src/share/vm/asm/codeBuffer.cpp

Mon, 01 Feb 2010 19:29:46 +0100

author
twisti
date
Mon, 01 Feb 2010 19:29:46 +0100
changeset 1639
18a389214829
parent 1014
0fbdb4381b99
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6921352: JSR 292 needs its own deopt handler
Summary: We need to introduce a new MH deopt handler so we can easily determine if the deopt happened at a MH call site or not.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_codeBuffer.cpp.incl"
    28 // The structure of a CodeSection:
    29 //
    30 //    _start ->           +----------------+
    31 //                        | machine code...|
    32 //    _end ->             |----------------|
    33 //                        |                |
    34 //                        |    (empty)     |
    35 //                        |                |
    36 //                        |                |
    37 //                        +----------------+
    38 //    _limit ->           |                |
    39 //
    40 //    _locs_start ->      +----------------+
    41 //                        |reloc records...|
    42 //                        |----------------|
    43 //    _locs_end ->        |                |
    44 //                        |                |
    45 //                        |    (empty)     |
    46 //                        |                |
    47 //                        |                |
    48 //                        +----------------+
    49 //    _locs_limit ->      |                |
    50 // The _end (resp. _limit) pointer refers to the first
    51 // unused (resp. unallocated) byte.
    53 // The structure of the CodeBuffer while code is being accumulated:
    54 //
    55 //    _total_start ->    \
    56 //    _insts._start ->              +----------------+
    57 //                                  |                |
    58 //                                  |     Code       |
    59 //                                  |                |
    60 //    _stubs._start ->              |----------------|
    61 //                                  |                |
    62 //                                  |    Stubs       | (also handlers for deopt/exception)
    63 //                                  |                |
    64 //    _consts._start ->             |----------------|
    65 //                                  |                |
    66 //                                  |   Constants    |
    67 //                                  |                |
    68 //                                  +----------------+
    69 //    + _total_size ->              |                |
    70 //
    71 // When the code and relocations are copied to the code cache,
    72 // the empty parts of each section are removed, and everything
    73 // is copied into contiguous locations.
    75 typedef CodeBuffer::csize_t csize_t;  // file-local definition
    77 // external buffer, in a predefined CodeBlob or other buffer area
    78 // Important: The code_start must be taken exactly, and not realigned.
    79 CodeBuffer::CodeBuffer(address code_start, csize_t code_size) {
    80   assert(code_start != NULL, "sanity");
    81   initialize_misc("static buffer");
    82   initialize(code_start, code_size);
    83   assert(verify_section_allocation(), "initial use of buffer OK");
    84 }
    86 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
    87   // Compute maximal alignment.
    88   int align = _insts.alignment();
    89   // Always allow for empty slop around each section.
    90   int slop = (int) CodeSection::end_slop();
    92   assert(blob() == NULL, "only once");
    93   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
    94   if (blob() == NULL) {
    95     // The assembler constructor will throw a fatal on an empty CodeBuffer.
    96     return;  // caller must test this
    97   }
    99   // Set up various pointers into the blob.
   100   initialize(_total_start, _total_size);
   102   assert((uintptr_t)code_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
   104   pd_initialize();
   106   if (locs_size != 0) {
   107     _insts.initialize_locs(locs_size / sizeof(relocInfo));
   108   }
   110   assert(verify_section_allocation(), "initial use of blob is OK");
   111 }
   114 CodeBuffer::~CodeBuffer() {
   115   // If we allocate our code buffer from the CodeCache
   116   // via a BufferBlob, and it's not permanent, then
   117   // free the BufferBlob.
   118   // The rest of the memory will be freed when the ResourceObj
   119   // is released.
   120   assert(verify_section_allocation(), "final storage configuration still OK");
   121   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
   122     // Previous incarnations of this buffer are held live, so that internal
   123     // addresses constructed before expansions will not be confused.
   124     cb->free_blob();
   125   }
   127   // free any overflow storage
   128   delete _overflow_arena;
   130 #ifdef ASSERT
   131   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
   132 #endif
   133 }
   135 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
   136   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
   137   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
   138   _oop_recorder = r;
   139 }
   141 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
   142   assert(cs != &_insts, "insts is the memory provider, not the consumer");
   143 #ifdef ASSERT
   144   for (int n = (int)SECT_INSTS+1; n < (int)SECT_LIMIT; n++) {
   145     CodeSection* prevCS = code_section(n);
   146     if (prevCS == cs)  break;
   147     assert(!prevCS->is_allocated(), "section allocation must be in reverse order");
   148   }
   149 #endif
   150   csize_t slop = CodeSection::end_slop();  // margin between sections
   151   int align = cs->alignment();
   152   assert(is_power_of_2(align), "sanity");
   153   address start  = _insts._start;
   154   address limit  = _insts._limit;
   155   address middle = limit - size;
   156   middle -= (intptr_t)middle & (align-1);  // align the division point downward
   157   guarantee(middle - slop > start, "need enough space to divide up");
   158   _insts._limit = middle - slop;  // subtract desired space, plus slop
   159   cs->initialize(middle, limit - middle);
   160   assert(cs->start() == middle, "sanity");
   161   assert(cs->limit() == limit,  "sanity");
   162   // give it some relocations to start with, if the main section has them
   163   if (_insts.has_locs())  cs->initialize_locs(1);
   164 }
   166 void CodeBuffer::freeze_section(CodeSection* cs) {
   167   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
   168   csize_t frozen_size = cs->size();
   169   if (next_cs != NULL) {
   170     frozen_size = next_cs->align_at_start(frozen_size);
   171   }
   172   address old_limit = cs->limit();
   173   address new_limit = cs->start() + frozen_size;
   174   relocInfo* old_locs_limit = cs->locs_limit();
   175   relocInfo* new_locs_limit = cs->locs_end();
   176   // Patch the limits.
   177   cs->_limit = new_limit;
   178   cs->_locs_limit = new_locs_limit;
   179   cs->_frozen = true;
   180   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
   181     // Give remaining buffer space to the following section.
   182     next_cs->initialize(new_limit, old_limit - new_limit);
   183     next_cs->initialize_shared_locs(new_locs_limit,
   184                                     old_locs_limit - new_locs_limit);
   185   }
   186 }
   188 void CodeBuffer::set_blob(BufferBlob* blob) {
   189   _blob = blob;
   190   if (blob != NULL) {
   191     address start = blob->instructions_begin();
   192     address end   = blob->instructions_end();
   193     // Round up the starting address.
   194     int align = _insts.alignment();
   195     start += (-(intptr_t)start) & (align-1);
   196     _total_start = start;
   197     _total_size  = end - start;
   198   } else {
   199     #ifdef ASSERT
   200     // Clean out dangling pointers.
   201     _total_start    = badAddress;
   202     _insts._start   = _insts._end   = badAddress;
   203     _stubs._start   = _stubs._end   = badAddress;
   204     _consts._start  = _consts._end  = badAddress;
   205     #endif //ASSERT
   206   }
   207 }
   209 void CodeBuffer::free_blob() {
   210   if (_blob != NULL) {
   211     BufferBlob::free(_blob);
   212     set_blob(NULL);
   213   }
   214 }
   216 const char* CodeBuffer::code_section_name(int n) {
   217 #ifdef PRODUCT
   218   return NULL;
   219 #else //PRODUCT
   220   switch (n) {
   221   case SECT_INSTS:             return "insts";
   222   case SECT_STUBS:             return "stubs";
   223   case SECT_CONSTS:            return "consts";
   224   default:                     return NULL;
   225   }
   226 #endif //PRODUCT
   227 }
   229 int CodeBuffer::section_index_of(address addr) const {
   230   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   231     const CodeSection* cs = code_section(n);
   232     if (cs->allocates(addr))  return n;
   233   }
   234   return SECT_NONE;
   235 }
   237 int CodeBuffer::locator(address addr) const {
   238   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   239     const CodeSection* cs = code_section(n);
   240     if (cs->allocates(addr)) {
   241       return locator(addr - cs->start(), n);
   242     }
   243   }
   244   return -1;
   245 }
   247 address CodeBuffer::locator_address(int locator) const {
   248   if (locator < 0)  return NULL;
   249   address start = code_section(locator_sect(locator))->start();
   250   return start + locator_pos(locator);
   251 }
   253 address CodeBuffer::decode_begin() {
   254   address begin = _insts.start();
   255   if (_decode_begin != NULL && _decode_begin > begin)
   256     begin = _decode_begin;
   257   return begin;
   258 }
   261 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
   262   if (_overflow_arena == NULL) {
   263     _overflow_arena = new Arena();
   264   }
   265   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
   266 }
   269 // Helper function for managing labels and their target addresses.
   270 // Returns a sensible address, and if it is not the label's final
   271 // address, notes the dependency (at 'branch_pc') on the label.
   272 address CodeSection::target(Label& L, address branch_pc) {
   273   if (L.is_bound()) {
   274     int loc = L.loc();
   275     if (index() == CodeBuffer::locator_sect(loc)) {
   276       return start() + CodeBuffer::locator_pos(loc);
   277     } else {
   278       return outer()->locator_address(loc);
   279     }
   280   } else {
   281     assert(allocates2(branch_pc), "sanity");
   282     address base = start();
   283     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
   284     L.add_patch_at(outer(), patch_loc);
   286     // Need to return a pc, doesn't matter what it is since it will be
   287     // replaced during resolution later.
   288     // Don't return NULL or badAddress, since branches shouldn't overflow.
   289     // Don't return base either because that could overflow displacements
   290     // for shorter branches.  It will get checked when bound.
   291     return branch_pc;
   292   }
   293 }
   295 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
   296   Relocation* reloc = spec.reloc();
   297   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
   298   if (rtype == relocInfo::none)  return;
   300   // The assertion below has been adjusted, to also work for
   301   // relocation for fixup.  Sometimes we want to put relocation
   302   // information for the next instruction, since it will be patched
   303   // with a call.
   304   assert(start() <= at && at <= end()+1,
   305          "cannot relocate data outside code boundaries");
   307   if (!has_locs()) {
   308     // no space for relocation information provided => code cannot be
   309     // relocated.  Make sure that relocate is only called with rtypes
   310     // that can be ignored for this kind of code.
   311     assert(rtype == relocInfo::none              ||
   312            rtype == relocInfo::runtime_call_type ||
   313            rtype == relocInfo::internal_word_type||
   314            rtype == relocInfo::section_word_type ||
   315            rtype == relocInfo::external_word_type,
   316            "code needs relocation information");
   317     // leave behind an indication that we attempted a relocation
   318     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
   319     return;
   320   }
   322   // Advance the point, noting the offset we'll have to record.
   323   csize_t offset = at - locs_point();
   324   set_locs_point(at);
   326   // Test for a couple of overflow conditions; maybe expand the buffer.
   327   relocInfo* end = locs_end();
   328   relocInfo* req = end + relocInfo::length_limit;
   329   // Check for (potential) overflow
   330   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
   331     req += (uint)offset / (uint)relocInfo::offset_limit();
   332     if (req >= locs_limit()) {
   333       // Allocate or reallocate.
   334       expand_locs(locs_count() + (req - end));
   335       // reload pointer
   336       end = locs_end();
   337     }
   338   }
   340   // If the offset is giant, emit filler relocs, of type 'none', but
   341   // each carrying the largest possible offset, to advance the locs_point.
   342   while (offset >= relocInfo::offset_limit()) {
   343     assert(end < locs_limit(), "adjust previous paragraph of code");
   344     *end++ = filler_relocInfo();
   345     offset -= filler_relocInfo().addr_offset();
   346   }
   348   // If it's a simple reloc with no data, we'll just write (rtype | offset).
   349   (*end) = relocInfo(rtype, offset, format);
   351   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
   352   end->initialize(this, reloc);
   353 }
   355 void CodeSection::initialize_locs(int locs_capacity) {
   356   assert(_locs_start == NULL, "only one locs init step, please");
   357   // Apply a priori lower limits to relocation size:
   358   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
   359   if (locs_capacity < min_locs)  locs_capacity = min_locs;
   360   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
   361   _locs_start    = locs_start;
   362   _locs_end      = locs_start;
   363   _locs_limit    = locs_start + locs_capacity;
   364   _locs_own      = true;
   365 }
   367 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
   368   assert(_locs_start == NULL, "do this before locs are allocated");
   369   // Internal invariant:  locs buf must be fully aligned.
   370   // See copy_relocations_to() below.
   371   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
   372     ++buf; --length;
   373   }
   374   if (length > 0) {
   375     _locs_start = buf;
   376     _locs_end   = buf;
   377     _locs_limit = buf + length;
   378     _locs_own   = false;
   379   }
   380 }
   382 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
   383   int lcount = source_cs->locs_count();
   384   if (lcount != 0) {
   385     initialize_shared_locs(source_cs->locs_start(), lcount);
   386     _locs_end = _locs_limit = _locs_start + lcount;
   387     assert(is_allocated(), "must have copied code already");
   388     set_locs_point(start() + source_cs->locs_point_off());
   389   }
   390   assert(this->locs_count() == source_cs->locs_count(), "sanity");
   391 }
   393 void CodeSection::expand_locs(int new_capacity) {
   394   if (_locs_start == NULL) {
   395     initialize_locs(new_capacity);
   396     return;
   397   } else {
   398     int old_count    = locs_count();
   399     int old_capacity = locs_capacity();
   400     if (new_capacity < old_capacity * 2)
   401       new_capacity = old_capacity * 2;
   402     relocInfo* locs_start;
   403     if (_locs_own) {
   404       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
   405     } else {
   406       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
   407       Copy::conjoint_bytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
   408       _locs_own = true;
   409     }
   410     _locs_start    = locs_start;
   411     _locs_end      = locs_start + old_count;
   412     _locs_limit    = locs_start + new_capacity;
   413   }
   414 }
   417 /// Support for emitting the code to its final location.
   418 /// The pattern is the same for all functions.
   419 /// We iterate over all the sections, padding each to alignment.
   421 csize_t CodeBuffer::total_code_size() const {
   422   csize_t code_size_so_far = 0;
   423   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   424     const CodeSection* cs = code_section(n);
   425     if (cs->is_empty())  continue;  // skip trivial section
   426     code_size_so_far = cs->align_at_start(code_size_so_far);
   427     code_size_so_far += cs->size();
   428   }
   429   return code_size_so_far;
   430 }
   432 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
   433   address buf = dest->_total_start;
   434   csize_t buf_offset = 0;
   435   assert(dest->_total_size >= total_code_size(), "must be big enough");
   437   {
   438     // not sure why this is here, but why not...
   439     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
   440     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
   441   }
   443   const CodeSection* prev_cs      = NULL;
   444   CodeSection*       prev_dest_cs = NULL;
   445   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   446     // figure compact layout of each section
   447     const CodeSection* cs = code_section(n);
   448     address cstart = cs->start();
   449     address cend   = cs->end();
   450     csize_t csize  = cend - cstart;
   452     CodeSection* dest_cs = dest->code_section(n);
   453     if (!cs->is_empty()) {
   454       // Compute initial padding; assign it to the previous non-empty guy.
   455       // Cf. figure_expanded_capacities.
   456       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
   457       if (padding != 0) {
   458         buf_offset += padding;
   459         assert(prev_dest_cs != NULL, "sanity");
   460         prev_dest_cs->_limit += padding;
   461       }
   462       #ifdef ASSERT
   463       if (prev_cs != NULL && prev_cs->is_frozen() && n < SECT_CONSTS) {
   464         // Make sure the ends still match up.
   465         // This is important because a branch in a frozen section
   466         // might target code in a following section, via a Label,
   467         // and without a relocation record.  See Label::patch_instructions.
   468         address dest_start = buf+buf_offset;
   469         csize_t start2start = cs->start() - prev_cs->start();
   470         csize_t dest_start2start = dest_start - prev_dest_cs->start();
   471         assert(start2start == dest_start2start, "cannot stretch frozen sect");
   472       }
   473       #endif //ASSERT
   474       prev_dest_cs = dest_cs;
   475       prev_cs      = cs;
   476     }
   478     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
   479     dest_cs->initialize(buf+buf_offset, csize);
   480     dest_cs->set_end(buf+buf_offset+csize);
   481     assert(dest_cs->is_allocated(), "must always be allocated");
   482     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
   484     buf_offset += csize;
   485   }
   487   // Done calculating sections; did it come out to the right end?
   488   assert(buf_offset == total_code_size(), "sanity");
   489   assert(dest->verify_section_allocation(), "final configuration works");
   490 }
   492 csize_t CodeBuffer::total_offset_of(address addr) const {
   493   csize_t code_size_so_far = 0;
   494   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   495     const CodeSection* cs = code_section(n);
   496     if (!cs->is_empty()) {
   497       code_size_so_far = cs->align_at_start(code_size_so_far);
   498     }
   499     if (cs->contains2(addr)) {
   500       return code_size_so_far + (addr - cs->start());
   501     }
   502     code_size_so_far += cs->size();
   503   }
   504 #ifndef PRODUCT
   505   tty->print_cr("Dangling address " PTR_FORMAT " in:", addr);
   506   ((CodeBuffer*)this)->print();
   507 #endif
   508   ShouldNotReachHere();
   509   return -1;
   510 }
   512 csize_t CodeBuffer::total_relocation_size() const {
   513   csize_t lsize = copy_relocations_to(NULL);  // dry run only
   514   csize_t csize = total_code_size();
   515   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
   516   return (csize_t) align_size_up(total, HeapWordSize);
   517 }
   519 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
   520   address buf = NULL;
   521   csize_t buf_offset = 0;
   522   csize_t buf_limit = 0;
   523   if (dest != NULL) {
   524     buf = (address)dest->relocation_begin();
   525     buf_limit = (address)dest->relocation_end() - buf;
   526     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
   527     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
   528   }
   529   // if dest == NULL, this is just the sizing pass
   531   csize_t code_end_so_far = 0;
   532   csize_t code_point_so_far = 0;
   533   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   534     // pull relocs out of each section
   535     const CodeSection* cs = code_section(n);
   536     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
   537     if (cs->is_empty())  continue;  // skip trivial section
   538     relocInfo* lstart = cs->locs_start();
   539     relocInfo* lend   = cs->locs_end();
   540     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
   541     csize_t    csize  = cs->size();
   542     code_end_so_far = cs->align_at_start(code_end_so_far);
   544     if (lsize > 0) {
   545       // Figure out how to advance the combined relocation point
   546       // first to the beginning of this section.
   547       // We'll insert one or more filler relocs to span that gap.
   548       // (Don't bother to improve this by editing the first reloc's offset.)
   549       csize_t new_code_point = code_end_so_far;
   550       for (csize_t jump;
   551            code_point_so_far < new_code_point;
   552            code_point_so_far += jump) {
   553         jump = new_code_point - code_point_so_far;
   554         relocInfo filler = filler_relocInfo();
   555         if (jump >= filler.addr_offset()) {
   556           jump = filler.addr_offset();
   557         } else {  // else shrink the filler to fit
   558           filler = relocInfo(relocInfo::none, jump);
   559         }
   560         if (buf != NULL) {
   561           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
   562           *(relocInfo*)(buf+buf_offset) = filler;
   563         }
   564         buf_offset += sizeof(filler);
   565       }
   567       // Update code point and end to skip past this section:
   568       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
   569       assert(code_point_so_far <= last_code_point, "sanity");
   570       code_point_so_far = last_code_point; // advance past this guy's relocs
   571     }
   572     code_end_so_far += csize;  // advance past this guy's instructions too
   574     // Done with filler; emit the real relocations:
   575     if (buf != NULL && lsize != 0) {
   576       assert(buf_offset + lsize <= buf_limit, "target in bounds");
   577       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
   578       if (buf_offset % HeapWordSize == 0) {
   579         // Use wordwise copies if possible:
   580         Copy::disjoint_words((HeapWord*)lstart,
   581                              (HeapWord*)(buf+buf_offset),
   582                              (lsize + HeapWordSize-1) / HeapWordSize);
   583       } else {
   584         Copy::conjoint_bytes(lstart, buf+buf_offset, lsize);
   585       }
   586     }
   587     buf_offset += lsize;
   588   }
   590   // Align end of relocation info in target.
   591   while (buf_offset % HeapWordSize != 0) {
   592     if (buf != NULL) {
   593       relocInfo padding = relocInfo(relocInfo::none, 0);
   594       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
   595       *(relocInfo*)(buf+buf_offset) = padding;
   596     }
   597     buf_offset += sizeof(relocInfo);
   598   }
   600   assert(code_end_so_far == total_code_size(), "sanity");
   602   // Account for index:
   603   if (buf != NULL) {
   604     RelocIterator::create_index(dest->relocation_begin(),
   605                                 buf_offset / sizeof(relocInfo),
   606                                 dest->relocation_end());
   607   }
   609   return buf_offset;
   610 }
   612 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
   613 #ifndef PRODUCT
   614   if (PrintNMethods && (WizardMode || Verbose)) {
   615     tty->print("done with CodeBuffer:");
   616     ((CodeBuffer*)this)->print();
   617   }
   618 #endif //PRODUCT
   620   CodeBuffer dest(dest_blob->instructions_begin(),
   621                   dest_blob->instructions_size());
   622   assert(dest_blob->instructions_size() >= total_code_size(), "good sizing");
   623   this->compute_final_layout(&dest);
   624   relocate_code_to(&dest);
   626   // transfer comments from buffer to blob
   627   dest_blob->set_comments(_comments);
   629   // Done moving code bytes; were they the right size?
   630   assert(round_to(dest.total_code_size(), oopSize) == dest_blob->instructions_size(), "sanity");
   632   // Flush generated code
   633   ICache::invalidate_range(dest_blob->instructions_begin(),
   634                            dest_blob->instructions_size());
   635 }
   637 // Move all my code into another code buffer.
   638 // Consult applicable relocs to repair embedded addresses.
   639 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
   640   DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
   641   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   642     // pull code out of each section
   643     const CodeSection* cs = code_section(n);
   644     if (cs->is_empty())  continue;  // skip trivial section
   645     CodeSection* dest_cs = dest->code_section(n);
   646     assert(cs->size() == dest_cs->size(), "sanity");
   647     csize_t usize = dest_cs->size();
   648     csize_t wsize = align_size_up(usize, HeapWordSize);
   649     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
   650     // Copy the code as aligned machine words.
   651     // This may also include an uninitialized partial word at the end.
   652     Copy::disjoint_words((HeapWord*)cs->start(),
   653                          (HeapWord*)dest_cs->start(),
   654                          wsize / HeapWordSize);
   656     if (dest->blob() == NULL) {
   657       // Destination is a final resting place, not just another buffer.
   658       // Normalize uninitialized bytes in the final padding.
   659       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
   660                           Assembler::code_fill_byte());
   661     }
   663     assert(cs->locs_start() != (relocInfo*)badAddress,
   664            "this section carries no reloc storage, but reloc was attempted");
   666     // Make the new code copy use the old copy's relocations:
   667     dest_cs->initialize_locs_from(cs);
   669     { // Repair the pc relative information in the code after the move
   670       RelocIterator iter(dest_cs);
   671       while (iter.next()) {
   672         iter.reloc()->fix_relocation_after_move(this, dest);
   673       }
   674     }
   675   }
   676 }
   678 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
   679                                                csize_t amount,
   680                                                csize_t* new_capacity) {
   681   csize_t new_total_cap = 0;
   683   int prev_n = -1;
   684   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   685     const CodeSection* sect = code_section(n);
   687     if (!sect->is_empty()) {
   688       // Compute initial padding; assign it to the previous non-empty guy.
   689       // Cf. compute_final_layout.
   690       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
   691       if (padding != 0) {
   692         new_total_cap += padding;
   693         assert(prev_n >= 0, "sanity");
   694         new_capacity[prev_n] += padding;
   695       }
   696       prev_n = n;
   697     }
   699     csize_t exp = sect->size();  // 100% increase
   700     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
   701     if (sect == which_cs) {
   702       if (exp < amount)  exp = amount;
   703       if (StressCodeBuffers)  exp = amount;  // expand only slightly
   704     } else if (n == SECT_INSTS) {
   705       // scale down inst increases to a more modest 25%
   706       exp = 4*K + ((exp - 4*K) >> 2);
   707       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
   708     } else if (sect->is_empty()) {
   709       // do not grow an empty secondary section
   710       exp = 0;
   711     }
   712     // Allow for inter-section slop:
   713     exp += CodeSection::end_slop();
   714     csize_t new_cap = sect->size() + exp;
   715     if (new_cap < sect->capacity()) {
   716       // No need to expand after all.
   717       new_cap = sect->capacity();
   718     }
   719     new_capacity[n] = new_cap;
   720     new_total_cap += new_cap;
   721   }
   723   return new_total_cap;
   724 }
   726 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
   727 #ifndef PRODUCT
   728   if (PrintNMethods && (WizardMode || Verbose)) {
   729     tty->print("expanding CodeBuffer:");
   730     this->print();
   731   }
   733   if (StressCodeBuffers && blob() != NULL) {
   734     static int expand_count = 0;
   735     if (expand_count >= 0)  expand_count += 1;
   736     if (expand_count > 100 && is_power_of_2(expand_count)) {
   737       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
   738       // simulate an occasional allocation failure:
   739       free_blob();
   740     }
   741   }
   742 #endif //PRODUCT
   744   // Resizing must be allowed
   745   {
   746     if (blob() == NULL)  return;  // caller must check for blob == NULL
   747     for (int n = 0; n < (int)SECT_LIMIT; n++) {
   748       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
   749     }
   750   }
   752   // Figure new capacity for each section.
   753   csize_t new_capacity[SECT_LIMIT];
   754   csize_t new_total_cap
   755     = figure_expanded_capacities(which_cs, amount, new_capacity);
   757   // Create a new (temporary) code buffer to hold all the new data
   758   CodeBuffer cb(name(), new_total_cap, 0);
   759   if (cb.blob() == NULL) {
   760     // Failed to allocate in code cache.
   761     free_blob();
   762     return;
   763   }
   765   // Create an old code buffer to remember which addresses used to go where.
   766   // This will be useful when we do final assembly into the code cache,
   767   // because we will need to know how to warp any internal address that
   768   // has been created at any time in this CodeBuffer's past.
   769   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
   770   bxp->take_over_code_from(this);  // remember the old undersized blob
   771   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
   772   bxp->_before_expand = this->_before_expand;
   773   this->_before_expand = bxp;
   775   // Give each section its required (expanded) capacity.
   776   for (int n = (int)SECT_LIMIT-1; n >= SECT_INSTS; n--) {
   777     CodeSection* cb_sect   = cb.code_section(n);
   778     CodeSection* this_sect = code_section(n);
   779     if (new_capacity[n] == 0)  continue;  // already nulled out
   780     if (n > SECT_INSTS) {
   781       cb.initialize_section_size(cb_sect, new_capacity[n]);
   782     }
   783     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
   784     address cb_start = cb_sect->start();
   785     cb_sect->set_end(cb_start + this_sect->size());
   786     if (this_sect->mark() == NULL) {
   787       cb_sect->clear_mark();
   788     } else {
   789       cb_sect->set_mark(cb_start + this_sect->mark_off());
   790     }
   791   }
   793   // Move all the code and relocations to the new blob:
   794   relocate_code_to(&cb);
   796   // Copy the temporary code buffer into the current code buffer.
   797   // Basically, do {*this = cb}, except for some control information.
   798   this->take_over_code_from(&cb);
   799   cb.set_blob(NULL);
   801   // Zap the old code buffer contents, to avoid mistakenly using them.
   802   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
   803                                  badCodeHeapFreeVal));
   805   _decode_begin = NULL;  // sanity
   807   // Make certain that the new sections are all snugly inside the new blob.
   808   assert(verify_section_allocation(), "expanded allocation is ship-shape");
   810 #ifndef PRODUCT
   811   if (PrintNMethods && (WizardMode || Verbose)) {
   812     tty->print("expanded CodeBuffer:");
   813     this->print();
   814   }
   815 #endif //PRODUCT
   816 }
   818 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
   819   // Must already have disposed of the old blob somehow.
   820   assert(blob() == NULL, "must be empty");
   821 #ifdef ASSERT
   823 #endif
   824   // Take the new blob away from cb.
   825   set_blob(cb->blob());
   826   // Take over all the section pointers.
   827   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   828     CodeSection* cb_sect   = cb->code_section(n);
   829     CodeSection* this_sect = code_section(n);
   830     this_sect->take_over_code_from(cb_sect);
   831   }
   832   _overflow_arena = cb->_overflow_arena;
   833   // Make sure the old cb won't try to use it or free it.
   834   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
   835 }
   837 #ifdef ASSERT
   838 bool CodeBuffer::verify_section_allocation() {
   839   address tstart = _total_start;
   840   if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
   841   address tend   = tstart + _total_size;
   842   if (_blob != NULL) {
   843     assert(tstart >= _blob->instructions_begin(), "sanity");
   844     assert(tend   <= _blob->instructions_end(),   "sanity");
   845   }
   846   address tcheck = tstart;  // advancing pointer to verify disjointness
   847   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   848     CodeSection* sect = code_section(n);
   849     if (!sect->is_allocated())  continue;
   850     assert(sect->start() >= tcheck, "sanity");
   851     tcheck = sect->start();
   852     assert((intptr_t)tcheck % sect->alignment() == 0
   853            || sect->is_empty() || _blob == NULL,
   854            "start is aligned");
   855     assert(sect->end()   >= tcheck, "sanity");
   856     assert(sect->end()   <= tend,   "sanity");
   857   }
   858   return true;
   859 }
   860 #endif //ASSERT
   862 #ifndef PRODUCT
   864 void CodeSection::dump() {
   865   address ptr = start();
   866   for (csize_t step; ptr < end(); ptr += step) {
   867     step = end() - ptr;
   868     if (step > jintSize * 4)  step = jintSize * 4;
   869     tty->print(PTR_FORMAT ": ", ptr);
   870     while (step > 0) {
   871       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
   872       ptr += jintSize;
   873     }
   874     tty->cr();
   875   }
   876 }
   879 void CodeSection::decode() {
   880   Disassembler::decode(start(), end());
   881 }
   884 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
   885   _comments.add_comment(offset, comment);
   886 }
   889 class CodeComment: public CHeapObj {
   890  private:
   891   friend class CodeComments;
   892   intptr_t     _offset;
   893   const char * _comment;
   894   CodeComment* _next;
   896   ~CodeComment() {
   897     assert(_next == NULL, "wrong interface for freeing list");
   898     os::free((void*)_comment);
   899   }
   901  public:
   902   CodeComment(intptr_t offset, const char * comment) {
   903     _offset = offset;
   904     _comment = os::strdup(comment);
   905     _next = NULL;
   906   }
   908   intptr_t     offset()  const { return _offset;  }
   909   const char * comment() const { return _comment; }
   910   CodeComment* next()          { return _next; }
   912   void set_next(CodeComment* next) { _next = next; }
   914   CodeComment* find(intptr_t offset) {
   915     CodeComment* a = this;
   916     while (a != NULL && a->_offset != offset) {
   917       a = a->_next;
   918     }
   919     return a;
   920   }
   921 };
   924 void CodeComments::add_comment(intptr_t offset, const char * comment) {
   925   CodeComment* c = new CodeComment(offset, comment);
   926   CodeComment* insert = NULL;
   927   if (_comments != NULL) {
   928     CodeComment* c = _comments->find(offset);
   929     insert = c;
   930     while (c && c->offset() == offset) {
   931       insert = c;
   932       c = c->next();
   933     }
   934   }
   935   if (insert) {
   936     // insert after comments with same offset
   937     c->set_next(insert->next());
   938     insert->set_next(c);
   939   } else {
   940     c->set_next(_comments);
   941     _comments = c;
   942   }
   943 }
   946 void CodeComments::assign(CodeComments& other) {
   947   assert(_comments == NULL, "don't overwrite old value");
   948   _comments = other._comments;
   949 }
   952 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
   953   if (_comments != NULL) {
   954     CodeComment* c = _comments->find(offset);
   955     while (c && c->offset() == offset) {
   956       stream->bol();
   957       stream->print("  ;; ");
   958       stream->print_cr(c->comment());
   959       c = c->next();
   960     }
   961   }
   962 }
   965 void CodeComments::free() {
   966   CodeComment* n = _comments;
   967   while (n) {
   968     // unlink the node from the list saving a pointer to the next
   969     CodeComment* p = n->_next;
   970     n->_next = NULL;
   971     delete n;
   972     n = p;
   973   }
   974   _comments = NULL;
   975 }
   979 void CodeBuffer::decode() {
   980   Disassembler::decode(decode_begin(), code_end());
   981   _decode_begin = code_end();
   982 }
   985 void CodeBuffer::skip_decode() {
   986   _decode_begin = code_end();
   987 }
   990 void CodeBuffer::decode_all() {
   991   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   992     // dump contents of each section
   993     CodeSection* cs = code_section(n);
   994     tty->print_cr("! %s:", code_section_name(n));
   995     if (cs != consts())
   996       cs->decode();
   997     else
   998       cs->dump();
   999   }
  1003 void CodeSection::print(const char* name) {
  1004   csize_t locs_size = locs_end() - locs_start();
  1005   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
  1006                 name, start(), end(), limit(), size(), capacity(),
  1007                 is_frozen()? " [frozen]": "");
  1008   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
  1009                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
  1010   if (PrintRelocations) {
  1011     RelocIterator iter(this);
  1012     iter.print();
  1016 void CodeBuffer::print() {
  1017   if (this == NULL) {
  1018     tty->print_cr("NULL CodeBuffer pointer");
  1019     return;
  1022   tty->print_cr("CodeBuffer:");
  1023   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1024     // print each section
  1025     CodeSection* cs = code_section(n);
  1026     cs->print(code_section_name(n));
  1030 #endif // PRODUCT

mercurial