src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Mon, 01 Feb 2010 19:29:46 +0100

author
twisti
date
Mon, 01 Feb 2010 19:29:46 +0100
changeset 1639
18a389214829
parent 1622
cf0685d550f1
child 1803
93767e6a2dfd
permissions
-rw-r--r--

6921352: JSR 292 needs its own deopt handler
Summary: We need to introduce a new MH deopt handler so we can easily determine if the deopt happened at a MH call site or not.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 2003-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_x86_64.cpp.incl"
    28 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    29 #ifdef COMPILER2
    30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    31 ExceptionBlob      *OptoRuntime::_exception_blob;
    32 #endif // COMPILER2
    34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    44 #define __ masm->
    46 class SimpleRuntimeFrame {
    48   public:
    50   // Most of the runtime stubs have this simple frame layout.
    51   // This class exists to make the layout shared in one place.
    52   // Offsets are for compiler stack slots, which are jints.
    53   enum layout {
    54     // The frame sender code expects that rbp will be in the "natural" place and
    55     // will override any oopMap setting for it. We must therefore force the layout
    56     // so that it agrees with the frame sender code.
    57     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    58     rbp_off2,
    59     return_off, return_off2,
    60     framesize
    61   };
    62 };
    64 class RegisterSaver {
    65   // Capture info about frame layout.  Layout offsets are in jint
    66   // units because compiler frame slots are jints.
    67 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    68   enum layout {
    69     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    70     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    71     DEF_XMM_OFFS(0),
    72     DEF_XMM_OFFS(1),
    73     DEF_XMM_OFFS(2),
    74     DEF_XMM_OFFS(3),
    75     DEF_XMM_OFFS(4),
    76     DEF_XMM_OFFS(5),
    77     DEF_XMM_OFFS(6),
    78     DEF_XMM_OFFS(7),
    79     DEF_XMM_OFFS(8),
    80     DEF_XMM_OFFS(9),
    81     DEF_XMM_OFFS(10),
    82     DEF_XMM_OFFS(11),
    83     DEF_XMM_OFFS(12),
    84     DEF_XMM_OFFS(13),
    85     DEF_XMM_OFFS(14),
    86     DEF_XMM_OFFS(15),
    87     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    88     fpu_stateH_end,
    89     r15_off, r15H_off,
    90     r14_off, r14H_off,
    91     r13_off, r13H_off,
    92     r12_off, r12H_off,
    93     r11_off, r11H_off,
    94     r10_off, r10H_off,
    95     r9_off,  r9H_off,
    96     r8_off,  r8H_off,
    97     rdi_off, rdiH_off,
    98     rsi_off, rsiH_off,
    99     ignore_off, ignoreH_off,  // extra copy of rbp
   100     rsp_off, rspH_off,
   101     rbx_off, rbxH_off,
   102     rdx_off, rdxH_off,
   103     rcx_off, rcxH_off,
   104     rax_off, raxH_off,
   105     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   106     align_off, alignH_off,
   107     flags_off, flagsH_off,
   108     // The frame sender code expects that rbp will be in the "natural" place and
   109     // will override any oopMap setting for it. We must therefore force the layout
   110     // so that it agrees with the frame sender code.
   111     rbp_off, rbpH_off,        // copy of rbp we will restore
   112     return_off, returnH_off,  // slot for return address
   113     reg_save_size             // size in compiler stack slots
   114   };
   116  public:
   117   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   118   static void restore_live_registers(MacroAssembler* masm);
   120   // Offsets into the register save area
   121   // Used by deoptimization when it is managing result register
   122   // values on its own
   124   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   125   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   126   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   127   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   128   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   130   // During deoptimization only the result registers need to be restored,
   131   // all the other values have already been extracted.
   132   static void restore_result_registers(MacroAssembler* masm);
   133 };
   135 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   137   // Always make the frame size 16-byte aligned
   138   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   139                                      reg_save_size*BytesPerInt, 16);
   140   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   141   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   142   // The caller will allocate additional_frame_words
   143   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   144   // CodeBlob frame size is in words.
   145   int frame_size_in_words = frame_size_in_bytes / wordSize;
   146   *total_frame_words = frame_size_in_words;
   148   // Save registers, fpu state, and flags.
   149   // We assume caller has already pushed the return address onto the
   150   // stack, so rsp is 8-byte aligned here.
   151   // We push rpb twice in this sequence because we want the real rbp
   152   // to be under the return like a normal enter.
   154   __ enter();          // rsp becomes 16-byte aligned here
   155   __ push_CPU_state(); // Push a multiple of 16 bytes
   156   if (frame::arg_reg_save_area_bytes != 0) {
   157     // Allocate argument register save area
   158     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   159   }
   161   // Set an oopmap for the call site.  This oopmap will map all
   162   // oop-registers and debug-info registers as callee-saved.  This
   163   // will allow deoptimization at this safepoint to find all possible
   164   // debug-info recordings, as well as let GC find all oops.
   166   OopMapSet *oop_maps = new OopMapSet();
   167   OopMap* map = new OopMap(frame_size_in_slots, 0);
   168   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
   169   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
   170   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
   171   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
   172   // rbp location is known implicitly by the frame sender code, needs no oopmap
   173   // and the location where rbp was saved by is ignored
   174   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
   175   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
   176   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
   177   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
   178   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
   179   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
   180   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
   181   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
   182   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
   183   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
   184   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
   185   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
   186   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
   187   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
   188   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
   189   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
   190   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
   191   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
   192   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
   193   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
   194   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
   195   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
   196   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
   197   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
   198   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
   199   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
   201   // %%% These should all be a waste but we'll keep things as they were for now
   202   if (true) {
   203     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
   204                           rax->as_VMReg()->next());
   205     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
   206                           rcx->as_VMReg()->next());
   207     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
   208                           rdx->as_VMReg()->next());
   209     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
   210                           rbx->as_VMReg()->next());
   211     // rbp location is known implicitly by the frame sender code, needs no oopmap
   212     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
   213                           rsi->as_VMReg()->next());
   214     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
   215                           rdi->as_VMReg()->next());
   216     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
   217                           r8->as_VMReg()->next());
   218     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
   219                           r9->as_VMReg()->next());
   220     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
   221                           r10->as_VMReg()->next());
   222     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
   223                           r11->as_VMReg()->next());
   224     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
   225                           r12->as_VMReg()->next());
   226     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
   227                           r13->as_VMReg()->next());
   228     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
   229                           r14->as_VMReg()->next());
   230     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
   231                           r15->as_VMReg()->next());
   232     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
   233                           xmm0->as_VMReg()->next());
   234     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
   235                           xmm1->as_VMReg()->next());
   236     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
   237                           xmm2->as_VMReg()->next());
   238     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
   239                           xmm3->as_VMReg()->next());
   240     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
   241                           xmm4->as_VMReg()->next());
   242     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
   243                           xmm5->as_VMReg()->next());
   244     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
   245                           xmm6->as_VMReg()->next());
   246     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
   247                           xmm7->as_VMReg()->next());
   248     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
   249                           xmm8->as_VMReg()->next());
   250     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
   251                           xmm9->as_VMReg()->next());
   252     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
   253                           xmm10->as_VMReg()->next());
   254     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
   255                           xmm11->as_VMReg()->next());
   256     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
   257                           xmm12->as_VMReg()->next());
   258     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
   259                           xmm13->as_VMReg()->next());
   260     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
   261                           xmm14->as_VMReg()->next());
   262     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
   263                           xmm15->as_VMReg()->next());
   264   }
   266   return map;
   267 }
   269 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   270   if (frame::arg_reg_save_area_bytes != 0) {
   271     // Pop arg register save area
   272     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   273   }
   274   // Recover CPU state
   275   __ pop_CPU_state();
   276   // Get the rbp described implicitly by the calling convention (no oopMap)
   277   __ pop(rbp);
   278 }
   280 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   282   // Just restore result register. Only used by deoptimization. By
   283   // now any callee save register that needs to be restored to a c2
   284   // caller of the deoptee has been extracted into the vframeArray
   285   // and will be stuffed into the c2i adapter we create for later
   286   // restoration so only result registers need to be restored here.
   288   // Restore fp result register
   289   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   290   // Restore integer result register
   291   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   292   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   294   // Pop all of the register save are off the stack except the return address
   295   __ addptr(rsp, return_offset_in_bytes());
   296 }
   298 // The java_calling_convention describes stack locations as ideal slots on
   299 // a frame with no abi restrictions. Since we must observe abi restrictions
   300 // (like the placement of the register window) the slots must be biased by
   301 // the following value.
   302 static int reg2offset_in(VMReg r) {
   303   // Account for saved rbp and return address
   304   // This should really be in_preserve_stack_slots
   305   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   306 }
   308 static int reg2offset_out(VMReg r) {
   309   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   310 }
   312 // ---------------------------------------------------------------------------
   313 // Read the array of BasicTypes from a signature, and compute where the
   314 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   315 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   316 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   317 // as framesizes are fixed.
   318 // VMRegImpl::stack0 refers to the first slot 0(sp).
   319 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   320 // up to RegisterImpl::number_of_registers) are the 64-bit
   321 // integer registers.
   323 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   324 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   325 // units regardless of build. Of course for i486 there is no 64 bit build
   327 // The Java calling convention is a "shifted" version of the C ABI.
   328 // By skipping the first C ABI register we can call non-static jni methods
   329 // with small numbers of arguments without having to shuffle the arguments
   330 // at all. Since we control the java ABI we ought to at least get some
   331 // advantage out of it.
   333 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   334                                            VMRegPair *regs,
   335                                            int total_args_passed,
   336                                            int is_outgoing) {
   338   // Create the mapping between argument positions and
   339   // registers.
   340   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   341     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   342   };
   343   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   344     j_farg0, j_farg1, j_farg2, j_farg3,
   345     j_farg4, j_farg5, j_farg6, j_farg7
   346   };
   349   uint int_args = 0;
   350   uint fp_args = 0;
   351   uint stk_args = 0; // inc by 2 each time
   353   for (int i = 0; i < total_args_passed; i++) {
   354     switch (sig_bt[i]) {
   355     case T_BOOLEAN:
   356     case T_CHAR:
   357     case T_BYTE:
   358     case T_SHORT:
   359     case T_INT:
   360       if (int_args < Argument::n_int_register_parameters_j) {
   361         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   362       } else {
   363         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   364         stk_args += 2;
   365       }
   366       break;
   367     case T_VOID:
   368       // halves of T_LONG or T_DOUBLE
   369       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   370       regs[i].set_bad();
   371       break;
   372     case T_LONG:
   373       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   374       // fall through
   375     case T_OBJECT:
   376     case T_ARRAY:
   377     case T_ADDRESS:
   378       if (int_args < Argument::n_int_register_parameters_j) {
   379         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   380       } else {
   381         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   382         stk_args += 2;
   383       }
   384       break;
   385     case T_FLOAT:
   386       if (fp_args < Argument::n_float_register_parameters_j) {
   387         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   388       } else {
   389         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   390         stk_args += 2;
   391       }
   392       break;
   393     case T_DOUBLE:
   394       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   395       if (fp_args < Argument::n_float_register_parameters_j) {
   396         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   397       } else {
   398         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   399         stk_args += 2;
   400       }
   401       break;
   402     default:
   403       ShouldNotReachHere();
   404       break;
   405     }
   406   }
   408   return round_to(stk_args, 2);
   409 }
   411 // Patch the callers callsite with entry to compiled code if it exists.
   412 static void patch_callers_callsite(MacroAssembler *masm) {
   413   Label L;
   414   __ verify_oop(rbx);
   415   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   416   __ jcc(Assembler::equal, L);
   418   // Save the current stack pointer
   419   __ mov(r13, rsp);
   420   // Schedule the branch target address early.
   421   // Call into the VM to patch the caller, then jump to compiled callee
   422   // rax isn't live so capture return address while we easily can
   423   __ movptr(rax, Address(rsp, 0));
   425   // align stack so push_CPU_state doesn't fault
   426   __ andptr(rsp, -(StackAlignmentInBytes));
   427   __ push_CPU_state();
   430   __ verify_oop(rbx);
   431   // VM needs caller's callsite
   432   // VM needs target method
   433   // This needs to be a long call since we will relocate this adapter to
   434   // the codeBuffer and it may not reach
   436   // Allocate argument register save area
   437   if (frame::arg_reg_save_area_bytes != 0) {
   438     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   439   }
   440   __ mov(c_rarg0, rbx);
   441   __ mov(c_rarg1, rax);
   442   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   444   // De-allocate argument register save area
   445   if (frame::arg_reg_save_area_bytes != 0) {
   446     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   447   }
   449   __ pop_CPU_state();
   450   // restore sp
   451   __ mov(rsp, r13);
   452   __ bind(L);
   453 }
   455 // Helper function to put tags in interpreter stack.
   456 static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
   457   if (TaggedStackInterpreter) {
   458     int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
   459     if (sig == T_OBJECT || sig == T_ARRAY) {
   460       __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagReference);
   461     } else if (sig == T_LONG || sig == T_DOUBLE) {
   462       int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
   463       __ movptr(Address(rsp, next_tag_offset), (int32_t) frame::TagValue);
   464       __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagValue);
   465     } else {
   466       __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagValue);
   467     }
   468   }
   469 }
   472 static void gen_c2i_adapter(MacroAssembler *masm,
   473                             int total_args_passed,
   474                             int comp_args_on_stack,
   475                             const BasicType *sig_bt,
   476                             const VMRegPair *regs,
   477                             Label& skip_fixup) {
   478   // Before we get into the guts of the C2I adapter, see if we should be here
   479   // at all.  We've come from compiled code and are attempting to jump to the
   480   // interpreter, which means the caller made a static call to get here
   481   // (vcalls always get a compiled target if there is one).  Check for a
   482   // compiled target.  If there is one, we need to patch the caller's call.
   483   patch_callers_callsite(masm);
   485   __ bind(skip_fixup);
   487   // Since all args are passed on the stack, total_args_passed *
   488   // Interpreter::stackElementSize is the space we need. Plus 1 because
   489   // we also account for the return address location since
   490   // we store it first rather than hold it in rax across all the shuffling
   492   int extraspace = (total_args_passed * Interpreter::stackElementSize()) + wordSize;
   494   // stack is aligned, keep it that way
   495   extraspace = round_to(extraspace, 2*wordSize);
   497   // Get return address
   498   __ pop(rax);
   500   // set senderSP value
   501   __ mov(r13, rsp);
   503   __ subptr(rsp, extraspace);
   505   // Store the return address in the expected location
   506   __ movptr(Address(rsp, 0), rax);
   508   // Now write the args into the outgoing interpreter space
   509   for (int i = 0; i < total_args_passed; i++) {
   510     if (sig_bt[i] == T_VOID) {
   511       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   512       continue;
   513     }
   515     // offset to start parameters
   516     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize() +
   517                    Interpreter::value_offset_in_bytes();
   518     int next_off = st_off - Interpreter::stackElementSize();
   520     // Say 4 args:
   521     // i   st_off
   522     // 0   32 T_LONG
   523     // 1   24 T_VOID
   524     // 2   16 T_OBJECT
   525     // 3    8 T_BOOL
   526     // -    0 return address
   527     //
   528     // However to make thing extra confusing. Because we can fit a long/double in
   529     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   530     // leaves one slot empty and only stores to a single slot. In this case the
   531     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   533     VMReg r_1 = regs[i].first();
   534     VMReg r_2 = regs[i].second();
   535     if (!r_1->is_valid()) {
   536       assert(!r_2->is_valid(), "");
   537       continue;
   538     }
   539     if (r_1->is_stack()) {
   540       // memory to memory use rax
   541       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   542       if (!r_2->is_valid()) {
   543         // sign extend??
   544         __ movl(rax, Address(rsp, ld_off));
   545         __ movptr(Address(rsp, st_off), rax);
   546         tag_stack(masm, sig_bt[i], st_off);
   548       } else {
   550         __ movq(rax, Address(rsp, ld_off));
   552         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   553         // T_DOUBLE and T_LONG use two slots in the interpreter
   554         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   555           // ld_off == LSW, ld_off+wordSize == MSW
   556           // st_off == MSW, next_off == LSW
   557           __ movq(Address(rsp, next_off), rax);
   558 #ifdef ASSERT
   559           // Overwrite the unused slot with known junk
   560           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   561           __ movptr(Address(rsp, st_off), rax);
   562 #endif /* ASSERT */
   563           tag_stack(masm, sig_bt[i], next_off);
   564         } else {
   565           __ movq(Address(rsp, st_off), rax);
   566           tag_stack(masm, sig_bt[i], st_off);
   567         }
   568       }
   569     } else if (r_1->is_Register()) {
   570       Register r = r_1->as_Register();
   571       if (!r_2->is_valid()) {
   572         // must be only an int (or less ) so move only 32bits to slot
   573         // why not sign extend??
   574         __ movl(Address(rsp, st_off), r);
   575         tag_stack(masm, sig_bt[i], st_off);
   576       } else {
   577         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   578         // T_DOUBLE and T_LONG use two slots in the interpreter
   579         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   580           // long/double in gpr
   581 #ifdef ASSERT
   582           // Overwrite the unused slot with known junk
   583           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   584           __ movptr(Address(rsp, st_off), rax);
   585 #endif /* ASSERT */
   586           __ movq(Address(rsp, next_off), r);
   587           tag_stack(masm, sig_bt[i], next_off);
   588         } else {
   589           __ movptr(Address(rsp, st_off), r);
   590           tag_stack(masm, sig_bt[i], st_off);
   591         }
   592       }
   593     } else {
   594       assert(r_1->is_XMMRegister(), "");
   595       if (!r_2->is_valid()) {
   596         // only a float use just part of the slot
   597         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   598         tag_stack(masm, sig_bt[i], st_off);
   599       } else {
   600 #ifdef ASSERT
   601         // Overwrite the unused slot with known junk
   602         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   603         __ movptr(Address(rsp, st_off), rax);
   604 #endif /* ASSERT */
   605         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   606         tag_stack(masm, sig_bt[i], next_off);
   607       }
   608     }
   609   }
   611   // Schedule the branch target address early.
   612   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   613   __ jmp(rcx);
   614 }
   616 static void gen_i2c_adapter(MacroAssembler *masm,
   617                             int total_args_passed,
   618                             int comp_args_on_stack,
   619                             const BasicType *sig_bt,
   620                             const VMRegPair *regs) {
   622   //
   623   // We will only enter here from an interpreted frame and never from after
   624   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   625   // race and use a c2i we will remain interpreted for the race loser(s).
   626   // This removes all sorts of headaches on the x86 side and also eliminates
   627   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   630   // Note: r13 contains the senderSP on entry. We must preserve it since
   631   // we may do a i2c -> c2i transition if we lose a race where compiled
   632   // code goes non-entrant while we get args ready.
   633   // In addition we use r13 to locate all the interpreter args as
   634   // we must align the stack to 16 bytes on an i2c entry else we
   635   // lose alignment we expect in all compiled code and register
   636   // save code can segv when fxsave instructions find improperly
   637   // aligned stack pointer.
   639   __ movptr(rax, Address(rsp, 0));
   641   // Must preserve original SP for loading incoming arguments because
   642   // we need to align the outgoing SP for compiled code.
   643   __ movptr(r11, rsp);
   645   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   646   // in registers, we will occasionally have no stack args.
   647   int comp_words_on_stack = 0;
   648   if (comp_args_on_stack) {
   649     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   650     // registers are below.  By subtracting stack0, we either get a negative
   651     // number (all values in registers) or the maximum stack slot accessed.
   653     // Convert 4-byte c2 stack slots to words.
   654     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   655     // Round up to miminum stack alignment, in wordSize
   656     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   657     __ subptr(rsp, comp_words_on_stack * wordSize);
   658   }
   661   // Ensure compiled code always sees stack at proper alignment
   662   __ andptr(rsp, -16);
   664   // push the return address and misalign the stack that youngest frame always sees
   665   // as far as the placement of the call instruction
   666   __ push(rax);
   668   // Put saved SP in another register
   669   const Register saved_sp = rax;
   670   __ movptr(saved_sp, r11);
   672   // Will jump to the compiled code just as if compiled code was doing it.
   673   // Pre-load the register-jump target early, to schedule it better.
   674   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   676   // Now generate the shuffle code.  Pick up all register args and move the
   677   // rest through the floating point stack top.
   678   for (int i = 0; i < total_args_passed; i++) {
   679     if (sig_bt[i] == T_VOID) {
   680       // Longs and doubles are passed in native word order, but misaligned
   681       // in the 32-bit build.
   682       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   683       continue;
   684     }
   686     // Pick up 0, 1 or 2 words from SP+offset.
   688     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   689             "scrambled load targets?");
   690     // Load in argument order going down.
   691     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   692     // Point to interpreter value (vs. tag)
   693     int next_off = ld_off - Interpreter::stackElementSize();
   694     //
   695     //
   696     //
   697     VMReg r_1 = regs[i].first();
   698     VMReg r_2 = regs[i].second();
   699     if (!r_1->is_valid()) {
   700       assert(!r_2->is_valid(), "");
   701       continue;
   702     }
   703     if (r_1->is_stack()) {
   704       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   705       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   707       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   708       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   709       // will be generated.
   710       if (!r_2->is_valid()) {
   711         // sign extend???
   712         __ movl(r13, Address(saved_sp, ld_off));
   713         __ movptr(Address(rsp, st_off), r13);
   714       } else {
   715         //
   716         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   717         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   718         // So we must adjust where to pick up the data to match the interpreter.
   719         //
   720         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   721         // are accessed as negative so LSW is at LOW address
   723         // ld_off is MSW so get LSW
   724         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   725                            next_off : ld_off;
   726         __ movq(r13, Address(saved_sp, offset));
   727         // st_off is LSW (i.e. reg.first())
   728         __ movq(Address(rsp, st_off), r13);
   729       }
   730     } else if (r_1->is_Register()) {  // Register argument
   731       Register r = r_1->as_Register();
   732       assert(r != rax, "must be different");
   733       if (r_2->is_valid()) {
   734         //
   735         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   736         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   737         // So we must adjust where to pick up the data to match the interpreter.
   739         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   740                            next_off : ld_off;
   742         // this can be a misaligned move
   743         __ movq(r, Address(saved_sp, offset));
   744       } else {
   745         // sign extend and use a full word?
   746         __ movl(r, Address(saved_sp, ld_off));
   747       }
   748     } else {
   749       if (!r_2->is_valid()) {
   750         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   751       } else {
   752         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   753       }
   754     }
   755   }
   757   // 6243940 We might end up in handle_wrong_method if
   758   // the callee is deoptimized as we race thru here. If that
   759   // happens we don't want to take a safepoint because the
   760   // caller frame will look interpreted and arguments are now
   761   // "compiled" so it is much better to make this transition
   762   // invisible to the stack walking code. Unfortunately if
   763   // we try and find the callee by normal means a safepoint
   764   // is possible. So we stash the desired callee in the thread
   765   // and the vm will find there should this case occur.
   767   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   769   // put methodOop where a c2i would expect should we end up there
   770   // only needed becaus eof c2 resolve stubs return methodOop as a result in
   771   // rax
   772   __ mov(rax, rbx);
   773   __ jmp(r11);
   774 }
   776 // ---------------------------------------------------------------
   777 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   778                                                             int total_args_passed,
   779                                                             int comp_args_on_stack,
   780                                                             const BasicType *sig_bt,
   781                                                             const VMRegPair *regs,
   782                                                             AdapterFingerPrint* fingerprint) {
   783   address i2c_entry = __ pc();
   785   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   787   // -------------------------------------------------------------------------
   788   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
   789   // to the interpreter.  The args start out packed in the compiled layout.  They
   790   // need to be unpacked into the interpreter layout.  This will almost always
   791   // require some stack space.  We grow the current (compiled) stack, then repack
   792   // the args.  We  finally end in a jump to the generic interpreter entry point.
   793   // On exit from the interpreter, the interpreter will restore our SP (lest the
   794   // compiled code, which relys solely on SP and not RBP, get sick).
   796   address c2i_unverified_entry = __ pc();
   797   Label skip_fixup;
   798   Label ok;
   800   Register holder = rax;
   801   Register receiver = j_rarg0;
   802   Register temp = rbx;
   804   {
   805     __ verify_oop(holder);
   806     __ load_klass(temp, receiver);
   807     __ verify_oop(temp);
   809     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   810     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   811     __ jcc(Assembler::equal, ok);
   812     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   814     __ bind(ok);
   815     // Method might have been compiled since the call site was patched to
   816     // interpreted if that is the case treat it as a miss so we can get
   817     // the call site corrected.
   818     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   819     __ jcc(Assembler::equal, skip_fixup);
   820     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   821   }
   823   address c2i_entry = __ pc();
   825   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   827   __ flush();
   828   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   829 }
   831 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   832                                          VMRegPair *regs,
   833                                          int total_args_passed) {
   834 // We return the amount of VMRegImpl stack slots we need to reserve for all
   835 // the arguments NOT counting out_preserve_stack_slots.
   837 // NOTE: These arrays will have to change when c1 is ported
   838 #ifdef _WIN64
   839     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   840       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   841     };
   842     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   843       c_farg0, c_farg1, c_farg2, c_farg3
   844     };
   845 #else
   846     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   847       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   848     };
   849     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   850       c_farg0, c_farg1, c_farg2, c_farg3,
   851       c_farg4, c_farg5, c_farg6, c_farg7
   852     };
   853 #endif // _WIN64
   856     uint int_args = 0;
   857     uint fp_args = 0;
   858     uint stk_args = 0; // inc by 2 each time
   860     for (int i = 0; i < total_args_passed; i++) {
   861       switch (sig_bt[i]) {
   862       case T_BOOLEAN:
   863       case T_CHAR:
   864       case T_BYTE:
   865       case T_SHORT:
   866       case T_INT:
   867         if (int_args < Argument::n_int_register_parameters_c) {
   868           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   869 #ifdef _WIN64
   870           fp_args++;
   871           // Allocate slots for callee to stuff register args the stack.
   872           stk_args += 2;
   873 #endif
   874         } else {
   875           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   876           stk_args += 2;
   877         }
   878         break;
   879       case T_LONG:
   880         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   881         // fall through
   882       case T_OBJECT:
   883       case T_ARRAY:
   884       case T_ADDRESS:
   885         if (int_args < Argument::n_int_register_parameters_c) {
   886           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   887 #ifdef _WIN64
   888           fp_args++;
   889           stk_args += 2;
   890 #endif
   891         } else {
   892           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   893           stk_args += 2;
   894         }
   895         break;
   896       case T_FLOAT:
   897         if (fp_args < Argument::n_float_register_parameters_c) {
   898           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   899 #ifdef _WIN64
   900           int_args++;
   901           // Allocate slots for callee to stuff register args the stack.
   902           stk_args += 2;
   903 #endif
   904         } else {
   905           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   906           stk_args += 2;
   907         }
   908         break;
   909       case T_DOUBLE:
   910         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   911         if (fp_args < Argument::n_float_register_parameters_c) {
   912           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   913 #ifdef _WIN64
   914           int_args++;
   915           // Allocate slots for callee to stuff register args the stack.
   916           stk_args += 2;
   917 #endif
   918         } else {
   919           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   920           stk_args += 2;
   921         }
   922         break;
   923       case T_VOID: // Halves of longs and doubles
   924         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   925         regs[i].set_bad();
   926         break;
   927       default:
   928         ShouldNotReachHere();
   929         break;
   930       }
   931     }
   932 #ifdef _WIN64
   933   // windows abi requires that we always allocate enough stack space
   934   // for 4 64bit registers to be stored down.
   935   if (stk_args < 8) {
   936     stk_args = 8;
   937   }
   938 #endif // _WIN64
   940   return stk_args;
   941 }
   943 // On 64 bit we will store integer like items to the stack as
   944 // 64 bits items (sparc abi) even though java would only store
   945 // 32bits for a parameter. On 32bit it will simply be 32 bits
   946 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
   947 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   948   if (src.first()->is_stack()) {
   949     if (dst.first()->is_stack()) {
   950       // stack to stack
   951       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
   952       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   953     } else {
   954       // stack to reg
   955       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
   956     }
   957   } else if (dst.first()->is_stack()) {
   958     // reg to stack
   959     // Do we really have to sign extend???
   960     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
   961     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   962   } else {
   963     // Do we really have to sign extend???
   964     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
   965     if (dst.first() != src.first()) {
   966       __ movq(dst.first()->as_Register(), src.first()->as_Register());
   967     }
   968   }
   969 }
   972 // An oop arg. Must pass a handle not the oop itself
   973 static void object_move(MacroAssembler* masm,
   974                         OopMap* map,
   975                         int oop_handle_offset,
   976                         int framesize_in_slots,
   977                         VMRegPair src,
   978                         VMRegPair dst,
   979                         bool is_receiver,
   980                         int* receiver_offset) {
   982   // must pass a handle. First figure out the location we use as a handle
   984   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
   986   // See if oop is NULL if it is we need no handle
   988   if (src.first()->is_stack()) {
   990     // Oop is already on the stack as an argument
   991     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   992     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   993     if (is_receiver) {
   994       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   995     }
   997     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
   998     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
   999     // conditionally move a NULL
  1000     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  1001   } else {
  1003     // Oop is in an a register we must store it to the space we reserve
  1004     // on the stack for oop_handles and pass a handle if oop is non-NULL
  1006     const Register rOop = src.first()->as_Register();
  1007     int oop_slot;
  1008     if (rOop == j_rarg0)
  1009       oop_slot = 0;
  1010     else if (rOop == j_rarg1)
  1011       oop_slot = 1;
  1012     else if (rOop == j_rarg2)
  1013       oop_slot = 2;
  1014     else if (rOop == j_rarg3)
  1015       oop_slot = 3;
  1016     else if (rOop == j_rarg4)
  1017       oop_slot = 4;
  1018     else {
  1019       assert(rOop == j_rarg5, "wrong register");
  1020       oop_slot = 5;
  1023     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1024     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1026     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1027     // Store oop in handle area, may be NULL
  1028     __ movptr(Address(rsp, offset), rOop);
  1029     if (is_receiver) {
  1030       *receiver_offset = offset;
  1033     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1034     __ lea(rHandle, Address(rsp, offset));
  1035     // conditionally move a NULL from the handle area where it was just stored
  1036     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1039   // If arg is on the stack then place it otherwise it is already in correct reg.
  1040   if (dst.first()->is_stack()) {
  1041     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1045 // A float arg may have to do float reg int reg conversion
  1046 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1047   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1049   // The calling conventions assures us that each VMregpair is either
  1050   // all really one physical register or adjacent stack slots.
  1051   // This greatly simplifies the cases here compared to sparc.
  1053   if (src.first()->is_stack()) {
  1054     if (dst.first()->is_stack()) {
  1055       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1056       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1057     } else {
  1058       // stack to reg
  1059       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1060       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1062   } else if (dst.first()->is_stack()) {
  1063     // reg to stack
  1064     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1065     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1066   } else {
  1067     // reg to reg
  1068     // In theory these overlap but the ordering is such that this is likely a nop
  1069     if ( src.first() != dst.first()) {
  1070       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1075 // A long move
  1076 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1078   // The calling conventions assures us that each VMregpair is either
  1079   // all really one physical register or adjacent stack slots.
  1080   // This greatly simplifies the cases here compared to sparc.
  1082   if (src.is_single_phys_reg() ) {
  1083     if (dst.is_single_phys_reg()) {
  1084       if (dst.first() != src.first()) {
  1085         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1087     } else {
  1088       assert(dst.is_single_reg(), "not a stack pair");
  1089       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1091   } else if (dst.is_single_phys_reg()) {
  1092     assert(src.is_single_reg(),  "not a stack pair");
  1093     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1094   } else {
  1095     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1096     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1097     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1101 // A double move
  1102 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1104   // The calling conventions assures us that each VMregpair is either
  1105   // all really one physical register or adjacent stack slots.
  1106   // This greatly simplifies the cases here compared to sparc.
  1108   if (src.is_single_phys_reg() ) {
  1109     if (dst.is_single_phys_reg()) {
  1110       // In theory these overlap but the ordering is such that this is likely a nop
  1111       if ( src.first() != dst.first()) {
  1112         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1114     } else {
  1115       assert(dst.is_single_reg(), "not a stack pair");
  1116       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1118   } else if (dst.is_single_phys_reg()) {
  1119     assert(src.is_single_reg(),  "not a stack pair");
  1120     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1121   } else {
  1122     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1123     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1124     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1129 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1130   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1131   // which by this time is free to use
  1132   switch (ret_type) {
  1133   case T_FLOAT:
  1134     __ movflt(Address(rbp, -wordSize), xmm0);
  1135     break;
  1136   case T_DOUBLE:
  1137     __ movdbl(Address(rbp, -wordSize), xmm0);
  1138     break;
  1139   case T_VOID:  break;
  1140   default: {
  1141     __ movptr(Address(rbp, -wordSize), rax);
  1146 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1147   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1148   // which by this time is free to use
  1149   switch (ret_type) {
  1150   case T_FLOAT:
  1151     __ movflt(xmm0, Address(rbp, -wordSize));
  1152     break;
  1153   case T_DOUBLE:
  1154     __ movdbl(xmm0, Address(rbp, -wordSize));
  1155     break;
  1156   case T_VOID:  break;
  1157   default: {
  1158     __ movptr(rax, Address(rbp, -wordSize));
  1163 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1164     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1165       if (args[i].first()->is_Register()) {
  1166         __ push(args[i].first()->as_Register());
  1167       } else if (args[i].first()->is_XMMRegister()) {
  1168         __ subptr(rsp, 2*wordSize);
  1169         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1174 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1175     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1176       if (args[i].first()->is_Register()) {
  1177         __ pop(args[i].first()->as_Register());
  1178       } else if (args[i].first()->is_XMMRegister()) {
  1179         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1180         __ addptr(rsp, 2*wordSize);
  1185 // ---------------------------------------------------------------------------
  1186 // Generate a native wrapper for a given method.  The method takes arguments
  1187 // in the Java compiled code convention, marshals them to the native
  1188 // convention (handlizes oops, etc), transitions to native, makes the call,
  1189 // returns to java state (possibly blocking), unhandlizes any result and
  1190 // returns.
  1191 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1192                                                 methodHandle method,
  1193                                                 int total_in_args,
  1194                                                 int comp_args_on_stack,
  1195                                                 BasicType *in_sig_bt,
  1196                                                 VMRegPair *in_regs,
  1197                                                 BasicType ret_type) {
  1198   // Native nmethod wrappers never take possesion of the oop arguments.
  1199   // So the caller will gc the arguments. The only thing we need an
  1200   // oopMap for is if the call is static
  1201   //
  1202   // An OopMap for lock (and class if static)
  1203   OopMapSet *oop_maps = new OopMapSet();
  1204   intptr_t start = (intptr_t)__ pc();
  1206   // We have received a description of where all the java arg are located
  1207   // on entry to the wrapper. We need to convert these args to where
  1208   // the jni function will expect them. To figure out where they go
  1209   // we convert the java signature to a C signature by inserting
  1210   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1212   int total_c_args = total_in_args + 1;
  1213   if (method->is_static()) {
  1214     total_c_args++;
  1217   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1218   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1220   int argc = 0;
  1221   out_sig_bt[argc++] = T_ADDRESS;
  1222   if (method->is_static()) {
  1223     out_sig_bt[argc++] = T_OBJECT;
  1226   for (int i = 0; i < total_in_args ; i++ ) {
  1227     out_sig_bt[argc++] = in_sig_bt[i];
  1230   // Now figure out where the args must be stored and how much stack space
  1231   // they require.
  1232   //
  1233   int out_arg_slots;
  1234   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1236   // Compute framesize for the wrapper.  We need to handlize all oops in
  1237   // incoming registers
  1239   // Calculate the total number of stack slots we will need.
  1241   // First count the abi requirement plus all of the outgoing args
  1242   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1244   // Now the space for the inbound oop handle area
  1246   int oop_handle_offset = stack_slots;
  1247   stack_slots += 6*VMRegImpl::slots_per_word;
  1249   // Now any space we need for handlizing a klass if static method
  1251   int oop_temp_slot_offset = 0;
  1252   int klass_slot_offset = 0;
  1253   int klass_offset = -1;
  1254   int lock_slot_offset = 0;
  1255   bool is_static = false;
  1257   if (method->is_static()) {
  1258     klass_slot_offset = stack_slots;
  1259     stack_slots += VMRegImpl::slots_per_word;
  1260     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1261     is_static = true;
  1264   // Plus a lock if needed
  1266   if (method->is_synchronized()) {
  1267     lock_slot_offset = stack_slots;
  1268     stack_slots += VMRegImpl::slots_per_word;
  1271   // Now a place (+2) to save return values or temp during shuffling
  1272   // + 4 for return address (which we own) and saved rbp
  1273   stack_slots += 6;
  1275   // Ok The space we have allocated will look like:
  1276   //
  1277   //
  1278   // FP-> |                     |
  1279   //      |---------------------|
  1280   //      | 2 slots for moves   |
  1281   //      |---------------------|
  1282   //      | lock box (if sync)  |
  1283   //      |---------------------| <- lock_slot_offset
  1284   //      | klass (if static)   |
  1285   //      |---------------------| <- klass_slot_offset
  1286   //      | oopHandle area      |
  1287   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1288   //      | outbound memory     |
  1289   //      | based arguments     |
  1290   //      |                     |
  1291   //      |---------------------|
  1292   //      |                     |
  1293   // SP-> | out_preserved_slots |
  1294   //
  1295   //
  1298   // Now compute actual number of stack words we need rounding to make
  1299   // stack properly aligned.
  1300   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1302   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1305   // First thing make an ic check to see if we should even be here
  1307   // We are free to use all registers as temps without saving them and
  1308   // restoring them except rbp. rbp is the only callee save register
  1309   // as far as the interpreter and the compiler(s) are concerned.
  1312   const Register ic_reg = rax;
  1313   const Register receiver = j_rarg0;
  1315   Label ok;
  1316   Label exception_pending;
  1318   assert_different_registers(ic_reg, receiver, rscratch1);
  1319   __ verify_oop(receiver);
  1320   __ load_klass(rscratch1, receiver);
  1321   __ cmpq(ic_reg, rscratch1);
  1322   __ jcc(Assembler::equal, ok);
  1324   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1326   __ bind(ok);
  1328   // Verified entry point must be aligned
  1329   __ align(8);
  1331   int vep_offset = ((intptr_t)__ pc()) - start;
  1333   // The instruction at the verified entry point must be 5 bytes or longer
  1334   // because it can be patched on the fly by make_non_entrant. The stack bang
  1335   // instruction fits that requirement.
  1337   // Generate stack overflow check
  1339   if (UseStackBanging) {
  1340     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1341   } else {
  1342     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1343     __ fat_nop();
  1346   // Generate a new frame for the wrapper.
  1347   __ enter();
  1348   // -2 because return address is already present and so is saved rbp
  1349   __ subptr(rsp, stack_size - 2*wordSize);
  1351     // Frame is now completed as far as size and linkage.
  1353     int frame_complete = ((intptr_t)__ pc()) - start;
  1355 #ifdef ASSERT
  1357       Label L;
  1358       __ mov(rax, rsp);
  1359       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1360       __ cmpptr(rax, rsp);
  1361       __ jcc(Assembler::equal, L);
  1362       __ stop("improperly aligned stack");
  1363       __ bind(L);
  1365 #endif /* ASSERT */
  1368   // We use r14 as the oop handle for the receiver/klass
  1369   // It is callee save so it survives the call to native
  1371   const Register oop_handle_reg = r14;
  1375   //
  1376   // We immediately shuffle the arguments so that any vm call we have to
  1377   // make from here on out (sync slow path, jvmti, etc.) we will have
  1378   // captured the oops from our caller and have a valid oopMap for
  1379   // them.
  1381   // -----------------
  1382   // The Grand Shuffle
  1384   // The Java calling convention is either equal (linux) or denser (win64) than the
  1385   // c calling convention. However the because of the jni_env argument the c calling
  1386   // convention always has at least one more (and two for static) arguments than Java.
  1387   // Therefore if we move the args from java -> c backwards then we will never have
  1388   // a register->register conflict and we don't have to build a dependency graph
  1389   // and figure out how to break any cycles.
  1390   //
  1392   // Record esp-based slot for receiver on stack for non-static methods
  1393   int receiver_offset = -1;
  1395   // This is a trick. We double the stack slots so we can claim
  1396   // the oops in the caller's frame. Since we are sure to have
  1397   // more args than the caller doubling is enough to make
  1398   // sure we can capture all the incoming oop args from the
  1399   // caller.
  1400   //
  1401   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1403   // Mark location of rbp (someday)
  1404   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  1406   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  1407   // All inbound args are referenced based on rbp and all outbound args via rsp.
  1410 #ifdef ASSERT
  1411   bool reg_destroyed[RegisterImpl::number_of_registers];
  1412   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  1413   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  1414     reg_destroyed[r] = false;
  1416   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  1417     freg_destroyed[f] = false;
  1420 #endif /* ASSERT */
  1423   int c_arg = total_c_args - 1;
  1424   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  1425 #ifdef ASSERT
  1426     if (in_regs[i].first()->is_Register()) {
  1427       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  1428     } else if (in_regs[i].first()->is_XMMRegister()) {
  1429       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  1431     if (out_regs[c_arg].first()->is_Register()) {
  1432       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  1433     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  1434       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  1436 #endif /* ASSERT */
  1437     switch (in_sig_bt[i]) {
  1438       case T_ARRAY:
  1439       case T_OBJECT:
  1440         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1441                     ((i == 0) && (!is_static)),
  1442                     &receiver_offset);
  1443         break;
  1444       case T_VOID:
  1445         break;
  1447       case T_FLOAT:
  1448         float_move(masm, in_regs[i], out_regs[c_arg]);
  1449           break;
  1451       case T_DOUBLE:
  1452         assert( i + 1 < total_in_args &&
  1453                 in_sig_bt[i + 1] == T_VOID &&
  1454                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1455         double_move(masm, in_regs[i], out_regs[c_arg]);
  1456         break;
  1458       case T_LONG :
  1459         long_move(masm, in_regs[i], out_regs[c_arg]);
  1460         break;
  1462       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1464       default:
  1465         move32_64(masm, in_regs[i], out_regs[c_arg]);
  1469   // point c_arg at the first arg that is already loaded in case we
  1470   // need to spill before we call out
  1471   c_arg++;
  1473   // Pre-load a static method's oop into r14.  Used both by locking code and
  1474   // the normal JNI call code.
  1475   if (method->is_static()) {
  1477     //  load oop into a register
  1478     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1480     // Now handlize the static class mirror it's known not-null.
  1481     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1482     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1484     // Now get the handle
  1485     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1486     // store the klass handle as second argument
  1487     __ movptr(c_rarg1, oop_handle_reg);
  1488     // and protect the arg if we must spill
  1489     c_arg--;
  1492   // Change state to native (we save the return address in the thread, since it might not
  1493   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1494   // points into the right code segment. It does not have to be the correct return pc.
  1495   // We use the same pc/oopMap repeatedly when we call out
  1497   intptr_t the_pc = (intptr_t) __ pc();
  1498   oop_maps->add_gc_map(the_pc - start, map);
  1500   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  1503   // We have all of the arguments setup at this point. We must not touch any register
  1504   // argument registers at this point (what if we save/restore them there are no oop?
  1507     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1508     // protect the args we've loaded
  1509     save_args(masm, total_c_args, c_arg, out_regs);
  1510     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1511     __ call_VM_leaf(
  1512       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1513       r15_thread, c_rarg1);
  1514     restore_args(masm, total_c_args, c_arg, out_regs);
  1517   // RedefineClasses() tracing support for obsolete method entry
  1518   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1519     // protect the args we've loaded
  1520     save_args(masm, total_c_args, c_arg, out_regs);
  1521     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1522     __ call_VM_leaf(
  1523       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1524       r15_thread, c_rarg1);
  1525     restore_args(masm, total_c_args, c_arg, out_regs);
  1528   // Lock a synchronized method
  1530   // Register definitions used by locking and unlocking
  1532   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  1533   const Register obj_reg  = rbx;  // Will contain the oop
  1534   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  1535   const Register old_hdr  = r13;  // value of old header at unlock time
  1537   Label slow_path_lock;
  1538   Label lock_done;
  1540   if (method->is_synchronized()) {
  1543     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1545     // Get the handle (the 2nd argument)
  1546     __ mov(oop_handle_reg, c_rarg1);
  1548     // Get address of the box
  1550     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1552     // Load the oop from the handle
  1553     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1555     if (UseBiasedLocking) {
  1556       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  1559     // Load immediate 1 into swap_reg %rax
  1560     __ movl(swap_reg, 1);
  1562     // Load (object->mark() | 1) into swap_reg %rax
  1563     __ orptr(swap_reg, Address(obj_reg, 0));
  1565     // Save (object->mark() | 1) into BasicLock's displaced header
  1566     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1568     if (os::is_MP()) {
  1569       __ lock();
  1572     // src -> dest iff dest == rax else rax <- dest
  1573     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1574     __ jcc(Assembler::equal, lock_done);
  1576     // Hmm should this move to the slow path code area???
  1578     // Test if the oopMark is an obvious stack pointer, i.e.,
  1579     //  1) (mark & 3) == 0, and
  1580     //  2) rsp <= mark < mark + os::pagesize()
  1581     // These 3 tests can be done by evaluating the following
  1582     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1583     // assuming both stack pointer and pagesize have their
  1584     // least significant 2 bits clear.
  1585     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  1587     __ subptr(swap_reg, rsp);
  1588     __ andptr(swap_reg, 3 - os::vm_page_size());
  1590     // Save the test result, for recursive case, the result is zero
  1591     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1592     __ jcc(Assembler::notEqual, slow_path_lock);
  1594     // Slow path will re-enter here
  1596     __ bind(lock_done);
  1600   // Finally just about ready to make the JNI call
  1603   // get JNIEnv* which is first argument to native
  1605   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  1607   // Now set thread in native
  1608   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  1610   __ call(RuntimeAddress(method->native_function()));
  1612     // Either restore the MXCSR register after returning from the JNI Call
  1613     // or verify that it wasn't changed.
  1614     if (RestoreMXCSROnJNICalls) {
  1615       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  1618     else if (CheckJNICalls ) {
  1619       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  1623   // Unpack native results.
  1624   switch (ret_type) {
  1625   case T_BOOLEAN: __ c2bool(rax);            break;
  1626   case T_CHAR   : __ movzwl(rax, rax);      break;
  1627   case T_BYTE   : __ sign_extend_byte (rax); break;
  1628   case T_SHORT  : __ sign_extend_short(rax); break;
  1629   case T_INT    : /* nothing to do */        break;
  1630   case T_DOUBLE :
  1631   case T_FLOAT  :
  1632     // Result is in xmm0 we'll save as needed
  1633     break;
  1634   case T_ARRAY:                 // Really a handle
  1635   case T_OBJECT:                // Really a handle
  1636       break; // can't de-handlize until after safepoint check
  1637   case T_VOID: break;
  1638   case T_LONG: break;
  1639   default       : ShouldNotReachHere();
  1642   // Switch thread to "native transition" state before reading the synchronization state.
  1643   // This additional state is necessary because reading and testing the synchronization
  1644   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1645   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1646   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1647   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1648   //     didn't see any synchronization is progress, and escapes.
  1649   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1651   if(os::is_MP()) {
  1652     if (UseMembar) {
  1653       // Force this write out before the read below
  1654       __ membar(Assembler::Membar_mask_bits(
  1655            Assembler::LoadLoad | Assembler::LoadStore |
  1656            Assembler::StoreLoad | Assembler::StoreStore));
  1657     } else {
  1658       // Write serialization page so VM thread can do a pseudo remote membar.
  1659       // We use the current thread pointer to calculate a thread specific
  1660       // offset to write to within the page. This minimizes bus traffic
  1661       // due to cache line collision.
  1662       __ serialize_memory(r15_thread, rcx);
  1667   // check for safepoint operation in progress and/or pending suspend requests
  1669     Label Continue;
  1671     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1672              SafepointSynchronize::_not_synchronized);
  1674     Label L;
  1675     __ jcc(Assembler::notEqual, L);
  1676     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1677     __ jcc(Assembler::equal, Continue);
  1678     __ bind(L);
  1680     // Don't use call_VM as it will see a possible pending exception and forward it
  1681     // and never return here preventing us from clearing _last_native_pc down below.
  1682     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1683     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1684     // by hand.
  1685     //
  1686     save_native_result(masm, ret_type, stack_slots);
  1687     __ mov(c_rarg0, r15_thread);
  1688     __ mov(r12, rsp); // remember sp
  1689     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1690     __ andptr(rsp, -16); // align stack as required by ABI
  1691     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1692     __ mov(rsp, r12); // restore sp
  1693     __ reinit_heapbase();
  1694     // Restore any method result value
  1695     restore_native_result(masm, ret_type, stack_slots);
  1696     __ bind(Continue);
  1699   // change thread state
  1700   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1702   Label reguard;
  1703   Label reguard_done;
  1704   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1705   __ jcc(Assembler::equal, reguard);
  1706   __ bind(reguard_done);
  1708   // native result if any is live
  1710   // Unlock
  1711   Label unlock_done;
  1712   Label slow_path_unlock;
  1713   if (method->is_synchronized()) {
  1715     // Get locked oop from the handle we passed to jni
  1716     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1718     Label done;
  1720     if (UseBiasedLocking) {
  1721       __ biased_locking_exit(obj_reg, old_hdr, done);
  1724     // Simple recursive lock?
  1726     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  1727     __ jcc(Assembler::equal, done);
  1729     // Must save rax if if it is live now because cmpxchg must use it
  1730     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1731       save_native_result(masm, ret_type, stack_slots);
  1735     // get address of the stack lock
  1736     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1737     //  get old displaced header
  1738     __ movptr(old_hdr, Address(rax, 0));
  1740     // Atomic swap old header if oop still contains the stack lock
  1741     if (os::is_MP()) {
  1742       __ lock();
  1744     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  1745     __ jcc(Assembler::notEqual, slow_path_unlock);
  1747     // slow path re-enters here
  1748     __ bind(unlock_done);
  1749     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1750       restore_native_result(masm, ret_type, stack_slots);
  1753     __ bind(done);
  1757     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1758     save_native_result(masm, ret_type, stack_slots);
  1759     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1760     __ call_VM_leaf(
  1761          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1762          r15_thread, c_rarg1);
  1763     restore_native_result(masm, ret_type, stack_slots);
  1766   __ reset_last_Java_frame(false, true);
  1768   // Unpack oop result
  1769   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1770       Label L;
  1771       __ testptr(rax, rax);
  1772       __ jcc(Assembler::zero, L);
  1773       __ movptr(rax, Address(rax, 0));
  1774       __ bind(L);
  1775       __ verify_oop(rax);
  1778   // reset handle block
  1779   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  1780   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1782   // pop our frame
  1784   __ leave();
  1786   // Any exception pending?
  1787   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1788   __ jcc(Assembler::notEqual, exception_pending);
  1790   // Return
  1792   __ ret(0);
  1794   // Unexpected paths are out of line and go here
  1796   // forward the exception
  1797   __ bind(exception_pending);
  1799   // and forward the exception
  1800   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1803   // Slow path locking & unlocking
  1804   if (method->is_synchronized()) {
  1806     // BEGIN Slow path lock
  1807     __ bind(slow_path_lock);
  1809     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1810     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1812     // protect the args we've loaded
  1813     save_args(masm, total_c_args, c_arg, out_regs);
  1815     __ mov(c_rarg0, obj_reg);
  1816     __ mov(c_rarg1, lock_reg);
  1817     __ mov(c_rarg2, r15_thread);
  1819     // Not a leaf but we have last_Java_frame setup as we want
  1820     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  1821     restore_args(masm, total_c_args, c_arg, out_regs);
  1823 #ifdef ASSERT
  1824     { Label L;
  1825     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1826     __ jcc(Assembler::equal, L);
  1827     __ stop("no pending exception allowed on exit from monitorenter");
  1828     __ bind(L);
  1830 #endif
  1831     __ jmp(lock_done);
  1833     // END Slow path lock
  1835     // BEGIN Slow path unlock
  1836     __ bind(slow_path_unlock);
  1838     // If we haven't already saved the native result we must save it now as xmm registers
  1839     // are still exposed.
  1841     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1842       save_native_result(masm, ret_type, stack_slots);
  1845     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1847     __ mov(c_rarg0, obj_reg);
  1848     __ mov(r12, rsp); // remember sp
  1849     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1850     __ andptr(rsp, -16); // align stack as required by ABI
  1852     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1853     // NOTE that obj_reg == rbx currently
  1854     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  1855     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1857     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1858     __ mov(rsp, r12); // restore sp
  1859     __ reinit_heapbase();
  1860 #ifdef ASSERT
  1862       Label L;
  1863       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1864       __ jcc(Assembler::equal, L);
  1865       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1866       __ bind(L);
  1868 #endif /* ASSERT */
  1870     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  1872     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1873       restore_native_result(masm, ret_type, stack_slots);
  1875     __ jmp(unlock_done);
  1877     // END Slow path unlock
  1879   } // synchronized
  1881   // SLOW PATH Reguard the stack if needed
  1883   __ bind(reguard);
  1884   save_native_result(masm, ret_type, stack_slots);
  1885   __ mov(r12, rsp); // remember sp
  1886   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1887   __ andptr(rsp, -16); // align stack as required by ABI
  1888   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1889   __ mov(rsp, r12); // restore sp
  1890   __ reinit_heapbase();
  1891   restore_native_result(masm, ret_type, stack_slots);
  1892   // and continue
  1893   __ jmp(reguard_done);
  1897   __ flush();
  1899   nmethod *nm = nmethod::new_native_nmethod(method,
  1900                                             masm->code(),
  1901                                             vep_offset,
  1902                                             frame_complete,
  1903                                             stack_slots / VMRegImpl::slots_per_word,
  1904                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1905                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1906                                             oop_maps);
  1907   return nm;
  1911 #ifdef HAVE_DTRACE_H
  1912 // ---------------------------------------------------------------------------
  1913 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1914 // in the Java compiled code convention, marshals them to the native
  1915 // abi and then leaves nops at the position you would expect to call a native
  1916 // function. When the probe is enabled the nops are replaced with a trap
  1917 // instruction that dtrace inserts and the trace will cause a notification
  1918 // to dtrace.
  1919 //
  1920 // The probes are only able to take primitive types and java/lang/String as
  1921 // arguments.  No other java types are allowed. Strings are converted to utf8
  1922 // strings so that from dtrace point of view java strings are converted to C
  1923 // strings. There is an arbitrary fixed limit on the total space that a method
  1924 // can use for converting the strings. (256 chars per string in the signature).
  1925 // So any java string larger then this is truncated.
  1927 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  1928 static bool offsets_initialized = false;
  1931 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  1932                                                 methodHandle method) {
  1935   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1936   // be single threaded in this method.
  1937   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1939   if (!offsets_initialized) {
  1940     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  1941     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  1942     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  1943     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  1944     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  1945     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  1947     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  1948     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  1949     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  1950     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  1951     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  1952     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  1953     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  1954     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  1956     offsets_initialized = true;
  1958   // Fill in the signature array, for the calling-convention call.
  1959   int total_args_passed = method->size_of_parameters();
  1961   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1962   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1964   // The signature we are going to use for the trap that dtrace will see
  1965   // java/lang/String is converted. We drop "this" and any other object
  1966   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1967   // is converted to a two-slot long, which is why we double the allocation).
  1968   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1969   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1971   int i=0;
  1972   int total_strings = 0;
  1973   int first_arg_to_pass = 0;
  1974   int total_c_args = 0;
  1976   // Skip the receiver as dtrace doesn't want to see it
  1977   if( !method->is_static() ) {
  1978     in_sig_bt[i++] = T_OBJECT;
  1979     first_arg_to_pass = 1;
  1982   // We need to convert the java args to where a native (non-jni) function
  1983   // would expect them. To figure out where they go we convert the java
  1984   // signature to a C signature.
  1986   SignatureStream ss(method->signature());
  1987   for ( ; !ss.at_return_type(); ss.next()) {
  1988     BasicType bt = ss.type();
  1989     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1990     out_sig_bt[total_c_args++] = bt;
  1991     if( bt == T_OBJECT) {
  1992       symbolOop s = ss.as_symbol_or_null();
  1993       if (s == vmSymbols::java_lang_String()) {
  1994         total_strings++;
  1995         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1996       } else if (s == vmSymbols::java_lang_Boolean() ||
  1997                  s == vmSymbols::java_lang_Character() ||
  1998                  s == vmSymbols::java_lang_Byte() ||
  1999                  s == vmSymbols::java_lang_Short() ||
  2000                  s == vmSymbols::java_lang_Integer() ||
  2001                  s == vmSymbols::java_lang_Float()) {
  2002         out_sig_bt[total_c_args-1] = T_INT;
  2003       } else if (s == vmSymbols::java_lang_Long() ||
  2004                  s == vmSymbols::java_lang_Double()) {
  2005         out_sig_bt[total_c_args-1] = T_LONG;
  2006         out_sig_bt[total_c_args++] = T_VOID;
  2008     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2009       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2010       // We convert double to long
  2011       out_sig_bt[total_c_args-1] = T_LONG;
  2012       out_sig_bt[total_c_args++] = T_VOID;
  2013     } else if ( bt == T_FLOAT) {
  2014       // We convert float to int
  2015       out_sig_bt[total_c_args-1] = T_INT;
  2019   assert(i==total_args_passed, "validly parsed signature");
  2021   // Now get the compiled-Java layout as input arguments
  2022   int comp_args_on_stack;
  2023   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2024       in_sig_bt, in_regs, total_args_passed, false);
  2026   // Now figure out where the args must be stored and how much stack space
  2027   // they require (neglecting out_preserve_stack_slots but space for storing
  2028   // the 1st six register arguments). It's weird see int_stk_helper.
  2030   int out_arg_slots;
  2031   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2033   // Calculate the total number of stack slots we will need.
  2035   // First count the abi requirement plus all of the outgoing args
  2036   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2038   // Now space for the string(s) we must convert
  2039   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2040   for (i = 0; i < total_strings ; i++) {
  2041     string_locs[i] = stack_slots;
  2042     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2045   // Plus the temps we might need to juggle register args
  2046   // regs take two slots each
  2047   stack_slots += (Argument::n_int_register_parameters_c +
  2048                   Argument::n_float_register_parameters_c) * 2;
  2051   // + 4 for return address (which we own) and saved rbp,
  2053   stack_slots += 4;
  2055   // Ok The space we have allocated will look like:
  2056   //
  2057   //
  2058   // FP-> |                     |
  2059   //      |---------------------|
  2060   //      | string[n]           |
  2061   //      |---------------------| <- string_locs[n]
  2062   //      | string[n-1]         |
  2063   //      |---------------------| <- string_locs[n-1]
  2064   //      | ...                 |
  2065   //      | ...                 |
  2066   //      |---------------------| <- string_locs[1]
  2067   //      | string[0]           |
  2068   //      |---------------------| <- string_locs[0]
  2069   //      | outbound memory     |
  2070   //      | based arguments     |
  2071   //      |                     |
  2072   //      |---------------------|
  2073   //      |                     |
  2074   // SP-> | out_preserved_slots |
  2075   //
  2076   //
  2078   // Now compute actual number of stack words we need rounding to make
  2079   // stack properly aligned.
  2080   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2082   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2084   intptr_t start = (intptr_t)__ pc();
  2086   // First thing make an ic check to see if we should even be here
  2088   // We are free to use all registers as temps without saving them and
  2089   // restoring them except rbp. rbp, is the only callee save register
  2090   // as far as the interpreter and the compiler(s) are concerned.
  2092   const Register ic_reg = rax;
  2093   const Register receiver = rcx;
  2094   Label hit;
  2095   Label exception_pending;
  2098   __ verify_oop(receiver);
  2099   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2100   __ jcc(Assembler::equal, hit);
  2102   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2104   // verified entry must be aligned for code patching.
  2105   // and the first 5 bytes must be in the same cache line
  2106   // if we align at 8 then we will be sure 5 bytes are in the same line
  2107   __ align(8);
  2109   __ bind(hit);
  2111   int vep_offset = ((intptr_t)__ pc()) - start;
  2114   // The instruction at the verified entry point must be 5 bytes or longer
  2115   // because it can be patched on the fly by make_non_entrant. The stack bang
  2116   // instruction fits that requirement.
  2118   // Generate stack overflow check
  2120   if (UseStackBanging) {
  2121     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2122       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2123     } else {
  2124       __ movl(rax, stack_size);
  2125       __ bang_stack_size(rax, rbx);
  2127   } else {
  2128     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2129     __ fat_nop();
  2132   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2133          "valid size for make_non_entrant");
  2135   // Generate a new frame for the wrapper.
  2136   __ enter();
  2138   // -4 because return address is already present and so is saved rbp,
  2139   if (stack_size - 2*wordSize != 0) {
  2140     __ subq(rsp, stack_size - 2*wordSize);
  2143   // Frame is now completed as far a size and linkage.
  2145   int frame_complete = ((intptr_t)__ pc()) - start;
  2147   int c_arg, j_arg;
  2149   // State of input register args
  2151   bool  live[ConcreteRegisterImpl::number_of_registers];
  2153   live[j_rarg0->as_VMReg()->value()] = false;
  2154   live[j_rarg1->as_VMReg()->value()] = false;
  2155   live[j_rarg2->as_VMReg()->value()] = false;
  2156   live[j_rarg3->as_VMReg()->value()] = false;
  2157   live[j_rarg4->as_VMReg()->value()] = false;
  2158   live[j_rarg5->as_VMReg()->value()] = false;
  2160   live[j_farg0->as_VMReg()->value()] = false;
  2161   live[j_farg1->as_VMReg()->value()] = false;
  2162   live[j_farg2->as_VMReg()->value()] = false;
  2163   live[j_farg3->as_VMReg()->value()] = false;
  2164   live[j_farg4->as_VMReg()->value()] = false;
  2165   live[j_farg5->as_VMReg()->value()] = false;
  2166   live[j_farg6->as_VMReg()->value()] = false;
  2167   live[j_farg7->as_VMReg()->value()] = false;
  2170   bool rax_is_zero = false;
  2172   // All args (except strings) destined for the stack are moved first
  2173   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2174        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2175     VMRegPair src = in_regs[j_arg];
  2176     VMRegPair dst = out_regs[c_arg];
  2178     // Get the real reg value or a dummy (rsp)
  2180     int src_reg = src.first()->is_reg() ?
  2181                   src.first()->value() :
  2182                   rsp->as_VMReg()->value();
  2184     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2185                     (in_sig_bt[j_arg] == T_OBJECT &&
  2186                      out_sig_bt[c_arg] != T_INT &&
  2187                      out_sig_bt[c_arg] != T_ADDRESS &&
  2188                      out_sig_bt[c_arg] != T_LONG);
  2190     live[src_reg] = !useless;
  2192     if (dst.first()->is_stack()) {
  2194       // Even though a string arg in a register is still live after this loop
  2195       // after the string conversion loop (next) it will be dead so we take
  2196       // advantage of that now for simpler code to manage live.
  2198       live[src_reg] = false;
  2199       switch (in_sig_bt[j_arg]) {
  2201         case T_ARRAY:
  2202         case T_OBJECT:
  2204             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2206             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2207               // need to unbox a one-word value
  2208               Register in_reg = rax;
  2209               if ( src.first()->is_reg() ) {
  2210                 in_reg = src.first()->as_Register();
  2211               } else {
  2212                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2213                 rax_is_zero = false;
  2215               Label skipUnbox;
  2216               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2217                         (int32_t)NULL_WORD);
  2218               __ testq(in_reg, in_reg);
  2219               __ jcc(Assembler::zero, skipUnbox);
  2221               BasicType bt = out_sig_bt[c_arg];
  2222               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2223               Address src1(in_reg, box_offset);
  2224               if ( bt == T_LONG ) {
  2225                 __ movq(in_reg,  src1);
  2226                 __ movq(stack_dst, in_reg);
  2227                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2228                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2229               } else {
  2230                 __ movl(in_reg,  src1);
  2231                 __ movl(stack_dst, in_reg);
  2234               __ bind(skipUnbox);
  2235             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2236               // Convert the arg to NULL
  2237               if (!rax_is_zero) {
  2238                 __ xorq(rax, rax);
  2239                 rax_is_zero = true;
  2241               __ movq(stack_dst, rax);
  2244           break;
  2246         case T_VOID:
  2247           break;
  2249         case T_FLOAT:
  2250           // This does the right thing since we know it is destined for the
  2251           // stack
  2252           float_move(masm, src, dst);
  2253           break;
  2255         case T_DOUBLE:
  2256           // This does the right thing since we know it is destined for the
  2257           // stack
  2258           double_move(masm, src, dst);
  2259           break;
  2261         case T_LONG :
  2262           long_move(masm, src, dst);
  2263           break;
  2265         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2267         default:
  2268           move32_64(masm, src, dst);
  2274   // If we have any strings we must store any register based arg to the stack
  2275   // This includes any still live xmm registers too.
  2277   int sid = 0;
  2279   if (total_strings > 0 ) {
  2280     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2281          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2282       VMRegPair src = in_regs[j_arg];
  2283       VMRegPair dst = out_regs[c_arg];
  2285       if (src.first()->is_reg()) {
  2286         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  2288         // string oops were left untouched by the previous loop even if the
  2289         // eventual (converted) arg is destined for the stack so park them
  2290         // away now (except for first)
  2292         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2293           Address utf8_addr = Address(
  2294               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2295           if (sid != 1) {
  2296             // The first string arg won't be killed until after the utf8
  2297             // conversion
  2298             __ movq(utf8_addr, src.first()->as_Register());
  2300         } else if (dst.first()->is_reg()) {
  2301           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  2303             // Convert the xmm register to an int and store it in the reserved
  2304             // location for the eventual c register arg
  2305             XMMRegister f = src.first()->as_XMMRegister();
  2306             if (in_sig_bt[j_arg] == T_FLOAT) {
  2307               __ movflt(src_tmp, f);
  2308             } else {
  2309               __ movdbl(src_tmp, f);
  2311           } else {
  2312             // If the arg is an oop type we don't support don't bother to store
  2313             // it remember string was handled above.
  2314             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2315                             (in_sig_bt[j_arg] == T_OBJECT &&
  2316                              out_sig_bt[c_arg] != T_INT &&
  2317                              out_sig_bt[c_arg] != T_LONG);
  2319             if (!useless) {
  2320               __ movq(src_tmp, src.first()->as_Register());
  2325       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2326         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2327         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2331     // Now that the volatile registers are safe, convert all the strings
  2332     sid = 0;
  2334     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2335          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2336       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2337         // It's a string
  2338         Address utf8_addr = Address(
  2339             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2340         // The first string we find might still be in the original java arg
  2341         // register
  2343         VMReg src = in_regs[j_arg].first();
  2345         // We will need to eventually save the final argument to the trap
  2346         // in the von-volatile location dedicated to src. This is the offset
  2347         // from fp we will use.
  2348         int src_off = src->is_reg() ?
  2349             fp_offset[src->value()] : reg2offset_in(src);
  2351         // This is where the argument will eventually reside
  2352         VMRegPair dst = out_regs[c_arg];
  2354         if (src->is_reg()) {
  2355           if (sid == 1) {
  2356             __ movq(c_rarg0, src->as_Register());
  2357           } else {
  2358             __ movq(c_rarg0, utf8_addr);
  2360         } else {
  2361           // arg is still in the original location
  2362           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  2364         Label done, convert;
  2366         // see if the oop is NULL
  2367         __ testq(c_rarg0, c_rarg0);
  2368         __ jcc(Assembler::notEqual, convert);
  2370         if (dst.first()->is_reg()) {
  2371           // Save the ptr to utf string in the origina src loc or the tmp
  2372           // dedicated to it
  2373           __ movq(Address(rbp, src_off), c_rarg0);
  2374         } else {
  2375           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  2377         __ jmp(done);
  2379         __ bind(convert);
  2381         __ lea(c_rarg1, utf8_addr);
  2382         if (dst.first()->is_reg()) {
  2383           __ movq(Address(rbp, src_off), c_rarg1);
  2384         } else {
  2385           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  2387         // And do the conversion
  2388         __ call(RuntimeAddress(
  2389                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  2391         __ bind(done);
  2393       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2394         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2395         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2398     // The get_utf call killed all the c_arg registers
  2399     live[c_rarg0->as_VMReg()->value()] = false;
  2400     live[c_rarg1->as_VMReg()->value()] = false;
  2401     live[c_rarg2->as_VMReg()->value()] = false;
  2402     live[c_rarg3->as_VMReg()->value()] = false;
  2403     live[c_rarg4->as_VMReg()->value()] = false;
  2404     live[c_rarg5->as_VMReg()->value()] = false;
  2406     live[c_farg0->as_VMReg()->value()] = false;
  2407     live[c_farg1->as_VMReg()->value()] = false;
  2408     live[c_farg2->as_VMReg()->value()] = false;
  2409     live[c_farg3->as_VMReg()->value()] = false;
  2410     live[c_farg4->as_VMReg()->value()] = false;
  2411     live[c_farg5->as_VMReg()->value()] = false;
  2412     live[c_farg6->as_VMReg()->value()] = false;
  2413     live[c_farg7->as_VMReg()->value()] = false;
  2416   // Now we can finally move the register args to their desired locations
  2418   rax_is_zero = false;
  2420   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2421        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2423     VMRegPair src = in_regs[j_arg];
  2424     VMRegPair dst = out_regs[c_arg];
  2426     // Only need to look for args destined for the interger registers (since we
  2427     // convert float/double args to look like int/long outbound)
  2428     if (dst.first()->is_reg()) {
  2429       Register r =  dst.first()->as_Register();
  2431       // Check if the java arg is unsupported and thereofre useless
  2432       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2433                       (in_sig_bt[j_arg] == T_OBJECT &&
  2434                        out_sig_bt[c_arg] != T_INT &&
  2435                        out_sig_bt[c_arg] != T_ADDRESS &&
  2436                        out_sig_bt[c_arg] != T_LONG);
  2439       // If we're going to kill an existing arg save it first
  2440       if (live[dst.first()->value()]) {
  2441         // you can't kill yourself
  2442         if (src.first() != dst.first()) {
  2443           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  2446       if (src.first()->is_reg()) {
  2447         if (live[src.first()->value()] ) {
  2448           if (in_sig_bt[j_arg] == T_FLOAT) {
  2449             __ movdl(r, src.first()->as_XMMRegister());
  2450           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  2451             __ movdq(r, src.first()->as_XMMRegister());
  2452           } else if (r != src.first()->as_Register()) {
  2453             if (!useless) {
  2454               __ movq(r, src.first()->as_Register());
  2457         } else {
  2458           // If the arg is an oop type we don't support don't bother to store
  2459           // it
  2460           if (!useless) {
  2461             if (in_sig_bt[j_arg] == T_DOUBLE ||
  2462                 in_sig_bt[j_arg] == T_LONG  ||
  2463                 in_sig_bt[j_arg] == T_OBJECT ) {
  2464               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  2465             } else {
  2466               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  2470         live[src.first()->value()] = false;
  2471       } else if (!useless) {
  2472         // full sized move even for int should be ok
  2473         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  2476       // At this point r has the original java arg in the final location
  2477       // (assuming it wasn't useless). If the java arg was an oop
  2478       // we have a bit more to do
  2480       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  2481         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2482           // need to unbox a one-word value
  2483           Label skip;
  2484           __ testq(r, r);
  2485           __ jcc(Assembler::equal, skip);
  2486           BasicType bt = out_sig_bt[c_arg];
  2487           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2488           Address src1(r, box_offset);
  2489           if ( bt == T_LONG ) {
  2490             __ movq(r, src1);
  2491           } else {
  2492             __ movl(r, src1);
  2494           __ bind(skip);
  2496         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2497           // Convert the arg to NULL
  2498           __ xorq(r, r);
  2502       // dst can longer be holding an input value
  2503       live[dst.first()->value()] = false;
  2505     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2506       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2507       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2512   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2513   // patch in the trap
  2514   int patch_offset = ((intptr_t)__ pc()) - start;
  2516   __ nop();
  2519   // Return
  2521   __ leave();
  2522   __ ret(0);
  2524   __ flush();
  2526   nmethod *nm = nmethod::new_dtrace_nmethod(
  2527       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2528       stack_slots / VMRegImpl::slots_per_word);
  2529   return nm;
  2533 #endif // HAVE_DTRACE_H
  2535 // this function returns the adjust size (in number of words) to a c2i adapter
  2536 // activation for use during deoptimization
  2537 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2538   return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
  2542 uint SharedRuntime::out_preserve_stack_slots() {
  2543   return 0;
  2547 //------------------------------generate_deopt_blob----------------------------
  2548 void SharedRuntime::generate_deopt_blob() {
  2549   // Allocate space for the code
  2550   ResourceMark rm;
  2551   // Setup code generation tools
  2552   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2553   MacroAssembler* masm = new MacroAssembler(&buffer);
  2554   int frame_size_in_words;
  2555   OopMap* map = NULL;
  2556   OopMapSet *oop_maps = new OopMapSet();
  2558   // -------------
  2559   // This code enters when returning to a de-optimized nmethod.  A return
  2560   // address has been pushed on the the stack, and return values are in
  2561   // registers.
  2562   // If we are doing a normal deopt then we were called from the patched
  2563   // nmethod from the point we returned to the nmethod. So the return
  2564   // address on the stack is wrong by NativeCall::instruction_size
  2565   // We will adjust the value so it looks like we have the original return
  2566   // address on the stack (like when we eagerly deoptimized).
  2567   // In the case of an exception pending when deoptimizing, we enter
  2568   // with a return address on the stack that points after the call we patched
  2569   // into the exception handler. We have the following register state from,
  2570   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  2571   //    rax: exception oop
  2572   //    rbx: exception handler
  2573   //    rdx: throwing pc
  2574   // So in this case we simply jam rdx into the useless return address and
  2575   // the stack looks just like we want.
  2576   //
  2577   // At this point we need to de-opt.  We save the argument return
  2578   // registers.  We call the first C routine, fetch_unroll_info().  This
  2579   // routine captures the return values and returns a structure which
  2580   // describes the current frame size and the sizes of all replacement frames.
  2581   // The current frame is compiled code and may contain many inlined
  2582   // functions, each with their own JVM state.  We pop the current frame, then
  2583   // push all the new frames.  Then we call the C routine unpack_frames() to
  2584   // populate these frames.  Finally unpack_frames() returns us the new target
  2585   // address.  Notice that callee-save registers are BLOWN here; they have
  2586   // already been captured in the vframeArray at the time the return PC was
  2587   // patched.
  2588   address start = __ pc();
  2589   Label cont;
  2591   // Prolog for non exception case!
  2593   // Save everything in sight.
  2594   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2596   // Normal deoptimization.  Save exec mode for unpack_frames.
  2597   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  2598   __ jmp(cont);
  2600   int reexecute_offset = __ pc() - start;
  2602   // Reexecute case
  2603   // return address is the pc describes what bci to do re-execute at
  2605   // No need to update map as each call to save_live_registers will produce identical oopmap
  2606   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2608   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  2609   __ jmp(cont);
  2611   int exception_offset = __ pc() - start;
  2613   // Prolog for exception case
  2615   // all registers are dead at this entry point, except for rax, and
  2616   // rdx which contain the exception oop and exception pc
  2617   // respectively.  Set them in TLS and fall thru to the
  2618   // unpack_with_exception_in_tls entry point.
  2620   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  2621   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  2623   int exception_in_tls_offset = __ pc() - start;
  2625   // new implementation because exception oop is now passed in JavaThread
  2627   // Prolog for exception case
  2628   // All registers must be preserved because they might be used by LinearScan
  2629   // Exceptiop oop and throwing PC are passed in JavaThread
  2630   // tos: stack at point of call to method that threw the exception (i.e. only
  2631   // args are on the stack, no return address)
  2633   // make room on stack for the return address
  2634   // It will be patched later with the throwing pc. The correct value is not
  2635   // available now because loading it from memory would destroy registers.
  2636   __ push(0);
  2638   // Save everything in sight.
  2639   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2641   // Now it is safe to overwrite any register
  2643   // Deopt during an exception.  Save exec mode for unpack_frames.
  2644   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  2646   // load throwing pc from JavaThread and patch it as the return address
  2647   // of the current frame. Then clear the field in JavaThread
  2649   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  2650   __ movptr(Address(rbp, wordSize), rdx);
  2651   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2653 #ifdef ASSERT
  2654   // verify that there is really an exception oop in JavaThread
  2655   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  2656   __ verify_oop(rax);
  2658   // verify that there is no pending exception
  2659   Label no_pending_exception;
  2660   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  2661   __ testptr(rax, rax);
  2662   __ jcc(Assembler::zero, no_pending_exception);
  2663   __ stop("must not have pending exception here");
  2664   __ bind(no_pending_exception);
  2665 #endif
  2667   __ bind(cont);
  2669   // Call C code.  Need thread and this frame, but NOT official VM entry
  2670   // crud.  We cannot block on this call, no GC can happen.
  2671   //
  2672   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  2674   // fetch_unroll_info needs to call last_java_frame().
  2676   __ set_last_Java_frame(noreg, noreg, NULL);
  2677 #ifdef ASSERT
  2678   { Label L;
  2679     __ cmpptr(Address(r15_thread,
  2680                     JavaThread::last_Java_fp_offset()),
  2681             (int32_t)0);
  2682     __ jcc(Assembler::equal, L);
  2683     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  2684     __ bind(L);
  2686 #endif // ASSERT
  2687   __ mov(c_rarg0, r15_thread);
  2688   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2690   // Need to have an oopmap that tells fetch_unroll_info where to
  2691   // find any register it might need.
  2692   oop_maps->add_gc_map(__ pc() - start, map);
  2694   __ reset_last_Java_frame(false, false);
  2696   // Load UnrollBlock* into rdi
  2697   __ mov(rdi, rax);
  2699    Label noException;
  2700   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  2701   __ jcc(Assembler::notEqual, noException);
  2702   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  2703   // QQQ this is useless it was NULL above
  2704   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  2705   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  2706   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2708   __ verify_oop(rax);
  2710   // Overwrite the result registers with the exception results.
  2711   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2712   // I think this is useless
  2713   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  2715   __ bind(noException);
  2717   // Only register save data is on the stack.
  2718   // Now restore the result registers.  Everything else is either dead
  2719   // or captured in the vframeArray.
  2720   RegisterSaver::restore_result_registers(masm);
  2722   // All of the register save area has been popped of the stack. Only the
  2723   // return address remains.
  2725   // Pop all the frames we must move/replace.
  2726   //
  2727   // Frame picture (youngest to oldest)
  2728   // 1: self-frame (no frame link)
  2729   // 2: deopting frame  (no frame link)
  2730   // 3: caller of deopting frame (could be compiled/interpreted).
  2731   //
  2732   // Note: by leaving the return address of self-frame on the stack
  2733   // and using the size of frame 2 to adjust the stack
  2734   // when we are done the return to frame 3 will still be on the stack.
  2736   // Pop deoptimized frame
  2737   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2738   __ addptr(rsp, rcx);
  2740   // rsp should be pointing at the return address to the caller (3)
  2742   // Stack bang to make sure there's enough room for these interpreter frames.
  2743   if (UseStackBanging) {
  2744     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2745     __ bang_stack_size(rbx, rcx);
  2748   // Load address of array of frame pcs into rcx
  2749   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2751   // Trash the old pc
  2752   __ addptr(rsp, wordSize);
  2754   // Load address of array of frame sizes into rsi
  2755   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2757   // Load counter into rdx
  2758   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2760   // Pick up the initial fp we should save
  2761   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2763   // Now adjust the caller's stack to make up for the extra locals
  2764   // but record the original sp so that we can save it in the skeletal interpreter
  2765   // frame and the stack walking of interpreter_sender will get the unextended sp
  2766   // value and not the "real" sp value.
  2768   const Register sender_sp = r8;
  2770   __ mov(sender_sp, rsp);
  2771   __ movl(rbx, Address(rdi,
  2772                        Deoptimization::UnrollBlock::
  2773                        caller_adjustment_offset_in_bytes()));
  2774   __ subptr(rsp, rbx);
  2776   // Push interpreter frames in a loop
  2777   Label loop;
  2778   __ bind(loop);
  2779   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2780 #ifdef CC_INTERP
  2781   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2782 #ifdef ASSERT
  2783   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2784   __ push(0xDEADDEAD);
  2785 #else /* ASSERT */
  2786   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2787 #endif /* ASSERT */
  2788 #else
  2789   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  2790 #endif // CC_INTERP
  2791   __ pushptr(Address(rcx, 0));          // Save return address
  2792   __ enter();                           // Save old & set new ebp
  2793   __ subptr(rsp, rbx);                  // Prolog
  2794 #ifdef CC_INTERP
  2795   __ movptr(Address(rbp,
  2796                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2797             sender_sp); // Make it walkable
  2798 #else /* CC_INTERP */
  2799   // This value is corrected by layout_activation_impl
  2800   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2801   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  2802 #endif /* CC_INTERP */
  2803   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  2804   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2805   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2806   __ decrementl(rdx);                   // Decrement counter
  2807   __ jcc(Assembler::notZero, loop);
  2808   __ pushptr(Address(rcx, 0));          // Save final return address
  2810   // Re-push self-frame
  2811   __ enter();                           // Save old & set new ebp
  2813   // Allocate a full sized register save area.
  2814   // Return address and rbp are in place, so we allocate two less words.
  2815   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  2817   // Restore frame locals after moving the frame
  2818   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  2819   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2821   // Call C code.  Need thread but NOT official VM entry
  2822   // crud.  We cannot block on this call, no GC can happen.  Call should
  2823   // restore return values to their stack-slots with the new SP.
  2824   //
  2825   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  2827   // Use rbp because the frames look interpreted now
  2828   __ set_last_Java_frame(noreg, rbp, NULL);
  2830   __ mov(c_rarg0, r15_thread);
  2831   __ movl(c_rarg1, r14); // second arg: exec_mode
  2832   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2834   // Set an oopmap for the call site
  2835   oop_maps->add_gc_map(__ pc() - start,
  2836                        new OopMap( frame_size_in_words, 0 ));
  2838   __ reset_last_Java_frame(true, false);
  2840   // Collect return values
  2841   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  2842   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  2843   // I think this is useless (throwing pc?)
  2844   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  2846   // Pop self-frame.
  2847   __ leave();                           // Epilog
  2849   // Jump to interpreter
  2850   __ ret(0);
  2852   // Make sure all code is generated
  2853   masm->flush();
  2855   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2856   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2859 #ifdef COMPILER2
  2860 //------------------------------generate_uncommon_trap_blob--------------------
  2861 void SharedRuntime::generate_uncommon_trap_blob() {
  2862   // Allocate space for the code
  2863   ResourceMark rm;
  2864   // Setup code generation tools
  2865   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2866   MacroAssembler* masm = new MacroAssembler(&buffer);
  2868   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  2870   address start = __ pc();
  2872   // Push self-frame.  We get here with a return address on the
  2873   // stack, so rsp is 8-byte aligned until we allocate our frame.
  2874   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  2876   // No callee saved registers. rbp is assumed implicitly saved
  2877   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  2879   // compiler left unloaded_class_index in j_rarg0 move to where the
  2880   // runtime expects it.
  2881   __ movl(c_rarg1, j_rarg0);
  2883   __ set_last_Java_frame(noreg, noreg, NULL);
  2885   // Call C code.  Need thread but NOT official VM entry
  2886   // crud.  We cannot block on this call, no GC can happen.  Call should
  2887   // capture callee-saved registers as well as return values.
  2888   // Thread is in rdi already.
  2889   //
  2890   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  2892   __ mov(c_rarg0, r15_thread);
  2893   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2895   // Set an oopmap for the call site
  2896   OopMapSet* oop_maps = new OopMapSet();
  2897   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  2899   // location of rbp is known implicitly by the frame sender code
  2901   oop_maps->add_gc_map(__ pc() - start, map);
  2903   __ reset_last_Java_frame(false, false);
  2905   // Load UnrollBlock* into rdi
  2906   __ mov(rdi, rax);
  2908   // Pop all the frames we must move/replace.
  2909   //
  2910   // Frame picture (youngest to oldest)
  2911   // 1: self-frame (no frame link)
  2912   // 2: deopting frame  (no frame link)
  2913   // 3: caller of deopting frame (could be compiled/interpreted).
  2915   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  2916   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  2918   // Pop deoptimized frame (int)
  2919   __ movl(rcx, Address(rdi,
  2920                        Deoptimization::UnrollBlock::
  2921                        size_of_deoptimized_frame_offset_in_bytes()));
  2922   __ addptr(rsp, rcx);
  2924   // rsp should be pointing at the return address to the caller (3)
  2926   // Stack bang to make sure there's enough room for these interpreter frames.
  2927   if (UseStackBanging) {
  2928     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2929     __ bang_stack_size(rbx, rcx);
  2932   // Load address of array of frame pcs into rcx (address*)
  2933   __ movptr(rcx,
  2934             Address(rdi,
  2935                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2937   // Trash the return pc
  2938   __ addptr(rsp, wordSize);
  2940   // Load address of array of frame sizes into rsi (intptr_t*)
  2941   __ movptr(rsi, Address(rdi,
  2942                          Deoptimization::UnrollBlock::
  2943                          frame_sizes_offset_in_bytes()));
  2945   // Counter
  2946   __ movl(rdx, Address(rdi,
  2947                        Deoptimization::UnrollBlock::
  2948                        number_of_frames_offset_in_bytes())); // (int)
  2950   // Pick up the initial fp we should save
  2951   __ movptr(rbp,
  2952             Address(rdi,
  2953                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2955   // Now adjust the caller's stack to make up for the extra locals but
  2956   // record the original sp so that we can save it in the skeletal
  2957   // interpreter frame and the stack walking of interpreter_sender
  2958   // will get the unextended sp value and not the "real" sp value.
  2960   const Register sender_sp = r8;
  2962   __ mov(sender_sp, rsp);
  2963   __ movl(rbx, Address(rdi,
  2964                        Deoptimization::UnrollBlock::
  2965                        caller_adjustment_offset_in_bytes())); // (int)
  2966   __ subptr(rsp, rbx);
  2968   // Push interpreter frames in a loop
  2969   Label loop;
  2970   __ bind(loop);
  2971   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  2972   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  2973   __ pushptr(Address(rcx, 0));     // Save return address
  2974   __ enter();                      // Save old & set new rbp
  2975   __ subptr(rsp, rbx);             // Prolog
  2976 #ifdef CC_INTERP
  2977   __ movptr(Address(rbp,
  2978                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2979             sender_sp); // Make it walkable
  2980 #else // CC_INTERP
  2981   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  2982             sender_sp);            // Make it walkable
  2983   // This value is corrected by layout_activation_impl
  2984   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2985 #endif // CC_INTERP
  2986   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  2987   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  2988   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  2989   __ decrementl(rdx);              // Decrement counter
  2990   __ jcc(Assembler::notZero, loop);
  2991   __ pushptr(Address(rcx, 0));     // Save final return address
  2993   // Re-push self-frame
  2994   __ enter();                 // Save old & set new rbp
  2995   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  2996                               // Prolog
  2998   // Use rbp because the frames look interpreted now
  2999   __ set_last_Java_frame(noreg, rbp, NULL);
  3001   // Call C code.  Need thread but NOT official VM entry
  3002   // crud.  We cannot block on this call, no GC can happen.  Call should
  3003   // restore return values to their stack-slots with the new SP.
  3004   // Thread is in rdi already.
  3005   //
  3006   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3008   __ mov(c_rarg0, r15_thread);
  3009   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3010   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3012   // Set an oopmap for the call site
  3013   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3015   __ reset_last_Java_frame(true, false);
  3017   // Pop self-frame.
  3018   __ leave();                 // Epilog
  3020   // Jump to interpreter
  3021   __ ret(0);
  3023   // Make sure all code is generated
  3024   masm->flush();
  3026   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3027                                                  SimpleRuntimeFrame::framesize >> 1);
  3029 #endif // COMPILER2
  3032 //------------------------------generate_handler_blob------
  3033 //
  3034 // Generate a special Compile2Runtime blob that saves all registers,
  3035 // and setup oopmap.
  3036 //
  3037 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  3038   assert(StubRoutines::forward_exception_entry() != NULL,
  3039          "must be generated before");
  3041   ResourceMark rm;
  3042   OopMapSet *oop_maps = new OopMapSet();
  3043   OopMap* map;
  3045   // Allocate space for the code.  Setup code generation tools.
  3046   CodeBuffer buffer("handler_blob", 2048, 1024);
  3047   MacroAssembler* masm = new MacroAssembler(&buffer);
  3049   address start   = __ pc();
  3050   address call_pc = NULL;
  3051   int frame_size_in_words;
  3053   // Make room for return address (or push it again)
  3054   if (!cause_return) {
  3055     __ push(rbx);
  3058   // Save registers, fpu state, and flags
  3059   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3061   // The following is basically a call_VM.  However, we need the precise
  3062   // address of the call in order to generate an oopmap. Hence, we do all the
  3063   // work outselves.
  3065   __ set_last_Java_frame(noreg, noreg, NULL);
  3067   // The return address must always be correct so that frame constructor never
  3068   // sees an invalid pc.
  3070   if (!cause_return) {
  3071     // overwrite the dummy value we pushed on entry
  3072     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3073     __ movptr(Address(rbp, wordSize), c_rarg0);
  3076   // Do the call
  3077   __ mov(c_rarg0, r15_thread);
  3078   __ call(RuntimeAddress(call_ptr));
  3080   // Set an oopmap for the call site.  This oopmap will map all
  3081   // oop-registers and debug-info registers as callee-saved.  This
  3082   // will allow deoptimization at this safepoint to find all possible
  3083   // debug-info recordings, as well as let GC find all oops.
  3085   oop_maps->add_gc_map( __ pc() - start, map);
  3087   Label noException;
  3089   __ reset_last_Java_frame(false, false);
  3091   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3092   __ jcc(Assembler::equal, noException);
  3094   // Exception pending
  3096   RegisterSaver::restore_live_registers(masm);
  3098   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3100   // No exception case
  3101   __ bind(noException);
  3103   // Normal exit, restore registers and exit.
  3104   RegisterSaver::restore_live_registers(masm);
  3106   __ ret(0);
  3108   // Make sure all code is generated
  3109   masm->flush();
  3111   // Fill-out other meta info
  3112   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3115 //
  3116 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3117 //
  3118 // Generate a stub that calls into vm to find out the proper destination
  3119 // of a java call. All the argument registers are live at this point
  3120 // but since this is generic code we don't know what they are and the caller
  3121 // must do any gc of the args.
  3122 //
  3123 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3124   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3126   // allocate space for the code
  3127   ResourceMark rm;
  3129   CodeBuffer buffer(name, 1000, 512);
  3130   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3132   int frame_size_in_words;
  3134   OopMapSet *oop_maps = new OopMapSet();
  3135   OopMap* map = NULL;
  3137   int start = __ offset();
  3139   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3141   int frame_complete = __ offset();
  3143   __ set_last_Java_frame(noreg, noreg, NULL);
  3145   __ mov(c_rarg0, r15_thread);
  3147   __ call(RuntimeAddress(destination));
  3150   // Set an oopmap for the call site.
  3151   // We need this not only for callee-saved registers, but also for volatile
  3152   // registers that the compiler might be keeping live across a safepoint.
  3154   oop_maps->add_gc_map( __ offset() - start, map);
  3156   // rax contains the address we are going to jump to assuming no exception got installed
  3158   // clear last_Java_sp
  3159   __ reset_last_Java_frame(false, false);
  3160   // check for pending exceptions
  3161   Label pending;
  3162   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3163   __ jcc(Assembler::notEqual, pending);
  3165   // get the returned methodOop
  3166   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
  3167   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3169   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3171   RegisterSaver::restore_live_registers(masm);
  3173   // We are back the the original state on entry and ready to go.
  3175   __ jmp(rax);
  3177   // Pending exception after the safepoint
  3179   __ bind(pending);
  3181   RegisterSaver::restore_live_registers(masm);
  3183   // exception pending => remove activation and forward to exception handler
  3185   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3187   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3188   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3190   // -------------
  3191   // make sure all code is generated
  3192   masm->flush();
  3194   // return the  blob
  3195   // frame_size_words or bytes??
  3196   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3200 void SharedRuntime::generate_stubs() {
  3202   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3203                                         "wrong_method_stub");
  3204   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3205                                         "ic_miss_stub");
  3206   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3207                                         "resolve_opt_virtual_call");
  3209   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3210                                         "resolve_virtual_call");
  3212   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3213                                         "resolve_static_call");
  3214   _polling_page_safepoint_handler_blob =
  3215     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3216                    SafepointSynchronize::handle_polling_page_exception), false);
  3218   _polling_page_return_handler_blob =
  3219     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3220                    SafepointSynchronize::handle_polling_page_exception), true);
  3222   generate_deopt_blob();
  3224 #ifdef COMPILER2
  3225   generate_uncommon_trap_blob();
  3226 #endif // COMPILER2
  3230 #ifdef COMPILER2
  3231 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3232 //
  3233 //------------------------------generate_exception_blob---------------------------
  3234 // creates exception blob at the end
  3235 // Using exception blob, this code is jumped from a compiled method.
  3236 // (see emit_exception_handler in x86_64.ad file)
  3237 //
  3238 // Given an exception pc at a call we call into the runtime for the
  3239 // handler in this method. This handler might merely restore state
  3240 // (i.e. callee save registers) unwind the frame and jump to the
  3241 // exception handler for the nmethod if there is no Java level handler
  3242 // for the nmethod.
  3243 //
  3244 // This code is entered with a jmp.
  3245 //
  3246 // Arguments:
  3247 //   rax: exception oop
  3248 //   rdx: exception pc
  3249 //
  3250 // Results:
  3251 //   rax: exception oop
  3252 //   rdx: exception pc in caller or ???
  3253 //   destination: exception handler of caller
  3254 //
  3255 // Note: the exception pc MUST be at a call (precise debug information)
  3256 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3257 //
  3259 void OptoRuntime::generate_exception_blob() {
  3260   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3261   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3262   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3264   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3266   // Allocate space for the code
  3267   ResourceMark rm;
  3268   // Setup code generation tools
  3269   CodeBuffer buffer("exception_blob", 2048, 1024);
  3270   MacroAssembler* masm = new MacroAssembler(&buffer);
  3273   address start = __ pc();
  3275   // Exception pc is 'return address' for stack walker
  3276   __ push(rdx);
  3277   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3279   // Save callee-saved registers.  See x86_64.ad.
  3281   // rbp is an implicitly saved callee saved register (i.e. the calling
  3282   // convention will save restore it in prolog/epilog) Other than that
  3283   // there are no callee save registers now that adapter frames are gone.
  3285   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3287   // Store exception in Thread object. We cannot pass any arguments to the
  3288   // handle_exception call, since we do not want to make any assumption
  3289   // about the size of the frame where the exception happened in.
  3290   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  3291   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  3292   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3294   // This call does all the hard work.  It checks if an exception handler
  3295   // exists in the method.
  3296   // If so, it returns the handler address.
  3297   // If not, it prepares for stack-unwinding, restoring the callee-save
  3298   // registers of the frame being removed.
  3299   //
  3300   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  3302   __ set_last_Java_frame(noreg, noreg, NULL);
  3303   __ mov(c_rarg0, r15_thread);
  3304   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  3306   // Set an oopmap for the call site.  This oopmap will only be used if we
  3307   // are unwinding the stack.  Hence, all locations will be dead.
  3308   // Callee-saved registers will be the same as the frame above (i.e.,
  3309   // handle_exception_stub), since they were restored when we got the
  3310   // exception.
  3312   OopMapSet* oop_maps = new OopMapSet();
  3314   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3316   __ reset_last_Java_frame(false, false);
  3318   // Restore callee-saved registers
  3320   // rbp is an implicitly saved callee saved register (i.e. the calling
  3321   // convention will save restore it in prolog/epilog) Other than that
  3322   // there are no callee save registers no that adapter frames are gone.
  3324   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  3326   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  3327   __ pop(rdx);                  // No need for exception pc anymore
  3329   // rax: exception handler
  3331   // Restore SP from BP if the exception PC is a MethodHandle call.
  3332   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_exception_offset()), 0);
  3333   __ cmovptr(Assembler::notEqual, rsp, rbp);
  3335   // We have a handler in rax (could be deopt blob).
  3336   __ mov(r8, rax);
  3338   // Get the exception oop
  3339   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3340   // Get the exception pc in case we are deoptimized
  3341   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3342 #ifdef ASSERT
  3343   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  3344   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  3345 #endif
  3346   // Clear the exception oop so GC no longer processes it as a root.
  3347   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  3349   // rax: exception oop
  3350   // r8:  exception handler
  3351   // rdx: exception pc
  3352   // Jump to handler
  3354   __ jmp(r8);
  3356   // Make sure all code is generated
  3357   masm->flush();
  3359   // Set exception blob
  3360   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  3362 #endif // COMPILER2

mercurial