src/share/vm/opto/compile.cpp

Fri, 18 Oct 2013 10:50:17 +0200

author
adlertz
date
Fri, 18 Oct 2013 10:50:17 +0200
changeset 5978
1856ea98184a
parent 5927
4a2acfb16e97
child 5981
3213ba4d3dff
permissions
-rw-r--r--

8022783: Nashorn test fails with: assert(!def_outside->member(r))
Summary: Enables private copies of inputs for recent spill copies as well
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/mathexactnode.hpp"
    51 #include "opto/memnode.hpp"
    52 #include "opto/mulnode.hpp"
    53 #include "opto/node.hpp"
    54 #include "opto/opcodes.hpp"
    55 #include "opto/output.hpp"
    56 #include "opto/parse.hpp"
    57 #include "opto/phaseX.hpp"
    58 #include "opto/rootnode.hpp"
    59 #include "opto/runtime.hpp"
    60 #include "opto/stringopts.hpp"
    61 #include "opto/type.hpp"
    62 #include "opto/vectornode.hpp"
    63 #include "runtime/arguments.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/timer.hpp"
    67 #include "trace/tracing.hpp"
    68 #include "utilities/copy.hpp"
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc
    85 # include "adfiles/ad_ppc.hpp"
    86 #endif
    89 // -------------------- Compile::mach_constant_base_node -----------------------
    90 // Constant table base node singleton.
    91 MachConstantBaseNode* Compile::mach_constant_base_node() {
    92   if (_mach_constant_base_node == NULL) {
    93     _mach_constant_base_node = new (C) MachConstantBaseNode();
    94     _mach_constant_base_node->add_req(C->root());
    95   }
    96   return _mach_constant_base_node;
    97 }
   100 /// Support for intrinsics.
   102 // Return the index at which m must be inserted (or already exists).
   103 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   104 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   105 #ifdef ASSERT
   106   for (int i = 1; i < _intrinsics->length(); i++) {
   107     CallGenerator* cg1 = _intrinsics->at(i-1);
   108     CallGenerator* cg2 = _intrinsics->at(i);
   109     assert(cg1->method() != cg2->method()
   110            ? cg1->method()     < cg2->method()
   111            : cg1->is_virtual() < cg2->is_virtual(),
   112            "compiler intrinsics list must stay sorted");
   113   }
   114 #endif
   115   // Binary search sorted list, in decreasing intervals [lo, hi].
   116   int lo = 0, hi = _intrinsics->length()-1;
   117   while (lo <= hi) {
   118     int mid = (uint)(hi + lo) / 2;
   119     ciMethod* mid_m = _intrinsics->at(mid)->method();
   120     if (m < mid_m) {
   121       hi = mid-1;
   122     } else if (m > mid_m) {
   123       lo = mid+1;
   124     } else {
   125       // look at minor sort key
   126       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   127       if (is_virtual < mid_virt) {
   128         hi = mid-1;
   129       } else if (is_virtual > mid_virt) {
   130         lo = mid+1;
   131       } else {
   132         return mid;  // exact match
   133       }
   134     }
   135   }
   136   return lo;  // inexact match
   137 }
   139 void Compile::register_intrinsic(CallGenerator* cg) {
   140   if (_intrinsics == NULL) {
   141     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   142   }
   143   // This code is stolen from ciObjectFactory::insert.
   144   // Really, GrowableArray should have methods for
   145   // insert_at, remove_at, and binary_search.
   146   int len = _intrinsics->length();
   147   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   148   if (index == len) {
   149     _intrinsics->append(cg);
   150   } else {
   151 #ifdef ASSERT
   152     CallGenerator* oldcg = _intrinsics->at(index);
   153     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   154 #endif
   155     _intrinsics->append(_intrinsics->at(len-1));
   156     int pos;
   157     for (pos = len-2; pos >= index; pos--) {
   158       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   159     }
   160     _intrinsics->at_put(index, cg);
   161   }
   162   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   163 }
   165 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   166   assert(m->is_loaded(), "don't try this on unloaded methods");
   167   if (_intrinsics != NULL) {
   168     int index = intrinsic_insertion_index(m, is_virtual);
   169     if (index < _intrinsics->length()
   170         && _intrinsics->at(index)->method() == m
   171         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   172       return _intrinsics->at(index);
   173     }
   174   }
   175   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   176   if (m->intrinsic_id() != vmIntrinsics::_none &&
   177       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   178     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   179     if (cg != NULL) {
   180       // Save it for next time:
   181       register_intrinsic(cg);
   182       return cg;
   183     } else {
   184       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   185     }
   186   }
   187   return NULL;
   188 }
   190 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   191 // in library_call.cpp.
   194 #ifndef PRODUCT
   195 // statistics gathering...
   197 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   198 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   200 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   201   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   202   int oflags = _intrinsic_hist_flags[id];
   203   assert(flags != 0, "what happened?");
   204   if (is_virtual) {
   205     flags |= _intrinsic_virtual;
   206   }
   207   bool changed = (flags != oflags);
   208   if ((flags & _intrinsic_worked) != 0) {
   209     juint count = (_intrinsic_hist_count[id] += 1);
   210     if (count == 1) {
   211       changed = true;           // first time
   212     }
   213     // increment the overall count also:
   214     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   215   }
   216   if (changed) {
   217     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   218       // Something changed about the intrinsic's virtuality.
   219       if ((flags & _intrinsic_virtual) != 0) {
   220         // This is the first use of this intrinsic as a virtual call.
   221         if (oflags != 0) {
   222           // We already saw it as a non-virtual, so note both cases.
   223           flags |= _intrinsic_both;
   224         }
   225       } else if ((oflags & _intrinsic_both) == 0) {
   226         // This is the first use of this intrinsic as a non-virtual
   227         flags |= _intrinsic_both;
   228       }
   229     }
   230     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   231   }
   232   // update the overall flags also:
   233   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   234   return changed;
   235 }
   237 static char* format_flags(int flags, char* buf) {
   238   buf[0] = 0;
   239   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   240   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   241   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   242   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   243   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   244   if (buf[0] == 0)  strcat(buf, ",");
   245   assert(buf[0] == ',', "must be");
   246   return &buf[1];
   247 }
   249 void Compile::print_intrinsic_statistics() {
   250   char flagsbuf[100];
   251   ttyLocker ttyl;
   252   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   253   tty->print_cr("Compiler intrinsic usage:");
   254   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   255   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   256   #define PRINT_STAT_LINE(name, c, f) \
   257     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   258   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   259     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   260     int   flags = _intrinsic_hist_flags[id];
   261     juint count = _intrinsic_hist_count[id];
   262     if ((flags | count) != 0) {
   263       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   264     }
   265   }
   266   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   267   if (xtty != NULL)  xtty->tail("statistics");
   268 }
   270 void Compile::print_statistics() {
   271   { ttyLocker ttyl;
   272     if (xtty != NULL)  xtty->head("statistics type='opto'");
   273     Parse::print_statistics();
   274     PhaseCCP::print_statistics();
   275     PhaseRegAlloc::print_statistics();
   276     Scheduling::print_statistics();
   277     PhasePeephole::print_statistics();
   278     PhaseIdealLoop::print_statistics();
   279     if (xtty != NULL)  xtty->tail("statistics");
   280   }
   281   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   282     // put this under its own <statistics> element.
   283     print_intrinsic_statistics();
   284   }
   285 }
   286 #endif //PRODUCT
   288 // Support for bundling info
   289 Bundle* Compile::node_bundling(const Node *n) {
   290   assert(valid_bundle_info(n), "oob");
   291   return &_node_bundling_base[n->_idx];
   292 }
   294 bool Compile::valid_bundle_info(const Node *n) {
   295   return (_node_bundling_limit > n->_idx);
   296 }
   299 void Compile::gvn_replace_by(Node* n, Node* nn) {
   300   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   301     Node* use = n->last_out(i);
   302     bool is_in_table = initial_gvn()->hash_delete(use);
   303     uint uses_found = 0;
   304     for (uint j = 0; j < use->len(); j++) {
   305       if (use->in(j) == n) {
   306         if (j < use->req())
   307           use->set_req(j, nn);
   308         else
   309           use->set_prec(j, nn);
   310         uses_found++;
   311       }
   312     }
   313     if (is_in_table) {
   314       // reinsert into table
   315       initial_gvn()->hash_find_insert(use);
   316     }
   317     record_for_igvn(use);
   318     i -= uses_found;    // we deleted 1 or more copies of this edge
   319   }
   320 }
   323 static inline bool not_a_node(const Node* n) {
   324   if (n == NULL)                   return true;
   325   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   326   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   327   return false;
   328 }
   330 // Identify all nodes that are reachable from below, useful.
   331 // Use breadth-first pass that records state in a Unique_Node_List,
   332 // recursive traversal is slower.
   333 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   334   int estimated_worklist_size = unique();
   335   useful.map( estimated_worklist_size, NULL );  // preallocate space
   337   // Initialize worklist
   338   if (root() != NULL)     { useful.push(root()); }
   339   // If 'top' is cached, declare it useful to preserve cached node
   340   if( cached_top_node() ) { useful.push(cached_top_node()); }
   342   // Push all useful nodes onto the list, breadthfirst
   343   for( uint next = 0; next < useful.size(); ++next ) {
   344     assert( next < unique(), "Unique useful nodes < total nodes");
   345     Node *n  = useful.at(next);
   346     uint max = n->len();
   347     for( uint i = 0; i < max; ++i ) {
   348       Node *m = n->in(i);
   349       if (not_a_node(m))  continue;
   350       useful.push(m);
   351     }
   352   }
   353 }
   355 // Update dead_node_list with any missing dead nodes using useful
   356 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   357 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   358   uint max_idx = unique();
   359   VectorSet& useful_node_set = useful.member_set();
   361   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   362     // If node with index node_idx is not in useful set,
   363     // mark it as dead in dead node list.
   364     if (! useful_node_set.test(node_idx) ) {
   365       record_dead_node(node_idx);
   366     }
   367   }
   368 }
   370 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   371   int shift = 0;
   372   for (int i = 0; i < inlines->length(); i++) {
   373     CallGenerator* cg = inlines->at(i);
   374     CallNode* call = cg->call_node();
   375     if (shift > 0) {
   376       inlines->at_put(i-shift, cg);
   377     }
   378     if (!useful.member(call)) {
   379       shift++;
   380     }
   381   }
   382   inlines->trunc_to(inlines->length()-shift);
   383 }
   385 // Disconnect all useless nodes by disconnecting those at the boundary.
   386 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   387   uint next = 0;
   388   while (next < useful.size()) {
   389     Node *n = useful.at(next++);
   390     // Use raw traversal of out edges since this code removes out edges
   391     int max = n->outcnt();
   392     for (int j = 0; j < max; ++j) {
   393       Node* child = n->raw_out(j);
   394       if (! useful.member(child)) {
   395         assert(!child->is_top() || child != top(),
   396                "If top is cached in Compile object it is in useful list");
   397         // Only need to remove this out-edge to the useless node
   398         n->raw_del_out(j);
   399         --j;
   400         --max;
   401       }
   402     }
   403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   404       record_for_igvn(n->unique_out());
   405     }
   406   }
   407   // Remove useless macro and predicate opaq nodes
   408   for (int i = C->macro_count()-1; i >= 0; i--) {
   409     Node* n = C->macro_node(i);
   410     if (!useful.member(n)) {
   411       remove_macro_node(n);
   412     }
   413   }
   414   // Remove useless expensive node
   415   for (int i = C->expensive_count()-1; i >= 0; i--) {
   416     Node* n = C->expensive_node(i);
   417     if (!useful.member(n)) {
   418       remove_expensive_node(n);
   419     }
   420   }
   421   // clean up the late inline lists
   422   remove_useless_late_inlines(&_string_late_inlines, useful);
   423   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   424   remove_useless_late_inlines(&_late_inlines, useful);
   425   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   426 }
   428 //------------------------------frame_size_in_words-----------------------------
   429 // frame_slots in units of words
   430 int Compile::frame_size_in_words() const {
   431   // shift is 0 in LP32 and 1 in LP64
   432   const int shift = (LogBytesPerWord - LogBytesPerInt);
   433   int words = _frame_slots >> shift;
   434   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   435   return words;
   436 }
   438 // ============================================================================
   439 //------------------------------CompileWrapper---------------------------------
   440 class CompileWrapper : public StackObj {
   441   Compile *const _compile;
   442  public:
   443   CompileWrapper(Compile* compile);
   445   ~CompileWrapper();
   446 };
   448 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   449   // the Compile* pointer is stored in the current ciEnv:
   450   ciEnv* env = compile->env();
   451   assert(env == ciEnv::current(), "must already be a ciEnv active");
   452   assert(env->compiler_data() == NULL, "compile already active?");
   453   env->set_compiler_data(compile);
   454   assert(compile == Compile::current(), "sanity");
   456   compile->set_type_dict(NULL);
   457   compile->set_type_hwm(NULL);
   458   compile->set_type_last_size(0);
   459   compile->set_last_tf(NULL, NULL);
   460   compile->set_indexSet_arena(NULL);
   461   compile->set_indexSet_free_block_list(NULL);
   462   compile->init_type_arena();
   463   Type::Initialize(compile);
   464   _compile->set_scratch_buffer_blob(NULL);
   465   _compile->begin_method();
   466 }
   467 CompileWrapper::~CompileWrapper() {
   468   _compile->end_method();
   469   if (_compile->scratch_buffer_blob() != NULL)
   470     BufferBlob::free(_compile->scratch_buffer_blob());
   471   _compile->env()->set_compiler_data(NULL);
   472 }
   475 //----------------------------print_compile_messages---------------------------
   476 void Compile::print_compile_messages() {
   477 #ifndef PRODUCT
   478   // Check if recompiling
   479   if (_subsume_loads == false && PrintOpto) {
   480     // Recompiling without allowing machine instructions to subsume loads
   481     tty->print_cr("*********************************************************");
   482     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   483     tty->print_cr("*********************************************************");
   484   }
   485   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   486     // Recompiling without escape analysis
   487     tty->print_cr("*********************************************************");
   488     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   489     tty->print_cr("*********************************************************");
   490   }
   491   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   492     // Recompiling without boxing elimination
   493     tty->print_cr("*********************************************************");
   494     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   495     tty->print_cr("*********************************************************");
   496   }
   497   if (env()->break_at_compile()) {
   498     // Open the debugger when compiling this method.
   499     tty->print("### Breaking when compiling: ");
   500     method()->print_short_name();
   501     tty->cr();
   502     BREAKPOINT;
   503   }
   505   if( PrintOpto ) {
   506     if (is_osr_compilation()) {
   507       tty->print("[OSR]%3d", _compile_id);
   508     } else {
   509       tty->print("%3d", _compile_id);
   510     }
   511   }
   512 #endif
   513 }
   516 //-----------------------init_scratch_buffer_blob------------------------------
   517 // Construct a temporary BufferBlob and cache it for this compile.
   518 void Compile::init_scratch_buffer_blob(int const_size) {
   519   // If there is already a scratch buffer blob allocated and the
   520   // constant section is big enough, use it.  Otherwise free the
   521   // current and allocate a new one.
   522   BufferBlob* blob = scratch_buffer_blob();
   523   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   524     // Use the current blob.
   525   } else {
   526     if (blob != NULL) {
   527       BufferBlob::free(blob);
   528     }
   530     ResourceMark rm;
   531     _scratch_const_size = const_size;
   532     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   533     blob = BufferBlob::create("Compile::scratch_buffer", size);
   534     // Record the buffer blob for next time.
   535     set_scratch_buffer_blob(blob);
   536     // Have we run out of code space?
   537     if (scratch_buffer_blob() == NULL) {
   538       // Let CompilerBroker disable further compilations.
   539       record_failure("Not enough space for scratch buffer in CodeCache");
   540       return;
   541     }
   542   }
   544   // Initialize the relocation buffers
   545   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   546   set_scratch_locs_memory(locs_buf);
   547 }
   550 //-----------------------scratch_emit_size-------------------------------------
   551 // Helper function that computes size by emitting code
   552 uint Compile::scratch_emit_size(const Node* n) {
   553   // Start scratch_emit_size section.
   554   set_in_scratch_emit_size(true);
   556   // Emit into a trash buffer and count bytes emitted.
   557   // This is a pretty expensive way to compute a size,
   558   // but it works well enough if seldom used.
   559   // All common fixed-size instructions are given a size
   560   // method by the AD file.
   561   // Note that the scratch buffer blob and locs memory are
   562   // allocated at the beginning of the compile task, and
   563   // may be shared by several calls to scratch_emit_size.
   564   // The allocation of the scratch buffer blob is particularly
   565   // expensive, since it has to grab the code cache lock.
   566   BufferBlob* blob = this->scratch_buffer_blob();
   567   assert(blob != NULL, "Initialize BufferBlob at start");
   568   assert(blob->size() > MAX_inst_size, "sanity");
   569   relocInfo* locs_buf = scratch_locs_memory();
   570   address blob_begin = blob->content_begin();
   571   address blob_end   = (address)locs_buf;
   572   assert(blob->content_contains(blob_end), "sanity");
   573   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   574   buf.initialize_consts_size(_scratch_const_size);
   575   buf.initialize_stubs_size(MAX_stubs_size);
   576   assert(locs_buf != NULL, "sanity");
   577   int lsize = MAX_locs_size / 3;
   578   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   579   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   580   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   582   // Do the emission.
   584   Label fakeL; // Fake label for branch instructions.
   585   Label*   saveL = NULL;
   586   uint save_bnum = 0;
   587   bool is_branch = n->is_MachBranch();
   588   if (is_branch) {
   589     MacroAssembler masm(&buf);
   590     masm.bind(fakeL);
   591     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   592     n->as_MachBranch()->label_set(&fakeL, 0);
   593   }
   594   n->emit(buf, this->regalloc());
   595   if (is_branch) // Restore label.
   596     n->as_MachBranch()->label_set(saveL, save_bnum);
   598   // End scratch_emit_size section.
   599   set_in_scratch_emit_size(false);
   601   return buf.insts_size();
   602 }
   605 // ============================================================================
   606 //------------------------------Compile standard-------------------------------
   607 debug_only( int Compile::_debug_idx = 100000; )
   609 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   610 // the continuation bci for on stack replacement.
   613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   614                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   615                 : Phase(Compiler),
   616                   _env(ci_env),
   617                   _log(ci_env->log()),
   618                   _compile_id(ci_env->compile_id()),
   619                   _save_argument_registers(false),
   620                   _stub_name(NULL),
   621                   _stub_function(NULL),
   622                   _stub_entry_point(NULL),
   623                   _method(target),
   624                   _entry_bci(osr_bci),
   625                   _initial_gvn(NULL),
   626                   _for_igvn(NULL),
   627                   _warm_calls(NULL),
   628                   _subsume_loads(subsume_loads),
   629                   _do_escape_analysis(do_escape_analysis),
   630                   _eliminate_boxing(eliminate_boxing),
   631                   _failure_reason(NULL),
   632                   _code_buffer("Compile::Fill_buffer"),
   633                   _orig_pc_slot(0),
   634                   _orig_pc_slot_offset_in_bytes(0),
   635                   _has_method_handle_invokes(false),
   636                   _mach_constant_base_node(NULL),
   637                   _node_bundling_limit(0),
   638                   _node_bundling_base(NULL),
   639                   _java_calls(0),
   640                   _inner_loops(0),
   641                   _scratch_const_size(-1),
   642                   _in_scratch_emit_size(false),
   643                   _dead_node_list(comp_arena()),
   644                   _dead_node_count(0),
   645 #ifndef PRODUCT
   646                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   647                   _printer(IdealGraphPrinter::printer()),
   648 #endif
   649                   _congraph(NULL),
   650                   _late_inlines(comp_arena(), 2, 0, NULL),
   651                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   652                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   653                   _late_inlines_pos(0),
   654                   _number_of_mh_late_inlines(0),
   655                   _inlining_progress(false),
   656                   _inlining_incrementally(false),
   657                   _print_inlining_list(NULL),
   658                   _print_inlining_idx(0) {
   659   C = this;
   661   CompileWrapper cw(this);
   662 #ifndef PRODUCT
   663   if (TimeCompiler2) {
   664     tty->print(" ");
   665     target->holder()->name()->print();
   666     tty->print(".");
   667     target->print_short_name();
   668     tty->print("  ");
   669   }
   670   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   671   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   672   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   673   if (!print_opto_assembly) {
   674     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   675     if (print_assembly && !Disassembler::can_decode()) {
   676       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   677       print_opto_assembly = true;
   678     }
   679   }
   680   set_print_assembly(print_opto_assembly);
   681   set_parsed_irreducible_loop(false);
   682 #endif
   683   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   684   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   686   if (ProfileTraps) {
   687     // Make sure the method being compiled gets its own MDO,
   688     // so we can at least track the decompile_count().
   689     method()->ensure_method_data();
   690   }
   692   Init(::AliasLevel);
   695   print_compile_messages();
   697   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   698     _ilt = InlineTree::build_inline_tree_root();
   699   else
   700     _ilt = NULL;
   702   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   703   assert(num_alias_types() >= AliasIdxRaw, "");
   705 #define MINIMUM_NODE_HASH  1023
   706   // Node list that Iterative GVN will start with
   707   Unique_Node_List for_igvn(comp_arena());
   708   set_for_igvn(&for_igvn);
   710   // GVN that will be run immediately on new nodes
   711   uint estimated_size = method()->code_size()*4+64;
   712   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   713   PhaseGVN gvn(node_arena(), estimated_size);
   714   set_initial_gvn(&gvn);
   716   if (print_inlining() || print_intrinsics()) {
   717     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   718   }
   719   { // Scope for timing the parser
   720     TracePhase t3("parse", &_t_parser, true);
   722     // Put top into the hash table ASAP.
   723     initial_gvn()->transform_no_reclaim(top());
   725     // Set up tf(), start(), and find a CallGenerator.
   726     CallGenerator* cg = NULL;
   727     if (is_osr_compilation()) {
   728       const TypeTuple *domain = StartOSRNode::osr_domain();
   729       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   730       init_tf(TypeFunc::make(domain, range));
   731       StartNode* s = new (this) StartOSRNode(root(), domain);
   732       initial_gvn()->set_type_bottom(s);
   733       init_start(s);
   734       cg = CallGenerator::for_osr(method(), entry_bci());
   735     } else {
   736       // Normal case.
   737       init_tf(TypeFunc::make(method()));
   738       StartNode* s = new (this) StartNode(root(), tf()->domain());
   739       initial_gvn()->set_type_bottom(s);
   740       init_start(s);
   741       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   742         // With java.lang.ref.reference.get() we must go through the
   743         // intrinsic when G1 is enabled - even when get() is the root
   744         // method of the compile - so that, if necessary, the value in
   745         // the referent field of the reference object gets recorded by
   746         // the pre-barrier code.
   747         // Specifically, if G1 is enabled, the value in the referent
   748         // field is recorded by the G1 SATB pre barrier. This will
   749         // result in the referent being marked live and the reference
   750         // object removed from the list of discovered references during
   751         // reference processing.
   752         cg = find_intrinsic(method(), false);
   753       }
   754       if (cg == NULL) {
   755         float past_uses = method()->interpreter_invocation_count();
   756         float expected_uses = past_uses;
   757         cg = CallGenerator::for_inline(method(), expected_uses);
   758       }
   759     }
   760     if (failing())  return;
   761     if (cg == NULL) {
   762       record_method_not_compilable_all_tiers("cannot parse method");
   763       return;
   764     }
   765     JVMState* jvms = build_start_state(start(), tf());
   766     if ((jvms = cg->generate(jvms)) == NULL) {
   767       record_method_not_compilable("method parse failed");
   768       return;
   769     }
   770     GraphKit kit(jvms);
   772     if (!kit.stopped()) {
   773       // Accept return values, and transfer control we know not where.
   774       // This is done by a special, unique ReturnNode bound to root.
   775       return_values(kit.jvms());
   776     }
   778     if (kit.has_exceptions()) {
   779       // Any exceptions that escape from this call must be rethrown
   780       // to whatever caller is dynamically above us on the stack.
   781       // This is done by a special, unique RethrowNode bound to root.
   782       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   783     }
   785     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   787     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   788       inline_string_calls(true);
   789     }
   791     if (failing())  return;
   793     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   795     // Remove clutter produced by parsing.
   796     if (!failing()) {
   797       ResourceMark rm;
   798       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   799     }
   800   }
   802   // Note:  Large methods are capped off in do_one_bytecode().
   803   if (failing())  return;
   805   // After parsing, node notes are no longer automagic.
   806   // They must be propagated by register_new_node_with_optimizer(),
   807   // clone(), or the like.
   808   set_default_node_notes(NULL);
   810   for (;;) {
   811     int successes = Inline_Warm();
   812     if (failing())  return;
   813     if (successes == 0)  break;
   814   }
   816   // Drain the list.
   817   Finish_Warm();
   818 #ifndef PRODUCT
   819   if (_printer) {
   820     _printer->print_inlining(this);
   821   }
   822 #endif
   824   if (failing())  return;
   825   NOT_PRODUCT( verify_graph_edges(); )
   827   // Now optimize
   828   Optimize();
   829   if (failing())  return;
   830   NOT_PRODUCT( verify_graph_edges(); )
   832 #ifndef PRODUCT
   833   if (PrintIdeal) {
   834     ttyLocker ttyl;  // keep the following output all in one block
   835     // This output goes directly to the tty, not the compiler log.
   836     // To enable tools to match it up with the compilation activity,
   837     // be sure to tag this tty output with the compile ID.
   838     if (xtty != NULL) {
   839       xtty->head("ideal compile_id='%d'%s", compile_id(),
   840                  is_osr_compilation()    ? " compile_kind='osr'" :
   841                  "");
   842     }
   843     root()->dump(9999);
   844     if (xtty != NULL) {
   845       xtty->tail("ideal");
   846     }
   847   }
   848 #endif
   850   // Now that we know the size of all the monitors we can add a fixed slot
   851   // for the original deopt pc.
   853   _orig_pc_slot =  fixed_slots();
   854   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   855   set_fixed_slots(next_slot);
   857   // Now generate code
   858   Code_Gen();
   859   if (failing())  return;
   861   // Check if we want to skip execution of all compiled code.
   862   {
   863 #ifndef PRODUCT
   864     if (OptoNoExecute) {
   865       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   866       return;
   867     }
   868     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   869 #endif
   871     if (is_osr_compilation()) {
   872       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   873       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   874     } else {
   875       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   876       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   877     }
   879     env()->register_method(_method, _entry_bci,
   880                            &_code_offsets,
   881                            _orig_pc_slot_offset_in_bytes,
   882                            code_buffer(),
   883                            frame_size_in_words(), _oop_map_set,
   884                            &_handler_table, &_inc_table,
   885                            compiler,
   886                            env()->comp_level(),
   887                            has_unsafe_access(),
   888                            SharedRuntime::is_wide_vector(max_vector_size())
   889                            );
   891     if (log() != NULL) // Print code cache state into compiler log
   892       log()->code_cache_state();
   893   }
   894 }
   896 //------------------------------Compile----------------------------------------
   897 // Compile a runtime stub
   898 Compile::Compile( ciEnv* ci_env,
   899                   TypeFunc_generator generator,
   900                   address stub_function,
   901                   const char *stub_name,
   902                   int is_fancy_jump,
   903                   bool pass_tls,
   904                   bool save_arg_registers,
   905                   bool return_pc )
   906   : Phase(Compiler),
   907     _env(ci_env),
   908     _log(ci_env->log()),
   909     _compile_id(0),
   910     _save_argument_registers(save_arg_registers),
   911     _method(NULL),
   912     _stub_name(stub_name),
   913     _stub_function(stub_function),
   914     _stub_entry_point(NULL),
   915     _entry_bci(InvocationEntryBci),
   916     _initial_gvn(NULL),
   917     _for_igvn(NULL),
   918     _warm_calls(NULL),
   919     _orig_pc_slot(0),
   920     _orig_pc_slot_offset_in_bytes(0),
   921     _subsume_loads(true),
   922     _do_escape_analysis(false),
   923     _eliminate_boxing(false),
   924     _failure_reason(NULL),
   925     _code_buffer("Compile::Fill_buffer"),
   926     _has_method_handle_invokes(false),
   927     _mach_constant_base_node(NULL),
   928     _node_bundling_limit(0),
   929     _node_bundling_base(NULL),
   930     _java_calls(0),
   931     _inner_loops(0),
   932 #ifndef PRODUCT
   933     _trace_opto_output(TraceOptoOutput),
   934     _printer(NULL),
   935 #endif
   936     _dead_node_list(comp_arena()),
   937     _dead_node_count(0),
   938     _congraph(NULL),
   939     _number_of_mh_late_inlines(0),
   940     _inlining_progress(false),
   941     _inlining_incrementally(false),
   942     _print_inlining_list(NULL),
   943     _print_inlining_idx(0) {
   944   C = this;
   946 #ifndef PRODUCT
   947   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   948   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   949   set_print_assembly(PrintFrameConverterAssembly);
   950   set_parsed_irreducible_loop(false);
   951 #endif
   952   CompileWrapper cw(this);
   953   Init(/*AliasLevel=*/ 0);
   954   init_tf((*generator)());
   956   {
   957     // The following is a dummy for the sake of GraphKit::gen_stub
   958     Unique_Node_List for_igvn(comp_arena());
   959     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   960     PhaseGVN gvn(Thread::current()->resource_area(),255);
   961     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   962     gvn.transform_no_reclaim(top());
   964     GraphKit kit;
   965     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   966   }
   968   NOT_PRODUCT( verify_graph_edges(); )
   969   Code_Gen();
   970   if (failing())  return;
   973   // Entry point will be accessed using compile->stub_entry_point();
   974   if (code_buffer() == NULL) {
   975     Matcher::soft_match_failure();
   976   } else {
   977     if (PrintAssembly && (WizardMode || Verbose))
   978       tty->print_cr("### Stub::%s", stub_name);
   980     if (!failing()) {
   981       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   983       // Make the NMethod
   984       // For now we mark the frame as never safe for profile stackwalking
   985       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   986                                                       code_buffer(),
   987                                                       CodeOffsets::frame_never_safe,
   988                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   989                                                       frame_size_in_words(),
   990                                                       _oop_map_set,
   991                                                       save_arg_registers);
   992       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   994       _stub_entry_point = rs->entry_point();
   995     }
   996   }
   997 }
   999 //------------------------------Init-------------------------------------------
  1000 // Prepare for a single compilation
  1001 void Compile::Init(int aliaslevel) {
  1002   _unique  = 0;
  1003   _regalloc = NULL;
  1005   _tf      = NULL;  // filled in later
  1006   _top     = NULL;  // cached later
  1007   _matcher = NULL;  // filled in later
  1008   _cfg     = NULL;  // filled in later
  1010   set_24_bit_selection_and_mode(Use24BitFP, false);
  1012   _node_note_array = NULL;
  1013   _default_node_notes = NULL;
  1015   _immutable_memory = NULL; // filled in at first inquiry
  1017   // Globally visible Nodes
  1018   // First set TOP to NULL to give safe behavior during creation of RootNode
  1019   set_cached_top_node(NULL);
  1020   set_root(new (this) RootNode());
  1021   // Now that you have a Root to point to, create the real TOP
  1022   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1023   set_recent_alloc(NULL, NULL);
  1025   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1026   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1027   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1028   env()->set_dependencies(new Dependencies(env()));
  1030   _fixed_slots = 0;
  1031   set_has_split_ifs(false);
  1032   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1033   set_has_stringbuilder(false);
  1034   set_has_boxed_value(false);
  1035   _trap_can_recompile = false;  // no traps emitted yet
  1036   _major_progress = true; // start out assuming good things will happen
  1037   set_has_unsafe_access(false);
  1038   set_max_vector_size(0);
  1039   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1040   set_decompile_count(0);
  1042   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1043   set_num_loop_opts(LoopOptsCount);
  1044   set_do_inlining(Inline);
  1045   set_max_inline_size(MaxInlineSize);
  1046   set_freq_inline_size(FreqInlineSize);
  1047   set_do_scheduling(OptoScheduling);
  1048   set_do_count_invocations(false);
  1049   set_do_method_data_update(false);
  1051   if (debug_info()->recording_non_safepoints()) {
  1052     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1053                         (comp_arena(), 8, 0, NULL));
  1054     set_default_node_notes(Node_Notes::make(this));
  1057   // // -- Initialize types before each compile --
  1058   // // Update cached type information
  1059   // if( _method && _method->constants() )
  1060   //   Type::update_loaded_types(_method, _method->constants());
  1062   // Init alias_type map.
  1063   if (!_do_escape_analysis && aliaslevel == 3)
  1064     aliaslevel = 2;  // No unique types without escape analysis
  1065   _AliasLevel = aliaslevel;
  1066   const int grow_ats = 16;
  1067   _max_alias_types = grow_ats;
  1068   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1069   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1070   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1072     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1074   // Initialize the first few types.
  1075   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1076   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1077   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1078   _num_alias_types = AliasIdxRaw+1;
  1079   // Zero out the alias type cache.
  1080   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1081   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1082   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1084   _intrinsics = NULL;
  1085   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1086   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1087   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1088   register_library_intrinsics();
  1091 //---------------------------init_start----------------------------------------
  1092 // Install the StartNode on this compile object.
  1093 void Compile::init_start(StartNode* s) {
  1094   if (failing())
  1095     return; // already failing
  1096   assert(s == start(), "");
  1099 StartNode* Compile::start() const {
  1100   assert(!failing(), "");
  1101   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1102     Node* start = root()->fast_out(i);
  1103     if( start->is_Start() )
  1104       return start->as_Start();
  1106   ShouldNotReachHere();
  1107   return NULL;
  1110 //-------------------------------immutable_memory-------------------------------------
  1111 // Access immutable memory
  1112 Node* Compile::immutable_memory() {
  1113   if (_immutable_memory != NULL) {
  1114     return _immutable_memory;
  1116   StartNode* s = start();
  1117   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1118     Node *p = s->fast_out(i);
  1119     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1120       _immutable_memory = p;
  1121       return _immutable_memory;
  1124   ShouldNotReachHere();
  1125   return NULL;
  1128 //----------------------set_cached_top_node------------------------------------
  1129 // Install the cached top node, and make sure Node::is_top works correctly.
  1130 void Compile::set_cached_top_node(Node* tn) {
  1131   if (tn != NULL)  verify_top(tn);
  1132   Node* old_top = _top;
  1133   _top = tn;
  1134   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1135   // their _out arrays.
  1136   if (_top != NULL)     _top->setup_is_top();
  1137   if (old_top != NULL)  old_top->setup_is_top();
  1138   assert(_top == NULL || top()->is_top(), "");
  1141 #ifdef ASSERT
  1142 uint Compile::count_live_nodes_by_graph_walk() {
  1143   Unique_Node_List useful(comp_arena());
  1144   // Get useful node list by walking the graph.
  1145   identify_useful_nodes(useful);
  1146   return useful.size();
  1149 void Compile::print_missing_nodes() {
  1151   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1152   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1153     return;
  1156   // This is an expensive function. It is executed only when the user
  1157   // specifies VerifyIdealNodeCount option or otherwise knows the
  1158   // additional work that needs to be done to identify reachable nodes
  1159   // by walking the flow graph and find the missing ones using
  1160   // _dead_node_list.
  1162   Unique_Node_List useful(comp_arena());
  1163   // Get useful node list by walking the graph.
  1164   identify_useful_nodes(useful);
  1166   uint l_nodes = C->live_nodes();
  1167   uint l_nodes_by_walk = useful.size();
  1169   if (l_nodes != l_nodes_by_walk) {
  1170     if (_log != NULL) {
  1171       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1172       _log->stamp();
  1173       _log->end_head();
  1175     VectorSet& useful_member_set = useful.member_set();
  1176     int last_idx = l_nodes_by_walk;
  1177     for (int i = 0; i < last_idx; i++) {
  1178       if (useful_member_set.test(i)) {
  1179         if (_dead_node_list.test(i)) {
  1180           if (_log != NULL) {
  1181             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1183           if (PrintIdealNodeCount) {
  1184             // Print the log message to tty
  1185               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1186               useful.at(i)->dump();
  1190       else if (! _dead_node_list.test(i)) {
  1191         if (_log != NULL) {
  1192           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1194         if (PrintIdealNodeCount) {
  1195           // Print the log message to tty
  1196           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1200     if (_log != NULL) {
  1201       _log->tail("mismatched_nodes");
  1205 #endif
  1207 #ifndef PRODUCT
  1208 void Compile::verify_top(Node* tn) const {
  1209   if (tn != NULL) {
  1210     assert(tn->is_Con(), "top node must be a constant");
  1211     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1212     assert(tn->in(0) != NULL, "must have live top node");
  1215 #endif
  1218 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1220 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1221   guarantee(arr != NULL, "");
  1222   int num_blocks = arr->length();
  1223   if (grow_by < num_blocks)  grow_by = num_blocks;
  1224   int num_notes = grow_by * _node_notes_block_size;
  1225   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1226   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1227   while (num_notes > 0) {
  1228     arr->append(notes);
  1229     notes     += _node_notes_block_size;
  1230     num_notes -= _node_notes_block_size;
  1232   assert(num_notes == 0, "exact multiple, please");
  1235 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1236   if (source == NULL || dest == NULL)  return false;
  1238   if (dest->is_Con())
  1239     return false;               // Do not push debug info onto constants.
  1241 #ifdef ASSERT
  1242   // Leave a bread crumb trail pointing to the original node:
  1243   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1244     dest->set_debug_orig(source);
  1246 #endif
  1248   if (node_note_array() == NULL)
  1249     return false;               // Not collecting any notes now.
  1251   // This is a copy onto a pre-existing node, which may already have notes.
  1252   // If both nodes have notes, do not overwrite any pre-existing notes.
  1253   Node_Notes* source_notes = node_notes_at(source->_idx);
  1254   if (source_notes == NULL || source_notes->is_clear())  return false;
  1255   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1256   if (dest_notes == NULL || dest_notes->is_clear()) {
  1257     return set_node_notes_at(dest->_idx, source_notes);
  1260   Node_Notes merged_notes = (*source_notes);
  1261   // The order of operations here ensures that dest notes will win...
  1262   merged_notes.update_from(dest_notes);
  1263   return set_node_notes_at(dest->_idx, &merged_notes);
  1267 //--------------------------allow_range_check_smearing-------------------------
  1268 // Gating condition for coalescing similar range checks.
  1269 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1270 // single covering check that is at least as strong as any of them.
  1271 // If the optimization succeeds, the simplified (strengthened) range check
  1272 // will always succeed.  If it fails, we will deopt, and then give up
  1273 // on the optimization.
  1274 bool Compile::allow_range_check_smearing() const {
  1275   // If this method has already thrown a range-check,
  1276   // assume it was because we already tried range smearing
  1277   // and it failed.
  1278   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1279   return !already_trapped;
  1283 //------------------------------flatten_alias_type-----------------------------
  1284 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1285   int offset = tj->offset();
  1286   TypePtr::PTR ptr = tj->ptr();
  1288   // Known instance (scalarizable allocation) alias only with itself.
  1289   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1290                        tj->is_oopptr()->is_known_instance();
  1292   // Process weird unsafe references.
  1293   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1294     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1295     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1296     tj = TypeOopPtr::BOTTOM;
  1297     ptr = tj->ptr();
  1298     offset = tj->offset();
  1301   // Array pointers need some flattening
  1302   const TypeAryPtr *ta = tj->isa_aryptr();
  1303   if (ta && ta->is_stable()) {
  1304     // Erase stability property for alias analysis.
  1305     tj = ta = ta->cast_to_stable(false);
  1307   if( ta && is_known_inst ) {
  1308     if ( offset != Type::OffsetBot &&
  1309          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1310       offset = Type::OffsetBot; // Flatten constant access into array body only
  1311       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1313   } else if( ta && _AliasLevel >= 2 ) {
  1314     // For arrays indexed by constant indices, we flatten the alias
  1315     // space to include all of the array body.  Only the header, klass
  1316     // and array length can be accessed un-aliased.
  1317     if( offset != Type::OffsetBot ) {
  1318       if( ta->const_oop() ) { // MethodData* or Method*
  1319         offset = Type::OffsetBot;   // Flatten constant access into array body
  1320         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1321       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1322         // range is OK as-is.
  1323         tj = ta = TypeAryPtr::RANGE;
  1324       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1325         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1326         ta = TypeAryPtr::RANGE; // generic ignored junk
  1327         ptr = TypePtr::BotPTR;
  1328       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1329         tj = TypeInstPtr::MARK;
  1330         ta = TypeAryPtr::RANGE; // generic ignored junk
  1331         ptr = TypePtr::BotPTR;
  1332       } else {                  // Random constant offset into array body
  1333         offset = Type::OffsetBot;   // Flatten constant access into array body
  1334         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1337     // Arrays of fixed size alias with arrays of unknown size.
  1338     if (ta->size() != TypeInt::POS) {
  1339       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1340       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1342     // Arrays of known objects become arrays of unknown objects.
  1343     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1344       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1345       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1347     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1348       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1349       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1351     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1352     // cannot be distinguished by bytecode alone.
  1353     if (ta->elem() == TypeInt::BOOL) {
  1354       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1355       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1356       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1358     // During the 2nd round of IterGVN, NotNull castings are removed.
  1359     // Make sure the Bottom and NotNull variants alias the same.
  1360     // Also, make sure exact and non-exact variants alias the same.
  1361     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1362       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1366   // Oop pointers need some flattening
  1367   const TypeInstPtr *to = tj->isa_instptr();
  1368   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1369     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1370     if( ptr == TypePtr::Constant ) {
  1371       if (to->klass() != ciEnv::current()->Class_klass() ||
  1372           offset < k->size_helper() * wordSize) {
  1373         // No constant oop pointers (such as Strings); they alias with
  1374         // unknown strings.
  1375         assert(!is_known_inst, "not scalarizable allocation");
  1376         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1378     } else if( is_known_inst ) {
  1379       tj = to; // Keep NotNull and klass_is_exact for instance type
  1380     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1381       // During the 2nd round of IterGVN, NotNull castings are removed.
  1382       // Make sure the Bottom and NotNull variants alias the same.
  1383       // Also, make sure exact and non-exact variants alias the same.
  1384       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1386     // Canonicalize the holder of this field
  1387     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1388       // First handle header references such as a LoadKlassNode, even if the
  1389       // object's klass is unloaded at compile time (4965979).
  1390       if (!is_known_inst) { // Do it only for non-instance types
  1391         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1393     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1394       // Static fields are in the space above the normal instance
  1395       // fields in the java.lang.Class instance.
  1396       if (to->klass() != ciEnv::current()->Class_klass()) {
  1397         to = NULL;
  1398         tj = TypeOopPtr::BOTTOM;
  1399         offset = tj->offset();
  1401     } else {
  1402       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1403       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1404         if( is_known_inst ) {
  1405           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1406         } else {
  1407           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1413   // Klass pointers to object array klasses need some flattening
  1414   const TypeKlassPtr *tk = tj->isa_klassptr();
  1415   if( tk ) {
  1416     // If we are referencing a field within a Klass, we need
  1417     // to assume the worst case of an Object.  Both exact and
  1418     // inexact types must flatten to the same alias class so
  1419     // use NotNull as the PTR.
  1420     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1422       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1423                                    TypeKlassPtr::OBJECT->klass(),
  1424                                    offset);
  1427     ciKlass* klass = tk->klass();
  1428     if( klass->is_obj_array_klass() ) {
  1429       ciKlass* k = TypeAryPtr::OOPS->klass();
  1430       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1431         k = TypeInstPtr::BOTTOM->klass();
  1432       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1435     // Check for precise loads from the primary supertype array and force them
  1436     // to the supertype cache alias index.  Check for generic array loads from
  1437     // the primary supertype array and also force them to the supertype cache
  1438     // alias index.  Since the same load can reach both, we need to merge
  1439     // these 2 disparate memories into the same alias class.  Since the
  1440     // primary supertype array is read-only, there's no chance of confusion
  1441     // where we bypass an array load and an array store.
  1442     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1443     if (offset == Type::OffsetBot ||
  1444         (offset >= primary_supers_offset &&
  1445          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1446         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1447       offset = in_bytes(Klass::secondary_super_cache_offset());
  1448       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1452   // Flatten all Raw pointers together.
  1453   if (tj->base() == Type::RawPtr)
  1454     tj = TypeRawPtr::BOTTOM;
  1456   if (tj->base() == Type::AnyPtr)
  1457     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1459   // Flatten all to bottom for now
  1460   switch( _AliasLevel ) {
  1461   case 0:
  1462     tj = TypePtr::BOTTOM;
  1463     break;
  1464   case 1:                       // Flatten to: oop, static, field or array
  1465     switch (tj->base()) {
  1466     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1467     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1468     case Type::AryPtr:   // do not distinguish arrays at all
  1469     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1470     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1471     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1472     default: ShouldNotReachHere();
  1474     break;
  1475   case 2:                       // No collapsing at level 2; keep all splits
  1476   case 3:                       // No collapsing at level 3; keep all splits
  1477     break;
  1478   default:
  1479     Unimplemented();
  1482   offset = tj->offset();
  1483   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1485   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1486           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1487           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1488           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1489           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1490           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1491           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1492           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1493   assert( tj->ptr() != TypePtr::TopPTR &&
  1494           tj->ptr() != TypePtr::AnyNull &&
  1495           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1496 //    assert( tj->ptr() != TypePtr::Constant ||
  1497 //            tj->base() == Type::RawPtr ||
  1498 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1500   return tj;
  1503 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1504   _index = i;
  1505   _adr_type = at;
  1506   _field = NULL;
  1507   _element = NULL;
  1508   _is_rewritable = true; // default
  1509   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1510   if (atoop != NULL && atoop->is_known_instance()) {
  1511     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1512     _general_index = Compile::current()->get_alias_index(gt);
  1513   } else {
  1514     _general_index = 0;
  1518 //---------------------------------print_on------------------------------------
  1519 #ifndef PRODUCT
  1520 void Compile::AliasType::print_on(outputStream* st) {
  1521   if (index() < 10)
  1522         st->print("@ <%d> ", index());
  1523   else  st->print("@ <%d>",  index());
  1524   st->print(is_rewritable() ? "   " : " RO");
  1525   int offset = adr_type()->offset();
  1526   if (offset == Type::OffsetBot)
  1527         st->print(" +any");
  1528   else  st->print(" +%-3d", offset);
  1529   st->print(" in ");
  1530   adr_type()->dump_on(st);
  1531   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1532   if (field() != NULL && tjp) {
  1533     if (tjp->klass()  != field()->holder() ||
  1534         tjp->offset() != field()->offset_in_bytes()) {
  1535       st->print(" != ");
  1536       field()->print();
  1537       st->print(" ***");
  1542 void print_alias_types() {
  1543   Compile* C = Compile::current();
  1544   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1545   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1546     C->alias_type(idx)->print_on(tty);
  1547     tty->cr();
  1550 #endif
  1553 //----------------------------probe_alias_cache--------------------------------
  1554 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1555   intptr_t key = (intptr_t) adr_type;
  1556   key ^= key >> logAliasCacheSize;
  1557   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1561 //-----------------------------grow_alias_types--------------------------------
  1562 void Compile::grow_alias_types() {
  1563   const int old_ats  = _max_alias_types; // how many before?
  1564   const int new_ats  = old_ats;          // how many more?
  1565   const int grow_ats = old_ats+new_ats;  // how many now?
  1566   _max_alias_types = grow_ats;
  1567   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1568   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1569   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1570   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1574 //--------------------------------find_alias_type------------------------------
  1575 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1576   if (_AliasLevel == 0)
  1577     return alias_type(AliasIdxBot);
  1579   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1580   if (ace->_adr_type == adr_type) {
  1581     return alias_type(ace->_index);
  1584   // Handle special cases.
  1585   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1586   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1588   // Do it the slow way.
  1589   const TypePtr* flat = flatten_alias_type(adr_type);
  1591 #ifdef ASSERT
  1592   assert(flat == flatten_alias_type(flat), "idempotent");
  1593   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1594   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1595     const TypeOopPtr* foop = flat->is_oopptr();
  1596     // Scalarizable allocations have exact klass always.
  1597     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1598     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1599     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1601   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1602 #endif
  1604   int idx = AliasIdxTop;
  1605   for (int i = 0; i < num_alias_types(); i++) {
  1606     if (alias_type(i)->adr_type() == flat) {
  1607       idx = i;
  1608       break;
  1612   if (idx == AliasIdxTop) {
  1613     if (no_create)  return NULL;
  1614     // Grow the array if necessary.
  1615     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1616     // Add a new alias type.
  1617     idx = _num_alias_types++;
  1618     _alias_types[idx]->Init(idx, flat);
  1619     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1620     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1621     if (flat->isa_instptr()) {
  1622       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1623           && flat->is_instptr()->klass() == env()->Class_klass())
  1624         alias_type(idx)->set_rewritable(false);
  1626     if (flat->isa_aryptr()) {
  1627 #ifdef ASSERT
  1628       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1629       // (T_BYTE has the weakest alignment and size restrictions...)
  1630       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1631 #endif
  1632       if (flat->offset() == TypePtr::OffsetBot) {
  1633         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1636     if (flat->isa_klassptr()) {
  1637       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1638         alias_type(idx)->set_rewritable(false);
  1639       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1640         alias_type(idx)->set_rewritable(false);
  1641       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1642         alias_type(idx)->set_rewritable(false);
  1643       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1644         alias_type(idx)->set_rewritable(false);
  1646     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1647     // but the base pointer type is not distinctive enough to identify
  1648     // references into JavaThread.)
  1650     // Check for final fields.
  1651     const TypeInstPtr* tinst = flat->isa_instptr();
  1652     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1653       ciField* field;
  1654       if (tinst->const_oop() != NULL &&
  1655           tinst->klass() == ciEnv::current()->Class_klass() &&
  1656           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1657         // static field
  1658         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1659         field = k->get_field_by_offset(tinst->offset(), true);
  1660       } else {
  1661         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1662         field = k->get_field_by_offset(tinst->offset(), false);
  1664       assert(field == NULL ||
  1665              original_field == NULL ||
  1666              (field->holder() == original_field->holder() &&
  1667               field->offset() == original_field->offset() &&
  1668               field->is_static() == original_field->is_static()), "wrong field?");
  1669       // Set field() and is_rewritable() attributes.
  1670       if (field != NULL)  alias_type(idx)->set_field(field);
  1674   // Fill the cache for next time.
  1675   ace->_adr_type = adr_type;
  1676   ace->_index    = idx;
  1677   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1679   // Might as well try to fill the cache for the flattened version, too.
  1680   AliasCacheEntry* face = probe_alias_cache(flat);
  1681   if (face->_adr_type == NULL) {
  1682     face->_adr_type = flat;
  1683     face->_index    = idx;
  1684     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1687   return alias_type(idx);
  1691 Compile::AliasType* Compile::alias_type(ciField* field) {
  1692   const TypeOopPtr* t;
  1693   if (field->is_static())
  1694     t = TypeInstPtr::make(field->holder()->java_mirror());
  1695   else
  1696     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1697   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1698   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1699   return atp;
  1703 //------------------------------have_alias_type--------------------------------
  1704 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1705   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1706   if (ace->_adr_type == adr_type) {
  1707     return true;
  1710   // Handle special cases.
  1711   if (adr_type == NULL)             return true;
  1712   if (adr_type == TypePtr::BOTTOM)  return true;
  1714   return find_alias_type(adr_type, true, NULL) != NULL;
  1717 //-----------------------------must_alias--------------------------------------
  1718 // True if all values of the given address type are in the given alias category.
  1719 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1720   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1721   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1722   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1723   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1725   // the only remaining possible overlap is identity
  1726   int adr_idx = get_alias_index(adr_type);
  1727   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1728   assert(adr_idx == alias_idx ||
  1729          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1730           && adr_type                       != TypeOopPtr::BOTTOM),
  1731          "should not be testing for overlap with an unsafe pointer");
  1732   return adr_idx == alias_idx;
  1735 //------------------------------can_alias--------------------------------------
  1736 // True if any values of the given address type are in the given alias category.
  1737 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1738   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1739   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1740   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1741   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1743   // the only remaining possible overlap is identity
  1744   int adr_idx = get_alias_index(adr_type);
  1745   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1746   return adr_idx == alias_idx;
  1751 //---------------------------pop_warm_call-------------------------------------
  1752 WarmCallInfo* Compile::pop_warm_call() {
  1753   WarmCallInfo* wci = _warm_calls;
  1754   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1755   return wci;
  1758 //----------------------------Inline_Warm--------------------------------------
  1759 int Compile::Inline_Warm() {
  1760   // If there is room, try to inline some more warm call sites.
  1761   // %%% Do a graph index compaction pass when we think we're out of space?
  1762   if (!InlineWarmCalls)  return 0;
  1764   int calls_made_hot = 0;
  1765   int room_to_grow   = NodeCountInliningCutoff - unique();
  1766   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1767   int amount_grown   = 0;
  1768   WarmCallInfo* call;
  1769   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1770     int est_size = (int)call->size();
  1771     if (est_size > (room_to_grow - amount_grown)) {
  1772       // This one won't fit anyway.  Get rid of it.
  1773       call->make_cold();
  1774       continue;
  1776     call->make_hot();
  1777     calls_made_hot++;
  1778     amount_grown   += est_size;
  1779     amount_to_grow -= est_size;
  1782   if (calls_made_hot > 0)  set_major_progress();
  1783   return calls_made_hot;
  1787 //----------------------------Finish_Warm--------------------------------------
  1788 void Compile::Finish_Warm() {
  1789   if (!InlineWarmCalls)  return;
  1790   if (failing())  return;
  1791   if (warm_calls() == NULL)  return;
  1793   // Clean up loose ends, if we are out of space for inlining.
  1794   WarmCallInfo* call;
  1795   while ((call = pop_warm_call()) != NULL) {
  1796     call->make_cold();
  1800 //---------------------cleanup_loop_predicates-----------------------
  1801 // Remove the opaque nodes that protect the predicates so that all unused
  1802 // checks and uncommon_traps will be eliminated from the ideal graph
  1803 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1804   if (predicate_count()==0) return;
  1805   for (int i = predicate_count(); i > 0; i--) {
  1806     Node * n = predicate_opaque1_node(i-1);
  1807     assert(n->Opcode() == Op_Opaque1, "must be");
  1808     igvn.replace_node(n, n->in(1));
  1810   assert(predicate_count()==0, "should be clean!");
  1813 // StringOpts and late inlining of string methods
  1814 void Compile::inline_string_calls(bool parse_time) {
  1816     // remove useless nodes to make the usage analysis simpler
  1817     ResourceMark rm;
  1818     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1822     ResourceMark rm;
  1823     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1824     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1825     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1828   // now inline anything that we skipped the first time around
  1829   if (!parse_time) {
  1830     _late_inlines_pos = _late_inlines.length();
  1833   while (_string_late_inlines.length() > 0) {
  1834     CallGenerator* cg = _string_late_inlines.pop();
  1835     cg->do_late_inline();
  1836     if (failing())  return;
  1838   _string_late_inlines.trunc_to(0);
  1841 // Late inlining of boxing methods
  1842 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1843   if (_boxing_late_inlines.length() > 0) {
  1844     assert(has_boxed_value(), "inconsistent");
  1846     PhaseGVN* gvn = initial_gvn();
  1847     set_inlining_incrementally(true);
  1849     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1850     for_igvn()->clear();
  1851     gvn->replace_with(&igvn);
  1853     while (_boxing_late_inlines.length() > 0) {
  1854       CallGenerator* cg = _boxing_late_inlines.pop();
  1855       cg->do_late_inline();
  1856       if (failing())  return;
  1858     _boxing_late_inlines.trunc_to(0);
  1861       ResourceMark rm;
  1862       PhaseRemoveUseless pru(gvn, for_igvn());
  1865     igvn = PhaseIterGVN(gvn);
  1866     igvn.optimize();
  1868     set_inlining_progress(false);
  1869     set_inlining_incrementally(false);
  1873 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1874   assert(IncrementalInline, "incremental inlining should be on");
  1875   PhaseGVN* gvn = initial_gvn();
  1877   set_inlining_progress(false);
  1878   for_igvn()->clear();
  1879   gvn->replace_with(&igvn);
  1881   int i = 0;
  1883   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1884     CallGenerator* cg = _late_inlines.at(i);
  1885     _late_inlines_pos = i+1;
  1886     cg->do_late_inline();
  1887     if (failing())  return;
  1889   int j = 0;
  1890   for (; i < _late_inlines.length(); i++, j++) {
  1891     _late_inlines.at_put(j, _late_inlines.at(i));
  1893   _late_inlines.trunc_to(j);
  1896     ResourceMark rm;
  1897     PhaseRemoveUseless pru(gvn, for_igvn());
  1900   igvn = PhaseIterGVN(gvn);
  1903 // Perform incremental inlining until bound on number of live nodes is reached
  1904 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1905   PhaseGVN* gvn = initial_gvn();
  1907   set_inlining_incrementally(true);
  1908   set_inlining_progress(true);
  1909   uint low_live_nodes = 0;
  1911   while(inlining_progress() && _late_inlines.length() > 0) {
  1913     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1914       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1915         // PhaseIdealLoop is expensive so we only try it once we are
  1916         // out of loop and we only try it again if the previous helped
  1917         // got the number of nodes down significantly
  1918         PhaseIdealLoop ideal_loop( igvn, false, true );
  1919         if (failing())  return;
  1920         low_live_nodes = live_nodes();
  1921         _major_progress = true;
  1924       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1925         break;
  1929     inline_incrementally_one(igvn);
  1931     if (failing())  return;
  1933     igvn.optimize();
  1935     if (failing())  return;
  1938   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1940   if (_string_late_inlines.length() > 0) {
  1941     assert(has_stringbuilder(), "inconsistent");
  1942     for_igvn()->clear();
  1943     initial_gvn()->replace_with(&igvn);
  1945     inline_string_calls(false);
  1947     if (failing())  return;
  1950       ResourceMark rm;
  1951       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1954     igvn = PhaseIterGVN(gvn);
  1956     igvn.optimize();
  1959   set_inlining_incrementally(false);
  1963 //------------------------------Optimize---------------------------------------
  1964 // Given a graph, optimize it.
  1965 void Compile::Optimize() {
  1966   TracePhase t1("optimizer", &_t_optimizer, true);
  1968 #ifndef PRODUCT
  1969   if (env()->break_at_compile()) {
  1970     BREAKPOINT;
  1973 #endif
  1975   ResourceMark rm;
  1976   int          loop_opts_cnt;
  1978   NOT_PRODUCT( verify_graph_edges(); )
  1980   print_method(PHASE_AFTER_PARSING);
  1983   // Iterative Global Value Numbering, including ideal transforms
  1984   // Initialize IterGVN with types and values from parse-time GVN
  1985   PhaseIterGVN igvn(initial_gvn());
  1987     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1988     igvn.optimize();
  1991   print_method(PHASE_ITER_GVN1, 2);
  1993   if (failing())  return;
  1996     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  1997     inline_incrementally(igvn);
  2000   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2002   if (failing())  return;
  2004   if (eliminate_boxing()) {
  2005     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2006     // Inline valueOf() methods now.
  2007     inline_boxing_calls(igvn);
  2009     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2011     if (failing())  return;
  2014   // No more new expensive nodes will be added to the list from here
  2015   // so keep only the actual candidates for optimizations.
  2016   cleanup_expensive_nodes(igvn);
  2018   // Perform escape analysis
  2019   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2020     if (has_loops()) {
  2021       // Cleanup graph (remove dead nodes).
  2022       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2023       PhaseIdealLoop ideal_loop( igvn, false, true );
  2024       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2025       if (failing())  return;
  2027     ConnectionGraph::do_analysis(this, &igvn);
  2029     if (failing())  return;
  2031     // Optimize out fields loads from scalar replaceable allocations.
  2032     igvn.optimize();
  2033     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2035     if (failing())  return;
  2037     if (congraph() != NULL && macro_count() > 0) {
  2038       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2039       PhaseMacroExpand mexp(igvn);
  2040       mexp.eliminate_macro_nodes();
  2041       igvn.set_delay_transform(false);
  2043       igvn.optimize();
  2044       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2046       if (failing())  return;
  2050   // Loop transforms on the ideal graph.  Range Check Elimination,
  2051   // peeling, unrolling, etc.
  2053   // Set loop opts counter
  2054   loop_opts_cnt = num_loop_opts();
  2055   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2057       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2058       PhaseIdealLoop ideal_loop( igvn, true );
  2059       loop_opts_cnt--;
  2060       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2061       if (failing())  return;
  2063     // Loop opts pass if partial peeling occurred in previous pass
  2064     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2065       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2066       PhaseIdealLoop ideal_loop( igvn, false );
  2067       loop_opts_cnt--;
  2068       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2069       if (failing())  return;
  2071     // Loop opts pass for loop-unrolling before CCP
  2072     if(major_progress() && (loop_opts_cnt > 0)) {
  2073       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2074       PhaseIdealLoop ideal_loop( igvn, false );
  2075       loop_opts_cnt--;
  2076       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2078     if (!failing()) {
  2079       // Verify that last round of loop opts produced a valid graph
  2080       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2081       PhaseIdealLoop::verify(igvn);
  2084   if (failing())  return;
  2086   // Conditional Constant Propagation;
  2087   PhaseCCP ccp( &igvn );
  2088   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2090     TracePhase t2("ccp", &_t_ccp, true);
  2091     ccp.do_transform();
  2093   print_method(PHASE_CPP1, 2);
  2095   assert( true, "Break here to ccp.dump_old2new_map()");
  2097   // Iterative Global Value Numbering, including ideal transforms
  2099     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2100     igvn = ccp;
  2101     igvn.optimize();
  2104   print_method(PHASE_ITER_GVN2, 2);
  2106   if (failing())  return;
  2108   // Loop transforms on the ideal graph.  Range Check Elimination,
  2109   // peeling, unrolling, etc.
  2110   if(loop_opts_cnt > 0) {
  2111     debug_only( int cnt = 0; );
  2112     while(major_progress() && (loop_opts_cnt > 0)) {
  2113       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2114       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2115       PhaseIdealLoop ideal_loop( igvn, true);
  2116       loop_opts_cnt--;
  2117       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2118       if (failing())  return;
  2123     // Verify that all previous optimizations produced a valid graph
  2124     // at least to this point, even if no loop optimizations were done.
  2125     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2126     PhaseIdealLoop::verify(igvn);
  2130     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2131     PhaseMacroExpand  mex(igvn);
  2132     if (mex.expand_macro_nodes()) {
  2133       assert(failing(), "must bail out w/ explicit message");
  2134       return;
  2138  } // (End scope of igvn; run destructor if necessary for asserts.)
  2140   dump_inlining();
  2141   // A method with only infinite loops has no edges entering loops from root
  2143     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2144     if (final_graph_reshaping()) {
  2145       assert(failing(), "must bail out w/ explicit message");
  2146       return;
  2150   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2154 //------------------------------Code_Gen---------------------------------------
  2155 // Given a graph, generate code for it
  2156 void Compile::Code_Gen() {
  2157   if (failing()) {
  2158     return;
  2161   // Perform instruction selection.  You might think we could reclaim Matcher
  2162   // memory PDQ, but actually the Matcher is used in generating spill code.
  2163   // Internals of the Matcher (including some VectorSets) must remain live
  2164   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2165   // set a bit in reclaimed memory.
  2167   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2168   // nodes.  Mapping is only valid at the root of each matched subtree.
  2169   NOT_PRODUCT( verify_graph_edges(); )
  2171   Matcher matcher;
  2172   _matcher = &matcher;
  2174     TracePhase t2("matcher", &_t_matcher, true);
  2175     matcher.match();
  2177   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2178   // nodes.  Mapping is only valid at the root of each matched subtree.
  2179   NOT_PRODUCT( verify_graph_edges(); )
  2181   // If you have too many nodes, or if matching has failed, bail out
  2182   check_node_count(0, "out of nodes matching instructions");
  2183   if (failing()) {
  2184     return;
  2187   // Build a proper-looking CFG
  2188   PhaseCFG cfg(node_arena(), root(), matcher);
  2189   _cfg = &cfg;
  2191     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2192     bool success = cfg.do_global_code_motion();
  2193     if (!success) {
  2194       return;
  2197     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2198     NOT_PRODUCT( verify_graph_edges(); )
  2199     debug_only( cfg.verify(); )
  2202   PhaseChaitin regalloc(unique(), cfg, matcher);
  2203   _regalloc = &regalloc;
  2205     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2206     // Perform register allocation.  After Chaitin, use-def chains are
  2207     // no longer accurate (at spill code) and so must be ignored.
  2208     // Node->LRG->reg mappings are still accurate.
  2209     _regalloc->Register_Allocate();
  2211     // Bail out if the allocator builds too many nodes
  2212     if (failing()) {
  2213       return;
  2217   // Prior to register allocation we kept empty basic blocks in case the
  2218   // the allocator needed a place to spill.  After register allocation we
  2219   // are not adding any new instructions.  If any basic block is empty, we
  2220   // can now safely remove it.
  2222     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2223     cfg.remove_empty_blocks();
  2224     if (do_freq_based_layout()) {
  2225       PhaseBlockLayout layout(cfg);
  2226     } else {
  2227       cfg.set_loop_alignment();
  2229     cfg.fixup_flow();
  2232   // Apply peephole optimizations
  2233   if( OptoPeephole ) {
  2234     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2235     PhasePeephole peep( _regalloc, cfg);
  2236     peep.do_transform();
  2239   // Convert Nodes to instruction bits in a buffer
  2241     // %%%% workspace merge brought two timers together for one job
  2242     TracePhase t2a("output", &_t_output, true);
  2243     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2244     Output();
  2247   print_method(PHASE_FINAL_CODE);
  2249   // He's dead, Jim.
  2250   _cfg     = (PhaseCFG*)0xdeadbeef;
  2251   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2255 //------------------------------dump_asm---------------------------------------
  2256 // Dump formatted assembly
  2257 #ifndef PRODUCT
  2258 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2259   bool cut_short = false;
  2260   tty->print_cr("#");
  2261   tty->print("#  ");  _tf->dump();  tty->cr();
  2262   tty->print_cr("#");
  2264   // For all blocks
  2265   int pc = 0x0;                 // Program counter
  2266   char starts_bundle = ' ';
  2267   _regalloc->dump_frame();
  2269   Node *n = NULL;
  2270   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2271     if (VMThread::should_terminate()) {
  2272       cut_short = true;
  2273       break;
  2275     Block* block = _cfg->get_block(i);
  2276     if (block->is_connector() && !Verbose) {
  2277       continue;
  2279     n = block->head();
  2280     if (pcs && n->_idx < pc_limit) {
  2281       tty->print("%3.3x   ", pcs[n->_idx]);
  2282     } else {
  2283       tty->print("      ");
  2285     block->dump_head(_cfg);
  2286     if (block->is_connector()) {
  2287       tty->print_cr("        # Empty connector block");
  2288     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2289       tty->print_cr("        # Block is sole successor of call");
  2292     // For all instructions
  2293     Node *delay = NULL;
  2294     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2295       if (VMThread::should_terminate()) {
  2296         cut_short = true;
  2297         break;
  2299       n = block->get_node(j);
  2300       if (valid_bundle_info(n)) {
  2301         Bundle* bundle = node_bundling(n);
  2302         if (bundle->used_in_unconditional_delay()) {
  2303           delay = n;
  2304           continue;
  2306         if (bundle->starts_bundle()) {
  2307           starts_bundle = '+';
  2311       if (WizardMode) {
  2312         n->dump();
  2315       if( !n->is_Region() &&    // Dont print in the Assembly
  2316           !n->is_Phi() &&       // a few noisely useless nodes
  2317           !n->is_Proj() &&
  2318           !n->is_MachTemp() &&
  2319           !n->is_SafePointScalarObject() &&
  2320           !n->is_Catch() &&     // Would be nice to print exception table targets
  2321           !n->is_MergeMem() &&  // Not very interesting
  2322           !n->is_top() &&       // Debug info table constants
  2323           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2324           ) {
  2325         if (pcs && n->_idx < pc_limit)
  2326           tty->print("%3.3x", pcs[n->_idx]);
  2327         else
  2328           tty->print("   ");
  2329         tty->print(" %c ", starts_bundle);
  2330         starts_bundle = ' ';
  2331         tty->print("\t");
  2332         n->format(_regalloc, tty);
  2333         tty->cr();
  2336       // If we have an instruction with a delay slot, and have seen a delay,
  2337       // then back up and print it
  2338       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2339         assert(delay != NULL, "no unconditional delay instruction");
  2340         if (WizardMode) delay->dump();
  2342         if (node_bundling(delay)->starts_bundle())
  2343           starts_bundle = '+';
  2344         if (pcs && n->_idx < pc_limit)
  2345           tty->print("%3.3x", pcs[n->_idx]);
  2346         else
  2347           tty->print("   ");
  2348         tty->print(" %c ", starts_bundle);
  2349         starts_bundle = ' ';
  2350         tty->print("\t");
  2351         delay->format(_regalloc, tty);
  2352         tty->print_cr("");
  2353         delay = NULL;
  2356       // Dump the exception table as well
  2357       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2358         // Print the exception table for this offset
  2359         _handler_table.print_subtable_for(pc);
  2363     if (pcs && n->_idx < pc_limit)
  2364       tty->print_cr("%3.3x", pcs[n->_idx]);
  2365     else
  2366       tty->print_cr("");
  2368     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2370   } // End of per-block dump
  2371   tty->print_cr("");
  2373   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2375 #endif
  2377 //------------------------------Final_Reshape_Counts---------------------------
  2378 // This class defines counters to help identify when a method
  2379 // may/must be executed using hardware with only 24-bit precision.
  2380 struct Final_Reshape_Counts : public StackObj {
  2381   int  _call_count;             // count non-inlined 'common' calls
  2382   int  _float_count;            // count float ops requiring 24-bit precision
  2383   int  _double_count;           // count double ops requiring more precision
  2384   int  _java_call_count;        // count non-inlined 'java' calls
  2385   int  _inner_loop_count;       // count loops which need alignment
  2386   VectorSet _visited;           // Visitation flags
  2387   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2389   Final_Reshape_Counts() :
  2390     _call_count(0), _float_count(0), _double_count(0),
  2391     _java_call_count(0), _inner_loop_count(0),
  2392     _visited( Thread::current()->resource_area() ) { }
  2394   void inc_call_count  () { _call_count  ++; }
  2395   void inc_float_count () { _float_count ++; }
  2396   void inc_double_count() { _double_count++; }
  2397   void inc_java_call_count() { _java_call_count++; }
  2398   void inc_inner_loop_count() { _inner_loop_count++; }
  2400   int  get_call_count  () const { return _call_count  ; }
  2401   int  get_float_count () const { return _float_count ; }
  2402   int  get_double_count() const { return _double_count; }
  2403   int  get_java_call_count() const { return _java_call_count; }
  2404   int  get_inner_loop_count() const { return _inner_loop_count; }
  2405 };
  2407 #ifdef ASSERT
  2408 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2409   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2410   // Make sure the offset goes inside the instance layout.
  2411   return k->contains_field_offset(tp->offset());
  2412   // Note that OffsetBot and OffsetTop are very negative.
  2414 #endif
  2416 // Eliminate trivially redundant StoreCMs and accumulate their
  2417 // precedence edges.
  2418 void Compile::eliminate_redundant_card_marks(Node* n) {
  2419   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2420   if (n->in(MemNode::Address)->outcnt() > 1) {
  2421     // There are multiple users of the same address so it might be
  2422     // possible to eliminate some of the StoreCMs
  2423     Node* mem = n->in(MemNode::Memory);
  2424     Node* adr = n->in(MemNode::Address);
  2425     Node* val = n->in(MemNode::ValueIn);
  2426     Node* prev = n;
  2427     bool done = false;
  2428     // Walk the chain of StoreCMs eliminating ones that match.  As
  2429     // long as it's a chain of single users then the optimization is
  2430     // safe.  Eliminating partially redundant StoreCMs would require
  2431     // cloning copies down the other paths.
  2432     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2433       if (adr == mem->in(MemNode::Address) &&
  2434           val == mem->in(MemNode::ValueIn)) {
  2435         // redundant StoreCM
  2436         if (mem->req() > MemNode::OopStore) {
  2437           // Hasn't been processed by this code yet.
  2438           n->add_prec(mem->in(MemNode::OopStore));
  2439         } else {
  2440           // Already converted to precedence edge
  2441           for (uint i = mem->req(); i < mem->len(); i++) {
  2442             // Accumulate any precedence edges
  2443             if (mem->in(i) != NULL) {
  2444               n->add_prec(mem->in(i));
  2447           // Everything above this point has been processed.
  2448           done = true;
  2450         // Eliminate the previous StoreCM
  2451         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2452         assert(mem->outcnt() == 0, "should be dead");
  2453         mem->disconnect_inputs(NULL, this);
  2454       } else {
  2455         prev = mem;
  2457       mem = prev->in(MemNode::Memory);
  2462 //------------------------------final_graph_reshaping_impl----------------------
  2463 // Implement items 1-5 from final_graph_reshaping below.
  2464 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2466   if ( n->outcnt() == 0 ) return; // dead node
  2467   uint nop = n->Opcode();
  2469   // Check for 2-input instruction with "last use" on right input.
  2470   // Swap to left input.  Implements item (2).
  2471   if( n->req() == 3 &&          // two-input instruction
  2472       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2473       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2474       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2475       !n->in(2)->is_Con() ) {   // right use is not a constant
  2476     // Check for commutative opcode
  2477     switch( nop ) {
  2478     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2479     case Op_MaxI:  case Op_MinI:
  2480     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2481     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2482     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2483       // Move "last use" input to left by swapping inputs
  2484       n->swap_edges(1, 2);
  2485       break;
  2487     default:
  2488       break;
  2492 #ifdef ASSERT
  2493   if( n->is_Mem() ) {
  2494     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2495     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2496             // oop will be recorded in oop map if load crosses safepoint
  2497             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2498                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2499             "raw memory operations should have control edge");
  2501 #endif
  2502   // Count FPU ops and common calls, implements item (3)
  2503   switch( nop ) {
  2504   // Count all float operations that may use FPU
  2505   case Op_AddF:
  2506   case Op_SubF:
  2507   case Op_MulF:
  2508   case Op_DivF:
  2509   case Op_NegF:
  2510   case Op_ModF:
  2511   case Op_ConvI2F:
  2512   case Op_ConF:
  2513   case Op_CmpF:
  2514   case Op_CmpF3:
  2515   // case Op_ConvL2F: // longs are split into 32-bit halves
  2516     frc.inc_float_count();
  2517     break;
  2519   case Op_ConvF2D:
  2520   case Op_ConvD2F:
  2521     frc.inc_float_count();
  2522     frc.inc_double_count();
  2523     break;
  2525   // Count all double operations that may use FPU
  2526   case Op_AddD:
  2527   case Op_SubD:
  2528   case Op_MulD:
  2529   case Op_DivD:
  2530   case Op_NegD:
  2531   case Op_ModD:
  2532   case Op_ConvI2D:
  2533   case Op_ConvD2I:
  2534   // case Op_ConvL2D: // handled by leaf call
  2535   // case Op_ConvD2L: // handled by leaf call
  2536   case Op_ConD:
  2537   case Op_CmpD:
  2538   case Op_CmpD3:
  2539     frc.inc_double_count();
  2540     break;
  2541   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2542   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2543     n->subsume_by(n->in(1), this);
  2544     break;
  2545   case Op_CallStaticJava:
  2546   case Op_CallJava:
  2547   case Op_CallDynamicJava:
  2548     frc.inc_java_call_count(); // Count java call site;
  2549   case Op_CallRuntime:
  2550   case Op_CallLeaf:
  2551   case Op_CallLeafNoFP: {
  2552     assert( n->is_Call(), "" );
  2553     CallNode *call = n->as_Call();
  2554     // Count call sites where the FP mode bit would have to be flipped.
  2555     // Do not count uncommon runtime calls:
  2556     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2557     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2558     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2559       frc.inc_call_count();   // Count the call site
  2560     } else {                  // See if uncommon argument is shared
  2561       Node *n = call->in(TypeFunc::Parms);
  2562       int nop = n->Opcode();
  2563       // Clone shared simple arguments to uncommon calls, item (1).
  2564       if( n->outcnt() > 1 &&
  2565           !n->is_Proj() &&
  2566           nop != Op_CreateEx &&
  2567           nop != Op_CheckCastPP &&
  2568           nop != Op_DecodeN &&
  2569           nop != Op_DecodeNKlass &&
  2570           !n->is_Mem() ) {
  2571         Node *x = n->clone();
  2572         call->set_req( TypeFunc::Parms, x );
  2575     break;
  2578   case Op_StoreD:
  2579   case Op_LoadD:
  2580   case Op_LoadD_unaligned:
  2581     frc.inc_double_count();
  2582     goto handle_mem;
  2583   case Op_StoreF:
  2584   case Op_LoadF:
  2585     frc.inc_float_count();
  2586     goto handle_mem;
  2588   case Op_StoreCM:
  2590       // Convert OopStore dependence into precedence edge
  2591       Node* prec = n->in(MemNode::OopStore);
  2592       n->del_req(MemNode::OopStore);
  2593       n->add_prec(prec);
  2594       eliminate_redundant_card_marks(n);
  2597     // fall through
  2599   case Op_StoreB:
  2600   case Op_StoreC:
  2601   case Op_StorePConditional:
  2602   case Op_StoreI:
  2603   case Op_StoreL:
  2604   case Op_StoreIConditional:
  2605   case Op_StoreLConditional:
  2606   case Op_CompareAndSwapI:
  2607   case Op_CompareAndSwapL:
  2608   case Op_CompareAndSwapP:
  2609   case Op_CompareAndSwapN:
  2610   case Op_GetAndAddI:
  2611   case Op_GetAndAddL:
  2612   case Op_GetAndSetI:
  2613   case Op_GetAndSetL:
  2614   case Op_GetAndSetP:
  2615   case Op_GetAndSetN:
  2616   case Op_StoreP:
  2617   case Op_StoreN:
  2618   case Op_StoreNKlass:
  2619   case Op_LoadB:
  2620   case Op_LoadUB:
  2621   case Op_LoadUS:
  2622   case Op_LoadI:
  2623   case Op_LoadKlass:
  2624   case Op_LoadNKlass:
  2625   case Op_LoadL:
  2626   case Op_LoadL_unaligned:
  2627   case Op_LoadPLocked:
  2628   case Op_LoadP:
  2629   case Op_LoadN:
  2630   case Op_LoadRange:
  2631   case Op_LoadS: {
  2632   handle_mem:
  2633 #ifdef ASSERT
  2634     if( VerifyOptoOopOffsets ) {
  2635       assert( n->is_Mem(), "" );
  2636       MemNode *mem  = (MemNode*)n;
  2637       // Check to see if address types have grounded out somehow.
  2638       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2639       assert( !tp || oop_offset_is_sane(tp), "" );
  2641 #endif
  2642     break;
  2645   case Op_AddP: {               // Assert sane base pointers
  2646     Node *addp = n->in(AddPNode::Address);
  2647     assert( !addp->is_AddP() ||
  2648             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2649             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2650             "Base pointers must match" );
  2651 #ifdef _LP64
  2652     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2653         addp->Opcode() == Op_ConP &&
  2654         addp == n->in(AddPNode::Base) &&
  2655         n->in(AddPNode::Offset)->is_Con()) {
  2656       // Use addressing with narrow klass to load with offset on x86.
  2657       // On sparc loading 32-bits constant and decoding it have less
  2658       // instructions (4) then load 64-bits constant (7).
  2659       // Do this transformation here since IGVN will convert ConN back to ConP.
  2660       const Type* t = addp->bottom_type();
  2661       if (t->isa_oopptr() || t->isa_klassptr()) {
  2662         Node* nn = NULL;
  2664         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2666         // Look for existing ConN node of the same exact type.
  2667         Node* r  = root();
  2668         uint cnt = r->outcnt();
  2669         for (uint i = 0; i < cnt; i++) {
  2670           Node* m = r->raw_out(i);
  2671           if (m!= NULL && m->Opcode() == op &&
  2672               m->bottom_type()->make_ptr() == t) {
  2673             nn = m;
  2674             break;
  2677         if (nn != NULL) {
  2678           // Decode a narrow oop to match address
  2679           // [R12 + narrow_oop_reg<<3 + offset]
  2680           if (t->isa_oopptr()) {
  2681             nn = new (this) DecodeNNode(nn, t);
  2682           } else {
  2683             nn = new (this) DecodeNKlassNode(nn, t);
  2685           n->set_req(AddPNode::Base, nn);
  2686           n->set_req(AddPNode::Address, nn);
  2687           if (addp->outcnt() == 0) {
  2688             addp->disconnect_inputs(NULL, this);
  2693 #endif
  2694     break;
  2697 #ifdef _LP64
  2698   case Op_CastPP:
  2699     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2700       Node* in1 = n->in(1);
  2701       const Type* t = n->bottom_type();
  2702       Node* new_in1 = in1->clone();
  2703       new_in1->as_DecodeN()->set_type(t);
  2705       if (!Matcher::narrow_oop_use_complex_address()) {
  2706         //
  2707         // x86, ARM and friends can handle 2 adds in addressing mode
  2708         // and Matcher can fold a DecodeN node into address by using
  2709         // a narrow oop directly and do implicit NULL check in address:
  2710         //
  2711         // [R12 + narrow_oop_reg<<3 + offset]
  2712         // NullCheck narrow_oop_reg
  2713         //
  2714         // On other platforms (Sparc) we have to keep new DecodeN node and
  2715         // use it to do implicit NULL check in address:
  2716         //
  2717         // decode_not_null narrow_oop_reg, base_reg
  2718         // [base_reg + offset]
  2719         // NullCheck base_reg
  2720         //
  2721         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2722         // to keep the information to which NULL check the new DecodeN node
  2723         // corresponds to use it as value in implicit_null_check().
  2724         //
  2725         new_in1->set_req(0, n->in(0));
  2728       n->subsume_by(new_in1, this);
  2729       if (in1->outcnt() == 0) {
  2730         in1->disconnect_inputs(NULL, this);
  2733     break;
  2735   case Op_CmpP:
  2736     // Do this transformation here to preserve CmpPNode::sub() and
  2737     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2738     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2739       Node* in1 = n->in(1);
  2740       Node* in2 = n->in(2);
  2741       if (!in1->is_DecodeNarrowPtr()) {
  2742         in2 = in1;
  2743         in1 = n->in(2);
  2745       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2747       Node* new_in2 = NULL;
  2748       if (in2->is_DecodeNarrowPtr()) {
  2749         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2750         new_in2 = in2->in(1);
  2751       } else if (in2->Opcode() == Op_ConP) {
  2752         const Type* t = in2->bottom_type();
  2753         if (t == TypePtr::NULL_PTR) {
  2754           assert(in1->is_DecodeN(), "compare klass to null?");
  2755           // Don't convert CmpP null check into CmpN if compressed
  2756           // oops implicit null check is not generated.
  2757           // This will allow to generate normal oop implicit null check.
  2758           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2759             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2760           //
  2761           // This transformation together with CastPP transformation above
  2762           // will generated code for implicit NULL checks for compressed oops.
  2763           //
  2764           // The original code after Optimize()
  2765           //
  2766           //    LoadN memory, narrow_oop_reg
  2767           //    decode narrow_oop_reg, base_reg
  2768           //    CmpP base_reg, NULL
  2769           //    CastPP base_reg // NotNull
  2770           //    Load [base_reg + offset], val_reg
  2771           //
  2772           // after these transformations will be
  2773           //
  2774           //    LoadN memory, narrow_oop_reg
  2775           //    CmpN narrow_oop_reg, NULL
  2776           //    decode_not_null narrow_oop_reg, base_reg
  2777           //    Load [base_reg + offset], val_reg
  2778           //
  2779           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2780           // since narrow oops can be used in debug info now (see the code in
  2781           // final_graph_reshaping_walk()).
  2782           //
  2783           // At the end the code will be matched to
  2784           // on x86:
  2785           //
  2786           //    Load_narrow_oop memory, narrow_oop_reg
  2787           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2788           //    NullCheck narrow_oop_reg
  2789           //
  2790           // and on sparc:
  2791           //
  2792           //    Load_narrow_oop memory, narrow_oop_reg
  2793           //    decode_not_null narrow_oop_reg, base_reg
  2794           //    Load [base_reg + offset], val_reg
  2795           //    NullCheck base_reg
  2796           //
  2797         } else if (t->isa_oopptr()) {
  2798           new_in2 = ConNode::make(this, t->make_narrowoop());
  2799         } else if (t->isa_klassptr()) {
  2800           new_in2 = ConNode::make(this, t->make_narrowklass());
  2803       if (new_in2 != NULL) {
  2804         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2805         n->subsume_by(cmpN, this);
  2806         if (in1->outcnt() == 0) {
  2807           in1->disconnect_inputs(NULL, this);
  2809         if (in2->outcnt() == 0) {
  2810           in2->disconnect_inputs(NULL, this);
  2814     break;
  2816   case Op_DecodeN:
  2817   case Op_DecodeNKlass:
  2818     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2819     // DecodeN could be pinned when it can't be fold into
  2820     // an address expression, see the code for Op_CastPP above.
  2821     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2822     break;
  2824   case Op_EncodeP:
  2825   case Op_EncodePKlass: {
  2826     Node* in1 = n->in(1);
  2827     if (in1->is_DecodeNarrowPtr()) {
  2828       n->subsume_by(in1->in(1), this);
  2829     } else if (in1->Opcode() == Op_ConP) {
  2830       const Type* t = in1->bottom_type();
  2831       if (t == TypePtr::NULL_PTR) {
  2832         assert(t->isa_oopptr(), "null klass?");
  2833         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2834       } else if (t->isa_oopptr()) {
  2835         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2836       } else if (t->isa_klassptr()) {
  2837         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2840     if (in1->outcnt() == 0) {
  2841       in1->disconnect_inputs(NULL, this);
  2843     break;
  2846   case Op_Proj: {
  2847     if (OptimizeStringConcat) {
  2848       ProjNode* p = n->as_Proj();
  2849       if (p->_is_io_use) {
  2850         // Separate projections were used for the exception path which
  2851         // are normally removed by a late inline.  If it wasn't inlined
  2852         // then they will hang around and should just be replaced with
  2853         // the original one.
  2854         Node* proj = NULL;
  2855         // Replace with just one
  2856         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2857           Node *use = i.get();
  2858           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2859             proj = use;
  2860             break;
  2863         assert(proj != NULL, "must be found");
  2864         p->subsume_by(proj, this);
  2867     break;
  2870   case Op_Phi:
  2871     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2872       // The EncodeP optimization may create Phi with the same edges
  2873       // for all paths. It is not handled well by Register Allocator.
  2874       Node* unique_in = n->in(1);
  2875       assert(unique_in != NULL, "");
  2876       uint cnt = n->req();
  2877       for (uint i = 2; i < cnt; i++) {
  2878         Node* m = n->in(i);
  2879         assert(m != NULL, "");
  2880         if (unique_in != m)
  2881           unique_in = NULL;
  2883       if (unique_in != NULL) {
  2884         n->subsume_by(unique_in, this);
  2887     break;
  2889 #endif
  2891   case Op_ModI:
  2892     if (UseDivMod) {
  2893       // Check if a%b and a/b both exist
  2894       Node* d = n->find_similar(Op_DivI);
  2895       if (d) {
  2896         // Replace them with a fused divmod if supported
  2897         if (Matcher::has_match_rule(Op_DivModI)) {
  2898           DivModINode* divmod = DivModINode::make(this, n);
  2899           d->subsume_by(divmod->div_proj(), this);
  2900           n->subsume_by(divmod->mod_proj(), this);
  2901         } else {
  2902           // replace a%b with a-((a/b)*b)
  2903           Node* mult = new (this) MulINode(d, d->in(2));
  2904           Node* sub  = new (this) SubINode(d->in(1), mult);
  2905           n->subsume_by(sub, this);
  2909     break;
  2911   case Op_ModL:
  2912     if (UseDivMod) {
  2913       // Check if a%b and a/b both exist
  2914       Node* d = n->find_similar(Op_DivL);
  2915       if (d) {
  2916         // Replace them with a fused divmod if supported
  2917         if (Matcher::has_match_rule(Op_DivModL)) {
  2918           DivModLNode* divmod = DivModLNode::make(this, n);
  2919           d->subsume_by(divmod->div_proj(), this);
  2920           n->subsume_by(divmod->mod_proj(), this);
  2921         } else {
  2922           // replace a%b with a-((a/b)*b)
  2923           Node* mult = new (this) MulLNode(d, d->in(2));
  2924           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2925           n->subsume_by(sub, this);
  2929     break;
  2931   case Op_LoadVector:
  2932   case Op_StoreVector:
  2933     break;
  2935   case Op_PackB:
  2936   case Op_PackS:
  2937   case Op_PackI:
  2938   case Op_PackF:
  2939   case Op_PackL:
  2940   case Op_PackD:
  2941     if (n->req()-1 > 2) {
  2942       // Replace many operand PackNodes with a binary tree for matching
  2943       PackNode* p = (PackNode*) n;
  2944       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2945       n->subsume_by(btp, this);
  2947     break;
  2948   case Op_Loop:
  2949   case Op_CountedLoop:
  2950     if (n->as_Loop()->is_inner_loop()) {
  2951       frc.inc_inner_loop_count();
  2953     break;
  2954   case Op_LShiftI:
  2955   case Op_RShiftI:
  2956   case Op_URShiftI:
  2957   case Op_LShiftL:
  2958   case Op_RShiftL:
  2959   case Op_URShiftL:
  2960     if (Matcher::need_masked_shift_count) {
  2961       // The cpu's shift instructions don't restrict the count to the
  2962       // lower 5/6 bits. We need to do the masking ourselves.
  2963       Node* in2 = n->in(2);
  2964       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2965       const TypeInt* t = in2->find_int_type();
  2966       if (t != NULL && t->is_con()) {
  2967         juint shift = t->get_con();
  2968         if (shift > mask) { // Unsigned cmp
  2969           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2971       } else {
  2972         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2973           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2974           n->set_req(2, shift);
  2977       if (in2->outcnt() == 0) { // Remove dead node
  2978         in2->disconnect_inputs(NULL, this);
  2981     break;
  2982   case Op_MemBarStoreStore:
  2983   case Op_MemBarRelease:
  2984     // Break the link with AllocateNode: it is no longer useful and
  2985     // confuses register allocation.
  2986     if (n->req() > MemBarNode::Precedent) {
  2987       n->set_req(MemBarNode::Precedent, top());
  2989     break;
  2990     // Must set a control edge on all nodes that produce a FlagsProj
  2991     // so they can't escape the block that consumes the flags.
  2992     // Must also set the non throwing branch as the control
  2993     // for all nodes that depends on the result. Unless the node
  2994     // already have a control that isn't the control of the
  2995     // flag producer
  2996   case Op_FlagsProj:
  2998       MathExactNode* math = (MathExactNode*)  n->in(0);
  2999       Node* ctrl = math->control_node();
  3000       Node* non_throwing = math->non_throwing_branch();
  3001       math->set_req(0, ctrl);
  3003       Node* result = math->result_node();
  3004       if (result != NULL) {
  3005         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
  3006           Node* out = result->fast_out(j);
  3007           if (out->in(0) == NULL) {
  3008             out->set_req(0, non_throwing);
  3009           } else if (out->in(0) == ctrl) {
  3010             out->set_req(0, non_throwing);
  3015     break;
  3016   default:
  3017     assert( !n->is_Call(), "" );
  3018     assert( !n->is_Mem(), "" );
  3019     break;
  3022   // Collect CFG split points
  3023   if (n->is_MultiBranch())
  3024     frc._tests.push(n);
  3027 //------------------------------final_graph_reshaping_walk---------------------
  3028 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3029 // requires that the walk visits a node's inputs before visiting the node.
  3030 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3031   ResourceArea *area = Thread::current()->resource_area();
  3032   Unique_Node_List sfpt(area);
  3034   frc._visited.set(root->_idx); // first, mark node as visited
  3035   uint cnt = root->req();
  3036   Node *n = root;
  3037   uint  i = 0;
  3038   while (true) {
  3039     if (i < cnt) {
  3040       // Place all non-visited non-null inputs onto stack
  3041       Node* m = n->in(i);
  3042       ++i;
  3043       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3044         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  3045           sfpt.push(m);
  3046         cnt = m->req();
  3047         nstack.push(n, i); // put on stack parent and next input's index
  3048         n = m;
  3049         i = 0;
  3051     } else {
  3052       // Now do post-visit work
  3053       final_graph_reshaping_impl( n, frc );
  3054       if (nstack.is_empty())
  3055         break;             // finished
  3056       n = nstack.node();   // Get node from stack
  3057       cnt = n->req();
  3058       i = nstack.index();
  3059       nstack.pop();        // Shift to the next node on stack
  3063   // Skip next transformation if compressed oops are not used.
  3064   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3065       (!UseCompressedOops && !UseCompressedClassPointers))
  3066     return;
  3068   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3069   // It could be done for an uncommon traps or any safepoints/calls
  3070   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3071   while (sfpt.size() > 0) {
  3072     n = sfpt.pop();
  3073     JVMState *jvms = n->as_SafePoint()->jvms();
  3074     assert(jvms != NULL, "sanity");
  3075     int start = jvms->debug_start();
  3076     int end   = n->req();
  3077     bool is_uncommon = (n->is_CallStaticJava() &&
  3078                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3079     for (int j = start; j < end; j++) {
  3080       Node* in = n->in(j);
  3081       if (in->is_DecodeNarrowPtr()) {
  3082         bool safe_to_skip = true;
  3083         if (!is_uncommon ) {
  3084           // Is it safe to skip?
  3085           for (uint i = 0; i < in->outcnt(); i++) {
  3086             Node* u = in->raw_out(i);
  3087             if (!u->is_SafePoint() ||
  3088                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3089               safe_to_skip = false;
  3093         if (safe_to_skip) {
  3094           n->set_req(j, in->in(1));
  3096         if (in->outcnt() == 0) {
  3097           in->disconnect_inputs(NULL, this);
  3104 //------------------------------final_graph_reshaping--------------------------
  3105 // Final Graph Reshaping.
  3106 //
  3107 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3108 //     and not commoned up and forced early.  Must come after regular
  3109 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3110 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3111 //     Remove Opaque nodes.
  3112 // (2) Move last-uses by commutative operations to the left input to encourage
  3113 //     Intel update-in-place two-address operations and better register usage
  3114 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3115 //     calls canonicalizing them back.
  3116 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3117 //     and call sites.  On Intel, we can get correct rounding either by
  3118 //     forcing singles to memory (requires extra stores and loads after each
  3119 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3120 //     clearing the mode bit around call sites).  The mode bit is only used
  3121 //     if the relative frequency of single FP ops to calls is low enough.
  3122 //     This is a key transform for SPEC mpeg_audio.
  3123 // (4) Detect infinite loops; blobs of code reachable from above but not
  3124 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3125 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3126 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3127 //     Detection is by looking for IfNodes where only 1 projection is
  3128 //     reachable from below or CatchNodes missing some targets.
  3129 // (5) Assert for insane oop offsets in debug mode.
  3131 bool Compile::final_graph_reshaping() {
  3132   // an infinite loop may have been eliminated by the optimizer,
  3133   // in which case the graph will be empty.
  3134   if (root()->req() == 1) {
  3135     record_method_not_compilable("trivial infinite loop");
  3136     return true;
  3139   // Expensive nodes have their control input set to prevent the GVN
  3140   // from freely commoning them. There's no GVN beyond this point so
  3141   // no need to keep the control input. We want the expensive nodes to
  3142   // be freely moved to the least frequent code path by gcm.
  3143   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3144   for (int i = 0; i < expensive_count(); i++) {
  3145     _expensive_nodes->at(i)->set_req(0, NULL);
  3148   Final_Reshape_Counts frc;
  3150   // Visit everybody reachable!
  3151   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3152   Node_Stack nstack(unique() >> 1);
  3153   final_graph_reshaping_walk(nstack, root(), frc);
  3155   // Check for unreachable (from below) code (i.e., infinite loops).
  3156   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3157     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3158     // Get number of CFG targets.
  3159     // Note that PCTables include exception targets after calls.
  3160     uint required_outcnt = n->required_outcnt();
  3161     if (n->outcnt() != required_outcnt) {
  3162       // Check for a few special cases.  Rethrow Nodes never take the
  3163       // 'fall-thru' path, so expected kids is 1 less.
  3164       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3165         if (n->in(0)->in(0)->is_Call()) {
  3166           CallNode *call = n->in(0)->in(0)->as_Call();
  3167           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3168             required_outcnt--;      // Rethrow always has 1 less kid
  3169           } else if (call->req() > TypeFunc::Parms &&
  3170                      call->is_CallDynamicJava()) {
  3171             // Check for null receiver. In such case, the optimizer has
  3172             // detected that the virtual call will always result in a null
  3173             // pointer exception. The fall-through projection of this CatchNode
  3174             // will not be populated.
  3175             Node *arg0 = call->in(TypeFunc::Parms);
  3176             if (arg0->is_Type() &&
  3177                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3178               required_outcnt--;
  3180           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3181                      call->req() > TypeFunc::Parms+1 &&
  3182                      call->is_CallStaticJava()) {
  3183             // Check for negative array length. In such case, the optimizer has
  3184             // detected that the allocation attempt will always result in an
  3185             // exception. There is no fall-through projection of this CatchNode .
  3186             Node *arg1 = call->in(TypeFunc::Parms+1);
  3187             if (arg1->is_Type() &&
  3188                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3189               required_outcnt--;
  3194       // Recheck with a better notion of 'required_outcnt'
  3195       if (n->outcnt() != required_outcnt) {
  3196         record_method_not_compilable("malformed control flow");
  3197         return true;            // Not all targets reachable!
  3200     // Check that I actually visited all kids.  Unreached kids
  3201     // must be infinite loops.
  3202     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3203       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3204         record_method_not_compilable("infinite loop");
  3205         return true;            // Found unvisited kid; must be unreach
  3209   // If original bytecodes contained a mixture of floats and doubles
  3210   // check if the optimizer has made it homogenous, item (3).
  3211   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3212       frc.get_float_count() > 32 &&
  3213       frc.get_double_count() == 0 &&
  3214       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3215     set_24_bit_selection_and_mode( false,  true );
  3218   set_java_calls(frc.get_java_call_count());
  3219   set_inner_loops(frc.get_inner_loop_count());
  3221   // No infinite loops, no reason to bail out.
  3222   return false;
  3225 //-----------------------------too_many_traps----------------------------------
  3226 // Report if there are too many traps at the current method and bci.
  3227 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3228 bool Compile::too_many_traps(ciMethod* method,
  3229                              int bci,
  3230                              Deoptimization::DeoptReason reason) {
  3231   ciMethodData* md = method->method_data();
  3232   if (md->is_empty()) {
  3233     // Assume the trap has not occurred, or that it occurred only
  3234     // because of a transient condition during start-up in the interpreter.
  3235     return false;
  3237   if (md->has_trap_at(bci, reason) != 0) {
  3238     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3239     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3240     // assume the worst.
  3241     if (log())
  3242       log()->elem("observe trap='%s' count='%d'",
  3243                   Deoptimization::trap_reason_name(reason),
  3244                   md->trap_count(reason));
  3245     return true;
  3246   } else {
  3247     // Ignore method/bci and see if there have been too many globally.
  3248     return too_many_traps(reason, md);
  3252 // Less-accurate variant which does not require a method and bci.
  3253 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3254                              ciMethodData* logmd) {
  3255  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3256     // Too many traps globally.
  3257     // Note that we use cumulative trap_count, not just md->trap_count.
  3258     if (log()) {
  3259       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3260       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3261                   Deoptimization::trap_reason_name(reason),
  3262                   mcount, trap_count(reason));
  3264     return true;
  3265   } else {
  3266     // The coast is clear.
  3267     return false;
  3271 //--------------------------too_many_recompiles--------------------------------
  3272 // Report if there are too many recompiles at the current method and bci.
  3273 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3274 // Is not eager to return true, since this will cause the compiler to use
  3275 // Action_none for a trap point, to avoid too many recompilations.
  3276 bool Compile::too_many_recompiles(ciMethod* method,
  3277                                   int bci,
  3278                                   Deoptimization::DeoptReason reason) {
  3279   ciMethodData* md = method->method_data();
  3280   if (md->is_empty()) {
  3281     // Assume the trap has not occurred, or that it occurred only
  3282     // because of a transient condition during start-up in the interpreter.
  3283     return false;
  3285   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3286   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3287   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3288   Deoptimization::DeoptReason per_bc_reason
  3289     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3290   if ((per_bc_reason == Deoptimization::Reason_none
  3291        || md->has_trap_at(bci, reason) != 0)
  3292       // The trap frequency measure we care about is the recompile count:
  3293       && md->trap_recompiled_at(bci)
  3294       && md->overflow_recompile_count() >= bc_cutoff) {
  3295     // Do not emit a trap here if it has already caused recompilations.
  3296     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3297     // assume the worst.
  3298     if (log())
  3299       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3300                   Deoptimization::trap_reason_name(reason),
  3301                   md->trap_count(reason),
  3302                   md->overflow_recompile_count());
  3303     return true;
  3304   } else if (trap_count(reason) != 0
  3305              && decompile_count() >= m_cutoff) {
  3306     // Too many recompiles globally, and we have seen this sort of trap.
  3307     // Use cumulative decompile_count, not just md->decompile_count.
  3308     if (log())
  3309       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3310                   Deoptimization::trap_reason_name(reason),
  3311                   md->trap_count(reason), trap_count(reason),
  3312                   md->decompile_count(), decompile_count());
  3313     return true;
  3314   } else {
  3315     // The coast is clear.
  3316     return false;
  3321 #ifndef PRODUCT
  3322 //------------------------------verify_graph_edges---------------------------
  3323 // Walk the Graph and verify that there is a one-to-one correspondence
  3324 // between Use-Def edges and Def-Use edges in the graph.
  3325 void Compile::verify_graph_edges(bool no_dead_code) {
  3326   if (VerifyGraphEdges) {
  3327     ResourceArea *area = Thread::current()->resource_area();
  3328     Unique_Node_List visited(area);
  3329     // Call recursive graph walk to check edges
  3330     _root->verify_edges(visited);
  3331     if (no_dead_code) {
  3332       // Now make sure that no visited node is used by an unvisited node.
  3333       bool dead_nodes = 0;
  3334       Unique_Node_List checked(area);
  3335       while (visited.size() > 0) {
  3336         Node* n = visited.pop();
  3337         checked.push(n);
  3338         for (uint i = 0; i < n->outcnt(); i++) {
  3339           Node* use = n->raw_out(i);
  3340           if (checked.member(use))  continue;  // already checked
  3341           if (visited.member(use))  continue;  // already in the graph
  3342           if (use->is_Con())        continue;  // a dead ConNode is OK
  3343           // At this point, we have found a dead node which is DU-reachable.
  3344           if (dead_nodes++ == 0)
  3345             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3346           use->dump(2);
  3347           tty->print_cr("---");
  3348           checked.push(use);  // No repeats; pretend it is now checked.
  3351       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3355 #endif
  3357 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3358 // This is required because there is not quite a 1-1 relation between the
  3359 // ciEnv and its compilation task and the Compile object.  Note that one
  3360 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3361 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3362 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3363 // by the logic in C2Compiler.
  3364 void Compile::record_failure(const char* reason) {
  3365   if (log() != NULL) {
  3366     log()->elem("failure reason='%s' phase='compile'", reason);
  3368   if (_failure_reason == NULL) {
  3369     // Record the first failure reason.
  3370     _failure_reason = reason;
  3373   EventCompilerFailure event;
  3374   if (event.should_commit()) {
  3375     event.set_compileID(Compile::compile_id());
  3376     event.set_failure(reason);
  3377     event.commit();
  3380   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3381     C->print_method(PHASE_FAILURE);
  3383   _root = NULL;  // flush the graph, too
  3386 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3387   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3388     _phase_name(name), _dolog(dolog)
  3390   if (dolog) {
  3391     C = Compile::current();
  3392     _log = C->log();
  3393   } else {
  3394     C = NULL;
  3395     _log = NULL;
  3397   if (_log != NULL) {
  3398     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3399     _log->stamp();
  3400     _log->end_head();
  3404 Compile::TracePhase::~TracePhase() {
  3406   C = Compile::current();
  3407   if (_dolog) {
  3408     _log = C->log();
  3409   } else {
  3410     _log = NULL;
  3413 #ifdef ASSERT
  3414   if (PrintIdealNodeCount) {
  3415     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3416                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3419   if (VerifyIdealNodeCount) {
  3420     Compile::current()->print_missing_nodes();
  3422 #endif
  3424   if (_log != NULL) {
  3425     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3429 //=============================================================================
  3430 // Two Constant's are equal when the type and the value are equal.
  3431 bool Compile::Constant::operator==(const Constant& other) {
  3432   if (type()          != other.type()         )  return false;
  3433   if (can_be_reused() != other.can_be_reused())  return false;
  3434   // For floating point values we compare the bit pattern.
  3435   switch (type()) {
  3436   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3437   case T_LONG:
  3438   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3439   case T_OBJECT:
  3440   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3441   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3442   case T_METADATA: return (_v._metadata == other._v._metadata);
  3443   default: ShouldNotReachHere();
  3445   return false;
  3448 static int type_to_size_in_bytes(BasicType t) {
  3449   switch (t) {
  3450   case T_LONG:    return sizeof(jlong  );
  3451   case T_FLOAT:   return sizeof(jfloat );
  3452   case T_DOUBLE:  return sizeof(jdouble);
  3453   case T_METADATA: return sizeof(Metadata*);
  3454     // We use T_VOID as marker for jump-table entries (labels) which
  3455     // need an internal word relocation.
  3456   case T_VOID:
  3457   case T_ADDRESS:
  3458   case T_OBJECT:  return sizeof(jobject);
  3461   ShouldNotReachHere();
  3462   return -1;
  3465 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3466   // sort descending
  3467   if (a->freq() > b->freq())  return -1;
  3468   if (a->freq() < b->freq())  return  1;
  3469   return 0;
  3472 void Compile::ConstantTable::calculate_offsets_and_size() {
  3473   // First, sort the array by frequencies.
  3474   _constants.sort(qsort_comparator);
  3476 #ifdef ASSERT
  3477   // Make sure all jump-table entries were sorted to the end of the
  3478   // array (they have a negative frequency).
  3479   bool found_void = false;
  3480   for (int i = 0; i < _constants.length(); i++) {
  3481     Constant con = _constants.at(i);
  3482     if (con.type() == T_VOID)
  3483       found_void = true;  // jump-tables
  3484     else
  3485       assert(!found_void, "wrong sorting");
  3487 #endif
  3489   int offset = 0;
  3490   for (int i = 0; i < _constants.length(); i++) {
  3491     Constant* con = _constants.adr_at(i);
  3493     // Align offset for type.
  3494     int typesize = type_to_size_in_bytes(con->type());
  3495     offset = align_size_up(offset, typesize);
  3496     con->set_offset(offset);   // set constant's offset
  3498     if (con->type() == T_VOID) {
  3499       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3500       offset = offset + typesize * n->outcnt();  // expand jump-table
  3501     } else {
  3502       offset = offset + typesize;
  3506   // Align size up to the next section start (which is insts; see
  3507   // CodeBuffer::align_at_start).
  3508   assert(_size == -1, "already set?");
  3509   _size = align_size_up(offset, CodeEntryAlignment);
  3512 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3513   MacroAssembler _masm(&cb);
  3514   for (int i = 0; i < _constants.length(); i++) {
  3515     Constant con = _constants.at(i);
  3516     address constant_addr;
  3517     switch (con.type()) {
  3518     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3519     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3520     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3521     case T_OBJECT: {
  3522       jobject obj = con.get_jobject();
  3523       int oop_index = _masm.oop_recorder()->find_index(obj);
  3524       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3525       break;
  3527     case T_ADDRESS: {
  3528       address addr = (address) con.get_jobject();
  3529       constant_addr = _masm.address_constant(addr);
  3530       break;
  3532     // We use T_VOID as marker for jump-table entries (labels) which
  3533     // need an internal word relocation.
  3534     case T_VOID: {
  3535       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3536       // Fill the jump-table with a dummy word.  The real value is
  3537       // filled in later in fill_jump_table.
  3538       address dummy = (address) n;
  3539       constant_addr = _masm.address_constant(dummy);
  3540       // Expand jump-table
  3541       for (uint i = 1; i < n->outcnt(); i++) {
  3542         address temp_addr = _masm.address_constant(dummy + i);
  3543         assert(temp_addr, "consts section too small");
  3545       break;
  3547     case T_METADATA: {
  3548       Metadata* obj = con.get_metadata();
  3549       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3550       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3551       break;
  3553     default: ShouldNotReachHere();
  3555     assert(constant_addr, "consts section too small");
  3556     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3560 int Compile::ConstantTable::find_offset(Constant& con) const {
  3561   int idx = _constants.find(con);
  3562   assert(idx != -1, "constant must be in constant table");
  3563   int offset = _constants.at(idx).offset();
  3564   assert(offset != -1, "constant table not emitted yet?");
  3565   return offset;
  3568 void Compile::ConstantTable::add(Constant& con) {
  3569   if (con.can_be_reused()) {
  3570     int idx = _constants.find(con);
  3571     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3572       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3573       return;
  3576   (void) _constants.append(con);
  3579 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3580   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3581   Constant con(type, value, b->_freq);
  3582   add(con);
  3583   return con;
  3586 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3587   Constant con(metadata);
  3588   add(con);
  3589   return con;
  3592 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3593   jvalue value;
  3594   BasicType type = oper->type()->basic_type();
  3595   switch (type) {
  3596   case T_LONG:    value.j = oper->constantL(); break;
  3597   case T_FLOAT:   value.f = oper->constantF(); break;
  3598   case T_DOUBLE:  value.d = oper->constantD(); break;
  3599   case T_OBJECT:
  3600   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3601   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3602   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3604   return add(n, type, value);
  3607 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3608   jvalue value;
  3609   // We can use the node pointer here to identify the right jump-table
  3610   // as this method is called from Compile::Fill_buffer right before
  3611   // the MachNodes are emitted and the jump-table is filled (means the
  3612   // MachNode pointers do not change anymore).
  3613   value.l = (jobject) n;
  3614   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3615   add(con);
  3616   return con;
  3619 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3620   // If called from Compile::scratch_emit_size do nothing.
  3621   if (Compile::current()->in_scratch_emit_size())  return;
  3623   assert(labels.is_nonempty(), "must be");
  3624   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3626   // Since MachConstantNode::constant_offset() also contains
  3627   // table_base_offset() we need to subtract the table_base_offset()
  3628   // to get the plain offset into the constant table.
  3629   int offset = n->constant_offset() - table_base_offset();
  3631   MacroAssembler _masm(&cb);
  3632   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3634   for (uint i = 0; i < n->outcnt(); i++) {
  3635     address* constant_addr = &jump_table_base[i];
  3636     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3637     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3638     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3642 void Compile::dump_inlining() {
  3643   if (print_inlining() || print_intrinsics()) {
  3644     // Print inlining message for candidates that we couldn't inline
  3645     // for lack of space or non constant receiver
  3646     for (int i = 0; i < _late_inlines.length(); i++) {
  3647       CallGenerator* cg = _late_inlines.at(i);
  3648       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3650     Unique_Node_List useful;
  3651     useful.push(root());
  3652     for (uint next = 0; next < useful.size(); ++next) {
  3653       Node* n  = useful.at(next);
  3654       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3655         CallNode* call = n->as_Call();
  3656         CallGenerator* cg = call->generator();
  3657         cg->print_inlining_late("receiver not constant");
  3659       uint max = n->len();
  3660       for ( uint i = 0; i < max; ++i ) {
  3661         Node *m = n->in(i);
  3662         if ( m == NULL ) continue;
  3663         useful.push(m);
  3666     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3667       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
  3672 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3673   if (n1->Opcode() < n2->Opcode())      return -1;
  3674   else if (n1->Opcode() > n2->Opcode()) return 1;
  3676   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3677   for (uint i = 1; i < n1->req(); i++) {
  3678     if (n1->in(i) < n2->in(i))      return -1;
  3679     else if (n1->in(i) > n2->in(i)) return 1;
  3682   return 0;
  3685 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3686   Node* n1 = *n1p;
  3687   Node* n2 = *n2p;
  3689   return cmp_expensive_nodes(n1, n2);
  3692 void Compile::sort_expensive_nodes() {
  3693   if (!expensive_nodes_sorted()) {
  3694     _expensive_nodes->sort(cmp_expensive_nodes);
  3698 bool Compile::expensive_nodes_sorted() const {
  3699   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3700     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3701       return false;
  3704   return true;
  3707 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3708   if (_expensive_nodes->length() == 0) {
  3709     return false;
  3712   assert(OptimizeExpensiveOps, "optimization off?");
  3714   // Take this opportunity to remove dead nodes from the list
  3715   int j = 0;
  3716   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3717     Node* n = _expensive_nodes->at(i);
  3718     if (!n->is_unreachable(igvn)) {
  3719       assert(n->is_expensive(), "should be expensive");
  3720       _expensive_nodes->at_put(j, n);
  3721       j++;
  3724   _expensive_nodes->trunc_to(j);
  3726   // Then sort the list so that similar nodes are next to each other
  3727   // and check for at least two nodes of identical kind with same data
  3728   // inputs.
  3729   sort_expensive_nodes();
  3731   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3732     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3733       return true;
  3737   return false;
  3740 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3741   if (_expensive_nodes->length() == 0) {
  3742     return;
  3745   assert(OptimizeExpensiveOps, "optimization off?");
  3747   // Sort to bring similar nodes next to each other and clear the
  3748   // control input of nodes for which there's only a single copy.
  3749   sort_expensive_nodes();
  3751   int j = 0;
  3752   int identical = 0;
  3753   int i = 0;
  3754   for (; i < _expensive_nodes->length()-1; i++) {
  3755     assert(j <= i, "can't write beyond current index");
  3756     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3757       identical++;
  3758       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3759       continue;
  3761     if (identical > 0) {
  3762       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3763       identical = 0;
  3764     } else {
  3765       Node* n = _expensive_nodes->at(i);
  3766       igvn.hash_delete(n);
  3767       n->set_req(0, NULL);
  3768       igvn.hash_insert(n);
  3771   if (identical > 0) {
  3772     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3773   } else if (_expensive_nodes->length() >= 1) {
  3774     Node* n = _expensive_nodes->at(i);
  3775     igvn.hash_delete(n);
  3776     n->set_req(0, NULL);
  3777     igvn.hash_insert(n);
  3779   _expensive_nodes->trunc_to(j);
  3782 void Compile::add_expensive_node(Node * n) {
  3783   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3784   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3785   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3786   if (OptimizeExpensiveOps) {
  3787     _expensive_nodes->append(n);
  3788   } else {
  3789     // Clear control input and let IGVN optimize expensive nodes if
  3790     // OptimizeExpensiveOps is off.
  3791     n->set_req(0, NULL);
  3795 // Auxiliary method to support randomized stressing/fuzzing.
  3796 //
  3797 // This method can be called the arbitrary number of times, with current count
  3798 // as the argument. The logic allows selecting a single candidate from the
  3799 // running list of candidates as follows:
  3800 //    int count = 0;
  3801 //    Cand* selected = null;
  3802 //    while(cand = cand->next()) {
  3803 //      if (randomized_select(++count)) {
  3804 //        selected = cand;
  3805 //      }
  3806 //    }
  3807 //
  3808 // Including count equalizes the chances any candidate is "selected".
  3809 // This is useful when we don't have the complete list of candidates to choose
  3810 // from uniformly. In this case, we need to adjust the randomicity of the
  3811 // selection, or else we will end up biasing the selection towards the latter
  3812 // candidates.
  3813 //
  3814 // Quick back-envelope calculation shows that for the list of n candidates
  3815 // the equal probability for the candidate to persist as "best" can be
  3816 // achieved by replacing it with "next" k-th candidate with the probability
  3817 // of 1/k. It can be easily shown that by the end of the run, the
  3818 // probability for any candidate is converged to 1/n, thus giving the
  3819 // uniform distribution among all the candidates.
  3820 //
  3821 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3822 #define RANDOMIZED_DOMAIN_POW 29
  3823 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3824 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3825 bool Compile::randomized_select(int count) {
  3826   assert(count > 0, "only positive");
  3827   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial