src/share/vm/c1/c1_LIR.hpp

Mon, 01 Feb 2010 19:29:46 +0100

author
twisti
date
Mon, 01 Feb 2010 19:29:46 +0100
changeset 1639
18a389214829
parent 1610
614b7e3a9f48
child 1730
3cf667df43ef
permissions
-rw-r--r--

6921352: JSR 292 needs its own deopt handler
Summary: We need to introduce a new MH deopt handler so we can easily determine if the deopt happened at a MH call site or not.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BlockBegin;
    26 class BlockList;
    27 class LIR_Assembler;
    28 class CodeEmitInfo;
    29 class CodeStub;
    30 class CodeStubList;
    31 class ArrayCopyStub;
    32 class LIR_Op;
    33 class ciType;
    34 class ValueType;
    35 class LIR_OpVisitState;
    36 class FpuStackSim;
    38 //---------------------------------------------------------------------
    39 //                 LIR Operands
    40 //  LIR_OprDesc
    41 //    LIR_OprPtr
    42 //      LIR_Const
    43 //      LIR_Address
    44 //---------------------------------------------------------------------
    45 class LIR_OprDesc;
    46 class LIR_OprPtr;
    47 class LIR_Const;
    48 class LIR_Address;
    49 class LIR_OprVisitor;
    52 typedef LIR_OprDesc* LIR_Opr;
    53 typedef int          RegNr;
    55 define_array(LIR_OprArray, LIR_Opr)
    56 define_stack(LIR_OprList, LIR_OprArray)
    58 define_array(LIR_OprRefArray, LIR_Opr*)
    59 define_stack(LIR_OprRefList, LIR_OprRefArray)
    61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    64 define_array(LIR_OpArray, LIR_Op*)
    65 define_stack(LIR_OpList, LIR_OpArray)
    67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    68 class LIR_OprPtr: public CompilationResourceObj {
    69  public:
    70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    73   virtual LIR_Const*  as_constant()              { return NULL; }
    74   virtual LIR_Address* as_address()              { return NULL; }
    75   virtual BasicType type() const                 = 0;
    76   virtual void print_value_on(outputStream* out) const = 0;
    77 };
    81 // LIR constants
    82 class LIR_Const: public LIR_OprPtr {
    83  private:
    84   JavaValue _value;
    86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    89  public:
    90   LIR_Const(jint i)                              { _value.set_type(T_INT);     _value.set_jint(i); }
    91   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    92   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
    93   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
    94   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
    95   LIR_Const(void* p) {
    96 #ifdef _LP64
    97     assert(sizeof(jlong) >= sizeof(p), "too small");;
    98     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
    99 #else
   100     assert(sizeof(jint) >= sizeof(p), "too small");;
   101     _value.set_type(T_INT);     _value.set_jint((jint)p);
   102 #endif
   103   }
   105   virtual BasicType type()       const { return _value.get_type(); }
   106   virtual LIR_Const* as_constant()     { return this; }
   108   jint      as_jint()    const         { type_check(T_INT   ); return _value.get_jint(); }
   109   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   110   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   111   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   112   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   113   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   114   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   116 #ifdef _LP64
   117   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   118 #else
   119   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   120 #endif
   123   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT); return _value.get_jint(); }
   124   jint      as_jint_lo_bits() const    {
   125     if (type() == T_DOUBLE) {
   126       return low(jlong_cast(_value.get_jdouble()));
   127     } else {
   128       return as_jint_lo();
   129     }
   130   }
   131   jint      as_jint_hi_bits() const    {
   132     if (type() == T_DOUBLE) {
   133       return high(jlong_cast(_value.get_jdouble()));
   134     } else {
   135       return as_jint_hi();
   136     }
   137   }
   138   jlong      as_jlong_bits() const    {
   139     if (type() == T_DOUBLE) {
   140       return jlong_cast(_value.get_jdouble());
   141     } else {
   142       return as_jlong();
   143     }
   144   }
   146   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   149   bool is_zero_float() {
   150     jfloat f = as_jfloat();
   151     jfloat ok = 0.0f;
   152     return jint_cast(f) == jint_cast(ok);
   153   }
   155   bool is_one_float() {
   156     jfloat f = as_jfloat();
   157     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   158   }
   160   bool is_zero_double() {
   161     jdouble d = as_jdouble();
   162     jdouble ok = 0.0;
   163     return jlong_cast(d) == jlong_cast(ok);
   164   }
   166   bool is_one_double() {
   167     jdouble d = as_jdouble();
   168     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   169   }
   170 };
   173 //---------------------LIR Operand descriptor------------------------------------
   174 //
   175 // The class LIR_OprDesc represents a LIR instruction operand;
   176 // it can be a register (ALU/FPU), stack location or a constant;
   177 // Constants and addresses are represented as resource area allocated
   178 // structures (see above).
   179 // Registers and stack locations are inlined into the this pointer
   180 // (see value function).
   182 class LIR_OprDesc: public CompilationResourceObj {
   183  public:
   184   // value structure:
   185   //     data       opr-type opr-kind
   186   // +--------------+-------+-------+
   187   // [max...........|7 6 5 4|3 2 1 0]
   188   //                             ^
   189   //                    is_pointer bit
   190   //
   191   // lowest bit cleared, means it is a structure pointer
   192   // we need  4 bits to represent types
   194  private:
   195   friend class LIR_OprFact;
   197   // Conversion
   198   intptr_t value() const                         { return (intptr_t) this; }
   200   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   201     return (value() & mask) == masked_value;
   202   }
   204   enum OprKind {
   205       pointer_value      = 0
   206     , stack_value        = 1
   207     , cpu_register       = 3
   208     , fpu_register       = 5
   209     , illegal_value      = 7
   210   };
   212   enum OprBits {
   213       pointer_bits   = 1
   214     , kind_bits      = 3
   215     , type_bits      = 4
   216     , size_bits      = 2
   217     , destroys_bits  = 1
   218     , virtual_bits   = 1
   219     , is_xmm_bits    = 1
   220     , last_use_bits  = 1
   221     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   222     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   223                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   224     , data_bits      = BitsPerInt - non_data_bits
   225     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   226   };
   228   enum OprShift {
   229       kind_shift     = 0
   230     , type_shift     = kind_shift     + kind_bits
   231     , size_shift     = type_shift     + type_bits
   232     , destroys_shift = size_shift     + size_bits
   233     , last_use_shift = destroys_shift + destroys_bits
   234     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   235     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   236     , is_xmm_shift   = virtual_shift + virtual_bits
   237     , data_shift     = is_xmm_shift + is_xmm_bits
   238     , reg1_shift = data_shift
   239     , reg2_shift = data_shift + reg_bits
   241   };
   243   enum OprSize {
   244       single_size = 0 << size_shift
   245     , double_size = 1 << size_shift
   246   };
   248   enum OprMask {
   249       kind_mask      = right_n_bits(kind_bits)
   250     , type_mask      = right_n_bits(type_bits) << type_shift
   251     , size_mask      = right_n_bits(size_bits) << size_shift
   252     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   253     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   254     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   255     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   256     , pointer_mask   = right_n_bits(pointer_bits)
   257     , lower_reg_mask = right_n_bits(reg_bits)
   258     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   259   };
   261   uintptr_t data() const                         { return value() >> data_shift; }
   262   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   263   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   264   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   265   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   267   static char type_char(BasicType t);
   269  public:
   270   enum {
   271     vreg_base = ConcreteRegisterImpl::number_of_registers,
   272     vreg_max = (1 << data_bits) - 1
   273   };
   275   static inline LIR_Opr illegalOpr();
   277   enum OprType {
   278       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   279     , int_type      = 1 << type_shift
   280     , long_type     = 2 << type_shift
   281     , object_type   = 3 << type_shift
   282     , pointer_type  = 4 << type_shift
   283     , float_type    = 5 << type_shift
   284     , double_type   = 6 << type_shift
   285   };
   286   friend OprType as_OprType(BasicType t);
   287   friend BasicType as_BasicType(OprType t);
   289   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   290   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   292   static OprSize size_for(BasicType t) {
   293     switch (t) {
   294       case T_LONG:
   295       case T_DOUBLE:
   296         return double_size;
   297         break;
   299       case T_FLOAT:
   300       case T_BOOLEAN:
   301       case T_CHAR:
   302       case T_BYTE:
   303       case T_SHORT:
   304       case T_INT:
   305       case T_OBJECT:
   306       case T_ARRAY:
   307         return single_size;
   308         break;
   310       default:
   311         ShouldNotReachHere();
   312         return single_size;
   313       }
   314   }
   317   void validate_type() const PRODUCT_RETURN;
   319   BasicType type() const {
   320     if (is_pointer()) {
   321       return pointer()->type();
   322     }
   323     return as_BasicType(type_field());
   324   }
   327   ValueType* value_type() const                  { return as_ValueType(type()); }
   329   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   331   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   332   // checks whether types are same
   333   bool is_same_type(LIR_Opr opr) const     {
   334     assert(type_field() != unknown_type &&
   335            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   336     return type_field() == opr->type_field();
   337   }
   338   bool is_same_register(LIR_Opr opr) {
   339     return (is_register() && opr->is_register() &&
   340             kind_field() == opr->kind_field() &&
   341             (value() & no_type_mask) == (opr->value() & no_type_mask));
   342   }
   344   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   345   bool is_illegal() const      { return kind_field() == illegal_value; }
   346   bool is_valid() const        { return kind_field() != illegal_value; }
   348   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   349   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   351   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   352   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   354   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   355   bool is_oop() const;
   357   // semantic for fpu- and xmm-registers:
   358   // * is_float and is_double return true for xmm_registers
   359   //   (so is_single_fpu and is_single_xmm are true)
   360   // * So you must always check for is_???_xmm prior to is_???_fpu to
   361   //   distinguish between fpu- and xmm-registers
   363   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   364   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   365   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   367   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   368   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   369   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   370   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   371   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   373   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   374   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   375   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   376   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   377   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   379   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   380   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   381   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   383   // fast accessor functions for special bits that do not work for pointers
   384   // (in this functions, the check for is_pointer() is omitted)
   385   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   386   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   387   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   388   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   389   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   391   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   392   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   393   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   394   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   397   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   398   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   399   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   400   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   401   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   402   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   403   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   404   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   405   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   406   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   407   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   408   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   410   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   411   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   412   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   414   Register as_register()    const;
   415   Register as_register_lo() const;
   416   Register as_register_hi() const;
   418   Register as_pointer_register() {
   419 #ifdef _LP64
   420     if (is_double_cpu()) {
   421       assert(as_register_lo() == as_register_hi(), "should be a single register");
   422       return as_register_lo();
   423     }
   424 #endif
   425     return as_register();
   426   }
   428 #ifdef X86
   429   XMMRegister as_xmm_float_reg() const;
   430   XMMRegister as_xmm_double_reg() const;
   431   // for compatibility with RInfo
   432   int fpu () const                                  { return lo_reg_half(); }
   433 #endif // X86
   435 #ifdef SPARC
   436   FloatRegister as_float_reg   () const;
   437   FloatRegister as_double_reg  () const;
   438 #endif
   440   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   441   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   442   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   443   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   444   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   446   void print() const PRODUCT_RETURN;
   447   void print(outputStream* out) const PRODUCT_RETURN;
   448 };
   451 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   452   switch (type) {
   453   case T_INT:      return LIR_OprDesc::int_type;
   454   case T_LONG:     return LIR_OprDesc::long_type;
   455   case T_FLOAT:    return LIR_OprDesc::float_type;
   456   case T_DOUBLE:   return LIR_OprDesc::double_type;
   457   case T_OBJECT:
   458   case T_ARRAY:    return LIR_OprDesc::object_type;
   459   case T_ILLEGAL:  // fall through
   460   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   461   }
   462 }
   464 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   465   switch (t) {
   466   case LIR_OprDesc::int_type:     return T_INT;
   467   case LIR_OprDesc::long_type:    return T_LONG;
   468   case LIR_OprDesc::float_type:   return T_FLOAT;
   469   case LIR_OprDesc::double_type:  return T_DOUBLE;
   470   case LIR_OprDesc::object_type:  return T_OBJECT;
   471   case LIR_OprDesc::unknown_type: // fall through
   472   default: ShouldNotReachHere();  return T_ILLEGAL;
   473   }
   474 }
   477 // LIR_Address
   478 class LIR_Address: public LIR_OprPtr {
   479  friend class LIR_OpVisitState;
   481  public:
   482   // NOTE: currently these must be the log2 of the scale factor (and
   483   // must also be equivalent to the ScaleFactor enum in
   484   // assembler_i486.hpp)
   485   enum Scale {
   486     times_1  =  0,
   487     times_2  =  1,
   488     times_4  =  2,
   489     times_8  =  3
   490   };
   492  private:
   493   LIR_Opr   _base;
   494   LIR_Opr   _index;
   495   Scale     _scale;
   496   intx      _disp;
   497   BasicType _type;
   499  public:
   500   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   501        _base(base)
   502      , _index(index)
   503      , _scale(times_1)
   504      , _type(type)
   505      , _disp(0) { verify(); }
   507   LIR_Address(LIR_Opr base, int disp, BasicType type):
   508        _base(base)
   509      , _index(LIR_OprDesc::illegalOpr())
   510      , _scale(times_1)
   511      , _type(type)
   512      , _disp(disp) { verify(); }
   514 #ifdef X86
   515   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, int disp, BasicType type):
   516        _base(base)
   517      , _index(index)
   518      , _scale(scale)
   519      , _type(type)
   520      , _disp(disp) { verify(); }
   521 #endif // X86
   523   LIR_Opr base()  const                          { return _base;  }
   524   LIR_Opr index() const                          { return _index; }
   525   Scale   scale() const                          { return _scale; }
   526   intx    disp()  const                          { return _disp;  }
   528   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   530   virtual LIR_Address* as_address()              { return this;   }
   531   virtual BasicType type() const                 { return _type; }
   532   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   534   void verify() const PRODUCT_RETURN;
   536   static Scale scale(BasicType type);
   537 };
   540 // operand factory
   541 class LIR_OprFact: public AllStatic {
   542  public:
   544   static LIR_Opr illegalOpr;
   546   static LIR_Opr single_cpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   547   static LIR_Opr single_cpu_oop(int reg)        { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   548   static LIR_Opr double_cpu(int reg1, int reg2) {
   549     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
   550     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   551                                (reg2 << LIR_OprDesc::reg2_shift) |
   552                                LIR_OprDesc::long_type            |
   553                                LIR_OprDesc::cpu_register         |
   554                                LIR_OprDesc::double_size);
   555   }
   557   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   558                                                                              LIR_OprDesc::float_type           |
   559                                                                              LIR_OprDesc::fpu_register         |
   560                                                                              LIR_OprDesc::single_size); }
   562 #ifdef SPARC
   563   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   564                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
   565                                                                              LIR_OprDesc::double_type          |
   566                                                                              LIR_OprDesc::fpu_register         |
   567                                                                              LIR_OprDesc::double_size); }
   568 #endif
   569 #ifdef X86
   570   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   571                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   572                                                                              LIR_OprDesc::double_type          |
   573                                                                              LIR_OprDesc::fpu_register         |
   574                                                                              LIR_OprDesc::double_size); }
   576   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   577                                                                              LIR_OprDesc::float_type           |
   578                                                                              LIR_OprDesc::fpu_register         |
   579                                                                              LIR_OprDesc::single_size          |
   580                                                                              LIR_OprDesc::is_xmm_mask); }
   581   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   582                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   583                                                                              LIR_OprDesc::double_type          |
   584                                                                              LIR_OprDesc::fpu_register         |
   585                                                                              LIR_OprDesc::double_size          |
   586                                                                              LIR_OprDesc::is_xmm_mask); }
   587 #endif // X86
   590   static LIR_Opr virtual_register(int index, BasicType type) {
   591     LIR_Opr res;
   592     switch (type) {
   593       case T_OBJECT: // fall through
   594       case T_ARRAY:
   595         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   596                                             LIR_OprDesc::object_type  |
   597                                             LIR_OprDesc::cpu_register |
   598                                             LIR_OprDesc::single_size  |
   599                                             LIR_OprDesc::virtual_mask);
   600         break;
   602       case T_INT:
   603         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   604                                   LIR_OprDesc::int_type              |
   605                                   LIR_OprDesc::cpu_register          |
   606                                   LIR_OprDesc::single_size           |
   607                                   LIR_OprDesc::virtual_mask);
   608         break;
   610       case T_LONG:
   611         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   612                                   LIR_OprDesc::long_type             |
   613                                   LIR_OprDesc::cpu_register          |
   614                                   LIR_OprDesc::double_size           |
   615                                   LIR_OprDesc::virtual_mask);
   616         break;
   618       case T_FLOAT:
   619         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   620                                   LIR_OprDesc::float_type           |
   621                                   LIR_OprDesc::fpu_register         |
   622                                   LIR_OprDesc::single_size          |
   623                                   LIR_OprDesc::virtual_mask);
   624         break;
   626       case
   627         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   628                                             LIR_OprDesc::double_type           |
   629                                             LIR_OprDesc::fpu_register          |
   630                                             LIR_OprDesc::double_size           |
   631                                             LIR_OprDesc::virtual_mask);
   632         break;
   634       default:       ShouldNotReachHere(); res = illegalOpr;
   635     }
   637 #ifdef ASSERT
   638     res->validate_type();
   639     assert(res->vreg_number() == index, "conversion check");
   640     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   641     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   643     // old-style calculation; check if old and new method are equal
   644     LIR_OprDesc::OprType t = as_OprType(type);
   645     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
   646                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   647                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   648     assert(res == old_res, "old and new method not equal");
   649 #endif
   651     return res;
   652   }
   654   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   655   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   656   // index 2.
   657   static LIR_Opr stack(int index, BasicType type) {
   658     LIR_Opr res;
   659     switch (type) {
   660       case T_OBJECT: // fall through
   661       case T_ARRAY:
   662         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   663                                   LIR_OprDesc::object_type           |
   664                                   LIR_OprDesc::stack_value           |
   665                                   LIR_OprDesc::single_size);
   666         break;
   668       case T_INT:
   669         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   670                                   LIR_OprDesc::int_type              |
   671                                   LIR_OprDesc::stack_value           |
   672                                   LIR_OprDesc::single_size);
   673         break;
   675       case T_LONG:
   676         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   677                                   LIR_OprDesc::long_type             |
   678                                   LIR_OprDesc::stack_value           |
   679                                   LIR_OprDesc::double_size);
   680         break;
   682       case T_FLOAT:
   683         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   684                                   LIR_OprDesc::float_type            |
   685                                   LIR_OprDesc::stack_value           |
   686                                   LIR_OprDesc::single_size);
   687         break;
   688       case T_DOUBLE:
   689         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   690                                   LIR_OprDesc::double_type           |
   691                                   LIR_OprDesc::stack_value           |
   692                                   LIR_OprDesc::double_size);
   693         break;
   695       default:       ShouldNotReachHere(); res = illegalOpr;
   696     }
   698 #ifdef ASSERT
   699     assert(index >= 0, "index must be positive");
   700     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   702     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   703                                           LIR_OprDesc::stack_value           |
   704                                           as_OprType(type)                   |
   705                                           LIR_OprDesc::size_for(type));
   706     assert(res == old_res, "old and new method not equal");
   707 #endif
   709     return res;
   710   }
   712   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   713   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   714   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   715   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   716   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   717   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   718   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   719   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   720   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   722   static LIR_Opr value_type(ValueType* type);
   723   static LIR_Opr dummy_value_type(ValueType* type);
   724 };
   727 //-------------------------------------------------------------------------------
   728 //                   LIR Instructions
   729 //-------------------------------------------------------------------------------
   730 //
   731 // Note:
   732 //  - every instruction has a result operand
   733 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   734 //  - every instruction has a LIR_OpCode operand
   735 //  - LIR_OpN, means an instruction that has N input operands
   736 //
   737 // class hierarchy:
   738 //
   739 class  LIR_Op;
   740 class    LIR_Op0;
   741 class      LIR_OpLabel;
   742 class    LIR_Op1;
   743 class      LIR_OpBranch;
   744 class      LIR_OpConvert;
   745 class      LIR_OpAllocObj;
   746 class      LIR_OpRoundFP;
   747 class    LIR_Op2;
   748 class    LIR_OpDelay;
   749 class    LIR_Op3;
   750 class      LIR_OpAllocArray;
   751 class    LIR_OpCall;
   752 class      LIR_OpJavaCall;
   753 class      LIR_OpRTCall;
   754 class    LIR_OpArrayCopy;
   755 class    LIR_OpLock;
   756 class    LIR_OpTypeCheck;
   757 class    LIR_OpCompareAndSwap;
   758 class    LIR_OpProfileCall;
   761 // LIR operation codes
   762 enum LIR_Code {
   763     lir_none
   764   , begin_op0
   765       , lir_word_align
   766       , lir_label
   767       , lir_nop
   768       , lir_backwardbranch_target
   769       , lir_std_entry
   770       , lir_osr_entry
   771       , lir_build_frame
   772       , lir_fpop_raw
   773       , lir_24bit_FPU
   774       , lir_reset_FPU
   775       , lir_breakpoint
   776       , lir_rtcall
   777       , lir_membar
   778       , lir_membar_acquire
   779       , lir_membar_release
   780       , lir_get_thread
   781   , end_op0
   782   , begin_op1
   783       , lir_fxch
   784       , lir_fld
   785       , lir_ffree
   786       , lir_push
   787       , lir_pop
   788       , lir_null_check
   789       , lir_return
   790       , lir_leal
   791       , lir_neg
   792       , lir_branch
   793       , lir_cond_float_branch
   794       , lir_move
   795       , lir_prefetchr
   796       , lir_prefetchw
   797       , lir_convert
   798       , lir_alloc_object
   799       , lir_monaddr
   800       , lir_roundfp
   801       , lir_safepoint
   802   , end_op1
   803   , begin_op2
   804       , lir_cmp
   805       , lir_cmp_l2i
   806       , lir_ucmp_fd2i
   807       , lir_cmp_fd2i
   808       , lir_cmove
   809       , lir_add
   810       , lir_sub
   811       , lir_mul
   812       , lir_mul_strictfp
   813       , lir_div
   814       , lir_div_strictfp
   815       , lir_rem
   816       , lir_sqrt
   817       , lir_abs
   818       , lir_sin
   819       , lir_cos
   820       , lir_tan
   821       , lir_log
   822       , lir_log10
   823       , lir_logic_and
   824       , lir_logic_or
   825       , lir_logic_xor
   826       , lir_shl
   827       , lir_shr
   828       , lir_ushr
   829       , lir_alloc_array
   830       , lir_throw
   831       , lir_unwind
   832       , lir_compare_to
   833   , end_op2
   834   , begin_op3
   835       , lir_idiv
   836       , lir_irem
   837   , end_op3
   838   , begin_opJavaCall
   839       , lir_static_call
   840       , lir_optvirtual_call
   841       , lir_icvirtual_call
   842       , lir_virtual_call
   843   , end_opJavaCall
   844   , begin_opArrayCopy
   845       , lir_arraycopy
   846   , end_opArrayCopy
   847   , begin_opLock
   848     , lir_lock
   849     , lir_unlock
   850   , end_opLock
   851   , begin_delay_slot
   852     , lir_delay_slot
   853   , end_delay_slot
   854   , begin_opTypeCheck
   855     , lir_instanceof
   856     , lir_checkcast
   857     , lir_store_check
   858   , end_opTypeCheck
   859   , begin_opCompareAndSwap
   860     , lir_cas_long
   861     , lir_cas_obj
   862     , lir_cas_int
   863   , end_opCompareAndSwap
   864   , begin_opMDOProfile
   865     , lir_profile_call
   866   , end_opMDOProfile
   867 };
   870 enum LIR_Condition {
   871     lir_cond_equal
   872   , lir_cond_notEqual
   873   , lir_cond_less
   874   , lir_cond_lessEqual
   875   , lir_cond_greaterEqual
   876   , lir_cond_greater
   877   , lir_cond_belowEqual
   878   , lir_cond_aboveEqual
   879   , lir_cond_always
   880   , lir_cond_unknown = -1
   881 };
   884 enum LIR_PatchCode {
   885   lir_patch_none,
   886   lir_patch_low,
   887   lir_patch_high,
   888   lir_patch_normal
   889 };
   892 enum LIR_MoveKind {
   893   lir_move_normal,
   894   lir_move_volatile,
   895   lir_move_unaligned,
   896   lir_move_max_flag
   897 };
   900 // --------------------------------------------------
   901 // LIR_Op
   902 // --------------------------------------------------
   903 class LIR_Op: public CompilationResourceObj {
   904  friend class LIR_OpVisitState;
   906 #ifdef ASSERT
   907  private:
   908   const char *  _file;
   909   int           _line;
   910 #endif
   912  protected:
   913   LIR_Opr       _result;
   914   unsigned short _code;
   915   unsigned short _flags;
   916   CodeEmitInfo* _info;
   917   int           _id;     // value id for register allocation
   918   int           _fpu_pop_count;
   919   Instruction*  _source; // for debugging
   921   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
   923  protected:
   924   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
   926  public:
   927   LIR_Op()
   928     : _result(LIR_OprFact::illegalOpr)
   929     , _code(lir_none)
   930     , _flags(0)
   931     , _info(NULL)
   932 #ifdef ASSERT
   933     , _file(NULL)
   934     , _line(0)
   935 #endif
   936     , _fpu_pop_count(0)
   937     , _source(NULL)
   938     , _id(-1)                             {}
   940   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
   941     : _result(result)
   942     , _code(code)
   943     , _flags(0)
   944     , _info(info)
   945 #ifdef ASSERT
   946     , _file(NULL)
   947     , _line(0)
   948 #endif
   949     , _fpu_pop_count(0)
   950     , _source(NULL)
   951     , _id(-1)                             {}
   953   CodeEmitInfo* info() const                  { return _info;   }
   954   LIR_Code code()      const                  { return (LIR_Code)_code;   }
   955   LIR_Opr result_opr() const                  { return _result; }
   956   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
   958 #ifdef ASSERT
   959   void set_file_and_line(const char * file, int line) {
   960     _file = file;
   961     _line = line;
   962   }
   963 #endif
   965   virtual const char * name() const PRODUCT_RETURN0;
   967   int id()             const                  { return _id;     }
   968   void set_id(int id)                         { _id = id; }
   970   // FPU stack simulation helpers -- only used on Intel
   971   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
   972   int  fpu_pop_count() const                  { return _fpu_pop_count; }
   973   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
   975   Instruction* source() const                 { return _source; }
   976   void set_source(Instruction* ins)           { _source = ins; }
   978   virtual void emit_code(LIR_Assembler* masm) = 0;
   979   virtual void print_instr(outputStream* out) const   = 0;
   980   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
   982   virtual LIR_OpCall* as_OpCall() { return NULL; }
   983   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
   984   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
   985   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
   986   virtual LIR_OpLock* as_OpLock() { return NULL; }
   987   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
   988   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
   989   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
   990   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
   991   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
   992   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
   993   virtual LIR_Op0* as_Op0() { return NULL; }
   994   virtual LIR_Op1* as_Op1() { return NULL; }
   995   virtual LIR_Op2* as_Op2() { return NULL; }
   996   virtual LIR_Op3* as_Op3() { return NULL; }
   997   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
   998   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
   999   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
  1000   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
  1002   virtual void verify() const {}
  1003 };
  1005 // for calls
  1006 class LIR_OpCall: public LIR_Op {
  1007  friend class LIR_OpVisitState;
  1009  protected:
  1010   address      _addr;
  1011   LIR_OprList* _arguments;
  1012  protected:
  1013   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
  1014              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1015     : LIR_Op(code, result, info)
  1016     , _arguments(arguments)
  1017     , _addr(addr) {}
  1019  public:
  1020   address addr() const                           { return _addr; }
  1021   const LIR_OprList* arguments() const           { return _arguments; }
  1022   virtual LIR_OpCall* as_OpCall()                { return this; }
  1023 };
  1026 // --------------------------------------------------
  1027 // LIR_OpJavaCall
  1028 // --------------------------------------------------
  1029 class LIR_OpJavaCall: public LIR_OpCall {
  1030  friend class LIR_OpVisitState;
  1032  private:
  1033   ciMethod*       _method;
  1034   LIR_Opr         _receiver;
  1036  public:
  1037   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1038                  LIR_Opr receiver, LIR_Opr result,
  1039                  address addr, LIR_OprList* arguments,
  1040                  CodeEmitInfo* info)
  1041   : LIR_OpCall(code, addr, result, arguments, info)
  1042   , _receiver(receiver)
  1043   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1045   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1046                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
  1047                  LIR_OprList* arguments, CodeEmitInfo* info)
  1048   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
  1049   , _receiver(receiver)
  1050   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1052   LIR_Opr receiver() const                       { return _receiver; }
  1053   ciMethod* method() const                       { return _method;   }
  1055   intptr_t vtable_offset() const {
  1056     assert(_code == lir_virtual_call, "only have vtable for real vcall");
  1057     return (intptr_t) addr();
  1060   virtual void emit_code(LIR_Assembler* masm);
  1061   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
  1062   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1063 };
  1065 // --------------------------------------------------
  1066 // LIR_OpLabel
  1067 // --------------------------------------------------
  1068 // Location where a branch can continue
  1069 class LIR_OpLabel: public LIR_Op {
  1070  friend class LIR_OpVisitState;
  1072  private:
  1073   Label* _label;
  1074  public:
  1075   LIR_OpLabel(Label* lbl)
  1076    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
  1077    , _label(lbl)                                 {}
  1078   Label* label() const                           { return _label; }
  1080   virtual void emit_code(LIR_Assembler* masm);
  1081   virtual LIR_OpLabel* as_OpLabel() { return this; }
  1082   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1083 };
  1085 // LIR_OpArrayCopy
  1086 class LIR_OpArrayCopy: public LIR_Op {
  1087  friend class LIR_OpVisitState;
  1089  private:
  1090   ArrayCopyStub*  _stub;
  1091   LIR_Opr   _src;
  1092   LIR_Opr   _src_pos;
  1093   LIR_Opr   _dst;
  1094   LIR_Opr   _dst_pos;
  1095   LIR_Opr   _length;
  1096   LIR_Opr   _tmp;
  1097   ciArrayKlass* _expected_type;
  1098   int       _flags;
  1100 public:
  1101   enum Flags {
  1102     src_null_check         = 1 << 0,
  1103     dst_null_check         = 1 << 1,
  1104     src_pos_positive_check = 1 << 2,
  1105     dst_pos_positive_check = 1 << 3,
  1106     length_positive_check  = 1 << 4,
  1107     src_range_check        = 1 << 5,
  1108     dst_range_check        = 1 << 6,
  1109     type_check             = 1 << 7,
  1110     all_flags              = (1 << 8) - 1
  1111   };
  1113   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1114                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1116   LIR_Opr src() const                            { return _src; }
  1117   LIR_Opr src_pos() const                        { return _src_pos; }
  1118   LIR_Opr dst() const                            { return _dst; }
  1119   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1120   LIR_Opr length() const                         { return _length; }
  1121   LIR_Opr tmp() const                            { return _tmp; }
  1122   int flags() const                              { return _flags; }
  1123   ciArrayKlass* expected_type() const            { return _expected_type; }
  1124   ArrayCopyStub* stub() const                    { return _stub; }
  1126   virtual void emit_code(LIR_Assembler* masm);
  1127   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1128   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1129 };
  1132 // --------------------------------------------------
  1133 // LIR_Op0
  1134 // --------------------------------------------------
  1135 class LIR_Op0: public LIR_Op {
  1136  friend class LIR_OpVisitState;
  1138  public:
  1139   LIR_Op0(LIR_Code code)
  1140    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1141   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1142    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1144   virtual void emit_code(LIR_Assembler* masm);
  1145   virtual LIR_Op0* as_Op0() { return this; }
  1146   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1147 };
  1150 // --------------------------------------------------
  1151 // LIR_Op1
  1152 // --------------------------------------------------
  1154 class LIR_Op1: public LIR_Op {
  1155  friend class LIR_OpVisitState;
  1157  protected:
  1158   LIR_Opr         _opr;   // input operand
  1159   BasicType       _type;  // Operand types
  1160   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1162   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1164   void set_kind(LIR_MoveKind kind) {
  1165     assert(code() == lir_move, "must be");
  1166     _flags = kind;
  1169  public:
  1170   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1171     : LIR_Op(code, result, info)
  1172     , _opr(opr)
  1173     , _patch(patch)
  1174     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1176   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1177     : LIR_Op(code, result, info)
  1178     , _opr(opr)
  1179     , _patch(patch)
  1180     , _type(type)                      {
  1181     assert(code == lir_move, "must be");
  1182     set_kind(kind);
  1185   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1186     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1187     , _opr(opr)
  1188     , _patch(lir_patch_none)
  1189     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1191   LIR_Opr in_opr()           const               { return _opr;   }
  1192   LIR_PatchCode patch_code() const               { return _patch; }
  1193   BasicType type()           const               { return _type;  }
  1195   LIR_MoveKind move_kind() const {
  1196     assert(code() == lir_move, "must be");
  1197     return (LIR_MoveKind)_flags;
  1200   virtual void emit_code(LIR_Assembler* masm);
  1201   virtual LIR_Op1* as_Op1() { return this; }
  1202   virtual const char * name() const PRODUCT_RETURN0;
  1204   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1206   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1207   virtual void verify() const;
  1208 };
  1211 // for runtime calls
  1212 class LIR_OpRTCall: public LIR_OpCall {
  1213  friend class LIR_OpVisitState;
  1215  private:
  1216   LIR_Opr _tmp;
  1217  public:
  1218   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1219                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1220     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1221     , _tmp(tmp) {}
  1223   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1224   virtual void emit_code(LIR_Assembler* masm);
  1225   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1227   LIR_Opr tmp() const                            { return _tmp; }
  1229   virtual void verify() const;
  1230 };
  1233 class LIR_OpBranch: public LIR_Op {
  1234  friend class LIR_OpVisitState;
  1236  private:
  1237   LIR_Condition _cond;
  1238   BasicType     _type;
  1239   Label*        _label;
  1240   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1241   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1242   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1244  public:
  1245   LIR_OpBranch(LIR_Condition cond, Label* lbl)
  1246     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1247     , _cond(cond)
  1248     , _label(lbl)
  1249     , _block(NULL)
  1250     , _ublock(NULL)
  1251     , _stub(NULL) { }
  1253   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1254   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1256   // for unordered comparisons
  1257   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1259   LIR_Condition cond()        const              { return _cond;        }
  1260   BasicType     type()        const              { return _type;        }
  1261   Label*        label()       const              { return _label;       }
  1262   BlockBegin*   block()       const              { return _block;       }
  1263   BlockBegin*   ublock()      const              { return _ublock;      }
  1264   CodeStub*     stub()        const              { return _stub;       }
  1266   void          change_block(BlockBegin* b);
  1267   void          change_ublock(BlockBegin* b);
  1268   void          negate_cond();
  1270   virtual void emit_code(LIR_Assembler* masm);
  1271   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1272   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1273 };
  1276 class ConversionStub;
  1278 class LIR_OpConvert: public LIR_Op1 {
  1279  friend class LIR_OpVisitState;
  1281  private:
  1282    Bytecodes::Code _bytecode;
  1283    ConversionStub* _stub;
  1285  public:
  1286    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1287      : LIR_Op1(lir_convert, opr, result)
  1288      , _stub(stub)
  1289      , _bytecode(code)                           {}
  1291   Bytecodes::Code bytecode() const               { return _bytecode; }
  1292   ConversionStub* stub() const                   { return _stub; }
  1294   virtual void emit_code(LIR_Assembler* masm);
  1295   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1296   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1298   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1299 };
  1302 // LIR_OpAllocObj
  1303 class LIR_OpAllocObj : public LIR_Op1 {
  1304  friend class LIR_OpVisitState;
  1306  private:
  1307   LIR_Opr _tmp1;
  1308   LIR_Opr _tmp2;
  1309   LIR_Opr _tmp3;
  1310   LIR_Opr _tmp4;
  1311   int     _hdr_size;
  1312   int     _obj_size;
  1313   CodeStub* _stub;
  1314   bool    _init_check;
  1316  public:
  1317   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1318                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1319                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1320     : LIR_Op1(lir_alloc_object, klass, result)
  1321     , _tmp1(t1)
  1322     , _tmp2(t2)
  1323     , _tmp3(t3)
  1324     , _tmp4(t4)
  1325     , _hdr_size(hdr_size)
  1326     , _obj_size(obj_size)
  1327     , _init_check(init_check)
  1328     , _stub(stub)                                { }
  1330   LIR_Opr klass()        const                   { return in_opr();     }
  1331   LIR_Opr obj()          const                   { return result_opr(); }
  1332   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1333   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1334   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1335   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1336   int     header_size()  const                   { return _hdr_size;    }
  1337   int     object_size()  const                   { return _obj_size;    }
  1338   bool    init_check()   const                   { return _init_check;  }
  1339   CodeStub* stub()       const                   { return _stub;        }
  1341   virtual void emit_code(LIR_Assembler* masm);
  1342   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1343   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1344 };
  1347 // LIR_OpRoundFP
  1348 class LIR_OpRoundFP : public LIR_Op1 {
  1349  friend class LIR_OpVisitState;
  1351  private:
  1352   LIR_Opr _tmp;
  1354  public:
  1355   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1356     : LIR_Op1(lir_roundfp, reg, result)
  1357     , _tmp(stack_loc_temp) {}
  1359   LIR_Opr tmp() const                            { return _tmp; }
  1360   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1361   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1362 };
  1364 // LIR_OpTypeCheck
  1365 class LIR_OpTypeCheck: public LIR_Op {
  1366  friend class LIR_OpVisitState;
  1368  private:
  1369   LIR_Opr       _object;
  1370   LIR_Opr       _array;
  1371   ciKlass*      _klass;
  1372   LIR_Opr       _tmp1;
  1373   LIR_Opr       _tmp2;
  1374   LIR_Opr       _tmp3;
  1375   bool          _fast_check;
  1376   CodeEmitInfo* _info_for_patch;
  1377   CodeEmitInfo* _info_for_exception;
  1378   CodeStub*     _stub;
  1379   // Helpers for Tier1UpdateMethodData
  1380   ciMethod*     _profiled_method;
  1381   int           _profiled_bci;
  1383 public:
  1384   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1385                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1386                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  1387                   ciMethod* profiled_method, int profiled_bci);
  1388   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1389                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
  1390                   ciMethod* profiled_method, int profiled_bci);
  1392   LIR_Opr object() const                         { return _object;         }
  1393   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1394   LIR_Opr tmp1() const                           { return _tmp1;           }
  1395   LIR_Opr tmp2() const                           { return _tmp2;           }
  1396   LIR_Opr tmp3() const                           { return _tmp3;           }
  1397   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1398   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1399   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1400   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1401   CodeStub* stub() const                         { return _stub;           }
  1403   // methodDataOop profiling
  1404   ciMethod* profiled_method()                    { return _profiled_method; }
  1405   int       profiled_bci()                       { return _profiled_bci; }
  1407   virtual void emit_code(LIR_Assembler* masm);
  1408   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1409   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1410 };
  1412 // LIR_Op2
  1413 class LIR_Op2: public LIR_Op {
  1414  friend class LIR_OpVisitState;
  1416   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1418  protected:
  1419   LIR_Opr   _opr1;
  1420   LIR_Opr   _opr2;
  1421   BasicType _type;
  1422   LIR_Opr   _tmp;
  1423   LIR_Condition _condition;
  1425   void verify() const;
  1427  public:
  1428   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1429     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1430     , _opr1(opr1)
  1431     , _opr2(opr2)
  1432     , _type(T_ILLEGAL)
  1433     , _condition(condition)
  1434     , _fpu_stack_size(0)
  1435     , _tmp(LIR_OprFact::illegalOpr) {
  1436     assert(code == lir_cmp, "code check");
  1439   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
  1440     : LIR_Op(code, result, NULL)
  1441     , _opr1(opr1)
  1442     , _opr2(opr2)
  1443     , _type(T_ILLEGAL)
  1444     , _condition(condition)
  1445     , _fpu_stack_size(0)
  1446     , _tmp(LIR_OprFact::illegalOpr) {
  1447     assert(code == lir_cmove, "code check");
  1450   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1451           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1452     : LIR_Op(code, result, info)
  1453     , _opr1(opr1)
  1454     , _opr2(opr2)
  1455     , _type(type)
  1456     , _condition(lir_cond_unknown)
  1457     , _fpu_stack_size(0)
  1458     , _tmp(LIR_OprFact::illegalOpr) {
  1459     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1462   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
  1463     : LIR_Op(code, result, NULL)
  1464     , _opr1(opr1)
  1465     , _opr2(opr2)
  1466     , _type(T_ILLEGAL)
  1467     , _condition(lir_cond_unknown)
  1468     , _fpu_stack_size(0)
  1469     , _tmp(tmp) {
  1470     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1473   LIR_Opr in_opr1() const                        { return _opr1; }
  1474   LIR_Opr in_opr2() const                        { return _opr2; }
  1475   BasicType type()  const                        { return _type; }
  1476   LIR_Opr tmp_opr() const                        { return _tmp; }
  1477   LIR_Condition condition() const  {
  1478     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
  1481   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1482   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1484   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1485   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1487   virtual void emit_code(LIR_Assembler* masm);
  1488   virtual LIR_Op2* as_Op2() { return this; }
  1489   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1490 };
  1492 class LIR_OpAllocArray : public LIR_Op {
  1493  friend class LIR_OpVisitState;
  1495  private:
  1496   LIR_Opr   _klass;
  1497   LIR_Opr   _len;
  1498   LIR_Opr   _tmp1;
  1499   LIR_Opr   _tmp2;
  1500   LIR_Opr   _tmp3;
  1501   LIR_Opr   _tmp4;
  1502   BasicType _type;
  1503   CodeStub* _stub;
  1505  public:
  1506   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1507     : LIR_Op(lir_alloc_array, result, NULL)
  1508     , _klass(klass)
  1509     , _len(len)
  1510     , _tmp1(t1)
  1511     , _tmp2(t2)
  1512     , _tmp3(t3)
  1513     , _tmp4(t4)
  1514     , _type(type)
  1515     , _stub(stub) {}
  1517   LIR_Opr   klass()   const                      { return _klass;       }
  1518   LIR_Opr   len()     const                      { return _len;         }
  1519   LIR_Opr   obj()     const                      { return result_opr(); }
  1520   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1521   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1522   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1523   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1524   BasicType type()    const                      { return _type;        }
  1525   CodeStub* stub()    const                      { return _stub;        }
  1527   virtual void emit_code(LIR_Assembler* masm);
  1528   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1529   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1530 };
  1533 class LIR_Op3: public LIR_Op {
  1534  friend class LIR_OpVisitState;
  1536  private:
  1537   LIR_Opr _opr1;
  1538   LIR_Opr _opr2;
  1539   LIR_Opr _opr3;
  1540  public:
  1541   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1542     : LIR_Op(code, result, info)
  1543     , _opr1(opr1)
  1544     , _opr2(opr2)
  1545     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1546   LIR_Opr in_opr1() const                        { return _opr1; }
  1547   LIR_Opr in_opr2() const                        { return _opr2; }
  1548   LIR_Opr in_opr3() const                        { return _opr3; }
  1550   virtual void emit_code(LIR_Assembler* masm);
  1551   virtual LIR_Op3* as_Op3() { return this; }
  1552   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1553 };
  1556 //--------------------------------
  1557 class LabelObj: public CompilationResourceObj {
  1558  private:
  1559   Label _label;
  1560  public:
  1561   LabelObj()                                     {}
  1562   Label* label()                                 { return &_label; }
  1563 };
  1566 class LIR_OpLock: public LIR_Op {
  1567  friend class LIR_OpVisitState;
  1569  private:
  1570   LIR_Opr _hdr;
  1571   LIR_Opr _obj;
  1572   LIR_Opr _lock;
  1573   LIR_Opr _scratch;
  1574   CodeStub* _stub;
  1575  public:
  1576   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1577     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1578     , _hdr(hdr)
  1579     , _obj(obj)
  1580     , _lock(lock)
  1581     , _scratch(scratch)
  1582     , _stub(stub)                      {}
  1584   LIR_Opr hdr_opr() const                        { return _hdr; }
  1585   LIR_Opr obj_opr() const                        { return _obj; }
  1586   LIR_Opr lock_opr() const                       { return _lock; }
  1587   LIR_Opr scratch_opr() const                    { return _scratch; }
  1588   CodeStub* stub() const                         { return _stub; }
  1590   virtual void emit_code(LIR_Assembler* masm);
  1591   virtual LIR_OpLock* as_OpLock() { return this; }
  1592   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1593 };
  1596 class LIR_OpDelay: public LIR_Op {
  1597  friend class LIR_OpVisitState;
  1599  private:
  1600   LIR_Op* _op;
  1602  public:
  1603   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1604     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1605     _op(op) {
  1606     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1608   virtual void emit_code(LIR_Assembler* masm);
  1609   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1610   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1611   LIR_Op* delay_op() const { return _op; }
  1612   CodeEmitInfo* call_info() const { return info(); }
  1613 };
  1616 // LIR_OpCompareAndSwap
  1617 class LIR_OpCompareAndSwap : public LIR_Op {
  1618  friend class LIR_OpVisitState;
  1620  private:
  1621   LIR_Opr _addr;
  1622   LIR_Opr _cmp_value;
  1623   LIR_Opr _new_value;
  1624   LIR_Opr _tmp1;
  1625   LIR_Opr _tmp2;
  1627  public:
  1628   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2)
  1629     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1630     , _addr(addr)
  1631     , _cmp_value(cmp_value)
  1632     , _new_value(new_value)
  1633     , _tmp1(t1)
  1634     , _tmp2(t2)                                  { }
  1636   LIR_Opr addr()        const                    { return _addr;  }
  1637   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1638   LIR_Opr new_value()   const                    { return _new_value; }
  1639   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1640   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1642   virtual void emit_code(LIR_Assembler* masm);
  1643   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1644   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1645 };
  1647 // LIR_OpProfileCall
  1648 class LIR_OpProfileCall : public LIR_Op {
  1649  friend class LIR_OpVisitState;
  1651  private:
  1652   ciMethod* _profiled_method;
  1653   int _profiled_bci;
  1654   LIR_Opr _mdo;
  1655   LIR_Opr _recv;
  1656   LIR_Opr _tmp1;
  1657   ciKlass* _known_holder;
  1659  public:
  1660   // Destroys recv
  1661   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1662     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1663     , _profiled_method(profiled_method)
  1664     , _profiled_bci(profiled_bci)
  1665     , _mdo(mdo)
  1666     , _recv(recv)
  1667     , _tmp1(t1)
  1668     , _known_holder(known_holder)                { }
  1670   ciMethod* profiled_method() const              { return _profiled_method;  }
  1671   int       profiled_bci()    const              { return _profiled_bci;     }
  1672   LIR_Opr   mdo()             const              { return _mdo;              }
  1673   LIR_Opr   recv()            const              { return _recv;             }
  1674   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1675   ciKlass*  known_holder()    const              { return _known_holder;     }
  1677   virtual void emit_code(LIR_Assembler* masm);
  1678   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1679   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1680 };
  1683 class LIR_InsertionBuffer;
  1685 //--------------------------------LIR_List---------------------------------------------------
  1686 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1687 // The LIR instructions are appended by the LIR_List class itself;
  1688 //
  1689 // Notes:
  1690 // - all offsets are(should be) in bytes
  1691 // - local positions are specified with an offset, with offset 0 being local 0
  1693 class LIR_List: public CompilationResourceObj {
  1694  private:
  1695   LIR_OpList  _operations;
  1697   Compilation*  _compilation;
  1698 #ifndef PRODUCT
  1699   BlockBegin*   _block;
  1700 #endif
  1701 #ifdef ASSERT
  1702   const char *  _file;
  1703   int           _line;
  1704 #endif
  1706   void append(LIR_Op* op) {
  1707     if (op->source() == NULL)
  1708       op->set_source(_compilation->current_instruction());
  1709 #ifndef PRODUCT
  1710     if (PrintIRWithLIR) {
  1711       _compilation->maybe_print_current_instruction();
  1712       op->print(); tty->cr();
  1714 #endif // PRODUCT
  1716     _operations.append(op);
  1718 #ifdef ASSERT
  1719     op->verify();
  1720     op->set_file_and_line(_file, _line);
  1721     _file = NULL;
  1722     _line = 0;
  1723 #endif
  1726  public:
  1727   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1729 #ifdef ASSERT
  1730   void set_file_and_line(const char * file, int line);
  1731 #endif
  1733   //---------- accessors ---------------
  1734   LIR_OpList* instructions_list()                { return &_operations; }
  1735   int         length() const                     { return _operations.length(); }
  1736   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1738   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1740   // insert LIR_Ops in buffer to right places in LIR_List
  1741   void append(LIR_InsertionBuffer* buffer);
  1743   //---------- mutators ---------------
  1744   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1745   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1747   //---------- printing -------------
  1748   void print_instructions() PRODUCT_RETURN;
  1751   //---------- instructions -------------
  1752   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1753                         address dest, LIR_OprList* arguments,
  1754                         CodeEmitInfo* info) {
  1755     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  1757   void call_static(ciMethod* method, LIR_Opr result,
  1758                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1759     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  1761   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1762                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1763     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  1765   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1766                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  1767     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  1770   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  1771   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  1772   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  1773   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  1774   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  1776   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  1777   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  1779   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  1780   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  1782   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  1784   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  1785   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  1787   // result is a stack location for old backend and vreg for UseLinearScan
  1788   // stack_loc_temp is an illegal register for old backend
  1789   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  1790   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1791   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1792   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1793   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1794   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  1795   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  1797   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  1799   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  1800   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  1802   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  1804   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  1806   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  1808   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  1809   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  1810   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  1812   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  1813   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
  1814   void unwind_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_unwind, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
  1816   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  1817     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  1820   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  1821   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  1823   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  1824     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  1826   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  1827     cmp(condition, left, LIR_OprFact::intConst(right), info);
  1830   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  1831   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  1833   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
  1834     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
  1837   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1838   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1839   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
  1841   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  1842   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  1843   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
  1844   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
  1845   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  1846   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  1847   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  1849   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  1850   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  1851   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  1852   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  1853   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  1854   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  1855   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  1857   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1858   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  1860   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  1862   void prefetch(LIR_Address* addr, bool is_store);
  1864   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1865   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1866   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  1867   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  1868   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  1870   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1871   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1872   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1873   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  1875   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  1876   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  1878   // jump is an unconditional branch
  1879   void jump(BlockBegin* block) {
  1880     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  1882   void jump(CodeStub* stub) {
  1883     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  1885   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
  1886   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  1887     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  1888     append(new LIR_OpBranch(cond, type, block));
  1890   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  1891     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  1892     append(new LIR_OpBranch(cond, type, stub));
  1894   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  1895     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  1896     append(new LIR_OpBranch(cond, type, block, unordered));
  1899   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1900   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1901   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  1903   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1904   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1905   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  1907   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  1908   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  1910   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  1911     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  1914   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  1915                     LIR_OprList* arguments, CodeEmitInfo* info) {
  1916     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  1919   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  1920   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub);
  1921   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  1923   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  1924   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  1925   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  1927   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  1929   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  1931   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1932                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1933                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  1934                   ciMethod* profiled_method, int profiled_bci);
  1935   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
  1936   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1938   // methodDataOop profiling
  1939   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
  1940 };
  1942 void print_LIR(BlockList* blocks);
  1944 class LIR_InsertionBuffer : public CompilationResourceObj {
  1945  private:
  1946   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  1948   // list of insertion points. index and count are stored alternately:
  1949   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  1950   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  1951   intStack    _index_and_count;
  1953   // the LIR_Ops to be inserted
  1954   LIR_OpList  _ops;
  1956   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  1957   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  1958   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  1960 #ifdef ASSERT
  1961   void verify();
  1962 #endif
  1963  public:
  1964   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  1966   // must be called before using the insertion buffer
  1967   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  1968   bool initialized() const  { return _lir != NULL; }
  1969   // called automatically when the buffer is appended to the LIR_List
  1970   void finish()             { _lir = NULL; }
  1972   // accessors
  1973   LIR_List*  lir_list() const             { return _lir; }
  1974   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  1975   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  1976   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  1978   int number_of_ops() const               { return _ops.length(); }
  1979   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  1981   // append an instruction to the buffer
  1982   void append(int index, LIR_Op* op);
  1984   // instruction
  1985   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1986 };
  1989 //
  1990 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  1991 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  1992 // information about the input, output and temporaries used by the
  1993 // op to be recorded.  It also records whether the op has call semantics
  1994 // and also records all the CodeEmitInfos used by this op.
  1995 //
  1998 class LIR_OpVisitState: public StackObj {
  1999  public:
  2000   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  2002   enum {
  2003     maxNumberOfOperands = 16,
  2004     maxNumberOfInfos = 4
  2005   };
  2007  private:
  2008   LIR_Op*          _op;
  2010   // optimization: the operands and infos are not stored in a variable-length
  2011   //               list, but in a fixed-size array to save time of size checks and resizing
  2012   int              _oprs_len[numModes];
  2013   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  2014   int _info_len;
  2015   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  2017   bool             _has_call;
  2018   bool             _has_slow_case;
  2021   // only include register operands
  2022   // addresses are decomposed to the base and index registers
  2023   // constants and stack operands are ignored
  2024   void append(LIR_Opr& opr, OprMode mode) {
  2025     assert(opr->is_valid(), "should not call this otherwise");
  2026     assert(mode >= 0 && mode < numModes, "bad mode");
  2028     if (opr->is_register()) {
  2029        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2030       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  2032     } else if (opr->is_pointer()) {
  2033       LIR_Address* address = opr->as_address_ptr();
  2034       if (address != NULL) {
  2035         // special handling for addresses: add base and index register of the address
  2036         // both are always input operands!
  2037         if (address->_base->is_valid()) {
  2038           assert(address->_base->is_register(), "must be");
  2039           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2040           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
  2042         if (address->_index->is_valid()) {
  2043           assert(address->_index->is_register(), "must be");
  2044           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2045           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
  2048       } else {
  2049         assert(opr->is_constant(), "constant operands are not processed");
  2051     } else {
  2052       assert(opr->is_stack(), "stack operands are not processed");
  2056   void append(CodeEmitInfo* info) {
  2057     assert(info != NULL, "should not call this otherwise");
  2058     assert(_info_len < maxNumberOfInfos, "array overflow");
  2059     _info_new[_info_len++] = info;
  2062  public:
  2063   LIR_OpVisitState()         { reset(); }
  2065   LIR_Op* op() const         { return _op; }
  2066   void set_op(LIR_Op* op)    { reset(); _op = op; }
  2068   bool has_call() const      { return _has_call; }
  2069   bool has_slow_case() const { return _has_slow_case; }
  2071   void reset() {
  2072     _op = NULL;
  2073     _has_call = false;
  2074     _has_slow_case = false;
  2076     _oprs_len[inputMode] = 0;
  2077     _oprs_len[tempMode] = 0;
  2078     _oprs_len[outputMode] = 0;
  2079     _info_len = 0;
  2083   int opr_count(OprMode mode) const {
  2084     assert(mode >= 0 && mode < numModes, "bad mode");
  2085     return _oprs_len[mode];
  2088   LIR_Opr opr_at(OprMode mode, int index) const {
  2089     assert(mode >= 0 && mode < numModes, "bad mode");
  2090     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2091     return *_oprs_new[mode][index];
  2094   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  2095     assert(mode >= 0 && mode < numModes, "bad mode");
  2096     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2097     *_oprs_new[mode][index] = opr;
  2100   int info_count() const {
  2101     return _info_len;
  2104   CodeEmitInfo* info_at(int index) const {
  2105     assert(index < _info_len, "index out of bounds");
  2106     return _info_new[index];
  2109   XHandlers* all_xhandler();
  2111   // collects all register operands of the instruction
  2112   void visit(LIR_Op* op);
  2114 #if ASSERT
  2115   // check that an operation has no operands
  2116   bool no_operands(LIR_Op* op);
  2117 #endif
  2119   // LIR_Op visitor functions use these to fill in the state
  2120   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2121   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2122   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2123   void do_info(CodeEmitInfo* info)        { append(info); }
  2125   void do_stub(CodeStub* stub);
  2126   void do_call()                          { _has_call = true; }
  2127   void do_slow_case()                     { _has_slow_case = true; }
  2128   void do_slow_case(CodeEmitInfo* info) {
  2129     _has_slow_case = true;
  2130     append(info);
  2132 };
  2135 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };

mercurial