src/cpu/x86/vm/c1_LinearScan_x86.cpp

Fri, 26 Jun 2009 07:26:10 -0700

author
twisti
date
Fri, 26 Jun 2009 07:26:10 -0700
changeset 1259
18a08a7e16b5
parent 435
a61af66fc99e
child 1388
ff1a29907b6c
permissions
-rw-r--r--

5057225: Remove useless I2L conversions
Summary: The optimizer should be told to normalize (AndL (ConvI2L x) 0xFF) to (ConvI2L (AndI x 0xFF)), and then the existing matcher rule will work for free.
Reviewed-by: kvn

     1 /*
     2  * Copyright 2005 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_LinearScan_x86.cpp.incl"
    29 //----------------------------------------------------------------------
    30 // Allocation of FPU stack slots (Intel x86 only)
    31 //----------------------------------------------------------------------
    33 void LinearScan::allocate_fpu_stack() {
    34   // First compute which FPU registers are live at the start of each basic block
    35   // (To minimize the amount of work we have to do if we have to merge FPU stacks)
    36   if (ComputeExactFPURegisterUsage) {
    37     Interval* intervals_in_register, *intervals_in_memory;
    38     create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
    40     // ignore memory intervals by overwriting intervals_in_memory
    41     // the dummy interval is needed to enforce the walker to walk until the given id:
    42     // without it, the walker stops when the unhandled-list is empty -> live information
    43     // beyond this point would be incorrect.
    44     Interval* dummy_interval = new Interval(any_reg);
    45     dummy_interval->add_range(max_jint - 2, max_jint - 1);
    46     dummy_interval->set_next(Interval::end());
    47     intervals_in_memory = dummy_interval;
    49     IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
    51     const int num_blocks = block_count();
    52     for (int i = 0; i < num_blocks; i++) {
    53       BlockBegin* b = block_at(i);
    55       // register usage is only needed for merging stacks -> compute only
    56       // when more than one predecessor.
    57       // the block must not have any spill moves at the beginning (checked by assertions)
    58       // spill moves would use intervals that are marked as handled and so the usage bit
    59       // would been set incorrectly
    61       // NOTE: the check for number_of_preds > 1 is necessary. A block with only one
    62       //       predecessor may have spill moves at the begin of the block.
    63       //       If an interval ends at the current instruction id, it is not possible
    64       //       to decide if the register is live or not at the block begin -> the
    65       //       register information would be incorrect.
    66       if (b->number_of_preds() > 1) {
    67         int id = b->first_lir_instruction_id();
    68         BitMap regs(FrameMap::nof_fpu_regs);
    69         regs.clear();
    71         iw.walk_to(id);   // walk after the first instruction (always a label) of the block
    72         assert(iw.current_position() == id, "did not walk completely to id");
    74         // Only consider FPU values in registers
    75         Interval* interval = iw.active_first(fixedKind);
    76         while (interval != Interval::end()) {
    77           int reg = interval->assigned_reg();
    78           assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
    79           assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
    80           assert(interval->from() <= id && id < interval->to(), "interval out of range");
    82 #ifndef PRODUCT
    83           if (TraceFPURegisterUsage) {
    84             tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
    85           }
    86 #endif
    88           regs.set_bit(reg - pd_first_fpu_reg);
    89           interval = interval->next();
    90         }
    92         b->set_fpu_register_usage(regs);
    94 #ifndef PRODUCT
    95         if (TraceFPURegisterUsage) {
    96           tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->print_cr("");
    97         }
    98 #endif
    99       }
   100     }
   101   }
   103   FpuStackAllocator alloc(ir()->compilation(), this);
   104   _fpu_stack_allocator = &alloc;
   105   alloc.allocate();
   106   _fpu_stack_allocator = NULL;
   107 }
   110 FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
   111   : _compilation(compilation)
   112   , _lir(NULL)
   113   , _pos(-1)
   114   , _allocator(allocator)
   115   , _sim(compilation)
   116   , _temp_sim(compilation)
   117 {}
   119 void FpuStackAllocator::allocate() {
   120   int num_blocks = allocator()->block_count();
   121   for (int i = 0; i < num_blocks; i++) {
   122     // Set up to process block
   123     BlockBegin* block = allocator()->block_at(i);
   124     intArray* fpu_stack_state = block->fpu_stack_state();
   126 #ifndef PRODUCT
   127     if (TraceFPUStack) {
   128       tty->cr();
   129       tty->print_cr("------- Begin of new Block %d -------", block->block_id());
   130     }
   131 #endif
   133     assert(fpu_stack_state != NULL ||
   134            block->end()->as_Base() != NULL ||
   135            block->is_set(BlockBegin::exception_entry_flag),
   136            "FPU stack state must be present due to linear-scan order for FPU stack allocation");
   137     // note: exception handler entries always start with an empty fpu stack
   138     //       because stack merging would be too complicated
   140     if (fpu_stack_state != NULL) {
   141       sim()->read_state(fpu_stack_state);
   142     } else {
   143       sim()->clear();
   144     }
   146 #ifndef PRODUCT
   147     if (TraceFPUStack) {
   148       tty->print("Reading FPU state for block %d:", block->block_id());
   149       sim()->print();
   150       tty->cr();
   151     }
   152 #endif
   154     allocate_block(block);
   155     CHECK_BAILOUT();
   156   }
   157 }
   159 void FpuStackAllocator::allocate_block(BlockBegin* block) {
   160   bool processed_merge = false;
   161   LIR_OpList* insts = block->lir()->instructions_list();
   162   set_lir(block->lir());
   163   set_pos(0);
   166   // Note: insts->length() may change during loop
   167   while (pos() < insts->length()) {
   168     LIR_Op* op = insts->at(pos());
   169     _debug_information_computed = false;
   171 #ifndef PRODUCT
   172     if (TraceFPUStack) {
   173       op->print();
   174     }
   175     check_invalid_lir_op(op);
   176 #endif
   178     LIR_OpBranch* branch = op->as_OpBranch();
   179     LIR_Op1* op1 = op->as_Op1();
   180     LIR_Op2* op2 = op->as_Op2();
   181     LIR_OpCall* opCall = op->as_OpCall();
   183     if (branch != NULL && branch->block() != NULL) {
   184       if (!processed_merge) {
   185         // propagate stack at first branch to a successor
   186         processed_merge = true;
   187         bool required_merge = merge_fpu_stack_with_successors(block);
   189         assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
   190       }
   192     } else if (op1 != NULL) {
   193       handle_op1(op1);
   194     } else if (op2 != NULL) {
   195       handle_op2(op2);
   196     } else if (opCall != NULL) {
   197       handle_opCall(opCall);
   198     }
   200     compute_debug_information(op);
   202     set_pos(1 + pos());
   203   }
   205   // Propagate stack when block does not end with branch
   206   if (!processed_merge) {
   207     merge_fpu_stack_with_successors(block);
   208   }
   209 }
   212 void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
   213   if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
   214     visitor.visit(op);
   216     // exception handling
   217     if (allocator()->compilation()->has_exception_handlers()) {
   218       XHandlers* xhandlers = visitor.all_xhandler();
   219       int n = xhandlers->length();
   220       for (int k = 0; k < n; k++) {
   221         allocate_exception_handler(xhandlers->handler_at(k));
   222       }
   223     } else {
   224       assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
   225     }
   227     // compute debug information
   228     int n = visitor.info_count();
   229     assert(n > 0, "should not visit operation otherwise");
   231     for (int j = 0; j < n; j++) {
   232       CodeEmitInfo* info = visitor.info_at(j);
   233       // Compute debug information
   234       allocator()->compute_debug_info(info, op->id());
   235     }
   236   }
   237   _debug_information_computed = true;
   238 }
   240 void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
   241   if (!sim()->is_empty()) {
   242     LIR_List* old_lir = lir();
   243     int old_pos = pos();
   244     intArray* old_state = sim()->write_state();
   246 #ifndef PRODUCT
   247     if (TraceFPUStack) {
   248       tty->cr();
   249       tty->print_cr("------- begin of exception handler -------");
   250     }
   251 #endif
   253     if (xhandler->entry_code() == NULL) {
   254       // need entry code to clear FPU stack
   255       LIR_List* entry_code = new LIR_List(_compilation);
   256       entry_code->jump(xhandler->entry_block());
   257       xhandler->set_entry_code(entry_code);
   258     }
   260     LIR_OpList* insts = xhandler->entry_code()->instructions_list();
   261     set_lir(xhandler->entry_code());
   262     set_pos(0);
   264     // Note: insts->length() may change during loop
   265     while (pos() < insts->length()) {
   266       LIR_Op* op = insts->at(pos());
   268 #ifndef PRODUCT
   269       if (TraceFPUStack) {
   270         op->print();
   271       }
   272       check_invalid_lir_op(op);
   273 #endif
   275       switch (op->code()) {
   276         case lir_move:
   277           assert(op->as_Op1() != NULL, "must be LIR_Op1");
   278           assert(pos() != insts->length() - 1, "must not be last operation");
   280           handle_op1((LIR_Op1*)op);
   281           break;
   283         case lir_branch:
   284           assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
   285           assert(pos() == insts->length() - 1, "must be last operation");
   287           // remove all remaining dead registers from FPU stack
   288           clear_fpu_stack(LIR_OprFact::illegalOpr);
   289           break;
   291         default:
   292           // other operations not allowed in exception entry code
   293           ShouldNotReachHere();
   294       }
   296       set_pos(pos() + 1);
   297     }
   299 #ifndef PRODUCT
   300     if (TraceFPUStack) {
   301       tty->cr();
   302       tty->print_cr("------- end of exception handler -------");
   303     }
   304 #endif
   306     set_lir(old_lir);
   307     set_pos(old_pos);
   308     sim()->read_state(old_state);
   309   }
   310 }
   313 int FpuStackAllocator::fpu_num(LIR_Opr opr) {
   314   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
   315   return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
   316 }
   318 int FpuStackAllocator::tos_offset(LIR_Opr opr) {
   319   return sim()->offset_from_tos(fpu_num(opr));
   320 }
   323 LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
   324   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
   326   int stack_offset = tos_offset(opr);
   327   if (opr->is_single_fpu()) {
   328     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
   329   } else {
   330     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
   331     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
   332   }
   333 }
   335 LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
   336   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
   337   assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
   339   int stack_offset = 0;
   340   if (opr->is_single_fpu()) {
   341     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
   342   } else {
   343     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
   344     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
   345   }
   346 }
   350 void FpuStackAllocator::insert_op(LIR_Op* op) {
   351   lir()->insert_before(pos(), op);
   352   set_pos(1 + pos());
   353 }
   356 void FpuStackAllocator::insert_exchange(int offset) {
   357   if (offset > 0) {
   358     LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
   359     insert_op(fxch_op);
   360     sim()->swap(offset);
   362 #ifndef PRODUCT
   363     if (TraceFPUStack) {
   364       tty->print("Exchanged register: %d         New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
   365     }
   366 #endif
   368   }
   369 }
   371 void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
   372   insert_exchange(tos_offset(opr));
   373 }
   376 void FpuStackAllocator::insert_free(int offset) {
   377   // move stack slot to the top of stack and then pop it
   378   insert_exchange(offset);
   380   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
   381   insert_op(fpop);
   382   sim()->pop();
   384 #ifndef PRODUCT
   385     if (TraceFPUStack) {
   386       tty->print("Inserted pop                   New state: "); sim()->print(); tty->cr();
   387     }
   388 #endif
   389 }
   392 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
   393   if (sim()->contains(fpu_num(opr))) {
   394     int res_slot = tos_offset(opr);
   395     insert_free(res_slot);
   396   }
   397 }
   399 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
   400   if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
   401     int res_slot = tos_offset(opr);
   402     insert_free(res_slot);
   403   }
   404 }
   406 void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
   407   int offset = tos_offset(from);
   408   LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
   409   insert_op(fld);
   411   sim()->push(fpu_num(to));
   413 #ifndef PRODUCT
   414   if (TraceFPUStack) {
   415     tty->print("Inserted copy (%d -> %d)         New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
   416   }
   417 #endif
   418 }
   420 void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
   421   sim()->rename(fpu_num(from), fpu_num(to));
   422 }
   424 void FpuStackAllocator::do_push(LIR_Opr opr) {
   425   sim()->push(fpu_num(opr));
   426 }
   428 void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
   429   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
   430   assert(tos_offset(opr) == 0, "can only pop stack top");
   432   if (opr->is_last_use()) {
   433     op->set_fpu_pop_count(1);
   434     sim()->pop();
   435   }
   436 }
   438 void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
   439   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
   440   assert(tos_offset(opr) == 0, "can only pop stack top");
   442   op->set_fpu_pop_count(1);
   443   sim()->pop();
   444 }
   446 void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
   447   int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
   448   while (sim()->stack_size() > result_stack_size) {
   449     assert(!sim()->slot_is_empty(0), "not allowed");
   451     if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
   452       insert_free(0);
   453     } else {
   454       // move "preserve" to bottom of stack so that all other stack slots can be popped
   455       insert_exchange(sim()->stack_size() - 1);
   456     }
   457   }
   458 }
   461 void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
   462   LIR_Opr in  = op1->in_opr();
   463   LIR_Opr res = op1->result_opr();
   465   LIR_Opr new_in  = in;  // new operands relative to the actual fpu stack top
   466   LIR_Opr new_res = res;
   468   // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
   469   //       so checks for is_float_kind() are necessary inside the cases
   470   switch (op1->code()) {
   472     case lir_return: {
   473       // FPU-Stack must only contain the (optional) fpu return value.
   474       // All remaining dead values are popped from the stack
   475       // If the input operand is a fpu-register, it is exchanged to the bottom of the stack
   477       clear_fpu_stack(in);
   478       if (in->is_fpu_register() && !in->is_xmm_register()) {
   479         new_in = to_fpu_stack_top(in);
   480       }
   482       break;
   483     }
   485     case lir_move: {
   486       if (in->is_fpu_register() && !in->is_xmm_register()) {
   487         if (res->is_xmm_register()) {
   488           // move from fpu register to xmm register (necessary for operations that
   489           // are not available in the SSE instruction set)
   490           insert_exchange(in);
   491           new_in = to_fpu_stack_top(in);
   492           pop_always(op1, in);
   494         } else if (res->is_fpu_register() && !res->is_xmm_register()) {
   495           // move from fpu-register to fpu-register:
   496           // * input and result register equal:
   497           //   nothing to do
   498           // * input register is last use:
   499           //   rename the input register to result register -> input register
   500           //   not present on fpu-stack afterwards
   501           // * input register not last use:
   502           //   duplicate input register to result register to preserve input
   503           //
   504           // Note: The LIR-Assembler does not produce any code for fpu register moves,
   505           //       so input and result stack index must be equal
   507           if (fpu_num(in) == fpu_num(res)) {
   508             // nothing to do
   509           } else if (in->is_last_use()) {
   510             insert_free_if_dead(res);//, in);
   511             do_rename(in, res);
   512           } else {
   513             insert_free_if_dead(res);
   514             insert_copy(in, res);
   515           }
   516           new_in = to_fpu_stack(res);
   517           new_res = new_in;
   519         } else {
   520           // move from fpu-register to memory
   521           // input operand must be on top of stack
   523           insert_exchange(in);
   525           // create debug information here because afterwards the register may have been popped
   526           compute_debug_information(op1);
   528           new_in = to_fpu_stack_top(in);
   529           pop_if_last_use(op1, in);
   530         }
   532       } else if (res->is_fpu_register() && !res->is_xmm_register()) {
   533         // move from memory/constant to fpu register
   534         // result is pushed on the stack
   536         insert_free_if_dead(res);
   538         // create debug information before register is pushed
   539         compute_debug_information(op1);
   541         do_push(res);
   542         new_res = to_fpu_stack_top(res);
   543       }
   544       break;
   545     }
   547     case lir_neg: {
   548       if (in->is_fpu_register() && !in->is_xmm_register()) {
   549         assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
   550         assert(in->is_last_use(), "old value gets destroyed");
   552         insert_free_if_dead(res, in);
   553         insert_exchange(in);
   554         new_in = to_fpu_stack_top(in);
   556         do_rename(in, res);
   557         new_res = to_fpu_stack_top(res);
   558       }
   559       break;
   560     }
   562     case lir_convert: {
   563       Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
   564       switch (bc) {
   565         case Bytecodes::_d2f:
   566         case Bytecodes::_f2d:
   567           assert(res->is_fpu_register(), "must be");
   568           assert(in->is_fpu_register(), "must be");
   570           if (!in->is_xmm_register() && !res->is_xmm_register()) {
   571             // this is quite the same as a move from fpu-register to fpu-register
   572             // Note: input and result operands must have different types
   573             if (fpu_num(in) == fpu_num(res)) {
   574               // nothing to do
   575               new_in = to_fpu_stack(in);
   576             } else if (in->is_last_use()) {
   577               insert_free_if_dead(res);//, in);
   578               new_in = to_fpu_stack(in);
   579               do_rename(in, res);
   580             } else {
   581               insert_free_if_dead(res);
   582               insert_copy(in, res);
   583               new_in = to_fpu_stack_top(in, true);
   584             }
   585             new_res = to_fpu_stack(res);
   586           }
   588           break;
   590         case Bytecodes::_i2f:
   591         case Bytecodes::_l2f:
   592         case Bytecodes::_i2d:
   593         case Bytecodes::_l2d:
   594           assert(res->is_fpu_register(), "must be");
   595           if (!res->is_xmm_register()) {
   596             insert_free_if_dead(res);
   597             do_push(res);
   598             new_res = to_fpu_stack_top(res);
   599           }
   600           break;
   602         case Bytecodes::_f2i:
   603         case Bytecodes::_d2i:
   604           assert(in->is_fpu_register(), "must be");
   605           if (!in->is_xmm_register()) {
   606             insert_exchange(in);
   607             new_in = to_fpu_stack_top(in);
   609             // TODO: update registes of stub
   610           }
   611           break;
   613         case Bytecodes::_f2l:
   614         case Bytecodes::_d2l:
   615           assert(in->is_fpu_register(), "must be");
   616           if (!in->is_xmm_register()) {
   617             insert_exchange(in);
   618             new_in = to_fpu_stack_top(in);
   619             pop_always(op1, in);
   620           }
   621           break;
   623         case Bytecodes::_i2l:
   624         case Bytecodes::_l2i:
   625         case Bytecodes::_i2b:
   626         case Bytecodes::_i2c:
   627         case Bytecodes::_i2s:
   628           // no fpu operands
   629           break;
   631         default:
   632           ShouldNotReachHere();
   633       }
   634       break;
   635     }
   637     case lir_roundfp: {
   638       assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
   639       assert(res->is_stack(), "result must be on stack");
   641       insert_exchange(in);
   642       new_in = to_fpu_stack_top(in);
   643       pop_if_last_use(op1, in);
   644       break;
   645     }
   647     default: {
   648       assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
   649     }
   650   }
   652   op1->set_in_opr(new_in);
   653   op1->set_result_opr(new_res);
   654 }
   656 void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
   657   LIR_Opr left  = op2->in_opr1();
   658   if (!left->is_float_kind()) {
   659     return;
   660   }
   661   if (left->is_xmm_register()) {
   662     return;
   663   }
   665   LIR_Opr right = op2->in_opr2();
   666   LIR_Opr res   = op2->result_opr();
   667   LIR_Opr new_left  = left;  // new operands relative to the actual fpu stack top
   668   LIR_Opr new_right = right;
   669   LIR_Opr new_res   = res;
   671   assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
   673   switch (op2->code()) {
   674     case lir_cmp:
   675     case lir_cmp_fd2i:
   676     case lir_ucmp_fd2i: {
   677       assert(left->is_fpu_register(), "invalid LIR");
   678       assert(right->is_fpu_register(), "invalid LIR");
   680       // the left-hand side must be on top of stack.
   681       // the right-hand side is never popped, even if is_last_use is set
   682       insert_exchange(left);
   683       new_left = to_fpu_stack_top(left);
   684       new_right = to_fpu_stack(right);
   685       pop_if_last_use(op2, left);
   686       break;
   687     }
   689     case lir_mul_strictfp:
   690     case lir_div_strictfp: {
   691       assert(op2->tmp_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
   692       insert_free_if_dead(op2->tmp_opr());
   693       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
   694       // fall-through: continue with the normal handling of lir_mul and lir_div
   695     }
   696     case lir_add:
   697     case lir_sub:
   698     case lir_mul:
   699     case lir_div: {
   700       assert(left->is_fpu_register(), "must be");
   701       assert(res->is_fpu_register(), "must be");
   702       assert(left->is_equal(res), "must be");
   704       // either the left-hand or the right-hand side must be on top of stack
   705       // (if right is not a register, left must be on top)
   706       if (!right->is_fpu_register()) {
   707         insert_exchange(left);
   708         new_left = to_fpu_stack_top(left);
   709       } else {
   710         // no exchange necessary if right is alredy on top of stack
   711         if (tos_offset(right) == 0) {
   712           new_left = to_fpu_stack(left);
   713           new_right = to_fpu_stack_top(right);
   714         } else {
   715           insert_exchange(left);
   716           new_left = to_fpu_stack_top(left);
   717           new_right = to_fpu_stack(right);
   718         }
   720         if (right->is_last_use()) {
   721           op2->set_fpu_pop_count(1);
   723           if (tos_offset(right) == 0) {
   724             sim()->pop();
   725           } else {
   726             // if left is on top of stack, the result is placed in the stack
   727             // slot of right, so a renaming from right to res is necessary
   728             assert(tos_offset(left) == 0, "must be");
   729             sim()->pop();
   730             do_rename(right, res);
   731           }
   732         }
   733       }
   734       new_res = to_fpu_stack(res);
   736       break;
   737     }
   739     case lir_rem: {
   740       assert(left->is_fpu_register(), "must be");
   741       assert(right->is_fpu_register(), "must be");
   742       assert(res->is_fpu_register(), "must be");
   743       assert(left->is_equal(res), "must be");
   745       // Must bring both operands to top of stack with following operand ordering:
   746       // * fpu stack before rem: ... right left
   747       // * fpu stack after rem:  ... left
   748       if (tos_offset(right) != 1) {
   749         insert_exchange(right);
   750         insert_exchange(1);
   751       }
   752       insert_exchange(left);
   753       assert(tos_offset(right) == 1, "check");
   754       assert(tos_offset(left) == 0, "check");
   756       new_left = to_fpu_stack_top(left);
   757       new_right = to_fpu_stack(right);
   759       op2->set_fpu_pop_count(1);
   760       sim()->pop();
   761       do_rename(right, res);
   763       new_res = to_fpu_stack_top(res);
   764       break;
   765     }
   767     case lir_log:
   768     case lir_log10:
   769     case lir_abs:
   770     case lir_sqrt: {
   771       // Right argument appears to be unused
   772       assert(right->is_illegal(), "must be");
   773       assert(left->is_fpu_register(), "must be");
   774       assert(res->is_fpu_register(), "must be");
   775       assert(left->is_last_use(), "old value gets destroyed");
   777       insert_free_if_dead(res, left);
   778       insert_exchange(left);
   779       do_rename(left, res);
   781       new_left = to_fpu_stack_top(res);
   782       new_res = new_left;
   784       op2->set_fpu_stack_size(sim()->stack_size());
   785       break;
   786     }
   789     case lir_tan:
   790     case lir_sin:
   791     case lir_cos: {
   792       // sin and cos need two temporary fpu stack slots, so there are two temporary
   793       // registers (stored in right and temp of the operation).
   794       // the stack allocator must guarantee that the stack slots are really free,
   795       // otherwise there might be a stack overflow.
   796       assert(left->is_fpu_register(), "must be");
   797       assert(res->is_fpu_register(), "must be");
   798       // assert(left->is_last_use(), "old value gets destroyed");
   799       assert(right->is_fpu_register(), "right is used as the first temporary register");
   800       assert(op2->tmp_opr()->is_fpu_register(), "temp is used as the second temporary register");
   801       assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp_opr()) && fpu_num(op2->tmp_opr()) != fpu_num(res), "need distinct temp registers");
   803       insert_free_if_dead(right);
   804       insert_free_if_dead(op2->tmp_opr());
   806       insert_free_if_dead(res, left);
   807       insert_exchange(left);
   808       do_rename(left, res);
   810       new_left = to_fpu_stack_top(res);
   811       new_res = new_left;
   813       op2->set_fpu_stack_size(sim()->stack_size());
   814       assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
   815       break;
   816     }
   818     default: {
   819       assert(false, "missed a fpu-operation");
   820     }
   821   }
   823   op2->set_in_opr1(new_left);
   824   op2->set_in_opr2(new_right);
   825   op2->set_result_opr(new_res);
   826 }
   828 void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
   829   LIR_Opr res = opCall->result_opr();
   831   // clear fpu-stack before call
   832   // it may contain dead values that could not have been remved by previous operations
   833   clear_fpu_stack(LIR_OprFact::illegalOpr);
   834   assert(sim()->is_empty(), "fpu stack must be empty now");
   836   // compute debug information before (possible) fpu result is pushed
   837   compute_debug_information(opCall);
   839   if (res->is_fpu_register() && !res->is_xmm_register()) {
   840     do_push(res);
   841     opCall->set_result_opr(to_fpu_stack_top(res));
   842   }
   843 }
   845 #ifndef PRODUCT
   846 void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
   847   switch (op->code()) {
   848     case lir_24bit_FPU:
   849     case lir_reset_FPU:
   850     case lir_ffree:
   851       assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
   852       break;
   854     case lir_fpop_raw:
   855     case lir_fxch:
   856     case lir_fld:
   857       assert(false, "operations only inserted by FpuStackAllocator");
   858       break;
   859   }
   860 }
   861 #endif
   864 void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
   865   LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
   867   instrs->instructions_list()->push(move);
   869   cur_sim->push(reg);
   870   move->set_result_opr(to_fpu_stack(move->result_opr()));
   872   #ifndef PRODUCT
   873     if (TraceFPUStack) {
   874       tty->print("Added new register: %d         New state: ", reg); cur_sim->print(); tty->cr();
   875     }
   876   #endif
   877 }
   879 void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
   880   assert(slot > 0, "no exchange necessary");
   882   LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
   883   instrs->instructions_list()->push(fxch);
   884   cur_sim->swap(slot);
   886   #ifndef PRODUCT
   887     if (TraceFPUStack) {
   888       tty->print("Exchanged register: %d         New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
   889     }
   890   #endif
   891 }
   893 void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
   894   int reg = cur_sim->get_slot(0);
   896   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
   897   instrs->instructions_list()->push(fpop);
   898   cur_sim->pop(reg);
   900   #ifndef PRODUCT
   901     if (TraceFPUStack) {
   902       tty->print("Removed register: %d           New state: ", reg); cur_sim->print(); tty->cr();
   903     }
   904   #endif
   905 }
   907 bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
   908   int reg = cur_sim->get_slot(change_slot);
   910   for (int slot = start_slot; slot >= 0; slot--) {
   911     int new_reg = sux_sim->get_slot(slot);
   913     if (!cur_sim->contains(new_reg)) {
   914       cur_sim->set_slot(change_slot, new_reg);
   916       #ifndef PRODUCT
   917         if (TraceFPUStack) {
   918           tty->print("Renamed register %d to %d       New state: ", reg, new_reg); cur_sim->print(); tty->cr();
   919         }
   920       #endif
   922       return true;
   923     }
   924   }
   925   return false;
   926 }
   929 void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
   930 #ifndef PRODUCT
   931   if (TraceFPUStack) {
   932     tty->cr();
   933     tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
   934     tty->print("                 sux: "); sux_sim->print(); tty->cr();
   935   }
   937   int slot;
   938   for (slot = 0; slot < cur_sim->stack_size(); slot++) {
   939     assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
   940   }
   941   for (slot = 0; slot < sux_sim->stack_size(); slot++) {
   942     assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
   943   }
   944 #endif
   946   // size difference between cur and sux that must be resolved by adding or removing values form the stack
   947   int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
   949   if (!ComputeExactFPURegisterUsage) {
   950     // add slots that are currently free, but used in successor
   951     // When the exact FPU register usage is computed, the stack does
   952     // not contain dead values at merging -> no values must be added
   954     int sux_slot = sux_sim->stack_size() - 1;
   955     while (size_diff < 0) {
   956       assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
   958       int reg = sux_sim->get_slot(sux_slot);
   959       if (!cur_sim->contains(reg)) {
   960         merge_insert_add(instrs, cur_sim, reg);
   961         size_diff++;
   963         if (sux_slot + size_diff != 0) {
   964           merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
   965         }
   966       }
   967      sux_slot--;
   968     }
   969   }
   971   assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
   972   assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
   974   // stack merge algorithm:
   975   // 1) as long as the current stack top is not in the right location (that meens
   976   //    it should not be on the stack top), exchange it into the right location
   977   // 2) if the stack top is right, but the remaining stack is not ordered correctly,
   978   //    the stack top is exchanged away to get another value on top ->
   979   //    now step 1) can be continued
   980   // the stack can also contain unused items -> these items are removed from stack
   982   int finished_slot = sux_sim->stack_size() - 1;
   983   while (finished_slot >= 0 || size_diff > 0) {
   984     while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
   985       int reg = cur_sim->get_slot(0);
   986       if (sux_sim->contains(reg)) {
   987         int sux_slot = sux_sim->offset_from_tos(reg);
   988         merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
   990       } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
   991         assert(size_diff > 0, "must be");
   993         merge_insert_pop(instrs, cur_sim);
   994         size_diff--;
   995       }
   996       assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
   997     }
   999     while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
  1000       finished_slot--;
  1003     if (finished_slot >= 0) {
  1004       int reg = cur_sim->get_slot(finished_slot);
  1006       if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
  1007         assert(sux_sim->contains(reg) || size_diff > 0, "must be");
  1008         merge_insert_xchg(instrs, cur_sim, finished_slot);
  1010       assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
  1014 #ifndef PRODUCT
  1015   if (TraceFPUStack) {
  1016     tty->print("after merging:  pred: "); cur_sim->print(); tty->cr();
  1017     tty->print("                 sux: "); sux_sim->print(); tty->cr();
  1018     tty->cr();
  1020 #endif
  1021   assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
  1025 void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
  1026 #ifndef PRODUCT
  1027   if (TraceFPUStack) {
  1028     tty->cr();
  1029     tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
  1030     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
  1032 #endif
  1034   int slot = 0;
  1035   while (slot < cur_sim->stack_size()) {
  1036     int reg = cur_sim->get_slot(slot);
  1037     if (!live_fpu_regs.at(reg)) {
  1038       if (slot != 0) {
  1039         merge_insert_xchg(instrs, cur_sim, slot);
  1041       merge_insert_pop(instrs, cur_sim);
  1042     } else {
  1043       slot++;
  1047 #ifndef PRODUCT
  1048   if (TraceFPUStack) {
  1049     tty->print("after cleanup:  state: "); cur_sim->print(); tty->cr();
  1050     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
  1051     tty->cr();
  1054   // check if fpu stack only contains live registers
  1055   for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
  1056     if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
  1057       tty->print_cr("mismatch between required and actual stack content");
  1058       break;
  1061 #endif
  1065 bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
  1066 #ifndef PRODUCT
  1067   if (TraceFPUStack) {
  1068     tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
  1069                   block->block_id(), pos());
  1070     sim()->print();
  1071     tty->cr();
  1073 #endif
  1075   bool changed = false;
  1076   int number_of_sux = block->number_of_sux();
  1078   if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
  1079     // The successor has at least two incoming edges, so a stack merge will be necessary
  1080     // If this block is the first predecessor, cleanup the current stack and propagate it
  1081     // If this block is not the first predecessor, a stack merge will be necessary
  1083     BlockBegin* sux = block->sux_at(0);
  1084     intArray* state = sux->fpu_stack_state();
  1085     LIR_List* instrs = new LIR_List(_compilation);
  1087     if (state != NULL) {
  1088       // Merge with a successors that already has a FPU stack state
  1089       // the block must only have one successor because critical edges must been split
  1090       FpuStackSim* cur_sim = sim();
  1091       FpuStackSim* sux_sim = temp_sim();
  1092       sux_sim->read_state(state);
  1094       merge_fpu_stack(instrs, cur_sim, sux_sim);
  1096     } else {
  1097       // propagate current FPU stack state to successor without state
  1098       // clean up stack first so that there are no dead values on the stack
  1099       if (ComputeExactFPURegisterUsage) {
  1100         FpuStackSim* cur_sim = sim();
  1101         BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
  1102         assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
  1104         merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
  1107       intArray* state = sim()->write_state();
  1108       if (TraceFPUStack) {
  1109         tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
  1110         sim()->print(); tty->cr();
  1112       sux->set_fpu_stack_state(state);
  1115     if (instrs->instructions_list()->length() > 0) {
  1116       lir()->insert_before(pos(), instrs);
  1117       set_pos(instrs->instructions_list()->length() + pos());
  1118       changed = true;
  1121   } else {
  1122     // Propagate unmodified Stack to successors where a stack merge is not necessary
  1123     intArray* state = sim()->write_state();
  1124     for (int i = 0; i < number_of_sux; i++) {
  1125       BlockBegin* sux = block->sux_at(i);
  1127 #ifdef ASSERT
  1128       for (int j = 0; j < sux->number_of_preds(); j++) {
  1129         assert(block == sux->pred_at(j), "all critical edges must be broken");
  1132       // check if new state is same
  1133       if (sux->fpu_stack_state() != NULL) {
  1134         intArray* sux_state = sux->fpu_stack_state();
  1135         assert(state->length() == sux_state->length(), "overwriting existing stack state");
  1136         for (int j = 0; j < state->length(); j++) {
  1137           assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
  1140 #endif
  1141 #ifndef PRODUCT
  1142       if (TraceFPUStack) {
  1143         tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
  1144         sim()->print(); tty->cr();
  1146 #endif
  1148       sux->set_fpu_stack_state(state);
  1152 #ifndef PRODUCT
  1153   // assertions that FPU stack state conforms to all successors' states
  1154   intArray* cur_state = sim()->write_state();
  1155   for (int i = 0; i < number_of_sux; i++) {
  1156     BlockBegin* sux = block->sux_at(i);
  1157     intArray* sux_state = sux->fpu_stack_state();
  1159     assert(sux_state != NULL, "no fpu state");
  1160     assert(cur_state->length() == sux_state->length(), "incorrect length");
  1161     for (int i = 0; i < cur_state->length(); i++) {
  1162       assert(cur_state->at(i) == sux_state->at(i), "element not equal");
  1165 #endif
  1167   return changed;

mercurial