src/share/vm/code/dependencies.hpp

Wed, 16 Dec 2009 12:54:49 -0500

author
phh
date
Wed, 16 Dec 2009 12:54:49 -0500
changeset 1558
167c2986d91b
parent 435
a61af66fc99e
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6843629: Make current hotspot build part of jdk5 control build
Summary: Source changes for older compilers plus makefile changes.
Reviewed-by: xlu

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 //** Dependencies represent assertions (approximate invariants) within
    26 // the class hierarchy.  An example is an assertion that a given
    27 // method is not overridden; another example is that a type has only
    28 // one concrete subtype.  Compiled code which relies on such
    29 // assertions must be discarded if they are overturned by changes in
    30 // the class hierarchy.  We can think of these assertions as
    31 // approximate invariants, because we expect them to be overturned
    32 // very infrequently.  We are willing to perform expensive recovery
    33 // operations when they are overturned.  The benefit, of course, is
    34 // performing optimistic optimizations (!) on the object code.
    35 //
    36 // Changes in the class hierarchy due to dynamic linking or
    37 // class evolution can violate dependencies.  There is enough
    38 // indexing between classes and nmethods to make dependency
    39 // checking reasonably efficient.
    41 class ciEnv;
    42 class nmethod;
    43 class OopRecorder;
    44 class xmlStream;
    45 class CompileLog;
    46 class DepChange;
    47 class No_Safepoint_Verifier;
    49 class Dependencies: public ResourceObj {
    50  public:
    51   // Note: In the comments on dependency types, most uses of the terms
    52   // subtype and supertype are used in a "non-strict" or "inclusive"
    53   // sense, and are starred to remind the reader of this fact.
    54   // Strict uses of the terms use the word "proper".
    55   //
    56   // Specifically, every class is its own subtype* and supertype*.
    57   // (This trick is easier than continually saying things like "Y is a
    58   // subtype of X or X itself".)
    59   //
    60   // Sometimes we write X > Y to mean X is a proper supertype of Y.
    61   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
    62   // The notation X.m > Y means that Y inherits m from X, while
    63   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
    64   // as *I > A, meaning (abstract) interface I is a super type of A,
    65   // or A.*m > B.m, meaning B.m implements abstract method A.m.
    66   //
    67   // In this module, the terms "subtype" and "supertype" refer to
    68   // Java-level reference type conversions, as detected by
    69   // "instanceof" and performed by "checkcast" operations.  The method
    70   // Klass::is_subtype_of tests these relations.  Note that "subtype"
    71   // is richer than "subclass" (as tested by Klass::is_subclass_of),
    72   // since it takes account of relations involving interface and array
    73   // types.
    74   //
    75   // To avoid needless complexity, dependencies involving array types
    76   // are not accepted.  If you need to make an assertion about an
    77   // array type, make the assertion about its corresponding element
    78   // types.  Any assertion that might change about an array type can
    79   // be converted to an assertion about its element type.
    80   //
    81   // Most dependencies are evaluated over a "context type" CX, which
    82   // stands for the set Subtypes(CX) of every Java type that is a subtype*
    83   // of CX.  When the system loads a new class or interface N, it is
    84   // responsible for re-evaluating changed dependencies whose context
    85   // type now includes N, that is, all super types of N.
    86   //
    87   enum DepType {
    88     end_marker = 0,
    90     // An 'evol' dependency simply notes that the contents of the
    91     // method were used.  If it evolves (is replaced), the nmethod
    92     // must be recompiled.  No other dependencies are implied.
    93     evol_method,
    94     FIRST_TYPE = evol_method,
    96     // A context type CX is a leaf it if has no proper subtype.
    97     leaf_type,
    99     // An abstract class CX has exactly one concrete subtype CC.
   100     abstract_with_unique_concrete_subtype,
   102     // The type CX is purely abstract, with no concrete subtype* at all.
   103     abstract_with_no_concrete_subtype,
   105     // The concrete CX is free of concrete proper subtypes.
   106     concrete_with_no_concrete_subtype,
   108     // Given a method M1 and a context class CX, the set MM(CX, M1) of
   109     // "concrete matching methods" in CX of M1 is the set of every
   110     // concrete M2 for which it is possible to create an invokevirtual
   111     // or invokeinterface call site that can reach either M1 or M2.
   112     // That is, M1 and M2 share a name, signature, and vtable index.
   113     // We wish to notice when the set MM(CX, M1) is just {M1}, or
   114     // perhaps a set of two {M1,M2}, and issue dependencies on this.
   116     // The set MM(CX, M1) can be computed by starting with any matching
   117     // concrete M2 that is inherited into CX, and then walking the
   118     // subtypes* of CX looking for concrete definitions.
   120     // The parameters to this dependency are the method M1 and the
   121     // context class CX.  M1 must be either inherited in CX or defined
   122     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
   123     // than {M1}.
   124     unique_concrete_method,       // one unique concrete method under CX
   126     // An "exclusive" assertion concerns two methods or subtypes, and
   127     // declares that there are at most two (or perhaps later N>2)
   128     // specific items that jointly satisfy the restriction.
   129     // We list all items explicitly rather than just giving their
   130     // count, for robustness in the face of complex schema changes.
   132     // A context class CX (which may be either abstract or concrete)
   133     // has two exclusive concrete subtypes* C1, C2 if every concrete
   134     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
   135     // are equal to CX, then CX itself must be abstract.  But it is
   136     // also possible (for example) that C1 is CX (a concrete class)
   137     // and C2 is a proper subtype of C1.
   138     abstract_with_exclusive_concrete_subtypes_2,
   140     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
   141     exclusive_concrete_methods_2,
   143     // This dependency asserts that no instances of class or it's
   144     // subclasses require finalization registration.
   145     no_finalizable_subclasses,
   147     TYPE_LIMIT
   148   };
   149   enum {
   150     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
   152     // handy categorizations of dependency types:
   153     all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
   154     non_ctxk_types = (1<<evol_method),
   155     ctxk_types     = all_types & ~non_ctxk_types,
   157     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
   159     // A "context type" is a class or interface that
   160     // provides context for evaluating a dependency.
   161     // When present, it is one of the arguments (dep_context_arg).
   162     //
   163     // If a dependency does not have a context type, there is a
   164     // default context, depending on the type of the dependency.
   165     // This bit signals that a default context has been compressed away.
   166     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
   167   };
   169   static const char* dep_name(DepType dept);
   170   static int         dep_args(DepType dept);
   171   static int  dep_context_arg(DepType dept) {
   172     return dept_in_mask(dept, ctxk_types)? 0: -1;
   173   }
   175  private:
   176   // State for writing a new set of dependencies:
   177   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
   178   GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
   180   static const char* _dep_name[TYPE_LIMIT];
   181   static int         _dep_args[TYPE_LIMIT];
   183   static bool dept_in_mask(DepType dept, int mask) {
   184     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
   185   }
   187   bool note_dep_seen(int dept, ciObject* x) {
   188     assert(dept < BitsPerInt, "oob");
   189     int x_id = x->ident();
   190     assert(_dep_seen != NULL, "deps must be writable");
   191     int seen = _dep_seen->at_grow(x_id, 0);
   192     _dep_seen->at_put(x_id, seen | (1<<dept));
   193     // return true if we've already seen dept/x
   194     return (seen & (1<<dept)) != 0;
   195   }
   197   bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
   198                         int ctxk_i, ciKlass* ctxk);
   200   void sort_all_deps();
   201   size_t estimate_size_in_bytes();
   203   // Initialize _deps, etc.
   204   void initialize(ciEnv* env);
   206   // State for making a new set of dependencies:
   207   OopRecorder* _oop_recorder;
   209   // Logging support
   210   CompileLog* _log;
   212   address  _content_bytes;  // everything but the oop references, encoded
   213   size_t   _size_in_bytes;
   215  public:
   216   // Make a new empty dependencies set.
   217   Dependencies(ciEnv* env) {
   218     initialize(env);
   219   }
   221  private:
   222   // Check for a valid context type.
   223   // Enforce the restriction against array types.
   224   static void check_ctxk(ciKlass* ctxk) {
   225     assert(ctxk->is_instance_klass(), "java types only");
   226   }
   227   static void check_ctxk_concrete(ciKlass* ctxk) {
   228     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
   229   }
   230   static void check_ctxk_abstract(ciKlass* ctxk) {
   231     check_ctxk(ctxk);
   232     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
   233   }
   235   void assert_common_1(DepType dept, ciObject* x);
   236   void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
   237   void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
   239  public:
   240   // Adding assertions to a new dependency set at compile time:
   241   void assert_evol_method(ciMethod* m);
   242   void assert_leaf_type(ciKlass* ctxk);
   243   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
   244   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
   245   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
   246   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
   247   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
   248   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
   249   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
   251   // Define whether a given method or type is concrete.
   252   // These methods define the term "concrete" as used in this module.
   253   // For this module, an "abstract" class is one which is non-concrete.
   254   //
   255   // Future optimizations may allow some classes to remain
   256   // non-concrete until their first instantiation, and allow some
   257   // methods to remain non-concrete until their first invocation.
   258   // In that case, there would be a middle ground between concrete
   259   // and abstract (as defined by the Java language and VM).
   260   static bool is_concrete_klass(klassOop k);    // k is instantiable
   261   static bool is_concrete_method(methodOop m);  // m is invocable
   262   static Klass* find_finalizable_subclass(Klass* k);
   264   // These versions of the concreteness queries work through the CI.
   265   // The CI versions are allowed to skew sometimes from the VM
   266   // (oop-based) versions.  The cost of such a difference is a
   267   // (safely) aborted compilation, or a deoptimization, or a missed
   268   // optimization opportunity.
   269   //
   270   // In order to prevent spurious assertions, query results must
   271   // remain stable within any single ciEnv instance.  (I.e., they must
   272   // not go back into the VM to get their value; they must cache the
   273   // bit in the CI, either eagerly or lazily.)
   274   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
   275   static bool is_concrete_method(ciMethod* m);       // m appears invocable
   276   static bool has_finalizable_subclass(ciInstanceKlass* k);
   278   // As a general rule, it is OK to compile under the assumption that
   279   // a given type or method is concrete, even if it at some future
   280   // point becomes abstract.  So dependency checking is one-sided, in
   281   // that it permits supposedly concrete classes or methods to turn up
   282   // as really abstract.  (This shouldn't happen, except during class
   283   // evolution, but that's the logic of the checking.)  However, if a
   284   // supposedly abstract class or method suddenly becomes concrete, a
   285   // dependency on it must fail.
   287   // Checking old assertions at run-time (in the VM only):
   288   static klassOop check_evol_method(methodOop m);
   289   static klassOop check_leaf_type(klassOop ctxk);
   290   static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
   291                                                               DepChange* changes = NULL);
   292   static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
   293                                                           DepChange* changes = NULL);
   294   static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
   295                                                           DepChange* changes = NULL);
   296   static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
   297                                                DepChange* changes = NULL);
   298   static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
   299                                                                   DepChange* changes = NULL);
   300   static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
   301                                                    DepChange* changes = NULL);
   302   static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
   303                                                       DepChange* changes = NULL);
   304   // A returned klassOop is NULL if the dependency assertion is still
   305   // valid.  A non-NULL klassOop is a 'witness' to the assertion
   306   // failure, a point in the class hierarchy where the assertion has
   307   // been proven false.  For example, if check_leaf_type returns
   308   // non-NULL, the value is a subtype of the supposed leaf type.  This
   309   // witness value may be useful for logging the dependency failure.
   310   // Note that, when a dependency fails, there may be several possible
   311   // witnesses to the failure.  The value returned from the check_foo
   312   // method is chosen arbitrarily.
   314   // The 'changes' value, if non-null, requests a limited spot-check
   315   // near the indicated recent changes in the class hierarchy.
   316   // It is used by DepStream::spot_check_dependency_at.
   318   // Detecting possible new assertions:
   319   static klassOop  find_unique_concrete_subtype(klassOop ctxk);
   320   static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
   321   static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
   322   static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
   324   // Create the encoding which will be stored in an nmethod.
   325   void encode_content_bytes();
   327   address content_bytes() {
   328     assert(_content_bytes != NULL, "encode it first");
   329     return _content_bytes;
   330   }
   331   size_t size_in_bytes() {
   332     assert(_content_bytes != NULL, "encode it first");
   333     return _size_in_bytes;
   334   }
   336   OopRecorder* oop_recorder() { return _oop_recorder; }
   337   CompileLog*  log()          { return _log; }
   339   void copy_to(nmethod* nm);
   341   void log_all_dependencies();
   342   void log_dependency(DepType dept, int nargs, ciObject* args[]) {
   343     write_dependency_to(log(), dept, nargs, args);
   344   }
   345   void log_dependency(DepType dept,
   346                       ciObject* x0,
   347                       ciObject* x1 = NULL,
   348                       ciObject* x2 = NULL) {
   349     if (log() == NULL)  return;
   350     ciObject* args[max_arg_count];
   351     args[0] = x0;
   352     args[1] = x1;
   353     args[2] = x2;
   354     assert(2 < max_arg_count, "");
   355     log_dependency(dept, dep_args(dept), args);
   356   }
   358   static void write_dependency_to(CompileLog* log,
   359                                   DepType dept,
   360                                   int nargs, ciObject* args[],
   361                                   klassOop witness = NULL);
   362   static void write_dependency_to(CompileLog* log,
   363                                   DepType dept,
   364                                   int nargs, oop args[],
   365                                   klassOop witness = NULL);
   366   static void write_dependency_to(xmlStream* xtty,
   367                                   DepType dept,
   368                                   int nargs, oop args[],
   369                                   klassOop witness = NULL);
   370   static void print_dependency(DepType dept,
   371                                int nargs, oop args[],
   372                                klassOop witness = NULL);
   374  private:
   375   // helper for encoding common context types as zero:
   376   static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
   378   static klassOop ctxk_encoded_as_null(DepType dept, oop x);
   380  public:
   381   // Use this to iterate over an nmethod's dependency set.
   382   // Works on new and old dependency sets.
   383   // Usage:
   384   //
   385   // ;
   386   // Dependencies::DepType dept;
   387   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
   388   //   ...
   389   // }
   390   //
   391   // The caller must be in the VM, since oops are not wrapped in handles.
   392   class DepStream {
   393   private:
   394     nmethod*              _code;   // null if in a compiler thread
   395     Dependencies*         _deps;   // null if not in a compiler thread
   396     CompressedReadStream  _bytes;
   397 #ifdef ASSERT
   398     size_t                _byte_limit;
   399 #endif
   401     // iteration variables:
   402     DepType               _type;
   403     int                   _xi[max_arg_count+1];
   405     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
   407     inline oop recorded_oop_at(int i);
   408         // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
   410     klassOop check_dependency_impl(DepChange* changes);
   412   public:
   413     DepStream(Dependencies* deps)
   414       : _deps(deps),
   415         _code(NULL),
   416         _bytes(deps->content_bytes())
   417     {
   418       initial_asserts(deps->size_in_bytes());
   419     }
   420     DepStream(nmethod* code)
   421       : _deps(NULL),
   422         _code(code),
   423         _bytes(code->dependencies_begin())
   424     {
   425       initial_asserts(code->dependencies_size());
   426     }
   428     bool next();
   430     DepType type()               { return _type; }
   431     int argument_count()         { return dep_args(type()); }
   432     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
   433                                    return _xi[i]; }
   434     oop argument(int i);         // => recorded_oop_at(argument_index(i))
   435     klassOop context_type();
   437     methodOop method_argument(int i) {
   438       oop x = argument(i);
   439       assert(x->is_method(), "type");
   440       return (methodOop) x;
   441     }
   442     klassOop type_argument(int i) {
   443       oop x = argument(i);
   444       assert(x->is_klass(), "type");
   445       return (klassOop) x;
   446     }
   448     // The point of the whole exercise:  Is this dep is still OK?
   449     klassOop check_dependency() {
   450       return check_dependency_impl(NULL);
   451     }
   452     // A lighter version:  Checks only around recent changes in a class
   453     // hierarchy.  (See Universe::flush_dependents_on.)
   454     klassOop spot_check_dependency_at(DepChange& changes);
   456     // Log the current dependency to xtty or compilation log.
   457     void log_dependency(klassOop witness = NULL);
   459     // Print the current dependency to tty.
   460     void print_dependency(klassOop witness = NULL, bool verbose = false);
   461   };
   462   friend class Dependencies::DepStream;
   464   static void print_statistics() PRODUCT_RETURN;
   465 };
   467 // A class hierarchy change coming through the VM (under the Compile_lock).
   468 // The change is structured as a single new type with any number of supers
   469 // and implemented interface types.  Other than the new type, any of the
   470 // super types can be context types for a relevant dependency, which the
   471 // new type could invalidate.
   472 class DepChange : public StackObj {
   473  public:
   474   enum ChangeType {
   475     NO_CHANGE = 0,              // an uninvolved klass
   476     Change_new_type,            // a newly loaded type
   477     Change_new_sub,             // a super with a new subtype
   478     Change_new_impl,            // an interface with a new implementation
   479     CHANGE_LIMIT,
   480     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
   481   };
   483  private:
   484   // each change set is rooted in exactly one new type (at present):
   485   KlassHandle _new_type;
   487   void initialize();
   489  public:
   490   // notes the new type, marks it and all its super-types
   491   DepChange(KlassHandle new_type)
   492     : _new_type(new_type)
   493   {
   494     initialize();
   495   }
   497   // cleans up the marks
   498   ~DepChange();
   500   klassOop new_type()                   { return _new_type(); }
   502   // involves_context(k) is true if k is new_type or any of the super types
   503   bool involves_context(klassOop k);
   505   // Usage:
   506   // for (DepChange::ContextStream str(changes); str.next(); ) {
   507   //   klassOop k = str.klass();
   508   //   switch (str.change_type()) {
   509   //     ...
   510   //   }
   511   // }
   512   class ContextStream : public StackObj {
   513    private:
   514     DepChange&  _changes;
   515     friend class DepChange;
   517     // iteration variables:
   518     ChangeType  _change_type;
   519     klassOop    _klass;
   520     objArrayOop _ti_base;    // i.e., transitive_interfaces
   521     int         _ti_index;
   522     int         _ti_limit;
   524     // start at the beginning:
   525     void start() {
   526       klassOop new_type = _changes.new_type();
   527       _change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
   528       _klass = new_type;
   529       _ti_base = NULL;
   530       _ti_index = 0;
   531       _ti_limit = 0;
   532     }
   534    public:
   535     ContextStream(DepChange& changes)
   536       : _changes(changes)
   537     { start(); }
   539     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
   540       : _changes(changes)
   541       // the nsv argument makes it safe to hold oops like _klass
   542     { start(); }
   544     bool next();
   546     ChangeType change_type()     { return _change_type; }
   547     klassOop   klass()           { return _klass; }
   548   };
   549   friend class DepChange::ContextStream;
   551   void print();
   552 };

mercurial