src/cpu/x86/vm/assembler_x86.cpp

Fri, 26 Jun 2009 07:26:10 -0700

author
twisti
date
Fri, 26 Jun 2009 07:26:10 -0700
changeset 1259
18a08a7e16b5
parent 1210
93c14e5562c4
child 1280
df6caf649ff7
permissions
-rw-r--r--

5057225: Remove useless I2L conversions
Summary: The optimizer should be told to normalize (AndL (ConvI2L x) 0xFF) to (ConvI2L (AndI x 0xFF)), and then the existing matcher rule will work for free.
Reviewed-by: kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_x86.cpp.incl"
    28 // Implementation of AddressLiteral
    30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    31   _is_lval = false;
    32   _target = target;
    33   switch (rtype) {
    34   case relocInfo::oop_type:
    35     // Oops are a special case. Normally they would be their own section
    36     // but in cases like icBuffer they are literals in the code stream that
    37     // we don't have a section for. We use none so that we get a literal address
    38     // which is always patchable.
    39     break;
    40   case relocInfo::external_word_type:
    41     _rspec = external_word_Relocation::spec(target);
    42     break;
    43   case relocInfo::internal_word_type:
    44     _rspec = internal_word_Relocation::spec(target);
    45     break;
    46   case relocInfo::opt_virtual_call_type:
    47     _rspec = opt_virtual_call_Relocation::spec();
    48     break;
    49   case relocInfo::static_call_type:
    50     _rspec = static_call_Relocation::spec();
    51     break;
    52   case relocInfo::runtime_call_type:
    53     _rspec = runtime_call_Relocation::spec();
    54     break;
    55   case relocInfo::poll_type:
    56   case relocInfo::poll_return_type:
    57     _rspec = Relocation::spec_simple(rtype);
    58     break;
    59   case relocInfo::none:
    60     break;
    61   default:
    62     ShouldNotReachHere();
    63     break;
    64   }
    65 }
    67 // Implementation of Address
    69 #ifdef _LP64
    71 Address Address::make_array(ArrayAddress adr) {
    72   // Not implementable on 64bit machines
    73   // Should have been handled higher up the call chain.
    74   ShouldNotReachHere();
    75   return Address();
    76 }
    78 // exceedingly dangerous constructor
    79 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    80   _base  = noreg;
    81   _index = noreg;
    82   _scale = no_scale;
    83   _disp  = disp;
    84   switch (rtype) {
    85     case relocInfo::external_word_type:
    86       _rspec = external_word_Relocation::spec(loc);
    87       break;
    88     case relocInfo::internal_word_type:
    89       _rspec = internal_word_Relocation::spec(loc);
    90       break;
    91     case relocInfo::runtime_call_type:
    92       // HMM
    93       _rspec = runtime_call_Relocation::spec();
    94       break;
    95     case relocInfo::poll_type:
    96     case relocInfo::poll_return_type:
    97       _rspec = Relocation::spec_simple(rtype);
    98       break;
    99     case relocInfo::none:
   100       break;
   101     default:
   102       ShouldNotReachHere();
   103   }
   104 }
   105 #else // LP64
   107 Address Address::make_array(ArrayAddress adr) {
   108   AddressLiteral base = adr.base();
   109   Address index = adr.index();
   110   assert(index._disp == 0, "must not have disp"); // maybe it can?
   111   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   112   array._rspec = base._rspec;
   113   return array;
   114 }
   116 // exceedingly dangerous constructor
   117 Address::Address(address loc, RelocationHolder spec) {
   118   _base  = noreg;
   119   _index = noreg;
   120   _scale = no_scale;
   121   _disp  = (intptr_t) loc;
   122   _rspec = spec;
   123 }
   125 #endif // _LP64
   129 // Convert the raw encoding form into the form expected by the constructor for
   130 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   131 // that to noreg for the Address constructor.
   132 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   133   RelocationHolder rspec;
   134   if (disp_is_oop) {
   135     rspec = Relocation::spec_simple(relocInfo::oop_type);
   136   }
   137   bool valid_index = index != rsp->encoding();
   138   if (valid_index) {
   139     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   140     madr._rspec = rspec;
   141     return madr;
   142   } else {
   143     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   144     madr._rspec = rspec;
   145     return madr;
   146   }
   147 }
   149 // Implementation of Assembler
   151 int AbstractAssembler::code_fill_byte() {
   152   return (u_char)'\xF4'; // hlt
   153 }
   155 // make this go away someday
   156 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   157   if (rtype == relocInfo::none)
   158         emit_long(data);
   159   else  emit_data(data, Relocation::spec_simple(rtype), format);
   160 }
   162 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   163   assert(imm_operand == 0, "default format must be immediate in this file");
   164   assert(inst_mark() != NULL, "must be inside InstructionMark");
   165   if (rspec.type() !=  relocInfo::none) {
   166     #ifdef ASSERT
   167       check_relocation(rspec, format);
   168     #endif
   169     // Do not use AbstractAssembler::relocate, which is not intended for
   170     // embedded words.  Instead, relocate to the enclosing instruction.
   172     // hack. call32 is too wide for mask so use disp32
   173     if (format == call32_operand)
   174       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   175     else
   176       code_section()->relocate(inst_mark(), rspec, format);
   177   }
   178   emit_long(data);
   179 }
   181 static int encode(Register r) {
   182   int enc = r->encoding();
   183   if (enc >= 8) {
   184     enc -= 8;
   185   }
   186   return enc;
   187 }
   189 static int encode(XMMRegister r) {
   190   int enc = r->encoding();
   191   if (enc >= 8) {
   192     enc -= 8;
   193   }
   194   return enc;
   195 }
   197 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   198   assert(dst->has_byte_register(), "must have byte register");
   199   assert(isByte(op1) && isByte(op2), "wrong opcode");
   200   assert(isByte(imm8), "not a byte");
   201   assert((op1 & 0x01) == 0, "should be 8bit operation");
   202   emit_byte(op1);
   203   emit_byte(op2 | encode(dst));
   204   emit_byte(imm8);
   205 }
   208 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   209   assert(isByte(op1) && isByte(op2), "wrong opcode");
   210   assert((op1 & 0x01) == 1, "should be 32bit operation");
   211   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   212   if (is8bit(imm32)) {
   213     emit_byte(op1 | 0x02); // set sign bit
   214     emit_byte(op2 | encode(dst));
   215     emit_byte(imm32 & 0xFF);
   216   } else {
   217     emit_byte(op1);
   218     emit_byte(op2 | encode(dst));
   219     emit_long(imm32);
   220   }
   221 }
   223 // immediate-to-memory forms
   224 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   225   assert((op1 & 0x01) == 1, "should be 32bit operation");
   226   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   227   if (is8bit(imm32)) {
   228     emit_byte(op1 | 0x02); // set sign bit
   229     emit_operand(rm, adr, 1);
   230     emit_byte(imm32 & 0xFF);
   231   } else {
   232     emit_byte(op1);
   233     emit_operand(rm, adr, 4);
   234     emit_long(imm32);
   235   }
   236 }
   238 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   239   LP64_ONLY(ShouldNotReachHere());
   240   assert(isByte(op1) && isByte(op2), "wrong opcode");
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   InstructionMark im(this);
   244   emit_byte(op1);
   245   emit_byte(op2 | encode(dst));
   246   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   247 }
   250 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   251   assert(isByte(op1) && isByte(op2), "wrong opcode");
   252   emit_byte(op1);
   253   emit_byte(op2 | encode(dst) << 3 | encode(src));
   254 }
   257 void Assembler::emit_operand(Register reg, Register base, Register index,
   258                              Address::ScaleFactor scale, int disp,
   259                              RelocationHolder const& rspec,
   260                              int rip_relative_correction) {
   261   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   263   // Encode the registers as needed in the fields they are used in
   265   int regenc = encode(reg) << 3;
   266   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   267   int baseenc = base->is_valid() ? encode(base) : 0;
   269   if (base->is_valid()) {
   270     if (index->is_valid()) {
   271       assert(scale != Address::no_scale, "inconsistent address");
   272       // [base + index*scale + disp]
   273       if (disp == 0 && rtype == relocInfo::none  &&
   274           base != rbp LP64_ONLY(&& base != r13)) {
   275         // [base + index*scale]
   276         // [00 reg 100][ss index base]
   277         assert(index != rsp, "illegal addressing mode");
   278         emit_byte(0x04 | regenc);
   279         emit_byte(scale << 6 | indexenc | baseenc);
   280       } else if (is8bit(disp) && rtype == relocInfo::none) {
   281         // [base + index*scale + imm8]
   282         // [01 reg 100][ss index base] imm8
   283         assert(index != rsp, "illegal addressing mode");
   284         emit_byte(0x44 | regenc);
   285         emit_byte(scale << 6 | indexenc | baseenc);
   286         emit_byte(disp & 0xFF);
   287       } else {
   288         // [base + index*scale + disp32]
   289         // [10 reg 100][ss index base] disp32
   290         assert(index != rsp, "illegal addressing mode");
   291         emit_byte(0x84 | regenc);
   292         emit_byte(scale << 6 | indexenc | baseenc);
   293         emit_data(disp, rspec, disp32_operand);
   294       }
   295     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   296       // [rsp + disp]
   297       if (disp == 0 && rtype == relocInfo::none) {
   298         // [rsp]
   299         // [00 reg 100][00 100 100]
   300         emit_byte(0x04 | regenc);
   301         emit_byte(0x24);
   302       } else if (is8bit(disp) && rtype == relocInfo::none) {
   303         // [rsp + imm8]
   304         // [01 reg 100][00 100 100] disp8
   305         emit_byte(0x44 | regenc);
   306         emit_byte(0x24);
   307         emit_byte(disp & 0xFF);
   308       } else {
   309         // [rsp + imm32]
   310         // [10 reg 100][00 100 100] disp32
   311         emit_byte(0x84 | regenc);
   312         emit_byte(0x24);
   313         emit_data(disp, rspec, disp32_operand);
   314       }
   315     } else {
   316       // [base + disp]
   317       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   318       if (disp == 0 && rtype == relocInfo::none &&
   319           base != rbp LP64_ONLY(&& base != r13)) {
   320         // [base]
   321         // [00 reg base]
   322         emit_byte(0x00 | regenc | baseenc);
   323       } else if (is8bit(disp) && rtype == relocInfo::none) {
   324         // [base + disp8]
   325         // [01 reg base] disp8
   326         emit_byte(0x40 | regenc | baseenc);
   327         emit_byte(disp & 0xFF);
   328       } else {
   329         // [base + disp32]
   330         // [10 reg base] disp32
   331         emit_byte(0x80 | regenc | baseenc);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     }
   335   } else {
   336     if (index->is_valid()) {
   337       assert(scale != Address::no_scale, "inconsistent address");
   338       // [index*scale + disp]
   339       // [00 reg 100][ss index 101] disp32
   340       assert(index != rsp, "illegal addressing mode");
   341       emit_byte(0x04 | regenc);
   342       emit_byte(scale << 6 | indexenc | 0x05);
   343       emit_data(disp, rspec, disp32_operand);
   344     } else if (rtype != relocInfo::none ) {
   345       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   346       // [00 000 101] disp32
   348       emit_byte(0x05 | regenc);
   349       // Note that the RIP-rel. correction applies to the generated
   350       // disp field, but _not_ to the target address in the rspec.
   352       // disp was created by converting the target address minus the pc
   353       // at the start of the instruction. That needs more correction here.
   354       // intptr_t disp = target - next_ip;
   355       assert(inst_mark() != NULL, "must be inside InstructionMark");
   356       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   357       int64_t adjusted = disp;
   358       // Do rip-rel adjustment for 64bit
   359       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   360       assert(is_simm32(adjusted),
   361              "must be 32bit offset (RIP relative address)");
   362       emit_data((int32_t) adjusted, rspec, disp32_operand);
   364     } else {
   365       // 32bit never did this, did everything as the rip-rel/disp code above
   366       // [disp] ABSOLUTE
   367       // [00 reg 100][00 100 101] disp32
   368       emit_byte(0x04 | regenc);
   369       emit_byte(0x25);
   370       emit_data(disp, rspec, disp32_operand);
   371     }
   372   }
   373 }
   375 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   376                              Address::ScaleFactor scale, int disp,
   377                              RelocationHolder const& rspec) {
   378   emit_operand((Register)reg, base, index, scale, disp, rspec);
   379 }
   381 // Secret local extension to Assembler::WhichOperand:
   382 #define end_pc_operand (_WhichOperand_limit)
   384 address Assembler::locate_operand(address inst, WhichOperand which) {
   385   // Decode the given instruction, and return the address of
   386   // an embedded 32-bit operand word.
   388   // If "which" is disp32_operand, selects the displacement portion
   389   // of an effective address specifier.
   390   // If "which" is imm64_operand, selects the trailing immediate constant.
   391   // If "which" is call32_operand, selects the displacement of a call or jump.
   392   // Caller is responsible for ensuring that there is such an operand,
   393   // and that it is 32/64 bits wide.
   395   // If "which" is end_pc_operand, find the end of the instruction.
   397   address ip = inst;
   398   bool is_64bit = false;
   400   debug_only(bool has_disp32 = false);
   401   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   403   again_after_prefix:
   404   switch (0xFF & *ip++) {
   406   // These convenience macros generate groups of "case" labels for the switch.
   407 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   408 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   409              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   410 #define REP16(x) REP8((x)+0): \
   411               case REP8((x)+8)
   413   case CS_segment:
   414   case SS_segment:
   415   case DS_segment:
   416   case ES_segment:
   417   case FS_segment:
   418   case GS_segment:
   419     // Seems dubious
   420     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   421     assert(ip == inst+1, "only one prefix allowed");
   422     goto again_after_prefix;
   424   case 0x67:
   425   case REX:
   426   case REX_B:
   427   case REX_X:
   428   case REX_XB:
   429   case REX_R:
   430   case REX_RB:
   431   case REX_RX:
   432   case REX_RXB:
   433     NOT_LP64(assert(false, "64bit prefixes"));
   434     goto again_after_prefix;
   436   case REX_W:
   437   case REX_WB:
   438   case REX_WX:
   439   case REX_WXB:
   440   case REX_WR:
   441   case REX_WRB:
   442   case REX_WRX:
   443   case REX_WRXB:
   444     NOT_LP64(assert(false, "64bit prefixes"));
   445     is_64bit = true;
   446     goto again_after_prefix;
   448   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   449   case 0x88: // movb a, r
   450   case 0x89: // movl a, r
   451   case 0x8A: // movb r, a
   452   case 0x8B: // movl r, a
   453   case 0x8F: // popl a
   454     debug_only(has_disp32 = true);
   455     break;
   457   case 0x68: // pushq #32
   458     if (which == end_pc_operand) {
   459       return ip + 4;
   460     }
   461     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   462     return ip;                  // not produced by emit_operand
   464   case 0x66: // movw ... (size prefix)
   465     again_after_size_prefix2:
   466     switch (0xFF & *ip++) {
   467     case REX:
   468     case REX_B:
   469     case REX_X:
   470     case REX_XB:
   471     case REX_R:
   472     case REX_RB:
   473     case REX_RX:
   474     case REX_RXB:
   475     case REX_W:
   476     case REX_WB:
   477     case REX_WX:
   478     case REX_WXB:
   479     case REX_WR:
   480     case REX_WRB:
   481     case REX_WRX:
   482     case REX_WRXB:
   483       NOT_LP64(assert(false, "64bit prefix found"));
   484       goto again_after_size_prefix2;
   485     case 0x8B: // movw r, a
   486     case 0x89: // movw a, r
   487       debug_only(has_disp32 = true);
   488       break;
   489     case 0xC7: // movw a, #16
   490       debug_only(has_disp32 = true);
   491       tail_size = 2;  // the imm16
   492       break;
   493     case 0x0F: // several SSE/SSE2 variants
   494       ip--;    // reparse the 0x0F
   495       goto again_after_prefix;
   496     default:
   497       ShouldNotReachHere();
   498     }
   499     break;
   501   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   502     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   503     // these asserts are somewhat nonsensical
   504 #ifndef _LP64
   505     assert(which == imm_operand || which == disp32_operand, "");
   506 #else
   507     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   508            which == narrow_oop_operand && !is_64bit, "");
   509 #endif // _LP64
   510     return ip;
   512   case 0x69: // imul r, a, #32
   513   case 0xC7: // movl a, #32(oop?)
   514     tail_size = 4;
   515     debug_only(has_disp32 = true); // has both kinds of operands!
   516     break;
   518   case 0x0F: // movx..., etc.
   519     switch (0xFF & *ip++) {
   520     case 0x12: // movlps
   521     case 0x28: // movaps
   522     case 0x2E: // ucomiss
   523     case 0x2F: // comiss
   524     case 0x54: // andps
   525     case 0x55: // andnps
   526     case 0x56: // orps
   527     case 0x57: // xorps
   528     case 0x6E: // movd
   529     case 0x7E: // movd
   530     case 0xAE: // ldmxcsr   a
   531       // 64bit side says it these have both operands but that doesn't
   532       // appear to be true
   533       debug_only(has_disp32 = true);
   534       break;
   536     case 0xAD: // shrd r, a, %cl
   537     case 0xAF: // imul r, a
   538     case 0xBE: // movsbl r, a (movsxb)
   539     case 0xBF: // movswl r, a (movsxw)
   540     case 0xB6: // movzbl r, a (movzxb)
   541     case 0xB7: // movzwl r, a (movzxw)
   542     case REP16(0x40): // cmovl cc, r, a
   543     case 0xB0: // cmpxchgb
   544     case 0xB1: // cmpxchg
   545     case 0xC1: // xaddl
   546     case 0xC7: // cmpxchg8
   547     case REP16(0x90): // setcc a
   548       debug_only(has_disp32 = true);
   549       // fall out of the switch to decode the address
   550       break;
   552     case 0xAC: // shrd r, a, #8
   553       debug_only(has_disp32 = true);
   554       tail_size = 1;  // the imm8
   555       break;
   557     case REP16(0x80): // jcc rdisp32
   558       if (which == end_pc_operand)  return ip + 4;
   559       assert(which == call32_operand, "jcc has no disp32 or imm");
   560       return ip;
   561     default:
   562       ShouldNotReachHere();
   563     }
   564     break;
   566   case 0x81: // addl a, #32; addl r, #32
   567     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   568     // on 32bit in the case of cmpl, the imm might be an oop
   569     tail_size = 4;
   570     debug_only(has_disp32 = true); // has both kinds of operands!
   571     break;
   573   case 0x83: // addl a, #8; addl r, #8
   574     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   575     debug_only(has_disp32 = true); // has both kinds of operands!
   576     tail_size = 1;
   577     break;
   579   case 0x9B:
   580     switch (0xFF & *ip++) {
   581     case 0xD9: // fnstcw a
   582       debug_only(has_disp32 = true);
   583       break;
   584     default:
   585       ShouldNotReachHere();
   586     }
   587     break;
   589   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   590   case REP4(0x10): // adc...
   591   case REP4(0x20): // and...
   592   case REP4(0x30): // xor...
   593   case REP4(0x08): // or...
   594   case REP4(0x18): // sbb...
   595   case REP4(0x28): // sub...
   596   case 0xF7: // mull a
   597   case 0x8D: // lea r, a
   598   case 0x87: // xchg r, a
   599   case REP4(0x38): // cmp...
   600   case 0x85: // test r, a
   601     debug_only(has_disp32 = true); // has both kinds of operands!
   602     break;
   604   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   605   case 0xC6: // movb a, #8
   606   case 0x80: // cmpb a, #8
   607   case 0x6B: // imul r, a, #8
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     tail_size = 1; // the imm8
   610     break;
   612   case 0xE8: // call rdisp32
   613   case 0xE9: // jmp  rdisp32
   614     if (which == end_pc_operand)  return ip + 4;
   615     assert(which == call32_operand, "call has no disp32 or imm");
   616     return ip;
   618   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   619   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   620   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   621   case 0xDD: // fld_d a; fst_d a; fstp_d a
   622   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   623   case 0xDF: // fild_d a; fistp_d a
   624   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   625   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   626   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   627     debug_only(has_disp32 = true);
   628     break;
   630   case 0xF0:                    // Lock
   631     assert(os::is_MP(), "only on MP");
   632     goto again_after_prefix;
   634   case 0xF3:                    // For SSE
   635   case 0xF2:                    // For SSE2
   636     switch (0xFF & *ip++) {
   637     case REX:
   638     case REX_B:
   639     case REX_X:
   640     case REX_XB:
   641     case REX_R:
   642     case REX_RB:
   643     case REX_RX:
   644     case REX_RXB:
   645     case REX_W:
   646     case REX_WB:
   647     case REX_WX:
   648     case REX_WXB:
   649     case REX_WR:
   650     case REX_WRB:
   651     case REX_WRX:
   652     case REX_WRXB:
   653       NOT_LP64(assert(false, "found 64bit prefix"));
   654       ip++;
   655     default:
   656       ip++;
   657     }
   658     debug_only(has_disp32 = true); // has both kinds of operands!
   659     break;
   661   default:
   662     ShouldNotReachHere();
   664 #undef REP8
   665 #undef REP16
   666   }
   668   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   669 #ifdef _LP64
   670   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   671 #else
   672   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   673   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   674 #endif // LP64
   675   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   677   // parse the output of emit_operand
   678   int op2 = 0xFF & *ip++;
   679   int base = op2 & 0x07;
   680   int op3 = -1;
   681   const int b100 = 4;
   682   const int b101 = 5;
   683   if (base == b100 && (op2 >> 6) != 3) {
   684     op3 = 0xFF & *ip++;
   685     base = op3 & 0x07;   // refetch the base
   686   }
   687   // now ip points at the disp (if any)
   689   switch (op2 >> 6) {
   690   case 0:
   691     // [00 reg  100][ss index base]
   692     // [00 reg  100][00   100  esp]
   693     // [00 reg base]
   694     // [00 reg  100][ss index  101][disp32]
   695     // [00 reg  101]               [disp32]
   697     if (base == b101) {
   698       if (which == disp32_operand)
   699         return ip;              // caller wants the disp32
   700       ip += 4;                  // skip the disp32
   701     }
   702     break;
   704   case 1:
   705     // [01 reg  100][ss index base][disp8]
   706     // [01 reg  100][00   100  esp][disp8]
   707     // [01 reg base]               [disp8]
   708     ip += 1;                    // skip the disp8
   709     break;
   711   case 2:
   712     // [10 reg  100][ss index base][disp32]
   713     // [10 reg  100][00   100  esp][disp32]
   714     // [10 reg base]               [disp32]
   715     if (which == disp32_operand)
   716       return ip;                // caller wants the disp32
   717     ip += 4;                    // skip the disp32
   718     break;
   720   case 3:
   721     // [11 reg base]  (not a memory addressing mode)
   722     break;
   723   }
   725   if (which == end_pc_operand) {
   726     return ip + tail_size;
   727   }
   729 #ifdef _LP64
   730   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   731 #else
   732   assert(which == imm_operand, "instruction has only an imm field");
   733 #endif // LP64
   734   return ip;
   735 }
   737 address Assembler::locate_next_instruction(address inst) {
   738   // Secretly share code with locate_operand:
   739   return locate_operand(inst, end_pc_operand);
   740 }
   743 #ifdef ASSERT
   744 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   745   address inst = inst_mark();
   746   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   747   address opnd;
   749   Relocation* r = rspec.reloc();
   750   if (r->type() == relocInfo::none) {
   751     return;
   752   } else if (r->is_call() || format == call32_operand) {
   753     // assert(format == imm32_operand, "cannot specify a nonzero format");
   754     opnd = locate_operand(inst, call32_operand);
   755   } else if (r->is_data()) {
   756     assert(format == imm_operand || format == disp32_operand
   757            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   758     opnd = locate_operand(inst, (WhichOperand)format);
   759   } else {
   760     assert(format == imm_operand, "cannot specify a format");
   761     return;
   762   }
   763   assert(opnd == pc(), "must put operand where relocs can find it");
   764 }
   765 #endif // ASSERT
   767 void Assembler::emit_operand32(Register reg, Address adr) {
   768   assert(reg->encoding() < 8, "no extended registers");
   769   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   770   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   771                adr._rspec);
   772 }
   774 void Assembler::emit_operand(Register reg, Address adr,
   775                              int rip_relative_correction) {
   776   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   777                adr._rspec,
   778                rip_relative_correction);
   779 }
   781 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   782   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   783                adr._rspec);
   784 }
   786 // MMX operations
   787 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   788   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   789   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   790 }
   792 // work around gcc (3.2.1-7a) bug
   793 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   794   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   795   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   796 }
   799 void Assembler::emit_farith(int b1, int b2, int i) {
   800   assert(isByte(b1) && isByte(b2), "wrong opcode");
   801   assert(0 <= i &&  i < 8, "illegal stack offset");
   802   emit_byte(b1);
   803   emit_byte(b2 + i);
   804 }
   807 // Now the Assembler instruction (identical for 32/64 bits)
   809 void Assembler::adcl(Register dst, int32_t imm32) {
   810   prefix(dst);
   811   emit_arith(0x81, 0xD0, dst, imm32);
   812 }
   814 void Assembler::adcl(Register dst, Address src) {
   815   InstructionMark im(this);
   816   prefix(src, dst);
   817   emit_byte(0x13);
   818   emit_operand(dst, src);
   819 }
   821 void Assembler::adcl(Register dst, Register src) {
   822   (void) prefix_and_encode(dst->encoding(), src->encoding());
   823   emit_arith(0x13, 0xC0, dst, src);
   824 }
   826 void Assembler::addl(Address dst, int32_t imm32) {
   827   InstructionMark im(this);
   828   prefix(dst);
   829   emit_arith_operand(0x81, rax, dst, imm32);
   830 }
   832 void Assembler::addl(Address dst, Register src) {
   833   InstructionMark im(this);
   834   prefix(dst, src);
   835   emit_byte(0x01);
   836   emit_operand(src, dst);
   837 }
   839 void Assembler::addl(Register dst, int32_t imm32) {
   840   prefix(dst);
   841   emit_arith(0x81, 0xC0, dst, imm32);
   842 }
   844 void Assembler::addl(Register dst, Address src) {
   845   InstructionMark im(this);
   846   prefix(src, dst);
   847   emit_byte(0x03);
   848   emit_operand(dst, src);
   849 }
   851 void Assembler::addl(Register dst, Register src) {
   852   (void) prefix_and_encode(dst->encoding(), src->encoding());
   853   emit_arith(0x03, 0xC0, dst, src);
   854 }
   856 void Assembler::addr_nop_4() {
   857   // 4 bytes: NOP DWORD PTR [EAX+0]
   858   emit_byte(0x0F);
   859   emit_byte(0x1F);
   860   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   861   emit_byte(0);    // 8-bits offset (1 byte)
   862 }
   864 void Assembler::addr_nop_5() {
   865   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   866   emit_byte(0x0F);
   867   emit_byte(0x1F);
   868   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   869   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   870   emit_byte(0);    // 8-bits offset (1 byte)
   871 }
   873 void Assembler::addr_nop_7() {
   874   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   875   emit_byte(0x0F);
   876   emit_byte(0x1F);
   877   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   878   emit_long(0);    // 32-bits offset (4 bytes)
   879 }
   881 void Assembler::addr_nop_8() {
   882   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   883   emit_byte(0x0F);
   884   emit_byte(0x1F);
   885   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   886   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   887   emit_long(0);    // 32-bits offset (4 bytes)
   888 }
   890 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   891   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   892   emit_byte(0xF2);
   893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   894   emit_byte(0x0F);
   895   emit_byte(0x58);
   896   emit_byte(0xC0 | encode);
   897 }
   899 void Assembler::addsd(XMMRegister dst, Address src) {
   900   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   901   InstructionMark im(this);
   902   emit_byte(0xF2);
   903   prefix(src, dst);
   904   emit_byte(0x0F);
   905   emit_byte(0x58);
   906   emit_operand(dst, src);
   907 }
   909 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   911   emit_byte(0xF3);
   912   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_byte(0x0F);
   914   emit_byte(0x58);
   915   emit_byte(0xC0 | encode);
   916 }
   918 void Assembler::addss(XMMRegister dst, Address src) {
   919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   920   InstructionMark im(this);
   921   emit_byte(0xF3);
   922   prefix(src, dst);
   923   emit_byte(0x0F);
   924   emit_byte(0x58);
   925   emit_operand(dst, src);
   926 }
   928 void Assembler::andl(Register dst, int32_t imm32) {
   929   prefix(dst);
   930   emit_arith(0x81, 0xE0, dst, imm32);
   931 }
   933 void Assembler::andl(Register dst, Address src) {
   934   InstructionMark im(this);
   935   prefix(src, dst);
   936   emit_byte(0x23);
   937   emit_operand(dst, src);
   938 }
   940 void Assembler::andl(Register dst, Register src) {
   941   (void) prefix_and_encode(dst->encoding(), src->encoding());
   942   emit_arith(0x23, 0xC0, dst, src);
   943 }
   945 void Assembler::andpd(XMMRegister dst, Address src) {
   946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   947   InstructionMark im(this);
   948   emit_byte(0x66);
   949   prefix(src, dst);
   950   emit_byte(0x0F);
   951   emit_byte(0x54);
   952   emit_operand(dst, src);
   953 }
   955 void Assembler::bsfl(Register dst, Register src) {
   956   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   957   emit_byte(0x0F);
   958   emit_byte(0xBC);
   959   emit_byte(0xC0 | encode);
   960 }
   962 void Assembler::bsrl(Register dst, Register src) {
   963   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
   964   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   965   emit_byte(0x0F);
   966   emit_byte(0xBD);
   967   emit_byte(0xC0 | encode);
   968 }
   970 void Assembler::bswapl(Register reg) { // bswap
   971   int encode = prefix_and_encode(reg->encoding());
   972   emit_byte(0x0F);
   973   emit_byte(0xC8 | encode);
   974 }
   976 void Assembler::call(Label& L, relocInfo::relocType rtype) {
   977   // suspect disp32 is always good
   978   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
   980   if (L.is_bound()) {
   981     const int long_size = 5;
   982     int offs = (int)( target(L) - pc() );
   983     assert(offs <= 0, "assembler error");
   984     InstructionMark im(this);
   985     // 1110 1000 #32-bit disp
   986     emit_byte(0xE8);
   987     emit_data(offs - long_size, rtype, operand);
   988   } else {
   989     InstructionMark im(this);
   990     // 1110 1000 #32-bit disp
   991     L.add_patch_at(code(), locator());
   993     emit_byte(0xE8);
   994     emit_data(int(0), rtype, operand);
   995   }
   996 }
   998 void Assembler::call(Register dst) {
   999   // This was originally using a 32bit register encoding
  1000   // and surely we want 64bit!
  1001   // this is a 32bit encoding but in 64bit mode the default
  1002   // operand size is 64bit so there is no need for the
  1003   // wide prefix. So prefix only happens if we use the
  1004   // new registers. Much like push/pop.
  1005   int x = offset();
  1006   // this may be true but dbx disassembles it as if it
  1007   // were 32bits...
  1008   // int encode = prefix_and_encode(dst->encoding());
  1009   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  1010   int encode = prefixq_and_encode(dst->encoding());
  1012   emit_byte(0xFF);
  1013   emit_byte(0xD0 | encode);
  1017 void Assembler::call(Address adr) {
  1018   InstructionMark im(this);
  1019   prefix(adr);
  1020   emit_byte(0xFF);
  1021   emit_operand(rdx, adr);
  1024 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1025   assert(entry != NULL, "call most probably wrong");
  1026   InstructionMark im(this);
  1027   emit_byte(0xE8);
  1028   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1029   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1030   // Technically, should use call32_operand, but this format is
  1031   // implied by the fact that we're emitting a call instruction.
  1033   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1034   emit_data((int) disp, rspec, operand);
  1037 void Assembler::cdql() {
  1038   emit_byte(0x99);
  1041 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1042   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1043   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1044   emit_byte(0x0F);
  1045   emit_byte(0x40 | cc);
  1046   emit_byte(0xC0 | encode);
  1050 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1051   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1052   prefix(src, dst);
  1053   emit_byte(0x0F);
  1054   emit_byte(0x40 | cc);
  1055   emit_operand(dst, src);
  1058 void Assembler::cmpb(Address dst, int imm8) {
  1059   InstructionMark im(this);
  1060   prefix(dst);
  1061   emit_byte(0x80);
  1062   emit_operand(rdi, dst, 1);
  1063   emit_byte(imm8);
  1066 void Assembler::cmpl(Address dst, int32_t imm32) {
  1067   InstructionMark im(this);
  1068   prefix(dst);
  1069   emit_byte(0x81);
  1070   emit_operand(rdi, dst, 4);
  1071   emit_long(imm32);
  1074 void Assembler::cmpl(Register dst, int32_t imm32) {
  1075   prefix(dst);
  1076   emit_arith(0x81, 0xF8, dst, imm32);
  1079 void Assembler::cmpl(Register dst, Register src) {
  1080   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1081   emit_arith(0x3B, 0xC0, dst, src);
  1085 void Assembler::cmpl(Register dst, Address  src) {
  1086   InstructionMark im(this);
  1087   prefix(src, dst);
  1088   emit_byte(0x3B);
  1089   emit_operand(dst, src);
  1092 void Assembler::cmpw(Address dst, int imm16) {
  1093   InstructionMark im(this);
  1094   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1095   emit_byte(0x66);
  1096   emit_byte(0x81);
  1097   emit_operand(rdi, dst, 2);
  1098   emit_word(imm16);
  1101 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1102 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1103 // The ZF is set if the compared values were equal, and cleared otherwise.
  1104 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1105   if (Atomics & 2) {
  1106      // caveat: no instructionmark, so this isn't relocatable.
  1107      // Emit a synthetic, non-atomic, CAS equivalent.
  1108      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1109      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1110      cmpl(rax, adr);
  1111      movl(rax, adr);
  1112      if (reg != rax) {
  1113         Label L ;
  1114         jcc(Assembler::notEqual, L);
  1115         movl(adr, reg);
  1116         bind(L);
  1118   } else {
  1119      InstructionMark im(this);
  1120      prefix(adr, reg);
  1121      emit_byte(0x0F);
  1122      emit_byte(0xB1);
  1123      emit_operand(reg, adr);
  1127 void Assembler::comisd(XMMRegister dst, Address src) {
  1128   // NOTE: dbx seems to decode this as comiss even though the
  1129   // 0x66 is there. Strangly ucomisd comes out correct
  1130   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1131   emit_byte(0x66);
  1132   comiss(dst, src);
  1135 void Assembler::comiss(XMMRegister dst, Address src) {
  1136   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1138   InstructionMark im(this);
  1139   prefix(src, dst);
  1140   emit_byte(0x0F);
  1141   emit_byte(0x2F);
  1142   emit_operand(dst, src);
  1145 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1147   emit_byte(0xF3);
  1148   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1149   emit_byte(0x0F);
  1150   emit_byte(0xE6);
  1151   emit_byte(0xC0 | encode);
  1154 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1156   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1157   emit_byte(0x0F);
  1158   emit_byte(0x5B);
  1159   emit_byte(0xC0 | encode);
  1162 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1163   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1164   emit_byte(0xF2);
  1165   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1166   emit_byte(0x0F);
  1167   emit_byte(0x5A);
  1168   emit_byte(0xC0 | encode);
  1171 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1172   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1173   emit_byte(0xF2);
  1174   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1175   emit_byte(0x0F);
  1176   emit_byte(0x2A);
  1177   emit_byte(0xC0 | encode);
  1180 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1181   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1182   emit_byte(0xF3);
  1183   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1184   emit_byte(0x0F);
  1185   emit_byte(0x2A);
  1186   emit_byte(0xC0 | encode);
  1189 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1190   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1191   emit_byte(0xF3);
  1192   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1193   emit_byte(0x0F);
  1194   emit_byte(0x5A);
  1195   emit_byte(0xC0 | encode);
  1198 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1200   emit_byte(0xF2);
  1201   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1202   emit_byte(0x0F);
  1203   emit_byte(0x2C);
  1204   emit_byte(0xC0 | encode);
  1207 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1208   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1209   emit_byte(0xF3);
  1210   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1211   emit_byte(0x0F);
  1212   emit_byte(0x2C);
  1213   emit_byte(0xC0 | encode);
  1216 void Assembler::decl(Address dst) {
  1217   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1218   InstructionMark im(this);
  1219   prefix(dst);
  1220   emit_byte(0xFF);
  1221   emit_operand(rcx, dst);
  1224 void Assembler::divsd(XMMRegister dst, Address src) {
  1225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1226   InstructionMark im(this);
  1227   emit_byte(0xF2);
  1228   prefix(src, dst);
  1229   emit_byte(0x0F);
  1230   emit_byte(0x5E);
  1231   emit_operand(dst, src);
  1234 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1235   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1236   emit_byte(0xF2);
  1237   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1238   emit_byte(0x0F);
  1239   emit_byte(0x5E);
  1240   emit_byte(0xC0 | encode);
  1243 void Assembler::divss(XMMRegister dst, Address src) {
  1244   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1245   InstructionMark im(this);
  1246   emit_byte(0xF3);
  1247   prefix(src, dst);
  1248   emit_byte(0x0F);
  1249   emit_byte(0x5E);
  1250   emit_operand(dst, src);
  1253 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1255   emit_byte(0xF3);
  1256   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1257   emit_byte(0x0F);
  1258   emit_byte(0x5E);
  1259   emit_byte(0xC0 | encode);
  1262 void Assembler::emms() {
  1263   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1264   emit_byte(0x0F);
  1265   emit_byte(0x77);
  1268 void Assembler::hlt() {
  1269   emit_byte(0xF4);
  1272 void Assembler::idivl(Register src) {
  1273   int encode = prefix_and_encode(src->encoding());
  1274   emit_byte(0xF7);
  1275   emit_byte(0xF8 | encode);
  1278 void Assembler::imull(Register dst, Register src) {
  1279   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1280   emit_byte(0x0F);
  1281   emit_byte(0xAF);
  1282   emit_byte(0xC0 | encode);
  1286 void Assembler::imull(Register dst, Register src, int value) {
  1287   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1288   if (is8bit(value)) {
  1289     emit_byte(0x6B);
  1290     emit_byte(0xC0 | encode);
  1291     emit_byte(value);
  1292   } else {
  1293     emit_byte(0x69);
  1294     emit_byte(0xC0 | encode);
  1295     emit_long(value);
  1299 void Assembler::incl(Address dst) {
  1300   // Don't use it directly. Use MacroAssembler::increment() instead.
  1301   InstructionMark im(this);
  1302   prefix(dst);
  1303   emit_byte(0xFF);
  1304   emit_operand(rax, dst);
  1307 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1308   InstructionMark im(this);
  1309   relocate(rtype);
  1310   assert((0 <= cc) && (cc < 16), "illegal cc");
  1311   if (L.is_bound()) {
  1312     address dst = target(L);
  1313     assert(dst != NULL, "jcc most probably wrong");
  1315     const int short_size = 2;
  1316     const int long_size = 6;
  1317     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1318     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1319       // 0111 tttn #8-bit disp
  1320       emit_byte(0x70 | cc);
  1321       emit_byte((offs - short_size) & 0xFF);
  1322     } else {
  1323       // 0000 1111 1000 tttn #32-bit disp
  1324       assert(is_simm32(offs - long_size),
  1325              "must be 32bit offset (call4)");
  1326       emit_byte(0x0F);
  1327       emit_byte(0x80 | cc);
  1328       emit_long(offs - long_size);
  1330   } else {
  1331     // Note: could eliminate cond. jumps to this jump if condition
  1332     //       is the same however, seems to be rather unlikely case.
  1333     // Note: use jccb() if label to be bound is very close to get
  1334     //       an 8-bit displacement
  1335     L.add_patch_at(code(), locator());
  1336     emit_byte(0x0F);
  1337     emit_byte(0x80 | cc);
  1338     emit_long(0);
  1342 void Assembler::jccb(Condition cc, Label& L) {
  1343   if (L.is_bound()) {
  1344     const int short_size = 2;
  1345     address entry = target(L);
  1346     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1347            "Dispacement too large for a short jmp");
  1348     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1349     // 0111 tttn #8-bit disp
  1350     emit_byte(0x70 | cc);
  1351     emit_byte((offs - short_size) & 0xFF);
  1352   } else {
  1353     InstructionMark im(this);
  1354     L.add_patch_at(code(), locator());
  1355     emit_byte(0x70 | cc);
  1356     emit_byte(0);
  1360 void Assembler::jmp(Address adr) {
  1361   InstructionMark im(this);
  1362   prefix(adr);
  1363   emit_byte(0xFF);
  1364   emit_operand(rsp, adr);
  1367 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1368   if (L.is_bound()) {
  1369     address entry = target(L);
  1370     assert(entry != NULL, "jmp most probably wrong");
  1371     InstructionMark im(this);
  1372     const int short_size = 2;
  1373     const int long_size = 5;
  1374     intptr_t offs = entry - _code_pos;
  1375     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1376       emit_byte(0xEB);
  1377       emit_byte((offs - short_size) & 0xFF);
  1378     } else {
  1379       emit_byte(0xE9);
  1380       emit_long(offs - long_size);
  1382   } else {
  1383     // By default, forward jumps are always 32-bit displacements, since
  1384     // we can't yet know where the label will be bound.  If you're sure that
  1385     // the forward jump will not run beyond 256 bytes, use jmpb to
  1386     // force an 8-bit displacement.
  1387     InstructionMark im(this);
  1388     relocate(rtype);
  1389     L.add_patch_at(code(), locator());
  1390     emit_byte(0xE9);
  1391     emit_long(0);
  1395 void Assembler::jmp(Register entry) {
  1396   int encode = prefix_and_encode(entry->encoding());
  1397   emit_byte(0xFF);
  1398   emit_byte(0xE0 | encode);
  1401 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1402   InstructionMark im(this);
  1403   emit_byte(0xE9);
  1404   assert(dest != NULL, "must have a target");
  1405   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1406   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1407   emit_data(disp, rspec.reloc(), call32_operand);
  1410 void Assembler::jmpb(Label& L) {
  1411   if (L.is_bound()) {
  1412     const int short_size = 2;
  1413     address entry = target(L);
  1414     assert(is8bit((entry - _code_pos) + short_size),
  1415            "Dispacement too large for a short jmp");
  1416     assert(entry != NULL, "jmp most probably wrong");
  1417     intptr_t offs = entry - _code_pos;
  1418     emit_byte(0xEB);
  1419     emit_byte((offs - short_size) & 0xFF);
  1420   } else {
  1421     InstructionMark im(this);
  1422     L.add_patch_at(code(), locator());
  1423     emit_byte(0xEB);
  1424     emit_byte(0);
  1428 void Assembler::ldmxcsr( Address src) {
  1429   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1430   InstructionMark im(this);
  1431   prefix(src);
  1432   emit_byte(0x0F);
  1433   emit_byte(0xAE);
  1434   emit_operand(as_Register(2), src);
  1437 void Assembler::leal(Register dst, Address src) {
  1438   InstructionMark im(this);
  1439 #ifdef _LP64
  1440   emit_byte(0x67); // addr32
  1441   prefix(src, dst);
  1442 #endif // LP64
  1443   emit_byte(0x8D);
  1444   emit_operand(dst, src);
  1447 void Assembler::lock() {
  1448   if (Atomics & 1) {
  1449      // Emit either nothing, a NOP, or a NOP: prefix
  1450      emit_byte(0x90) ;
  1451   } else {
  1452      emit_byte(0xF0);
  1456 void Assembler::lzcntl(Register dst, Register src) {
  1457   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1458   emit_byte(0xF3);
  1459   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1460   emit_byte(0x0F);
  1461   emit_byte(0xBD);
  1462   emit_byte(0xC0 | encode);
  1465 // Emit mfence instruction
  1466 void Assembler::mfence() {
  1467   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1468   emit_byte( 0x0F );
  1469   emit_byte( 0xAE );
  1470   emit_byte( 0xF0 );
  1473 void Assembler::mov(Register dst, Register src) {
  1474   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1477 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1479   int dstenc = dst->encoding();
  1480   int srcenc = src->encoding();
  1481   emit_byte(0x66);
  1482   if (dstenc < 8) {
  1483     if (srcenc >= 8) {
  1484       prefix(REX_B);
  1485       srcenc -= 8;
  1487   } else {
  1488     if (srcenc < 8) {
  1489       prefix(REX_R);
  1490     } else {
  1491       prefix(REX_RB);
  1492       srcenc -= 8;
  1494     dstenc -= 8;
  1496   emit_byte(0x0F);
  1497   emit_byte(0x28);
  1498   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1501 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1502   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1503   int dstenc = dst->encoding();
  1504   int srcenc = src->encoding();
  1505   if (dstenc < 8) {
  1506     if (srcenc >= 8) {
  1507       prefix(REX_B);
  1508       srcenc -= 8;
  1510   } else {
  1511     if (srcenc < 8) {
  1512       prefix(REX_R);
  1513     } else {
  1514       prefix(REX_RB);
  1515       srcenc -= 8;
  1517     dstenc -= 8;
  1519   emit_byte(0x0F);
  1520   emit_byte(0x28);
  1521   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1524 void Assembler::movb(Register dst, Address src) {
  1525   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1526   InstructionMark im(this);
  1527   prefix(src, dst, true);
  1528   emit_byte(0x8A);
  1529   emit_operand(dst, src);
  1533 void Assembler::movb(Address dst, int imm8) {
  1534   InstructionMark im(this);
  1535    prefix(dst);
  1536   emit_byte(0xC6);
  1537   emit_operand(rax, dst, 1);
  1538   emit_byte(imm8);
  1542 void Assembler::movb(Address dst, Register src) {
  1543   assert(src->has_byte_register(), "must have byte register");
  1544   InstructionMark im(this);
  1545   prefix(dst, src, true);
  1546   emit_byte(0x88);
  1547   emit_operand(src, dst);
  1550 void Assembler::movdl(XMMRegister dst, Register src) {
  1551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1552   emit_byte(0x66);
  1553   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1554   emit_byte(0x0F);
  1555   emit_byte(0x6E);
  1556   emit_byte(0xC0 | encode);
  1559 void Assembler::movdl(Register dst, XMMRegister src) {
  1560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1561   emit_byte(0x66);
  1562   // swap src/dst to get correct prefix
  1563   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1564   emit_byte(0x0F);
  1565   emit_byte(0x7E);
  1566   emit_byte(0xC0 | encode);
  1569 void Assembler::movdqa(XMMRegister dst, Address src) {
  1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1571   InstructionMark im(this);
  1572   emit_byte(0x66);
  1573   prefix(src, dst);
  1574   emit_byte(0x0F);
  1575   emit_byte(0x6F);
  1576   emit_operand(dst, src);
  1579 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1580   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1581   emit_byte(0x66);
  1582   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1583   emit_byte(0x0F);
  1584   emit_byte(0x6F);
  1585   emit_byte(0xC0 | encode);
  1588 void Assembler::movdqa(Address dst, XMMRegister src) {
  1589   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1590   InstructionMark im(this);
  1591   emit_byte(0x66);
  1592   prefix(dst, src);
  1593   emit_byte(0x0F);
  1594   emit_byte(0x7F);
  1595   emit_operand(src, dst);
  1598 void Assembler::movdqu(XMMRegister dst, Address src) {
  1599   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1600   InstructionMark im(this);
  1601   emit_byte(0xF3);
  1602   prefix(src, dst);
  1603   emit_byte(0x0F);
  1604   emit_byte(0x6F);
  1605   emit_operand(dst, src);
  1608 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1610   emit_byte(0xF3);
  1611   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1612   emit_byte(0x0F);
  1613   emit_byte(0x6F);
  1614   emit_byte(0xC0 | encode);
  1617 void Assembler::movdqu(Address dst, XMMRegister src) {
  1618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1619   InstructionMark im(this);
  1620   emit_byte(0xF3);
  1621   prefix(dst, src);
  1622   emit_byte(0x0F);
  1623   emit_byte(0x7F);
  1624   emit_operand(src, dst);
  1627 // Uses zero extension on 64bit
  1629 void Assembler::movl(Register dst, int32_t imm32) {
  1630   int encode = prefix_and_encode(dst->encoding());
  1631   emit_byte(0xB8 | encode);
  1632   emit_long(imm32);
  1635 void Assembler::movl(Register dst, Register src) {
  1636   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1637   emit_byte(0x8B);
  1638   emit_byte(0xC0 | encode);
  1641 void Assembler::movl(Register dst, Address src) {
  1642   InstructionMark im(this);
  1643   prefix(src, dst);
  1644   emit_byte(0x8B);
  1645   emit_operand(dst, src);
  1648 void Assembler::movl(Address dst, int32_t imm32) {
  1649   InstructionMark im(this);
  1650   prefix(dst);
  1651   emit_byte(0xC7);
  1652   emit_operand(rax, dst, 4);
  1653   emit_long(imm32);
  1656 void Assembler::movl(Address dst, Register src) {
  1657   InstructionMark im(this);
  1658   prefix(dst, src);
  1659   emit_byte(0x89);
  1660   emit_operand(src, dst);
  1663 // New cpus require to use movsd and movss to avoid partial register stall
  1664 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1665 // The selection is done in MacroAssembler::movdbl() and movflt().
  1666 void Assembler::movlpd(XMMRegister dst, Address src) {
  1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1668   InstructionMark im(this);
  1669   emit_byte(0x66);
  1670   prefix(src, dst);
  1671   emit_byte(0x0F);
  1672   emit_byte(0x12);
  1673   emit_operand(dst, src);
  1676 void Assembler::movq( MMXRegister dst, Address src ) {
  1677   assert( VM_Version::supports_mmx(), "" );
  1678   emit_byte(0x0F);
  1679   emit_byte(0x6F);
  1680   emit_operand(dst, src);
  1683 void Assembler::movq( Address dst, MMXRegister src ) {
  1684   assert( VM_Version::supports_mmx(), "" );
  1685   emit_byte(0x0F);
  1686   emit_byte(0x7F);
  1687   // workaround gcc (3.2.1-7a) bug
  1688   // In that version of gcc with only an emit_operand(MMX, Address)
  1689   // gcc will tail jump and try and reverse the parameters completely
  1690   // obliterating dst in the process. By having a version available
  1691   // that doesn't need to swap the args at the tail jump the bug is
  1692   // avoided.
  1693   emit_operand(dst, src);
  1696 void Assembler::movq(XMMRegister dst, Address src) {
  1697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1698   InstructionMark im(this);
  1699   emit_byte(0xF3);
  1700   prefix(src, dst);
  1701   emit_byte(0x0F);
  1702   emit_byte(0x7E);
  1703   emit_operand(dst, src);
  1706 void Assembler::movq(Address dst, XMMRegister src) {
  1707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1708   InstructionMark im(this);
  1709   emit_byte(0x66);
  1710   prefix(dst, src);
  1711   emit_byte(0x0F);
  1712   emit_byte(0xD6);
  1713   emit_operand(src, dst);
  1716 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1717   InstructionMark im(this);
  1718   prefix(src, dst);
  1719   emit_byte(0x0F);
  1720   emit_byte(0xBE);
  1721   emit_operand(dst, src);
  1724 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1725   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1726   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1727   emit_byte(0x0F);
  1728   emit_byte(0xBE);
  1729   emit_byte(0xC0 | encode);
  1732 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1734   emit_byte(0xF2);
  1735   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1736   emit_byte(0x0F);
  1737   emit_byte(0x10);
  1738   emit_byte(0xC0 | encode);
  1741 void Assembler::movsd(XMMRegister dst, Address src) {
  1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1743   InstructionMark im(this);
  1744   emit_byte(0xF2);
  1745   prefix(src, dst);
  1746   emit_byte(0x0F);
  1747   emit_byte(0x10);
  1748   emit_operand(dst, src);
  1751 void Assembler::movsd(Address dst, XMMRegister src) {
  1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1753   InstructionMark im(this);
  1754   emit_byte(0xF2);
  1755   prefix(dst, src);
  1756   emit_byte(0x0F);
  1757   emit_byte(0x11);
  1758   emit_operand(src, dst);
  1761 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1762   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1763   emit_byte(0xF3);
  1764   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1765   emit_byte(0x0F);
  1766   emit_byte(0x10);
  1767   emit_byte(0xC0 | encode);
  1770 void Assembler::movss(XMMRegister dst, Address src) {
  1771   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1772   InstructionMark im(this);
  1773   emit_byte(0xF3);
  1774   prefix(src, dst);
  1775   emit_byte(0x0F);
  1776   emit_byte(0x10);
  1777   emit_operand(dst, src);
  1780 void Assembler::movss(Address dst, XMMRegister src) {
  1781   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1782   InstructionMark im(this);
  1783   emit_byte(0xF3);
  1784   prefix(dst, src);
  1785   emit_byte(0x0F);
  1786   emit_byte(0x11);
  1787   emit_operand(src, dst);
  1790 void Assembler::movswl(Register dst, Address src) { // movsxw
  1791   InstructionMark im(this);
  1792   prefix(src, dst);
  1793   emit_byte(0x0F);
  1794   emit_byte(0xBF);
  1795   emit_operand(dst, src);
  1798 void Assembler::movswl(Register dst, Register src) { // movsxw
  1799   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1800   emit_byte(0x0F);
  1801   emit_byte(0xBF);
  1802   emit_byte(0xC0 | encode);
  1805 void Assembler::movw(Address dst, int imm16) {
  1806   InstructionMark im(this);
  1808   emit_byte(0x66); // switch to 16-bit mode
  1809   prefix(dst);
  1810   emit_byte(0xC7);
  1811   emit_operand(rax, dst, 2);
  1812   emit_word(imm16);
  1815 void Assembler::movw(Register dst, Address src) {
  1816   InstructionMark im(this);
  1817   emit_byte(0x66);
  1818   prefix(src, dst);
  1819   emit_byte(0x8B);
  1820   emit_operand(dst, src);
  1823 void Assembler::movw(Address dst, Register src) {
  1824   InstructionMark im(this);
  1825   emit_byte(0x66);
  1826   prefix(dst, src);
  1827   emit_byte(0x89);
  1828   emit_operand(src, dst);
  1831 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1832   InstructionMark im(this);
  1833   prefix(src, dst);
  1834   emit_byte(0x0F);
  1835   emit_byte(0xB6);
  1836   emit_operand(dst, src);
  1839 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1840   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1841   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1842   emit_byte(0x0F);
  1843   emit_byte(0xB6);
  1844   emit_byte(0xC0 | encode);
  1847 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1848   InstructionMark im(this);
  1849   prefix(src, dst);
  1850   emit_byte(0x0F);
  1851   emit_byte(0xB7);
  1852   emit_operand(dst, src);
  1855 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1856   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1857   emit_byte(0x0F);
  1858   emit_byte(0xB7);
  1859   emit_byte(0xC0 | encode);
  1862 void Assembler::mull(Address src) {
  1863   InstructionMark im(this);
  1864   prefix(src);
  1865   emit_byte(0xF7);
  1866   emit_operand(rsp, src);
  1869 void Assembler::mull(Register src) {
  1870   int encode = prefix_and_encode(src->encoding());
  1871   emit_byte(0xF7);
  1872   emit_byte(0xE0 | encode);
  1875 void Assembler::mulsd(XMMRegister dst, Address src) {
  1876   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1877   InstructionMark im(this);
  1878   emit_byte(0xF2);
  1879   prefix(src, dst);
  1880   emit_byte(0x0F);
  1881   emit_byte(0x59);
  1882   emit_operand(dst, src);
  1885 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1887   emit_byte(0xF2);
  1888   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1889   emit_byte(0x0F);
  1890   emit_byte(0x59);
  1891   emit_byte(0xC0 | encode);
  1894 void Assembler::mulss(XMMRegister dst, Address src) {
  1895   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1896   InstructionMark im(this);
  1897   emit_byte(0xF3);
  1898   prefix(src, dst);
  1899   emit_byte(0x0F);
  1900   emit_byte(0x59);
  1901   emit_operand(dst, src);
  1904 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1905   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1906   emit_byte(0xF3);
  1907   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1908   emit_byte(0x0F);
  1909   emit_byte(0x59);
  1910   emit_byte(0xC0 | encode);
  1913 void Assembler::negl(Register dst) {
  1914   int encode = prefix_and_encode(dst->encoding());
  1915   emit_byte(0xF7);
  1916   emit_byte(0xD8 | encode);
  1919 void Assembler::nop(int i) {
  1920 #ifdef ASSERT
  1921   assert(i > 0, " ");
  1922   // The fancy nops aren't currently recognized by debuggers making it a
  1923   // pain to disassemble code while debugging. If asserts are on clearly
  1924   // speed is not an issue so simply use the single byte traditional nop
  1925   // to do alignment.
  1927   for (; i > 0 ; i--) emit_byte(0x90);
  1928   return;
  1930 #endif // ASSERT
  1932   if (UseAddressNop && VM_Version::is_intel()) {
  1933     //
  1934     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1935     //  1: 0x90
  1936     //  2: 0x66 0x90
  1937     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1938     //  4: 0x0F 0x1F 0x40 0x00
  1939     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1940     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1941     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1942     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1943     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1944     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1945     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1947     // The rest coding is Intel specific - don't use consecutive address nops
  1949     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1950     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1951     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1952     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1954     while(i >= 15) {
  1955       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1956       i -= 15;
  1957       emit_byte(0x66);   // size prefix
  1958       emit_byte(0x66);   // size prefix
  1959       emit_byte(0x66);   // size prefix
  1960       addr_nop_8();
  1961       emit_byte(0x66);   // size prefix
  1962       emit_byte(0x66);   // size prefix
  1963       emit_byte(0x66);   // size prefix
  1964       emit_byte(0x90);   // nop
  1966     switch (i) {
  1967       case 14:
  1968         emit_byte(0x66); // size prefix
  1969       case 13:
  1970         emit_byte(0x66); // size prefix
  1971       case 12:
  1972         addr_nop_8();
  1973         emit_byte(0x66); // size prefix
  1974         emit_byte(0x66); // size prefix
  1975         emit_byte(0x66); // size prefix
  1976         emit_byte(0x90); // nop
  1977         break;
  1978       case 11:
  1979         emit_byte(0x66); // size prefix
  1980       case 10:
  1981         emit_byte(0x66); // size prefix
  1982       case 9:
  1983         emit_byte(0x66); // size prefix
  1984       case 8:
  1985         addr_nop_8();
  1986         break;
  1987       case 7:
  1988         addr_nop_7();
  1989         break;
  1990       case 6:
  1991         emit_byte(0x66); // size prefix
  1992       case 5:
  1993         addr_nop_5();
  1994         break;
  1995       case 4:
  1996         addr_nop_4();
  1997         break;
  1998       case 3:
  1999         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2000         emit_byte(0x66); // size prefix
  2001       case 2:
  2002         emit_byte(0x66); // size prefix
  2003       case 1:
  2004         emit_byte(0x90); // nop
  2005         break;
  2006       default:
  2007         assert(i == 0, " ");
  2009     return;
  2011   if (UseAddressNop && VM_Version::is_amd()) {
  2012     //
  2013     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2014     //  1: 0x90
  2015     //  2: 0x66 0x90
  2016     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2017     //  4: 0x0F 0x1F 0x40 0x00
  2018     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2019     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2020     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2021     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2022     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2023     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2024     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2026     // The rest coding is AMD specific - use consecutive address nops
  2028     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2029     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2030     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2031     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2032     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2033     //     Size prefixes (0x66) are added for larger sizes
  2035     while(i >= 22) {
  2036       i -= 11;
  2037       emit_byte(0x66); // size prefix
  2038       emit_byte(0x66); // size prefix
  2039       emit_byte(0x66); // size prefix
  2040       addr_nop_8();
  2042     // Generate first nop for size between 21-12
  2043     switch (i) {
  2044       case 21:
  2045         i -= 1;
  2046         emit_byte(0x66); // size prefix
  2047       case 20:
  2048       case 19:
  2049         i -= 1;
  2050         emit_byte(0x66); // size prefix
  2051       case 18:
  2052       case 17:
  2053         i -= 1;
  2054         emit_byte(0x66); // size prefix
  2055       case 16:
  2056       case 15:
  2057         i -= 8;
  2058         addr_nop_8();
  2059         break;
  2060       case 14:
  2061       case 13:
  2062         i -= 7;
  2063         addr_nop_7();
  2064         break;
  2065       case 12:
  2066         i -= 6;
  2067         emit_byte(0x66); // size prefix
  2068         addr_nop_5();
  2069         break;
  2070       default:
  2071         assert(i < 12, " ");
  2074     // Generate second nop for size between 11-1
  2075     switch (i) {
  2076       case 11:
  2077         emit_byte(0x66); // size prefix
  2078       case 10:
  2079         emit_byte(0x66); // size prefix
  2080       case 9:
  2081         emit_byte(0x66); // size prefix
  2082       case 8:
  2083         addr_nop_8();
  2084         break;
  2085       case 7:
  2086         addr_nop_7();
  2087         break;
  2088       case 6:
  2089         emit_byte(0x66); // size prefix
  2090       case 5:
  2091         addr_nop_5();
  2092         break;
  2093       case 4:
  2094         addr_nop_4();
  2095         break;
  2096       case 3:
  2097         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2098         emit_byte(0x66); // size prefix
  2099       case 2:
  2100         emit_byte(0x66); // size prefix
  2101       case 1:
  2102         emit_byte(0x90); // nop
  2103         break;
  2104       default:
  2105         assert(i == 0, " ");
  2107     return;
  2110   // Using nops with size prefixes "0x66 0x90".
  2111   // From AMD Optimization Guide:
  2112   //  1: 0x90
  2113   //  2: 0x66 0x90
  2114   //  3: 0x66 0x66 0x90
  2115   //  4: 0x66 0x66 0x66 0x90
  2116   //  5: 0x66 0x66 0x90 0x66 0x90
  2117   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2118   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2119   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2120   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2121   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2122   //
  2123   while(i > 12) {
  2124     i -= 4;
  2125     emit_byte(0x66); // size prefix
  2126     emit_byte(0x66);
  2127     emit_byte(0x66);
  2128     emit_byte(0x90); // nop
  2130   // 1 - 12 nops
  2131   if(i > 8) {
  2132     if(i > 9) {
  2133       i -= 1;
  2134       emit_byte(0x66);
  2136     i -= 3;
  2137     emit_byte(0x66);
  2138     emit_byte(0x66);
  2139     emit_byte(0x90);
  2141   // 1 - 8 nops
  2142   if(i > 4) {
  2143     if(i > 6) {
  2144       i -= 1;
  2145       emit_byte(0x66);
  2147     i -= 3;
  2148     emit_byte(0x66);
  2149     emit_byte(0x66);
  2150     emit_byte(0x90);
  2152   switch (i) {
  2153     case 4:
  2154       emit_byte(0x66);
  2155     case 3:
  2156       emit_byte(0x66);
  2157     case 2:
  2158       emit_byte(0x66);
  2159     case 1:
  2160       emit_byte(0x90);
  2161       break;
  2162     default:
  2163       assert(i == 0, " ");
  2167 void Assembler::notl(Register dst) {
  2168   int encode = prefix_and_encode(dst->encoding());
  2169   emit_byte(0xF7);
  2170   emit_byte(0xD0 | encode );
  2173 void Assembler::orl(Address dst, int32_t imm32) {
  2174   InstructionMark im(this);
  2175   prefix(dst);
  2176   emit_byte(0x81);
  2177   emit_operand(rcx, dst, 4);
  2178   emit_long(imm32);
  2181 void Assembler::orl(Register dst, int32_t imm32) {
  2182   prefix(dst);
  2183   emit_arith(0x81, 0xC8, dst, imm32);
  2187 void Assembler::orl(Register dst, Address src) {
  2188   InstructionMark im(this);
  2189   prefix(src, dst);
  2190   emit_byte(0x0B);
  2191   emit_operand(dst, src);
  2195 void Assembler::orl(Register dst, Register src) {
  2196   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2197   emit_arith(0x0B, 0xC0, dst, src);
  2200 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2201   assert(VM_Version::supports_sse4_2(), "");
  2203   InstructionMark im(this);
  2204   emit_byte(0x66);
  2205   prefix(src, dst);
  2206   emit_byte(0x0F);
  2207   emit_byte(0x3A);
  2208   emit_byte(0x61);
  2209   emit_operand(dst, src);
  2210   emit_byte(imm8);
  2213 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2214   assert(VM_Version::supports_sse4_2(), "");
  2216   emit_byte(0x66);
  2217   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2218   emit_byte(0x0F);
  2219   emit_byte(0x3A);
  2220   emit_byte(0x61);
  2221   emit_byte(0xC0 | encode);
  2222   emit_byte(imm8);
  2225 // generic
  2226 void Assembler::pop(Register dst) {
  2227   int encode = prefix_and_encode(dst->encoding());
  2228   emit_byte(0x58 | encode);
  2231 void Assembler::popcntl(Register dst, Address src) {
  2232   assert(VM_Version::supports_popcnt(), "must support");
  2233   InstructionMark im(this);
  2234   emit_byte(0xF3);
  2235   prefix(src, dst);
  2236   emit_byte(0x0F);
  2237   emit_byte(0xB8);
  2238   emit_operand(dst, src);
  2241 void Assembler::popcntl(Register dst, Register src) {
  2242   assert(VM_Version::supports_popcnt(), "must support");
  2243   emit_byte(0xF3);
  2244   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2245   emit_byte(0x0F);
  2246   emit_byte(0xB8);
  2247   emit_byte(0xC0 | encode);
  2250 void Assembler::popf() {
  2251   emit_byte(0x9D);
  2254 void Assembler::popl(Address dst) {
  2255   // NOTE: this will adjust stack by 8byte on 64bits
  2256   InstructionMark im(this);
  2257   prefix(dst);
  2258   emit_byte(0x8F);
  2259   emit_operand(rax, dst);
  2262 void Assembler::prefetch_prefix(Address src) {
  2263   prefix(src);
  2264   emit_byte(0x0F);
  2267 void Assembler::prefetchnta(Address src) {
  2268   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2269   InstructionMark im(this);
  2270   prefetch_prefix(src);
  2271   emit_byte(0x18);
  2272   emit_operand(rax, src); // 0, src
  2275 void Assembler::prefetchr(Address src) {
  2276   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2277   InstructionMark im(this);
  2278   prefetch_prefix(src);
  2279   emit_byte(0x0D);
  2280   emit_operand(rax, src); // 0, src
  2283 void Assembler::prefetcht0(Address src) {
  2284   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2285   InstructionMark im(this);
  2286   prefetch_prefix(src);
  2287   emit_byte(0x18);
  2288   emit_operand(rcx, src); // 1, src
  2291 void Assembler::prefetcht1(Address src) {
  2292   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2293   InstructionMark im(this);
  2294   prefetch_prefix(src);
  2295   emit_byte(0x18);
  2296   emit_operand(rdx, src); // 2, src
  2299 void Assembler::prefetcht2(Address src) {
  2300   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2301   InstructionMark im(this);
  2302   prefetch_prefix(src);
  2303   emit_byte(0x18);
  2304   emit_operand(rbx, src); // 3, src
  2307 void Assembler::prefetchw(Address src) {
  2308   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2309   InstructionMark im(this);
  2310   prefetch_prefix(src);
  2311   emit_byte(0x0D);
  2312   emit_operand(rcx, src); // 1, src
  2315 void Assembler::prefix(Prefix p) {
  2316   a_byte(p);
  2319 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2320   assert(isByte(mode), "invalid value");
  2321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2323   emit_byte(0x66);
  2324   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2325   emit_byte(0x0F);
  2326   emit_byte(0x70);
  2327   emit_byte(0xC0 | encode);
  2328   emit_byte(mode & 0xFF);
  2332 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2333   assert(isByte(mode), "invalid value");
  2334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2336   InstructionMark im(this);
  2337   emit_byte(0x66);
  2338   prefix(src, dst);
  2339   emit_byte(0x0F);
  2340   emit_byte(0x70);
  2341   emit_operand(dst, src);
  2342   emit_byte(mode & 0xFF);
  2345 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2346   assert(isByte(mode), "invalid value");
  2347   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2349   emit_byte(0xF2);
  2350   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2351   emit_byte(0x0F);
  2352   emit_byte(0x70);
  2353   emit_byte(0xC0 | encode);
  2354   emit_byte(mode & 0xFF);
  2357 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2358   assert(isByte(mode), "invalid value");
  2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2361   InstructionMark im(this);
  2362   emit_byte(0xF2);
  2363   prefix(src, dst); // QQ new
  2364   emit_byte(0x0F);
  2365   emit_byte(0x70);
  2366   emit_operand(dst, src);
  2367   emit_byte(mode & 0xFF);
  2370 void Assembler::psrlq(XMMRegister dst, int shift) {
  2371   // HMM Table D-1 says sse2 or mmx
  2372   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2374   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2375   emit_byte(0x66);
  2376   emit_byte(0x0F);
  2377   emit_byte(0x73);
  2378   emit_byte(0xC0 | encode);
  2379   emit_byte(shift);
  2382 void Assembler::ptest(XMMRegister dst, Address src) {
  2383   assert(VM_Version::supports_sse4_1(), "");
  2385   InstructionMark im(this);
  2386   emit_byte(0x66);
  2387   prefix(src, dst);
  2388   emit_byte(0x0F);
  2389   emit_byte(0x38);
  2390   emit_byte(0x17);
  2391   emit_operand(dst, src);
  2394 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2395   assert(VM_Version::supports_sse4_1(), "");
  2397   emit_byte(0x66);
  2398   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2399   emit_byte(0x0F);
  2400   emit_byte(0x38);
  2401   emit_byte(0x17);
  2402   emit_byte(0xC0 | encode);
  2405 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2406   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2407   emit_byte(0x66);
  2408   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2409   emit_byte(0x0F);
  2410   emit_byte(0x60);
  2411   emit_byte(0xC0 | encode);
  2414 void Assembler::push(int32_t imm32) {
  2415   // in 64bits we push 64bits onto the stack but only
  2416   // take a 32bit immediate
  2417   emit_byte(0x68);
  2418   emit_long(imm32);
  2421 void Assembler::push(Register src) {
  2422   int encode = prefix_and_encode(src->encoding());
  2424   emit_byte(0x50 | encode);
  2427 void Assembler::pushf() {
  2428   emit_byte(0x9C);
  2431 void Assembler::pushl(Address src) {
  2432   // Note this will push 64bit on 64bit
  2433   InstructionMark im(this);
  2434   prefix(src);
  2435   emit_byte(0xFF);
  2436   emit_operand(rsi, src);
  2439 void Assembler::pxor(XMMRegister dst, Address src) {
  2440   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2441   InstructionMark im(this);
  2442   emit_byte(0x66);
  2443   prefix(src, dst);
  2444   emit_byte(0x0F);
  2445   emit_byte(0xEF);
  2446   emit_operand(dst, src);
  2449 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2451   InstructionMark im(this);
  2452   emit_byte(0x66);
  2453   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2454   emit_byte(0x0F);
  2455   emit_byte(0xEF);
  2456   emit_byte(0xC0 | encode);
  2459 void Assembler::rcll(Register dst, int imm8) {
  2460   assert(isShiftCount(imm8), "illegal shift count");
  2461   int encode = prefix_and_encode(dst->encoding());
  2462   if (imm8 == 1) {
  2463     emit_byte(0xD1);
  2464     emit_byte(0xD0 | encode);
  2465   } else {
  2466     emit_byte(0xC1);
  2467     emit_byte(0xD0 | encode);
  2468     emit_byte(imm8);
  2472 // copies data from [esi] to [edi] using rcx pointer sized words
  2473 // generic
  2474 void Assembler::rep_mov() {
  2475   emit_byte(0xF3);
  2476   // MOVSQ
  2477   LP64_ONLY(prefix(REX_W));
  2478   emit_byte(0xA5);
  2481 // sets rcx pointer sized words with rax, value at [edi]
  2482 // generic
  2483 void Assembler::rep_set() { // rep_set
  2484   emit_byte(0xF3);
  2485   // STOSQ
  2486   LP64_ONLY(prefix(REX_W));
  2487   emit_byte(0xAB);
  2490 // scans rcx pointer sized words at [edi] for occurance of rax,
  2491 // generic
  2492 void Assembler::repne_scan() { // repne_scan
  2493   emit_byte(0xF2);
  2494   // SCASQ
  2495   LP64_ONLY(prefix(REX_W));
  2496   emit_byte(0xAF);
  2499 #ifdef _LP64
  2500 // scans rcx 4 byte words at [edi] for occurance of rax,
  2501 // generic
  2502 void Assembler::repne_scanl() { // repne_scan
  2503   emit_byte(0xF2);
  2504   // SCASL
  2505   emit_byte(0xAF);
  2507 #endif
  2509 void Assembler::ret(int imm16) {
  2510   if (imm16 == 0) {
  2511     emit_byte(0xC3);
  2512   } else {
  2513     emit_byte(0xC2);
  2514     emit_word(imm16);
  2518 void Assembler::sahf() {
  2519 #ifdef _LP64
  2520   // Not supported in 64bit mode
  2521   ShouldNotReachHere();
  2522 #endif
  2523   emit_byte(0x9E);
  2526 void Assembler::sarl(Register dst, int imm8) {
  2527   int encode = prefix_and_encode(dst->encoding());
  2528   assert(isShiftCount(imm8), "illegal shift count");
  2529   if (imm8 == 1) {
  2530     emit_byte(0xD1);
  2531     emit_byte(0xF8 | encode);
  2532   } else {
  2533     emit_byte(0xC1);
  2534     emit_byte(0xF8 | encode);
  2535     emit_byte(imm8);
  2539 void Assembler::sarl(Register dst) {
  2540   int encode = prefix_and_encode(dst->encoding());
  2541   emit_byte(0xD3);
  2542   emit_byte(0xF8 | encode);
  2545 void Assembler::sbbl(Address dst, int32_t imm32) {
  2546   InstructionMark im(this);
  2547   prefix(dst);
  2548   emit_arith_operand(0x81, rbx, dst, imm32);
  2551 void Assembler::sbbl(Register dst, int32_t imm32) {
  2552   prefix(dst);
  2553   emit_arith(0x81, 0xD8, dst, imm32);
  2557 void Assembler::sbbl(Register dst, Address src) {
  2558   InstructionMark im(this);
  2559   prefix(src, dst);
  2560   emit_byte(0x1B);
  2561   emit_operand(dst, src);
  2564 void Assembler::sbbl(Register dst, Register src) {
  2565   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2566   emit_arith(0x1B, 0xC0, dst, src);
  2569 void Assembler::setb(Condition cc, Register dst) {
  2570   assert(0 <= cc && cc < 16, "illegal cc");
  2571   int encode = prefix_and_encode(dst->encoding(), true);
  2572   emit_byte(0x0F);
  2573   emit_byte(0x90 | cc);
  2574   emit_byte(0xC0 | encode);
  2577 void Assembler::shll(Register dst, int imm8) {
  2578   assert(isShiftCount(imm8), "illegal shift count");
  2579   int encode = prefix_and_encode(dst->encoding());
  2580   if (imm8 == 1 ) {
  2581     emit_byte(0xD1);
  2582     emit_byte(0xE0 | encode);
  2583   } else {
  2584     emit_byte(0xC1);
  2585     emit_byte(0xE0 | encode);
  2586     emit_byte(imm8);
  2590 void Assembler::shll(Register dst) {
  2591   int encode = prefix_and_encode(dst->encoding());
  2592   emit_byte(0xD3);
  2593   emit_byte(0xE0 | encode);
  2596 void Assembler::shrl(Register dst, int imm8) {
  2597   assert(isShiftCount(imm8), "illegal shift count");
  2598   int encode = prefix_and_encode(dst->encoding());
  2599   emit_byte(0xC1);
  2600   emit_byte(0xE8 | encode);
  2601   emit_byte(imm8);
  2604 void Assembler::shrl(Register dst) {
  2605   int encode = prefix_and_encode(dst->encoding());
  2606   emit_byte(0xD3);
  2607   emit_byte(0xE8 | encode);
  2610 // copies a single word from [esi] to [edi]
  2611 void Assembler::smovl() {
  2612   emit_byte(0xA5);
  2615 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2616   // HMM Table D-1 says sse2
  2617   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2619   emit_byte(0xF2);
  2620   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2621   emit_byte(0x0F);
  2622   emit_byte(0x51);
  2623   emit_byte(0xC0 | encode);
  2626 void Assembler::stmxcsr( Address dst) {
  2627   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2628   InstructionMark im(this);
  2629   prefix(dst);
  2630   emit_byte(0x0F);
  2631   emit_byte(0xAE);
  2632   emit_operand(as_Register(3), dst);
  2635 void Assembler::subl(Address dst, int32_t imm32) {
  2636   InstructionMark im(this);
  2637   prefix(dst);
  2638   if (is8bit(imm32)) {
  2639     emit_byte(0x83);
  2640     emit_operand(rbp, dst, 1);
  2641     emit_byte(imm32 & 0xFF);
  2642   } else {
  2643     emit_byte(0x81);
  2644     emit_operand(rbp, dst, 4);
  2645     emit_long(imm32);
  2649 void Assembler::subl(Register dst, int32_t imm32) {
  2650   prefix(dst);
  2651   emit_arith(0x81, 0xE8, dst, imm32);
  2654 void Assembler::subl(Address dst, Register src) {
  2655   InstructionMark im(this);
  2656   prefix(dst, src);
  2657   emit_byte(0x29);
  2658   emit_operand(src, dst);
  2661 void Assembler::subl(Register dst, Address src) {
  2662   InstructionMark im(this);
  2663   prefix(src, dst);
  2664   emit_byte(0x2B);
  2665   emit_operand(dst, src);
  2668 void Assembler::subl(Register dst, Register src) {
  2669   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2670   emit_arith(0x2B, 0xC0, dst, src);
  2673 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2675   emit_byte(0xF2);
  2676   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2677   emit_byte(0x0F);
  2678   emit_byte(0x5C);
  2679   emit_byte(0xC0 | encode);
  2682 void Assembler::subsd(XMMRegister dst, Address src) {
  2683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2684   InstructionMark im(this);
  2685   emit_byte(0xF2);
  2686   prefix(src, dst);
  2687   emit_byte(0x0F);
  2688   emit_byte(0x5C);
  2689   emit_operand(dst, src);
  2692 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2693   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2694   emit_byte(0xF3);
  2695   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2696   emit_byte(0x0F);
  2697   emit_byte(0x5C);
  2698   emit_byte(0xC0 | encode);
  2701 void Assembler::subss(XMMRegister dst, Address src) {
  2702   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2703   InstructionMark im(this);
  2704   emit_byte(0xF3);
  2705   prefix(src, dst);
  2706   emit_byte(0x0F);
  2707   emit_byte(0x5C);
  2708   emit_operand(dst, src);
  2711 void Assembler::testb(Register dst, int imm8) {
  2712   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2713   (void) prefix_and_encode(dst->encoding(), true);
  2714   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2717 void Assembler::testl(Register dst, int32_t imm32) {
  2718   // not using emit_arith because test
  2719   // doesn't support sign-extension of
  2720   // 8bit operands
  2721   int encode = dst->encoding();
  2722   if (encode == 0) {
  2723     emit_byte(0xA9);
  2724   } else {
  2725     encode = prefix_and_encode(encode);
  2726     emit_byte(0xF7);
  2727     emit_byte(0xC0 | encode);
  2729   emit_long(imm32);
  2732 void Assembler::testl(Register dst, Register src) {
  2733   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2734   emit_arith(0x85, 0xC0, dst, src);
  2737 void Assembler::testl(Register dst, Address  src) {
  2738   InstructionMark im(this);
  2739   prefix(src, dst);
  2740   emit_byte(0x85);
  2741   emit_operand(dst, src);
  2744 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2746   emit_byte(0x66);
  2747   ucomiss(dst, src);
  2750 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2752   emit_byte(0x66);
  2753   ucomiss(dst, src);
  2756 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2757   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2759   InstructionMark im(this);
  2760   prefix(src, dst);
  2761   emit_byte(0x0F);
  2762   emit_byte(0x2E);
  2763   emit_operand(dst, src);
  2766 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2767   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2768   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2769   emit_byte(0x0F);
  2770   emit_byte(0x2E);
  2771   emit_byte(0xC0 | encode);
  2775 void Assembler::xaddl(Address dst, Register src) {
  2776   InstructionMark im(this);
  2777   prefix(dst, src);
  2778   emit_byte(0x0F);
  2779   emit_byte(0xC1);
  2780   emit_operand(src, dst);
  2783 void Assembler::xchgl(Register dst, Address src) { // xchg
  2784   InstructionMark im(this);
  2785   prefix(src, dst);
  2786   emit_byte(0x87);
  2787   emit_operand(dst, src);
  2790 void Assembler::xchgl(Register dst, Register src) {
  2791   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2792   emit_byte(0x87);
  2793   emit_byte(0xc0 | encode);
  2796 void Assembler::xorl(Register dst, int32_t imm32) {
  2797   prefix(dst);
  2798   emit_arith(0x81, 0xF0, dst, imm32);
  2801 void Assembler::xorl(Register dst, Address src) {
  2802   InstructionMark im(this);
  2803   prefix(src, dst);
  2804   emit_byte(0x33);
  2805   emit_operand(dst, src);
  2808 void Assembler::xorl(Register dst, Register src) {
  2809   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2810   emit_arith(0x33, 0xC0, dst, src);
  2813 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2814   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2815   emit_byte(0x66);
  2816   xorps(dst, src);
  2819 void Assembler::xorpd(XMMRegister dst, Address src) {
  2820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2821   InstructionMark im(this);
  2822   emit_byte(0x66);
  2823   prefix(src, dst);
  2824   emit_byte(0x0F);
  2825   emit_byte(0x57);
  2826   emit_operand(dst, src);
  2830 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2831   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2832   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2833   emit_byte(0x0F);
  2834   emit_byte(0x57);
  2835   emit_byte(0xC0 | encode);
  2838 void Assembler::xorps(XMMRegister dst, Address src) {
  2839   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2840   InstructionMark im(this);
  2841   prefix(src, dst);
  2842   emit_byte(0x0F);
  2843   emit_byte(0x57);
  2844   emit_operand(dst, src);
  2847 #ifndef _LP64
  2848 // 32bit only pieces of the assembler
  2850 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2851   // NO PREFIX AS NEVER 64BIT
  2852   InstructionMark im(this);
  2853   emit_byte(0x81);
  2854   emit_byte(0xF8 | src1->encoding());
  2855   emit_data(imm32, rspec, 0);
  2858 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2859   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2860   InstructionMark im(this);
  2861   emit_byte(0x81);
  2862   emit_operand(rdi, src1);
  2863   emit_data(imm32, rspec, 0);
  2866 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2867 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2868 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2869 void Assembler::cmpxchg8(Address adr) {
  2870   InstructionMark im(this);
  2871   emit_byte(0x0F);
  2872   emit_byte(0xc7);
  2873   emit_operand(rcx, adr);
  2876 void Assembler::decl(Register dst) {
  2877   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2878  emit_byte(0x48 | dst->encoding());
  2881 #endif // _LP64
  2883 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2885 void Assembler::fabs() {
  2886   emit_byte(0xD9);
  2887   emit_byte(0xE1);
  2890 void Assembler::fadd(int i) {
  2891   emit_farith(0xD8, 0xC0, i);
  2894 void Assembler::fadd_d(Address src) {
  2895   InstructionMark im(this);
  2896   emit_byte(0xDC);
  2897   emit_operand32(rax, src);
  2900 void Assembler::fadd_s(Address src) {
  2901   InstructionMark im(this);
  2902   emit_byte(0xD8);
  2903   emit_operand32(rax, src);
  2906 void Assembler::fadda(int i) {
  2907   emit_farith(0xDC, 0xC0, i);
  2910 void Assembler::faddp(int i) {
  2911   emit_farith(0xDE, 0xC0, i);
  2914 void Assembler::fchs() {
  2915   emit_byte(0xD9);
  2916   emit_byte(0xE0);
  2919 void Assembler::fcom(int i) {
  2920   emit_farith(0xD8, 0xD0, i);
  2923 void Assembler::fcomp(int i) {
  2924   emit_farith(0xD8, 0xD8, i);
  2927 void Assembler::fcomp_d(Address src) {
  2928   InstructionMark im(this);
  2929   emit_byte(0xDC);
  2930   emit_operand32(rbx, src);
  2933 void Assembler::fcomp_s(Address src) {
  2934   InstructionMark im(this);
  2935   emit_byte(0xD8);
  2936   emit_operand32(rbx, src);
  2939 void Assembler::fcompp() {
  2940   emit_byte(0xDE);
  2941   emit_byte(0xD9);
  2944 void Assembler::fcos() {
  2945   emit_byte(0xD9);
  2946   emit_byte(0xFF);
  2949 void Assembler::fdecstp() {
  2950   emit_byte(0xD9);
  2951   emit_byte(0xF6);
  2954 void Assembler::fdiv(int i) {
  2955   emit_farith(0xD8, 0xF0, i);
  2958 void Assembler::fdiv_d(Address src) {
  2959   InstructionMark im(this);
  2960   emit_byte(0xDC);
  2961   emit_operand32(rsi, src);
  2964 void Assembler::fdiv_s(Address src) {
  2965   InstructionMark im(this);
  2966   emit_byte(0xD8);
  2967   emit_operand32(rsi, src);
  2970 void Assembler::fdiva(int i) {
  2971   emit_farith(0xDC, 0xF8, i);
  2974 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  2975 //       is erroneous for some of the floating-point instructions below.
  2977 void Assembler::fdivp(int i) {
  2978   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  2981 void Assembler::fdivr(int i) {
  2982   emit_farith(0xD8, 0xF8, i);
  2985 void Assembler::fdivr_d(Address src) {
  2986   InstructionMark im(this);
  2987   emit_byte(0xDC);
  2988   emit_operand32(rdi, src);
  2991 void Assembler::fdivr_s(Address src) {
  2992   InstructionMark im(this);
  2993   emit_byte(0xD8);
  2994   emit_operand32(rdi, src);
  2997 void Assembler::fdivra(int i) {
  2998   emit_farith(0xDC, 0xF0, i);
  3001 void Assembler::fdivrp(int i) {
  3002   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3005 void Assembler::ffree(int i) {
  3006   emit_farith(0xDD, 0xC0, i);
  3009 void Assembler::fild_d(Address adr) {
  3010   InstructionMark im(this);
  3011   emit_byte(0xDF);
  3012   emit_operand32(rbp, adr);
  3015 void Assembler::fild_s(Address adr) {
  3016   InstructionMark im(this);
  3017   emit_byte(0xDB);
  3018   emit_operand32(rax, adr);
  3021 void Assembler::fincstp() {
  3022   emit_byte(0xD9);
  3023   emit_byte(0xF7);
  3026 void Assembler::finit() {
  3027   emit_byte(0x9B);
  3028   emit_byte(0xDB);
  3029   emit_byte(0xE3);
  3032 void Assembler::fist_s(Address adr) {
  3033   InstructionMark im(this);
  3034   emit_byte(0xDB);
  3035   emit_operand32(rdx, adr);
  3038 void Assembler::fistp_d(Address adr) {
  3039   InstructionMark im(this);
  3040   emit_byte(0xDF);
  3041   emit_operand32(rdi, adr);
  3044 void Assembler::fistp_s(Address adr) {
  3045   InstructionMark im(this);
  3046   emit_byte(0xDB);
  3047   emit_operand32(rbx, adr);
  3050 void Assembler::fld1() {
  3051   emit_byte(0xD9);
  3052   emit_byte(0xE8);
  3055 void Assembler::fld_d(Address adr) {
  3056   InstructionMark im(this);
  3057   emit_byte(0xDD);
  3058   emit_operand32(rax, adr);
  3061 void Assembler::fld_s(Address adr) {
  3062   InstructionMark im(this);
  3063   emit_byte(0xD9);
  3064   emit_operand32(rax, adr);
  3068 void Assembler::fld_s(int index) {
  3069   emit_farith(0xD9, 0xC0, index);
  3072 void Assembler::fld_x(Address adr) {
  3073   InstructionMark im(this);
  3074   emit_byte(0xDB);
  3075   emit_operand32(rbp, adr);
  3078 void Assembler::fldcw(Address src) {
  3079   InstructionMark im(this);
  3080   emit_byte(0xd9);
  3081   emit_operand32(rbp, src);
  3084 void Assembler::fldenv(Address src) {
  3085   InstructionMark im(this);
  3086   emit_byte(0xD9);
  3087   emit_operand32(rsp, src);
  3090 void Assembler::fldlg2() {
  3091   emit_byte(0xD9);
  3092   emit_byte(0xEC);
  3095 void Assembler::fldln2() {
  3096   emit_byte(0xD9);
  3097   emit_byte(0xED);
  3100 void Assembler::fldz() {
  3101   emit_byte(0xD9);
  3102   emit_byte(0xEE);
  3105 void Assembler::flog() {
  3106   fldln2();
  3107   fxch();
  3108   fyl2x();
  3111 void Assembler::flog10() {
  3112   fldlg2();
  3113   fxch();
  3114   fyl2x();
  3117 void Assembler::fmul(int i) {
  3118   emit_farith(0xD8, 0xC8, i);
  3121 void Assembler::fmul_d(Address src) {
  3122   InstructionMark im(this);
  3123   emit_byte(0xDC);
  3124   emit_operand32(rcx, src);
  3127 void Assembler::fmul_s(Address src) {
  3128   InstructionMark im(this);
  3129   emit_byte(0xD8);
  3130   emit_operand32(rcx, src);
  3133 void Assembler::fmula(int i) {
  3134   emit_farith(0xDC, 0xC8, i);
  3137 void Assembler::fmulp(int i) {
  3138   emit_farith(0xDE, 0xC8, i);
  3141 void Assembler::fnsave(Address dst) {
  3142   InstructionMark im(this);
  3143   emit_byte(0xDD);
  3144   emit_operand32(rsi, dst);
  3147 void Assembler::fnstcw(Address src) {
  3148   InstructionMark im(this);
  3149   emit_byte(0x9B);
  3150   emit_byte(0xD9);
  3151   emit_operand32(rdi, src);
  3154 void Assembler::fnstsw_ax() {
  3155   emit_byte(0xdF);
  3156   emit_byte(0xE0);
  3159 void Assembler::fprem() {
  3160   emit_byte(0xD9);
  3161   emit_byte(0xF8);
  3164 void Assembler::fprem1() {
  3165   emit_byte(0xD9);
  3166   emit_byte(0xF5);
  3169 void Assembler::frstor(Address src) {
  3170   InstructionMark im(this);
  3171   emit_byte(0xDD);
  3172   emit_operand32(rsp, src);
  3175 void Assembler::fsin() {
  3176   emit_byte(0xD9);
  3177   emit_byte(0xFE);
  3180 void Assembler::fsqrt() {
  3181   emit_byte(0xD9);
  3182   emit_byte(0xFA);
  3185 void Assembler::fst_d(Address adr) {
  3186   InstructionMark im(this);
  3187   emit_byte(0xDD);
  3188   emit_operand32(rdx, adr);
  3191 void Assembler::fst_s(Address adr) {
  3192   InstructionMark im(this);
  3193   emit_byte(0xD9);
  3194   emit_operand32(rdx, adr);
  3197 void Assembler::fstp_d(Address adr) {
  3198   InstructionMark im(this);
  3199   emit_byte(0xDD);
  3200   emit_operand32(rbx, adr);
  3203 void Assembler::fstp_d(int index) {
  3204   emit_farith(0xDD, 0xD8, index);
  3207 void Assembler::fstp_s(Address adr) {
  3208   InstructionMark im(this);
  3209   emit_byte(0xD9);
  3210   emit_operand32(rbx, adr);
  3213 void Assembler::fstp_x(Address adr) {
  3214   InstructionMark im(this);
  3215   emit_byte(0xDB);
  3216   emit_operand32(rdi, adr);
  3219 void Assembler::fsub(int i) {
  3220   emit_farith(0xD8, 0xE0, i);
  3223 void Assembler::fsub_d(Address src) {
  3224   InstructionMark im(this);
  3225   emit_byte(0xDC);
  3226   emit_operand32(rsp, src);
  3229 void Assembler::fsub_s(Address src) {
  3230   InstructionMark im(this);
  3231   emit_byte(0xD8);
  3232   emit_operand32(rsp, src);
  3235 void Assembler::fsuba(int i) {
  3236   emit_farith(0xDC, 0xE8, i);
  3239 void Assembler::fsubp(int i) {
  3240   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3243 void Assembler::fsubr(int i) {
  3244   emit_farith(0xD8, 0xE8, i);
  3247 void Assembler::fsubr_d(Address src) {
  3248   InstructionMark im(this);
  3249   emit_byte(0xDC);
  3250   emit_operand32(rbp, src);
  3253 void Assembler::fsubr_s(Address src) {
  3254   InstructionMark im(this);
  3255   emit_byte(0xD8);
  3256   emit_operand32(rbp, src);
  3259 void Assembler::fsubra(int i) {
  3260   emit_farith(0xDC, 0xE0, i);
  3263 void Assembler::fsubrp(int i) {
  3264   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3267 void Assembler::ftan() {
  3268   emit_byte(0xD9);
  3269   emit_byte(0xF2);
  3270   emit_byte(0xDD);
  3271   emit_byte(0xD8);
  3274 void Assembler::ftst() {
  3275   emit_byte(0xD9);
  3276   emit_byte(0xE4);
  3279 void Assembler::fucomi(int i) {
  3280   // make sure the instruction is supported (introduced for P6, together with cmov)
  3281   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3282   emit_farith(0xDB, 0xE8, i);
  3285 void Assembler::fucomip(int i) {
  3286   // make sure the instruction is supported (introduced for P6, together with cmov)
  3287   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3288   emit_farith(0xDF, 0xE8, i);
  3291 void Assembler::fwait() {
  3292   emit_byte(0x9B);
  3295 void Assembler::fxch(int i) {
  3296   emit_farith(0xD9, 0xC8, i);
  3299 void Assembler::fyl2x() {
  3300   emit_byte(0xD9);
  3301   emit_byte(0xF1);
  3305 #ifndef _LP64
  3307 void Assembler::incl(Register dst) {
  3308   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3309  emit_byte(0x40 | dst->encoding());
  3312 void Assembler::lea(Register dst, Address src) {
  3313   leal(dst, src);
  3316 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3317   InstructionMark im(this);
  3318   emit_byte(0xC7);
  3319   emit_operand(rax, dst);
  3320   emit_data((int)imm32, rspec, 0);
  3323 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3324   InstructionMark im(this);
  3325   int encode = prefix_and_encode(dst->encoding());
  3326   emit_byte(0xB8 | encode);
  3327   emit_data((int)imm32, rspec, 0);
  3330 void Assembler::popa() { // 32bit
  3331   emit_byte(0x61);
  3334 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3335   InstructionMark im(this);
  3336   emit_byte(0x68);
  3337   emit_data(imm32, rspec, 0);
  3340 void Assembler::pusha() { // 32bit
  3341   emit_byte(0x60);
  3344 void Assembler::set_byte_if_not_zero(Register dst) {
  3345   emit_byte(0x0F);
  3346   emit_byte(0x95);
  3347   emit_byte(0xE0 | dst->encoding());
  3350 void Assembler::shldl(Register dst, Register src) {
  3351   emit_byte(0x0F);
  3352   emit_byte(0xA5);
  3353   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3356 void Assembler::shrdl(Register dst, Register src) {
  3357   emit_byte(0x0F);
  3358   emit_byte(0xAD);
  3359   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3362 #else // LP64
  3364 // 64bit only pieces of the assembler
  3365 // This should only be used by 64bit instructions that can use rip-relative
  3366 // it cannot be used by instructions that want an immediate value.
  3368 bool Assembler::reachable(AddressLiteral adr) {
  3369   int64_t disp;
  3370   // None will force a 64bit literal to the code stream. Likely a placeholder
  3371   // for something that will be patched later and we need to certain it will
  3372   // always be reachable.
  3373   if (adr.reloc() == relocInfo::none) {
  3374     return false;
  3376   if (adr.reloc() == relocInfo::internal_word_type) {
  3377     // This should be rip relative and easily reachable.
  3378     return true;
  3380   if (adr.reloc() == relocInfo::virtual_call_type ||
  3381       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3382       adr.reloc() == relocInfo::static_call_type ||
  3383       adr.reloc() == relocInfo::static_stub_type ) {
  3384     // This should be rip relative within the code cache and easily
  3385     // reachable until we get huge code caches. (At which point
  3386     // ic code is going to have issues).
  3387     return true;
  3389   if (adr.reloc() != relocInfo::external_word_type &&
  3390       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3391       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3392       adr.reloc() != relocInfo::runtime_call_type ) {
  3393     return false;
  3396   // Stress the correction code
  3397   if (ForceUnreachable) {
  3398     // Must be runtimecall reloc, see if it is in the codecache
  3399     // Flipping stuff in the codecache to be unreachable causes issues
  3400     // with things like inline caches where the additional instructions
  3401     // are not handled.
  3402     if (CodeCache::find_blob(adr._target) == NULL) {
  3403       return false;
  3406   // For external_word_type/runtime_call_type if it is reachable from where we
  3407   // are now (possibly a temp buffer) and where we might end up
  3408   // anywhere in the codeCache then we are always reachable.
  3409   // This would have to change if we ever save/restore shared code
  3410   // to be more pessimistic.
  3412   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3413   if (!is_simm32(disp)) return false;
  3414   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3415   if (!is_simm32(disp)) return false;
  3417   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3419   // Because rip relative is a disp + address_of_next_instruction and we
  3420   // don't know the value of address_of_next_instruction we apply a fudge factor
  3421   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3422   // We don't have to fudge the checks above here because they are already worst case.
  3424   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3425   // + 4 because better safe than sorry.
  3426   const int fudge = 12 + 4;
  3427   if (disp < 0) {
  3428     disp -= fudge;
  3429   } else {
  3430     disp += fudge;
  3432   return is_simm32(disp);
  3435 void Assembler::emit_data64(jlong data,
  3436                             relocInfo::relocType rtype,
  3437                             int format) {
  3438   if (rtype == relocInfo::none) {
  3439     emit_long64(data);
  3440   } else {
  3441     emit_data64(data, Relocation::spec_simple(rtype), format);
  3445 void Assembler::emit_data64(jlong data,
  3446                             RelocationHolder const& rspec,
  3447                             int format) {
  3448   assert(imm_operand == 0, "default format must be immediate in this file");
  3449   assert(imm_operand == format, "must be immediate");
  3450   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3451   // Do not use AbstractAssembler::relocate, which is not intended for
  3452   // embedded words.  Instead, relocate to the enclosing instruction.
  3453   code_section()->relocate(inst_mark(), rspec, format);
  3454 #ifdef ASSERT
  3455   check_relocation(rspec, format);
  3456 #endif
  3457   emit_long64(data);
  3460 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3461   if (reg_enc >= 8) {
  3462     prefix(REX_B);
  3463     reg_enc -= 8;
  3464   } else if (byteinst && reg_enc >= 4) {
  3465     prefix(REX);
  3467   return reg_enc;
  3470 int Assembler::prefixq_and_encode(int reg_enc) {
  3471   if (reg_enc < 8) {
  3472     prefix(REX_W);
  3473   } else {
  3474     prefix(REX_WB);
  3475     reg_enc -= 8;
  3477   return reg_enc;
  3480 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3481   if (dst_enc < 8) {
  3482     if (src_enc >= 8) {
  3483       prefix(REX_B);
  3484       src_enc -= 8;
  3485     } else if (byteinst && src_enc >= 4) {
  3486       prefix(REX);
  3488   } else {
  3489     if (src_enc < 8) {
  3490       prefix(REX_R);
  3491     } else {
  3492       prefix(REX_RB);
  3493       src_enc -= 8;
  3495     dst_enc -= 8;
  3497   return dst_enc << 3 | src_enc;
  3500 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3501   if (dst_enc < 8) {
  3502     if (src_enc < 8) {
  3503       prefix(REX_W);
  3504     } else {
  3505       prefix(REX_WB);
  3506       src_enc -= 8;
  3508   } else {
  3509     if (src_enc < 8) {
  3510       prefix(REX_WR);
  3511     } else {
  3512       prefix(REX_WRB);
  3513       src_enc -= 8;
  3515     dst_enc -= 8;
  3517   return dst_enc << 3 | src_enc;
  3520 void Assembler::prefix(Register reg) {
  3521   if (reg->encoding() >= 8) {
  3522     prefix(REX_B);
  3526 void Assembler::prefix(Address adr) {
  3527   if (adr.base_needs_rex()) {
  3528     if (adr.index_needs_rex()) {
  3529       prefix(REX_XB);
  3530     } else {
  3531       prefix(REX_B);
  3533   } else {
  3534     if (adr.index_needs_rex()) {
  3535       prefix(REX_X);
  3540 void Assembler::prefixq(Address adr) {
  3541   if (adr.base_needs_rex()) {
  3542     if (adr.index_needs_rex()) {
  3543       prefix(REX_WXB);
  3544     } else {
  3545       prefix(REX_WB);
  3547   } else {
  3548     if (adr.index_needs_rex()) {
  3549       prefix(REX_WX);
  3550     } else {
  3551       prefix(REX_W);
  3557 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3558   if (reg->encoding() < 8) {
  3559     if (adr.base_needs_rex()) {
  3560       if (adr.index_needs_rex()) {
  3561         prefix(REX_XB);
  3562       } else {
  3563         prefix(REX_B);
  3565     } else {
  3566       if (adr.index_needs_rex()) {
  3567         prefix(REX_X);
  3568       } else if (reg->encoding() >= 4 ) {
  3569         prefix(REX);
  3572   } else {
  3573     if (adr.base_needs_rex()) {
  3574       if (adr.index_needs_rex()) {
  3575         prefix(REX_RXB);
  3576       } else {
  3577         prefix(REX_RB);
  3579     } else {
  3580       if (adr.index_needs_rex()) {
  3581         prefix(REX_RX);
  3582       } else {
  3583         prefix(REX_R);
  3589 void Assembler::prefixq(Address adr, Register src) {
  3590   if (src->encoding() < 8) {
  3591     if (adr.base_needs_rex()) {
  3592       if (adr.index_needs_rex()) {
  3593         prefix(REX_WXB);
  3594       } else {
  3595         prefix(REX_WB);
  3597     } else {
  3598       if (adr.index_needs_rex()) {
  3599         prefix(REX_WX);
  3600       } else {
  3601         prefix(REX_W);
  3604   } else {
  3605     if (adr.base_needs_rex()) {
  3606       if (adr.index_needs_rex()) {
  3607         prefix(REX_WRXB);
  3608       } else {
  3609         prefix(REX_WRB);
  3611     } else {
  3612       if (adr.index_needs_rex()) {
  3613         prefix(REX_WRX);
  3614       } else {
  3615         prefix(REX_WR);
  3621 void Assembler::prefix(Address adr, XMMRegister reg) {
  3622   if (reg->encoding() < 8) {
  3623     if (adr.base_needs_rex()) {
  3624       if (adr.index_needs_rex()) {
  3625         prefix(REX_XB);
  3626       } else {
  3627         prefix(REX_B);
  3629     } else {
  3630       if (adr.index_needs_rex()) {
  3631         prefix(REX_X);
  3634   } else {
  3635     if (adr.base_needs_rex()) {
  3636       if (adr.index_needs_rex()) {
  3637         prefix(REX_RXB);
  3638       } else {
  3639         prefix(REX_RB);
  3641     } else {
  3642       if (adr.index_needs_rex()) {
  3643         prefix(REX_RX);
  3644       } else {
  3645         prefix(REX_R);
  3651 void Assembler::adcq(Register dst, int32_t imm32) {
  3652   (void) prefixq_and_encode(dst->encoding());
  3653   emit_arith(0x81, 0xD0, dst, imm32);
  3656 void Assembler::adcq(Register dst, Address src) {
  3657   InstructionMark im(this);
  3658   prefixq(src, dst);
  3659   emit_byte(0x13);
  3660   emit_operand(dst, src);
  3663 void Assembler::adcq(Register dst, Register src) {
  3664   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3665   emit_arith(0x13, 0xC0, dst, src);
  3668 void Assembler::addq(Address dst, int32_t imm32) {
  3669   InstructionMark im(this);
  3670   prefixq(dst);
  3671   emit_arith_operand(0x81, rax, dst,imm32);
  3674 void Assembler::addq(Address dst, Register src) {
  3675   InstructionMark im(this);
  3676   prefixq(dst, src);
  3677   emit_byte(0x01);
  3678   emit_operand(src, dst);
  3681 void Assembler::addq(Register dst, int32_t imm32) {
  3682   (void) prefixq_and_encode(dst->encoding());
  3683   emit_arith(0x81, 0xC0, dst, imm32);
  3686 void Assembler::addq(Register dst, Address src) {
  3687   InstructionMark im(this);
  3688   prefixq(src, dst);
  3689   emit_byte(0x03);
  3690   emit_operand(dst, src);
  3693 void Assembler::addq(Register dst, Register src) {
  3694   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3695   emit_arith(0x03, 0xC0, dst, src);
  3698 void Assembler::andq(Register dst, int32_t imm32) {
  3699   (void) prefixq_and_encode(dst->encoding());
  3700   emit_arith(0x81, 0xE0, dst, imm32);
  3703 void Assembler::andq(Register dst, Address src) {
  3704   InstructionMark im(this);
  3705   prefixq(src, dst);
  3706   emit_byte(0x23);
  3707   emit_operand(dst, src);
  3710 void Assembler::andq(Register dst, Register src) {
  3711   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3712   emit_arith(0x23, 0xC0, dst, src);
  3715 void Assembler::bsfq(Register dst, Register src) {
  3716   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3717   emit_byte(0x0F);
  3718   emit_byte(0xBC);
  3719   emit_byte(0xC0 | encode);
  3722 void Assembler::bsrq(Register dst, Register src) {
  3723   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  3724   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3725   emit_byte(0x0F);
  3726   emit_byte(0xBD);
  3727   emit_byte(0xC0 | encode);
  3730 void Assembler::bswapq(Register reg) {
  3731   int encode = prefixq_and_encode(reg->encoding());
  3732   emit_byte(0x0F);
  3733   emit_byte(0xC8 | encode);
  3736 void Assembler::cdqq() {
  3737   prefix(REX_W);
  3738   emit_byte(0x99);
  3741 void Assembler::clflush(Address adr) {
  3742   prefix(adr);
  3743   emit_byte(0x0F);
  3744   emit_byte(0xAE);
  3745   emit_operand(rdi, adr);
  3748 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3749   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3750   emit_byte(0x0F);
  3751   emit_byte(0x40 | cc);
  3752   emit_byte(0xC0 | encode);
  3755 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3756   InstructionMark im(this);
  3757   prefixq(src, dst);
  3758   emit_byte(0x0F);
  3759   emit_byte(0x40 | cc);
  3760   emit_operand(dst, src);
  3763 void Assembler::cmpq(Address dst, int32_t imm32) {
  3764   InstructionMark im(this);
  3765   prefixq(dst);
  3766   emit_byte(0x81);
  3767   emit_operand(rdi, dst, 4);
  3768   emit_long(imm32);
  3771 void Assembler::cmpq(Register dst, int32_t imm32) {
  3772   (void) prefixq_and_encode(dst->encoding());
  3773   emit_arith(0x81, 0xF8, dst, imm32);
  3776 void Assembler::cmpq(Address dst, Register src) {
  3777   InstructionMark im(this);
  3778   prefixq(dst, src);
  3779   emit_byte(0x3B);
  3780   emit_operand(src, dst);
  3783 void Assembler::cmpq(Register dst, Register src) {
  3784   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3785   emit_arith(0x3B, 0xC0, dst, src);
  3788 void Assembler::cmpq(Register dst, Address  src) {
  3789   InstructionMark im(this);
  3790   prefixq(src, dst);
  3791   emit_byte(0x3B);
  3792   emit_operand(dst, src);
  3795 void Assembler::cmpxchgq(Register reg, Address adr) {
  3796   InstructionMark im(this);
  3797   prefixq(adr, reg);
  3798   emit_byte(0x0F);
  3799   emit_byte(0xB1);
  3800   emit_operand(reg, adr);
  3803 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3805   emit_byte(0xF2);
  3806   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3807   emit_byte(0x0F);
  3808   emit_byte(0x2A);
  3809   emit_byte(0xC0 | encode);
  3812 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3813   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3814   emit_byte(0xF3);
  3815   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3816   emit_byte(0x0F);
  3817   emit_byte(0x2A);
  3818   emit_byte(0xC0 | encode);
  3821 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3822   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3823   emit_byte(0xF2);
  3824   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3825   emit_byte(0x0F);
  3826   emit_byte(0x2C);
  3827   emit_byte(0xC0 | encode);
  3830 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3831   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3832   emit_byte(0xF3);
  3833   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3834   emit_byte(0x0F);
  3835   emit_byte(0x2C);
  3836   emit_byte(0xC0 | encode);
  3839 void Assembler::decl(Register dst) {
  3840   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3841   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3842   int encode = prefix_and_encode(dst->encoding());
  3843   emit_byte(0xFF);
  3844   emit_byte(0xC8 | encode);
  3847 void Assembler::decq(Register dst) {
  3848   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3849   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3850   int encode = prefixq_and_encode(dst->encoding());
  3851   emit_byte(0xFF);
  3852   emit_byte(0xC8 | encode);
  3855 void Assembler::decq(Address dst) {
  3856   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3857   InstructionMark im(this);
  3858   prefixq(dst);
  3859   emit_byte(0xFF);
  3860   emit_operand(rcx, dst);
  3863 void Assembler::fxrstor(Address src) {
  3864   prefixq(src);
  3865   emit_byte(0x0F);
  3866   emit_byte(0xAE);
  3867   emit_operand(as_Register(1), src);
  3870 void Assembler::fxsave(Address dst) {
  3871   prefixq(dst);
  3872   emit_byte(0x0F);
  3873   emit_byte(0xAE);
  3874   emit_operand(as_Register(0), dst);
  3877 void Assembler::idivq(Register src) {
  3878   int encode = prefixq_and_encode(src->encoding());
  3879   emit_byte(0xF7);
  3880   emit_byte(0xF8 | encode);
  3883 void Assembler::imulq(Register dst, Register src) {
  3884   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3885   emit_byte(0x0F);
  3886   emit_byte(0xAF);
  3887   emit_byte(0xC0 | encode);
  3890 void Assembler::imulq(Register dst, Register src, int value) {
  3891   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3892   if (is8bit(value)) {
  3893     emit_byte(0x6B);
  3894     emit_byte(0xC0 | encode);
  3895     emit_byte(value);
  3896   } else {
  3897     emit_byte(0x69);
  3898     emit_byte(0xC0 | encode);
  3899     emit_long(value);
  3903 void Assembler::incl(Register dst) {
  3904   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3905   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3906   int encode = prefix_and_encode(dst->encoding());
  3907   emit_byte(0xFF);
  3908   emit_byte(0xC0 | encode);
  3911 void Assembler::incq(Register dst) {
  3912   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3913   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3914   int encode = prefixq_and_encode(dst->encoding());
  3915   emit_byte(0xFF);
  3916   emit_byte(0xC0 | encode);
  3919 void Assembler::incq(Address dst) {
  3920   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3921   InstructionMark im(this);
  3922   prefixq(dst);
  3923   emit_byte(0xFF);
  3924   emit_operand(rax, dst);
  3927 void Assembler::lea(Register dst, Address src) {
  3928   leaq(dst, src);
  3931 void Assembler::leaq(Register dst, Address src) {
  3932   InstructionMark im(this);
  3933   prefixq(src, dst);
  3934   emit_byte(0x8D);
  3935   emit_operand(dst, src);
  3938 void Assembler::mov64(Register dst, int64_t imm64) {
  3939   InstructionMark im(this);
  3940   int encode = prefixq_and_encode(dst->encoding());
  3941   emit_byte(0xB8 | encode);
  3942   emit_long64(imm64);
  3945 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  3946   InstructionMark im(this);
  3947   int encode = prefixq_and_encode(dst->encoding());
  3948   emit_byte(0xB8 | encode);
  3949   emit_data64(imm64, rspec);
  3952 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3953   InstructionMark im(this);
  3954   int encode = prefix_and_encode(dst->encoding());
  3955   emit_byte(0xB8 | encode);
  3956   emit_data((int)imm32, rspec, narrow_oop_operand);
  3959 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3960   InstructionMark im(this);
  3961   prefix(dst);
  3962   emit_byte(0xC7);
  3963   emit_operand(rax, dst, 4);
  3964   emit_data((int)imm32, rspec, narrow_oop_operand);
  3967 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3968   InstructionMark im(this);
  3969   int encode = prefix_and_encode(src1->encoding());
  3970   emit_byte(0x81);
  3971   emit_byte(0xF8 | encode);
  3972   emit_data((int)imm32, rspec, narrow_oop_operand);
  3975 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3976   InstructionMark im(this);
  3977   prefix(src1);
  3978   emit_byte(0x81);
  3979   emit_operand(rax, src1, 4);
  3980   emit_data((int)imm32, rspec, narrow_oop_operand);
  3983 void Assembler::lzcntq(Register dst, Register src) {
  3984   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  3985   emit_byte(0xF3);
  3986   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3987   emit_byte(0x0F);
  3988   emit_byte(0xBD);
  3989   emit_byte(0xC0 | encode);
  3992 void Assembler::movdq(XMMRegister dst, Register src) {
  3993   // table D-1 says MMX/SSE2
  3994   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  3995   emit_byte(0x66);
  3996   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3997   emit_byte(0x0F);
  3998   emit_byte(0x6E);
  3999   emit_byte(0xC0 | encode);
  4002 void Assembler::movdq(Register dst, XMMRegister src) {
  4003   // table D-1 says MMX/SSE2
  4004   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4005   emit_byte(0x66);
  4006   // swap src/dst to get correct prefix
  4007   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  4008   emit_byte(0x0F);
  4009   emit_byte(0x7E);
  4010   emit_byte(0xC0 | encode);
  4013 void Assembler::movq(Register dst, Register src) {
  4014   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4015   emit_byte(0x8B);
  4016   emit_byte(0xC0 | encode);
  4019 void Assembler::movq(Register dst, Address src) {
  4020   InstructionMark im(this);
  4021   prefixq(src, dst);
  4022   emit_byte(0x8B);
  4023   emit_operand(dst, src);
  4026 void Assembler::movq(Address dst, Register src) {
  4027   InstructionMark im(this);
  4028   prefixq(dst, src);
  4029   emit_byte(0x89);
  4030   emit_operand(src, dst);
  4033 void Assembler::movsbq(Register dst, Address src) {
  4034   InstructionMark im(this);
  4035   prefixq(src, dst);
  4036   emit_byte(0x0F);
  4037   emit_byte(0xBE);
  4038   emit_operand(dst, src);
  4041 void Assembler::movsbq(Register dst, Register src) {
  4042   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4043   emit_byte(0x0F);
  4044   emit_byte(0xBE);
  4045   emit_byte(0xC0 | encode);
  4048 void Assembler::movslq(Register dst, int32_t imm32) {
  4049   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4050   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4051   // as a result we shouldn't use until tested at runtime...
  4052   ShouldNotReachHere();
  4053   InstructionMark im(this);
  4054   int encode = prefixq_and_encode(dst->encoding());
  4055   emit_byte(0xC7 | encode);
  4056   emit_long(imm32);
  4059 void Assembler::movslq(Address dst, int32_t imm32) {
  4060   assert(is_simm32(imm32), "lost bits");
  4061   InstructionMark im(this);
  4062   prefixq(dst);
  4063   emit_byte(0xC7);
  4064   emit_operand(rax, dst, 4);
  4065   emit_long(imm32);
  4068 void Assembler::movslq(Register dst, Address src) {
  4069   InstructionMark im(this);
  4070   prefixq(src, dst);
  4071   emit_byte(0x63);
  4072   emit_operand(dst, src);
  4075 void Assembler::movslq(Register dst, Register src) {
  4076   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4077   emit_byte(0x63);
  4078   emit_byte(0xC0 | encode);
  4081 void Assembler::movswq(Register dst, Address src) {
  4082   InstructionMark im(this);
  4083   prefixq(src, dst);
  4084   emit_byte(0x0F);
  4085   emit_byte(0xBF);
  4086   emit_operand(dst, src);
  4089 void Assembler::movswq(Register dst, Register src) {
  4090   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4091   emit_byte(0x0F);
  4092   emit_byte(0xBF);
  4093   emit_byte(0xC0 | encode);
  4096 void Assembler::movzbq(Register dst, Address src) {
  4097   InstructionMark im(this);
  4098   prefixq(src, dst);
  4099   emit_byte(0x0F);
  4100   emit_byte(0xB6);
  4101   emit_operand(dst, src);
  4104 void Assembler::movzbq(Register dst, Register src) {
  4105   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4106   emit_byte(0x0F);
  4107   emit_byte(0xB6);
  4108   emit_byte(0xC0 | encode);
  4111 void Assembler::movzwq(Register dst, Address src) {
  4112   InstructionMark im(this);
  4113   prefixq(src, dst);
  4114   emit_byte(0x0F);
  4115   emit_byte(0xB7);
  4116   emit_operand(dst, src);
  4119 void Assembler::movzwq(Register dst, Register src) {
  4120   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4121   emit_byte(0x0F);
  4122   emit_byte(0xB7);
  4123   emit_byte(0xC0 | encode);
  4126 void Assembler::negq(Register dst) {
  4127   int encode = prefixq_and_encode(dst->encoding());
  4128   emit_byte(0xF7);
  4129   emit_byte(0xD8 | encode);
  4132 void Assembler::notq(Register dst) {
  4133   int encode = prefixq_and_encode(dst->encoding());
  4134   emit_byte(0xF7);
  4135   emit_byte(0xD0 | encode);
  4138 void Assembler::orq(Address dst, int32_t imm32) {
  4139   InstructionMark im(this);
  4140   prefixq(dst);
  4141   emit_byte(0x81);
  4142   emit_operand(rcx, dst, 4);
  4143   emit_long(imm32);
  4146 void Assembler::orq(Register dst, int32_t imm32) {
  4147   (void) prefixq_and_encode(dst->encoding());
  4148   emit_arith(0x81, 0xC8, dst, imm32);
  4151 void Assembler::orq(Register dst, Address src) {
  4152   InstructionMark im(this);
  4153   prefixq(src, dst);
  4154   emit_byte(0x0B);
  4155   emit_operand(dst, src);
  4158 void Assembler::orq(Register dst, Register src) {
  4159   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4160   emit_arith(0x0B, 0xC0, dst, src);
  4163 void Assembler::popa() { // 64bit
  4164   movq(r15, Address(rsp, 0));
  4165   movq(r14, Address(rsp, wordSize));
  4166   movq(r13, Address(rsp, 2 * wordSize));
  4167   movq(r12, Address(rsp, 3 * wordSize));
  4168   movq(r11, Address(rsp, 4 * wordSize));
  4169   movq(r10, Address(rsp, 5 * wordSize));
  4170   movq(r9,  Address(rsp, 6 * wordSize));
  4171   movq(r8,  Address(rsp, 7 * wordSize));
  4172   movq(rdi, Address(rsp, 8 * wordSize));
  4173   movq(rsi, Address(rsp, 9 * wordSize));
  4174   movq(rbp, Address(rsp, 10 * wordSize));
  4175   // skip rsp
  4176   movq(rbx, Address(rsp, 12 * wordSize));
  4177   movq(rdx, Address(rsp, 13 * wordSize));
  4178   movq(rcx, Address(rsp, 14 * wordSize));
  4179   movq(rax, Address(rsp, 15 * wordSize));
  4181   addq(rsp, 16 * wordSize);
  4184 void Assembler::popcntq(Register dst, Address src) {
  4185   assert(VM_Version::supports_popcnt(), "must support");
  4186   InstructionMark im(this);
  4187   emit_byte(0xF3);
  4188   prefixq(src, dst);
  4189   emit_byte(0x0F);
  4190   emit_byte(0xB8);
  4191   emit_operand(dst, src);
  4194 void Assembler::popcntq(Register dst, Register src) {
  4195   assert(VM_Version::supports_popcnt(), "must support");
  4196   emit_byte(0xF3);
  4197   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4198   emit_byte(0x0F);
  4199   emit_byte(0xB8);
  4200   emit_byte(0xC0 | encode);
  4203 void Assembler::popq(Address dst) {
  4204   InstructionMark im(this);
  4205   prefixq(dst);
  4206   emit_byte(0x8F);
  4207   emit_operand(rax, dst);
  4210 void Assembler::pusha() { // 64bit
  4211   // we have to store original rsp.  ABI says that 128 bytes
  4212   // below rsp are local scratch.
  4213   movq(Address(rsp, -5 * wordSize), rsp);
  4215   subq(rsp, 16 * wordSize);
  4217   movq(Address(rsp, 15 * wordSize), rax);
  4218   movq(Address(rsp, 14 * wordSize), rcx);
  4219   movq(Address(rsp, 13 * wordSize), rdx);
  4220   movq(Address(rsp, 12 * wordSize), rbx);
  4221   // skip rsp
  4222   movq(Address(rsp, 10 * wordSize), rbp);
  4223   movq(Address(rsp, 9 * wordSize), rsi);
  4224   movq(Address(rsp, 8 * wordSize), rdi);
  4225   movq(Address(rsp, 7 * wordSize), r8);
  4226   movq(Address(rsp, 6 * wordSize), r9);
  4227   movq(Address(rsp, 5 * wordSize), r10);
  4228   movq(Address(rsp, 4 * wordSize), r11);
  4229   movq(Address(rsp, 3 * wordSize), r12);
  4230   movq(Address(rsp, 2 * wordSize), r13);
  4231   movq(Address(rsp, wordSize), r14);
  4232   movq(Address(rsp, 0), r15);
  4235 void Assembler::pushq(Address src) {
  4236   InstructionMark im(this);
  4237   prefixq(src);
  4238   emit_byte(0xFF);
  4239   emit_operand(rsi, src);
  4242 void Assembler::rclq(Register dst, int imm8) {
  4243   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4244   int encode = prefixq_and_encode(dst->encoding());
  4245   if (imm8 == 1) {
  4246     emit_byte(0xD1);
  4247     emit_byte(0xD0 | encode);
  4248   } else {
  4249     emit_byte(0xC1);
  4250     emit_byte(0xD0 | encode);
  4251     emit_byte(imm8);
  4254 void Assembler::sarq(Register dst, int imm8) {
  4255   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4256   int encode = prefixq_and_encode(dst->encoding());
  4257   if (imm8 == 1) {
  4258     emit_byte(0xD1);
  4259     emit_byte(0xF8 | encode);
  4260   } else {
  4261     emit_byte(0xC1);
  4262     emit_byte(0xF8 | encode);
  4263     emit_byte(imm8);
  4267 void Assembler::sarq(Register dst) {
  4268   int encode = prefixq_and_encode(dst->encoding());
  4269   emit_byte(0xD3);
  4270   emit_byte(0xF8 | encode);
  4272 void Assembler::sbbq(Address dst, int32_t imm32) {
  4273   InstructionMark im(this);
  4274   prefixq(dst);
  4275   emit_arith_operand(0x81, rbx, dst, imm32);
  4278 void Assembler::sbbq(Register dst, int32_t imm32) {
  4279   (void) prefixq_and_encode(dst->encoding());
  4280   emit_arith(0x81, 0xD8, dst, imm32);
  4283 void Assembler::sbbq(Register dst, Address src) {
  4284   InstructionMark im(this);
  4285   prefixq(src, dst);
  4286   emit_byte(0x1B);
  4287   emit_operand(dst, src);
  4290 void Assembler::sbbq(Register dst, Register src) {
  4291   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4292   emit_arith(0x1B, 0xC0, dst, src);
  4295 void Assembler::shlq(Register dst, int imm8) {
  4296   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4297   int encode = prefixq_and_encode(dst->encoding());
  4298   if (imm8 == 1) {
  4299     emit_byte(0xD1);
  4300     emit_byte(0xE0 | encode);
  4301   } else {
  4302     emit_byte(0xC1);
  4303     emit_byte(0xE0 | encode);
  4304     emit_byte(imm8);
  4308 void Assembler::shlq(Register dst) {
  4309   int encode = prefixq_and_encode(dst->encoding());
  4310   emit_byte(0xD3);
  4311   emit_byte(0xE0 | encode);
  4314 void Assembler::shrq(Register dst, int imm8) {
  4315   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4316   int encode = prefixq_and_encode(dst->encoding());
  4317   emit_byte(0xC1);
  4318   emit_byte(0xE8 | encode);
  4319   emit_byte(imm8);
  4322 void Assembler::shrq(Register dst) {
  4323   int encode = prefixq_and_encode(dst->encoding());
  4324   emit_byte(0xD3);
  4325   emit_byte(0xE8 | encode);
  4328 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  4329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4330   InstructionMark im(this);
  4331   emit_byte(0xF2);
  4332   prefix(src, dst);
  4333   emit_byte(0x0F);
  4334   emit_byte(0x51);
  4335   emit_operand(dst, src);
  4338 void Assembler::subq(Address dst, int32_t imm32) {
  4339   InstructionMark im(this);
  4340   prefixq(dst);
  4341   if (is8bit(imm32)) {
  4342     emit_byte(0x83);
  4343     emit_operand(rbp, dst, 1);
  4344     emit_byte(imm32 & 0xFF);
  4345   } else {
  4346     emit_byte(0x81);
  4347     emit_operand(rbp, dst, 4);
  4348     emit_long(imm32);
  4352 void Assembler::subq(Register dst, int32_t imm32) {
  4353   (void) prefixq_and_encode(dst->encoding());
  4354   emit_arith(0x81, 0xE8, dst, imm32);
  4357 void Assembler::subq(Address dst, Register src) {
  4358   InstructionMark im(this);
  4359   prefixq(dst, src);
  4360   emit_byte(0x29);
  4361   emit_operand(src, dst);
  4364 void Assembler::subq(Register dst, Address src) {
  4365   InstructionMark im(this);
  4366   prefixq(src, dst);
  4367   emit_byte(0x2B);
  4368   emit_operand(dst, src);
  4371 void Assembler::subq(Register dst, Register src) {
  4372   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4373   emit_arith(0x2B, 0xC0, dst, src);
  4376 void Assembler::testq(Register dst, int32_t imm32) {
  4377   // not using emit_arith because test
  4378   // doesn't support sign-extension of
  4379   // 8bit operands
  4380   int encode = dst->encoding();
  4381   if (encode == 0) {
  4382     prefix(REX_W);
  4383     emit_byte(0xA9);
  4384   } else {
  4385     encode = prefixq_and_encode(encode);
  4386     emit_byte(0xF7);
  4387     emit_byte(0xC0 | encode);
  4389   emit_long(imm32);
  4392 void Assembler::testq(Register dst, Register src) {
  4393   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4394   emit_arith(0x85, 0xC0, dst, src);
  4397 void Assembler::xaddq(Address dst, Register src) {
  4398   InstructionMark im(this);
  4399   prefixq(dst, src);
  4400   emit_byte(0x0F);
  4401   emit_byte(0xC1);
  4402   emit_operand(src, dst);
  4405 void Assembler::xchgq(Register dst, Address src) {
  4406   InstructionMark im(this);
  4407   prefixq(src, dst);
  4408   emit_byte(0x87);
  4409   emit_operand(dst, src);
  4412 void Assembler::xchgq(Register dst, Register src) {
  4413   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4414   emit_byte(0x87);
  4415   emit_byte(0xc0 | encode);
  4418 void Assembler::xorq(Register dst, Register src) {
  4419   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4420   emit_arith(0x33, 0xC0, dst, src);
  4423 void Assembler::xorq(Register dst, Address src) {
  4424   InstructionMark im(this);
  4425   prefixq(src, dst);
  4426   emit_byte(0x33);
  4427   emit_operand(dst, src);
  4430 #endif // !LP64
  4432 static Assembler::Condition reverse[] = {
  4433     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4434     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4435     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4436     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4437     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4438     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4439     Assembler::above          /* belowEqual    = 0x6 */ ,
  4440     Assembler::belowEqual     /* above         = 0x7 */ ,
  4441     Assembler::positive       /* negative      = 0x8 */ ,
  4442     Assembler::negative       /* positive      = 0x9 */ ,
  4443     Assembler::noParity       /* parity        = 0xa */ ,
  4444     Assembler::parity         /* noParity      = 0xb */ ,
  4445     Assembler::greaterEqual   /* less          = 0xc */ ,
  4446     Assembler::less           /* greaterEqual  = 0xd */ ,
  4447     Assembler::greater        /* lessEqual     = 0xe */ ,
  4448     Assembler::lessEqual      /* greater       = 0xf, */
  4450 };
  4453 // Implementation of MacroAssembler
  4455 // First all the versions that have distinct versions depending on 32/64 bit
  4456 // Unless the difference is trivial (1 line or so).
  4458 #ifndef _LP64
  4460 // 32bit versions
  4462 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4463   return Address(adr.target(), adr.rspec());
  4466 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4467   return Address::make_array(adr);
  4470 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4471                                          Register obj_reg,
  4472                                          Register swap_reg,
  4473                                          Register tmp_reg,
  4474                                          bool swap_reg_contains_mark,
  4475                                          Label& done,
  4476                                          Label* slow_case,
  4477                                          BiasedLockingCounters* counters) {
  4478   assert(UseBiasedLocking, "why call this otherwise?");
  4479   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4480   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4482   if (PrintBiasedLockingStatistics && counters == NULL)
  4483     counters = BiasedLocking::counters();
  4485   bool need_tmp_reg = false;
  4486   if (tmp_reg == noreg) {
  4487     need_tmp_reg = true;
  4488     tmp_reg = lock_reg;
  4489   } else {
  4490     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4492   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4493   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4494   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4495   Address saved_mark_addr(lock_reg, 0);
  4497   // Biased locking
  4498   // See whether the lock is currently biased toward our thread and
  4499   // whether the epoch is still valid
  4500   // Note that the runtime guarantees sufficient alignment of JavaThread
  4501   // pointers to allow age to be placed into low bits
  4502   // First check to see whether biasing is even enabled for this object
  4503   Label cas_label;
  4504   int null_check_offset = -1;
  4505   if (!swap_reg_contains_mark) {
  4506     null_check_offset = offset();
  4507     movl(swap_reg, mark_addr);
  4509   if (need_tmp_reg) {
  4510     push(tmp_reg);
  4512   movl(tmp_reg, swap_reg);
  4513   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4514   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4515   if (need_tmp_reg) {
  4516     pop(tmp_reg);
  4518   jcc(Assembler::notEqual, cas_label);
  4519   // The bias pattern is present in the object's header. Need to check
  4520   // whether the bias owner and the epoch are both still current.
  4521   // Note that because there is no current thread register on x86 we
  4522   // need to store off the mark word we read out of the object to
  4523   // avoid reloading it and needing to recheck invariants below. This
  4524   // store is unfortunate but it makes the overall code shorter and
  4525   // simpler.
  4526   movl(saved_mark_addr, swap_reg);
  4527   if (need_tmp_reg) {
  4528     push(tmp_reg);
  4530   get_thread(tmp_reg);
  4531   xorl(swap_reg, tmp_reg);
  4532   if (swap_reg_contains_mark) {
  4533     null_check_offset = offset();
  4535   movl(tmp_reg, klass_addr);
  4536   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4537   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4538   if (need_tmp_reg) {
  4539     pop(tmp_reg);
  4541   if (counters != NULL) {
  4542     cond_inc32(Assembler::zero,
  4543                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4545   jcc(Assembler::equal, done);
  4547   Label try_revoke_bias;
  4548   Label try_rebias;
  4550   // At this point we know that the header has the bias pattern and
  4551   // that we are not the bias owner in the current epoch. We need to
  4552   // figure out more details about the state of the header in order to
  4553   // know what operations can be legally performed on the object's
  4554   // header.
  4556   // If the low three bits in the xor result aren't clear, that means
  4557   // the prototype header is no longer biased and we have to revoke
  4558   // the bias on this object.
  4559   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4560   jcc(Assembler::notZero, try_revoke_bias);
  4562   // Biasing is still enabled for this data type. See whether the
  4563   // epoch of the current bias is still valid, meaning that the epoch
  4564   // bits of the mark word are equal to the epoch bits of the
  4565   // prototype header. (Note that the prototype header's epoch bits
  4566   // only change at a safepoint.) If not, attempt to rebias the object
  4567   // toward the current thread. Note that we must be absolutely sure
  4568   // that the current epoch is invalid in order to do this because
  4569   // otherwise the manipulations it performs on the mark word are
  4570   // illegal.
  4571   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4572   jcc(Assembler::notZero, try_rebias);
  4574   // The epoch of the current bias is still valid but we know nothing
  4575   // about the owner; it might be set or it might be clear. Try to
  4576   // acquire the bias of the object using an atomic operation. If this
  4577   // fails we will go in to the runtime to revoke the object's bias.
  4578   // Note that we first construct the presumed unbiased header so we
  4579   // don't accidentally blow away another thread's valid bias.
  4580   movl(swap_reg, saved_mark_addr);
  4581   andl(swap_reg,
  4582        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4583   if (need_tmp_reg) {
  4584     push(tmp_reg);
  4586   get_thread(tmp_reg);
  4587   orl(tmp_reg, swap_reg);
  4588   if (os::is_MP()) {
  4589     lock();
  4591   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4592   if (need_tmp_reg) {
  4593     pop(tmp_reg);
  4595   // If the biasing toward our thread failed, this means that
  4596   // another thread succeeded in biasing it toward itself and we
  4597   // need to revoke that bias. The revocation will occur in the
  4598   // interpreter runtime in the slow case.
  4599   if (counters != NULL) {
  4600     cond_inc32(Assembler::zero,
  4601                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4603   if (slow_case != NULL) {
  4604     jcc(Assembler::notZero, *slow_case);
  4606   jmp(done);
  4608   bind(try_rebias);
  4609   // At this point we know the epoch has expired, meaning that the
  4610   // current "bias owner", if any, is actually invalid. Under these
  4611   // circumstances _only_, we are allowed to use the current header's
  4612   // value as the comparison value when doing the cas to acquire the
  4613   // bias in the current epoch. In other words, we allow transfer of
  4614   // the bias from one thread to another directly in this situation.
  4615   //
  4616   // FIXME: due to a lack of registers we currently blow away the age
  4617   // bits in this situation. Should attempt to preserve them.
  4618   if (need_tmp_reg) {
  4619     push(tmp_reg);
  4621   get_thread(tmp_reg);
  4622   movl(swap_reg, klass_addr);
  4623   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4624   movl(swap_reg, saved_mark_addr);
  4625   if (os::is_MP()) {
  4626     lock();
  4628   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4629   if (need_tmp_reg) {
  4630     pop(tmp_reg);
  4632   // If the biasing toward our thread failed, then another thread
  4633   // succeeded in biasing it toward itself and we need to revoke that
  4634   // bias. The revocation will occur in the runtime in the slow case.
  4635   if (counters != NULL) {
  4636     cond_inc32(Assembler::zero,
  4637                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4639   if (slow_case != NULL) {
  4640     jcc(Assembler::notZero, *slow_case);
  4642   jmp(done);
  4644   bind(try_revoke_bias);
  4645   // The prototype mark in the klass doesn't have the bias bit set any
  4646   // more, indicating that objects of this data type are not supposed
  4647   // to be biased any more. We are going to try to reset the mark of
  4648   // this object to the prototype value and fall through to the
  4649   // CAS-based locking scheme. Note that if our CAS fails, it means
  4650   // that another thread raced us for the privilege of revoking the
  4651   // bias of this particular object, so it's okay to continue in the
  4652   // normal locking code.
  4653   //
  4654   // FIXME: due to a lack of registers we currently blow away the age
  4655   // bits in this situation. Should attempt to preserve them.
  4656   movl(swap_reg, saved_mark_addr);
  4657   if (need_tmp_reg) {
  4658     push(tmp_reg);
  4660   movl(tmp_reg, klass_addr);
  4661   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4662   if (os::is_MP()) {
  4663     lock();
  4665   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4666   if (need_tmp_reg) {
  4667     pop(tmp_reg);
  4669   // Fall through to the normal CAS-based lock, because no matter what
  4670   // the result of the above CAS, some thread must have succeeded in
  4671   // removing the bias bit from the object's header.
  4672   if (counters != NULL) {
  4673     cond_inc32(Assembler::zero,
  4674                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4677   bind(cas_label);
  4679   return null_check_offset;
  4681 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4682                                        int number_of_arguments) {
  4683   call(RuntimeAddress(entry_point));
  4684   increment(rsp, number_of_arguments * wordSize);
  4687 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4688   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4691 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4692   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4695 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4696   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4697   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4698     cdql();
  4699   } else {
  4700     movl(hi, lo);
  4701     sarl(hi, 31);
  4705 void MacroAssembler::fat_nop() {
  4706   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4707   emit_byte(0x26); // es:
  4708   emit_byte(0x2e); // cs:
  4709   emit_byte(0x64); // fs:
  4710   emit_byte(0x65); // gs:
  4711   emit_byte(0x90);
  4714 void MacroAssembler::jC2(Register tmp, Label& L) {
  4715   // set parity bit if FPU flag C2 is set (via rax)
  4716   save_rax(tmp);
  4717   fwait(); fnstsw_ax();
  4718   sahf();
  4719   restore_rax(tmp);
  4720   // branch
  4721   jcc(Assembler::parity, L);
  4724 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4725   // set parity bit if FPU flag C2 is set (via rax)
  4726   save_rax(tmp);
  4727   fwait(); fnstsw_ax();
  4728   sahf();
  4729   restore_rax(tmp);
  4730   // branch
  4731   jcc(Assembler::noParity, L);
  4734 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4735 // to be installed in the Address class
  4736 void MacroAssembler::jump(ArrayAddress entry) {
  4737   jmp(as_Address(entry));
  4740 // Note: y_lo will be destroyed
  4741 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4742   // Long compare for Java (semantics as described in JVM spec.)
  4743   Label high, low, done;
  4745   cmpl(x_hi, y_hi);
  4746   jcc(Assembler::less, low);
  4747   jcc(Assembler::greater, high);
  4748   // x_hi is the return register
  4749   xorl(x_hi, x_hi);
  4750   cmpl(x_lo, y_lo);
  4751   jcc(Assembler::below, low);
  4752   jcc(Assembler::equal, done);
  4754   bind(high);
  4755   xorl(x_hi, x_hi);
  4756   increment(x_hi);
  4757   jmp(done);
  4759   bind(low);
  4760   xorl(x_hi, x_hi);
  4761   decrementl(x_hi);
  4763   bind(done);
  4766 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4767     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4770 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4771   // leal(dst, as_Address(adr));
  4772   // see note in movl as to why we must use a move
  4773   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4776 void MacroAssembler::leave() {
  4777   mov(rsp, rbp);
  4778   pop(rbp);
  4781 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4782   // Multiplication of two Java long values stored on the stack
  4783   // as illustrated below. Result is in rdx:rax.
  4784   //
  4785   // rsp ---> [  ??  ] \               \
  4786   //            ....    | y_rsp_offset  |
  4787   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4788   //          [ y_hi ]                  | (in bytes)
  4789   //            ....                    |
  4790   //          [ x_lo ]                 /
  4791   //          [ x_hi ]
  4792   //            ....
  4793   //
  4794   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4795   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4796   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4797   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4798   Label quick;
  4799   // load x_hi, y_hi and check if quick
  4800   // multiplication is possible
  4801   movl(rbx, x_hi);
  4802   movl(rcx, y_hi);
  4803   movl(rax, rbx);
  4804   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4805   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4806   // do full multiplication
  4807   // 1st step
  4808   mull(y_lo);                                    // x_hi * y_lo
  4809   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4810   // 2nd step
  4811   movl(rax, x_lo);
  4812   mull(rcx);                                     // x_lo * y_hi
  4813   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4814   // 3rd step
  4815   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4816   movl(rax, x_lo);
  4817   mull(y_lo);                                    // x_lo * y_lo
  4818   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4821 void MacroAssembler::lneg(Register hi, Register lo) {
  4822   negl(lo);
  4823   adcl(hi, 0);
  4824   negl(hi);
  4827 void MacroAssembler::lshl(Register hi, Register lo) {
  4828   // Java shift left long support (semantics as described in JVM spec., p.305)
  4829   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4830   // shift value is in rcx !
  4831   assert(hi != rcx, "must not use rcx");
  4832   assert(lo != rcx, "must not use rcx");
  4833   const Register s = rcx;                        // shift count
  4834   const int      n = BitsPerWord;
  4835   Label L;
  4836   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4837   cmpl(s, n);                                    // if (s < n)
  4838   jcc(Assembler::less, L);                       // else (s >= n)
  4839   movl(hi, lo);                                  // x := x << n
  4840   xorl(lo, lo);
  4841   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4842   bind(L);                                       // s (mod n) < n
  4843   shldl(hi, lo);                                 // x := x << s
  4844   shll(lo);
  4848 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4849   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4850   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4851   assert(hi != rcx, "must not use rcx");
  4852   assert(lo != rcx, "must not use rcx");
  4853   const Register s = rcx;                        // shift count
  4854   const int      n = BitsPerWord;
  4855   Label L;
  4856   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4857   cmpl(s, n);                                    // if (s < n)
  4858   jcc(Assembler::less, L);                       // else (s >= n)
  4859   movl(lo, hi);                                  // x := x >> n
  4860   if (sign_extension) sarl(hi, 31);
  4861   else                xorl(hi, hi);
  4862   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4863   bind(L);                                       // s (mod n) < n
  4864   shrdl(lo, hi);                                 // x := x >> s
  4865   if (sign_extension) sarl(hi);
  4866   else                shrl(hi);
  4869 void MacroAssembler::movoop(Register dst, jobject obj) {
  4870   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4873 void MacroAssembler::movoop(Address dst, jobject obj) {
  4874   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4877 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4878   if (src.is_lval()) {
  4879     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4880   } else {
  4881     movl(dst, as_Address(src));
  4885 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4886   movl(as_Address(dst), src);
  4889 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4890   movl(dst, as_Address(src));
  4893 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4894 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4895   movl(dst, src);
  4899 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  4900   movsd(dst, as_Address(src));
  4903 void MacroAssembler::pop_callee_saved_registers() {
  4904   pop(rcx);
  4905   pop(rdx);
  4906   pop(rdi);
  4907   pop(rsi);
  4910 void MacroAssembler::pop_fTOS() {
  4911   fld_d(Address(rsp, 0));
  4912   addl(rsp, 2 * wordSize);
  4915 void MacroAssembler::push_callee_saved_registers() {
  4916   push(rsi);
  4917   push(rdi);
  4918   push(rdx);
  4919   push(rcx);
  4922 void MacroAssembler::push_fTOS() {
  4923   subl(rsp, 2 * wordSize);
  4924   fstp_d(Address(rsp, 0));
  4928 void MacroAssembler::pushoop(jobject obj) {
  4929   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  4933 void MacroAssembler::pushptr(AddressLiteral src) {
  4934   if (src.is_lval()) {
  4935     push_literal32((int32_t)src.target(), src.rspec());
  4936   } else {
  4937     pushl(as_Address(src));
  4941 void MacroAssembler::set_word_if_not_zero(Register dst) {
  4942   xorl(dst, dst);
  4943   set_byte_if_not_zero(dst);
  4946 static void pass_arg0(MacroAssembler* masm, Register arg) {
  4947   masm->push(arg);
  4950 static void pass_arg1(MacroAssembler* masm, Register arg) {
  4951   masm->push(arg);
  4954 static void pass_arg2(MacroAssembler* masm, Register arg) {
  4955   masm->push(arg);
  4958 static void pass_arg3(MacroAssembler* masm, Register arg) {
  4959   masm->push(arg);
  4962 #ifndef PRODUCT
  4963 extern "C" void findpc(intptr_t x);
  4964 #endif
  4966 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  4967   // In order to get locks to work, we need to fake a in_VM state
  4968   JavaThread* thread = JavaThread::current();
  4969   JavaThreadState saved_state = thread->thread_state();
  4970   thread->set_thread_state(_thread_in_vm);
  4971   if (ShowMessageBoxOnError) {
  4972     JavaThread* thread = JavaThread::current();
  4973     JavaThreadState saved_state = thread->thread_state();
  4974     thread->set_thread_state(_thread_in_vm);
  4975     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  4976       ttyLocker ttyl;
  4977       BytecodeCounter::print();
  4979     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  4980     // This is the value of eip which points to where verify_oop will return.
  4981     if (os::message_box(msg, "Execution stopped, print registers?")) {
  4982       ttyLocker ttyl;
  4983       tty->print_cr("eip = 0x%08x", eip);
  4984 #ifndef PRODUCT
  4985       tty->cr();
  4986       findpc(eip);
  4987       tty->cr();
  4988 #endif
  4989       tty->print_cr("rax, = 0x%08x", rax);
  4990       tty->print_cr("rbx, = 0x%08x", rbx);
  4991       tty->print_cr("rcx = 0x%08x", rcx);
  4992       tty->print_cr("rdx = 0x%08x", rdx);
  4993       tty->print_cr("rdi = 0x%08x", rdi);
  4994       tty->print_cr("rsi = 0x%08x", rsi);
  4995       tty->print_cr("rbp, = 0x%08x", rbp);
  4996       tty->print_cr("rsp = 0x%08x", rsp);
  4997       BREAKPOINT;
  4999   } else {
  5000     ttyLocker ttyl;
  5001     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5002     assert(false, "DEBUG MESSAGE");
  5004   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5007 void MacroAssembler::stop(const char* msg) {
  5008   ExternalAddress message((address)msg);
  5009   // push address of message
  5010   pushptr(message.addr());
  5011   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5012   pusha();                                           // push registers
  5013   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5014   hlt();
  5017 void MacroAssembler::warn(const char* msg) {
  5018   push_CPU_state();
  5020   ExternalAddress message((address) msg);
  5021   // push address of message
  5022   pushptr(message.addr());
  5024   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5025   addl(rsp, wordSize);       // discard argument
  5026   pop_CPU_state();
  5029 #else // _LP64
  5031 // 64 bit versions
  5033 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5034   // amd64 always does this as a pc-rel
  5035   // we can be absolute or disp based on the instruction type
  5036   // jmp/call are displacements others are absolute
  5037   assert(!adr.is_lval(), "must be rval");
  5038   assert(reachable(adr), "must be");
  5039   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5043 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5044   AddressLiteral base = adr.base();
  5045   lea(rscratch1, base);
  5046   Address index = adr.index();
  5047   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5048   Address array(rscratch1, index._index, index._scale, index._disp);
  5049   return array;
  5052 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5053                                          Register obj_reg,
  5054                                          Register swap_reg,
  5055                                          Register tmp_reg,
  5056                                          bool swap_reg_contains_mark,
  5057                                          Label& done,
  5058                                          Label* slow_case,
  5059                                          BiasedLockingCounters* counters) {
  5060   assert(UseBiasedLocking, "why call this otherwise?");
  5061   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5062   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5063   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5064   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5065   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5066   Address saved_mark_addr(lock_reg, 0);
  5068   if (PrintBiasedLockingStatistics && counters == NULL)
  5069     counters = BiasedLocking::counters();
  5071   // Biased locking
  5072   // See whether the lock is currently biased toward our thread and
  5073   // whether the epoch is still valid
  5074   // Note that the runtime guarantees sufficient alignment of JavaThread
  5075   // pointers to allow age to be placed into low bits
  5076   // First check to see whether biasing is even enabled for this object
  5077   Label cas_label;
  5078   int null_check_offset = -1;
  5079   if (!swap_reg_contains_mark) {
  5080     null_check_offset = offset();
  5081     movq(swap_reg, mark_addr);
  5083   movq(tmp_reg, swap_reg);
  5084   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5085   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5086   jcc(Assembler::notEqual, cas_label);
  5087   // The bias pattern is present in the object's header. Need to check
  5088   // whether the bias owner and the epoch are both still current.
  5089   load_prototype_header(tmp_reg, obj_reg);
  5090   orq(tmp_reg, r15_thread);
  5091   xorq(tmp_reg, swap_reg);
  5092   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5093   if (counters != NULL) {
  5094     cond_inc32(Assembler::zero,
  5095                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5097   jcc(Assembler::equal, done);
  5099   Label try_revoke_bias;
  5100   Label try_rebias;
  5102   // At this point we know that the header has the bias pattern and
  5103   // that we are not the bias owner in the current epoch. We need to
  5104   // figure out more details about the state of the header in order to
  5105   // know what operations can be legally performed on the object's
  5106   // header.
  5108   // If the low three bits in the xor result aren't clear, that means
  5109   // the prototype header is no longer biased and we have to revoke
  5110   // the bias on this object.
  5111   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5112   jcc(Assembler::notZero, try_revoke_bias);
  5114   // Biasing is still enabled for this data type. See whether the
  5115   // epoch of the current bias is still valid, meaning that the epoch
  5116   // bits of the mark word are equal to the epoch bits of the
  5117   // prototype header. (Note that the prototype header's epoch bits
  5118   // only change at a safepoint.) If not, attempt to rebias the object
  5119   // toward the current thread. Note that we must be absolutely sure
  5120   // that the current epoch is invalid in order to do this because
  5121   // otherwise the manipulations it performs on the mark word are
  5122   // illegal.
  5123   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5124   jcc(Assembler::notZero, try_rebias);
  5126   // The epoch of the current bias is still valid but we know nothing
  5127   // about the owner; it might be set or it might be clear. Try to
  5128   // acquire the bias of the object using an atomic operation. If this
  5129   // fails we will go in to the runtime to revoke the object's bias.
  5130   // Note that we first construct the presumed unbiased header so we
  5131   // don't accidentally blow away another thread's valid bias.
  5132   andq(swap_reg,
  5133        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5134   movq(tmp_reg, swap_reg);
  5135   orq(tmp_reg, r15_thread);
  5136   if (os::is_MP()) {
  5137     lock();
  5139   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5140   // If the biasing toward our thread failed, this means that
  5141   // another thread succeeded in biasing it toward itself and we
  5142   // need to revoke that bias. The revocation will occur in the
  5143   // interpreter runtime in the slow case.
  5144   if (counters != NULL) {
  5145     cond_inc32(Assembler::zero,
  5146                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5148   if (slow_case != NULL) {
  5149     jcc(Assembler::notZero, *slow_case);
  5151   jmp(done);
  5153   bind(try_rebias);
  5154   // At this point we know the epoch has expired, meaning that the
  5155   // current "bias owner", if any, is actually invalid. Under these
  5156   // circumstances _only_, we are allowed to use the current header's
  5157   // value as the comparison value when doing the cas to acquire the
  5158   // bias in the current epoch. In other words, we allow transfer of
  5159   // the bias from one thread to another directly in this situation.
  5160   //
  5161   // FIXME: due to a lack of registers we currently blow away the age
  5162   // bits in this situation. Should attempt to preserve them.
  5163   load_prototype_header(tmp_reg, obj_reg);
  5164   orq(tmp_reg, r15_thread);
  5165   if (os::is_MP()) {
  5166     lock();
  5168   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5169   // If the biasing toward our thread failed, then another thread
  5170   // succeeded in biasing it toward itself and we need to revoke that
  5171   // bias. The revocation will occur in the runtime in the slow case.
  5172   if (counters != NULL) {
  5173     cond_inc32(Assembler::zero,
  5174                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5176   if (slow_case != NULL) {
  5177     jcc(Assembler::notZero, *slow_case);
  5179   jmp(done);
  5181   bind(try_revoke_bias);
  5182   // The prototype mark in the klass doesn't have the bias bit set any
  5183   // more, indicating that objects of this data type are not supposed
  5184   // to be biased any more. We are going to try to reset the mark of
  5185   // this object to the prototype value and fall through to the
  5186   // CAS-based locking scheme. Note that if our CAS fails, it means
  5187   // that another thread raced us for the privilege of revoking the
  5188   // bias of this particular object, so it's okay to continue in the
  5189   // normal locking code.
  5190   //
  5191   // FIXME: due to a lack of registers we currently blow away the age
  5192   // bits in this situation. Should attempt to preserve them.
  5193   load_prototype_header(tmp_reg, obj_reg);
  5194   if (os::is_MP()) {
  5195     lock();
  5197   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5198   // Fall through to the normal CAS-based lock, because no matter what
  5199   // the result of the above CAS, some thread must have succeeded in
  5200   // removing the bias bit from the object's header.
  5201   if (counters != NULL) {
  5202     cond_inc32(Assembler::zero,
  5203                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5206   bind(cas_label);
  5208   return null_check_offset;
  5211 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5212   Label L, E;
  5214 #ifdef _WIN64
  5215   // Windows always allocates space for it's register args
  5216   assert(num_args <= 4, "only register arguments supported");
  5217   subq(rsp,  frame::arg_reg_save_area_bytes);
  5218 #endif
  5220   // Align stack if necessary
  5221   testl(rsp, 15);
  5222   jcc(Assembler::zero, L);
  5224   subq(rsp, 8);
  5226     call(RuntimeAddress(entry_point));
  5228   addq(rsp, 8);
  5229   jmp(E);
  5231   bind(L);
  5233     call(RuntimeAddress(entry_point));
  5236   bind(E);
  5238 #ifdef _WIN64
  5239   // restore stack pointer
  5240   addq(rsp, frame::arg_reg_save_area_bytes);
  5241 #endif
  5245 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5246   assert(!src2.is_lval(), "should use cmpptr");
  5248   if (reachable(src2)) {
  5249     cmpq(src1, as_Address(src2));
  5250   } else {
  5251     lea(rscratch1, src2);
  5252     Assembler::cmpq(src1, Address(rscratch1, 0));
  5256 int MacroAssembler::corrected_idivq(Register reg) {
  5257   // Full implementation of Java ldiv and lrem; checks for special
  5258   // case as described in JVM spec., p.243 & p.271.  The function
  5259   // returns the (pc) offset of the idivl instruction - may be needed
  5260   // for implicit exceptions.
  5261   //
  5262   //         normal case                           special case
  5263   //
  5264   // input : rax: dividend                         min_long
  5265   //         reg: divisor   (may not be eax/edx)   -1
  5266   //
  5267   // output: rax: quotient  (= rax idiv reg)       min_long
  5268   //         rdx: remainder (= rax irem reg)       0
  5269   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5270   static const int64_t min_long = 0x8000000000000000;
  5271   Label normal_case, special_case;
  5273   // check for special case
  5274   cmp64(rax, ExternalAddress((address) &min_long));
  5275   jcc(Assembler::notEqual, normal_case);
  5276   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5277                   // remainder = 0)
  5278   cmpq(reg, -1);
  5279   jcc(Assembler::equal, special_case);
  5281   // handle normal case
  5282   bind(normal_case);
  5283   cdqq();
  5284   int idivq_offset = offset();
  5285   idivq(reg);
  5287   // normal and special case exit
  5288   bind(special_case);
  5290   return idivq_offset;
  5293 void MacroAssembler::decrementq(Register reg, int value) {
  5294   if (value == min_jint) { subq(reg, value); return; }
  5295   if (value <  0) { incrementq(reg, -value); return; }
  5296   if (value == 0) {                        ; return; }
  5297   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5298   /* else */      { subq(reg, value)       ; return; }
  5301 void MacroAssembler::decrementq(Address dst, int value) {
  5302   if (value == min_jint) { subq(dst, value); return; }
  5303   if (value <  0) { incrementq(dst, -value); return; }
  5304   if (value == 0) {                        ; return; }
  5305   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5306   /* else */      { subq(dst, value)       ; return; }
  5309 void MacroAssembler::fat_nop() {
  5310   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5311   // Recommened sequence from 'Software Optimization Guide for the AMD
  5312   // Hammer Processor'
  5313   emit_byte(0x66);
  5314   emit_byte(0x66);
  5315   emit_byte(0x90);
  5316   emit_byte(0x66);
  5317   emit_byte(0x90);
  5320 void MacroAssembler::incrementq(Register reg, int value) {
  5321   if (value == min_jint) { addq(reg, value); return; }
  5322   if (value <  0) { decrementq(reg, -value); return; }
  5323   if (value == 0) {                        ; return; }
  5324   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5325   /* else */      { addq(reg, value)       ; return; }
  5328 void MacroAssembler::incrementq(Address dst, int value) {
  5329   if (value == min_jint) { addq(dst, value); return; }
  5330   if (value <  0) { decrementq(dst, -value); return; }
  5331   if (value == 0) {                        ; return; }
  5332   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5333   /* else */      { addq(dst, value)       ; return; }
  5336 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5337 // to be installed in the Address class
  5338 void MacroAssembler::jump(ArrayAddress entry) {
  5339   lea(rscratch1, entry.base());
  5340   Address dispatch = entry.index();
  5341   assert(dispatch._base == noreg, "must be");
  5342   dispatch._base = rscratch1;
  5343   jmp(dispatch);
  5346 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5347   ShouldNotReachHere(); // 64bit doesn't use two regs
  5348   cmpq(x_lo, y_lo);
  5351 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5352     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5355 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5356   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5357   movptr(dst, rscratch1);
  5360 void MacroAssembler::leave() {
  5361   // %%% is this really better? Why not on 32bit too?
  5362   emit_byte(0xC9); // LEAVE
  5365 void MacroAssembler::lneg(Register hi, Register lo) {
  5366   ShouldNotReachHere(); // 64bit doesn't use two regs
  5367   negq(lo);
  5370 void MacroAssembler::movoop(Register dst, jobject obj) {
  5371   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5374 void MacroAssembler::movoop(Address dst, jobject obj) {
  5375   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5376   movq(dst, rscratch1);
  5379 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5380   if (src.is_lval()) {
  5381     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5382   } else {
  5383     if (reachable(src)) {
  5384       movq(dst, as_Address(src));
  5385     } else {
  5386       lea(rscratch1, src);
  5387       movq(dst, Address(rscratch1,0));
  5392 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5393   movq(as_Address(dst), src);
  5396 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5397   movq(dst, as_Address(src));
  5400 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5401 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5402   mov64(rscratch1, src);
  5403   movq(dst, rscratch1);
  5406 // These are mostly for initializing NULL
  5407 void MacroAssembler::movptr(Address dst, int32_t src) {
  5408   movslq(dst, src);
  5411 void MacroAssembler::movptr(Register dst, int32_t src) {
  5412   mov64(dst, (intptr_t)src);
  5415 void MacroAssembler::pushoop(jobject obj) {
  5416   movoop(rscratch1, obj);
  5417   push(rscratch1);
  5420 void MacroAssembler::pushptr(AddressLiteral src) {
  5421   lea(rscratch1, src);
  5422   if (src.is_lval()) {
  5423     push(rscratch1);
  5424   } else {
  5425     pushq(Address(rscratch1, 0));
  5429 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5430                                            bool clear_pc) {
  5431   // we must set sp to zero to clear frame
  5432   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5433   // must clear fp, so that compiled frames are not confused; it is
  5434   // possible that we need it only for debugging
  5435   if (clear_fp) {
  5436     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5439   if (clear_pc) {
  5440     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5444 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5445                                          Register last_java_fp,
  5446                                          address  last_java_pc) {
  5447   // determine last_java_sp register
  5448   if (!last_java_sp->is_valid()) {
  5449     last_java_sp = rsp;
  5452   // last_java_fp is optional
  5453   if (last_java_fp->is_valid()) {
  5454     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5455            last_java_fp);
  5458   // last_java_pc is optional
  5459   if (last_java_pc != NULL) {
  5460     Address java_pc(r15_thread,
  5461                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5462     lea(rscratch1, InternalAddress(last_java_pc));
  5463     movptr(java_pc, rscratch1);
  5466   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5469 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5470   if (c_rarg0 != arg ) {
  5471     masm->mov(c_rarg0, arg);
  5475 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5476   if (c_rarg1 != arg ) {
  5477     masm->mov(c_rarg1, arg);
  5481 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5482   if (c_rarg2 != arg ) {
  5483     masm->mov(c_rarg2, arg);
  5487 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5488   if (c_rarg3 != arg ) {
  5489     masm->mov(c_rarg3, arg);
  5493 void MacroAssembler::stop(const char* msg) {
  5494   address rip = pc();
  5495   pusha(); // get regs on stack
  5496   lea(c_rarg0, ExternalAddress((address) msg));
  5497   lea(c_rarg1, InternalAddress(rip));
  5498   movq(c_rarg2, rsp); // pass pointer to regs array
  5499   andq(rsp, -16); // align stack as required by ABI
  5500   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5501   hlt();
  5504 void MacroAssembler::warn(const char* msg) {
  5505   push(r12);
  5506   movq(r12, rsp);
  5507   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5509   push_CPU_state();   // keeps alignment at 16 bytes
  5510   lea(c_rarg0, ExternalAddress((address) msg));
  5511   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5512   pop_CPU_state();
  5514   movq(rsp, r12);
  5515   pop(r12);
  5518 #ifndef PRODUCT
  5519 extern "C" void findpc(intptr_t x);
  5520 #endif
  5522 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5523   // In order to get locks to work, we need to fake a in_VM state
  5524   if (ShowMessageBoxOnError ) {
  5525     JavaThread* thread = JavaThread::current();
  5526     JavaThreadState saved_state = thread->thread_state();
  5527     thread->set_thread_state(_thread_in_vm);
  5528 #ifndef PRODUCT
  5529     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5530       ttyLocker ttyl;
  5531       BytecodeCounter::print();
  5533 #endif
  5534     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5535     // XXX correct this offset for amd64
  5536     // This is the value of eip which points to where verify_oop will return.
  5537     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5538       ttyLocker ttyl;
  5539       tty->print_cr("rip = 0x%016lx", pc);
  5540 #ifndef PRODUCT
  5541       tty->cr();
  5542       findpc(pc);
  5543       tty->cr();
  5544 #endif
  5545       tty->print_cr("rax = 0x%016lx", regs[15]);
  5546       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5547       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5548       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5549       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5550       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5551       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5552       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5553       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5554       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5555       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5556       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5557       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5558       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5559       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5560       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5561       BREAKPOINT;
  5563     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5564   } else {
  5565     ttyLocker ttyl;
  5566     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5567                     msg);
  5571 #endif // _LP64
  5573 // Now versions that are common to 32/64 bit
  5575 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5576   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5579 void MacroAssembler::addptr(Register dst, Register src) {
  5580   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5583 void MacroAssembler::addptr(Address dst, Register src) {
  5584   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5587 void MacroAssembler::align(int modulus) {
  5588   if (offset() % modulus != 0) {
  5589     nop(modulus - (offset() % modulus));
  5593 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5594   andpd(dst, as_Address(src));
  5597 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5598   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5601 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5602   pushf();
  5603   if (os::is_MP())
  5604     lock();
  5605   incrementl(counter_addr);
  5606   popf();
  5609 // Writes to stack successive pages until offset reached to check for
  5610 // stack overflow + shadow pages.  This clobbers tmp.
  5611 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5612   movptr(tmp, rsp);
  5613   // Bang stack for total size given plus shadow page size.
  5614   // Bang one page at a time because large size can bang beyond yellow and
  5615   // red zones.
  5616   Label loop;
  5617   bind(loop);
  5618   movl(Address(tmp, (-os::vm_page_size())), size );
  5619   subptr(tmp, os::vm_page_size());
  5620   subl(size, os::vm_page_size());
  5621   jcc(Assembler::greater, loop);
  5623   // Bang down shadow pages too.
  5624   // The -1 because we already subtracted 1 page.
  5625   for (int i = 0; i< StackShadowPages-1; i++) {
  5626     // this could be any sized move but this is can be a debugging crumb
  5627     // so the bigger the better.
  5628     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5632 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5633   assert(UseBiasedLocking, "why call this otherwise?");
  5635   // Check for biased locking unlock case, which is a no-op
  5636   // Note: we do not have to check the thread ID for two reasons.
  5637   // First, the interpreter checks for IllegalMonitorStateException at
  5638   // a higher level. Second, if the bias was revoked while we held the
  5639   // lock, the object could not be rebiased toward another thread, so
  5640   // the bias bit would be clear.
  5641   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5642   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5643   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5644   jcc(Assembler::equal, done);
  5647 void MacroAssembler::c2bool(Register x) {
  5648   // implements x == 0 ? 0 : 1
  5649   // note: must only look at least-significant byte of x
  5650   //       since C-style booleans are stored in one byte
  5651   //       only! (was bug)
  5652   andl(x, 0xFF);
  5653   setb(Assembler::notZero, x);
  5656 // Wouldn't need if AddressLiteral version had new name
  5657 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5658   Assembler::call(L, rtype);
  5661 void MacroAssembler::call(Register entry) {
  5662   Assembler::call(entry);
  5665 void MacroAssembler::call(AddressLiteral entry) {
  5666   if (reachable(entry)) {
  5667     Assembler::call_literal(entry.target(), entry.rspec());
  5668   } else {
  5669     lea(rscratch1, entry);
  5670     Assembler::call(rscratch1);
  5674 // Implementation of call_VM versions
  5676 void MacroAssembler::call_VM(Register oop_result,
  5677                              address entry_point,
  5678                              bool check_exceptions) {
  5679   Label C, E;
  5680   call(C, relocInfo::none);
  5681   jmp(E);
  5683   bind(C);
  5684   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5685   ret(0);
  5687   bind(E);
  5690 void MacroAssembler::call_VM(Register oop_result,
  5691                              address entry_point,
  5692                              Register arg_1,
  5693                              bool check_exceptions) {
  5694   Label C, E;
  5695   call(C, relocInfo::none);
  5696   jmp(E);
  5698   bind(C);
  5699   pass_arg1(this, arg_1);
  5700   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5701   ret(0);
  5703   bind(E);
  5706 void MacroAssembler::call_VM(Register oop_result,
  5707                              address entry_point,
  5708                              Register arg_1,
  5709                              Register arg_2,
  5710                              bool check_exceptions) {
  5711   Label C, E;
  5712   call(C, relocInfo::none);
  5713   jmp(E);
  5715   bind(C);
  5717   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5719   pass_arg2(this, arg_2);
  5720   pass_arg1(this, arg_1);
  5721   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5722   ret(0);
  5724   bind(E);
  5727 void MacroAssembler::call_VM(Register oop_result,
  5728                              address entry_point,
  5729                              Register arg_1,
  5730                              Register arg_2,
  5731                              Register arg_3,
  5732                              bool check_exceptions) {
  5733   Label C, E;
  5734   call(C, relocInfo::none);
  5735   jmp(E);
  5737   bind(C);
  5739   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5740   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5741   pass_arg3(this, arg_3);
  5743   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5744   pass_arg2(this, arg_2);
  5746   pass_arg1(this, arg_1);
  5747   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5748   ret(0);
  5750   bind(E);
  5753 void MacroAssembler::call_VM(Register oop_result,
  5754                              Register last_java_sp,
  5755                              address entry_point,
  5756                              int number_of_arguments,
  5757                              bool check_exceptions) {
  5758   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5759   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5762 void MacroAssembler::call_VM(Register oop_result,
  5763                              Register last_java_sp,
  5764                              address entry_point,
  5765                              Register arg_1,
  5766                              bool check_exceptions) {
  5767   pass_arg1(this, arg_1);
  5768   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5771 void MacroAssembler::call_VM(Register oop_result,
  5772                              Register last_java_sp,
  5773                              address entry_point,
  5774                              Register arg_1,
  5775                              Register arg_2,
  5776                              bool check_exceptions) {
  5778   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5779   pass_arg2(this, arg_2);
  5780   pass_arg1(this, arg_1);
  5781   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5784 void MacroAssembler::call_VM(Register oop_result,
  5785                              Register last_java_sp,
  5786                              address entry_point,
  5787                              Register arg_1,
  5788                              Register arg_2,
  5789                              Register arg_3,
  5790                              bool check_exceptions) {
  5791   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5792   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5793   pass_arg3(this, arg_3);
  5794   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5795   pass_arg2(this, arg_2);
  5796   pass_arg1(this, arg_1);
  5797   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5800 void MacroAssembler::call_VM_base(Register oop_result,
  5801                                   Register java_thread,
  5802                                   Register last_java_sp,
  5803                                   address  entry_point,
  5804                                   int      number_of_arguments,
  5805                                   bool     check_exceptions) {
  5806   // determine java_thread register
  5807   if (!java_thread->is_valid()) {
  5808 #ifdef _LP64
  5809     java_thread = r15_thread;
  5810 #else
  5811     java_thread = rdi;
  5812     get_thread(java_thread);
  5813 #endif // LP64
  5815   // determine last_java_sp register
  5816   if (!last_java_sp->is_valid()) {
  5817     last_java_sp = rsp;
  5819   // debugging support
  5820   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5821   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5822   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5823   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5825   // push java thread (becomes first argument of C function)
  5827   NOT_LP64(push(java_thread); number_of_arguments++);
  5828   LP64_ONLY(mov(c_rarg0, r15_thread));
  5830   // set last Java frame before call
  5831   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5833   // Only interpreter should have to set fp
  5834   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5836   // do the call, remove parameters
  5837   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5839   // restore the thread (cannot use the pushed argument since arguments
  5840   // may be overwritten by C code generated by an optimizing compiler);
  5841   // however can use the register value directly if it is callee saved.
  5842   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5843     // rdi & rsi (also r15) are callee saved -> nothing to do
  5844 #ifdef ASSERT
  5845     guarantee(java_thread != rax, "change this code");
  5846     push(rax);
  5847     { Label L;
  5848       get_thread(rax);
  5849       cmpptr(java_thread, rax);
  5850       jcc(Assembler::equal, L);
  5851       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5852       bind(L);
  5854     pop(rax);
  5855 #endif
  5856   } else {
  5857     get_thread(java_thread);
  5859   // reset last Java frame
  5860   // Only interpreter should have to clear fp
  5861   reset_last_Java_frame(java_thread, true, false);
  5863 #ifndef CC_INTERP
  5864    // C++ interp handles this in the interpreter
  5865   check_and_handle_popframe(java_thread);
  5866   check_and_handle_earlyret(java_thread);
  5867 #endif /* CC_INTERP */
  5869   if (check_exceptions) {
  5870     // check for pending exceptions (java_thread is set upon return)
  5871     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5872 #ifndef _LP64
  5873     jump_cc(Assembler::notEqual,
  5874             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5875 #else
  5876     // This used to conditionally jump to forward_exception however it is
  5877     // possible if we relocate that the branch will not reach. So we must jump
  5878     // around so we can always reach
  5880     Label ok;
  5881     jcc(Assembler::equal, ok);
  5882     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5883     bind(ok);
  5884 #endif // LP64
  5887   // get oop result if there is one and reset the value in the thread
  5888   if (oop_result->is_valid()) {
  5889     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5890     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5891     verify_oop(oop_result, "broken oop in call_VM_base");
  5895 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5897   // Calculate the value for last_Java_sp
  5898   // somewhat subtle. call_VM does an intermediate call
  5899   // which places a return address on the stack just under the
  5900   // stack pointer as the user finsihed with it. This allows
  5901   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5902   // On 32bit we then have to push additional args on the stack to accomplish
  5903   // the actual requested call. On 64bit call_VM only can use register args
  5904   // so the only extra space is the return address that call_VM created.
  5905   // This hopefully explains the calculations here.
  5907 #ifdef _LP64
  5908   // We've pushed one address, correct last_Java_sp
  5909   lea(rax, Address(rsp, wordSize));
  5910 #else
  5911   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  5912 #endif // LP64
  5914   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  5918 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  5919   call_VM_leaf_base(entry_point, number_of_arguments);
  5922 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  5923   pass_arg0(this, arg_0);
  5924   call_VM_leaf(entry_point, 1);
  5927 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  5929   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5930   pass_arg1(this, arg_1);
  5931   pass_arg0(this, arg_0);
  5932   call_VM_leaf(entry_point, 2);
  5935 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  5936   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  5937   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5938   pass_arg2(this, arg_2);
  5939   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5940   pass_arg1(this, arg_1);
  5941   pass_arg0(this, arg_0);
  5942   call_VM_leaf(entry_point, 3);
  5945 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  5948 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  5951 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  5952   if (reachable(src1)) {
  5953     cmpl(as_Address(src1), imm);
  5954   } else {
  5955     lea(rscratch1, src1);
  5956     cmpl(Address(rscratch1, 0), imm);
  5960 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  5961   assert(!src2.is_lval(), "use cmpptr");
  5962   if (reachable(src2)) {
  5963     cmpl(src1, as_Address(src2));
  5964   } else {
  5965     lea(rscratch1, src2);
  5966     cmpl(src1, Address(rscratch1, 0));
  5970 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  5971   Assembler::cmpl(src1, imm);
  5974 void MacroAssembler::cmp32(Register src1, Address src2) {
  5975   Assembler::cmpl(src1, src2);
  5978 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  5979   ucomisd(opr1, opr2);
  5981   Label L;
  5982   if (unordered_is_less) {
  5983     movl(dst, -1);
  5984     jcc(Assembler::parity, L);
  5985     jcc(Assembler::below , L);
  5986     movl(dst, 0);
  5987     jcc(Assembler::equal , L);
  5988     increment(dst);
  5989   } else { // unordered is greater
  5990     movl(dst, 1);
  5991     jcc(Assembler::parity, L);
  5992     jcc(Assembler::above , L);
  5993     movl(dst, 0);
  5994     jcc(Assembler::equal , L);
  5995     decrementl(dst);
  5997   bind(L);
  6000 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6001   ucomiss(opr1, opr2);
  6003   Label L;
  6004   if (unordered_is_less) {
  6005     movl(dst, -1);
  6006     jcc(Assembler::parity, L);
  6007     jcc(Assembler::below , L);
  6008     movl(dst, 0);
  6009     jcc(Assembler::equal , L);
  6010     increment(dst);
  6011   } else { // unordered is greater
  6012     movl(dst, 1);
  6013     jcc(Assembler::parity, L);
  6014     jcc(Assembler::above , L);
  6015     movl(dst, 0);
  6016     jcc(Assembler::equal , L);
  6017     decrementl(dst);
  6019   bind(L);
  6023 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6024   if (reachable(src1)) {
  6025     cmpb(as_Address(src1), imm);
  6026   } else {
  6027     lea(rscratch1, src1);
  6028     cmpb(Address(rscratch1, 0), imm);
  6032 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6033 #ifdef _LP64
  6034   if (src2.is_lval()) {
  6035     movptr(rscratch1, src2);
  6036     Assembler::cmpq(src1, rscratch1);
  6037   } else if (reachable(src2)) {
  6038     cmpq(src1, as_Address(src2));
  6039   } else {
  6040     lea(rscratch1, src2);
  6041     Assembler::cmpq(src1, Address(rscratch1, 0));
  6043 #else
  6044   if (src2.is_lval()) {
  6045     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6046   } else {
  6047     cmpl(src1, as_Address(src2));
  6049 #endif // _LP64
  6052 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6053   assert(src2.is_lval(), "not a mem-mem compare");
  6054 #ifdef _LP64
  6055   // moves src2's literal address
  6056   movptr(rscratch1, src2);
  6057   Assembler::cmpq(src1, rscratch1);
  6058 #else
  6059   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6060 #endif // _LP64
  6063 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6064   if (reachable(adr)) {
  6065     if (os::is_MP())
  6066       lock();
  6067     cmpxchgptr(reg, as_Address(adr));
  6068   } else {
  6069     lea(rscratch1, adr);
  6070     if (os::is_MP())
  6071       lock();
  6072     cmpxchgptr(reg, Address(rscratch1, 0));
  6076 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6077   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6080 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6081   comisd(dst, as_Address(src));
  6084 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6085   comiss(dst, as_Address(src));
  6089 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6090   Condition negated_cond = negate_condition(cond);
  6091   Label L;
  6092   jcc(negated_cond, L);
  6093   atomic_incl(counter_addr);
  6094   bind(L);
  6097 int MacroAssembler::corrected_idivl(Register reg) {
  6098   // Full implementation of Java idiv and irem; checks for
  6099   // special case as described in JVM spec., p.243 & p.271.
  6100   // The function returns the (pc) offset of the idivl
  6101   // instruction - may be needed for implicit exceptions.
  6102   //
  6103   //         normal case                           special case
  6104   //
  6105   // input : rax,: dividend                         min_int
  6106   //         reg: divisor   (may not be rax,/rdx)   -1
  6107   //
  6108   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6109   //         rdx: remainder (= rax, irem reg)       0
  6110   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6111   const int min_int = 0x80000000;
  6112   Label normal_case, special_case;
  6114   // check for special case
  6115   cmpl(rax, min_int);
  6116   jcc(Assembler::notEqual, normal_case);
  6117   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6118   cmpl(reg, -1);
  6119   jcc(Assembler::equal, special_case);
  6121   // handle normal case
  6122   bind(normal_case);
  6123   cdql();
  6124   int idivl_offset = offset();
  6125   idivl(reg);
  6127   // normal and special case exit
  6128   bind(special_case);
  6130   return idivl_offset;
  6135 void MacroAssembler::decrementl(Register reg, int value) {
  6136   if (value == min_jint) {subl(reg, value) ; return; }
  6137   if (value <  0) { incrementl(reg, -value); return; }
  6138   if (value == 0) {                        ; return; }
  6139   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6140   /* else */      { subl(reg, value)       ; return; }
  6143 void MacroAssembler::decrementl(Address dst, int value) {
  6144   if (value == min_jint) {subl(dst, value) ; return; }
  6145   if (value <  0) { incrementl(dst, -value); return; }
  6146   if (value == 0) {                        ; return; }
  6147   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6148   /* else */      { subl(dst, value)       ; return; }
  6151 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6152   assert (shift_value > 0, "illegal shift value");
  6153   Label _is_positive;
  6154   testl (reg, reg);
  6155   jcc (Assembler::positive, _is_positive);
  6156   int offset = (1 << shift_value) - 1 ;
  6158   if (offset == 1) {
  6159     incrementl(reg);
  6160   } else {
  6161     addl(reg, offset);
  6164   bind (_is_positive);
  6165   sarl(reg, shift_value);
  6168 // !defined(COMPILER2) is because of stupid core builds
  6169 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6170 void MacroAssembler::empty_FPU_stack() {
  6171   if (VM_Version::supports_mmx()) {
  6172     emms();
  6173   } else {
  6174     for (int i = 8; i-- > 0; ) ffree(i);
  6177 #endif // !LP64 || C1 || !C2
  6180 // Defines obj, preserves var_size_in_bytes
  6181 void MacroAssembler::eden_allocate(Register obj,
  6182                                    Register var_size_in_bytes,
  6183                                    int con_size_in_bytes,
  6184                                    Register t1,
  6185                                    Label& slow_case) {
  6186   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6187   assert_different_registers(obj, var_size_in_bytes, t1);
  6188   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6189     jmp(slow_case);
  6190   } else {
  6191     Register end = t1;
  6192     Label retry;
  6193     bind(retry);
  6194     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6195     movptr(obj, heap_top);
  6196     if (var_size_in_bytes == noreg) {
  6197       lea(end, Address(obj, con_size_in_bytes));
  6198     } else {
  6199       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6201     // if end < obj then we wrapped around => object too long => slow case
  6202     cmpptr(end, obj);
  6203     jcc(Assembler::below, slow_case);
  6204     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6205     jcc(Assembler::above, slow_case);
  6206     // Compare obj with the top addr, and if still equal, store the new top addr in
  6207     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6208     // it otherwise. Use lock prefix for atomicity on MPs.
  6209     locked_cmpxchgptr(end, heap_top);
  6210     jcc(Assembler::notEqual, retry);
  6214 void MacroAssembler::enter() {
  6215   push(rbp);
  6216   mov(rbp, rsp);
  6219 void MacroAssembler::fcmp(Register tmp) {
  6220   fcmp(tmp, 1, true, true);
  6223 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6224   assert(!pop_right || pop_left, "usage error");
  6225   if (VM_Version::supports_cmov()) {
  6226     assert(tmp == noreg, "unneeded temp");
  6227     if (pop_left) {
  6228       fucomip(index);
  6229     } else {
  6230       fucomi(index);
  6232     if (pop_right) {
  6233       fpop();
  6235   } else {
  6236     assert(tmp != noreg, "need temp");
  6237     if (pop_left) {
  6238       if (pop_right) {
  6239         fcompp();
  6240       } else {
  6241         fcomp(index);
  6243     } else {
  6244       fcom(index);
  6246     // convert FPU condition into eflags condition via rax,
  6247     save_rax(tmp);
  6248     fwait(); fnstsw_ax();
  6249     sahf();
  6250     restore_rax(tmp);
  6252   // condition codes set as follows:
  6253   //
  6254   // CF (corresponds to C0) if x < y
  6255   // PF (corresponds to C2) if unordered
  6256   // ZF (corresponds to C3) if x = y
  6259 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6260   fcmp2int(dst, unordered_is_less, 1, true, true);
  6263 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6264   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6265   Label L;
  6266   if (unordered_is_less) {
  6267     movl(dst, -1);
  6268     jcc(Assembler::parity, L);
  6269     jcc(Assembler::below , L);
  6270     movl(dst, 0);
  6271     jcc(Assembler::equal , L);
  6272     increment(dst);
  6273   } else { // unordered is greater
  6274     movl(dst, 1);
  6275     jcc(Assembler::parity, L);
  6276     jcc(Assembler::above , L);
  6277     movl(dst, 0);
  6278     jcc(Assembler::equal , L);
  6279     decrementl(dst);
  6281   bind(L);
  6284 void MacroAssembler::fld_d(AddressLiteral src) {
  6285   fld_d(as_Address(src));
  6288 void MacroAssembler::fld_s(AddressLiteral src) {
  6289   fld_s(as_Address(src));
  6292 void MacroAssembler::fld_x(AddressLiteral src) {
  6293   Assembler::fld_x(as_Address(src));
  6296 void MacroAssembler::fldcw(AddressLiteral src) {
  6297   Assembler::fldcw(as_Address(src));
  6300 void MacroAssembler::fpop() {
  6301   ffree();
  6302   fincstp();
  6305 void MacroAssembler::fremr(Register tmp) {
  6306   save_rax(tmp);
  6307   { Label L;
  6308     bind(L);
  6309     fprem();
  6310     fwait(); fnstsw_ax();
  6311 #ifdef _LP64
  6312     testl(rax, 0x400);
  6313     jcc(Assembler::notEqual, L);
  6314 #else
  6315     sahf();
  6316     jcc(Assembler::parity, L);
  6317 #endif // _LP64
  6319   restore_rax(tmp);
  6320   // Result is in ST0.
  6321   // Note: fxch & fpop to get rid of ST1
  6322   // (otherwise FPU stack could overflow eventually)
  6323   fxch(1);
  6324   fpop();
  6328 void MacroAssembler::incrementl(AddressLiteral dst) {
  6329   if (reachable(dst)) {
  6330     incrementl(as_Address(dst));
  6331   } else {
  6332     lea(rscratch1, dst);
  6333     incrementl(Address(rscratch1, 0));
  6337 void MacroAssembler::incrementl(ArrayAddress dst) {
  6338   incrementl(as_Address(dst));
  6341 void MacroAssembler::incrementl(Register reg, int value) {
  6342   if (value == min_jint) {addl(reg, value) ; return; }
  6343   if (value <  0) { decrementl(reg, -value); return; }
  6344   if (value == 0) {                        ; return; }
  6345   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6346   /* else */      { addl(reg, value)       ; return; }
  6349 void MacroAssembler::incrementl(Address dst, int value) {
  6350   if (value == min_jint) {addl(dst, value) ; return; }
  6351   if (value <  0) { decrementl(dst, -value); return; }
  6352   if (value == 0) {                        ; return; }
  6353   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6354   /* else */      { addl(dst, value)       ; return; }
  6357 void MacroAssembler::jump(AddressLiteral dst) {
  6358   if (reachable(dst)) {
  6359     jmp_literal(dst.target(), dst.rspec());
  6360   } else {
  6361     lea(rscratch1, dst);
  6362     jmp(rscratch1);
  6366 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6367   if (reachable(dst)) {
  6368     InstructionMark im(this);
  6369     relocate(dst.reloc());
  6370     const int short_size = 2;
  6371     const int long_size = 6;
  6372     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6373     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6374       // 0111 tttn #8-bit disp
  6375       emit_byte(0x70 | cc);
  6376       emit_byte((offs - short_size) & 0xFF);
  6377     } else {
  6378       // 0000 1111 1000 tttn #32-bit disp
  6379       emit_byte(0x0F);
  6380       emit_byte(0x80 | cc);
  6381       emit_long(offs - long_size);
  6383   } else {
  6384 #ifdef ASSERT
  6385     warning("reversing conditional branch");
  6386 #endif /* ASSERT */
  6387     Label skip;
  6388     jccb(reverse[cc], skip);
  6389     lea(rscratch1, dst);
  6390     Assembler::jmp(rscratch1);
  6391     bind(skip);
  6395 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6396   if (reachable(src)) {
  6397     Assembler::ldmxcsr(as_Address(src));
  6398   } else {
  6399     lea(rscratch1, src);
  6400     Assembler::ldmxcsr(Address(rscratch1, 0));
  6404 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6405   int off;
  6406   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6407     off = offset();
  6408     movsbl(dst, src); // movsxb
  6409   } else {
  6410     off = load_unsigned_byte(dst, src);
  6411     shll(dst, 24);
  6412     sarl(dst, 24);
  6414   return off;
  6417 // Note: load_signed_short used to be called load_signed_word.
  6418 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6419 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6420 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6421 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6422   int off;
  6423   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6424     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6425     // version but this is what 64bit has always done. This seems to imply
  6426     // that users are only using 32bits worth.
  6427     off = offset();
  6428     movswl(dst, src); // movsxw
  6429   } else {
  6430     off = load_unsigned_short(dst, src);
  6431     shll(dst, 16);
  6432     sarl(dst, 16);
  6434   return off;
  6437 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6438   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6439   // and "3.9 Partial Register Penalties", p. 22).
  6440   int off;
  6441   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6442     off = offset();
  6443     movzbl(dst, src); // movzxb
  6444   } else {
  6445     xorl(dst, dst);
  6446     off = offset();
  6447     movb(dst, src);
  6449   return off;
  6452 // Note: load_unsigned_short used to be called load_unsigned_word.
  6453 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6454   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6455   // and "3.9 Partial Register Penalties", p. 22).
  6456   int off;
  6457   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6458     off = offset();
  6459     movzwl(dst, src); // movzxw
  6460   } else {
  6461     xorl(dst, dst);
  6462     off = offset();
  6463     movw(dst, src);
  6465   return off;
  6468 void MacroAssembler::load_sized_value(Register dst, Address src,
  6469                                       int size_in_bytes, bool is_signed) {
  6470   switch (size_in_bytes ^ (is_signed ? -1 : 0)) {
  6471 #ifndef _LP64
  6472   // For case 8, caller is responsible for manually loading
  6473   // the second word into another register.
  6474   case ~8:  // fall through:
  6475   case  8:  movl(                dst, src ); break;
  6476 #else
  6477   case ~8:  // fall through:
  6478   case  8:  movq(                dst, src ); break;
  6479 #endif
  6480   case ~4:  // fall through:
  6481   case  4:  movl(                dst, src ); break;
  6482   case ~2:  load_signed_short(   dst, src ); break;
  6483   case  2:  load_unsigned_short( dst, src ); break;
  6484   case ~1:  load_signed_byte(    dst, src ); break;
  6485   case  1:  load_unsigned_byte(  dst, src ); break;
  6486   default:  ShouldNotReachHere();
  6490 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6491   if (reachable(dst)) {
  6492     movl(as_Address(dst), src);
  6493   } else {
  6494     lea(rscratch1, dst);
  6495     movl(Address(rscratch1, 0), src);
  6499 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6500   if (reachable(src)) {
  6501     movl(dst, as_Address(src));
  6502   } else {
  6503     lea(rscratch1, src);
  6504     movl(dst, Address(rscratch1, 0));
  6508 // C++ bool manipulation
  6510 void MacroAssembler::movbool(Register dst, Address src) {
  6511   if(sizeof(bool) == 1)
  6512     movb(dst, src);
  6513   else if(sizeof(bool) == 2)
  6514     movw(dst, src);
  6515   else if(sizeof(bool) == 4)
  6516     movl(dst, src);
  6517   else
  6518     // unsupported
  6519     ShouldNotReachHere();
  6522 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6523   if(sizeof(bool) == 1)
  6524     movb(dst, (int) boolconst);
  6525   else if(sizeof(bool) == 2)
  6526     movw(dst, (int) boolconst);
  6527   else if(sizeof(bool) == 4)
  6528     movl(dst, (int) boolconst);
  6529   else
  6530     // unsupported
  6531     ShouldNotReachHere();
  6534 void MacroAssembler::movbool(Address dst, Register src) {
  6535   if(sizeof(bool) == 1)
  6536     movb(dst, src);
  6537   else if(sizeof(bool) == 2)
  6538     movw(dst, src);
  6539   else if(sizeof(bool) == 4)
  6540     movl(dst, src);
  6541   else
  6542     // unsupported
  6543     ShouldNotReachHere();
  6546 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6547   movb(as_Address(dst), src);
  6550 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6551   if (reachable(src)) {
  6552     if (UseXmmLoadAndClearUpper) {
  6553       movsd (dst, as_Address(src));
  6554     } else {
  6555       movlpd(dst, as_Address(src));
  6557   } else {
  6558     lea(rscratch1, src);
  6559     if (UseXmmLoadAndClearUpper) {
  6560       movsd (dst, Address(rscratch1, 0));
  6561     } else {
  6562       movlpd(dst, Address(rscratch1, 0));
  6567 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6568   if (reachable(src)) {
  6569     movss(dst, as_Address(src));
  6570   } else {
  6571     lea(rscratch1, src);
  6572     movss(dst, Address(rscratch1, 0));
  6576 void MacroAssembler::movptr(Register dst, Register src) {
  6577   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6580 void MacroAssembler::movptr(Register dst, Address src) {
  6581   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6584 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6585 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6586   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6589 void MacroAssembler::movptr(Address dst, Register src) {
  6590   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6593 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6594   if (reachable(src)) {
  6595     movss(dst, as_Address(src));
  6596   } else {
  6597     lea(rscratch1, src);
  6598     movss(dst, Address(rscratch1, 0));
  6602 void MacroAssembler::null_check(Register reg, int offset) {
  6603   if (needs_explicit_null_check(offset)) {
  6604     // provoke OS NULL exception if reg = NULL by
  6605     // accessing M[reg] w/o changing any (non-CC) registers
  6606     // NOTE: cmpl is plenty here to provoke a segv
  6607     cmpptr(rax, Address(reg, 0));
  6608     // Note: should probably use testl(rax, Address(reg, 0));
  6609     //       may be shorter code (however, this version of
  6610     //       testl needs to be implemented first)
  6611   } else {
  6612     // nothing to do, (later) access of M[reg + offset]
  6613     // will provoke OS NULL exception if reg = NULL
  6617 void MacroAssembler::os_breakpoint() {
  6618   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6619   // (e.g., MSVC can't call ps() otherwise)
  6620   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6623 void MacroAssembler::pop_CPU_state() {
  6624   pop_FPU_state();
  6625   pop_IU_state();
  6628 void MacroAssembler::pop_FPU_state() {
  6629   NOT_LP64(frstor(Address(rsp, 0));)
  6630   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6631   addptr(rsp, FPUStateSizeInWords * wordSize);
  6634 void MacroAssembler::pop_IU_state() {
  6635   popa();
  6636   LP64_ONLY(addq(rsp, 8));
  6637   popf();
  6640 // Save Integer and Float state
  6641 // Warning: Stack must be 16 byte aligned (64bit)
  6642 void MacroAssembler::push_CPU_state() {
  6643   push_IU_state();
  6644   push_FPU_state();
  6647 void MacroAssembler::push_FPU_state() {
  6648   subptr(rsp, FPUStateSizeInWords * wordSize);
  6649 #ifndef _LP64
  6650   fnsave(Address(rsp, 0));
  6651   fwait();
  6652 #else
  6653   fxsave(Address(rsp, 0));
  6654 #endif // LP64
  6657 void MacroAssembler::push_IU_state() {
  6658   // Push flags first because pusha kills them
  6659   pushf();
  6660   // Make sure rsp stays 16-byte aligned
  6661   LP64_ONLY(subq(rsp, 8));
  6662   pusha();
  6665 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6666   // determine java_thread register
  6667   if (!java_thread->is_valid()) {
  6668     java_thread = rdi;
  6669     get_thread(java_thread);
  6671   // we must set sp to zero to clear frame
  6672   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6673   if (clear_fp) {
  6674     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6677   if (clear_pc)
  6678     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6682 void MacroAssembler::restore_rax(Register tmp) {
  6683   if (tmp == noreg) pop(rax);
  6684   else if (tmp != rax) mov(rax, tmp);
  6687 void MacroAssembler::round_to(Register reg, int modulus) {
  6688   addptr(reg, modulus - 1);
  6689   andptr(reg, -modulus);
  6692 void MacroAssembler::save_rax(Register tmp) {
  6693   if (tmp == noreg) push(rax);
  6694   else if (tmp != rax) mov(tmp, rax);
  6697 // Write serialization page so VM thread can do a pseudo remote membar.
  6698 // We use the current thread pointer to calculate a thread specific
  6699 // offset to write to within the page. This minimizes bus traffic
  6700 // due to cache line collision.
  6701 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6702   movl(tmp, thread);
  6703   shrl(tmp, os::get_serialize_page_shift_count());
  6704   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6706   Address index(noreg, tmp, Address::times_1);
  6707   ExternalAddress page(os::get_memory_serialize_page());
  6709   // Size of store must match masking code above
  6710   movl(as_Address(ArrayAddress(page, index)), tmp);
  6713 // Calls to C land
  6714 //
  6715 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6716 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6717 // has to be reset to 0. This is required to allow proper stack traversal.
  6718 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6719                                          Register last_java_sp,
  6720                                          Register last_java_fp,
  6721                                          address  last_java_pc) {
  6722   // determine java_thread register
  6723   if (!java_thread->is_valid()) {
  6724     java_thread = rdi;
  6725     get_thread(java_thread);
  6727   // determine last_java_sp register
  6728   if (!last_java_sp->is_valid()) {
  6729     last_java_sp = rsp;
  6732   // last_java_fp is optional
  6734   if (last_java_fp->is_valid()) {
  6735     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6738   // last_java_pc is optional
  6740   if (last_java_pc != NULL) {
  6741     lea(Address(java_thread,
  6742                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6743         InternalAddress(last_java_pc));
  6746   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6749 void MacroAssembler::shlptr(Register dst, int imm8) {
  6750   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6753 void MacroAssembler::shrptr(Register dst, int imm8) {
  6754   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6757 void MacroAssembler::sign_extend_byte(Register reg) {
  6758   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6759     movsbl(reg, reg); // movsxb
  6760   } else {
  6761     shll(reg, 24);
  6762     sarl(reg, 24);
  6766 void MacroAssembler::sign_extend_short(Register reg) {
  6767   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6768     movswl(reg, reg); // movsxw
  6769   } else {
  6770     shll(reg, 16);
  6771     sarl(reg, 16);
  6775 //////////////////////////////////////////////////////////////////////////////////
  6776 #ifndef SERIALGC
  6778 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6779 #ifndef _LP64
  6780                                           Register thread,
  6781 #endif
  6782                                           Register tmp,
  6783                                           Register tmp2,
  6784                                           bool tosca_live) {
  6785   LP64_ONLY(Register thread = r15_thread;)
  6786   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6787                                        PtrQueue::byte_offset_of_active()));
  6789   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6790                                        PtrQueue::byte_offset_of_index()));
  6791   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6792                                        PtrQueue::byte_offset_of_buf()));
  6795   Label done;
  6796   Label runtime;
  6798   // if (!marking_in_progress) goto done;
  6799   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6800     cmpl(in_progress, 0);
  6801   } else {
  6802     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6803     cmpb(in_progress, 0);
  6805   jcc(Assembler::equal, done);
  6807   // if (x.f == NULL) goto done;
  6808   cmpptr(Address(obj, 0), NULL_WORD);
  6809   jcc(Assembler::equal, done);
  6811   // Can we store original value in the thread's buffer?
  6813   LP64_ONLY(movslq(tmp, index);)
  6814   movptr(tmp2, Address(obj, 0));
  6815 #ifdef _LP64
  6816   cmpq(tmp, 0);
  6817 #else
  6818   cmpl(index, 0);
  6819 #endif
  6820   jcc(Assembler::equal, runtime);
  6821 #ifdef _LP64
  6822   subq(tmp, wordSize);
  6823   movl(index, tmp);
  6824   addq(tmp, buffer);
  6825 #else
  6826   subl(index, wordSize);
  6827   movl(tmp, buffer);
  6828   addl(tmp, index);
  6829 #endif
  6830   movptr(Address(tmp, 0), tmp2);
  6831   jmp(done);
  6832   bind(runtime);
  6833   // save the live input values
  6834   if(tosca_live) push(rax);
  6835   push(obj);
  6836 #ifdef _LP64
  6837   movq(c_rarg0, Address(obj, 0));
  6838   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, r15_thread);
  6839 #else
  6840   push(thread);
  6841   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6842   pop(thread);
  6843 #endif
  6844   pop(obj);
  6845   if(tosca_live) pop(rax);
  6846   bind(done);
  6850 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6851                                            Register new_val,
  6852 #ifndef _LP64
  6853                                            Register thread,
  6854 #endif
  6855                                            Register tmp,
  6856                                            Register tmp2) {
  6858   LP64_ONLY(Register thread = r15_thread;)
  6859   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6860                                        PtrQueue::byte_offset_of_index()));
  6861   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6862                                        PtrQueue::byte_offset_of_buf()));
  6863   BarrierSet* bs = Universe::heap()->barrier_set();
  6864   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6865   Label done;
  6866   Label runtime;
  6868   // Does store cross heap regions?
  6870   movptr(tmp, store_addr);
  6871   xorptr(tmp, new_val);
  6872   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  6873   jcc(Assembler::equal, done);
  6875   // crosses regions, storing NULL?
  6877   cmpptr(new_val, (int32_t) NULL_WORD);
  6878   jcc(Assembler::equal, done);
  6880   // storing region crossing non-NULL, is card already dirty?
  6882   ExternalAddress cardtable((address) ct->byte_map_base);
  6883   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6884 #ifdef _LP64
  6885   const Register card_addr = tmp;
  6887   movq(card_addr, store_addr);
  6888   shrq(card_addr, CardTableModRefBS::card_shift);
  6890   lea(tmp2, cardtable);
  6892   // get the address of the card
  6893   addq(card_addr, tmp2);
  6894 #else
  6895   const Register card_index = tmp;
  6897   movl(card_index, store_addr);
  6898   shrl(card_index, CardTableModRefBS::card_shift);
  6900   Address index(noreg, card_index, Address::times_1);
  6901   const Register card_addr = tmp;
  6902   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  6903 #endif
  6904   cmpb(Address(card_addr, 0), 0);
  6905   jcc(Assembler::equal, done);
  6907   // storing a region crossing, non-NULL oop, card is clean.
  6908   // dirty card and log.
  6910   movb(Address(card_addr, 0), 0);
  6912   cmpl(queue_index, 0);
  6913   jcc(Assembler::equal, runtime);
  6914   subl(queue_index, wordSize);
  6915   movptr(tmp2, buffer);
  6916 #ifdef _LP64
  6917   movslq(rscratch1, queue_index);
  6918   addq(tmp2, rscratch1);
  6919   movq(Address(tmp2, 0), card_addr);
  6920 #else
  6921   addl(tmp2, queue_index);
  6922   movl(Address(tmp2, 0), card_index);
  6923 #endif
  6924   jmp(done);
  6926   bind(runtime);
  6927   // save the live input values
  6928   push(store_addr);
  6929   push(new_val);
  6930 #ifdef _LP64
  6931   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  6932 #else
  6933   push(thread);
  6934   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  6935   pop(thread);
  6936 #endif
  6937   pop(new_val);
  6938   pop(store_addr);
  6940   bind(done);
  6944 #endif // SERIALGC
  6945 //////////////////////////////////////////////////////////////////////////////////
  6948 void MacroAssembler::store_check(Register obj) {
  6949   // Does a store check for the oop in register obj. The content of
  6950   // register obj is destroyed afterwards.
  6951   store_check_part_1(obj);
  6952   store_check_part_2(obj);
  6955 void MacroAssembler::store_check(Register obj, Address dst) {
  6956   store_check(obj);
  6960 // split the store check operation so that other instructions can be scheduled inbetween
  6961 void MacroAssembler::store_check_part_1(Register obj) {
  6962   BarrierSet* bs = Universe::heap()->barrier_set();
  6963   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6964   shrptr(obj, CardTableModRefBS::card_shift);
  6967 void MacroAssembler::store_check_part_2(Register obj) {
  6968   BarrierSet* bs = Universe::heap()->barrier_set();
  6969   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6970   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6971   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6973   // The calculation for byte_map_base is as follows:
  6974   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  6975   // So this essentially converts an address to a displacement and
  6976   // it will never need to be relocated. On 64bit however the value may be too
  6977   // large for a 32bit displacement
  6979   intptr_t disp = (intptr_t) ct->byte_map_base;
  6980   if (is_simm32(disp)) {
  6981     Address cardtable(noreg, obj, Address::times_1, disp);
  6982     movb(cardtable, 0);
  6983   } else {
  6984     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  6985     // displacement and done in a single instruction given favorable mapping and
  6986     // a smarter version of as_Address. Worst case it is two instructions which
  6987     // is no worse off then loading disp into a register and doing as a simple
  6988     // Address() as above.
  6989     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  6990     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  6991     // in some cases we'll get a single instruction version.
  6993     ExternalAddress cardtable((address)disp);
  6994     Address index(noreg, obj, Address::times_1);
  6995     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  6999 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7000   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7003 void MacroAssembler::subptr(Register dst, Register src) {
  7004   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7007 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  7008   // src2 must be rval
  7010   if (reachable(src2)) {
  7011     testl(src1, as_Address(src2));
  7012   } else {
  7013     lea(rscratch1, src2);
  7014     testl(src1, Address(rscratch1, 0));
  7018 // C++ bool manipulation
  7019 void MacroAssembler::testbool(Register dst) {
  7020   if(sizeof(bool) == 1)
  7021     testb(dst, 0xff);
  7022   else if(sizeof(bool) == 2) {
  7023     // testw implementation needed for two byte bools
  7024     ShouldNotReachHere();
  7025   } else if(sizeof(bool) == 4)
  7026     testl(dst, dst);
  7027   else
  7028     // unsupported
  7029     ShouldNotReachHere();
  7032 void MacroAssembler::testptr(Register dst, Register src) {
  7033   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7036 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7037 void MacroAssembler::tlab_allocate(Register obj,
  7038                                    Register var_size_in_bytes,
  7039                                    int con_size_in_bytes,
  7040                                    Register t1,
  7041                                    Register t2,
  7042                                    Label& slow_case) {
  7043   assert_different_registers(obj, t1, t2);
  7044   assert_different_registers(obj, var_size_in_bytes, t1);
  7045   Register end = t2;
  7046   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7048   verify_tlab();
  7050   NOT_LP64(get_thread(thread));
  7052   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7053   if (var_size_in_bytes == noreg) {
  7054     lea(end, Address(obj, con_size_in_bytes));
  7055   } else {
  7056     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7058   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7059   jcc(Assembler::above, slow_case);
  7061   // update the tlab top pointer
  7062   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7064   // recover var_size_in_bytes if necessary
  7065   if (var_size_in_bytes == end) {
  7066     subptr(var_size_in_bytes, obj);
  7068   verify_tlab();
  7071 // Preserves rbx, and rdx.
  7072 void MacroAssembler::tlab_refill(Label& retry,
  7073                                  Label& try_eden,
  7074                                  Label& slow_case) {
  7075   Register top = rax;
  7076   Register t1  = rcx;
  7077   Register t2  = rsi;
  7078   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7079   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7080   Label do_refill, discard_tlab;
  7082   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7083     // No allocation in the shared eden.
  7084     jmp(slow_case);
  7087   NOT_LP64(get_thread(thread_reg));
  7089   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7090   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7092   // calculate amount of free space
  7093   subptr(t1, top);
  7094   shrptr(t1, LogHeapWordSize);
  7096   // Retain tlab and allocate object in shared space if
  7097   // the amount free in the tlab is too large to discard.
  7098   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7099   jcc(Assembler::lessEqual, discard_tlab);
  7101   // Retain
  7102   // %%% yuck as movptr...
  7103   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7104   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7105   if (TLABStats) {
  7106     // increment number of slow_allocations
  7107     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7109   jmp(try_eden);
  7111   bind(discard_tlab);
  7112   if (TLABStats) {
  7113     // increment number of refills
  7114     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7115     // accumulate wastage -- t1 is amount free in tlab
  7116     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7119   // if tlab is currently allocated (top or end != null) then
  7120   // fill [top, end + alignment_reserve) with array object
  7121   testptr (top, top);
  7122   jcc(Assembler::zero, do_refill);
  7124   // set up the mark word
  7125   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7126   // set the length to the remaining space
  7127   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7128   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7129   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7130   movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7131   // set klass to intArrayKlass
  7132   // dubious reloc why not an oop reloc?
  7133   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  7134   // store klass last.  concurrent gcs assumes klass length is valid if
  7135   // klass field is not null.
  7136   store_klass(top, t1);
  7138   // refill the tlab with an eden allocation
  7139   bind(do_refill);
  7140   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7141   shlptr(t1, LogHeapWordSize);
  7142   // add object_size ??
  7143   eden_allocate(top, t1, 0, t2, slow_case);
  7145   // Check that t1 was preserved in eden_allocate.
  7146 #ifdef ASSERT
  7147   if (UseTLAB) {
  7148     Label ok;
  7149     Register tsize = rsi;
  7150     assert_different_registers(tsize, thread_reg, t1);
  7151     push(tsize);
  7152     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7153     shlptr(tsize, LogHeapWordSize);
  7154     cmpptr(t1, tsize);
  7155     jcc(Assembler::equal, ok);
  7156     stop("assert(t1 != tlab size)");
  7157     should_not_reach_here();
  7159     bind(ok);
  7160     pop(tsize);
  7162 #endif
  7163   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7164   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7165   addptr(top, t1);
  7166   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7167   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7168   verify_tlab();
  7169   jmp(retry);
  7172 static const double     pi_4 =  0.7853981633974483;
  7174 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7175   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7176   // was attempted in this code; unfortunately it appears that the
  7177   // switch to 80-bit precision and back causes this to be
  7178   // unprofitable compared with simply performing a runtime call if
  7179   // the argument is out of the (-pi/4, pi/4) range.
  7181   Register tmp = noreg;
  7182   if (!VM_Version::supports_cmov()) {
  7183     // fcmp needs a temporary so preserve rbx,
  7184     tmp = rbx;
  7185     push(tmp);
  7188   Label slow_case, done;
  7190   ExternalAddress pi4_adr = (address)&pi_4;
  7191   if (reachable(pi4_adr)) {
  7192     // x ?<= pi/4
  7193     fld_d(pi4_adr);
  7194     fld_s(1);                // Stack:  X  PI/4  X
  7195     fabs();                  // Stack: |X| PI/4  X
  7196     fcmp(tmp);
  7197     jcc(Assembler::above, slow_case);
  7199     // fastest case: -pi/4 <= x <= pi/4
  7200     switch(trig) {
  7201     case 's':
  7202       fsin();
  7203       break;
  7204     case 'c':
  7205       fcos();
  7206       break;
  7207     case 't':
  7208       ftan();
  7209       break;
  7210     default:
  7211       assert(false, "bad intrinsic");
  7212       break;
  7214     jmp(done);
  7217   // slow case: runtime call
  7218   bind(slow_case);
  7219   // Preserve registers across runtime call
  7220   pusha();
  7221   int incoming_argument_and_return_value_offset = -1;
  7222   if (num_fpu_regs_in_use > 1) {
  7223     // Must preserve all other FPU regs (could alternatively convert
  7224     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7225     // FPU state, but can not trust C compiler)
  7226     NEEDS_CLEANUP;
  7227     // NOTE that in this case we also push the incoming argument to
  7228     // the stack and restore it later; we also use this stack slot to
  7229     // hold the return value from dsin or dcos.
  7230     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7231       subptr(rsp, sizeof(jdouble));
  7232       fstp_d(Address(rsp, 0));
  7234     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7235     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7237   subptr(rsp, sizeof(jdouble));
  7238   fstp_d(Address(rsp, 0));
  7239 #ifdef _LP64
  7240   movdbl(xmm0, Address(rsp, 0));
  7241 #endif // _LP64
  7243   // NOTE: we must not use call_VM_leaf here because that requires a
  7244   // complete interpreter frame in debug mode -- same bug as 4387334
  7245   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7246   // do proper 64bit abi
  7248   NEEDS_CLEANUP;
  7249   // Need to add stack banging before this runtime call if it needs to
  7250   // be taken; however, there is no generic stack banging routine at
  7251   // the MacroAssembler level
  7252   switch(trig) {
  7253   case 's':
  7255       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7257     break;
  7258   case 'c':
  7260       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7262     break;
  7263   case 't':
  7265       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7267     break;
  7268   default:
  7269     assert(false, "bad intrinsic");
  7270     break;
  7272 #ifdef _LP64
  7273     movsd(Address(rsp, 0), xmm0);
  7274     fld_d(Address(rsp, 0));
  7275 #endif // _LP64
  7276   addptr(rsp, sizeof(jdouble));
  7277   if (num_fpu_regs_in_use > 1) {
  7278     // Must save return value to stack and then restore entire FPU stack
  7279     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7280     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7281       fld_d(Address(rsp, 0));
  7282       addptr(rsp, sizeof(jdouble));
  7285   popa();
  7287   // Come here with result in F-TOS
  7288   bind(done);
  7290   if (tmp != noreg) {
  7291     pop(tmp);
  7296 // Look up the method for a megamorphic invokeinterface call.
  7297 // The target method is determined by <intf_klass, itable_index>.
  7298 // The receiver klass is in recv_klass.
  7299 // On success, the result will be in method_result, and execution falls through.
  7300 // On failure, execution transfers to the given label.
  7301 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7302                                              Register intf_klass,
  7303                                              RegisterOrConstant itable_index,
  7304                                              Register method_result,
  7305                                              Register scan_temp,
  7306                                              Label& L_no_such_interface) {
  7307   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7308   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7309          "caller must use same register for non-constant itable index as for method");
  7311   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7312   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7313   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7314   int scan_step   = itableOffsetEntry::size() * wordSize;
  7315   int vte_size    = vtableEntry::size() * wordSize;
  7316   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7317   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7319   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7321   // %%% Could store the aligned, prescaled offset in the klassoop.
  7322   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7323   if (HeapWordsPerLong > 1) {
  7324     // Round up to align_object_offset boundary
  7325     // see code for instanceKlass::start_of_itable!
  7326     round_to(scan_temp, BytesPerLong);
  7329   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7330   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7331   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7333   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7334   //   if (scan->interface() == intf) {
  7335   //     result = (klass + scan->offset() + itable_index);
  7336   //   }
  7337   // }
  7338   Label search, found_method;
  7340   for (int peel = 1; peel >= 0; peel--) {
  7341     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7342     cmpptr(intf_klass, method_result);
  7344     if (peel) {
  7345       jccb(Assembler::equal, found_method);
  7346     } else {
  7347       jccb(Assembler::notEqual, search);
  7348       // (invert the test to fall through to found_method...)
  7351     if (!peel)  break;
  7353     bind(search);
  7355     // Check that the previous entry is non-null.  A null entry means that
  7356     // the receiver class doesn't implement the interface, and wasn't the
  7357     // same as when the caller was compiled.
  7358     testptr(method_result, method_result);
  7359     jcc(Assembler::zero, L_no_such_interface);
  7360     addptr(scan_temp, scan_step);
  7363   bind(found_method);
  7365   // Got a hit.
  7366   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7367   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7371 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7372                            Register super_klass,
  7373                            Register temp_reg,
  7374                            Label& L_success) {
  7375   Label L_failure;
  7376   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7377   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7378   bind(L_failure);
  7382 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7383                                                    Register super_klass,
  7384                                                    Register temp_reg,
  7385                                                    Label* L_success,
  7386                                                    Label* L_failure,
  7387                                                    Label* L_slow_path,
  7388                                         RegisterOrConstant super_check_offset) {
  7389   assert_different_registers(sub_klass, super_klass, temp_reg);
  7390   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7391   if (super_check_offset.is_register()) {
  7392     assert_different_registers(sub_klass, super_klass,
  7393                                super_check_offset.as_register());
  7394   } else if (must_load_sco) {
  7395     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7398   Label L_fallthrough;
  7399   int label_nulls = 0;
  7400   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7401   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7402   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7403   assert(label_nulls <= 1, "at most one NULL in the batch");
  7405   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7406                    Klass::secondary_super_cache_offset_in_bytes());
  7407   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7408                     Klass::super_check_offset_offset_in_bytes());
  7409   Address super_check_offset_addr(super_klass, sco_offset);
  7411   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7412   // range of a jccb.  If this routine grows larger, reconsider at
  7413   // least some of these.
  7414 #define local_jcc(assembler_cond, label)                                \
  7415   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7416   else                             jcc( assembler_cond, label) /*omit semi*/
  7418   // Hacked jmp, which may only be used just before L_fallthrough.
  7419 #define final_jmp(label)                                                \
  7420   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7421   else                            jmp(label)                /*omit semi*/
  7423   // If the pointers are equal, we are done (e.g., String[] elements).
  7424   // This self-check enables sharing of secondary supertype arrays among
  7425   // non-primary types such as array-of-interface.  Otherwise, each such
  7426   // type would need its own customized SSA.
  7427   // We move this check to the front of the fast path because many
  7428   // type checks are in fact trivially successful in this manner,
  7429   // so we get a nicely predicted branch right at the start of the check.
  7430   cmpptr(sub_klass, super_klass);
  7431   local_jcc(Assembler::equal, *L_success);
  7433   // Check the supertype display:
  7434   if (must_load_sco) {
  7435     // Positive movl does right thing on LP64.
  7436     movl(temp_reg, super_check_offset_addr);
  7437     super_check_offset = RegisterOrConstant(temp_reg);
  7439   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7440   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7442   // This check has worked decisively for primary supers.
  7443   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7444   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7445   // This works in the same check above because of a tricky aliasing
  7446   // between the super_cache and the primary super display elements.
  7447   // (The 'super_check_addr' can address either, as the case requires.)
  7448   // Note that the cache is updated below if it does not help us find
  7449   // what we need immediately.
  7450   // So if it was a primary super, we can just fail immediately.
  7451   // Otherwise, it's the slow path for us (no success at this point).
  7453   if (super_check_offset.is_register()) {
  7454     local_jcc(Assembler::equal, *L_success);
  7455     cmpl(super_check_offset.as_register(), sc_offset);
  7456     if (L_failure == &L_fallthrough) {
  7457       local_jcc(Assembler::equal, *L_slow_path);
  7458     } else {
  7459       local_jcc(Assembler::notEqual, *L_failure);
  7460       final_jmp(*L_slow_path);
  7462   } else if (super_check_offset.as_constant() == sc_offset) {
  7463     // Need a slow path; fast failure is impossible.
  7464     if (L_slow_path == &L_fallthrough) {
  7465       local_jcc(Assembler::equal, *L_success);
  7466     } else {
  7467       local_jcc(Assembler::notEqual, *L_slow_path);
  7468       final_jmp(*L_success);
  7470   } else {
  7471     // No slow path; it's a fast decision.
  7472     if (L_failure == &L_fallthrough) {
  7473       local_jcc(Assembler::equal, *L_success);
  7474     } else {
  7475       local_jcc(Assembler::notEqual, *L_failure);
  7476       final_jmp(*L_success);
  7480   bind(L_fallthrough);
  7482 #undef local_jcc
  7483 #undef final_jmp
  7487 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7488                                                    Register super_klass,
  7489                                                    Register temp_reg,
  7490                                                    Register temp2_reg,
  7491                                                    Label* L_success,
  7492                                                    Label* L_failure,
  7493                                                    bool set_cond_codes) {
  7494   assert_different_registers(sub_klass, super_klass, temp_reg);
  7495   if (temp2_reg != noreg)
  7496     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7497 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7499   Label L_fallthrough;
  7500   int label_nulls = 0;
  7501   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7502   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7503   assert(label_nulls <= 1, "at most one NULL in the batch");
  7505   // a couple of useful fields in sub_klass:
  7506   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7507                    Klass::secondary_supers_offset_in_bytes());
  7508   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7509                    Klass::secondary_super_cache_offset_in_bytes());
  7510   Address secondary_supers_addr(sub_klass, ss_offset);
  7511   Address super_cache_addr(     sub_klass, sc_offset);
  7513   // Do a linear scan of the secondary super-klass chain.
  7514   // This code is rarely used, so simplicity is a virtue here.
  7515   // The repne_scan instruction uses fixed registers, which we must spill.
  7516   // Don't worry too much about pre-existing connections with the input regs.
  7518   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7519   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7521   // Get super_klass value into rax (even if it was in rdi or rcx).
  7522   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7523   if (super_klass != rax || UseCompressedOops) {
  7524     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7525     mov(rax, super_klass);
  7527   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7528   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7530 #ifndef PRODUCT
  7531   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7532   ExternalAddress pst_counter_addr((address) pst_counter);
  7533   NOT_LP64(  incrementl(pst_counter_addr) );
  7534   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7535   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7536 #endif //PRODUCT
  7538   // We will consult the secondary-super array.
  7539   movptr(rdi, secondary_supers_addr);
  7540   // Load the array length.  (Positive movl does right thing on LP64.)
  7541   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7542   // Skip to start of data.
  7543   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7545   // Scan RCX words at [RDI] for an occurrence of RAX.
  7546   // Set NZ/Z based on last compare.
  7547 #ifdef _LP64
  7548   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7549   // and we store values in objArrays always encoded, thus we need to encode
  7550   // the value of rax before repne.  Note that rax is dead after the repne.
  7551   if (UseCompressedOops) {
  7552     encode_heap_oop_not_null(rax);
  7553     // The superclass is never null; it would be a basic system error if a null
  7554     // pointer were to sneak in here.  Note that we have already loaded the
  7555     // Klass::super_check_offset from the super_klass in the fast path,
  7556     // so if there is a null in that register, we are already in the afterlife.
  7557     repne_scanl();
  7558   } else
  7559 #endif // _LP64
  7560     repne_scan();
  7562   // Unspill the temp. registers:
  7563   if (pushed_rdi)  pop(rdi);
  7564   if (pushed_rcx)  pop(rcx);
  7565   if (pushed_rax)  pop(rax);
  7567   if (set_cond_codes) {
  7568     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7569     assert(!pushed_rdi, "rdi must be left non-NULL");
  7570     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7573   if (L_failure == &L_fallthrough)
  7574         jccb(Assembler::notEqual, *L_failure);
  7575   else  jcc(Assembler::notEqual, *L_failure);
  7577   // Success.  Cache the super we found and proceed in triumph.
  7578   movptr(super_cache_addr, super_klass);
  7580   if (L_success != &L_fallthrough) {
  7581     jmp(*L_success);
  7584 #undef IS_A_TEMP
  7586   bind(L_fallthrough);
  7590 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7591   ucomisd(dst, as_Address(src));
  7594 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7595   ucomiss(dst, as_Address(src));
  7598 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7599   if (reachable(src)) {
  7600     xorpd(dst, as_Address(src));
  7601   } else {
  7602     lea(rscratch1, src);
  7603     xorpd(dst, Address(rscratch1, 0));
  7607 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7608   if (reachable(src)) {
  7609     xorps(dst, as_Address(src));
  7610   } else {
  7611     lea(rscratch1, src);
  7612     xorps(dst, Address(rscratch1, 0));
  7616 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7617   if (!VerifyOops) return;
  7619   // Pass register number to verify_oop_subroutine
  7620   char* b = new char[strlen(s) + 50];
  7621   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7622   push(rax);                          // save rax,
  7623   push(reg);                          // pass register argument
  7624   ExternalAddress buffer((address) b);
  7625   // avoid using pushptr, as it modifies scratch registers
  7626   // and our contract is not to modify anything
  7627   movptr(rax, buffer.addr());
  7628   push(rax);
  7629   // call indirectly to solve generation ordering problem
  7630   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7631   call(rax);
  7635 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7636                                                       Register tmp,
  7637                                                       int offset) {
  7638   intptr_t value = *delayed_value_addr;
  7639   if (value != 0)
  7640     return RegisterOrConstant(value + offset);
  7642   // load indirectly to solve generation ordering problem
  7643   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7645 #ifdef ASSERT
  7646   Label L;
  7647   testl(tmp, tmp);
  7648   jccb(Assembler::notZero, L);
  7649   hlt();
  7650   bind(L);
  7651 #endif
  7653   if (offset != 0)
  7654     addptr(tmp, offset);
  7656   return RegisterOrConstant(tmp);
  7660 // registers on entry:
  7661 //  - rax ('check' register): required MethodType
  7662 //  - rcx: method handle
  7663 //  - rdx, rsi, or ?: killable temp
  7664 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  7665                                               Register temp_reg,
  7666                                               Label& wrong_method_type) {
  7667   if (UseCompressedOops)  unimplemented();  // field accesses must decode
  7668   // compare method type against that of the receiver
  7669   cmpptr(mtype_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
  7670   jcc(Assembler::notEqual, wrong_method_type);
  7674 // A method handle has a "vmslots" field which gives the size of its
  7675 // argument list in JVM stack slots.  This field is either located directly
  7676 // in every method handle, or else is indirectly accessed through the
  7677 // method handle's MethodType.  This macro hides the distinction.
  7678 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  7679                                                 Register temp_reg) {
  7680   if (UseCompressedOops)  unimplemented();  // field accesses must decode
  7681   // load mh.type.form.vmslots
  7682   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
  7683     // hoist vmslots into every mh to avoid dependent load chain
  7684     movl(vmslots_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
  7685   } else {
  7686     Register temp2_reg = vmslots_reg;
  7687     movptr(temp2_reg, Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
  7688     movptr(temp2_reg, Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)));
  7689     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  7694 // registers on entry:
  7695 //  - rcx: method handle
  7696 //  - rdx: killable temp (interpreted only)
  7697 //  - rax: killable temp (compiled only)
  7698 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  7699   assert(mh_reg == rcx, "caller must put MH object in rcx");
  7700   assert_different_registers(mh_reg, temp_reg);
  7702   if (UseCompressedOops)  unimplemented();  // field accesses must decode
  7704   // pick out the interpreted side of the handler
  7705   movptr(temp_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  7707   // off we go...
  7708   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  7710   // for the various stubs which take control at this point,
  7711   // see MethodHandles::generate_method_handle_stub
  7715 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  7716                                          int extra_slot_offset) {
  7717   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  7718   int stackElementSize = Interpreter::stackElementSize();
  7719   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  7720 #ifdef ASSERT
  7721   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  7722   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  7723 #endif
  7724   Register             scale_reg    = noreg;
  7725   Address::ScaleFactor scale_factor = Address::no_scale;
  7726   if (arg_slot.is_constant()) {
  7727     offset += arg_slot.as_constant() * stackElementSize;
  7728   } else {
  7729     scale_reg    = arg_slot.as_register();
  7730     scale_factor = Address::times(stackElementSize);
  7732   offset += wordSize;           // return PC is on stack
  7733   return Address(rsp, scale_reg, scale_factor, offset);
  7737 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7738   if (!VerifyOops) return;
  7740   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7741   // Pass register number to verify_oop_subroutine
  7742   char* b = new char[strlen(s) + 50];
  7743   sprintf(b, "verify_oop_addr: %s", s);
  7745   push(rax);                          // save rax,
  7746   // addr may contain rsp so we will have to adjust it based on the push
  7747   // we just did
  7748   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7749   // stores rax into addr which is backwards of what was intended.
  7750   if (addr.uses(rsp)) {
  7751     lea(rax, addr);
  7752     pushptr(Address(rax, BytesPerWord));
  7753   } else {
  7754     pushptr(addr);
  7757   ExternalAddress buffer((address) b);
  7758   // pass msg argument
  7759   // avoid using pushptr, as it modifies scratch registers
  7760   // and our contract is not to modify anything
  7761   movptr(rax, buffer.addr());
  7762   push(rax);
  7764   // call indirectly to solve generation ordering problem
  7765   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7766   call(rax);
  7767   // Caller pops the arguments and restores rax, from the stack
  7770 void MacroAssembler::verify_tlab() {
  7771 #ifdef ASSERT
  7772   if (UseTLAB && VerifyOops) {
  7773     Label next, ok;
  7774     Register t1 = rsi;
  7775     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7777     push(t1);
  7778     NOT_LP64(push(thread_reg));
  7779     NOT_LP64(get_thread(thread_reg));
  7781     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7782     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7783     jcc(Assembler::aboveEqual, next);
  7784     stop("assert(top >= start)");
  7785     should_not_reach_here();
  7787     bind(next);
  7788     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7789     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7790     jcc(Assembler::aboveEqual, ok);
  7791     stop("assert(top <= end)");
  7792     should_not_reach_here();
  7794     bind(ok);
  7795     NOT_LP64(pop(thread_reg));
  7796     pop(t1);
  7798 #endif
  7801 class ControlWord {
  7802  public:
  7803   int32_t _value;
  7805   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  7806   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  7807   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7808   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7809   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7810   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7811   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7812   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7814   void print() const {
  7815     // rounding control
  7816     const char* rc;
  7817     switch (rounding_control()) {
  7818       case 0: rc = "round near"; break;
  7819       case 1: rc = "round down"; break;
  7820       case 2: rc = "round up  "; break;
  7821       case 3: rc = "chop      "; break;
  7822     };
  7823     // precision control
  7824     const char* pc;
  7825     switch (precision_control()) {
  7826       case 0: pc = "24 bits "; break;
  7827       case 1: pc = "reserved"; break;
  7828       case 2: pc = "53 bits "; break;
  7829       case 3: pc = "64 bits "; break;
  7830     };
  7831     // flags
  7832     char f[9];
  7833     f[0] = ' ';
  7834     f[1] = ' ';
  7835     f[2] = (precision   ()) ? 'P' : 'p';
  7836     f[3] = (underflow   ()) ? 'U' : 'u';
  7837     f[4] = (overflow    ()) ? 'O' : 'o';
  7838     f[5] = (zero_divide ()) ? 'Z' : 'z';
  7839     f[6] = (denormalized()) ? 'D' : 'd';
  7840     f[7] = (invalid     ()) ? 'I' : 'i';
  7841     f[8] = '\x0';
  7842     // output
  7843     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  7846 };
  7848 class StatusWord {
  7849  public:
  7850   int32_t _value;
  7852   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  7853   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  7854   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  7855   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  7856   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  7857   int  top() const                     { return  (_value >> 11) & 7      ; }
  7858   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  7859   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  7860   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7861   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7862   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7863   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7864   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7865   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7867   void print() const {
  7868     // condition codes
  7869     char c[5];
  7870     c[0] = (C3()) ? '3' : '-';
  7871     c[1] = (C2()) ? '2' : '-';
  7872     c[2] = (C1()) ? '1' : '-';
  7873     c[3] = (C0()) ? '0' : '-';
  7874     c[4] = '\x0';
  7875     // flags
  7876     char f[9];
  7877     f[0] = (error_status()) ? 'E' : '-';
  7878     f[1] = (stack_fault ()) ? 'S' : '-';
  7879     f[2] = (precision   ()) ? 'P' : '-';
  7880     f[3] = (underflow   ()) ? 'U' : '-';
  7881     f[4] = (overflow    ()) ? 'O' : '-';
  7882     f[5] = (zero_divide ()) ? 'Z' : '-';
  7883     f[6] = (denormalized()) ? 'D' : '-';
  7884     f[7] = (invalid     ()) ? 'I' : '-';
  7885     f[8] = '\x0';
  7886     // output
  7887     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  7890 };
  7892 class TagWord {
  7893  public:
  7894   int32_t _value;
  7896   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  7898   void print() const {
  7899     printf("%04x", _value & 0xFFFF);
  7902 };
  7904 class FPU_Register {
  7905  public:
  7906   int32_t _m0;
  7907   int32_t _m1;
  7908   int16_t _ex;
  7910   bool is_indefinite() const           {
  7911     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  7914   void print() const {
  7915     char  sign = (_ex < 0) ? '-' : '+';
  7916     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  7917     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  7918   };
  7920 };
  7922 class FPU_State {
  7923  public:
  7924   enum {
  7925     register_size       = 10,
  7926     number_of_registers =  8,
  7927     register_mask       =  7
  7928   };
  7930   ControlWord  _control_word;
  7931   StatusWord   _status_word;
  7932   TagWord      _tag_word;
  7933   int32_t      _error_offset;
  7934   int32_t      _error_selector;
  7935   int32_t      _data_offset;
  7936   int32_t      _data_selector;
  7937   int8_t       _register[register_size * number_of_registers];
  7939   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  7940   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  7942   const char* tag_as_string(int tag) const {
  7943     switch (tag) {
  7944       case 0: return "valid";
  7945       case 1: return "zero";
  7946       case 2: return "special";
  7947       case 3: return "empty";
  7949     ShouldNotReachHere()
  7950     return NULL;
  7953   void print() const {
  7954     // print computation registers
  7955     { int t = _status_word.top();
  7956       for (int i = 0; i < number_of_registers; i++) {
  7957         int j = (i - t) & register_mask;
  7958         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  7959         st(j)->print();
  7960         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  7963     printf("\n");
  7964     // print control registers
  7965     printf("ctrl = "); _control_word.print(); printf("\n");
  7966     printf("stat = "); _status_word .print(); printf("\n");
  7967     printf("tags = "); _tag_word    .print(); printf("\n");
  7970 };
  7972 class Flag_Register {
  7973  public:
  7974   int32_t _value;
  7976   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  7977   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  7978   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  7979   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  7980   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  7981   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  7982   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  7984   void print() const {
  7985     // flags
  7986     char f[8];
  7987     f[0] = (overflow       ()) ? 'O' : '-';
  7988     f[1] = (direction      ()) ? 'D' : '-';
  7989     f[2] = (sign           ()) ? 'S' : '-';
  7990     f[3] = (zero           ()) ? 'Z' : '-';
  7991     f[4] = (auxiliary_carry()) ? 'A' : '-';
  7992     f[5] = (parity         ()) ? 'P' : '-';
  7993     f[6] = (carry          ()) ? 'C' : '-';
  7994     f[7] = '\x0';
  7995     // output
  7996     printf("%08x  flags = %s", _value, f);
  7999 };
  8001 class IU_Register {
  8002  public:
  8003   int32_t _value;
  8005   void print() const {
  8006     printf("%08x  %11d", _value, _value);
  8009 };
  8011 class IU_State {
  8012  public:
  8013   Flag_Register _eflags;
  8014   IU_Register   _rdi;
  8015   IU_Register   _rsi;
  8016   IU_Register   _rbp;
  8017   IU_Register   _rsp;
  8018   IU_Register   _rbx;
  8019   IU_Register   _rdx;
  8020   IU_Register   _rcx;
  8021   IU_Register   _rax;
  8023   void print() const {
  8024     // computation registers
  8025     printf("rax,  = "); _rax.print(); printf("\n");
  8026     printf("rbx,  = "); _rbx.print(); printf("\n");
  8027     printf("rcx  = "); _rcx.print(); printf("\n");
  8028     printf("rdx  = "); _rdx.print(); printf("\n");
  8029     printf("rdi  = "); _rdi.print(); printf("\n");
  8030     printf("rsi  = "); _rsi.print(); printf("\n");
  8031     printf("rbp,  = "); _rbp.print(); printf("\n");
  8032     printf("rsp  = "); _rsp.print(); printf("\n");
  8033     printf("\n");
  8034     // control registers
  8035     printf("flgs = "); _eflags.print(); printf("\n");
  8037 };
  8040 class CPU_State {
  8041  public:
  8042   FPU_State _fpu_state;
  8043   IU_State  _iu_state;
  8045   void print() const {
  8046     printf("--------------------------------------------------\n");
  8047     _iu_state .print();
  8048     printf("\n");
  8049     _fpu_state.print();
  8050     printf("--------------------------------------------------\n");
  8053 };
  8056 static void _print_CPU_state(CPU_State* state) {
  8057   state->print();
  8058 };
  8061 void MacroAssembler::print_CPU_state() {
  8062   push_CPU_state();
  8063   push(rsp);                // pass CPU state
  8064   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8065   addptr(rsp, wordSize);       // discard argument
  8066   pop_CPU_state();
  8070 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8071   static int counter = 0;
  8072   FPU_State* fs = &state->_fpu_state;
  8073   counter++;
  8074   // For leaf calls, only verify that the top few elements remain empty.
  8075   // We only need 1 empty at the top for C2 code.
  8076   if( stack_depth < 0 ) {
  8077     if( fs->tag_for_st(7) != 3 ) {
  8078       printf("FPR7 not empty\n");
  8079       state->print();
  8080       assert(false, "error");
  8081       return false;
  8083     return true;                // All other stack states do not matter
  8086   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8087          "bad FPU control word");
  8089   // compute stack depth
  8090   int i = 0;
  8091   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8092   int d = i;
  8093   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8094   // verify findings
  8095   if (i != FPU_State::number_of_registers) {
  8096     // stack not contiguous
  8097     printf("%s: stack not contiguous at ST%d\n", s, i);
  8098     state->print();
  8099     assert(false, "error");
  8100     return false;
  8102   // check if computed stack depth corresponds to expected stack depth
  8103   if (stack_depth < 0) {
  8104     // expected stack depth is -stack_depth or less
  8105     if (d > -stack_depth) {
  8106       // too many elements on the stack
  8107       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8108       state->print();
  8109       assert(false, "error");
  8110       return false;
  8112   } else {
  8113     // expected stack depth is stack_depth
  8114     if (d != stack_depth) {
  8115       // wrong stack depth
  8116       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8117       state->print();
  8118       assert(false, "error");
  8119       return false;
  8122   // everything is cool
  8123   return true;
  8127 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8128   if (!VerifyFPU) return;
  8129   push_CPU_state();
  8130   push(rsp);                // pass CPU state
  8131   ExternalAddress msg((address) s);
  8132   // pass message string s
  8133   pushptr(msg.addr());
  8134   push(stack_depth);        // pass stack depth
  8135   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8136   addptr(rsp, 3 * wordSize);   // discard arguments
  8137   // check for error
  8138   { Label L;
  8139     testl(rax, rax);
  8140     jcc(Assembler::notZero, L);
  8141     int3();                  // break if error condition
  8142     bind(L);
  8144   pop_CPU_state();
  8147 void MacroAssembler::load_klass(Register dst, Register src) {
  8148 #ifdef _LP64
  8149   if (UseCompressedOops) {
  8150     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8151     decode_heap_oop_not_null(dst);
  8152   } else
  8153 #endif
  8154     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8157 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8158 #ifdef _LP64
  8159   if (UseCompressedOops) {
  8160     assert (Universe::heap() != NULL, "java heap should be initialized");
  8161     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8162     if (Universe::narrow_oop_shift() != 0) {
  8163       assert(Address::times_8 == LogMinObjAlignmentInBytes &&
  8164              Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
  8165       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8166     } else {
  8167       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8169   } else
  8170 #endif
  8172     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8173     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8177 void MacroAssembler::store_klass(Register dst, Register src) {
  8178 #ifdef _LP64
  8179   if (UseCompressedOops) {
  8180     encode_heap_oop_not_null(src);
  8181     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8182   } else
  8183 #endif
  8184     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8187 #ifdef _LP64
  8188 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8189   if (UseCompressedOops) {
  8190     // Store to klass gap in destination
  8191     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8195 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8196   if (UseCompressedOops) {
  8197     movl(dst, src);
  8198     decode_heap_oop(dst);
  8199   } else {
  8200     movq(dst, src);
  8204 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8205   if (UseCompressedOops) {
  8206     assert(!dst.uses(src), "not enough registers");
  8207     encode_heap_oop(src);
  8208     movl(dst, src);
  8209   } else {
  8210     movq(dst, src);
  8214 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8215 void MacroAssembler::encode_heap_oop(Register r) {
  8216   assert (UseCompressedOops, "should be compressed");
  8217   assert (Universe::heap() != NULL, "java heap should be initialized");
  8218   if (Universe::narrow_oop_base() == NULL) {
  8219     verify_oop(r, "broken oop in encode_heap_oop");
  8220     if (Universe::narrow_oop_shift() != 0) {
  8221       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8222       shrq(r, LogMinObjAlignmentInBytes);
  8224     return;
  8226 #ifdef ASSERT
  8227   if (CheckCompressedOops) {
  8228     Label ok;
  8229     push(rscratch1); // cmpptr trashes rscratch1
  8230     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8231     jcc(Assembler::equal, ok);
  8232     stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8233     bind(ok);
  8234     pop(rscratch1);
  8236 #endif
  8237   verify_oop(r, "broken oop in encode_heap_oop");
  8238   testq(r, r);
  8239   cmovq(Assembler::equal, r, r12_heapbase);
  8240   subq(r, r12_heapbase);
  8241   shrq(r, LogMinObjAlignmentInBytes);
  8244 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8245   assert (UseCompressedOops, "should be compressed");
  8246   assert (Universe::heap() != NULL, "java heap should be initialized");
  8247 #ifdef ASSERT
  8248   if (CheckCompressedOops) {
  8249     Label ok;
  8250     testq(r, r);
  8251     jcc(Assembler::notEqual, ok);
  8252     stop("null oop passed to encode_heap_oop_not_null");
  8253     bind(ok);
  8255 #endif
  8256   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8257   if (Universe::narrow_oop_base() != NULL) {
  8258     subq(r, r12_heapbase);
  8260   if (Universe::narrow_oop_shift() != 0) {
  8261     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8262     shrq(r, LogMinObjAlignmentInBytes);
  8266 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8267   assert (UseCompressedOops, "should be compressed");
  8268   assert (Universe::heap() != NULL, "java heap should be initialized");
  8269 #ifdef ASSERT
  8270   if (CheckCompressedOops) {
  8271     Label ok;
  8272     testq(src, src);
  8273     jcc(Assembler::notEqual, ok);
  8274     stop("null oop passed to encode_heap_oop_not_null2");
  8275     bind(ok);
  8277 #endif
  8278   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8279   if (dst != src) {
  8280     movq(dst, src);
  8282   if (Universe::narrow_oop_base() != NULL) {
  8283     subq(dst, r12_heapbase);
  8285   if (Universe::narrow_oop_shift() != 0) {
  8286     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8287     shrq(dst, LogMinObjAlignmentInBytes);
  8291 void  MacroAssembler::decode_heap_oop(Register r) {
  8292   assert (UseCompressedOops, "should be compressed");
  8293   assert (Universe::heap() != NULL, "java heap should be initialized");
  8294   if (Universe::narrow_oop_base() == NULL) {
  8295     if (Universe::narrow_oop_shift() != 0) {
  8296       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8297       shlq(r, LogMinObjAlignmentInBytes);
  8299     verify_oop(r, "broken oop in decode_heap_oop");
  8300     return;
  8302 #ifdef ASSERT
  8303   if (CheckCompressedOops) {
  8304     Label ok;
  8305     push(rscratch1);
  8306     cmpptr(r12_heapbase,
  8307            ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8308     jcc(Assembler::equal, ok);
  8309     stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8310     bind(ok);
  8311     pop(rscratch1);
  8313 #endif
  8315   Label done;
  8316   shlq(r, LogMinObjAlignmentInBytes);
  8317   jccb(Assembler::equal, done);
  8318   addq(r, r12_heapbase);
  8319 #if 0
  8320    // alternate decoding probably a wash.
  8321    testq(r, r);
  8322    jccb(Assembler::equal, done);
  8323    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  8324 #endif
  8325   bind(done);
  8326   verify_oop(r, "broken oop in decode_heap_oop");
  8329 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8330   assert (UseCompressedOops, "should only be used for compressed headers");
  8331   assert (Universe::heap() != NULL, "java heap should be initialized");
  8332   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8333   // vtableStubs also counts instructions in pd_code_size_limit.
  8334   // Also do not verify_oop as this is called by verify_oop.
  8335   if (Universe::narrow_oop_base() == NULL) {
  8336     if (Universe::narrow_oop_shift() != 0) {
  8337       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8338       shlq(r, LogMinObjAlignmentInBytes);
  8340   } else {
  8341       assert (Address::times_8 == LogMinObjAlignmentInBytes &&
  8342               Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
  8343     leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  8347 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8348   assert (UseCompressedOops, "should only be used for compressed headers");
  8349   assert (Universe::heap() != NULL, "java heap should be initialized");
  8350   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8351   // vtableStubs also counts instructions in pd_code_size_limit.
  8352   // Also do not verify_oop as this is called by verify_oop.
  8353   if (Universe::narrow_oop_shift() != 0) {
  8354     assert (Address::times_8 == LogMinObjAlignmentInBytes &&
  8355             Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
  8356     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8357   } else if (dst != src) {
  8358     movq(dst, src);
  8362 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8363   assert (UseCompressedOops, "should only be used for compressed headers");
  8364   assert (Universe::heap() != NULL, "java heap should be initialized");
  8365   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8366   int oop_index = oop_recorder()->find_index(obj);
  8367   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8368   mov_narrow_oop(dst, oop_index, rspec);
  8371 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8372   assert (UseCompressedOops, "should only be used for compressed headers");
  8373   assert (Universe::heap() != NULL, "java heap should be initialized");
  8374   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8375   int oop_index = oop_recorder()->find_index(obj);
  8376   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8377   mov_narrow_oop(dst, oop_index, rspec);
  8380 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8381   assert (UseCompressedOops, "should only be used for compressed headers");
  8382   assert (Universe::heap() != NULL, "java heap should be initialized");
  8383   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8384   int oop_index = oop_recorder()->find_index(obj);
  8385   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8386   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8389 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8390   assert (UseCompressedOops, "should only be used for compressed headers");
  8391   assert (Universe::heap() != NULL, "java heap should be initialized");
  8392   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8393   int oop_index = oop_recorder()->find_index(obj);
  8394   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8395   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8398 void MacroAssembler::reinit_heapbase() {
  8399   if (UseCompressedOops) {
  8400     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8403 #endif // _LP64
  8405 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  8406   switch (cond) {
  8407     // Note some conditions are synonyms for others
  8408     case Assembler::zero:         return Assembler::notZero;
  8409     case Assembler::notZero:      return Assembler::zero;
  8410     case Assembler::less:         return Assembler::greaterEqual;
  8411     case Assembler::lessEqual:    return Assembler::greater;
  8412     case Assembler::greater:      return Assembler::lessEqual;
  8413     case Assembler::greaterEqual: return Assembler::less;
  8414     case Assembler::below:        return Assembler::aboveEqual;
  8415     case Assembler::belowEqual:   return Assembler::above;
  8416     case Assembler::above:        return Assembler::belowEqual;
  8417     case Assembler::aboveEqual:   return Assembler::below;
  8418     case Assembler::overflow:     return Assembler::noOverflow;
  8419     case Assembler::noOverflow:   return Assembler::overflow;
  8420     case Assembler::negative:     return Assembler::positive;
  8421     case Assembler::positive:     return Assembler::negative;
  8422     case Assembler::parity:       return Assembler::noParity;
  8423     case Assembler::noParity:     return Assembler::parity;
  8425   ShouldNotReachHere(); return Assembler::overflow;
  8428 SkipIfEqual::SkipIfEqual(
  8429     MacroAssembler* masm, const bool* flag_addr, bool value) {
  8430   _masm = masm;
  8431   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  8432   _masm->jcc(Assembler::equal, _label);
  8435 SkipIfEqual::~SkipIfEqual() {
  8436   _masm->bind(_label);

mercurial