2790       monitors->append(location_for_monitor_index(i));
  2794   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
  2798 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2799   if (!compilation()->needs_debug_information()) {
  2800     return;
  2802   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2804   IRScope* innermost_scope = info->scope();
  2805   ValueStack* innermost_state = info->stack();
  2807   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2809   int stack_end = innermost_state->stack_size();
  2810   int locks_end = innermost_state->locks_size();
  2812   DEBUG_ONLY(check_stack_depth(info, stack_end));
  2814   if (info->_scope_debug_info == NULL) {
  2815     // compute debug information
  2816     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
  2817   } else {
  2818     // debug information already set. Check that it is correct from the current point of view
  2819     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
  2824 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2825   LIR_OpVisitState visitor;
  2826   int num_inst = instructions->length();
  2827   bool has_dead = false;
  2829   for (int j = 0; j < num_inst; j++) {
  2830     LIR_Op* op = instructions->at(j);
  2831     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2832       has_dead = true;
  2833       continue;
  2835     int op_id = op->id();
  2837     // visit instruction to get list of operands
  2838     visitor.visit(op);
  2840     // iterate all modes of the visitor and process all virtual operands
  2841     for_each_visitor_mode(mode) {
  2842       int n = visitor.opr_count(mode);
  2843       for (int k = 0; k < n; k++) {
  2844         LIR_Opr opr = visitor.opr_at(mode, k);
  2845         if (opr->is_virtual_register()) {
  2846           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2851     if (visitor.info_count() > 0) {
  2852       // exception handling
  2853       if (compilation()->has_exception_handlers()) {
  2854         XHandlers* xhandlers = visitor.all_xhandler();
  2855         int n = xhandlers->length();
  2856         for (int k = 0; k < n; k++) {
  2857           XHandler* handler = xhandlers->handler_at(k);
  2858           if (handler->entry_code() != NULL) {
  2859             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2862       } else {
  2863         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2866       // compute oop map
  2867       assert(iw != NULL, "needed for compute_oop_map");
  2868       compute_oop_map(iw, visitor, op);
  2870       // compute debug information
  2871       if (!use_fpu_stack_allocation()) {
  2872         // compute debug information if fpu stack allocation is not needed.
  2873         // when fpu stack allocation is needed, the debug information can not
  2874         // be computed here because the exact location of fpu operands is not known
  2875         // -> debug information is created inside the fpu stack allocator
  2876         int n = visitor.info_count();
  2877         for (int k = 0; k < n; k++) {
  2878           compute_debug_info(visitor.info_at(k), op_id);
  2883 #ifdef ASSERT
  2884     // make sure we haven't made the op invalid.
  2885     op->verify();
  2886 #endif
  2888     // remove useless moves
  2889     if (op->code() == lir_move) {
  2890       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2891       LIR_Op1* move = (LIR_Op1*)op;
  2892       LIR_Opr src = move->in_opr();
  2893       LIR_Opr dst = move->result_opr();
  2894       if (dst == src ||
  2895           !dst->is_pointer() && !src->is_pointer() &&
  2896           src->is_same_register(dst)) {
  2897         instructions->at_put(j, NULL);
  2898         has_dead = true;
  2903   if (has_dead) {
  2904     // iterate all instructions of the block and remove all null-values.
  2905     int insert_point = 0;
  2906     for (int j = 0; j < num_inst; j++) {
  2907       LIR_Op* op = instructions->at(j);
  2908       if (op != NULL) {
  2909         if (insert_point != j) {
  2910           instructions->at_put(insert_point, op);
  2912         insert_point++;
  2915     instructions->truncate(insert_point);
  2919 void LinearScan::assign_reg_num() {
  2920   TIME_LINEAR_SCAN(timer_assign_reg_num);
  2922   init_compute_debug_info();
  2923   IntervalWalker* iw = init_compute_oop_maps();
  2925   int num_blocks = block_count();
  2926   for (int i = 0; i < num_blocks; i++) {
  2927     BlockBegin* block = block_at(i);
  2928     assign_reg_num(block->lir()->instructions_list(), iw);
  2933 void LinearScan::do_linear_scan() {
  2934   NOT_PRODUCT(_total_timer.begin_method());
  2936   number_instructions();
  2938   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  2940   compute_local_live_sets();
  2941   compute_global_live_sets();
  2942   CHECK_BAILOUT();
  2944   build_intervals();
  2945   CHECK_BAILOUT();
  2946   sort_intervals_before_allocation();
  2948   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  2949   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  2951   allocate_registers();
  2952   CHECK_BAILOUT();
  2954   resolve_data_flow();
  2955   if (compilation()->has_exception_handlers()) {
  2956     resolve_exception_handlers();
  2958   // fill in number of spill slots into frame_map
  2959   propagate_spill_slots();
  2960   CHECK_BAILOUT();
  2962   NOT_PRODUCT(print_intervals("After Register Allocation"));
  2963   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  2965   sort_intervals_after_allocation();
  2967   DEBUG_ONLY(verify());
  2969   eliminate_spill_moves();
  2970   assign_reg_num();
  2971   CHECK_BAILOUT();
  2973   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  2974   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  2976   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  2978     if (use_fpu_stack_allocation()) {
  2979       allocate_fpu_stack(); // Only has effect on Intel
  2980       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  2984   { TIME_LINEAR_SCAN(timer_optimize_lir);
  2986     EdgeMoveOptimizer::optimize(ir()->code());
  2987     ControlFlowOptimizer::optimize(ir()->code());
  2988     // check that cfg is still correct after optimizations
  2989     ir()->verify();
  2992   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  2993   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  2994   NOT_PRODUCT(_total_timer.end_method(this));
  2998 // ********** Printing functions
  3000 #ifndef PRODUCT
  3002 void LinearScan::print_timers(double total) {
  3003   _total_timer.print(total);
  3006 void LinearScan::print_statistics() {
  3007   _stat_before_alloc.print("before allocation");
  3008   _stat_after_asign.print("after assignment of register");
  3009   _stat_final.print("after optimization");
  3012 void LinearScan::print_bitmap(BitMap& b) {
  3013   for (unsigned int i = 0; i < b.size(); i++) {
  3014     if (b.at(i)) tty->print("%d ", i);
  3016   tty->cr();
  3019 void LinearScan::print_intervals(const char* label) {
  3020   if (TraceLinearScanLevel >= 1) {
  3021     int i;
  3022     tty->cr();
  3023     tty->print_cr("%s", label);
  3025     for (i = 0; i < interval_count(); i++) {
  3026       Interval* interval = interval_at(i);
  3027       if (interval != NULL) {
  3028         interval->print();
  3032     tty->cr();
  3033     tty->print_cr("--- Basic Blocks ---");
  3034     for (i = 0; i < block_count(); i++) {
  3035       BlockBegin* block = block_at(i);
  3036       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3038     tty->cr();
  3039     tty->cr();
  3042   if (PrintCFGToFile) {
  3043     CFGPrinter::print_intervals(&_intervals, label);
  3047 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3048   if (TraceLinearScanLevel >= level) {
  3049     tty->cr();
  3050     tty->print_cr("%s", label);
  3051     print_LIR(ir()->linear_scan_order());
  3052     tty->cr();
  3055   if (level == 1 && PrintCFGToFile) {
  3056     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3060 #endif //PRODUCT
  3063 // ********** verification functions for allocation
  3064 // (check that all intervals have a correct register and that no registers are overwritten)
  3065 #ifdef ASSERT
  3067 void LinearScan::verify() {
  3068   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3069   verify_intervals();
  3071   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3072   verify_no_oops_in_fixed_intervals();
  3074   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3075   verify_constants();
  3077   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3078   verify_registers();
  3080   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3083 void LinearScan::verify_intervals() {
  3084   int len = interval_count();
  3085   bool has_error = false;
  3087   for (int i = 0; i < len; i++) {
  3088     Interval* i1 = interval_at(i);
  3089     if (i1 == NULL) continue;
  3091     i1->check_split_children();
  3093     if (i1->reg_num() != i) {
  3094       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3095       has_error = true;
  3098     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3099       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3100       has_error = true;
  3103     if (i1->assigned_reg() == any_reg) {
  3104       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3105       has_error = true;
  3108     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3109       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3110       has_error = true;
  3113     if (!is_processed_reg_num(i1->assigned_reg())) {
  3114       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3115       has_error = true;
  3118     if (i1->first() == Range::end()) {
  3119       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3120       has_error = true;
  3123     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3124       if (r->from() >= r->to()) {
  3125         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3126         has_error = true;
  3130     for (int j = i + 1; j < len; j++) {
  3131       Interval* i2 = interval_at(j);
  3132       if (i2 == NULL) continue;
  3134       // special intervals that are created in MoveResolver
  3135       // -> ignore them because the range information has no meaning there
  3136       if (i1->from() == 1 && i1->to() == 2) continue;
  3137       if (i2->from() == 1 && i2->to() == 2) continue;
  3139       int r1 = i1->assigned_reg();
  3140       int r1Hi = i1->assigned_regHi();
  3141       int r2 = i2->assigned_reg();
  3142       int r2Hi = i2->assigned_regHi();
  3143       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3144         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3145         i1->print(); tty->cr();
  3146         i2->print(); tty->cr();
  3147         has_error = true;
  3152   assert(has_error == false, "register allocation invalid");
  3156 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3157   Interval* fixed_intervals;
  3158   Interval* other_intervals;
  3159   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
  3161   // to ensure a walking until the last instruction id, add a dummy interval
  3162   // with a high operation id
  3163   other_intervals = new Interval(any_reg);
  3164   other_intervals->add_range(max_jint - 2, max_jint - 1);
  3165   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
  3167   LIR_OpVisitState visitor;
  3168   for (int i = 0; i < block_count(); i++) {
  3169     BlockBegin* block = block_at(i);
  3171     LIR_OpList* instructions = block->lir()->instructions_list();
  3173     for (int j = 0; j < instructions->length(); j++) {
  3174       LIR_Op* op = instructions->at(j);
  3175       int op_id = op->id();
  3177       visitor.visit(op);
  3179       if (visitor.info_count() > 0) {
  3180         iw->walk_before(op->id());
  3181         bool check_live = true;
  3182         if (op->code() == lir_move) {
  3183           LIR_Op1* move = (LIR_Op1*)op;
  3184           check_live = (move->patch_code() == lir_patch_none);
  3186         LIR_OpBranch* branch = op->as_OpBranch();
  3187         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
  3188           // Don't bother checking the stub in this case since the
  3189           // exception stub will never return to normal control flow.
  3190           check_live = false;
  3193         // Make sure none of the fixed registers is live across an
  3194         // oopmap since we can't handle that correctly.
  3195         if (check_live) {
  3196           for (Interval* interval = iw->active_first(fixedKind);
  3197                interval != Interval::end();
  3198                interval = interval->next()) {
  3199             if (interval->current_to() > op->id() + 1) {
  3200               // This interval is live out of this op so make sure
  3201               // that this interval represents some value that's
  3202               // referenced by this op either as an input or output.
  3203               bool ok = false;
  3204               for_each_visitor_mode(mode) {
  3205                 int n = visitor.opr_count(mode);
  3206                 for (int k = 0; k < n; k++) {
  3207                   LIR_Opr opr = visitor.opr_at(mode, k);
  3208                   if (opr->is_fixed_cpu()) {
  3209                     if (interval_at(reg_num(opr)) == interval) {
  3210                       ok = true;
  3211                       break;
  3213                     int hi = reg_numHi(opr);
  3214                     if (hi != -1 && interval_at(hi) == interval) {
  3215                       ok = true;
  3216                       break;
  3221               assert(ok, "fixed intervals should never be live across an oopmap point");
  3227       // oop-maps at calls do not contain registers, so check is not needed
  3228       if (!visitor.has_call()) {
  3230         for_each_visitor_mode(mode) {
  3231           int n = visitor.opr_count(mode);
  3232           for (int k = 0; k < n; k++) {
  3233             LIR_Opr opr = visitor.opr_at(mode, k);
  3235             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3236               // operand is a non-virtual cpu register and contains an oop
  3237               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3239               Interval* interval = interval_at(reg_num(opr));
  3240               assert(interval != NULL, "no interval");
  3242               if (mode == LIR_OpVisitState::inputMode) {
  3243                 if (interval->to() >= op_id + 1) {
  3244                   assert(interval->to() < op_id + 2 ||
  3245                          interval->has_hole_between(op_id, op_id + 2),
  3246                          "oop input operand live after instruction");
  3248               } else if (mode == LIR_OpVisitState::outputMode) {
  3249                 if (interval->from() <= op_id - 1) {
  3250                   assert(interval->has_hole_between(op_id - 1, op_id),
  3251                          "oop input operand live after instruction");
  3263 void LinearScan::verify_constants() {
  3264   int num_regs = num_virtual_regs();
  3265   int size = live_set_size();
  3266   int num_blocks = block_count();
  3268   for (int i = 0; i < num_blocks; i++) {
  3269     BlockBegin* block = block_at(i);
  3270     BitMap live_at_edge = block->live_in();
  3272     // visit all registers where the live_at_edge bit is set
  3273     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  3274       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3276       Value value = gen()->instruction_for_vreg(r);
  3278       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3279       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3280       assert(value->operand()->vreg_number() == r, "register number must match");
  3281       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3287 class RegisterVerifier: public StackObj {
  3288  private:
  3289   LinearScan*   _allocator;
  3290   BlockList     _work_list;      // all blocks that must be processed
  3291   IntervalsList _saved_states;   // saved information of previous check
  3293   // simplified access to methods of LinearScan
  3294   Compilation*  compilation() const              { return _allocator->compilation(); }
  3295   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3296   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3298   // currently, only registers are processed
  3299   int           state_size()                     { return LinearScan::nof_regs; }
  3301   // accessors
  3302   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3303   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3304   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3306   // helper functions
  3307   IntervalList* copy(IntervalList* input_state);
  3308   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3309   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3311   void process_block(BlockBegin* block);
  3312   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3313   void process_successor(BlockBegin* block, IntervalList* input_state);
  3314   void process_operations(LIR_List* ops, IntervalList* input_state);
  3316  public:
  3317   RegisterVerifier(LinearScan* allocator)
  3318     : _allocator(allocator)
  3319     , _work_list(16)
  3320     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3321   { }
  3323   void verify(BlockBegin* start);
  3324 };
  3327 // entry function from LinearScan that starts the verification
  3328 void LinearScan::verify_registers() {
  3329   RegisterVerifier verifier(this);
  3330   verifier.verify(block_at(0));
  3334 void RegisterVerifier::verify(BlockBegin* start) {
  3335   // setup input registers (method arguments) for first block
  3336   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3337   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3338   for (int n = 0; n < args->length(); n++) {
  3339     LIR_Opr opr = args->at(n);
  3340     if (opr->is_register()) {
  3341       Interval* interval = interval_at(reg_num(opr));
  3343       if (interval->assigned_reg() < state_size()) {
  3344         input_state->at_put(interval->assigned_reg(), interval);
  3346       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3347         input_state->at_put(interval->assigned_regHi(), interval);
  3352   set_state_for_block(start, input_state);
  3353   add_to_work_list(start);
  3355   // main loop for verification
  3356   do {
  3357     BlockBegin* block = _work_list.at(0);
  3358     _work_list.remove_at(0);
  3360     process_block(block);
  3361   } while (!_work_list.is_empty());
  3364 void RegisterVerifier::process_block(BlockBegin* block) {
  3365   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3367   // must copy state because it is modified
  3368   IntervalList* input_state = copy(state_for_block(block));
  3370   if (TraceLinearScanLevel >= 4) {
  3371     tty->print_cr("Input-State of intervals:");
  3372     tty->print("    ");
  3373     for (int i = 0; i < state_size(); i++) {
  3374       if (input_state->at(i) != NULL) {
  3375         tty->print(" %4d", input_state->at(i)->reg_num());
  3376       } else {
  3377         tty->print("   __");
  3380     tty->cr();
  3381     tty->cr();
  3384   // process all operations of the block
  3385   process_operations(block->lir(), input_state);
  3387   // iterate all successors
  3388   for (int i = 0; i < block->number_of_sux(); i++) {
  3389     process_successor(block->sux_at(i), input_state);
  3393 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3394   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3396   // must copy state because it is modified
  3397   input_state = copy(input_state);
  3399   if (xhandler->entry_code() != NULL) {
  3400     process_operations(xhandler->entry_code(), input_state);
  3402   process_successor(xhandler->entry_block(), input_state);
  3405 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3406   IntervalList* saved_state = state_for_block(block);
  3408   if (saved_state != NULL) {
  3409     // this block was already processed before.
  3410     // check if new input_state is consistent with saved_state
  3412     bool saved_state_correct = true;
  3413     for (int i = 0; i < state_size(); i++) {
  3414       if (input_state->at(i) != saved_state->at(i)) {
  3415         // current input_state and previous saved_state assume a different
  3416         // interval in this register -> assume that this register is invalid
  3417         if (saved_state->at(i) != NULL) {
  3418           // invalidate old calculation only if it assumed that
  3419           // register was valid. when the register was already invalid,
  3420           // then the old calculation was correct.
  3421           saved_state_correct = false;
  3422           saved_state->at_put(i, NULL);
  3424           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3429     if (saved_state_correct) {
  3430       // already processed block with correct input_state
  3431       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3432     } else {
  3433       // must re-visit this block
  3434       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3435       add_to_work_list(block);
  3438   } else {
  3439     // block was not processed before, so set initial input_state
  3440     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3442     set_state_for_block(block, copy(input_state));
  3443     add_to_work_list(block);
  3448 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3449   IntervalList* copy_state = new IntervalList(input_state->length());
  3450   copy_state->push_all(input_state);
  3451   return copy_state;
  3454 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3455   if (reg != LinearScan::any_reg && reg < state_size()) {
  3456     if (interval != NULL) {
  3457       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3458     } else if (input_state->at(reg) != NULL) {
  3459       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3462     input_state->at_put(reg, interval);
  3466 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3467   if (reg != LinearScan::any_reg && reg < state_size()) {
  3468     if (input_state->at(reg) != interval) {
  3469       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3470       return true;
  3473   return false;
  3476 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3477   // visit all instructions of the block
  3478   LIR_OpVisitState visitor;
  3479   bool has_error = false;
  3481   for (int i = 0; i < ops->length(); i++) {
  3482     LIR_Op* op = ops->at(i);
  3483     visitor.visit(op);
  3485     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3487     // check if input operands are correct
  3488     int j;
  3489     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3490     for (j = 0; j < n; j++) {
  3491       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3492       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3493         Interval* interval = interval_at(reg_num(opr));
  3494         if (op->id() != -1) {
  3495           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3498         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3499         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3501         // When an operand is marked with is_last_use, then the fpu stack allocator
  3502         // removes the register from the fpu stack -> the register contains no value
  3503         if (opr->is_last_use()) {
  3504           state_put(input_state, interval->assigned_reg(),   NULL);
  3505           state_put(input_state, interval->assigned_regHi(), NULL);
  3510     // invalidate all caller save registers at calls
  3511     if (visitor.has_call()) {
  3512       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
  3513         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3515       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3516         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3519 #ifdef X86
  3520       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3521         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3523 #endif
  3526     // process xhandler before output and temp operands
  3527     XHandlers* xhandlers = visitor.all_xhandler();
  3528     n = xhandlers->length();
  3529     for (int k = 0; k < n; k++) {
  3530       process_xhandler(xhandlers->handler_at(k), input_state);
  3533     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3534     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3535     for (j = 0; j < n; j++) {
  3536       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3537       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3538         Interval* interval = interval_at(reg_num(opr));
  3539         if (op->id() != -1) {
  3540           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3543         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3544         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3548     // set output operands
  3549     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3550     for (j = 0; j < n; j++) {
  3551       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3552       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3553         Interval* interval = interval_at(reg_num(opr));
  3554         if (op->id() != -1) {
  3555           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3558         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3559         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3563   assert(has_error == false, "Error in register allocation");
  3566 #endif // ASSERT
  3570 // **** Implementation of MoveResolver ******************************
  3572 MoveResolver::MoveResolver(LinearScan* allocator) :
  3573   _allocator(allocator),
  3574   _multiple_reads_allowed(false),
  3575   _mapping_from(8),
  3576   _mapping_from_opr(8),
  3577   _mapping_to(8),
  3578   _insert_list(NULL),
  3579   _insert_idx(-1),
  3580   _insertion_buffer()
  3582   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3583     _register_blocked[i] = 0;
  3585   DEBUG_ONLY(check_empty());
  3589 #ifdef ASSERT
  3591 void MoveResolver::check_empty() {
  3592   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3593   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3594     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3596   assert(_multiple_reads_allowed == false, "must have default value");
  3599 void MoveResolver::verify_before_resolve() {
  3600   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3601   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3602   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3604   int i, j;
  3605   if (!_multiple_reads_allowed) {
  3606     for (i = 0; i < _mapping_from.length(); i++) {
  3607       for (j = i + 1; j < _mapping_from.length(); j++) {
  3608         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3613   for (i = 0; i < _mapping_to.length(); i++) {
  3614     for (j = i + 1; j < _mapping_to.length(); j++) {
  3615       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3620   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3621   used_regs.clear();
  3622   if (!_multiple_reads_allowed) {
  3623     for (i = 0; i < _mapping_from.length(); i++) {
  3624       Interval* it = _mapping_from.at(i);
  3625       if (it != NULL) {
  3626         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3627         used_regs.set_bit(it->assigned_reg());
  3629         if (it->assigned_regHi() != LinearScan::any_reg) {
  3630           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3631           used_regs.set_bit(it->assigned_regHi());
  3637   used_regs.clear();
  3638   for (i = 0; i < _mapping_to.length(); i++) {
  3639     Interval* it = _mapping_to.at(i);
  3640     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3641     used_regs.set_bit(it->assigned_reg());
  3643     if (it->assigned_regHi() != LinearScan::any_reg) {
  3644       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3645       used_regs.set_bit(it->assigned_regHi());
  3649   used_regs.clear();
  3650   for (i = 0; i < _mapping_from.length(); i++) {
  3651     Interval* it = _mapping_from.at(i);
  3652     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3653       used_regs.set_bit(it->assigned_reg());
  3656   for (i = 0; i < _mapping_to.length(); i++) {
  3657     Interval* it = _mapping_to.at(i);
  3658     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3662 #endif // ASSERT
  3665 // mark assigned_reg and assigned_regHi of the interval as blocked
  3666 void MoveResolver::block_registers(Interval* it) {
  3667   int reg = it->assigned_reg();
  3668   if (reg < LinearScan::nof_regs) {
  3669     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3670     set_register_blocked(reg, 1);
  3672   reg = it->assigned_regHi();
  3673   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3674     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3675     set_register_blocked(reg, 1);
  3679 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3680 void MoveResolver::unblock_registers(Interval* it) {
  3681   int reg = it->assigned_reg();
  3682   if (reg < LinearScan::nof_regs) {
  3683     assert(register_blocked(reg) > 0, "register already marked as unused");
  3684     set_register_blocked(reg, -1);
  3686   reg = it->assigned_regHi();
  3687   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3688     assert(register_blocked(reg) > 0, "register already marked as unused");
  3689     set_register_blocked(reg, -1);
  3693 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3694 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3695   int from_reg = -1;
  3696   int from_regHi = -1;
  3697   if (from != NULL) {
  3698     from_reg = from->assigned_reg();
  3699     from_regHi = from->assigned_regHi();
  3702   int reg = to->assigned_reg();
  3703   if (reg < LinearScan::nof_regs) {
  3704     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3705       return false;
  3708   reg = to->assigned_regHi();
  3709   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3710     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3711       return false;
  3715   return true;
  3719 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3720   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3721   _insertion_buffer.init(list);
  3724 void MoveResolver::append_insertion_buffer() {
  3725   if (_insertion_buffer.initialized()) {
  3726     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3728   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3730   _insert_list = NULL;
  3731   _insert_idx = -1;
  3734 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3735   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3736   assert(from_interval->type() == to_interval->type(), "move between different types");
  3737   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3738   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3740   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3741   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3743   if (!_multiple_reads_allowed) {
  3744     // the last_use flag is an optimization for FPU stack allocation. When the same
  3745     // input interval is used in more than one move, then it is too difficult to determine
  3746     // if this move is really the last use.
  3747     from_opr = from_opr->make_last_use();
  3749   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3751   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3754 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3755   assert(from_opr->type() == to_interval->type(), "move between different types");
  3756   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3757   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3759   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3760   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3762   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3766 void MoveResolver::resolve_mappings() {
  3767   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3768   DEBUG_ONLY(verify_before_resolve());
  3770   // Block all registers that are used as input operands of a move.
  3771   // When a register is blocked, no move to this register is emitted.
  3772   // This is necessary for detecting cycles in moves.
  3773   int i;
  3774   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3775     Interval* from_interval = _mapping_from.at(i);
  3776     if (from_interval != NULL) {
  3777       block_registers(from_interval);
  3781   int spill_candidate = -1;
  3782   while (_mapping_from.length() > 0) {
  3783     bool processed_interval = false;
  3785     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3786       Interval* from_interval = _mapping_from.at(i);
  3787       Interval* to_interval = _mapping_to.at(i);
  3789       if (save_to_process_move(from_interval, to_interval)) {
  3790         // this inverval can be processed because target is free
  3791         if (from_interval != NULL) {
  3792           insert_move(from_interval, to_interval);
  3793           unblock_registers(from_interval);
  3794         } else {
  3795           insert_move(_mapping_from_opr.at(i), to_interval);
  3797         _mapping_from.remove_at(i);
  3798         _mapping_from_opr.remove_at(i);
  3799         _mapping_to.remove_at(i);
  3801         processed_interval = true;
  3802       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3803         // this interval cannot be processed now because target is not free
  3804         // it starts in a register, so it is a possible candidate for spilling
  3805         spill_candidate = i;
  3809     if (!processed_interval) {
  3810       // no move could be processed because there is a cycle in the move list
  3811       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3812       assert(spill_candidate != -1, "no interval in register for spilling found");
  3814       // create a new spill interval and assign a stack slot to it
  3815       Interval* from_interval = _mapping_from.at(spill_candidate);
  3816       Interval* spill_interval = new Interval(-1);
  3817       spill_interval->set_type(from_interval->type());
  3819       // add a dummy range because real position is difficult to calculate
  3820       // Note: this range is a special case when the integrity of the allocation is checked
  3821       spill_interval->add_range(1, 2);
  3823       //       do not allocate a new spill slot for temporary interval, but
  3824       //       use spill slot assigned to from_interval. Otherwise moves from
  3825       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3826       int spill_slot = from_interval->canonical_spill_slot();
  3827       if (spill_slot < 0) {
  3828         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3829         from_interval->set_canonical_spill_slot(spill_slot);
  3831       spill_interval->assign_reg(spill_slot);
  3832       allocator()->append_interval(spill_interval);
  3834       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3836       // insert a move from register to stack and update the mapping
  3837       insert_move(from_interval, spill_interval);
  3838       _mapping_from.at_put(spill_candidate, spill_interval);
  3839       unblock_registers(from_interval);
  3843   // reset to default value
  3844   _multiple_reads_allowed = false;
  3846   // check that all intervals have been processed
  3847   DEBUG_ONLY(check_empty());
  3851 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3852   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3853   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3855   create_insertion_buffer(insert_list);
  3856   _insert_list = insert_list;
  3857   _insert_idx = insert_idx;
  3860 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3861   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3863   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3864     // insert position changed -> resolve current mappings
  3865     resolve_mappings();
  3868   if (insert_list != _insert_list) {
  3869     // block changed -> append insertion_buffer because it is
  3870     // bound to a specific block and create a new insertion_buffer
  3871     append_insertion_buffer();
  3872     create_insertion_buffer(insert_list);
  3875   _insert_list = insert_list;
  3876   _insert_idx = insert_idx;
  3879 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3880   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3882   _mapping_from.append(from_interval);
  3883   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3884   _mapping_to.append(to_interval);
  3888 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3889   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3890   assert(from_opr->is_constant(), "only for constants");
  3892   _mapping_from.append(NULL);
  3893   _mapping_from_opr.append(from_opr);
  3894   _mapping_to.append(to_interval);
  3897 void MoveResolver::resolve_and_append_moves() {
  3898   if (has_mappings()) {
  3899     resolve_mappings();
  3901   append_insertion_buffer();
  3906 // **** Implementation of Range *************************************
  3908 Range::Range(int from, int to, Range* next) :
  3909   _from(from),
  3910   _to(to),
  3911   _next(next)
  3915 // initialize sentinel
  3916 Range* Range::_end = NULL;
  3917 void Range::initialize() {
  3918   _end = new Range(max_jint, max_jint, NULL);
  3921 int Range::intersects_at(Range* r2) const {
  3922   const Range* r1 = this;
  3924   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  3925   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  3927   do {
  3928     if (r1->from() < r2->from()) {
  3929       if (r1->to() <= r2->from()) {
  3930         r1 = r1->next(); if (r1 == _end) return -1;
  3931       } else {
  3932         return r2->from();
  3934     } else if (r2->from() < r1->from()) {
  3935       if (r2->to() <= r1->from()) {
  3936         r2 = r2->next(); if (r2 == _end) return -1;
  3937       } else {
  3938         return r1->from();
  3940     } else { // r1->from() == r2->from()
  3941       if (r1->from() == r1->to()) {
  3942         r1 = r1->next(); if (r1 == _end) return -1;
  3943       } else if (r2->from() == r2->to()) {
  3944         r2 = r2->next(); if (r2 == _end) return -1;
  3945       } else {
  3946         return r1->from();
  3949   } while (true);
  3952 #ifndef PRODUCT
  3953 void Range::print(outputStream* out) const {
  3954   out->print("[%d, %d[ ", _from, _to);
  3956 #endif
  3960 // **** Implementation of Interval **********************************
  3962 // initialize sentinel
  3963 Interval* Interval::_end = NULL;
  3964 void Interval::initialize() {
  3965   Range::initialize();
  3966   _end = new Interval(-1);
  3969 Interval::Interval(int reg_num) :
  3970   _reg_num(reg_num),
  3971   _type(T_ILLEGAL),
  3972   _first(Range::end()),
  3973   _use_pos_and_kinds(12),
  3974   _current(Range::end()),
  3975   _next(_end),
  3976   _state(invalidState),
  3977   _assigned_reg(LinearScan::any_reg),
  3978   _assigned_regHi(LinearScan::any_reg),
  3979   _cached_to(-1),
  3980   _cached_opr(LIR_OprFact::illegalOpr),
  3981   _cached_vm_reg(VMRegImpl::Bad()),
  3982   _split_children(0),
  3983   _canonical_spill_slot(-1),
  3984   _insert_move_when_activated(false),
  3985   _register_hint(NULL),
  3986   _spill_state(noDefinitionFound),
  3987   _spill_definition_pos(-1)
  3989   _split_parent = this;
  3990   _current_split_child = this;
  3993 int Interval::calc_to() {
  3994   assert(_first != Range::end(), "interval has no range");
  3996   Range* r = _first;
  3997   while (r->next() != Range::end()) {
  3998     r = r->next();
  4000   return r->to();
  4004 #ifdef ASSERT
  4005 // consistency check of split-children
  4006 void Interval::check_split_children() {
  4007   if (_split_children.length() > 0) {
  4008     assert(is_split_parent(), "only split parents can have children");
  4010     for (int i = 0; i < _split_children.length(); i++) {
  4011       Interval* i1 = _split_children.at(i);
  4013       assert(i1->split_parent() == this, "not a split child of this interval");
  4014       assert(i1->type() == type(), "must be equal for all split children");
  4015       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  4017       for (int j = i + 1; j < _split_children.length(); j++) {
  4018         Interval* i2 = _split_children.at(j);
  4020         assert(i1->reg_num() != i2->reg_num(), "same register number");
  4022         if (i1->from() < i2->from()) {
  4023           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  4024         } else {
  4025           assert(i2->from() < i1->from(), "intervals start at same op_id");
  4026           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  4032 #endif // ASSERT
  4034 Interval* Interval::register_hint(bool search_split_child) const {
  4035   if (!search_split_child) {
  4036     return _register_hint;
  4039   if (_register_hint != NULL) {
  4040     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  4042     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  4043       return _register_hint;
  4045     } else if (_register_hint->_split_children.length() > 0) {
  4046       // search the first split child that has a register assigned
  4047       int len = _register_hint->_split_children.length();
  4048       for (int i = 0; i < len; i++) {
  4049         Interval* cur = _register_hint->_split_children.at(i);
  4051         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  4052           return cur;
  4058   // no hint interval found that has a register assigned
  4059   return NULL;
  4063 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  4064   assert(is_split_parent(), "can only be called for split parents");
  4065   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4067   Interval* result;
  4068   if (_split_children.length() == 0) {
  4069     result = this;
  4070   } else {
  4071     result = NULL;
  4072     int len = _split_children.length();
  4074     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  4075     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  4077     int i;
  4078     for (i = 0; i < len; i++) {
  4079       Interval* cur = _split_children.at(i);
  4080       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4081         if (i > 0) {
  4082           // exchange current split child to start of list (faster access for next call)
  4083           _split_children.at_put(i, _split_children.at(0));
  4084           _split_children.at_put(0, cur);
  4087         // interval found
  4088         result = cur;
  4089         break;
  4093 #ifdef ASSERT
  4094     for (i = 0; i < len; i++) {
  4095       Interval* tmp = _split_children.at(i);
  4096       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4097         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4098         result->print();
  4099         tmp->print();
  4100         assert(false, "two valid result intervals found");
  4103 #endif
  4106   assert(result != NULL, "no matching interval found");
  4107   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4109   return result;
  4113 // returns the last split child that ends before the given op_id
  4114 Interval* Interval::split_child_before_op_id(int op_id) {
  4115   assert(op_id >= 0, "invalid op_id");
  4117   Interval* parent = split_parent();
  4118   Interval* result = NULL;
  4120   int len = parent->_split_children.length();
  4121   assert(len > 0, "no split children available");
  4123   for (int i = len - 1; i >= 0; i--) {
  4124     Interval* cur = parent->_split_children.at(i);
  4125     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4126       result = cur;
  4130   assert(result != NULL, "no split child found");
  4131   return result;
  4135 // checks if op_id is covered by any split child
  4136 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4137   assert(is_split_parent(), "can only be called for split parents");
  4138   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4140   if (_split_children.length() == 0) {
  4141     // simple case if interval was not split
  4142     return covers(op_id, mode);
  4144   } else {
  4145     // extended case: check all split children
  4146     int len = _split_children.length();
  4147     for (int i = 0; i < len; i++) {
  4148       Interval* cur = _split_children.at(i);
  4149       if (cur->covers(op_id, mode)) {
  4150         return true;
  4153     return false;
  4158 // Note: use positions are sorted descending -> first use has highest index
  4159 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4160   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4162   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4163     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4164       return _use_pos_and_kinds.at(i);
  4167   return max_jint;
  4170 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4171   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4173   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4174     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4175       return _use_pos_and_kinds.at(i);
  4178   return max_jint;
  4181 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4182   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4184   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4185     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4186       return _use_pos_and_kinds.at(i);
  4189   return max_jint;
  4192 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4193   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4195   int prev = 0;
  4196   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4197     if (_use_pos_and_kinds.at(i) > from) {
  4198       return prev;
  4200     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4201       prev = _use_pos_and_kinds.at(i);
  4204   return prev;
  4207 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4208   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4210   // do not add use positions for precolored intervals because
  4211   // they are never used
  4212   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4213 #ifdef ASSERT
  4214     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4215     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4216       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4217       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4218       if (i > 0) {
  4219         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4222 #endif
  4224     // Note: add_use is called in descending order, so list gets sorted
  4225     //       automatically by just appending new use positions
  4226     int len = _use_pos_and_kinds.length();
  4227     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4228       _use_pos_and_kinds.append(pos);
  4229       _use_pos_and_kinds.append(use_kind);
  4230     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4231       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4232       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4237 void Interval::add_range(int from, int to) {
  4238   assert(from < to, "invalid range");
  4239   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4240   assert(from <= first()->to(), "not inserting at begin of interval");
  4242   if (first()->from() <= to) {
  4243     // join intersecting ranges
  4244     first()->set_from(MIN2(from, first()->from()));
  4245     first()->set_to  (MAX2(to,   first()->to()));
  4246   } else {
  4247     // insert new range
  4248     _first = new Range(from, to, first());
  4252 Interval* Interval::new_split_child() {
  4253   // allocate new interval
  4254   Interval* result = new Interval(-1);
  4255   result->set_type(type());
  4257   Interval* parent = split_parent();
  4258   result->_split_parent = parent;
  4259   result->set_register_hint(parent);
  4261   // insert new interval in children-list of parent
  4262   if (parent->_split_children.length() == 0) {
  4263     assert(is_split_parent(), "list must be initialized at first split");
  4265     parent->_split_children = IntervalList(4);
  4266     parent->_split_children.append(this);
  4268   parent->_split_children.append(result);
  4270   return result;
  4273 // split this interval at the specified position and return
  4274 // the remainder as a new interval.
  4275 //
  4276 // when an interval is split, a bi-directional link is established between the original interval
  4277 // (the split parent) and the intervals that are split off this interval (the split children)
  4278 // When a split child is split again, the new created interval is also a direct child
  4279 // of the original parent (there is no tree of split children stored, but a flat list)
  4280 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4281 //
  4282 // Note: The new interval has no valid reg_num
  4283 Interval* Interval::split(int split_pos) {
  4284   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4286   // allocate new interval
  4287   Interval* result = new_split_child();
  4289   // split the ranges
  4290   Range* prev = NULL;
  4291   Range* cur = _first;
  4292   while (cur != Range::end() && cur->to() <= split_pos) {
  4293     prev = cur;
  4294     cur = cur->next();
  4296   assert(cur != Range::end(), "split interval after end of last range");
  4298   if (cur->from() < split_pos) {
  4299     result->_first = new Range(split_pos, cur->to(), cur->next());
  4300     cur->set_to(split_pos);
  4301     cur->set_next(Range::end());
  4303   } else {
  4304     assert(prev != NULL, "split before start of first range");
  4305     result->_first = cur;
  4306     prev->set_next(Range::end());
  4308   result->_current = result->_first;
  4309   _cached_to = -1; // clear cached value
  4311   // split list of use positions
  4312   int total_len = _use_pos_and_kinds.length();
  4313   int start_idx = total_len - 2;
  4314   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4315     start_idx -= 2;
  4318   intStack new_use_pos_and_kinds(total_len - start_idx);
  4319   int i;
  4320   for (i = start_idx + 2; i < total_len; i++) {
  4321     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4324   _use_pos_and_kinds.truncate(start_idx + 2);
  4325   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4326   _use_pos_and_kinds = new_use_pos_and_kinds;
  4328 #ifdef ASSERT
  4329   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4330   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4331   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4333   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4334     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4335     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4337   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4338     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4339     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4341 #endif
  4343   return result;
  4346 // split this interval at the specified position and return
  4347 // the head as a new interval (the original interval is the tail)
  4348 //
  4349 // Currently, only the first range can be split, and the new interval
  4350 // must not have split positions
  4351 Interval* Interval::split_from_start(int split_pos) {
  4352   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4353   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4354   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4355   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4357   // allocate new interval
  4358   Interval* result = new_split_child();
  4360   // the new created interval has only one range (checked by assertion above),
  4361   // so the splitting of the ranges is very simple
  4362   result->add_range(_first->from(), split_pos);
  4364   if (split_pos == _first->to()) {
  4365     assert(_first->next() != Range::end(), "must not be at end");
  4366     _first = _first->next();
  4367   } else {
  4368     _first->set_from(split_pos);
  4371   return result;
  4375 // returns true if the op_id is inside the interval
  4376 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4377   Range* cur  = _first;
  4379   while (cur != Range::end() && cur->to() < op_id) {
  4380     cur = cur->next();
  4382   if (cur != Range::end()) {
  4383     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4385     if (mode == LIR_OpVisitState::outputMode) {
  4386       return cur->from() <= op_id && op_id < cur->to();
  4387     } else {
  4388       return cur->from() <= op_id && op_id <= cur->to();
  4391   return false;
  4394 // returns true if the interval has any hole between hole_from and hole_to
  4395 // (even if the hole has only the length 1)
  4396 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4397   assert(hole_from < hole_to, "check");
  4398   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4400   Range* cur  = _first;
  4401   while (cur != Range::end()) {
  4402     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4404     // hole-range starts before this range -> hole
  4405     if (hole_from < cur->from()) {
  4406       return true;
  4408     // hole-range completely inside this range -> no hole
  4409     } else if (hole_to <= cur->to()) {
  4410       return false;
  4412     // overlapping of hole-range with this range -> hole
  4413     } else if (hole_from <= cur->to()) {
  4414       return true;
  4417     cur = cur->next();
  4420   return false;
  4424 #ifndef PRODUCT
  4425 void Interval::print(outputStream* out) const {
  4426   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4427   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4429   const char* type_name;
  4430   LIR_Opr opr = LIR_OprFact::illegal();
  4431   if (reg_num() < LIR_OprDesc::vreg_base) {
  4432     type_name = "fixed";
  4433     // need a temporary operand for fixed intervals because type() cannot be called
  4434     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4435       opr = LIR_OprFact::single_cpu(assigned_reg());
  4436     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4437       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4438 #ifdef X86
  4439     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4440       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4441 #endif
  4442     } else {
  4443       ShouldNotReachHere();
  4445   } else {
  4446     type_name = type2name(type());
  4447     if (assigned_reg() != -1) {
  4448       opr = LinearScan::calc_operand_for_interval(this);
  4452   out->print("%d %s ", reg_num(), type_name);
  4453   if (opr->is_valid()) {
  4454     out->print("\"");
  4455     opr->print(out);
  4456     out->print("\" ");
  4458   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4460   // print ranges
  4461   Range* cur = _first;
  4462   while (cur != Range::end()) {
  4463     cur->print(out);
  4464     cur = cur->next();
  4465     assert(cur != NULL, "range list not closed with range sentinel");
  4468   // print use positions
  4469   int prev = 0;
  4470   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4471   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4472     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4473     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4475     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4476     prev = _use_pos_and_kinds.at(i);
  4479   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4480   out->cr();
  4482 #endif
  4486 // **** Implementation of IntervalWalker ****************************
  4488 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4489  : _compilation(allocator->compilation())
  4490  , _allocator(allocator)
  4492   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4493   _unhandled_first[anyKind]   = unhandled_any_first;
  4494   _active_first[fixedKind]    = Interval::end();
  4495   _inactive_first[fixedKind]  = Interval::end();
  4496   _active_first[anyKind]      = Interval::end();
  4497   _inactive_first[anyKind]    = Interval::end();
  4498   _current_position = -1;
  4499   _current = NULL;
  4500   next_interval();
  4504 // append interval at top of list
  4505 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4506   interval->set_next(*list); *list = interval;
  4510 // append interval in order of current range from()
  4511 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4512   Interval* prev = NULL;
  4513   Interval* cur  = *list;
  4514   while (cur->current_from() < interval->current_from()) {
  4515     prev = cur; cur = cur->next();
  4517   if (prev == NULL) {
  4518     *list = interval;
  4519   } else {
  4520     prev->set_next(interval);
  4522   interval->set_next(cur);
  4525 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4526   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4528   Interval* prev = NULL;
  4529   Interval* cur  = *list;
  4530   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4531     prev = cur; cur = cur->next();
  4533   if (prev == NULL) {
  4534     *list = interval;
  4535   } else {
  4536     prev->set_next(interval);
  4538   interval->set_next(cur);
  4542 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4543   while (*list != Interval::end() && *list != i) {
  4544     list = (*list)->next_addr();
  4546   if (*list != Interval::end()) {
  4547     assert(*list == i, "check");
  4548     *list = (*list)->next();
  4549     return true;
  4550   } else {
  4551     return false;
  4555 void IntervalWalker::remove_from_list(Interval* i) {
  4556   bool deleted;
  4558   if (i->state() == activeState) {
  4559     deleted = remove_from_list(active_first_addr(anyKind), i);
  4560   } else {
  4561     assert(i->state() == inactiveState, "invalid state");
  4562     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4565   assert(deleted, "interval has not been found in list");
  4569 void IntervalWalker::walk_to(IntervalState state, int from) {
  4570   assert (state == activeState || state == inactiveState, "wrong state");
  4571   for_each_interval_kind(kind) {
  4572     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4573     Interval* next   = *prev;
  4574     while (next->current_from() <= from) {
  4575       Interval* cur = next;
  4576       next = cur->next();
  4578       bool range_has_changed = false;
  4579       while (cur->current_to() <= from) {
  4580         cur->next_range();
  4581         range_has_changed = true;
  4584       // also handle move from inactive list to active list
  4585       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4587       if (range_has_changed) {
  4588         // remove cur from list
  4589         *prev = next;
  4590         if (cur->current_at_end()) {
  4591           // move to handled state (not maintained as a list)
  4592           cur->set_state(handledState);
  4593           interval_moved(cur, kind, state, handledState);
  4594         } else if (cur->current_from() <= from){
  4595           // sort into active list
  4596           append_sorted(active_first_addr(kind), cur);
  4597           cur->set_state(activeState);
  4598           if (*prev == cur) {
  4599             assert(state == activeState, "check");
  4600             prev = cur->next_addr();
  4602           interval_moved(cur, kind, state, activeState);
  4603         } else {
  4604           // sort into inactive list
  4605           append_sorted(inactive_first_addr(kind), cur);
  4606           cur->set_state(inactiveState);
  4607           if (*prev == cur) {
  4608             assert(state == inactiveState, "check");
  4609             prev = cur->next_addr();
  4611           interval_moved(cur, kind, state, inactiveState);
  4613       } else {
  4614         prev = cur->next_addr();
  4615         continue;
  4622 void IntervalWalker::next_interval() {
  4623   IntervalKind kind;
  4624   Interval* any   = _unhandled_first[anyKind];
  4625   Interval* fixed = _unhandled_first[fixedKind];
  4627   if (any != Interval::end()) {
  4628     // intervals may start at same position -> prefer fixed interval
  4629     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4631     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4632             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4633     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4635   } else if (fixed != Interval::end()) {
  4636     kind = fixedKind;
  4637   } else {
  4638     _current = NULL; return;
  4640   _current_kind = kind;
  4641   _current = _unhandled_first[kind];
  4642   _unhandled_first[kind] = _current->next();
  4643   _current->set_next(Interval::end());
  4644   _current->rewind_range();
  4648 void IntervalWalker::walk_to(int lir_op_id) {
  4649   assert(_current_position <= lir_op_id, "can not walk backwards");
  4650   while (current() != NULL) {
  4651     bool is_active = current()->from() <= lir_op_id;
  4652     int id = is_active ? current()->from() : lir_op_id;
  4654     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4656     // set _current_position prior to call of walk_to
  4657     _current_position = id;
  4659     // call walk_to even if _current_position == id
  4660     walk_to(activeState, id);
  4661     walk_to(inactiveState, id);
  4663     if (is_active) {
  4664       current()->set_state(activeState);
  4665       if (activate_current()) {
  4666         append_sorted(active_first_addr(current_kind()), current());
  4667         interval_moved(current(), current_kind(), unhandledState, activeState);
  4670       next_interval();
  4671     } else {
  4672       return;
  4677 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4678 #ifndef PRODUCT
  4679   if (TraceLinearScanLevel >= 4) {
  4680     #define print_state(state) \
  4681     switch(state) {\
  4682       case unhandledState: tty->print("unhandled"); break;\
  4683       case activeState: tty->print("active"); break;\
  4684       case inactiveState: tty->print("inactive"); break;\
  4685       case handledState: tty->print("handled"); break;\
  4686       default: ShouldNotReachHere(); \
  4689     print_state(from); tty->print(" to "); print_state(to);
  4690     tty->fill_to(23);
  4691     interval->print();
  4693     #undef print_state
  4695 #endif
  4700 // **** Implementation of LinearScanWalker **************************
  4702 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4703   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4704   , _move_resolver(allocator)
  4706   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4707     _spill_intervals[i] = new IntervalList(2);
  4712 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4713   for (int i = _first_reg; i <= _last_reg; i++) {
  4714     _use_pos[i] = max_jint;
  4716     if (!only_process_use_pos) {
  4717       _block_pos[i] = max_jint;
  4718       _spill_intervals[i]->clear();
  4723 inline void LinearScanWalker::exclude_from_use(int reg) {
  4724   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4725   if (reg >= _first_reg && reg <= _last_reg) {
  4726     _use_pos[reg] = 0;
  4729 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4730   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4732   exclude_from_use(i->assigned_reg());
  4733   exclude_from_use(i->assigned_regHi());
  4736 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4737   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4739   if (reg >= _first_reg && reg <= _last_reg) {
  4740     if (_use_pos[reg] > use_pos) {
  4741       _use_pos[reg] = use_pos;
  4743     if (!only_process_use_pos) {
  4744       _spill_intervals[reg]->append(i);
  4748 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4749   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4750   if (use_pos != -1) {
  4751     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4752     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4756 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4757   if (reg >= _first_reg && reg <= _last_reg) {
  4758     if (_block_pos[reg] > block_pos) {
  4759       _block_pos[reg] = block_pos;
  4761     if (_use_pos[reg] > block_pos) {
  4762       _use_pos[reg] = block_pos;
  4766 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4767   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4768   if (block_pos != -1) {
  4769     set_block_pos(i->assigned_reg(), i, block_pos);
  4770     set_block_pos(i->assigned_regHi(), i, block_pos);
  4775 void LinearScanWalker::free_exclude_active_fixed() {
  4776   Interval* list = active_first(fixedKind);
  4777   while (list != Interval::end()) {
  4778     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4779     exclude_from_use(list);
  4780     list = list->next();
  4784 void LinearScanWalker::free_exclude_active_any() {
  4785   Interval* list = active_first(anyKind);
  4786   while (list != Interval::end()) {
  4787     exclude_from_use(list);
  4788     list = list->next();
  4792 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4793   Interval* list = inactive_first(fixedKind);
  4794   while (list != Interval::end()) {
  4795     if (cur->to() <= list->current_from()) {
  4796       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4797       set_use_pos(list, list->current_from(), true);
  4798     } else {
  4799       set_use_pos(list, list->current_intersects_at(cur), true);
  4801     list = list->next();
  4805 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4806   Interval* list = inactive_first(anyKind);
  4807   while (list != Interval::end()) {
  4808     set_use_pos(list, list->current_intersects_at(cur), true);
  4809     list = list->next();
  4813 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4814   Interval* list = unhandled_first(kind);
  4815   while (list != Interval::end()) {
  4816     set_use_pos(list, list->intersects_at(cur), true);
  4817     if (kind == fixedKind && cur->to() <= list->from()) {
  4818       set_use_pos(list, list->from(), true);
  4820     list = list->next();
  4824 void LinearScanWalker::spill_exclude_active_fixed() {
  4825   Interval* list = active_first(fixedKind);
  4826   while (list != Interval::end()) {
  4827     exclude_from_use(list);
  4828     list = list->next();
  4832 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4833   Interval* list = unhandled_first(fixedKind);
  4834   while (list != Interval::end()) {
  4835     set_block_pos(list, list->intersects_at(cur));
  4836     list = list->next();
  4840 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4841   Interval* list = inactive_first(fixedKind);
  4842   while (list != Interval::end()) {
  4843     if (cur->to() > list->current_from()) {
  4844       set_block_pos(list, list->current_intersects_at(cur));
  4845     } else {
  4846       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4849     list = list->next();
  4853 void LinearScanWalker::spill_collect_active_any() {
  4854   Interval* list = active_first(anyKind);
  4855   while (list != Interval::end()) {
  4856     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4857     list = list->next();
  4861 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4862   Interval* list = inactive_first(anyKind);
  4863   while (list != Interval::end()) {
  4864     if (list->current_intersects(cur)) {
  4865       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4867     list = list->next();
  4872 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4873   // output all moves here. When source and target are equal, the move is
  4874   // optimized away later in assign_reg_nums
  4876   op_id = (op_id + 1) & ~1;
  4877   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4878   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4880   // calculate index of instruction inside instruction list of current block
  4881   // the minimal index (for a block with no spill moves) can be calculated because the
  4882   // numbering of instructions is known.
  4883   // When the block already contains spill moves, the index must be increased until the
  4884   // correct index is reached.
  4885   LIR_OpList* list = op_block->lir()->instructions_list();
  4886   int index = (op_id - list->at(0)->id()) / 2;
  4887   assert(list->at(index)->id() <= op_id, "error in calculation");
  4889   while (list->at(index)->id() != op_id) {
  4890     index++;
  4891     assert(0 <= index && index < list->length(), "index out of bounds");
  4893   assert(1 <= index && index < list->length(), "index out of bounds");
  4894   assert(list->at(index)->id() == op_id, "error in calculation");
  4896   // insert new instruction before instruction at position index
  4897   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  4898   _move_resolver.add_mapping(src_it, dst_it);
  4902 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  4903   int from_block_nr = min_block->linear_scan_number();
  4904   int to_block_nr = max_block->linear_scan_number();
  4906   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  4907   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  4908   assert(from_block_nr < to_block_nr, "must cross block boundary");
  4910   // Try to split at end of max_block. If this would be after
  4911   // max_split_pos, then use the begin of max_block
  4912   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  4913   if (optimal_split_pos > max_split_pos) {
  4914     optimal_split_pos = max_block->first_lir_instruction_id();
  4917   int min_loop_depth = max_block->loop_depth();
  4918   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  4919     BlockBegin* cur = block_at(i);
  4921     if (cur->loop_depth() < min_loop_depth) {
  4922       // block with lower loop-depth found -> split at the end of this block
  4923       min_loop_depth = cur->loop_depth();
  4924       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  4927   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  4929   return optimal_split_pos;
  4933 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  4934   int optimal_split_pos = -1;
  4935   if (min_split_pos == max_split_pos) {
  4936     // trivial case, no optimization of split position possible
  4937     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  4938     optimal_split_pos = min_split_pos;
  4940   } else {
  4941     assert(min_split_pos < max_split_pos, "must be true then");
  4942     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  4944     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  4945     // beginning of a block, then min_split_pos is also a possible split position.
  4946     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  4947     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  4949     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  4950     // when an interval ends at the end of the last block of the method
  4951     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  4952     // block at this op_id)
  4953     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  4955     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  4956     if (min_block == max_block) {
  4957       // split position cannot be moved to block boundary, so split as late as possible
  4958       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  4959       optimal_split_pos = max_split_pos;
  4961     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  4962       // Do not move split position if the interval has a hole before max_split_pos.
  4963       // Intervals resulting from Phi-Functions have more than one definition (marked
  4964       // as mustHaveRegister) with a hole before each definition. When the register is needed
  4965       // for the second definition, an earlier reloading is unnecessary.
  4966       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  4967       optimal_split_pos = max_split_pos;
  4969     } else {
  4970       // seach optimal block boundary between min_split_pos and max_split_pos
  4971       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  4973       if (do_loop_optimization) {
  4974         // Loop optimization: if a loop-end marker is found between min- and max-position,
  4975         // then split before this loop
  4976         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  4977         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  4979         assert(loop_end_pos > min_split_pos, "invalid order");
  4980         if (loop_end_pos < max_split_pos) {
  4981           // loop-end marker found between min- and max-position
  4982           // if it is not the end marker for the same loop as the min-position, then move
  4983           // the max-position to this loop block.
  4984           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  4985           // of the interval (normally, only mustHaveRegister causes a reloading)
  4986           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  4988           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  4989           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  4991           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  4992           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  4993             optimal_split_pos = -1;
  4994             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  4995           } else {
  4996             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  5001       if (optimal_split_pos == -1) {
  5002         // not calculated by loop optimization
  5003         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  5007   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  5009   return optimal_split_pos;
  5013 /*
  5014   split an interval at the optimal position between min_split_pos and
  5015   max_split_pos in two parts:
  5016   1) the left part has already a location assigned
  5017   2) the right part is sorted into to the unhandled-list
  5018 */
  5019 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  5020   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  5021   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5023   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  5024   assert(current_position() < min_split_pos, "cannot split before current position");
  5025   assert(min_split_pos <= max_split_pos,     "invalid order");
  5026   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  5028   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  5030   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5031   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  5032   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  5034   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  5035     // the split position would be just before the end of the interval
  5036     // -> no split at all necessary
  5037     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  5038     return;
  5041   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  5042   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  5044   if (!allocator()->is_block_begin(optimal_split_pos)) {
  5045     // move position before actual instruction (odd op_id)
  5046     optimal_split_pos = (optimal_split_pos - 1) | 1;
  5049   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5050   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5051   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5053   Interval* split_part = it->split(optimal_split_pos);
  5055   allocator()->append_interval(split_part);
  5056   allocator()->copy_register_flags(it, split_part);
  5057   split_part->set_insert_move_when_activated(move_necessary);
  5058   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  5060   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  5061   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5062   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  5065 /*
  5066   split an interval at the optimal position between min_split_pos and
  5067   max_split_pos in two parts:
  5068   1) the left part has already a location assigned
  5069   2) the right part is always on the stack and therefore ignored in further processing
  5070 */
  5071 void LinearScanWalker::split_for_spilling(Interval* it) {
  5072   // calculate allowed range of splitting position
  5073   int max_split_pos = current_position();
  5074   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  5076   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  5077   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5079   assert(it->state() == activeState,     "why spill interval that is not active?");
  5080   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5081   assert(min_split_pos <= max_split_pos, "invalid order");
  5082   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5083   assert(current_position() < it->to(),  "interval must not end before current position");
  5085   if (min_split_pos == it->from()) {
  5086     // the whole interval is never used, so spill it entirely to memory
  5087     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5088     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5090     allocator()->assign_spill_slot(it);
  5091     allocator()->change_spill_state(it, min_split_pos);
  5093     // Also kick parent intervals out of register to memory when they have no use
  5094     // position. This avoids short interval in register surrounded by intervals in
  5095     // memory -> avoid useless moves from memory to register and back
  5096     Interval* parent = it;
  5097     while (parent != NULL && parent->is_split_child()) {
  5098       parent = parent->split_child_before_op_id(parent->from());
  5100       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5101         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5102           // parent is never used, so kick it out of its assigned register
  5103           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5104           allocator()->assign_spill_slot(parent);
  5105         } else {
  5106           // do not go further back because the register is actually used by the interval
  5107           parent = NULL;
  5112   } else {
  5113     // search optimal split pos, split interval and spill only the right hand part
  5114     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5116     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5117     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5118     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5120     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5121       // move position before actual instruction (odd op_id)
  5122       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5125     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5126     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5127     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5129     Interval* spilled_part = it->split(optimal_split_pos);
  5130     allocator()->append_interval(spilled_part);
  5131     allocator()->assign_spill_slot(spilled_part);
  5132     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5134     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5135       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5136       insert_move(optimal_split_pos, it, spilled_part);
  5139     // the current_split_child is needed later when moves are inserted for reloading
  5140     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5141     spilled_part->make_current_split_child();
  5143     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5144     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5145     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5150 void LinearScanWalker::split_stack_interval(Interval* it) {
  5151   int min_split_pos = current_position() + 1;
  5152   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5154   split_before_usage(it, min_split_pos, max_split_pos);
  5157 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5158   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5159   int max_split_pos = register_available_until;
  5161   split_before_usage(it, min_split_pos, max_split_pos);
  5164 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5165   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5167   int current_pos = current_position();
  5168   if (it->state() == inactiveState) {
  5169     // the interval is currently inactive, so no spill slot is needed for now.
  5170     // when the split part is activated, the interval has a new chance to get a register,
  5171     // so in the best case no stack slot is necessary
  5172     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5173     split_before_usage(it, current_pos + 1, current_pos + 1);
  5175   } else {
  5176     // search the position where the interval must have a register and split
  5177     // at the optimal position before.
  5178     // The new created part is added to the unhandled list and will get a register
  5179     // when it is activated
  5180     int min_split_pos = current_pos + 1;
  5181     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5183     split_before_usage(it, min_split_pos, max_split_pos);
  5185     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5186     split_for_spilling(it);
  5191 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5192   int min_full_reg = any_reg;
  5193   int max_partial_reg = any_reg;
  5195   for (int i = _first_reg; i <= _last_reg; i++) {
  5196     if (i == ignore_reg) {
  5197       // this register must be ignored
  5199     } else if (_use_pos[i] >= interval_to) {
  5200       // this register is free for the full interval
  5201       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5202         min_full_reg = i;
  5204     } else if (_use_pos[i] > reg_needed_until) {
  5205       // this register is at least free until reg_needed_until
  5206       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5207         max_partial_reg = i;
  5212   if (min_full_reg != any_reg) {
  5213     return min_full_reg;
  5214   } else if (max_partial_reg != any_reg) {
  5215     *need_split = true;
  5216     return max_partial_reg;
  5217   } else {
  5218     return any_reg;
  5222 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5223   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5225   int min_full_reg = any_reg;
  5226   int max_partial_reg = any_reg;
  5228   for (int i = _first_reg; i < _last_reg; i+=2) {
  5229     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5230       // this register is free for the full interval
  5231       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5232         min_full_reg = i;
  5234     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5235       // this register is at least free until reg_needed_until
  5236       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5237         max_partial_reg = i;
  5242   if (min_full_reg != any_reg) {
  5243     return min_full_reg;
  5244   } else if (max_partial_reg != any_reg) {
  5245     *need_split = true;
  5246     return max_partial_reg;
  5247   } else {
  5248     return any_reg;
  5253 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5254   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5256   init_use_lists(true);
  5257   free_exclude_active_fixed();
  5258   free_exclude_active_any();
  5259   free_collect_inactive_fixed(cur);
  5260   free_collect_inactive_any(cur);
  5261 //  free_collect_unhandled(fixedKind, cur);
  5262   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5264   // _use_pos contains the start of the next interval that has this register assigned
  5265   // (either as a fixed register or a normal allocated register in the past)
  5266   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5267   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5268   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5270   int hint_reg, hint_regHi;
  5271   Interval* register_hint = cur->register_hint();
  5272   if (register_hint != NULL) {
  5273     hint_reg = register_hint->assigned_reg();
  5274     hint_regHi = register_hint->assigned_regHi();
  5276     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5277       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5278       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5280     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5282   } else {
  5283     hint_reg = any_reg;
  5284     hint_regHi = any_reg;
  5286   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5287   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5289   // the register must be free at least until this position
  5290   int reg_needed_until = cur->from() + 1;
  5291   int interval_to = cur->to();
  5293   bool need_split = false;
  5294   int split_pos = -1;
  5295   int reg = any_reg;
  5296   int regHi = any_reg;
  5298   if (_adjacent_regs) {
  5299     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5300     regHi = reg + 1;
  5301     if (reg == any_reg) {
  5302       return false;
  5304     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5306   } else {
  5307     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5308     if (reg == any_reg) {
  5309       return false;
  5311     split_pos = _use_pos[reg];
  5313     if (_num_phys_regs == 2) {
  5314       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5316       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5317         // do not split interval if only one register can be assigned until the split pos
  5318         // (when one register is found for the whole interval, split&spill is only
  5319         // performed for the hi register)
  5320         return false;
  5322       } else if (regHi != any_reg) {
  5323         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5325         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5326         if (reg > regHi) {
  5327           int temp = reg;
  5328           reg = regHi;
  5329           regHi = temp;
  5335   cur->assign_reg(reg, regHi);
  5336   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5338   assert(split_pos > 0, "invalid split_pos");
  5339   if (need_split) {
  5340     // register not available for full interval, so split it
  5341     split_when_partial_register_available(cur, split_pos);
  5344   // only return true if interval is completely assigned
  5345   return _num_phys_regs == 1 || regHi != any_reg;
  5349 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5350   int max_reg = any_reg;
  5352   for (int i = _first_reg; i <= _last_reg; i++) {
  5353     if (i == ignore_reg) {
  5354       // this register must be ignored
  5356     } else if (_use_pos[i] > reg_needed_until) {
  5357       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5358         max_reg = i;
  5363   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5364     *need_split = true;
  5367   return max_reg;
  5370 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5371   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5373   int max_reg = any_reg;
  5375   for (int i = _first_reg; i < _last_reg; i+=2) {
  5376     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5377       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5378         max_reg = i;
  5383   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5384     *need_split = true;
  5387   return max_reg;
  5390 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5391   assert(reg != any_reg, "no register assigned");
  5393   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5394     Interval* it = _spill_intervals[reg]->at(i);
  5395     remove_from_list(it);
  5396     split_and_spill_interval(it);
  5399   if (regHi != any_reg) {
  5400     IntervalList* processed = _spill_intervals[reg];
  5401     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5402       Interval* it = _spill_intervals[regHi]->at(i);
  5403       if (processed->index_of(it) == -1) {
  5404         remove_from_list(it);
  5405         split_and_spill_interval(it);
  5412 // Split an Interval and spill it to memory so that cur can be placed in a register
  5413 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5414   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5416   // collect current usage of registers
  5417   init_use_lists(false);
  5418   spill_exclude_active_fixed();
  5419 //  spill_block_unhandled_fixed(cur);
  5420   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5421   spill_block_inactive_fixed(cur);
  5422   spill_collect_active_any();
  5423   spill_collect_inactive_any(cur);
  5425 #ifndef PRODUCT
  5426   if (TraceLinearScanLevel >= 4) {
  5427     tty->print_cr("      state of registers:");
  5428     for (int i = _first_reg; i <= _last_reg; i++) {
  5429       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5430       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5431         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5433       tty->cr();
  5436 #endif
  5438   // the register must be free at least until this position
  5439   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5440   int interval_to = cur->to();
  5441   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5443   int split_pos = 0;
  5444   int use_pos = 0;
  5445   bool need_split = false;
  5446   int reg, regHi;
  5448   if (_adjacent_regs) {
  5449     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5450     regHi = reg + 1;
  5452     if (reg != any_reg) {
  5453       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5454       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5456   } else {
  5457     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5458     regHi = any_reg;
  5460     if (reg != any_reg) {
  5461       use_pos = _use_pos[reg];
  5462       split_pos = _block_pos[reg];
  5464       if (_num_phys_regs == 2) {
  5465         if (cur->assigned_reg() != any_reg) {
  5466           regHi = reg;
  5467           reg = cur->assigned_reg();
  5468         } else {
  5469           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5470           if (regHi != any_reg) {
  5471             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5472             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5476         if (regHi != any_reg && reg > regHi) {
  5477           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5478           int temp = reg;
  5479           reg = regHi;
  5480           regHi = temp;
  5486   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5487     // the first use of cur is later than the spilling position -> spill cur
  5488     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5490     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5491       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5492       // assign a reasonable register and do a bailout in product mode to avoid errors
  5493       allocator()->assign_spill_slot(cur);
  5494       BAILOUT("LinearScan: no register found");
  5497     split_and_spill_interval(cur);
  5498   } else {
  5499     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5500     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5501     assert(split_pos > 0, "invalid split_pos");
  5502     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5504     cur->assign_reg(reg, regHi);
  5505     if (need_split) {
  5506       // register not available for full interval, so split it
  5507       split_when_partial_register_available(cur, split_pos);
  5510     // perform splitting and spilling for all affected intervalls
  5511     split_and_spill_intersecting_intervals(reg, regHi);
  5515 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5516 #ifdef X86
  5517   // fast calculation of intervals that can never get a register because the
  5518   // the next instruction is a call that blocks all registers
  5519   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5521   // check if this interval is the result of a split operation
  5522   // (an interval got a register until this position)
  5523   int pos = cur->from();
  5524   if ((pos & 1) == 1) {
  5525     // the current instruction is a call that blocks all registers
  5526     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5527       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5529       // safety check that there is really no register available
  5530       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5531       return true;
  5535 #endif
  5536   return false;
  5539 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5540   BasicType type = cur->type();
  5541   _num_phys_regs = LinearScan::num_physical_regs(type);
  5542   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5544   if (pd_init_regs_for_alloc(cur)) {
  5545     // the appropriate register range was selected.
  5546   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5547     _first_reg = pd_first_fpu_reg;
  5548     _last_reg = pd_last_fpu_reg;
  5549   } else {
  5550     _first_reg = pd_first_cpu_reg;
  5551     _last_reg = pd_last_cpu_reg;
  5554   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5555   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5559 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5560   if (op->code() != lir_move) {
  5561     return false;
  5563   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5565   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5566   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5567   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5570 // optimization (especially for phi functions of nested loops):
  5571 // assign same spill slot to non-intersecting intervals
  5572 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5573   if (cur->is_split_child()) {
  5574     // optimization is only suitable for split parents
  5575     return;
  5578   Interval* register_hint = cur->register_hint(false);
  5579   if (register_hint == NULL) {
  5580     // cur is not the target of a move, otherwise register_hint would be set
  5581     return;
  5583   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5585   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5586     // combining the stack slots for intervals where spill move optimization is applied
  5587     // is not benefitial and would cause problems
  5588     return;
  5591   int begin_pos = cur->from();
  5592   int end_pos = cur->to();
  5593   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5594     // safety check that lir_op_with_id is allowed
  5595     return;
  5598   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5599     // cur and register_hint are not connected with two moves
  5600     return;
  5603   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5604   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5605   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5606     // register_hint must be split, otherwise the re-writing of use positions does not work
  5607     return;
  5610   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5611   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5612   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5613   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5615   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5616     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5617     return;
  5619   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5621   // modify intervals such that cur gets the same stack slot as register_hint
  5622   // delete use positions to prevent the intervals to get a register at beginning
  5623   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5624   cur->remove_first_use_pos();
  5625   end_hint->remove_first_use_pos();
  5629 // allocate a physical register or memory location to an interval
  5630 bool LinearScanWalker::activate_current() {
  5631   Interval* cur = current();
  5632   bool result = true;
  5634   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5635   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5637   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5638     // activating an interval that has a stack slot assigned -> split it at first use position
  5639     // used for method parameters
  5640     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5642     split_stack_interval(cur);
  5643     result = false;
  5645   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5646     // activating an interval that must start in a stack slot, but may get a register later
  5647     // used for lir_roundfp: rounding is done by store to stack and reload later
  5648     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5649     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5651     allocator()->assign_spill_slot(cur);
  5652     split_stack_interval(cur);
  5653     result = false;
  5655   } else if (cur->assigned_reg() == any_reg) {
  5656     // interval has not assigned register -> normal allocation
  5657     // (this is the normal case for most intervals)
  5658     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5660     // assign same spill slot to non-intersecting intervals
  5661     combine_spilled_intervals(cur);
  5663     init_vars_for_alloc(cur);
  5664     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5665       // no empty register available.
  5666       // split and spill another interval so that this interval gets a register
  5667       alloc_locked_reg(cur);
  5670     // spilled intervals need not be move to active-list
  5671     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5672       result = false;
  5676   // load spilled values that become active from stack slot to register
  5677   if (cur->insert_move_when_activated()) {
  5678     assert(cur->is_split_child(), "must be");
  5679     assert(cur->current_split_child() != NULL, "must be");
  5680     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5681     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5683     insert_move(cur->from(), cur->current_split_child(), cur);
  5685   cur->make_current_split_child();
  5687   return result; // true = interval is moved to active list
  5691 // Implementation of EdgeMoveOptimizer
  5693 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5694   _edge_instructions(4),
  5695   _edge_instructions_idx(4)
  5699 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5700   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5702   // ignore the first block in the list (index 0 is not processed)
  5703   for (int i = code->length() - 1; i >= 1; i--) {
  5704     BlockBegin* block = code->at(i);
  5706     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5707       optimizer.optimize_moves_at_block_end(block);
  5709     if (block->number_of_sux() == 2) {
  5710       optimizer.optimize_moves_at_block_begin(block);
  5716 // clear all internal data structures
  5717 void EdgeMoveOptimizer::init_instructions() {
  5718   _edge_instructions.clear();
  5719   _edge_instructions_idx.clear();
  5722 // append a lir-instruction-list and the index of the current operation in to the list
  5723 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5724   _edge_instructions.append(instructions);
  5725   _edge_instructions_idx.append(instructions_idx);
  5728 // return the current operation of the given edge (predecessor or successor)
  5729 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5730   LIR_OpList* instructions = _edge_instructions.at(edge);
  5731   int idx = _edge_instructions_idx.at(edge);
  5733   if (idx < instructions->length()) {
  5734     return instructions->at(idx);
  5735   } else {
  5736     return NULL;
  5740 // removes the current operation of the given edge (predecessor or successor)
  5741 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5742   LIR_OpList* instructions = _edge_instructions.at(edge);
  5743   int idx = _edge_instructions_idx.at(edge);
  5744   instructions->remove_at(idx);
  5746   if (decrement_index) {
  5747     _edge_instructions_idx.at_put(edge, idx - 1);
  5752 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5753   if (op1 == NULL || op2 == NULL) {
  5754     // at least one block is already empty -> no optimization possible
  5755     return true;
  5758   if (op1->code() == lir_move && op2->code() == lir_move) {
  5759     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5760     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5761     LIR_Op1* move1 = (LIR_Op1*)op1;
  5762     LIR_Op1* move2 = (LIR_Op1*)op2;
  5763     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5764       // these moves are exactly equal and can be optimized
  5765       return false;
  5768   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5769     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5770     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5771     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5772     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5773     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5774       // equal FPU stack operations can be optimized
  5775       return false;
  5778   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5779     // equal FPU stack operations can be optimized
  5780     return false;
  5783   // no optimization possible
  5784   return true;
  5787 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5788   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5790   if (block->is_predecessor(block)) {
  5791     // currently we can't handle this correctly.
  5792     return;
  5795   init_instructions();
  5796   int num_preds = block->number_of_preds();
  5797   assert(num_preds > 1, "do not call otherwise");
  5798   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5800   // setup a list with the lir-instructions of all predecessors
  5801   int i;
  5802   for (i = 0; i < num_preds; i++) {
  5803     BlockBegin* pred = block->pred_at(i);
  5804     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5806     if (pred->number_of_sux() != 1) {
  5807       // this can happen with switch-statements where multiple edges are between
  5808       // the same blocks.
  5809       return;
  5812     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5813     assert(pred->sux_at(0) == block, "invalid control flow");
  5814     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5815     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5816     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5818     if (pred_instructions->last()->info() != NULL) {
  5819       // can not optimize instructions when debug info is needed
  5820       return;
  5823     // ignore the unconditional branch at the end of the block
  5824     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5828   // process lir-instructions while all predecessors end with the same instruction
  5829   while (true) {
  5830     LIR_Op* op = instruction_at(0);
  5831     for (i = 1; i < num_preds; i++) {
  5832       if (operations_different(op, instruction_at(i))) {
  5833         // these instructions are different and cannot be optimized ->
  5834         // no further optimization possible
  5835         return;
  5839     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5841     // insert the instruction at the beginning of the current block
  5842     block->lir()->insert_before(1, op);
  5844     // delete the instruction at the end of all predecessors
  5845     for (i = 0; i < num_preds; i++) {
  5846       remove_cur_instruction(i, true);
  5852 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5853   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5855   init_instructions();
  5856   int num_sux = block->number_of_sux();
  5858   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5860   assert(num_sux == 2, "method should not be called otherwise");
  5861   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5862   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5863   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5865   if (cur_instructions->last()->info() != NULL) {
  5866     // can no optimize instructions when debug info is needed
  5867     return;
  5870   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5871   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5872     // not a valid case for optimization
  5873     // currently, only blocks that end with two branches (conditional branch followed
  5874     // by unconditional branch) are optimized
  5875     return;
  5878   // now it is guaranteed that the block ends with two branch instructions.
  5879   // the instructions are inserted at the end of the block before these two branches
  5880   int insert_idx = cur_instructions->length() - 2;
  5882   int i;
  5883 #ifdef ASSERT
  5884   for (i = insert_idx - 1; i >= 0; i--) {
  5885     LIR_Op* op = cur_instructions->at(i);
  5886     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5887       assert(false, "block with two successors can have only two branch instructions");
  5890 #endif
  5892   // setup a list with the lir-instructions of all successors
  5893   for (i = 0; i < num_sux; i++) {
  5894     BlockBegin* sux = block->sux_at(i);
  5895     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  5897     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  5899     if (sux->number_of_preds() != 1) {
  5900       // this can happen with switch-statements where multiple edges are between
  5901       // the same blocks.
  5902       return;
  5904     assert(sux->pred_at(0) == block, "invalid control flow");
  5905     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5907     // ignore the label at the beginning of the block
  5908     append_instructions(sux_instructions, 1);
  5911   // process lir-instructions while all successors begin with the same instruction
  5912   while (true) {
  5913     LIR_Op* op = instruction_at(0);
  5914     for (i = 1; i < num_sux; i++) {
  5915       if (operations_different(op, instruction_at(i))) {
  5916         // these instructions are different and cannot be optimized ->
  5917         // no further optimization possible
  5918         return;
  5922     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  5924     // insert instruction at end of current block
  5925     block->lir()->insert_before(insert_idx, op);
  5926     insert_idx++;
  5928     // delete the instructions at the beginning of all successors
  5929     for (i = 0; i < num_sux; i++) {
  5930       remove_cur_instruction(i, false);
  5936 // Implementation of ControlFlowOptimizer
  5938 ControlFlowOptimizer::ControlFlowOptimizer() :
  5939   _original_preds(4)
  5943 void ControlFlowOptimizer::optimize(BlockList* code) {
  5944   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  5946   // push the OSR entry block to the end so that we're not jumping over it.
  5947   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  5948   if (osr_entry) {
  5949     int index = osr_entry->linear_scan_number();
  5950     assert(code->at(index) == osr_entry, "wrong index");
  5951     code->remove_at(index);
  5952     code->append(osr_entry);
  5955   optimizer.reorder_short_loops(code);
  5956   optimizer.delete_empty_blocks(code);
  5957   optimizer.delete_unnecessary_jumps(code);
  5958   optimizer.delete_jumps_to_return(code);
  5961 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  5962   int i = header_idx + 1;
  5963   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  5964   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  5965     i++;
  5968   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  5969     int end_idx = i - 1;
  5970     BlockBegin* end_block = code->at(end_idx);
  5972     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  5973       // short loop from header_idx to end_idx found -> reorder blocks such that
  5974       // the header_block is the last block instead of the first block of the loop
  5975       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  5976                                          end_idx - header_idx + 1,
  5977                                          header_block->block_id(), end_block->block_id()));
  5979       for (int j = header_idx; j < end_idx; j++) {
  5980         code->at_put(j, code->at(j + 1));
  5982       code->at_put(end_idx, header_block);
  5984       // correct the flags so that any loop alignment occurs in the right place.
  5985       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  5986       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  5987       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  5992 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  5993   for (int i = code->length() - 1; i >= 0; i--) {
  5994     BlockBegin* block = code->at(i);
  5996     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  5997       reorder_short_loop(code, block, i);
  6001   DEBUG_ONLY(verify(code));
  6004 // only blocks with exactly one successor can be deleted. Such blocks
  6005 // must always end with an unconditional branch to this successor
  6006 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  6007   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  6008     return false;
  6011   LIR_OpList* instructions = block->lir()->instructions_list();
  6013   assert(instructions->length() >= 2, "block must have label and branch");
  6014   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6015   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  6016   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  6017   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  6019   // block must have exactly one successor
  6021   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  6022     return true;
  6024   return false;
  6027 // substitute branch targets in all branch-instructions of this blocks
  6028 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  6029   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  6031   LIR_OpList* instructions = block->lir()->instructions_list();
  6033   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6034   for (int i = instructions->length() - 1; i >= 1; i--) {
  6035     LIR_Op* op = instructions->at(i);
  6037     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  6038       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6039       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  6041       if (branch->block() == target_from) {
  6042         branch->change_block(target_to);
  6044       if (branch->ublock() == target_from) {
  6045         branch->change_ublock(target_to);
  6051 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  6052   int old_pos = 0;
  6053   int new_pos = 0;
  6054   int num_blocks = code->length();
  6056   while (old_pos < num_blocks) {
  6057     BlockBegin* block = code->at(old_pos);
  6059     if (can_delete_block(block)) {
  6060       BlockBegin* new_target = block->sux_at(0);
  6062       // propagate backward branch target flag for correct code alignment
  6063       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  6064         new_target->set(BlockBegin::backward_branch_target_flag);
  6067       // collect a list with all predecessors that contains each predecessor only once
  6068       // the predecessors of cur are changed during the substitution, so a copy of the
  6069       // predecessor list is necessary
  6070       int j;
  6071       _original_preds.clear();
  6072       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  6073         BlockBegin* pred = block->pred_at(j);
  6074         if (_original_preds.index_of(pred) == -1) {
  6075           _original_preds.append(pred);
  6079       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6080         BlockBegin* pred = _original_preds.at(j);
  6081         substitute_branch_target(pred, block, new_target);
  6082         pred->substitute_sux(block, new_target);
  6084     } else {
  6085       // adjust position of this block in the block list if blocks before
  6086       // have been deleted
  6087       if (new_pos != old_pos) {
  6088         code->at_put(new_pos, code->at(old_pos));
  6090       new_pos++;
  6092     old_pos++;
  6094   code->truncate(new_pos);
  6096   DEBUG_ONLY(verify(code));
  6099 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6100   // skip the last block because there a branch is always necessary
  6101   for (int i = code->length() - 2; i >= 0; i--) {
  6102     BlockBegin* block = code->at(i);
  6103     LIR_OpList* instructions = block->lir()->instructions_list();
  6105     LIR_Op* last_op = instructions->last();
  6106     if (last_op->code() == lir_branch) {
  6107       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6108       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6110       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6111       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6113       if (last_branch->info() == NULL) {
  6114         if (last_branch->block() == code->at(i + 1)) {
  6116           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6118           // delete last branch instruction
  6119           instructions->truncate(instructions->length() - 1);
  6121         } else {
  6122           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6123           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6124             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6125             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6127             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6129               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6131               // eliminate a conditional branch to the immediate successor
  6132               prev_branch->change_block(last_branch->block());
  6133               prev_branch->negate_cond();
  6134               instructions->truncate(instructions->length() - 1);
  6142   DEBUG_ONLY(verify(code));
  6145 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6146 #ifdef ASSERT
  6147   BitMap return_converted(BlockBegin::number_of_blocks());
  6148   return_converted.clear();
  6149 #endif
  6151   for (int i = code->length() - 1; i >= 0; i--) {
  6152     BlockBegin* block = code->at(i);
  6153     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6154     LIR_Op*     cur_last_op = cur_instructions->last();
  6156     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6157     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6158       // the block contains only a label and a return
  6159       // if a predecessor ends with an unconditional jump to this block, then the jump
  6160       // can be replaced with a return instruction
  6161       //
  6162       // Note: the original block with only a return statement cannot be deleted completely
  6163       //       because the predecessors might have other (conditional) jumps to this block
  6164       //       -> this may lead to unnecesary return instructions in the final code
  6166       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6167       assert(block->number_of_sux() == 0 ||
  6168              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6169              "blocks that end with return must not have successors");
  6171       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6172       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6174       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6175         BlockBegin* pred = block->pred_at(j);
  6176         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6177         LIR_Op*     pred_last_op = pred_instructions->last();
  6179         if (pred_last_op->code() == lir_branch) {
  6180           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6181           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6183           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6184             // replace the jump to a return with a direct return
  6185             // Note: currently the edge between the blocks is not deleted
  6186             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6187 #ifdef ASSERT
  6188             return_converted.set_bit(pred->block_id());
  6189 #endif
  6198 #ifdef ASSERT
  6199 void ControlFlowOptimizer::verify(BlockList* code) {
  6200   for (int i = 0; i < code->length(); i++) {
  6201     BlockBegin* block = code->at(i);
  6202     LIR_OpList* instructions = block->lir()->instructions_list();
  6204     int j;
  6205     for (j = 0; j < instructions->length(); j++) {
  6206       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6208       if (op_branch != NULL) {
  6209         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6210         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6214     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6215       BlockBegin* sux = block->sux_at(j);
  6216       assert(code->index_of(sux) != -1, "successor not valid");
  6219     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6220       BlockBegin* pred = block->pred_at(j);
  6221       assert(code->index_of(pred) != -1, "successor not valid");
  6225 #endif
  6228 #ifndef PRODUCT
  6230 // Implementation of LinearStatistic
  6232 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6233   switch (counter_idx) {
  6234     case counter_method:          return "compiled methods";
  6235     case counter_fpu_method:      return "methods using fpu";
  6236     case counter_loop_method:     return "methods with loops";
  6237     case counter_exception_method:return "methods with xhandler";
  6239     case counter_loop:            return "loops";
  6240     case counter_block:           return "blocks";
  6241     case counter_loop_block:      return "blocks inside loop";
  6242     case counter_exception_block: return "exception handler entries";
  6243     case counter_interval:        return "intervals";
  6244     case counter_fixed_interval:  return "fixed intervals";
  6245     case counter_range:           return "ranges";
  6246     case counter_fixed_range:     return "fixed ranges";
  6247     case counter_use_pos:         return "use positions";
  6248     case counter_fixed_use_pos:   return "fixed use positions";
  6249     case counter_spill_slots:     return "spill slots";
  6251     // counter for classes of lir instructions
  6252     case counter_instruction:     return "total instructions";
  6253     case counter_label:           return "labels";
  6254     case counter_entry:           return "method entries";
  6255     case counter_return:          return "method returns";
  6256     case counter_call:            return "method calls";
  6257     case counter_move:            return "moves";
  6258     case counter_cmp:             return "compare";
  6259     case counter_cond_branch:     return "conditional branches";
  6260     case counter_uncond_branch:   return "unconditional branches";
  6261     case counter_stub_branch:     return "branches to stub";
  6262     case counter_alu:             return "artithmetic + logic";
  6263     case counter_alloc:           return "allocations";
  6264     case counter_sync:            return "synchronisation";
  6265     case counter_throw:           return "throw";
  6266     case counter_unwind:          return "unwind";
  6267     case counter_typecheck:       return "type+null-checks";
  6268     case counter_fpu_stack:       return "fpu-stack";
  6269     case counter_misc_inst:       return "other instructions";
  6270     case counter_other_inst:      return "misc. instructions";
  6272     // counter for different types of moves
  6273     case counter_move_total:      return "total moves";
  6274     case counter_move_reg_reg:    return "register->register";
  6275     case counter_move_reg_stack:  return "register->stack";
  6276     case counter_move_stack_reg:  return "stack->register";
  6277     case counter_move_stack_stack:return "stack->stack";
  6278     case counter_move_reg_mem:    return "register->memory";
  6279     case counter_move_mem_reg:    return "memory->register";
  6280     case counter_move_const_any:  return "constant->any";
  6282     case blank_line_1:            return "";
  6283     case blank_line_2:            return "";
  6285     default: ShouldNotReachHere(); return "";
  6289 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6290   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6291     return counter_method;
  6292   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6293     return counter_block;
  6294   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6295     return counter_instruction;
  6296   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6297     return counter_move_total;
  6299   return invalid_counter;
  6302 LinearScanStatistic::LinearScanStatistic() {
  6303   for (int i = 0; i < number_of_counters; i++) {
  6304     _counters_sum[i] = 0;
  6305     _counters_max[i] = -1;
  6310 // add the method-local numbers to the total sum
  6311 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6312   for (int i = 0; i < number_of_counters; i++) {
  6313     _counters_sum[i] += method_statistic._counters_sum[i];
  6314     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6318 void LinearScanStatistic::print(const char* title) {
  6319   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6320     tty->cr();
  6321     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6323     for (int i = 0; i < number_of_counters; i++) {
  6324       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6325         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6327         if (base_counter(i) != invalid_counter) {
  6328           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6329         } else {
  6330           tty->print("           ");
  6333         if (_counters_max[i] >= 0) {
  6334           tty->print("%8d", _counters_max[i]);
  6337       tty->cr();
  6342 void LinearScanStatistic::collect(LinearScan* allocator) {
  6343   inc_counter(counter_method);
  6344   if (allocator->has_fpu_registers()) {
  6345     inc_counter(counter_fpu_method);
  6347   if (allocator->num_loops() > 0) {
  6348     inc_counter(counter_loop_method);
  6350   inc_counter(counter_loop, allocator->num_loops());
  6351   inc_counter(counter_spill_slots, allocator->max_spills());
  6353   int i;
  6354   for (i = 0; i < allocator->interval_count(); i++) {
  6355     Interval* cur = allocator->interval_at(i);
  6357     if (cur != NULL) {
  6358       inc_counter(counter_interval);
  6359       inc_counter(counter_use_pos, cur->num_use_positions());
  6360       if (LinearScan::is_precolored_interval(cur)) {
  6361         inc_counter(counter_fixed_interval);
  6362         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6365       Range* range = cur->first();
  6366       while (range != Range::end()) {
  6367         inc_counter(counter_range);
  6368         if (LinearScan::is_precolored_interval(cur)) {
  6369           inc_counter(counter_fixed_range);
  6371         range = range->next();
  6376   bool has_xhandlers = false;
  6377   // Note: only count blocks that are in code-emit order
  6378   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6379     BlockBegin* cur = allocator->ir()->code()->at(i);
  6381     inc_counter(counter_block);
  6382     if (cur->loop_depth() > 0) {
  6383       inc_counter(counter_loop_block);
  6385     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6386       inc_counter(counter_exception_block);
  6387       has_xhandlers = true;
  6390     LIR_OpList* instructions = cur->lir()->instructions_list();
  6391     for (int j = 0; j < instructions->length(); j++) {
  6392       LIR_Op* op = instructions->at(j);
  6394       inc_counter(counter_instruction);
  6396       switch (op->code()) {
  6397         case lir_label:           inc_counter(counter_label); break;
  6398         case lir_std_entry:
  6399         case lir_osr_entry:       inc_counter(counter_entry); break;
  6400         case lir_return:          inc_counter(counter_return); break;
  6402         case lir_rtcall:
  6403         case lir_static_call:
  6404         case lir_optvirtual_call:
  6405         case lir_virtual_call:    inc_counter(counter_call); break;
  6407         case lir_move: {
  6408           inc_counter(counter_move);
  6409           inc_counter(counter_move_total);
  6411           LIR_Opr in = op->as_Op1()->in_opr();
  6412           LIR_Opr res = op->as_Op1()->result_opr();
  6413           if (in->is_register()) {
  6414             if (res->is_register()) {
  6415               inc_counter(counter_move_reg_reg);
  6416             } else if (res->is_stack()) {
  6417               inc_counter(counter_move_reg_stack);
  6418             } else if (res->is_address()) {
  6419               inc_counter(counter_move_reg_mem);
  6420             } else {
  6421               ShouldNotReachHere();
  6423           } else if (in->is_stack()) {
  6424             if (res->is_register()) {
  6425               inc_counter(counter_move_stack_reg);
  6426             } else {
  6427               inc_counter(counter_move_stack_stack);
  6429           } else if (in->is_address()) {
  6430             assert(res->is_register(), "must be");
  6431             inc_counter(counter_move_mem_reg);
  6432           } else if (in->is_constant()) {
  6433             inc_counter(counter_move_const_any);
  6434           } else {
  6435             ShouldNotReachHere();
  6437           break;
  6440         case lir_cmp:             inc_counter(counter_cmp); break;
  6442         case lir_branch:
  6443         case lir_cond_float_branch: {
  6444           LIR_OpBranch* branch = op->as_OpBranch();
  6445           if (branch->block() == NULL) {
  6446             inc_counter(counter_stub_branch);
  6447           } else if (branch->cond() == lir_cond_always) {
  6448             inc_counter(counter_uncond_branch);
  6449           } else {
  6450             inc_counter(counter_cond_branch);
  6452           break;
  6455         case lir_neg:
  6456         case lir_add:
  6457         case lir_sub:
  6458         case lir_mul:
  6459         case lir_mul_strictfp:
  6460         case lir_div:
  6461         case lir_div_strictfp:
  6462         case lir_rem:
  6463         case lir_sqrt:
  6464         case lir_sin:
  6465         case lir_cos:
  6466         case lir_abs:
  6467         case lir_log10:
  6468         case lir_log:
  6469         case lir_logic_and:
  6470         case lir_logic_or:
  6471         case lir_logic_xor:
  6472         case lir_shl:
  6473         case lir_shr:
  6474         case lir_ushr:            inc_counter(counter_alu); break;
  6476         case lir_alloc_object:
  6477         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6479         case lir_monaddr:
  6480         case lir_lock:
  6481         case lir_unlock:          inc_counter(counter_sync); break;
  6483         case lir_throw:           inc_counter(counter_throw); break;
  6485         case lir_unwind:          inc_counter(counter_unwind); break;
  6487         case lir_null_check:
  6488         case lir_leal:
  6489         case lir_instanceof:
  6490         case lir_checkcast:
  6491         case lir_store_check:     inc_counter(counter_typecheck); break;
  6493         case lir_fpop_raw:
  6494         case lir_fxch:
  6495         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6497         case lir_nop:
  6498         case lir_push:
  6499         case lir_pop:
  6500         case lir_convert:
  6501         case lir_roundfp:
  6502         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6504         default:                  inc_counter(counter_other_inst); break;
  6509   if (has_xhandlers) {
  6510     inc_counter(counter_exception_method);
  6514 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6515   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6517     LinearScanStatistic local_statistic = LinearScanStatistic();
  6519     local_statistic.collect(allocator);
  6520     global_statistic.sum_up(local_statistic);
  6522     if (TraceLinearScanLevel > 2) {
  6523       local_statistic.print("current local statistic");
  6529 // Implementation of LinearTimers
  6531 LinearScanTimers::LinearScanTimers() {
  6532   for (int i = 0; i < number_of_timers; i++) {
  6533     timer(i)->reset();
  6537 const char* LinearScanTimers::timer_name(int idx) {
  6538   switch (idx) {
  6539     case timer_do_nothing:               return "Nothing (Time Check)";
  6540     case timer_number_instructions:      return "Number Instructions";
  6541     case timer_compute_local_live_sets:  return "Local Live Sets";
  6542     case timer_compute_global_live_sets: return "Global Live Sets";
  6543     case timer_build_intervals:          return "Build Intervals";
  6544     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6545     case timer_allocate_registers:       return "Allocate Registers";
  6546     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6547     case timer_sort_intervals_after:     return "Sort Intervals After";
  6548     case timer_eliminate_spill_moves:    return "Spill optimization";
  6549     case timer_assign_reg_num:           return "Assign Reg Num";
  6550     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6551     case timer_optimize_lir:             return "Optimize LIR";
  6552     default: ShouldNotReachHere();       return "";
  6556 void LinearScanTimers::begin_method() {
  6557   if (TimeEachLinearScan) {
  6558     // reset all timers to measure only current method
  6559     for (int i = 0; i < number_of_timers; i++) {
  6560       timer(i)->reset();
  6565 void LinearScanTimers::end_method(LinearScan* allocator) {
  6566   if (TimeEachLinearScan) {
  6568     double c = timer(timer_do_nothing)->seconds();
  6569     double total = 0;
  6570     for (int i = 1; i < number_of_timers; i++) {
  6571       total += timer(i)->seconds() - c;
  6574     if (total >= 0.0005) {
  6575       // print all information in one line for automatic processing
  6576       tty->print("@"); allocator->compilation()->method()->print_name();
  6578       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6579       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6580       tty->print("@ %d ", allocator->block_count());
  6581       tty->print("@ %d ", allocator->num_virtual_regs());
  6582       tty->print("@ %d ", allocator->interval_count());
  6583       tty->print("@ %d ", allocator->_num_calls);
  6584       tty->print("@ %d ", allocator->num_loops());
  6586       tty->print("@ %6.6f ", total);
  6587       for (int i = 1; i < number_of_timers; i++) {
  6588         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6590       tty->cr();
  6595 void LinearScanTimers::print(double total_time) {
  6596   if (TimeLinearScan) {
  6597     // correction value: sum of dummy-timer that only measures the time that
  6598     // is necesary to start and stop itself
  6599     double c = timer(timer_do_nothing)->seconds();
  6601     for (int i = 0; i < number_of_timers; i++) {
  6602       double t = timer(i)->seconds();
  6603       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6608 #endif // #ifndef PRODUCT

mercurial