src/share/vm/gc_implementation/g1/g1BlockOffsetTable.hpp

Fri, 11 Apr 2014 11:00:12 +0200

author
pliden
date
Fri, 11 Apr 2014 11:00:12 +0200
changeset 6690
1772223a25a2
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 6987
9441d22e429a
permissions
-rw-r--r--

8037112: gc/g1/TestHumongousAllocInitialMark.java caused SIGSEGV
Reviewed-by: brutisso, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "runtime/virtualspace.hpp"
    30 #include "utilities/globalDefinitions.hpp"
    32 // The CollectedHeap type requires subtypes to implement a method
    33 // "block_start".  For some subtypes, notably generational
    34 // systems using card-table-based write barriers, the efficiency of this
    35 // operation may be important.  Implementations of the "BlockOffsetArray"
    36 // class may be useful in providing such efficient implementations.
    37 //
    38 // While generally mirroring the structure of the BOT for GenCollectedHeap,
    39 // the following types are tailored more towards G1's uses; these should,
    40 // however, be merged back into a common BOT to avoid code duplication
    41 // and reduce maintenance overhead.
    42 //
    43 //    G1BlockOffsetTable (abstract)
    44 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
    45 //       -- G1BlockOffsetArrayContigSpace
    46 //
    47 // A main impediment to the consolidation of this code might be the
    48 // effect of making some of the block_start*() calls non-const as
    49 // below. Whether that might adversely affect performance optimizations
    50 // that compilers might normally perform in the case of non-G1
    51 // collectors needs to be carefully investigated prior to any such
    52 // consolidation.
    54 // Forward declarations
    55 class ContiguousSpace;
    56 class G1BlockOffsetSharedArray;
    58 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
    59   friend class VMStructs;
    60 protected:
    61   // These members describe the region covered by the table.
    63   // The space this table is covering.
    64   HeapWord* _bottom;    // == reserved.start
    65   HeapWord* _end;       // End of currently allocated region.
    67 public:
    68   // Initialize the table to cover the given space.
    69   // The contents of the initial table are undefined.
    70   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
    71     _bottom(bottom), _end(end)
    72     {
    73       assert(_bottom <= _end, "arguments out of order");
    74     }
    76   // Note that the committed size of the covered space may have changed,
    77   // so the table size might also wish to change.
    78   virtual void resize(size_t new_word_size) = 0;
    80   virtual void set_bottom(HeapWord* new_bottom) {
    81     assert(new_bottom <= _end,
    82            err_msg("new_bottom (" PTR_FORMAT ") > _end (" PTR_FORMAT ")",
    83                    p2i(new_bottom), p2i(_end)));
    84     _bottom = new_bottom;
    85     resize(pointer_delta(_end, _bottom));
    86   }
    88   // Requires "addr" to be contained by a block, and returns the address of
    89   // the start of that block.  (May have side effects, namely updating of
    90   // shared array entries that "point" too far backwards.  This can occur,
    91   // for example, when LAB allocation is used in a space covered by the
    92   // table.)
    93   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
    94   // Same as above, but does not have any of the possible side effects
    95   // discussed above.
    96   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
    98   // Returns the address of the start of the block containing "addr", or
    99   // else "null" if it is covered by no block.  (May have side effects,
   100   // namely updating of shared array entries that "point" too far
   101   // backwards.  This can occur, for example, when lab allocation is used
   102   // in a space covered by the table.)
   103   inline HeapWord* block_start(const void* addr);
   104   // Same as above, but does not have any of the possible side effects
   105   // discussed above.
   106   inline HeapWord* block_start_const(const void* addr) const;
   107 };
   109 // This implementation of "G1BlockOffsetTable" divides the covered region
   110 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
   111 // for each such subregion indicates how far back one must go to find the
   112 // start of the chunk that includes the first word of the subregion.
   113 //
   114 // Each BlockOffsetArray is owned by a Space.  However, the actual array
   115 // may be shared by several BlockOffsetArrays; this is useful
   116 // when a single resizable area (such as a generation) is divided up into
   117 // several spaces in which contiguous allocation takes place,
   118 // such as, for example, in G1 or in the train generation.)
   120 // Here is the shared array type.
   122 class G1BlockOffsetSharedArray: public CHeapObj<mtGC> {
   123   friend class G1BlockOffsetArray;
   124   friend class G1BlockOffsetArrayContigSpace;
   125   friend class VMStructs;
   127 private:
   128   // The reserved region covered by the shared array.
   129   MemRegion _reserved;
   131   // End of the current committed region.
   132   HeapWord* _end;
   134   // Array for keeping offsets for retrieving object start fast given an
   135   // address.
   136   VirtualSpace _vs;
   137   u_char* _offset_array;          // byte array keeping backwards offsets
   139   void check_index(size_t index, const char* msg) const {
   140     assert(index < _vs.committed_size(),
   141            err_msg("%s - "
   142                    "index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT,
   143                    msg, index, _vs.committed_size()));
   144   }
   146   void check_offset(size_t offset, const char* msg) const {
   147     assert(offset <= N_words,
   148            err_msg("%s - "
   149                    "offset: " SIZE_FORMAT ", N_words: " UINT32_FORMAT,
   150                    msg, offset, N_words));
   151   }
   153   // Bounds checking accessors:
   154   // For performance these have to devolve to array accesses in product builds.
   155   u_char offset_array(size_t index) const {
   156     check_index(index, "index out of range");
   157     return _offset_array[index];
   158   }
   160   void set_offset_array(size_t index, u_char offset) {
   161     check_index(index, "index out of range");
   162     check_offset(offset, "offset too large");
   163     _offset_array[index] = offset;
   164   }
   166   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
   167     check_index(index, "index out of range");
   168     assert(high >= low, "addresses out of order");
   169     check_offset(pointer_delta(high, low), "offset too large");
   170     _offset_array[index] = (u_char) pointer_delta(high, low);
   171   }
   173   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
   174     check_index(index_for(right - 1), "right address out of range");
   175     assert(left  < right, "Heap addresses out of order");
   176     size_t num_cards = pointer_delta(right, left) >> LogN_words;
   177     if (UseMemSetInBOT) {
   178       memset(&_offset_array[index_for(left)], offset, num_cards);
   179     } else {
   180       size_t i = index_for(left);
   181       const size_t end = i + num_cards;
   182       for (; i < end; i++) {
   183         _offset_array[i] = offset;
   184       }
   185     }
   186   }
   188   void set_offset_array(size_t left, size_t right, u_char offset) {
   189     check_index(right, "right index out of range");
   190     assert(left <= right, "indexes out of order");
   191     size_t num_cards = right - left + 1;
   192     if (UseMemSetInBOT) {
   193       memset(&_offset_array[left], offset, num_cards);
   194     } else {
   195       size_t i = left;
   196       const size_t end = i + num_cards;
   197       for (; i < end; i++) {
   198         _offset_array[i] = offset;
   199       }
   200     }
   201   }
   203   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
   204     check_index(index, "index out of range");
   205     assert(high >= low, "addresses out of order");
   206     check_offset(pointer_delta(high, low), "offset too large");
   207     assert(_offset_array[index] == pointer_delta(high, low), "Wrong offset");
   208   }
   210   bool is_card_boundary(HeapWord* p) const;
   212   // Return the number of slots needed for an offset array
   213   // that covers mem_region_words words.
   214   // We always add an extra slot because if an object
   215   // ends on a card boundary we put a 0 in the next
   216   // offset array slot, so we want that slot always
   217   // to be reserved.
   219   size_t compute_size(size_t mem_region_words) {
   220     size_t number_of_slots = (mem_region_words / N_words) + 1;
   221     return ReservedSpace::page_align_size_up(number_of_slots);
   222   }
   224 public:
   225   enum SomePublicConstants {
   226     LogN = 9,
   227     LogN_words = LogN - LogHeapWordSize,
   228     N_bytes = 1 << LogN,
   229     N_words = 1 << LogN_words
   230   };
   232   // Initialize the table to cover from "base" to (at least)
   233   // "base + init_word_size".  In the future, the table may be expanded
   234   // (see "resize" below) up to the size of "_reserved" (which must be at
   235   // least "init_word_size".) The contents of the initial table are
   236   // undefined; it is the responsibility of the constituent
   237   // G1BlockOffsetTable(s) to initialize cards.
   238   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
   240   // Notes a change in the committed size of the region covered by the
   241   // table.  The "new_word_size" may not be larger than the size of the
   242   // reserved region this table covers.
   243   void resize(size_t new_word_size);
   245   void set_bottom(HeapWord* new_bottom);
   247   // Updates all the BlockOffsetArray's sharing this shared array to
   248   // reflect the current "top"'s of their spaces.
   249   void update_offset_arrays();
   251   // Return the appropriate index into "_offset_array" for "p".
   252   inline size_t index_for(const void* p) const;
   254   // Return the address indicating the start of the region corresponding to
   255   // "index" in "_offset_array".
   256   inline HeapWord* address_for_index(size_t index) const;
   257 };
   259 // And here is the G1BlockOffsetTable subtype that uses the array.
   261 class G1BlockOffsetArray: public G1BlockOffsetTable {
   262   friend class G1BlockOffsetSharedArray;
   263   friend class G1BlockOffsetArrayContigSpace;
   264   friend class VMStructs;
   265 private:
   266   enum SomePrivateConstants {
   267     N_words = G1BlockOffsetSharedArray::N_words,
   268     LogN    = G1BlockOffsetSharedArray::LogN
   269   };
   271   // The following enums are used by do_block_helper
   272   enum Action {
   273     Action_single,      // BOT records a single block (see single_block())
   274     Action_mark,        // BOT marks the start of a block (see mark_block())
   275     Action_check        // Check that BOT records block correctly
   276                         // (see verify_single_block()).
   277   };
   279   // This is the array, which can be shared by several BlockOffsetArray's
   280   // servicing different
   281   G1BlockOffsetSharedArray* _array;
   283   // The space that owns this subregion.
   284   Space* _sp;
   286   // If "_sp" is a contiguous space, the field below is the view of "_sp"
   287   // as a contiguous space, else NULL.
   288   ContiguousSpace* _csp;
   290   // If true, array entries are initialized to 0; otherwise, they are
   291   // initialized to point backwards to the beginning of the covered region.
   292   bool _init_to_zero;
   294   // The portion [_unallocated_block, _sp.end()) of the space that
   295   // is a single block known not to contain any objects.
   296   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
   297   HeapWord* _unallocated_block;
   299   // Sets the entries
   300   // corresponding to the cards starting at "start" and ending at "end"
   301   // to point back to the card before "start": the interval [start, end)
   302   // is right-open.
   303   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
   304   // Same as above, except that the args here are a card _index_ interval
   305   // that is closed: [start_index, end_index]
   306   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
   308   // A helper function for BOT adjustment/verification work
   309   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
   311 protected:
   313   ContiguousSpace* csp() const { return _csp; }
   315   // Returns the address of a block whose start is at most "addr".
   316   // If "has_max_index" is true, "assumes "max_index" is the last valid one
   317   // in the array.
   318   inline HeapWord* block_at_or_preceding(const void* addr,
   319                                          bool has_max_index,
   320                                          size_t max_index) const;
   322   // "q" is a block boundary that is <= "addr"; "n" is the address of the
   323   // next block (or the end of the space.)  Return the address of the
   324   // beginning of the block that contains "addr".  Does so without side
   325   // effects (see, e.g., spec of  block_start.)
   326   inline HeapWord*
   327   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
   328                                          const void* addr) const;
   330   // "q" is a block boundary that is <= "addr"; return the address of the
   331   // beginning of the block that contains "addr".  May have side effects
   332   // on "this", by updating imprecise entries.
   333   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
   334                                                     const void* addr);
   336   // "q" is a block boundary that is <= "addr"; "n" is the address of the
   337   // next block (or the end of the space.)  Return the address of the
   338   // beginning of the block that contains "addr".  May have side effects
   339   // on "this", by updating imprecise entries.
   340   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
   341                                                   HeapWord* n,
   342                                                   const void* addr);
   344   // Requires that "*threshold_" be the first array entry boundary at or
   345   // above "blk_start", and that "*index_" be the corresponding array
   346   // index.  If the block starts at or crosses "*threshold_", records
   347   // "blk_start" as the appropriate block start for the array index
   348   // starting at "*threshold_", and for any other indices crossed by the
   349   // block.  Updates "*threshold_" and "*index_" to correspond to the first
   350   // index after the block end.
   351   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
   352                          HeapWord* blk_start, HeapWord* blk_end);
   354 public:
   355   // The space may not have it's bottom and top set yet, which is why the
   356   // region is passed as a parameter.  If "init_to_zero" is true, the
   357   // elements of the array are initialized to zero.  Otherwise, they are
   358   // initialized to point backwards to the beginning.
   359   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
   360                      bool init_to_zero);
   362   // Note: this ought to be part of the constructor, but that would require
   363   // "this" to be passed as a parameter to a member constructor for
   364   // the containing concrete subtype of Space.
   365   // This would be legal C++, but MS VC++ doesn't allow it.
   366   void set_space(Space* sp);
   368   // Resets the covered region to the given "mr".
   369   void set_region(MemRegion mr);
   371   // Resets the covered region to one with the same _bottom as before but
   372   // the "new_word_size".
   373   void resize(size_t new_word_size);
   375   // These must be guaranteed to work properly (i.e., do nothing)
   376   // when "blk_start" ("blk" for second version) is "NULL".
   377   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   378   virtual void alloc_block(HeapWord* blk, size_t size) {
   379     alloc_block(blk, blk + size);
   380   }
   382   // The following methods are useful and optimized for a
   383   // general, non-contiguous space.
   385   // Given a block [blk_start, blk_start + full_blk_size), and
   386   // a left_blk_size < full_blk_size, adjust the BOT to show two
   387   // blocks [blk_start, blk_start + left_blk_size) and
   388   // [blk_start + left_blk_size, blk_start + full_blk_size).
   389   // It is assumed (and verified in the non-product VM) that the
   390   // BOT was correct for the original block.
   391   void split_block(HeapWord* blk_start, size_t full_blk_size,
   392                            size_t left_blk_size);
   394   // Adjust the BOT to show that it has a single block in the
   395   // range [blk_start, blk_start + size). All necessary BOT
   396   // cards are adjusted, but _unallocated_block isn't.
   397   void single_block(HeapWord* blk_start, HeapWord* blk_end);
   398   void single_block(HeapWord* blk, size_t size) {
   399     single_block(blk, blk + size);
   400   }
   402   // Adjust BOT to show that it has a block in the range
   403   // [blk_start, blk_start + size). Only the first card
   404   // of BOT is touched. It is assumed (and verified in the
   405   // non-product VM) that the remaining cards of the block
   406   // are correct.
   407   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
   408   void mark_block(HeapWord* blk, size_t size) {
   409     mark_block(blk, blk + size);
   410   }
   412   // Adjust _unallocated_block to indicate that a particular
   413   // block has been newly allocated or freed. It is assumed (and
   414   // verified in the non-product VM) that the BOT is correct for
   415   // the given block.
   416   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
   417     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   418     verify_single_block(blk_start, blk_end);
   419     if (BlockOffsetArrayUseUnallocatedBlock) {
   420       _unallocated_block = MAX2(_unallocated_block, blk_end);
   421     }
   422   }
   424   inline void allocated(HeapWord* blk, size_t size) {
   425     allocated(blk, blk + size);
   426   }
   428   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
   430   inline void freed(HeapWord* blk, size_t size);
   432   virtual HeapWord* block_start_unsafe(const void* addr);
   433   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
   435   // Requires "addr" to be the start of a card and returns the
   436   // start of the block that contains the given address.
   437   HeapWord* block_start_careful(const void* addr) const;
   439   // If true, initialize array slots with no allocated blocks to zero.
   440   // Otherwise, make them point back to the front.
   441   bool init_to_zero() { return _init_to_zero; }
   443   // Verification & debugging - ensure that the offset table reflects the fact
   444   // that the block [blk_start, blk_end) or [blk, blk + size) is a
   445   // single block of storage. NOTE: can;t const this because of
   446   // call to non-const do_block_internal() below.
   447   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
   448     if (VerifyBlockOffsetArray) {
   449       do_block_internal(blk_start, blk_end, Action_check);
   450     }
   451   }
   453   inline void verify_single_block(HeapWord* blk, size_t size) {
   454     verify_single_block(blk, blk + size);
   455   }
   457   // Used by region verification. Checks that the contents of the
   458   // BOT reflect that there's a single object that spans the address
   459   // range [obj_start, obj_start + word_size); returns true if this is
   460   // the case, returns false if it's not.
   461   bool verify_for_object(HeapWord* obj_start, size_t word_size) const;
   463   // Verify that the given block is before _unallocated_block
   464   inline void verify_not_unallocated(HeapWord* blk_start,
   465                                      HeapWord* blk_end) const {
   466     if (BlockOffsetArrayUseUnallocatedBlock) {
   467       assert(blk_start < blk_end, "Block inconsistency?");
   468       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
   469     }
   470   }
   472   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
   473     verify_not_unallocated(blk, blk + size);
   474   }
   476   void check_all_cards(size_t left_card, size_t right_card) const;
   478   virtual void print_on(outputStream* out) PRODUCT_RETURN;
   479 };
   481 // A subtype of BlockOffsetArray that takes advantage of the fact
   482 // that its underlying space is a ContiguousSpace, so that its "active"
   483 // region can be more efficiently tracked (than for a non-contiguous space).
   484 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
   485   friend class VMStructs;
   487   // allocation boundary at which offset array must be updated
   488   HeapWord* _next_offset_threshold;
   489   size_t    _next_offset_index;      // index corresponding to that boundary
   491   // Work function to be called when allocation start crosses the next
   492   // threshold in the contig space.
   493   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
   494     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
   495                       blk_start, blk_end);
   496   }
   498  public:
   499   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
   501   // Initialize the threshold to reflect the first boundary after the
   502   // bottom of the covered region.
   503   HeapWord* initialize_threshold();
   505   // Zero out the entry for _bottom (offset will be zero).
   506   void      zero_bottom_entry();
   508   // Return the next threshold, the point at which the table should be
   509   // updated.
   510   HeapWord* threshold() const { return _next_offset_threshold; }
   512   // These must be guaranteed to work properly (i.e., do nothing)
   513   // when "blk_start" ("blk" for second version) is "NULL".  In this
   514   // implementation, that's true because NULL is represented as 0, and thus
   515   // never exceeds the "_next_offset_threshold".
   516   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   517     if (blk_end > _next_offset_threshold)
   518       alloc_block_work1(blk_start, blk_end);
   519   }
   520   void alloc_block(HeapWord* blk, size_t size) {
   521      alloc_block(blk, blk+size);
   522   }
   524   HeapWord* block_start_unsafe(const void* addr);
   525   HeapWord* block_start_unsafe_const(const void* addr) const;
   527   void set_for_starts_humongous(HeapWord* new_top);
   529   virtual void print_on(outputStream* out) PRODUCT_RETURN;
   530 };
   532 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP

mercurial