src/os/windows/vm/os_windows.cpp

Wed, 16 Dec 2009 12:54:49 -0500

author
phh
date
Wed, 16 Dec 2009 12:54:49 -0500
changeset 1558
167c2986d91b
parent 1397
aafa4232dfd7
child 1650
f19bf22685cc
permissions
-rw-r--r--

6843629: Make current hotspot build part of jdk5 control build
Summary: Source changes for older compilers plus makefile changes.
Reviewed-by: xlu

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // do not include precompiled header file
    31 # include "incls/_os_windows.cpp.incl"
    33 #ifdef _DEBUG
    34 #include <crtdbg.h>
    35 #endif
    38 #include <windows.h>
    39 #include <sys/types.h>
    40 #include <sys/stat.h>
    41 #include <sys/timeb.h>
    42 #include <objidl.h>
    43 #include <shlobj.h>
    45 #include <malloc.h>
    46 #include <signal.h>
    47 #include <direct.h>
    48 #include <errno.h>
    49 #include <fcntl.h>
    50 #include <io.h>
    51 #include <process.h>              // For _beginthreadex(), _endthreadex()
    52 #include <imagehlp.h>             // For os::dll_address_to_function_name
    54 /* for enumerating dll libraries */
    55 #include <tlhelp32.h>
    56 #include <vdmdbg.h>
    58 // for timer info max values which include all bits
    59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 // For DLL loading/load error detection
    62 // Values of PE COFF
    63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
    64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
    66 static HANDLE main_process;
    67 static HANDLE main_thread;
    68 static int    main_thread_id;
    70 static FILETIME process_creation_time;
    71 static FILETIME process_exit_time;
    72 static FILETIME process_user_time;
    73 static FILETIME process_kernel_time;
    75 #ifdef _WIN64
    76 PVOID  topLevelVectoredExceptionHandler = NULL;
    77 #endif
    79 #ifdef _M_IA64
    80 #define __CPU__ ia64
    81 #elif _M_AMD64
    82 #define __CPU__ amd64
    83 #else
    84 #define __CPU__ i486
    85 #endif
    87 // save DLL module handle, used by GetModuleFileName
    89 HINSTANCE vm_lib_handle;
    90 static int getLastErrorString(char *buf, size_t len);
    92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
    93   switch (reason) {
    94     case DLL_PROCESS_ATTACH:
    95       vm_lib_handle = hinst;
    96       if(ForceTimeHighResolution)
    97         timeBeginPeriod(1L);
    98       break;
    99     case DLL_PROCESS_DETACH:
   100       if(ForceTimeHighResolution)
   101         timeEndPeriod(1L);
   102 #ifdef _WIN64
   103       if (topLevelVectoredExceptionHandler != NULL) {
   104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   105         topLevelVectoredExceptionHandler = NULL;
   106       }
   107 #endif
   108       break;
   109     default:
   110       break;
   111   }
   112   return true;
   113 }
   115 static inline double fileTimeAsDouble(FILETIME* time) {
   116   const double high  = (double) ((unsigned int) ~0);
   117   const double split = 10000000.0;
   118   double result = (time->dwLowDateTime / split) +
   119                    time->dwHighDateTime * (high/split);
   120   return result;
   121 }
   123 // Implementation of os
   125 bool os::getenv(const char* name, char* buffer, int len) {
   126  int result = GetEnvironmentVariable(name, buffer, len);
   127  return result > 0 && result < len;
   128 }
   131 // No setuid programs under Windows.
   132 bool os::have_special_privileges() {
   133   return false;
   134 }
   137 // This method is  a periodic task to check for misbehaving JNI applications
   138 // under CheckJNI, we can add any periodic checks here.
   139 // For Windows at the moment does nothing
   140 void os::run_periodic_checks() {
   141   return;
   142 }
   144 #ifndef _WIN64
   145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   146 #endif
   147 void os::init_system_properties_values() {
   148   /* sysclasspath, java_home, dll_dir */
   149   {
   150       char *home_path;
   151       char *dll_path;
   152       char *pslash;
   153       char *bin = "\\bin";
   154       char home_dir[MAX_PATH];
   156       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   157           os::jvm_path(home_dir, sizeof(home_dir));
   158           // Found the full path to jvm[_g].dll.
   159           // Now cut the path to <java_home>/jre if we can.
   160           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   161           pslash = strrchr(home_dir, '\\');
   162           if (pslash != NULL) {
   163               *pslash = '\0';                 /* get rid of \{client|server} */
   164               pslash = strrchr(home_dir, '\\');
   165               if (pslash != NULL)
   166                   *pslash = '\0';             /* get rid of \bin */
   167           }
   168       }
   170       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   171       if (home_path == NULL)
   172           return;
   173       strcpy(home_path, home_dir);
   174       Arguments::set_java_home(home_path);
   176       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   177       if (dll_path == NULL)
   178           return;
   179       strcpy(dll_path, home_dir);
   180       strcat(dll_path, bin);
   181       Arguments::set_dll_dir(dll_path);
   183       if (!set_boot_path('\\', ';'))
   184           return;
   185   }
   187   /* library_path */
   188   #define EXT_DIR "\\lib\\ext"
   189   #define BIN_DIR "\\bin"
   190   #define PACKAGE_DIR "\\Sun\\Java"
   191   {
   192     /* Win32 library search order (See the documentation for LoadLibrary):
   193      *
   194      * 1. The directory from which application is loaded.
   195      * 2. The current directory
   196      * 3. The system wide Java Extensions directory (Java only)
   197      * 4. System directory (GetSystemDirectory)
   198      * 5. Windows directory (GetWindowsDirectory)
   199      * 6. The PATH environment variable
   200      */
   202     char *library_path;
   203     char tmp[MAX_PATH];
   204     char *path_str = ::getenv("PATH");
   206     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   207         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   209     library_path[0] = '\0';
   211     GetModuleFileName(NULL, tmp, sizeof(tmp));
   212     *(strrchr(tmp, '\\')) = '\0';
   213     strcat(library_path, tmp);
   215     strcat(library_path, ";.");
   217     GetWindowsDirectory(tmp, sizeof(tmp));
   218     strcat(library_path, ";");
   219     strcat(library_path, tmp);
   220     strcat(library_path, PACKAGE_DIR BIN_DIR);
   222     GetSystemDirectory(tmp, sizeof(tmp));
   223     strcat(library_path, ";");
   224     strcat(library_path, tmp);
   226     GetWindowsDirectory(tmp, sizeof(tmp));
   227     strcat(library_path, ";");
   228     strcat(library_path, tmp);
   230     if (path_str) {
   231         strcat(library_path, ";");
   232         strcat(library_path, path_str);
   233     }
   235     Arguments::set_library_path(library_path);
   236     FREE_C_HEAP_ARRAY(char, library_path);
   237   }
   239   /* Default extensions directory */
   240   {
   241     char path[MAX_PATH];
   242     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   243     GetWindowsDirectory(path, MAX_PATH);
   244     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   245         path, PACKAGE_DIR, EXT_DIR);
   246     Arguments::set_ext_dirs(buf);
   247   }
   248   #undef EXT_DIR
   249   #undef BIN_DIR
   250   #undef PACKAGE_DIR
   252   /* Default endorsed standards directory. */
   253   {
   254     #define ENDORSED_DIR "\\lib\\endorsed"
   255     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   256     char * buf = NEW_C_HEAP_ARRAY(char, len);
   257     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   258     Arguments::set_endorsed_dirs(buf);
   259     #undef ENDORSED_DIR
   260   }
   262 #ifndef _WIN64
   263   SetUnhandledExceptionFilter(Handle_FLT_Exception);
   264 #endif
   266   // Done
   267   return;
   268 }
   270 void os::breakpoint() {
   271   DebugBreak();
   272 }
   274 // Invoked from the BREAKPOINT Macro
   275 extern "C" void breakpoint() {
   276   os::breakpoint();
   277 }
   279 // Returns an estimate of the current stack pointer. Result must be guaranteed
   280 // to point into the calling threads stack, and be no lower than the current
   281 // stack pointer.
   283 address os::current_stack_pointer() {
   284   int dummy;
   285   address sp = (address)&dummy;
   286   return sp;
   287 }
   289 // os::current_stack_base()
   290 //
   291 //   Returns the base of the stack, which is the stack's
   292 //   starting address.  This function must be called
   293 //   while running on the stack of the thread being queried.
   295 address os::current_stack_base() {
   296   MEMORY_BASIC_INFORMATION minfo;
   297   address stack_bottom;
   298   size_t stack_size;
   300   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   301   stack_bottom =  (address)minfo.AllocationBase;
   302   stack_size = minfo.RegionSize;
   304   // Add up the sizes of all the regions with the same
   305   // AllocationBase.
   306   while( 1 )
   307   {
   308     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   309     if ( stack_bottom == (address)minfo.AllocationBase )
   310       stack_size += minfo.RegionSize;
   311     else
   312       break;
   313   }
   315 #ifdef _M_IA64
   316   // IA64 has memory and register stacks
   317   stack_size = stack_size / 2;
   318 #endif
   319   return stack_bottom + stack_size;
   320 }
   322 size_t os::current_stack_size() {
   323   size_t sz;
   324   MEMORY_BASIC_INFORMATION minfo;
   325   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   326   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   327   return sz;
   328 }
   330 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   331   const struct tm* time_struct_ptr = localtime(clock);
   332   if (time_struct_ptr != NULL) {
   333     *res = *time_struct_ptr;
   334     return res;
   335   }
   336   return NULL;
   337 }
   339 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   341 // Thread start routine for all new Java threads
   342 static unsigned __stdcall java_start(Thread* thread) {
   343   // Try to randomize the cache line index of hot stack frames.
   344   // This helps when threads of the same stack traces evict each other's
   345   // cache lines. The threads can be either from the same JVM instance, or
   346   // from different JVM instances. The benefit is especially true for
   347   // processors with hyperthreading technology.
   348   static int counter = 0;
   349   int pid = os::current_process_id();
   350   _alloca(((pid ^ counter++) & 7) * 128);
   352   OSThread* osthr = thread->osthread();
   353   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   355   if (UseNUMA) {
   356     int lgrp_id = os::numa_get_group_id();
   357     if (lgrp_id != -1) {
   358       thread->set_lgrp_id(lgrp_id);
   359     }
   360   }
   363   if (UseVectoredExceptions) {
   364     // If we are using vectored exception we don't need to set a SEH
   365     thread->run();
   366   }
   367   else {
   368     // Install a win32 structured exception handler around every thread created
   369     // by VM, so VM can genrate error dump when an exception occurred in non-
   370     // Java thread (e.g. VM thread).
   371     __try {
   372        thread->run();
   373     } __except(topLevelExceptionFilter(
   374                (_EXCEPTION_POINTERS*)_exception_info())) {
   375         // Nothing to do.
   376     }
   377   }
   379   // One less thread is executing
   380   // When the VMThread gets here, the main thread may have already exited
   381   // which frees the CodeHeap containing the Atomic::add code
   382   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   383     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   384   }
   386   return 0;
   387 }
   389 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   390   // Allocate the OSThread object
   391   OSThread* osthread = new OSThread(NULL, NULL);
   392   if (osthread == NULL) return NULL;
   394   // Initialize support for Java interrupts
   395   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   396   if (interrupt_event == NULL) {
   397     delete osthread;
   398     return NULL;
   399   }
   400   osthread->set_interrupt_event(interrupt_event);
   402   // Store info on the Win32 thread into the OSThread
   403   osthread->set_thread_handle(thread_handle);
   404   osthread->set_thread_id(thread_id);
   406   if (UseNUMA) {
   407     int lgrp_id = os::numa_get_group_id();
   408     if (lgrp_id != -1) {
   409       thread->set_lgrp_id(lgrp_id);
   410     }
   411   }
   413   // Initial thread state is INITIALIZED, not SUSPENDED
   414   osthread->set_state(INITIALIZED);
   416   return osthread;
   417 }
   420 bool os::create_attached_thread(JavaThread* thread) {
   421 #ifdef ASSERT
   422   thread->verify_not_published();
   423 #endif
   424   HANDLE thread_h;
   425   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   426                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   427     fatal("DuplicateHandle failed\n");
   428   }
   429   OSThread* osthread = create_os_thread(thread, thread_h,
   430                                         (int)current_thread_id());
   431   if (osthread == NULL) {
   432      return false;
   433   }
   435   // Initial thread state is RUNNABLE
   436   osthread->set_state(RUNNABLE);
   438   thread->set_osthread(osthread);
   439   return true;
   440 }
   442 bool os::create_main_thread(JavaThread* thread) {
   443 #ifdef ASSERT
   444   thread->verify_not_published();
   445 #endif
   446   if (_starting_thread == NULL) {
   447     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   448      if (_starting_thread == NULL) {
   449         return false;
   450      }
   451   }
   453   // The primordial thread is runnable from the start)
   454   _starting_thread->set_state(RUNNABLE);
   456   thread->set_osthread(_starting_thread);
   457   return true;
   458 }
   460 // Allocate and initialize a new OSThread
   461 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   462   unsigned thread_id;
   464   // Allocate the OSThread object
   465   OSThread* osthread = new OSThread(NULL, NULL);
   466   if (osthread == NULL) {
   467     return false;
   468   }
   470   // Initialize support for Java interrupts
   471   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   472   if (interrupt_event == NULL) {
   473     delete osthread;
   474     return NULL;
   475   }
   476   osthread->set_interrupt_event(interrupt_event);
   477   osthread->set_interrupted(false);
   479   thread->set_osthread(osthread);
   481   if (stack_size == 0) {
   482     switch (thr_type) {
   483     case os::java_thread:
   484       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   485       if (JavaThread::stack_size_at_create() > 0)
   486         stack_size = JavaThread::stack_size_at_create();
   487       break;
   488     case os::compiler_thread:
   489       if (CompilerThreadStackSize > 0) {
   490         stack_size = (size_t)(CompilerThreadStackSize * K);
   491         break;
   492       } // else fall through:
   493         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   494     case os::vm_thread:
   495     case os::pgc_thread:
   496     case os::cgc_thread:
   497     case os::watcher_thread:
   498       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   499       break;
   500     }
   501   }
   503   // Create the Win32 thread
   504   //
   505   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   506   // does not specify stack size. Instead, it specifies the size of
   507   // initially committed space. The stack size is determined by
   508   // PE header in the executable. If the committed "stack_size" is larger
   509   // than default value in the PE header, the stack is rounded up to the
   510   // nearest multiple of 1MB. For example if the launcher has default
   511   // stack size of 320k, specifying any size less than 320k does not
   512   // affect the actual stack size at all, it only affects the initial
   513   // commitment. On the other hand, specifying 'stack_size' larger than
   514   // default value may cause significant increase in memory usage, because
   515   // not only the stack space will be rounded up to MB, but also the
   516   // entire space is committed upfront.
   517   //
   518   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   519   // for CreateThread() that can treat 'stack_size' as stack size. However we
   520   // are not supposed to call CreateThread() directly according to MSDN
   521   // document because JVM uses C runtime library. The good news is that the
   522   // flag appears to work with _beginthredex() as well.
   524 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   525 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   526 #endif
   528   HANDLE thread_handle =
   529     (HANDLE)_beginthreadex(NULL,
   530                            (unsigned)stack_size,
   531                            (unsigned (__stdcall *)(void*)) java_start,
   532                            thread,
   533                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   534                            &thread_id);
   535   if (thread_handle == NULL) {
   536     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   537     // without the flag.
   538     thread_handle =
   539     (HANDLE)_beginthreadex(NULL,
   540                            (unsigned)stack_size,
   541                            (unsigned (__stdcall *)(void*)) java_start,
   542                            thread,
   543                            CREATE_SUSPENDED,
   544                            &thread_id);
   545   }
   546   if (thread_handle == NULL) {
   547     // Need to clean up stuff we've allocated so far
   548     CloseHandle(osthread->interrupt_event());
   549     thread->set_osthread(NULL);
   550     delete osthread;
   551     return NULL;
   552   }
   554   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   556   // Store info on the Win32 thread into the OSThread
   557   osthread->set_thread_handle(thread_handle);
   558   osthread->set_thread_id(thread_id);
   560   // Initial thread state is INITIALIZED, not SUSPENDED
   561   osthread->set_state(INITIALIZED);
   563   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   564   return true;
   565 }
   568 // Free Win32 resources related to the OSThread
   569 void os::free_thread(OSThread* osthread) {
   570   assert(osthread != NULL, "osthread not set");
   571   CloseHandle(osthread->thread_handle());
   572   CloseHandle(osthread->interrupt_event());
   573   delete osthread;
   574 }
   577 static int    has_performance_count = 0;
   578 static jlong first_filetime;
   579 static jlong initial_performance_count;
   580 static jlong performance_frequency;
   583 jlong as_long(LARGE_INTEGER x) {
   584   jlong result = 0; // initialization to avoid warning
   585   set_high(&result, x.HighPart);
   586   set_low(&result,  x.LowPart);
   587   return result;
   588 }
   591 jlong os::elapsed_counter() {
   592   LARGE_INTEGER count;
   593   if (has_performance_count) {
   594     QueryPerformanceCounter(&count);
   595     return as_long(count) - initial_performance_count;
   596   } else {
   597     FILETIME wt;
   598     GetSystemTimeAsFileTime(&wt);
   599     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   600   }
   601 }
   604 jlong os::elapsed_frequency() {
   605   if (has_performance_count) {
   606     return performance_frequency;
   607   } else {
   608    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   609    return 10000000;
   610   }
   611 }
   614 julong os::available_memory() {
   615   return win32::available_memory();
   616 }
   618 julong os::win32::available_memory() {
   619   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   620   // value if total memory is larger than 4GB
   621   MEMORYSTATUSEX ms;
   622   ms.dwLength = sizeof(ms);
   623   GlobalMemoryStatusEx(&ms);
   625   return (julong)ms.ullAvailPhys;
   626 }
   628 julong os::physical_memory() {
   629   return win32::physical_memory();
   630 }
   632 julong os::allocatable_physical_memory(julong size) {
   633 #ifdef _LP64
   634   return size;
   635 #else
   636   // Limit to 1400m because of the 2gb address space wall
   637   return MIN2(size, (julong)1400*M);
   638 #endif
   639 }
   641 // VC6 lacks DWORD_PTR
   642 #if _MSC_VER < 1300
   643 typedef UINT_PTR DWORD_PTR;
   644 #endif
   646 int os::active_processor_count() {
   647   DWORD_PTR lpProcessAffinityMask = 0;
   648   DWORD_PTR lpSystemAffinityMask = 0;
   649   int proc_count = processor_count();
   650   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   651       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   652     // Nof active processors is number of bits in process affinity mask
   653     int bitcount = 0;
   654     while (lpProcessAffinityMask != 0) {
   655       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   656       bitcount++;
   657     }
   658     return bitcount;
   659   } else {
   660     return proc_count;
   661   }
   662 }
   664 bool os::distribute_processes(uint length, uint* distribution) {
   665   // Not yet implemented.
   666   return false;
   667 }
   669 bool os::bind_to_processor(uint processor_id) {
   670   // Not yet implemented.
   671   return false;
   672 }
   674 static void initialize_performance_counter() {
   675   LARGE_INTEGER count;
   676   if (QueryPerformanceFrequency(&count)) {
   677     has_performance_count = 1;
   678     performance_frequency = as_long(count);
   679     QueryPerformanceCounter(&count);
   680     initial_performance_count = as_long(count);
   681   } else {
   682     has_performance_count = 0;
   683     FILETIME wt;
   684     GetSystemTimeAsFileTime(&wt);
   685     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   686   }
   687 }
   690 double os::elapsedTime() {
   691   return (double) elapsed_counter() / (double) elapsed_frequency();
   692 }
   695 // Windows format:
   696 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   697 // Java format:
   698 //   Java standards require the number of milliseconds since 1/1/1970
   700 // Constant offset - calculated using offset()
   701 static jlong  _offset   = 116444736000000000;
   702 // Fake time counter for reproducible results when debugging
   703 static jlong  fake_time = 0;
   705 #ifdef ASSERT
   706 // Just to be safe, recalculate the offset in debug mode
   707 static jlong _calculated_offset = 0;
   708 static int   _has_calculated_offset = 0;
   710 jlong offset() {
   711   if (_has_calculated_offset) return _calculated_offset;
   712   SYSTEMTIME java_origin;
   713   java_origin.wYear          = 1970;
   714   java_origin.wMonth         = 1;
   715   java_origin.wDayOfWeek     = 0; // ignored
   716   java_origin.wDay           = 1;
   717   java_origin.wHour          = 0;
   718   java_origin.wMinute        = 0;
   719   java_origin.wSecond        = 0;
   720   java_origin.wMilliseconds  = 0;
   721   FILETIME jot;
   722   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   723     fatal1("Error = %d\nWindows error", GetLastError());
   724   }
   725   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   726   _has_calculated_offset = 1;
   727   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   728   return _calculated_offset;
   729 }
   730 #else
   731 jlong offset() {
   732   return _offset;
   733 }
   734 #endif
   736 jlong windows_to_java_time(FILETIME wt) {
   737   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   738   return (a - offset()) / 10000;
   739 }
   741 FILETIME java_to_windows_time(jlong l) {
   742   jlong a = (l * 10000) + offset();
   743   FILETIME result;
   744   result.dwHighDateTime = high(a);
   745   result.dwLowDateTime  = low(a);
   746   return result;
   747 }
   749 // For now, we say that Windows does not support vtime.  I have no idea
   750 // whether it can actually be made to (DLD, 9/13/05).
   752 bool os::supports_vtime() { return false; }
   753 bool os::enable_vtime() { return false; }
   754 bool os::vtime_enabled() { return false; }
   755 double os::elapsedVTime() {
   756   // better than nothing, but not much
   757   return elapsedTime();
   758 }
   760 jlong os::javaTimeMillis() {
   761   if (UseFakeTimers) {
   762     return fake_time++;
   763   } else {
   764     FILETIME wt;
   765     GetSystemTimeAsFileTime(&wt);
   766     return windows_to_java_time(wt);
   767   }
   768 }
   770 #define NANOS_PER_SEC         CONST64(1000000000)
   771 #define NANOS_PER_MILLISEC    1000000
   772 jlong os::javaTimeNanos() {
   773   if (!has_performance_count) {
   774     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   775   } else {
   776     LARGE_INTEGER current_count;
   777     QueryPerformanceCounter(&current_count);
   778     double current = as_long(current_count);
   779     double freq = performance_frequency;
   780     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   781     return time;
   782   }
   783 }
   785 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   786   if (!has_performance_count) {
   787     // javaTimeMillis() doesn't have much percision,
   788     // but it is not going to wrap -- so all 64 bits
   789     info_ptr->max_value = ALL_64_BITS;
   791     // this is a wall clock timer, so may skip
   792     info_ptr->may_skip_backward = true;
   793     info_ptr->may_skip_forward = true;
   794   } else {
   795     jlong freq = performance_frequency;
   796     if (freq < NANOS_PER_SEC) {
   797       // the performance counter is 64 bits and we will
   798       // be multiplying it -- so no wrap in 64 bits
   799       info_ptr->max_value = ALL_64_BITS;
   800     } else if (freq > NANOS_PER_SEC) {
   801       // use the max value the counter can reach to
   802       // determine the max value which could be returned
   803       julong max_counter = (julong)ALL_64_BITS;
   804       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   805     } else {
   806       // the performance counter is 64 bits and we will
   807       // be using it directly -- so no wrap in 64 bits
   808       info_ptr->max_value = ALL_64_BITS;
   809     }
   811     // using a counter, so no skipping
   812     info_ptr->may_skip_backward = false;
   813     info_ptr->may_skip_forward = false;
   814   }
   815   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   816 }
   818 char* os::local_time_string(char *buf, size_t buflen) {
   819   SYSTEMTIME st;
   820   GetLocalTime(&st);
   821   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   822                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   823   return buf;
   824 }
   826 bool os::getTimesSecs(double* process_real_time,
   827                      double* process_user_time,
   828                      double* process_system_time) {
   829   HANDLE h_process = GetCurrentProcess();
   830   FILETIME create_time, exit_time, kernel_time, user_time;
   831   BOOL result = GetProcessTimes(h_process,
   832                                &create_time,
   833                                &exit_time,
   834                                &kernel_time,
   835                                &user_time);
   836   if (result != 0) {
   837     FILETIME wt;
   838     GetSystemTimeAsFileTime(&wt);
   839     jlong rtc_millis = windows_to_java_time(wt);
   840     jlong user_millis = windows_to_java_time(user_time);
   841     jlong system_millis = windows_to_java_time(kernel_time);
   842     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   843     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   844     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   845     return true;
   846   } else {
   847     return false;
   848   }
   849 }
   851 void os::shutdown() {
   853   // allow PerfMemory to attempt cleanup of any persistent resources
   854   perfMemory_exit();
   856   // flush buffered output, finish log files
   857   ostream_abort();
   859   // Check for abort hook
   860   abort_hook_t abort_hook = Arguments::abort_hook();
   861   if (abort_hook != NULL) {
   862     abort_hook();
   863   }
   864 }
   866 void os::abort(bool dump_core)
   867 {
   868   os::shutdown();
   869   // no core dump on Windows
   870   ::exit(1);
   871 }
   873 // Die immediately, no exit hook, no abort hook, no cleanup.
   874 void os::die() {
   875   _exit(-1);
   876 }
   878 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   879 //  * dirent_md.c       1.15 00/02/02
   880 //
   881 // The declarations for DIR and struct dirent are in jvm_win32.h.
   883 /* Caller must have already run dirname through JVM_NativePath, which removes
   884    duplicate slashes and converts all instances of '/' into '\\'. */
   886 DIR *
   887 os::opendir(const char *dirname)
   888 {
   889     assert(dirname != NULL, "just checking");   // hotspot change
   890     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   891     DWORD fattr;                                // hotspot change
   892     char alt_dirname[4] = { 0, 0, 0, 0 };
   894     if (dirp == 0) {
   895         errno = ENOMEM;
   896         return 0;
   897     }
   899     /*
   900      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   901      * as a directory in FindFirstFile().  We detect this case here and
   902      * prepend the current drive name.
   903      */
   904     if (dirname[1] == '\0' && dirname[0] == '\\') {
   905         alt_dirname[0] = _getdrive() + 'A' - 1;
   906         alt_dirname[1] = ':';
   907         alt_dirname[2] = '\\';
   908         alt_dirname[3] = '\0';
   909         dirname = alt_dirname;
   910     }
   912     dirp->path = (char *)malloc(strlen(dirname) + 5);
   913     if (dirp->path == 0) {
   914         free(dirp);
   915         errno = ENOMEM;
   916         return 0;
   917     }
   918     strcpy(dirp->path, dirname);
   920     fattr = GetFileAttributes(dirp->path);
   921     if (fattr == 0xffffffff) {
   922         free(dirp->path);
   923         free(dirp);
   924         errno = ENOENT;
   925         return 0;
   926     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   927         free(dirp->path);
   928         free(dirp);
   929         errno = ENOTDIR;
   930         return 0;
   931     }
   933     /* Append "*.*", or possibly "\\*.*", to path */
   934     if (dirp->path[1] == ':'
   935         && (dirp->path[2] == '\0'
   936             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   937         /* No '\\' needed for cases like "Z:" or "Z:\" */
   938         strcat(dirp->path, "*.*");
   939     } else {
   940         strcat(dirp->path, "\\*.*");
   941     }
   943     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   944     if (dirp->handle == INVALID_HANDLE_VALUE) {
   945         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   946             free(dirp->path);
   947             free(dirp);
   948             errno = EACCES;
   949             return 0;
   950         }
   951     }
   952     return dirp;
   953 }
   955 /* parameter dbuf unused on Windows */
   957 struct dirent *
   958 os::readdir(DIR *dirp, dirent *dbuf)
   959 {
   960     assert(dirp != NULL, "just checking");      // hotspot change
   961     if (dirp->handle == INVALID_HANDLE_VALUE) {
   962         return 0;
   963     }
   965     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
   967     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
   968         if (GetLastError() == ERROR_INVALID_HANDLE) {
   969             errno = EBADF;
   970             return 0;
   971         }
   972         FindClose(dirp->handle);
   973         dirp->handle = INVALID_HANDLE_VALUE;
   974     }
   976     return &dirp->dirent;
   977 }
   979 int
   980 os::closedir(DIR *dirp)
   981 {
   982     assert(dirp != NULL, "just checking");      // hotspot change
   983     if (dirp->handle != INVALID_HANDLE_VALUE) {
   984         if (!FindClose(dirp->handle)) {
   985             errno = EBADF;
   986             return -1;
   987         }
   988         dirp->handle = INVALID_HANDLE_VALUE;
   989     }
   990     free(dirp->path);
   991     free(dirp);
   992     return 0;
   993 }
   995 const char* os::dll_file_extension() { return ".dll"; }
   997 const char * os::get_temp_directory()
   998 {
   999     static char path_buf[MAX_PATH];
  1000     if (GetTempPath(MAX_PATH, path_buf)>0)
  1001       return path_buf;
  1002     else{
  1003       path_buf[0]='\0';
  1004       return path_buf;
  1008 static bool file_exists(const char* filename) {
  1009   if (filename == NULL || strlen(filename) == 0) {
  1010     return false;
  1012   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1015 void os::dll_build_name(char *buffer, size_t buflen,
  1016                         const char* pname, const char* fname) {
  1017   // Copied from libhpi
  1018   const size_t pnamelen = pname ? strlen(pname) : 0;
  1019   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1021   // Quietly truncates on buffer overflow. Should be an error.
  1022   if (pnamelen + strlen(fname) + 10 > buflen) {
  1023     *buffer = '\0';
  1024     return;
  1027   if (pnamelen == 0) {
  1028     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1029   } else if (c == ':' || c == '\\') {
  1030     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1031   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1032     int n;
  1033     char** pelements = split_path(pname, &n);
  1034     for (int i = 0 ; i < n ; i++) {
  1035       char* path = pelements[i];
  1036       // Really shouldn't be NULL, but check can't hurt
  1037       size_t plen = (path == NULL) ? 0 : strlen(path);
  1038       if (plen == 0) {
  1039         continue; // skip the empty path values
  1041       const char lastchar = path[plen - 1];
  1042       if (lastchar == ':' || lastchar == '\\') {
  1043         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1044       } else {
  1045         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1047       if (file_exists(buffer)) {
  1048         break;
  1051     // release the storage
  1052     for (int i = 0 ; i < n ; i++) {
  1053       if (pelements[i] != NULL) {
  1054         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1057     if (pelements != NULL) {
  1058       FREE_C_HEAP_ARRAY(char*, pelements);
  1060   } else {
  1061     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1065 // Needs to be in os specific directory because windows requires another
  1066 // header file <direct.h>
  1067 const char* os::get_current_directory(char *buf, int buflen) {
  1068   return _getcwd(buf, buflen);
  1071 //-----------------------------------------------------------
  1072 // Helper functions for fatal error handler
  1074 // The following library functions are resolved dynamically at runtime:
  1076 // PSAPI functions, for Windows NT, 2000, XP
  1078 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1079 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1080 typedef struct _MODULEINFO {
  1081     LPVOID lpBaseOfDll;
  1082     DWORD SizeOfImage;
  1083     LPVOID EntryPoint;
  1084 } MODULEINFO, *LPMODULEINFO;
  1086 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1087 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1088 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1090 // ToolHelp Functions, for Windows 95, 98 and ME
  1092 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1093 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1094 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1096 bool _has_psapi;
  1097 bool _psapi_init = false;
  1098 bool _has_toolhelp;
  1100 static bool _init_psapi() {
  1101   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1102   if( psapi == NULL ) return false ;
  1104   _EnumProcessModules = CAST_TO_FN_PTR(
  1105       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1106       GetProcAddress(psapi, "EnumProcessModules")) ;
  1107   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1108       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1109       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1110   _GetModuleInformation = CAST_TO_FN_PTR(
  1111       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1112       GetProcAddress(psapi, "GetModuleInformation"));
  1114   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1115   _psapi_init = true;
  1116   return _has_psapi;
  1119 static bool _init_toolhelp() {
  1120   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1121   if (kernel32 == NULL) return false ;
  1123   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1124       HANDLE(WINAPI *)(DWORD,DWORD),
  1125       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1126   _Module32First = CAST_TO_FN_PTR(
  1127       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1128       GetProcAddress(kernel32, "Module32First" ));
  1129   _Module32Next = CAST_TO_FN_PTR(
  1130       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1131       GetProcAddress(kernel32, "Module32Next" ));
  1133   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1134   return _has_toolhelp;
  1137 #ifdef _WIN64
  1138 // Helper routine which returns true if address in
  1139 // within the NTDLL address space.
  1140 //
  1141 static bool _addr_in_ntdll( address addr )
  1143   HMODULE hmod;
  1144   MODULEINFO minfo;
  1146   hmod = GetModuleHandle("NTDLL.DLL");
  1147   if ( hmod == NULL ) return false;
  1148   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1149                                &minfo, sizeof(MODULEINFO)) )
  1150     return false;
  1152   if ( (addr >= minfo.lpBaseOfDll) &&
  1153        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1154     return true;
  1155   else
  1156     return false;
  1158 #endif
  1161 // Enumerate all modules for a given process ID
  1162 //
  1163 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1164 // different API for doing this. We use PSAPI.DLL on NT based
  1165 // Windows and ToolHelp on 95/98/Me.
  1167 // Callback function that is called by enumerate_modules() on
  1168 // every DLL module.
  1169 // Input parameters:
  1170 //    int       pid,
  1171 //    char*     module_file_name,
  1172 //    address   module_base_addr,
  1173 //    unsigned  module_size,
  1174 //    void*     param
  1175 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1177 // enumerate_modules for Windows NT, using PSAPI
  1178 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1180   HANDLE   hProcess ;
  1182 # define MAX_NUM_MODULES 128
  1183   HMODULE     modules[MAX_NUM_MODULES];
  1184   static char filename[ MAX_PATH ];
  1185   int         result = 0;
  1187   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1189   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1190                          FALSE, pid ) ;
  1191   if (hProcess == NULL) return 0;
  1193   DWORD size_needed;
  1194   if (!_EnumProcessModules(hProcess, modules,
  1195                            sizeof(modules), &size_needed)) {
  1196       CloseHandle( hProcess );
  1197       return 0;
  1200   // number of modules that are currently loaded
  1201   int num_modules = size_needed / sizeof(HMODULE);
  1203   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1204     // Get Full pathname:
  1205     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1206                              filename, sizeof(filename))) {
  1207         filename[0] = '\0';
  1210     MODULEINFO modinfo;
  1211     if (!_GetModuleInformation(hProcess, modules[i],
  1212                                &modinfo, sizeof(modinfo))) {
  1213         modinfo.lpBaseOfDll = NULL;
  1214         modinfo.SizeOfImage = 0;
  1217     // Invoke callback function
  1218     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1219                   modinfo.SizeOfImage, param);
  1220     if (result) break;
  1223   CloseHandle( hProcess ) ;
  1224   return result;
  1228 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1229 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1231   HANDLE                hSnapShot ;
  1232   static MODULEENTRY32  modentry ;
  1233   int                   result = 0;
  1235   if (!_has_toolhelp) return 0;
  1237   // Get a handle to a Toolhelp snapshot of the system
  1238   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1239   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1240       return FALSE ;
  1243   // iterate through all modules
  1244   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1245   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1247   while( not_done ) {
  1248     // invoke the callback
  1249     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1250                 modentry.modBaseSize, param);
  1251     if (result) break;
  1253     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1254     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1257   CloseHandle(hSnapShot);
  1258   return result;
  1261 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1263   // Get current process ID if caller doesn't provide it.
  1264   if (!pid) pid = os::current_process_id();
  1266   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1267   else                    return _enumerate_modules_windows(pid, func, param);
  1270 struct _modinfo {
  1271    address addr;
  1272    char*   full_path;   // point to a char buffer
  1273    int     buflen;      // size of the buffer
  1274    address base_addr;
  1275 };
  1277 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1278                                   unsigned size, void * param) {
  1279    struct _modinfo *pmod = (struct _modinfo *)param;
  1280    if (!pmod) return -1;
  1282    if (base_addr     <= pmod->addr &&
  1283        base_addr+size > pmod->addr) {
  1284      // if a buffer is provided, copy path name to the buffer
  1285      if (pmod->full_path) {
  1286        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1288      pmod->base_addr = base_addr;
  1289      return 1;
  1291    return 0;
  1294 bool os::dll_address_to_library_name(address addr, char* buf,
  1295                                      int buflen, int* offset) {
  1296 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1297 //       return the full path to the DLL file, sometimes it returns path
  1298 //       to the corresponding PDB file (debug info); sometimes it only
  1299 //       returns partial path, which makes life painful.
  1301    struct _modinfo mi;
  1302    mi.addr      = addr;
  1303    mi.full_path = buf;
  1304    mi.buflen    = buflen;
  1305    int pid = os::current_process_id();
  1306    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1307       // buf already contains path name
  1308       if (offset) *offset = addr - mi.base_addr;
  1309       return true;
  1310    } else {
  1311       if (buf) buf[0] = '\0';
  1312       if (offset) *offset = -1;
  1313       return false;
  1317 bool os::dll_address_to_function_name(address addr, char *buf,
  1318                                       int buflen, int *offset) {
  1319   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
  1320   // we need to initialize imagehlp/dbghelp, then load symbol table
  1321   // for every module. That's too much work to do after a fatal error.
  1322   // For an example on how to implement this function, see 1.4.2.
  1323   if (offset)  *offset  = -1;
  1324   if (buf) buf[0] = '\0';
  1325   return false;
  1328 void* os::dll_lookup(void* handle, const char* name) {
  1329   return GetProcAddress((HMODULE)handle, name);
  1332 // save the start and end address of jvm.dll into param[0] and param[1]
  1333 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1334                     unsigned size, void * param) {
  1335    if (!param) return -1;
  1337    if (base_addr     <= (address)_locate_jvm_dll &&
  1338        base_addr+size > (address)_locate_jvm_dll) {
  1339          ((address*)param)[0] = base_addr;
  1340          ((address*)param)[1] = base_addr + size;
  1341          return 1;
  1343    return 0;
  1346 address vm_lib_location[2];    // start and end address of jvm.dll
  1348 // check if addr is inside jvm.dll
  1349 bool os::address_is_in_vm(address addr) {
  1350   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1351     int pid = os::current_process_id();
  1352     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1353       assert(false, "Can't find jvm module.");
  1354       return false;
  1358   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1361 // print module info; param is outputStream*
  1362 static int _print_module(int pid, char* fname, address base,
  1363                          unsigned size, void* param) {
  1364    if (!param) return -1;
  1366    outputStream* st = (outputStream*)param;
  1368    address end_addr = base + size;
  1369    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1370    return 0;
  1373 // Loads .dll/.so and
  1374 // in case of error it checks if .dll/.so was built for the
  1375 // same architecture as Hotspot is running on
  1376 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1378   void * result = LoadLibrary(name);
  1379   if (result != NULL)
  1381     return result;
  1384   long errcode = GetLastError();
  1385   if (errcode == ERROR_MOD_NOT_FOUND) {
  1386     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1387     ebuf[ebuflen-1]='\0';
  1388     return NULL;
  1391   // Parsing dll below
  1392   // If we can read dll-info and find that dll was built
  1393   // for an architecture other than Hotspot is running in
  1394   // - then print to buffer "DLL was built for a different architecture"
  1395   // else call getLastErrorString to obtain system error message
  1397   // Read system error message into ebuf
  1398   // It may or may not be overwritten below (in the for loop and just above)
  1399   getLastErrorString(ebuf, (size_t) ebuflen);
  1400   ebuf[ebuflen-1]='\0';
  1401   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1402   if (file_descriptor<0)
  1404     return NULL;
  1407   uint32_t signature_offset;
  1408   uint16_t lib_arch=0;
  1409   bool failed_to_get_lib_arch=
  1411     //Go to position 3c in the dll
  1412     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1413     ||
  1414     // Read loacation of signature
  1415     (sizeof(signature_offset)!=
  1416       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1417     ||
  1418     //Go to COFF File Header in dll
  1419     //that is located after"signature" (4 bytes long)
  1420     (os::seek_to_file_offset(file_descriptor,
  1421       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1422     ||
  1423     //Read field that contains code of architecture
  1424     // that dll was build for
  1425     (sizeof(lib_arch)!=
  1426       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1427   );
  1429   ::close(file_descriptor);
  1430   if (failed_to_get_lib_arch)
  1432     // file i/o error - report getLastErrorString(...) msg
  1433     return NULL;
  1436   typedef struct
  1438     uint16_t arch_code;
  1439     char* arch_name;
  1440   } arch_t;
  1442   static const arch_t arch_array[]={
  1443     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1444     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1445     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1446   };
  1447   #if   (defined _M_IA64)
  1448     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1449   #elif (defined _M_AMD64)
  1450     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1451   #elif (defined _M_IX86)
  1452     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1453   #else
  1454     #error Method os::dll_load requires that one of following \
  1455            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1456   #endif
  1459   // Obtain a string for printf operation
  1460   // lib_arch_str shall contain string what platform this .dll was built for
  1461   // running_arch_str shall string contain what platform Hotspot was built for
  1462   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1463   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1465     if (lib_arch==arch_array[i].arch_code)
  1466       lib_arch_str=arch_array[i].arch_name;
  1467     if (running_arch==arch_array[i].arch_code)
  1468       running_arch_str=arch_array[i].arch_name;
  1471   assert(running_arch_str,
  1472     "Didn't find runing architecture code in arch_array");
  1474   // If the architure is right
  1475   // but some other error took place - report getLastErrorString(...) msg
  1476   if (lib_arch == running_arch)
  1478     return NULL;
  1481   if (lib_arch_str!=NULL)
  1483     ::_snprintf(ebuf, ebuflen-1,
  1484       "Can't load %s-bit .dll on a %s-bit platform",
  1485       lib_arch_str,running_arch_str);
  1487   else
  1489     // don't know what architecture this dll was build for
  1490     ::_snprintf(ebuf, ebuflen-1,
  1491       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1492       lib_arch,running_arch_str);
  1495   return NULL;
  1499 void os::print_dll_info(outputStream *st) {
  1500    int pid = os::current_process_id();
  1501    st->print_cr("Dynamic libraries:");
  1502    enumerate_modules(pid, _print_module, (void *)st);
  1505 // function pointer to Windows API "GetNativeSystemInfo".
  1506 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
  1507 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
  1509 void os::print_os_info(outputStream* st) {
  1510   st->print("OS:");
  1512   OSVERSIONINFOEX osvi;
  1513   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1514   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1516   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1517     st->print_cr("N/A");
  1518     return;
  1521   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1522   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1523     switch (os_vers) {
  1524     case 3051: st->print(" Windows NT 3.51"); break;
  1525     case 4000: st->print(" Windows NT 4.0"); break;
  1526     case 5000: st->print(" Windows 2000"); break;
  1527     case 5001: st->print(" Windows XP"); break;
  1528     case 5002:
  1529     case 6000:
  1530     case 6001: {
  1531       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1532       // find out whether we are running on 64 bit processor or not.
  1533       SYSTEM_INFO si;
  1534       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1535       // Check to see if _GetNativeSystemInfo has been initialized.
  1536       if (_GetNativeSystemInfo == NULL) {
  1537         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
  1538         _GetNativeSystemInfo =
  1539             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
  1540                            GetProcAddress(hKernel32,
  1541                                           "GetNativeSystemInfo"));
  1542         if (_GetNativeSystemInfo == NULL)
  1543           GetSystemInfo(&si);
  1544       } else {
  1545         _GetNativeSystemInfo(&si);
  1547       if (os_vers == 5002) {
  1548         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1549             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1550           st->print(" Windows XP x64 Edition");
  1551         else
  1552             st->print(" Windows Server 2003 family");
  1553       } else if (os_vers == 6000) {
  1554         if (osvi.wProductType == VER_NT_WORKSTATION)
  1555             st->print(" Windows Vista");
  1556         else
  1557             st->print(" Windows Server 2008");
  1558         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1559             st->print(" , 64 bit");
  1560       } else if (os_vers == 6001) {
  1561         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1562             st->print(" Windows 7");
  1563         } else {
  1564             // Unrecognized windows, print out its major and minor versions
  1565             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1567         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1568             st->print(" , 64 bit");
  1569       } else { // future os
  1570         // Unrecognized windows, print out its major and minor versions
  1571         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1572         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1573             st->print(" , 64 bit");
  1575       break;
  1577     default: // future windows, print out its major and minor versions
  1578       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1580   } else {
  1581     switch (os_vers) {
  1582     case 4000: st->print(" Windows 95"); break;
  1583     case 4010: st->print(" Windows 98"); break;
  1584     case 4090: st->print(" Windows Me"); break;
  1585     default: // future windows, print out its major and minor versions
  1586       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1589   st->print(" Build %d", osvi.dwBuildNumber);
  1590   st->print(" %s", osvi.szCSDVersion);           // service pack
  1591   st->cr();
  1594 void os::print_memory_info(outputStream* st) {
  1595   st->print("Memory:");
  1596   st->print(" %dk page", os::vm_page_size()>>10);
  1598   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1599   // value if total memory is larger than 4GB
  1600   MEMORYSTATUSEX ms;
  1601   ms.dwLength = sizeof(ms);
  1602   GlobalMemoryStatusEx(&ms);
  1604   st->print(", physical %uk", os::physical_memory() >> 10);
  1605   st->print("(%uk free)", os::available_memory() >> 10);
  1607   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1608   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1609   st->cr();
  1612 void os::print_siginfo(outputStream *st, void *siginfo) {
  1613   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1614   st->print("siginfo:");
  1615   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1617   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1618       er->NumberParameters >= 2) {
  1619       switch (er->ExceptionInformation[0]) {
  1620       case 0: st->print(", reading address"); break;
  1621       case 1: st->print(", writing address"); break;
  1622       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1623                             er->ExceptionInformation[0]);
  1625       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1626   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1627              er->NumberParameters >= 2 && UseSharedSpaces) {
  1628     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1629     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1630       st->print("\n\nError accessing class data sharing archive."       \
  1631                 " Mapped file inaccessible during execution, "          \
  1632                 " possible disk/network problem.");
  1634   } else {
  1635     int num = er->NumberParameters;
  1636     if (num > 0) {
  1637       st->print(", ExceptionInformation=");
  1638       for (int i = 0; i < num; i++) {
  1639         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1643   st->cr();
  1646 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1647   // do nothing
  1650 static char saved_jvm_path[MAX_PATH] = {0};
  1652 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1653 void os::jvm_path(char *buf, jint buflen) {
  1654   // Error checking.
  1655   if (buflen < MAX_PATH) {
  1656     assert(false, "must use a large-enough buffer");
  1657     buf[0] = '\0';
  1658     return;
  1660   // Lazy resolve the path to current module.
  1661   if (saved_jvm_path[0] != 0) {
  1662     strcpy(buf, saved_jvm_path);
  1663     return;
  1666   GetModuleFileName(vm_lib_handle, buf, buflen);
  1667   strcpy(saved_jvm_path, buf);
  1671 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1672 #ifndef _WIN64
  1673   st->print("_");
  1674 #endif
  1678 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1679 #ifndef _WIN64
  1680   st->print("@%d", args_size  * sizeof(int));
  1681 #endif
  1684 // sun.misc.Signal
  1685 // NOTE that this is a workaround for an apparent kernel bug where if
  1686 // a signal handler for SIGBREAK is installed then that signal handler
  1687 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1688 // See bug 4416763.
  1689 static void (*sigbreakHandler)(int) = NULL;
  1691 static void UserHandler(int sig, void *siginfo, void *context) {
  1692   os::signal_notify(sig);
  1693   // We need to reinstate the signal handler each time...
  1694   os::signal(sig, (void*)UserHandler);
  1697 void* os::user_handler() {
  1698   return (void*) UserHandler;
  1701 void* os::signal(int signal_number, void* handler) {
  1702   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1703     void (*oldHandler)(int) = sigbreakHandler;
  1704     sigbreakHandler = (void (*)(int)) handler;
  1705     return (void*) oldHandler;
  1706   } else {
  1707     return (void*)::signal(signal_number, (void (*)(int))handler);
  1711 void os::signal_raise(int signal_number) {
  1712   raise(signal_number);
  1715 // The Win32 C runtime library maps all console control events other than ^C
  1716 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1717 // logoff, and shutdown events.  We therefore install our own console handler
  1718 // that raises SIGTERM for the latter cases.
  1719 //
  1720 static BOOL WINAPI consoleHandler(DWORD event) {
  1721   switch(event) {
  1722     case CTRL_C_EVENT:
  1723       if (is_error_reported()) {
  1724         // Ctrl-C is pressed during error reporting, likely because the error
  1725         // handler fails to abort. Let VM die immediately.
  1726         os::die();
  1729       os::signal_raise(SIGINT);
  1730       return TRUE;
  1731       break;
  1732     case CTRL_BREAK_EVENT:
  1733       if (sigbreakHandler != NULL) {
  1734         (*sigbreakHandler)(SIGBREAK);
  1736       return TRUE;
  1737       break;
  1738     case CTRL_CLOSE_EVENT:
  1739     case CTRL_LOGOFF_EVENT:
  1740     case CTRL_SHUTDOWN_EVENT:
  1741       os::signal_raise(SIGTERM);
  1742       return TRUE;
  1743       break;
  1744     default:
  1745       break;
  1747   return FALSE;
  1750 /*
  1751  * The following code is moved from os.cpp for making this
  1752  * code platform specific, which it is by its very nature.
  1753  */
  1755 // Return maximum OS signal used + 1 for internal use only
  1756 // Used as exit signal for signal_thread
  1757 int os::sigexitnum_pd(){
  1758   return NSIG;
  1761 // a counter for each possible signal value, including signal_thread exit signal
  1762 static volatile jint pending_signals[NSIG+1] = { 0 };
  1763 static HANDLE sig_sem;
  1765 void os::signal_init_pd() {
  1766   // Initialize signal structures
  1767   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1769   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1771   // Programs embedding the VM do not want it to attempt to receive
  1772   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1773   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1774   // the VM is run as part of a Windows NT service (i.e., a servlet
  1775   // engine in a web server), the correct behavior is for any console
  1776   // control handler to return FALSE, not TRUE, because the OS's
  1777   // "final" handler for such events allows the process to continue if
  1778   // it is a service (while terminating it if it is not a service).
  1779   // To make this behavior uniform and the mechanism simpler, we
  1780   // completely disable the VM's usage of these console events if -Xrs
  1781   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1782   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1783   // case.  See bugs 4323062, 4345157, and related bugs.
  1785   if (!ReduceSignalUsage) {
  1786     // Add a CTRL-C handler
  1787     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1791 void os::signal_notify(int signal_number) {
  1792   BOOL ret;
  1794   Atomic::inc(&pending_signals[signal_number]);
  1795   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1796   assert(ret != 0, "ReleaseSemaphore() failed");
  1799 static int check_pending_signals(bool wait_for_signal) {
  1800   DWORD ret;
  1801   while (true) {
  1802     for (int i = 0; i < NSIG + 1; i++) {
  1803       jint n = pending_signals[i];
  1804       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1805         return i;
  1808     if (!wait_for_signal) {
  1809       return -1;
  1812     JavaThread *thread = JavaThread::current();
  1814     ThreadBlockInVM tbivm(thread);
  1816     bool threadIsSuspended;
  1817     do {
  1818       thread->set_suspend_equivalent();
  1819       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1820       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1821       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1823       // were we externally suspended while we were waiting?
  1824       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1825       if (threadIsSuspended) {
  1826         //
  1827         // The semaphore has been incremented, but while we were waiting
  1828         // another thread suspended us. We don't want to continue running
  1829         // while suspended because that would surprise the thread that
  1830         // suspended us.
  1831         //
  1832         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1833         assert(ret != 0, "ReleaseSemaphore() failed");
  1835         thread->java_suspend_self();
  1837     } while (threadIsSuspended);
  1841 int os::signal_lookup() {
  1842   return check_pending_signals(false);
  1845 int os::signal_wait() {
  1846   return check_pending_signals(true);
  1849 // Implicit OS exception handling
  1851 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1852   JavaThread* thread = JavaThread::current();
  1853   // Save pc in thread
  1854 #ifdef _M_IA64
  1855   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1856   // Set pc to handler
  1857   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1858 #elif _M_AMD64
  1859   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1860   // Set pc to handler
  1861   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1862 #else
  1863   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1864   // Set pc to handler
  1865   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1866 #endif
  1868   // Continue the execution
  1869   return EXCEPTION_CONTINUE_EXECUTION;
  1873 // Used for PostMortemDump
  1874 extern "C" void safepoints();
  1875 extern "C" void find(int x);
  1876 extern "C" void events();
  1878 // According to Windows API documentation, an illegal instruction sequence should generate
  1879 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1880 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1881 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1883 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1885 // From "Execution Protection in the Windows Operating System" draft 0.35
  1886 // Once a system header becomes available, the "real" define should be
  1887 // included or copied here.
  1888 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  1890 #define def_excpt(val) #val, val
  1892 struct siglabel {
  1893   char *name;
  1894   int   number;
  1895 };
  1897 struct siglabel exceptlabels[] = {
  1898     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  1899     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  1900     def_excpt(EXCEPTION_BREAKPOINT),
  1901     def_excpt(EXCEPTION_SINGLE_STEP),
  1902     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  1903     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  1904     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  1905     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  1906     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  1907     def_excpt(EXCEPTION_FLT_OVERFLOW),
  1908     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  1909     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  1910     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  1911     def_excpt(EXCEPTION_INT_OVERFLOW),
  1912     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  1913     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  1914     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  1915     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  1916     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  1917     def_excpt(EXCEPTION_STACK_OVERFLOW),
  1918     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  1919     def_excpt(EXCEPTION_GUARD_PAGE),
  1920     def_excpt(EXCEPTION_INVALID_HANDLE),
  1921     NULL, 0
  1922 };
  1924 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  1925   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  1926     if (exceptlabels[i].number == exception_code) {
  1927        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  1928        return buf;
  1932   return NULL;
  1935 //-----------------------------------------------------------------------------
  1936 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1937   // handle exception caused by idiv; should only happen for -MinInt/-1
  1938   // (division by zero is handled explicitly)
  1939 #ifdef _M_IA64
  1940   assert(0, "Fix Handle_IDiv_Exception");
  1941 #elif _M_AMD64
  1942   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1943   address pc = (address)ctx->Rip;
  1944   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1945   assert(pc[0] == 0xF7, "not an idiv opcode");
  1946   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1947   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  1948   // set correct result values and continue after idiv instruction
  1949   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1950   ctx->Rax = (DWORD)min_jint;      // result
  1951   ctx->Rdx = (DWORD)0;             // remainder
  1952   // Continue the execution
  1953 #else
  1954   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1955   address pc = (address)ctx->Eip;
  1956   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1957   assert(pc[0] == 0xF7, "not an idiv opcode");
  1958   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1959   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  1960   // set correct result values and continue after idiv instruction
  1961   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1962   ctx->Eax = (DWORD)min_jint;      // result
  1963   ctx->Edx = (DWORD)0;             // remainder
  1964   // Continue the execution
  1965 #endif
  1966   return EXCEPTION_CONTINUE_EXECUTION;
  1969 #ifndef  _WIN64
  1970 //-----------------------------------------------------------------------------
  1971 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1972   // handle exception caused by native mothod modifying control word
  1973   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1974   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1976   switch (exception_code) {
  1977     case EXCEPTION_FLT_DENORMAL_OPERAND:
  1978     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  1979     case EXCEPTION_FLT_INEXACT_RESULT:
  1980     case EXCEPTION_FLT_INVALID_OPERATION:
  1981     case EXCEPTION_FLT_OVERFLOW:
  1982     case EXCEPTION_FLT_STACK_CHECK:
  1983     case EXCEPTION_FLT_UNDERFLOW:
  1984       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  1985       if (fp_control_word != ctx->FloatSave.ControlWord) {
  1986         // Restore FPCW and mask out FLT exceptions
  1987         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  1988         // Mask out pending FLT exceptions
  1989         ctx->FloatSave.StatusWord &=  0xffffff00;
  1990         return EXCEPTION_CONTINUE_EXECUTION;
  1993   return EXCEPTION_CONTINUE_SEARCH;
  1995 #else //_WIN64
  1996 /*
  1997   On Windows, the mxcsr control bits are non-volatile across calls
  1998   See also CR 6192333
  1999   If EXCEPTION_FLT_* happened after some native method modified
  2000   mxcsr - it is not a jvm fault.
  2001   However should we decide to restore of mxcsr after a faulty
  2002   native method we can uncomment following code
  2003       jint MxCsr = INITIAL_MXCSR;
  2004         // we can't use StubRoutines::addr_mxcsr_std()
  2005         // because in Win64 mxcsr is not saved there
  2006       if (MxCsr != ctx->MxCsr) {
  2007         ctx->MxCsr = MxCsr;
  2008         return EXCEPTION_CONTINUE_EXECUTION;
  2011 */
  2012 #endif //_WIN64
  2015 // Fatal error reporting is single threaded so we can make this a
  2016 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2017 // it.
  2018 static char saved_error_file[MAX_PATH] = {0};
  2020 void os::set_error_file(const char *logfile) {
  2021   if (strlen(logfile) <= MAX_PATH) {
  2022     strncpy(saved_error_file, logfile, MAX_PATH);
  2026 static inline void report_error(Thread* t, DWORD exception_code,
  2027                                 address addr, void* siginfo, void* context) {
  2028   VMError err(t, exception_code, addr, siginfo, context);
  2029   err.report_and_die();
  2031   // If UseOsErrorReporting, this will return here and save the error file
  2032   // somewhere where we can find it in the minidump.
  2035 //-----------------------------------------------------------------------------
  2036 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2037   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2038   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2039 #ifdef _M_IA64
  2040   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2041 #elif _M_AMD64
  2042   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2043 #else
  2044   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2045 #endif
  2046   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2048 #ifndef _WIN64
  2049   // Execution protection violation - win32 running on AMD64 only
  2050   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2051   // This is safe to do because we have a new/unique ExceptionInformation
  2052   // code for this condition.
  2053   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2054     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2055     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2056     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2058     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2059       int page_size = os::vm_page_size();
  2061       // Make sure the pc and the faulting address are sane.
  2062       //
  2063       // If an instruction spans a page boundary, and the page containing
  2064       // the beginning of the instruction is executable but the following
  2065       // page is not, the pc and the faulting address might be slightly
  2066       // different - we still want to unguard the 2nd page in this case.
  2067       //
  2068       // 15 bytes seems to be a (very) safe value for max instruction size.
  2069       bool pc_is_near_addr =
  2070         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2071       bool instr_spans_page_boundary =
  2072         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2073                          (intptr_t) page_size) > 0);
  2075       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2076         static volatile address last_addr =
  2077           (address) os::non_memory_address_word();
  2079         // In conservative mode, don't unguard unless the address is in the VM
  2080         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2081             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2083           // Set memory to RWX and retry
  2084           address page_start =
  2085             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2086           bool res = os::protect_memory((char*) page_start, page_size,
  2087                                         os::MEM_PROT_RWX);
  2089           if (PrintMiscellaneous && Verbose) {
  2090             char buf[256];
  2091             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2092                          "at " INTPTR_FORMAT
  2093                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2094                          page_start, (res ? "success" : strerror(errno)));
  2095             tty->print_raw_cr(buf);
  2098           // Set last_addr so if we fault again at the same address, we don't
  2099           // end up in an endless loop.
  2100           //
  2101           // There are two potential complications here.  Two threads trapping
  2102           // at the same address at the same time could cause one of the
  2103           // threads to think it already unguarded, and abort the VM.  Likely
  2104           // very rare.
  2105           //
  2106           // The other race involves two threads alternately trapping at
  2107           // different addresses and failing to unguard the page, resulting in
  2108           // an endless loop.  This condition is probably even more unlikely
  2109           // than the first.
  2110           //
  2111           // Although both cases could be avoided by using locks or thread
  2112           // local last_addr, these solutions are unnecessary complication:
  2113           // this handler is a best-effort safety net, not a complete solution.
  2114           // It is disabled by default and should only be used as a workaround
  2115           // in case we missed any no-execute-unsafe VM code.
  2117           last_addr = addr;
  2119           return EXCEPTION_CONTINUE_EXECUTION;
  2123       // Last unguard failed or not unguarding
  2124       tty->print_raw_cr("Execution protection violation");
  2125       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2126                    exceptionInfo->ContextRecord);
  2127       return EXCEPTION_CONTINUE_SEARCH;
  2130 #endif // _WIN64
  2132   // Check to see if we caught the safepoint code in the
  2133   // process of write protecting the memory serialization page.
  2134   // It write enables the page immediately after protecting it
  2135   // so just return.
  2136   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2137     JavaThread* thread = (JavaThread*) t;
  2138     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2139     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2140     if ( os::is_memory_serialize_page(thread, addr) ) {
  2141       // Block current thread until the memory serialize page permission restored.
  2142       os::block_on_serialize_page_trap();
  2143       return EXCEPTION_CONTINUE_EXECUTION;
  2148   if (t != NULL && t->is_Java_thread()) {
  2149     JavaThread* thread = (JavaThread*) t;
  2150     bool in_java = thread->thread_state() == _thread_in_Java;
  2152     // Handle potential stack overflows up front.
  2153     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2154       if (os::uses_stack_guard_pages()) {
  2155 #ifdef _M_IA64
  2156         //
  2157         // If it's a legal stack address continue, Windows will map it in.
  2158         //
  2159         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2160         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2161         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2162           return EXCEPTION_CONTINUE_EXECUTION;
  2164         // The register save area is the same size as the memory stack
  2165         // and starts at the page just above the start of the memory stack.
  2166         // If we get a fault in this area, we've run out of register
  2167         // stack.  If we are in java, try throwing a stack overflow exception.
  2168         if (addr > thread->stack_base() &&
  2169                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2170           char buf[256];
  2171           jio_snprintf(buf, sizeof(buf),
  2172                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2173                        addr, thread->stack_base() );
  2174           tty->print_raw_cr(buf);
  2175           // If not in java code, return and hope for the best.
  2176           return in_java ? Handle_Exception(exceptionInfo,
  2177             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2178             :  EXCEPTION_CONTINUE_EXECUTION;
  2180 #endif
  2181         if (thread->stack_yellow_zone_enabled()) {
  2182           // Yellow zone violation.  The o/s has unprotected the first yellow
  2183           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2184           // update the enabled status, even if the zone contains only one page.
  2185           thread->disable_stack_yellow_zone();
  2186           // If not in java code, return and hope for the best.
  2187           return in_java ? Handle_Exception(exceptionInfo,
  2188             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2189             :  EXCEPTION_CONTINUE_EXECUTION;
  2190         } else {
  2191           // Fatal red zone violation.
  2192           thread->disable_stack_red_zone();
  2193           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2194           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2195                        exceptionInfo->ContextRecord);
  2196           return EXCEPTION_CONTINUE_SEARCH;
  2198       } else if (in_java) {
  2199         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2200         // a one-time-only guard page, which it has released to us.  The next
  2201         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2202         return Handle_Exception(exceptionInfo,
  2203           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2204       } else {
  2205         // Can only return and hope for the best.  Further stack growth will
  2206         // result in an ACCESS_VIOLATION.
  2207         return EXCEPTION_CONTINUE_EXECUTION;
  2209     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2210       // Either stack overflow or null pointer exception.
  2211       if (in_java) {
  2212         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2213         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2214         address stack_end = thread->stack_base() - thread->stack_size();
  2215         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2216           // Stack overflow.
  2217           assert(!os::uses_stack_guard_pages(),
  2218             "should be caught by red zone code above.");
  2219           return Handle_Exception(exceptionInfo,
  2220             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2222         //
  2223         // Check for safepoint polling and implicit null
  2224         // We only expect null pointers in the stubs (vtable)
  2225         // the rest are checked explicitly now.
  2226         //
  2227         CodeBlob* cb = CodeCache::find_blob(pc);
  2228         if (cb != NULL) {
  2229           if (os::is_poll_address(addr)) {
  2230             address stub = SharedRuntime::get_poll_stub(pc);
  2231             return Handle_Exception(exceptionInfo, stub);
  2235 #ifdef _WIN64
  2236           //
  2237           // If it's a legal stack address map the entire region in
  2238           //
  2239           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2240           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2241           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2242                   addr = (address)((uintptr_t)addr &
  2243                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2244                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2245                                     false );
  2246                   return EXCEPTION_CONTINUE_EXECUTION;
  2248           else
  2249 #endif
  2251             // Null pointer exception.
  2252 #ifdef _M_IA64
  2253             // We catch register stack overflows in compiled code by doing
  2254             // an explicit compare and executing a st8(G0, G0) if the
  2255             // BSP enters into our guard area.  We test for the overflow
  2256             // condition and fall into the normal null pointer exception
  2257             // code if BSP hasn't overflowed.
  2258             if ( in_java ) {
  2259               if(thread->register_stack_overflow()) {
  2260                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2261                                 thread->register_stack_limit(),
  2262                                "GR7 doesn't contain register_stack_limit");
  2263                 // Disable the yellow zone which sets the state that
  2264                 // we've got a stack overflow problem.
  2265                 if (thread->stack_yellow_zone_enabled()) {
  2266                   thread->disable_stack_yellow_zone();
  2268                 // Give us some room to process the exception
  2269                 thread->disable_register_stack_guard();
  2270                 // Update GR7 with the new limit so we can continue running
  2271                 // compiled code.
  2272                 exceptionInfo->ContextRecord->IntS3 =
  2273                                (ULONGLONG)thread->register_stack_limit();
  2274                 return Handle_Exception(exceptionInfo,
  2275                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2276               } else {
  2277                 //
  2278                 // Check for implicit null
  2279                 // We only expect null pointers in the stubs (vtable)
  2280                 // the rest are checked explicitly now.
  2281                 //
  2282                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2283                   // an access to the first page of VM--assume it is a null pointer
  2284                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2285                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2288             } // in_java
  2290             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2291             // get here.
  2292             tty->print_raw_cr("Access violation, possible null pointer exception");
  2293             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2294                          exceptionInfo->ContextRecord);
  2295             return EXCEPTION_CONTINUE_SEARCH;
  2296 #else /* !IA64 */
  2298             // Windows 98 reports faulting addresses incorrectly
  2299             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2300                 !os::win32::is_nt()) {
  2301               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2302               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2304             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2305                          exceptionInfo->ContextRecord);
  2306             return EXCEPTION_CONTINUE_SEARCH;
  2307 #endif
  2312 #ifdef _WIN64
  2313       // Special care for fast JNI field accessors.
  2314       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2315       // in and the heap gets shrunk before the field access.
  2316       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2317         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2318         if (addr != (address)-1) {
  2319           return Handle_Exception(exceptionInfo, addr);
  2322 #endif
  2324 #ifdef _WIN64
  2325       // Windows will sometimes generate an access violation
  2326       // when we call malloc.  Since we use VectoredExceptions
  2327       // on 64 bit platforms, we see this exception.  We must
  2328       // pass this exception on so Windows can recover.
  2329       // We check to see if the pc of the fault is in NTDLL.DLL
  2330       // if so, we pass control on to Windows for handling.
  2331       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2332 #endif
  2334       // Stack overflow or null pointer exception in native code.
  2335       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2336                    exceptionInfo->ContextRecord);
  2337       return EXCEPTION_CONTINUE_SEARCH;
  2340     if (in_java) {
  2341       switch (exception_code) {
  2342       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2343         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2345       case EXCEPTION_INT_OVERFLOW:
  2346         return Handle_IDiv_Exception(exceptionInfo);
  2348       } // switch
  2350 #ifndef _WIN64
  2351     if ((thread->thread_state() == _thread_in_Java) ||
  2352         (thread->thread_state() == _thread_in_native) )
  2354       LONG result=Handle_FLT_Exception(exceptionInfo);
  2355       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2357 #endif //_WIN64
  2360   if (exception_code != EXCEPTION_BREAKPOINT) {
  2361 #ifndef _WIN64
  2362     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2363                  exceptionInfo->ContextRecord);
  2364 #else
  2365     // Itanium Windows uses a VectoredExceptionHandler
  2366     // Which means that C++ programatic exception handlers (try/except)
  2367     // will get here.  Continue the search for the right except block if
  2368     // the exception code is not a fatal code.
  2369     switch ( exception_code ) {
  2370       case EXCEPTION_ACCESS_VIOLATION:
  2371       case EXCEPTION_STACK_OVERFLOW:
  2372       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2373       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2374       case EXCEPTION_INT_OVERFLOW:
  2375       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2376       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2377                        exceptionInfo->ContextRecord);
  2379         break;
  2380       default:
  2381         break;
  2383 #endif
  2385   return EXCEPTION_CONTINUE_SEARCH;
  2388 #ifndef _WIN64
  2389 // Special care for fast JNI accessors.
  2390 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2391 // the heap gets shrunk before the field access.
  2392 // Need to install our own structured exception handler since native code may
  2393 // install its own.
  2394 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2395   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2396   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2397     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2398     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2399     if (addr != (address)-1) {
  2400       return Handle_Exception(exceptionInfo, addr);
  2403   return EXCEPTION_CONTINUE_SEARCH;
  2406 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2407 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2408   __try { \
  2409     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2410   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2411   } \
  2412   return 0; \
  2415 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2416 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2417 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2418 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2419 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2420 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2421 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2422 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2424 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2425   switch (type) {
  2426     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2427     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2428     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2429     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2430     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2431     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2432     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2433     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2434     default:        ShouldNotReachHere();
  2436   return (address)-1;
  2438 #endif
  2440 // Virtual Memory
  2442 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2443 int os::vm_allocation_granularity() {
  2444   return os::win32::vm_allocation_granularity();
  2447 // Windows large page support is available on Windows 2003. In order to use
  2448 // large page memory, the administrator must first assign additional privilege
  2449 // to the user:
  2450 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2451 //   + select Local Policies -> User Rights Assignment
  2452 //   + double click "Lock pages in memory", add users and/or groups
  2453 //   + reboot
  2454 // Note the above steps are needed for administrator as well, as administrators
  2455 // by default do not have the privilege to lock pages in memory.
  2456 //
  2457 // Note about Windows 2003: although the API supports committing large page
  2458 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2459 // scenario, I found through experiment it only uses large page if the entire
  2460 // memory region is reserved and committed in a single VirtualAlloc() call.
  2461 // This makes Windows large page support more or less like Solaris ISM, in
  2462 // that the entire heap must be committed upfront. This probably will change
  2463 // in the future, if so the code below needs to be revisited.
  2465 #ifndef MEM_LARGE_PAGES
  2466 #define MEM_LARGE_PAGES 0x20000000
  2467 #endif
  2469 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2470 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2471 // runtime.
  2472 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2473 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2474              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2475 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2476 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2478 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2479 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2480 static OpenProcessToken_func_type      _OpenProcessToken;
  2481 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2483 static HINSTANCE _kernel32;
  2484 static HINSTANCE _advapi32;
  2485 static HANDLE    _hProcess;
  2486 static HANDLE    _hToken;
  2488 static size_t _large_page_size = 0;
  2490 static bool resolve_functions_for_large_page_init() {
  2491   _kernel32 = LoadLibrary("kernel32.dll");
  2492   if (_kernel32 == NULL) return false;
  2494   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2495                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2496   if (_GetLargePageMinimum == NULL) return false;
  2498   _advapi32 = LoadLibrary("advapi32.dll");
  2499   if (_advapi32 == NULL) return false;
  2501   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2502                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2503   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2504                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2505   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2506                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2507   return _AdjustTokenPrivileges != NULL &&
  2508          _OpenProcessToken      != NULL &&
  2509          _LookupPrivilegeValue  != NULL;
  2512 static bool request_lock_memory_privilege() {
  2513   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2514                                 os::current_process_id());
  2516   LUID luid;
  2517   if (_hProcess != NULL &&
  2518       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2519       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2521     TOKEN_PRIVILEGES tp;
  2522     tp.PrivilegeCount = 1;
  2523     tp.Privileges[0].Luid = luid;
  2524     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2526     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2527     // privilege. Check GetLastError() too. See MSDN document.
  2528     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2529         (GetLastError() == ERROR_SUCCESS)) {
  2530       return true;
  2534   return false;
  2537 static void cleanup_after_large_page_init() {
  2538   _GetLargePageMinimum = NULL;
  2539   _AdjustTokenPrivileges = NULL;
  2540   _OpenProcessToken = NULL;
  2541   _LookupPrivilegeValue = NULL;
  2542   if (_kernel32) FreeLibrary(_kernel32);
  2543   _kernel32 = NULL;
  2544   if (_advapi32) FreeLibrary(_advapi32);
  2545   _advapi32 = NULL;
  2546   if (_hProcess) CloseHandle(_hProcess);
  2547   _hProcess = NULL;
  2548   if (_hToken) CloseHandle(_hToken);
  2549   _hToken = NULL;
  2552 bool os::large_page_init() {
  2553   if (!UseLargePages) return false;
  2555   // print a warning if any large page related flag is specified on command line
  2556   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2557                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2558   bool success = false;
  2560 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2561   if (resolve_functions_for_large_page_init()) {
  2562     if (request_lock_memory_privilege()) {
  2563       size_t s = _GetLargePageMinimum();
  2564       if (s) {
  2565 #if defined(IA32) || defined(AMD64)
  2566         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2567           WARN("JVM cannot use large pages bigger than 4mb.");
  2568         } else {
  2569 #endif
  2570           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2571             _large_page_size = LargePageSizeInBytes;
  2572           } else {
  2573             _large_page_size = s;
  2575           success = true;
  2576 #if defined(IA32) || defined(AMD64)
  2578 #endif
  2579       } else {
  2580         WARN("Large page is not supported by the processor.");
  2582     } else {
  2583       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2585   } else {
  2586     WARN("Large page is not supported by the operating system.");
  2588 #undef WARN
  2590   const size_t default_page_size = (size_t) vm_page_size();
  2591   if (success && _large_page_size > default_page_size) {
  2592     _page_sizes[0] = _large_page_size;
  2593     _page_sizes[1] = default_page_size;
  2594     _page_sizes[2] = 0;
  2597   cleanup_after_large_page_init();
  2598   return success;
  2601 // On win32, one cannot release just a part of reserved memory, it's an
  2602 // all or nothing deal.  When we split a reservation, we must break the
  2603 // reservation into two reservations.
  2604 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2605                               bool realloc) {
  2606   if (size > 0) {
  2607     release_memory(base, size);
  2608     if (realloc) {
  2609       reserve_memory(split, base);
  2611     if (size != split) {
  2612       reserve_memory(size - split, base + split);
  2617 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2618   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2619          "reserve alignment");
  2620   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2621   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2622   assert(res == NULL || addr == NULL || addr == res,
  2623          "Unexpected address from reserve.");
  2624   return res;
  2627 // Reserve memory at an arbitrary address, only if that area is
  2628 // available (and not reserved for something else).
  2629 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2630   // Windows os::reserve_memory() fails of the requested address range is
  2631   // not avilable.
  2632   return reserve_memory(bytes, requested_addr);
  2635 size_t os::large_page_size() {
  2636   return _large_page_size;
  2639 bool os::can_commit_large_page_memory() {
  2640   // Windows only uses large page memory when the entire region is reserved
  2641   // and committed in a single VirtualAlloc() call. This may change in the
  2642   // future, but with Windows 2003 it's not possible to commit on demand.
  2643   return false;
  2646 bool os::can_execute_large_page_memory() {
  2647   return true;
  2650 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2652   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2654   if (UseLargePagesIndividualAllocation) {
  2655     if (TracePageSizes && Verbose) {
  2656        tty->print_cr("Reserving large pages individually.");
  2658     char * p_buf;
  2659     // first reserve enough address space in advance since we want to be
  2660     // able to break a single contiguous virtual address range into multiple
  2661     // large page commits but WS2003 does not allow reserving large page space
  2662     // so we just use 4K pages for reserve, this gives us a legal contiguous
  2663     // address space. then we will deallocate that reservation, and re alloc
  2664     // using large pages
  2665     const size_t size_of_reserve = bytes + _large_page_size;
  2666     if (bytes > size_of_reserve) {
  2667       // Overflowed.
  2668       warning("Individually allocated large pages failed, "
  2669         "use -XX:-UseLargePagesIndividualAllocation to turn off");
  2670       return NULL;
  2672     p_buf = (char *) VirtualAlloc(addr,
  2673                                  size_of_reserve,  // size of Reserve
  2674                                  MEM_RESERVE,
  2675                                  PAGE_READWRITE);
  2676     // If reservation failed, return NULL
  2677     if (p_buf == NULL) return NULL;
  2679     release_memory(p_buf, bytes + _large_page_size);
  2680     // round up to page boundary.  If the size_of_reserve did not
  2681     // overflow and the reservation did not fail, this align up
  2682     // should not overflow.
  2683     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
  2685     // now go through and allocate one page at a time until all bytes are
  2686     // allocated
  2687     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
  2688     // An overflow of align_size_up() would have been caught above
  2689     // in the calculation of size_of_reserve.
  2690     char * next_alloc_addr = p_buf;
  2692 #ifdef ASSERT
  2693     // Variable for the failure injection
  2694     long ran_num = os::random();
  2695     size_t fail_after = ran_num % bytes;
  2696 #endif
  2698     while (bytes_remaining) {
  2699       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
  2700       // Note allocate and commit
  2701       char * p_new;
  2703 #ifdef ASSERT
  2704       bool inject_error = LargePagesIndividualAllocationInjectError &&
  2705           (bytes_remaining <= fail_after);
  2706 #else
  2707       const bool inject_error = false;
  2708 #endif
  2710       if (inject_error) {
  2711         p_new = NULL;
  2712       } else {
  2713         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2714                                     bytes_to_rq,
  2715                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
  2716                                     prot);
  2719       if (p_new == NULL) {
  2720         // Free any allocated pages
  2721         if (next_alloc_addr > p_buf) {
  2722           // Some memory was committed so release it.
  2723           size_t bytes_to_release = bytes - bytes_remaining;
  2724           release_memory(p_buf, bytes_to_release);
  2726 #ifdef ASSERT
  2727         if (UseLargePagesIndividualAllocation &&
  2728             LargePagesIndividualAllocationInjectError) {
  2729           if (TracePageSizes && Verbose) {
  2730              tty->print_cr("Reserving large pages individually failed.");
  2733 #endif
  2734         return NULL;
  2736       bytes_remaining -= bytes_to_rq;
  2737       next_alloc_addr += bytes_to_rq;
  2740     return p_buf;
  2742   } else {
  2743     // normal policy just allocate it all at once
  2744     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2745     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  2746     return res;
  2750 bool os::release_memory_special(char* base, size_t bytes) {
  2751   return release_memory(base, bytes);
  2754 void os::print_statistics() {
  2757 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2758   if (bytes == 0) {
  2759     // Don't bother the OS with noops.
  2760     return true;
  2762   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2763   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2764   // Don't attempt to print anything if the OS call fails. We're
  2765   // probably low on resources, so the print itself may cause crashes.
  2766   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
  2767   if (result != NULL && exec) {
  2768     DWORD oldprot;
  2769     // Windows doc says to use VirtualProtect to get execute permissions
  2770     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
  2771   } else {
  2772     return result;
  2776 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2777                        bool exec) {
  2778   return commit_memory(addr, size, exec);
  2781 bool os::uncommit_memory(char* addr, size_t bytes) {
  2782   if (bytes == 0) {
  2783     // Don't bother the OS with noops.
  2784     return true;
  2786   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2787   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2788   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2791 bool os::release_memory(char* addr, size_t bytes) {
  2792   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2795 // Set protections specified
  2796 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2797                         bool is_committed) {
  2798   unsigned int p = 0;
  2799   switch (prot) {
  2800   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  2801   case MEM_PROT_READ: p = PAGE_READONLY; break;
  2802   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  2803   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  2804   default:
  2805     ShouldNotReachHere();
  2808   DWORD old_status;
  2810   // Strange enough, but on Win32 one can change protection only for committed
  2811   // memory, not a big deal anyway, as bytes less or equal than 64K
  2812   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  2813     fatal("cannot commit protection page");
  2815   // One cannot use os::guard_memory() here, as on Win32 guard page
  2816   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  2817   //
  2818   // Pages in the region become guard pages. Any attempt to access a guard page
  2819   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  2820   // the guard page status. Guard pages thus act as a one-time access alarm.
  2821   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  2824 bool os::guard_memory(char* addr, size_t bytes) {
  2825   DWORD old_status;
  2826   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2829 bool os::unguard_memory(char* addr, size_t bytes) {
  2830   DWORD old_status;
  2831   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  2834 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2835 void os::free_memory(char *addr, size_t bytes)         { }
  2836 void os::numa_make_global(char *addr, size_t bytes)    { }
  2837 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2838 bool os::numa_topology_changed()                       { return false; }
  2839 size_t os::numa_get_groups_num()                       { return 1; }
  2840 int os::numa_get_group_id()                            { return 0; }
  2841 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2842   if (size > 0) {
  2843     ids[0] = 0;
  2844     return 1;
  2846   return 0;
  2849 bool os::get_page_info(char *start, page_info* info) {
  2850   return false;
  2853 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2854   return end;
  2857 char* os::non_memory_address_word() {
  2858   // Must never look like an address returned by reserve_memory,
  2859   // even in its subfields (as defined by the CPU immediate fields,
  2860   // if the CPU splits constants across multiple instructions).
  2861   return (char*)-1;
  2864 #define MAX_ERROR_COUNT 100
  2865 #define SYS_THREAD_ERROR 0xffffffffUL
  2867 void os::pd_start_thread(Thread* thread) {
  2868   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2869   // Returns previous suspend state:
  2870   // 0:  Thread was not suspended
  2871   // 1:  Thread is running now
  2872   // >1: Thread is still suspended.
  2873   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  2876 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2877   return ::read(fd, buf, nBytes);
  2880 class HighResolutionInterval {
  2881   // The default timer resolution seems to be 10 milliseconds.
  2882   // (Where is this written down?)
  2883   // If someone wants to sleep for only a fraction of the default,
  2884   // then we set the timer resolution down to 1 millisecond for
  2885   // the duration of their interval.
  2886   // We carefully set the resolution back, since otherwise we
  2887   // seem to incur an overhead (3%?) that we don't need.
  2888   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  2889   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  2890   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  2891   // timeBeginPeriod() if the relative error exceeded some threshold.
  2892   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  2893   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  2894   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  2895   // resolution timers running.
  2896 private:
  2897     jlong resolution;
  2898 public:
  2899   HighResolutionInterval(jlong ms) {
  2900     resolution = ms % 10L;
  2901     if (resolution != 0) {
  2902       MMRESULT result = timeBeginPeriod(1L);
  2905   ~HighResolutionInterval() {
  2906     if (resolution != 0) {
  2907       MMRESULT result = timeEndPeriod(1L);
  2909     resolution = 0L;
  2911 };
  2913 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  2914   jlong limit = (jlong) MAXDWORD;
  2916   while(ms > limit) {
  2917     int res;
  2918     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  2919       return res;
  2920     ms -= limit;
  2923   assert(thread == Thread::current(),  "thread consistency check");
  2924   OSThread* osthread = thread->osthread();
  2925   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  2926   int result;
  2927   if (interruptable) {
  2928     assert(thread->is_Java_thread(), "must be java thread");
  2929     JavaThread *jt = (JavaThread *) thread;
  2930     ThreadBlockInVM tbivm(jt);
  2932     jt->set_suspend_equivalent();
  2933     // cleared by handle_special_suspend_equivalent_condition() or
  2934     // java_suspend_self() via check_and_wait_while_suspended()
  2936     HANDLE events[1];
  2937     events[0] = osthread->interrupt_event();
  2938     HighResolutionInterval *phri=NULL;
  2939     if(!ForceTimeHighResolution)
  2940       phri = new HighResolutionInterval( ms );
  2941     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  2942       result = OS_TIMEOUT;
  2943     } else {
  2944       ResetEvent(osthread->interrupt_event());
  2945       osthread->set_interrupted(false);
  2946       result = OS_INTRPT;
  2948     delete phri; //if it is NULL, harmless
  2950     // were we externally suspended while we were waiting?
  2951     jt->check_and_wait_while_suspended();
  2952   } else {
  2953     assert(!thread->is_Java_thread(), "must not be java thread");
  2954     Sleep((long) ms);
  2955     result = OS_TIMEOUT;
  2957   return result;
  2960 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2961 void os::infinite_sleep() {
  2962   while (true) {    // sleep forever ...
  2963     Sleep(100000);  // ... 100 seconds at a time
  2967 typedef BOOL (WINAPI * STTSignature)(void) ;
  2969 os::YieldResult os::NakedYield() {
  2970   // Use either SwitchToThread() or Sleep(0)
  2971   // Consider passing back the return value from SwitchToThread().
  2972   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  2973   // In that case we revert to Sleep(0).
  2974   static volatile STTSignature stt = (STTSignature) 1 ;
  2976   if (stt == ((STTSignature) 1)) {
  2977     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  2978     // It's OK if threads race during initialization as the operation above is idempotent.
  2980   if (stt != NULL) {
  2981     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  2982   } else {
  2983     Sleep (0) ;
  2985   return os::YIELD_UNKNOWN ;
  2988 void os::yield() {  os::NakedYield(); }
  2990 void os::yield_all(int attempts) {
  2991   // Yields to all threads, including threads with lower priorities
  2992   Sleep(1);
  2995 // Win32 only gives you access to seven real priorities at a time,
  2996 // so we compress Java's ten down to seven.  It would be better
  2997 // if we dynamically adjusted relative priorities.
  2999 int os::java_to_os_priority[MaxPriority + 1] = {
  3000   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3001   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3002   THREAD_PRIORITY_LOWEST,                       // 2
  3003   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3004   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3005   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3006   THREAD_PRIORITY_NORMAL,                       // 6
  3007   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3008   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3009   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3010   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  3011 };
  3013 int prio_policy1[MaxPriority + 1] = {
  3014   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3015   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3016   THREAD_PRIORITY_LOWEST,                       // 2
  3017   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3018   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3019   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3020   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3021   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3022   THREAD_PRIORITY_HIGHEST,                      // 8
  3023   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3024   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  3025 };
  3027 static int prio_init() {
  3028   // If ThreadPriorityPolicy is 1, switch tables
  3029   if (ThreadPriorityPolicy == 1) {
  3030     int i;
  3031     for (i = 0; i < MaxPriority + 1; i++) {
  3032       os::java_to_os_priority[i] = prio_policy1[i];
  3035   return 0;
  3038 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3039   if (!UseThreadPriorities) return OS_OK;
  3040   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3041   return ret ? OS_OK : OS_ERR;
  3044 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3045   if ( !UseThreadPriorities ) {
  3046     *priority_ptr = java_to_os_priority[NormPriority];
  3047     return OS_OK;
  3049   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3050   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3051     assert(false, "GetThreadPriority failed");
  3052     return OS_ERR;
  3054   *priority_ptr = os_prio;
  3055   return OS_OK;
  3059 // Hint to the underlying OS that a task switch would not be good.
  3060 // Void return because it's a hint and can fail.
  3061 void os::hint_no_preempt() {}
  3063 void os::interrupt(Thread* thread) {
  3064   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3065          "possibility of dangling Thread pointer");
  3067   OSThread* osthread = thread->osthread();
  3068   osthread->set_interrupted(true);
  3069   // More than one thread can get here with the same value of osthread,
  3070   // resulting in multiple notifications.  We do, however, want the store
  3071   // to interrupted() to be visible to other threads before we post
  3072   // the interrupt event.
  3073   OrderAccess::release();
  3074   SetEvent(osthread->interrupt_event());
  3075   // For JSR166:  unpark after setting status
  3076   if (thread->is_Java_thread())
  3077     ((JavaThread*)thread)->parker()->unpark();
  3079   ParkEvent * ev = thread->_ParkEvent ;
  3080   if (ev != NULL) ev->unpark() ;
  3085 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3086   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3087          "possibility of dangling Thread pointer");
  3089   OSThread* osthread = thread->osthread();
  3090   bool interrupted;
  3091   interrupted = osthread->interrupted();
  3092   if (clear_interrupted == true) {
  3093     osthread->set_interrupted(false);
  3094     ResetEvent(osthread->interrupt_event());
  3095   } // Otherwise leave the interrupted state alone
  3097   return interrupted;
  3100 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3101 ExtendedPC os::get_thread_pc(Thread* thread) {
  3102   CONTEXT context;
  3103   context.ContextFlags = CONTEXT_CONTROL;
  3104   HANDLE handle = thread->osthread()->thread_handle();
  3105 #ifdef _M_IA64
  3106   assert(0, "Fix get_thread_pc");
  3107   return ExtendedPC(NULL);
  3108 #else
  3109   if (GetThreadContext(handle, &context)) {
  3110 #ifdef _M_AMD64
  3111     return ExtendedPC((address) context.Rip);
  3112 #else
  3113     return ExtendedPC((address) context.Eip);
  3114 #endif
  3115   } else {
  3116     return ExtendedPC(NULL);
  3118 #endif
  3121 // GetCurrentThreadId() returns DWORD
  3122 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3124 static int _initial_pid = 0;
  3126 int os::current_process_id()
  3128   return (_initial_pid ? _initial_pid : _getpid());
  3131 int    os::win32::_vm_page_size       = 0;
  3132 int    os::win32::_vm_allocation_granularity = 0;
  3133 int    os::win32::_processor_type     = 0;
  3134 // Processor level is not available on non-NT systems, use vm_version instead
  3135 int    os::win32::_processor_level    = 0;
  3136 julong os::win32::_physical_memory    = 0;
  3137 size_t os::win32::_default_stack_size = 0;
  3139          intx os::win32::_os_thread_limit    = 0;
  3140 volatile intx os::win32::_os_thread_count    = 0;
  3142 bool   os::win32::_is_nt              = false;
  3143 bool   os::win32::_is_windows_2003    = false;
  3146 void os::win32::initialize_system_info() {
  3147   SYSTEM_INFO si;
  3148   GetSystemInfo(&si);
  3149   _vm_page_size    = si.dwPageSize;
  3150   _vm_allocation_granularity = si.dwAllocationGranularity;
  3151   _processor_type  = si.dwProcessorType;
  3152   _processor_level = si.wProcessorLevel;
  3153   set_processor_count(si.dwNumberOfProcessors);
  3155   MEMORYSTATUSEX ms;
  3156   ms.dwLength = sizeof(ms);
  3158   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3159   // dwMemoryLoad (% of memory in use)
  3160   GlobalMemoryStatusEx(&ms);
  3161   _physical_memory = ms.ullTotalPhys;
  3163   OSVERSIONINFO oi;
  3164   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  3165   GetVersionEx(&oi);
  3166   switch(oi.dwPlatformId) {
  3167     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3168     case VER_PLATFORM_WIN32_NT:
  3169       _is_nt = true;
  3171         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3172         if (os_vers == 5002) {
  3173           _is_windows_2003 = true;
  3176       break;
  3177     default: fatal("Unknown platform");
  3180   _default_stack_size = os::current_stack_size();
  3181   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3182   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3183     "stack size not a multiple of page size");
  3185   initialize_performance_counter();
  3187   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3188   // known to deadlock the system, if the VM issues to thread operations with
  3189   // a too high frequency, e.g., such as changing the priorities.
  3190   // The 6000 seems to work well - no deadlocks has been notices on the test
  3191   // programs that we have seen experience this problem.
  3192   if (!os::win32::is_nt()) {
  3193     StarvationMonitorInterval = 6000;
  3198 void os::win32::setmode_streams() {
  3199   _setmode(_fileno(stdin), _O_BINARY);
  3200   _setmode(_fileno(stdout), _O_BINARY);
  3201   _setmode(_fileno(stderr), _O_BINARY);
  3205 int os::message_box(const char* title, const char* message) {
  3206   int result = MessageBox(NULL, message, title,
  3207                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3208   return result == IDYES;
  3211 int os::allocate_thread_local_storage() {
  3212   return TlsAlloc();
  3216 void os::free_thread_local_storage(int index) {
  3217   TlsFree(index);
  3221 void os::thread_local_storage_at_put(int index, void* value) {
  3222   TlsSetValue(index, value);
  3223   assert(thread_local_storage_at(index) == value, "Just checking");
  3227 void* os::thread_local_storage_at(int index) {
  3228   return TlsGetValue(index);
  3232 #ifndef PRODUCT
  3233 #ifndef _WIN64
  3234 // Helpers to check whether NX protection is enabled
  3235 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3236   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3237       pex->ExceptionRecord->NumberParameters > 0 &&
  3238       pex->ExceptionRecord->ExceptionInformation[0] ==
  3239       EXCEPTION_INFO_EXEC_VIOLATION) {
  3240     return EXCEPTION_EXECUTE_HANDLER;
  3242   return EXCEPTION_CONTINUE_SEARCH;
  3245 void nx_check_protection() {
  3246   // If NX is enabled we'll get an exception calling into code on the stack
  3247   char code[] = { (char)0xC3 }; // ret
  3248   void *code_ptr = (void *)code;
  3249   __try {
  3250     __asm call code_ptr
  3251   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3252     tty->print_raw_cr("NX protection detected.");
  3255 #endif // _WIN64
  3256 #endif // PRODUCT
  3258 // this is called _before_ the global arguments have been parsed
  3259 void os::init(void) {
  3260   _initial_pid = _getpid();
  3262   init_random(1234567);
  3264   win32::initialize_system_info();
  3265   win32::setmode_streams();
  3266   init_page_sizes((size_t) win32::vm_page_size());
  3268   // For better scalability on MP systems (must be called after initialize_system_info)
  3269 #ifndef PRODUCT
  3270   if (is_MP()) {
  3271     NoYieldsInMicrolock = true;
  3273 #endif
  3274   // This may be overridden later when argument processing is done.
  3275   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3276     os::win32::is_windows_2003());
  3278   // Initialize main_process and main_thread
  3279   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3280  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3281                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3282     fatal("DuplicateHandle failed\n");
  3284   main_thread_id = (int) GetCurrentThreadId();
  3287 // To install functions for atexit processing
  3288 extern "C" {
  3289   static void perfMemory_exit_helper() {
  3290     perfMemory_exit();
  3295 // this is called _after_ the global arguments have been parsed
  3296 jint os::init_2(void) {
  3297   // Allocate a single page and mark it as readable for safepoint polling
  3298   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3299   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3301   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3302   guarantee( return_page != NULL, "Commit Failed for polling page");
  3304   os::set_polling_page( polling_page );
  3306 #ifndef PRODUCT
  3307   if( Verbose && PrintMiscellaneous )
  3308     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3309 #endif
  3311   if (!UseMembar) {
  3312     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3313     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3315     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3316     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3318     os::set_memory_serialize_page( mem_serialize_page );
  3320 #ifndef PRODUCT
  3321     if(Verbose && PrintMiscellaneous)
  3322       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3323 #endif
  3326   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3328   // Setup Windows Exceptions
  3330   // On Itanium systems, Structured Exception Handling does not
  3331   // work since stack frames must be walkable by the OS.  Since
  3332   // much of our code is dynamically generated, and we do not have
  3333   // proper unwind .xdata sections, the system simply exits
  3334   // rather than delivering the exception.  To work around
  3335   // this we use VectorExceptions instead.
  3336 #ifdef _WIN64
  3337   if (UseVectoredExceptions) {
  3338     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3340 #endif
  3342   // for debugging float code generation bugs
  3343   if (ForceFloatExceptions) {
  3344 #ifndef  _WIN64
  3345     static long fp_control_word = 0;
  3346     __asm { fstcw fp_control_word }
  3347     // see Intel PPro Manual, Vol. 2, p 7-16
  3348     const long precision = 0x20;
  3349     const long underflow = 0x10;
  3350     const long overflow  = 0x08;
  3351     const long zero_div  = 0x04;
  3352     const long denorm    = 0x02;
  3353     const long invalid   = 0x01;
  3354     fp_control_word |= invalid;
  3355     __asm { fldcw fp_control_word }
  3356 #endif
  3359   // Initialize HPI.
  3360   jint hpi_result = hpi::initialize();
  3361   if (hpi_result != JNI_OK) { return hpi_result; }
  3363   // If stack_commit_size is 0, windows will reserve the default size,
  3364   // but only commit a small portion of it.
  3365   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3366   size_t default_reserve_size = os::win32::default_stack_size();
  3367   size_t actual_reserve_size = stack_commit_size;
  3368   if (stack_commit_size < default_reserve_size) {
  3369     // If stack_commit_size == 0, we want this too
  3370     actual_reserve_size = default_reserve_size;
  3373   JavaThread::set_stack_size_at_create(stack_commit_size);
  3375   // Calculate theoretical max. size of Threads to guard gainst artifical
  3376   // out-of-memory situations, where all available address-space has been
  3377   // reserved by thread stacks.
  3378   assert(actual_reserve_size != 0, "Must have a stack");
  3380   // Calculate the thread limit when we should start doing Virtual Memory
  3381   // banging. Currently when the threads will have used all but 200Mb of space.
  3382   //
  3383   // TODO: consider performing a similar calculation for commit size instead
  3384   // as reserve size, since on a 64-bit platform we'll run into that more
  3385   // often than running out of virtual memory space.  We can use the
  3386   // lower value of the two calculations as the os_thread_limit.
  3387   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3388   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3390   // at exit methods are called in the reverse order of their registration.
  3391   // there is no limit to the number of functions registered. atexit does
  3392   // not set errno.
  3394   if (PerfAllowAtExitRegistration) {
  3395     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3396     // atexit functions can be delayed until process exit time, which
  3397     // can be problematic for embedded VM situations. Embedded VMs should
  3398     // call DestroyJavaVM() to assure that VM resources are released.
  3400     // note: perfMemory_exit_helper atexit function may be removed in
  3401     // the future if the appropriate cleanup code can be added to the
  3402     // VM_Exit VMOperation's doit method.
  3403     if (atexit(perfMemory_exit_helper) != 0) {
  3404       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3408   // initialize PSAPI or ToolHelp for fatal error handler
  3409   if (win32::is_nt()) _init_psapi();
  3410   else _init_toolhelp();
  3412 #ifndef _WIN64
  3413   // Print something if NX is enabled (win32 on AMD64)
  3414   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3415 #endif
  3417   // initialize thread priority policy
  3418   prio_init();
  3420   if (UseNUMA && !ForceNUMA) {
  3421     UseNUMA = false; // Currently unsupported.
  3424   return JNI_OK;
  3428 // Mark the polling page as unreadable
  3429 void os::make_polling_page_unreadable(void) {
  3430   DWORD old_status;
  3431   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3432     fatal("Could not disable polling page");
  3433 };
  3435 // Mark the polling page as readable
  3436 void os::make_polling_page_readable(void) {
  3437   DWORD old_status;
  3438   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3439     fatal("Could not enable polling page");
  3440 };
  3443 int os::stat(const char *path, struct stat *sbuf) {
  3444   char pathbuf[MAX_PATH];
  3445   if (strlen(path) > MAX_PATH - 1) {
  3446     errno = ENAMETOOLONG;
  3447     return -1;
  3449   hpi::native_path(strcpy(pathbuf, path));
  3450   int ret = ::stat(pathbuf, sbuf);
  3451   if (sbuf != NULL && UseUTCFileTimestamp) {
  3452     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3453     // the system timezone and so can return different values for the
  3454     // same file if/when daylight savings time changes.  This adjustment
  3455     // makes sure the same timestamp is returned regardless of the TZ.
  3456     //
  3457     // See:
  3458     // http://msdn.microsoft.com/library/
  3459     //   default.asp?url=/library/en-us/sysinfo/base/
  3460     //   time_zone_information_str.asp
  3461     // and
  3462     // http://msdn.microsoft.com/library/default.asp?url=
  3463     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3464     //
  3465     // NOTE: there is a insidious bug here:  If the timezone is changed
  3466     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3467     // the adjustment we do here will be wrong and we'll return the wrong
  3468     // value (which will likely end up creating an invalid class data
  3469     // archive).  Absent a better API for this, or some time zone locking
  3470     // mechanism, we'll have to live with this risk.
  3471     TIME_ZONE_INFORMATION tz;
  3472     DWORD tzid = GetTimeZoneInformation(&tz);
  3473     int daylightBias =
  3474       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3475     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3477   return ret;
  3481 #define FT2INT64(ft) \
  3482   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3485 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3486 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3487 // of a thread.
  3488 //
  3489 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3490 // the fast estimate available on the platform.
  3492 // current_thread_cpu_time() is not optimized for Windows yet
  3493 jlong os::current_thread_cpu_time() {
  3494   // return user + sys since the cost is the same
  3495   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3498 jlong os::thread_cpu_time(Thread* thread) {
  3499   // consistent with what current_thread_cpu_time() returns.
  3500   return os::thread_cpu_time(thread, true /* user+sys */);
  3503 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3504   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3507 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3508   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3509   // If this function changes, os::is_thread_cpu_time_supported() should too
  3510   if (os::win32::is_nt()) {
  3511     FILETIME CreationTime;
  3512     FILETIME ExitTime;
  3513     FILETIME KernelTime;
  3514     FILETIME UserTime;
  3516     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3517                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3518       return -1;
  3519     else
  3520       if (user_sys_cpu_time) {
  3521         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3522       } else {
  3523         return FT2INT64(UserTime) * 100;
  3525   } else {
  3526     return (jlong) timeGetTime() * 1000000;
  3530 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3531   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3532   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3533   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3534   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3537 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3538   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3539   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3540   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3541   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3544 bool os::is_thread_cpu_time_supported() {
  3545   // see os::thread_cpu_time
  3546   if (os::win32::is_nt()) {
  3547     FILETIME CreationTime;
  3548     FILETIME ExitTime;
  3549     FILETIME KernelTime;
  3550     FILETIME UserTime;
  3552     if ( GetThreadTimes(GetCurrentThread(),
  3553                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3554       return false;
  3555     else
  3556       return true;
  3557   } else {
  3558     return false;
  3562 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3563 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3564 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3565 // If we wanted to implement loadavg on Windows, we have a few options:
  3566 //
  3567 // a) Query CPU usage and run queue length and "fake" an answer by
  3568 //    returning the CPU usage if it's under 100%, and the run queue
  3569 //    length otherwise.  It turns out that querying is pretty slow
  3570 //    on Windows, on the order of 200 microseconds on a fast machine.
  3571 //    Note that on the Windows the CPU usage value is the % usage
  3572 //    since the last time the API was called (and the first call
  3573 //    returns 100%), so we'd have to deal with that as well.
  3574 //
  3575 // b) Sample the "fake" answer using a sampling thread and store
  3576 //    the answer in a global variable.  The call to loadavg would
  3577 //    just return the value of the global, avoiding the slow query.
  3578 //
  3579 // c) Sample a better answer using exponential decay to smooth the
  3580 //    value.  This is basically the algorithm used by UNIX kernels.
  3581 //
  3582 // Note that sampling thread starvation could affect both (b) and (c).
  3583 int os::loadavg(double loadavg[], int nelem) {
  3584   return -1;
  3588 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3589 bool os::dont_yield() {
  3590   return DontYieldALot;
  3593 // Is a (classpath) directory empty?
  3594 bool os::dir_is_empty(const char* path) {
  3595   WIN32_FIND_DATA fd;
  3596   HANDLE f = FindFirstFile(path, &fd);
  3597   if (f == INVALID_HANDLE_VALUE) {
  3598     return true;
  3600   FindClose(f);
  3601   return false;
  3604 // create binary file, rewriting existing file if required
  3605 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3606   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3607   if (!rewrite_existing) {
  3608     oflags |= _O_EXCL;
  3610   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3613 // return current position of file pointer
  3614 jlong os::current_file_offset(int fd) {
  3615   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3618 // move file pointer to the specified offset
  3619 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3620   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3624 // Map a block of memory.
  3625 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  3626                      char *addr, size_t bytes, bool read_only,
  3627                      bool allow_exec) {
  3628   HANDLE hFile;
  3629   char* base;
  3631   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  3632                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  3633   if (hFile == NULL) {
  3634     if (PrintMiscellaneous && Verbose) {
  3635       DWORD err = GetLastError();
  3636       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  3638     return NULL;
  3641   if (allow_exec) {
  3642     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  3643     // unless it comes from a PE image (which the shared archive is not.)
  3644     // Even VirtualProtect refuses to give execute access to mapped memory
  3645     // that was not previously executable.
  3646     //
  3647     // Instead, stick the executable region in anonymous memory.  Yuck.
  3648     // Penalty is that ~4 pages will not be shareable - in the future
  3649     // we might consider DLLizing the shared archive with a proper PE
  3650     // header so that mapping executable + sharing is possible.
  3652     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  3653                                 PAGE_READWRITE);
  3654     if (base == NULL) {
  3655       if (PrintMiscellaneous && Verbose) {
  3656         DWORD err = GetLastError();
  3657         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  3659       CloseHandle(hFile);
  3660       return NULL;
  3663     DWORD bytes_read;
  3664     OVERLAPPED overlapped;
  3665     overlapped.Offset = (DWORD)file_offset;
  3666     overlapped.OffsetHigh = 0;
  3667     overlapped.hEvent = NULL;
  3668     // ReadFile guarantees that if the return value is true, the requested
  3669     // number of bytes were read before returning.
  3670     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  3671     if (!res) {
  3672       if (PrintMiscellaneous && Verbose) {
  3673         DWORD err = GetLastError();
  3674         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  3676       release_memory(base, bytes);
  3677       CloseHandle(hFile);
  3678       return NULL;
  3680   } else {
  3681     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  3682                                     NULL /*file_name*/);
  3683     if (hMap == NULL) {
  3684       if (PrintMiscellaneous && Verbose) {
  3685         DWORD err = GetLastError();
  3686         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  3688       CloseHandle(hFile);
  3689       return NULL;
  3692     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  3693     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  3694                                   (DWORD)bytes, addr);
  3695     if (base == NULL) {
  3696       if (PrintMiscellaneous && Verbose) {
  3697         DWORD err = GetLastError();
  3698         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  3700       CloseHandle(hMap);
  3701       CloseHandle(hFile);
  3702       return NULL;
  3705     if (CloseHandle(hMap) == 0) {
  3706       if (PrintMiscellaneous && Verbose) {
  3707         DWORD err = GetLastError();
  3708         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  3710       CloseHandle(hFile);
  3711       return base;
  3715   if (allow_exec) {
  3716     DWORD old_protect;
  3717     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  3718     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  3720     if (!res) {
  3721       if (PrintMiscellaneous && Verbose) {
  3722         DWORD err = GetLastError();
  3723         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  3725       // Don't consider this a hard error, on IA32 even if the
  3726       // VirtualProtect fails, we should still be able to execute
  3727       CloseHandle(hFile);
  3728       return base;
  3732   if (CloseHandle(hFile) == 0) {
  3733     if (PrintMiscellaneous && Verbose) {
  3734       DWORD err = GetLastError();
  3735       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  3737     return base;
  3740   return base;
  3744 // Remap a block of memory.
  3745 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  3746                        char *addr, size_t bytes, bool read_only,
  3747                        bool allow_exec) {
  3748   // This OS does not allow existing memory maps to be remapped so we
  3749   // have to unmap the memory before we remap it.
  3750   if (!os::unmap_memory(addr, bytes)) {
  3751     return NULL;
  3754   // There is a very small theoretical window between the unmap_memory()
  3755   // call above and the map_memory() call below where a thread in native
  3756   // code may be able to access an address that is no longer mapped.
  3758   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3759                         allow_exec);
  3763 // Unmap a block of memory.
  3764 // Returns true=success, otherwise false.
  3766 bool os::unmap_memory(char* addr, size_t bytes) {
  3767   BOOL result = UnmapViewOfFile(addr);
  3768   if (result == 0) {
  3769     if (PrintMiscellaneous && Verbose) {
  3770       DWORD err = GetLastError();
  3771       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  3773     return false;
  3775   return true;
  3778 void os::pause() {
  3779   char filename[MAX_PATH];
  3780   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3781     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3782   } else {
  3783     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3786   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3787   if (fd != -1) {
  3788     struct stat buf;
  3789     close(fd);
  3790     while (::stat(filename, &buf) == 0) {
  3791       Sleep(100);
  3793   } else {
  3794     jio_fprintf(stderr,
  3795       "Could not open pause file '%s', continuing immediately.\n", filename);
  3799 // An Event wraps a win32 "CreateEvent" kernel handle.
  3800 //
  3801 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  3802 //
  3803 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  3804 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  3805 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  3806 //     In addition, an unpark() operation might fetch the handle field, but the
  3807 //     event could recycle between the fetch and the SetEvent() operation.
  3808 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  3809 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  3810 //     on an stale but recycled handle would be harmless, but in practice this might
  3811 //     confuse other non-Sun code, so it's not a viable approach.
  3812 //
  3813 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  3814 //     with the Event.  The event handle is never closed.  This could be construed
  3815 //     as handle leakage, but only up to the maximum # of threads that have been extant
  3816 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  3817 //     permit a process to have hundreds of thousands of open handles.
  3818 //
  3819 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  3820 //     and release unused handles.
  3821 //
  3822 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  3823 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  3824 //
  3825 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  3826 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  3827 //
  3828 // We use (2).
  3829 //
  3830 // TODO-FIXME:
  3831 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  3832 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  3833 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  3834 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  3835 //     into a single win32 CreateEvent() handle.
  3836 //
  3837 // _Event transitions in park()
  3838 //   -1 => -1 : illegal
  3839 //    1 =>  0 : pass - return immediately
  3840 //    0 => -1 : block
  3841 //
  3842 // _Event serves as a restricted-range semaphore :
  3843 //    -1 : thread is blocked
  3844 //     0 : neutral  - thread is running or ready
  3845 //     1 : signaled - thread is running or ready
  3846 //
  3847 // Another possible encoding of _Event would be
  3848 // with explicit "PARKED" and "SIGNALED" bits.
  3850 int os::PlatformEvent::park (jlong Millis) {
  3851     guarantee (_ParkHandle != NULL , "Invariant") ;
  3852     guarantee (Millis > 0          , "Invariant") ;
  3853     int v ;
  3855     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  3856     // the initial park() operation.
  3858     for (;;) {
  3859         v = _Event ;
  3860         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3862     guarantee ((v == 0) || (v == 1), "invariant") ;
  3863     if (v != 0) return OS_OK ;
  3865     // Do this the hard way by blocking ...
  3866     // TODO: consider a brief spin here, gated on the success of recent
  3867     // spin attempts by this thread.
  3868     //
  3869     // We decompose long timeouts into series of shorter timed waits.
  3870     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  3871     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  3872     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  3873     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  3874     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  3875     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  3876     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  3877     // for the already waited time.  This policy does not admit any new outcomes.
  3878     // In the future, however, we might want to track the accumulated wait time and
  3879     // adjust Millis accordingly if we encounter a spurious wakeup.
  3881     const int MAXTIMEOUT = 0x10000000 ;
  3882     DWORD rv = WAIT_TIMEOUT ;
  3883     while (_Event < 0 && Millis > 0) {
  3884        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  3885        if (Millis > MAXTIMEOUT) {
  3886           prd = MAXTIMEOUT ;
  3888        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  3889        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  3890        if (rv == WAIT_TIMEOUT) {
  3891            Millis -= prd ;
  3894     v = _Event ;
  3895     _Event = 0 ;
  3896     OrderAccess::fence() ;
  3897     // If we encounter a nearly simultanous timeout expiry and unpark()
  3898     // we return OS_OK indicating we awoke via unpark().
  3899     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  3900     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  3903 void os::PlatformEvent::park () {
  3904     guarantee (_ParkHandle != NULL, "Invariant") ;
  3905     // Invariant: Only the thread associated with the Event/PlatformEvent
  3906     // may call park().
  3907     int v ;
  3908     for (;;) {
  3909         v = _Event ;
  3910         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3912     guarantee ((v == 0) || (v == 1), "invariant") ;
  3913     if (v != 0) return ;
  3915     // Do this the hard way by blocking ...
  3916     // TODO: consider a brief spin here, gated on the success of recent
  3917     // spin attempts by this thread.
  3918     while (_Event < 0) {
  3919        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  3920        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  3923     // Usually we'll find _Event == 0 at this point, but as
  3924     // an optional optimization we clear it, just in case can
  3925     // multiple unpark() operations drove _Event up to 1.
  3926     _Event = 0 ;
  3927     OrderAccess::fence() ;
  3928     guarantee (_Event >= 0, "invariant") ;
  3931 void os::PlatformEvent::unpark() {
  3932   guarantee (_ParkHandle != NULL, "Invariant") ;
  3933   int v ;
  3934   for (;;) {
  3935       v = _Event ;      // Increment _Event if it's < 1.
  3936       if (v > 0) {
  3937          // If it's already signaled just return.
  3938          // The LD of _Event could have reordered or be satisfied
  3939          // by a read-aside from this processor's write buffer.
  3940          // To avoid problems execute a barrier and then
  3941          // ratify the value.  A degenerate CAS() would also work.
  3942          // Viz., CAS (v+0, &_Event, v) == v).
  3943          OrderAccess::fence() ;
  3944          if (_Event == v) return ;
  3945          continue ;
  3947       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  3949   if (v < 0) {
  3950      ::SetEvent (_ParkHandle) ;
  3955 // JSR166
  3956 // -------------------------------------------------------
  3958 /*
  3959  * The Windows implementation of Park is very straightforward: Basic
  3960  * operations on Win32 Events turn out to have the right semantics to
  3961  * use them directly. We opportunistically resuse the event inherited
  3962  * from Monitor.
  3963  */
  3966 void Parker::park(bool isAbsolute, jlong time) {
  3967   guarantee (_ParkEvent != NULL, "invariant") ;
  3968   // First, demultiplex/decode time arguments
  3969   if (time < 0) { // don't wait
  3970     return;
  3972   else if (time == 0) {
  3973     time = INFINITE;
  3975   else if  (isAbsolute) {
  3976     time -= os::javaTimeMillis(); // convert to relative time
  3977     if (time <= 0) // already elapsed
  3978       return;
  3980   else { // relative
  3981     time /= 1000000; // Must coarsen from nanos to millis
  3982     if (time == 0)   // Wait for the minimal time unit if zero
  3983       time = 1;
  3986   JavaThread* thread = (JavaThread*)(Thread::current());
  3987   assert(thread->is_Java_thread(), "Must be JavaThread");
  3988   JavaThread *jt = (JavaThread *)thread;
  3990   // Don't wait if interrupted or already triggered
  3991   if (Thread::is_interrupted(thread, false) ||
  3992     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  3993     ResetEvent(_ParkEvent);
  3994     return;
  3996   else {
  3997     ThreadBlockInVM tbivm(jt);
  3998     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3999     jt->set_suspend_equivalent();
  4001     WaitForSingleObject(_ParkEvent,  time);
  4002     ResetEvent(_ParkEvent);
  4004     // If externally suspended while waiting, re-suspend
  4005     if (jt->handle_special_suspend_equivalent_condition()) {
  4006       jt->java_suspend_self();
  4011 void Parker::unpark() {
  4012   guarantee (_ParkEvent != NULL, "invariant") ;
  4013   SetEvent(_ParkEvent);
  4016 // Run the specified command in a separate process. Return its exit value,
  4017 // or -1 on failure (e.g. can't create a new process).
  4018 int os::fork_and_exec(char* cmd) {
  4019   STARTUPINFO si;
  4020   PROCESS_INFORMATION pi;
  4022   memset(&si, 0, sizeof(si));
  4023   si.cb = sizeof(si);
  4024   memset(&pi, 0, sizeof(pi));
  4025   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4026                             cmd,    // command line
  4027                             NULL,   // process security attribute
  4028                             NULL,   // thread security attribute
  4029                             TRUE,   // inherits system handles
  4030                             0,      // no creation flags
  4031                             NULL,   // use parent's environment block
  4032                             NULL,   // use parent's starting directory
  4033                             &si,    // (in) startup information
  4034                             &pi);   // (out) process information
  4036   if (rslt) {
  4037     // Wait until child process exits.
  4038     WaitForSingleObject(pi.hProcess, INFINITE);
  4040     DWORD exit_code;
  4041     GetExitCodeProcess(pi.hProcess, &exit_code);
  4043     // Close process and thread handles.
  4044     CloseHandle(pi.hProcess);
  4045     CloseHandle(pi.hThread);
  4047     return (int)exit_code;
  4048   } else {
  4049     return -1;
  4053 //--------------------------------------------------------------------------------------------------
  4054 // Non-product code
  4056 static int mallocDebugIntervalCounter = 0;
  4057 static int mallocDebugCounter = 0;
  4058 bool os::check_heap(bool force) {
  4059   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4060   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4061     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4062     // wrong; at these points, eax contains the address of the offending block (I think).
  4063     // To get to the exlicit error message(s) below, just continue twice.
  4064     HANDLE heap = GetProcessHeap();
  4065     { HeapLock(heap);
  4066       PROCESS_HEAP_ENTRY phe;
  4067       phe.lpData = NULL;
  4068       while (HeapWalk(heap, &phe) != 0) {
  4069         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4070             !HeapValidate(heap, 0, phe.lpData)) {
  4071           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4072           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4073           fatal("corrupted C heap");
  4076       int err = GetLastError();
  4077       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4078         fatal1("heap walk aborted with error %d", err);
  4080       HeapUnlock(heap);
  4082     mallocDebugIntervalCounter = 0;
  4084   return true;
  4088 #ifndef PRODUCT
  4089 bool os::find(address addr) {
  4090   // Nothing yet
  4091   return false;
  4093 #endif
  4095 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4096   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4098   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4099     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4100     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4101     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4103     if (os::is_memory_serialize_page(thread, addr))
  4104       return EXCEPTION_CONTINUE_EXECUTION;
  4107   return EXCEPTION_CONTINUE_SEARCH;
  4110 static int getLastErrorString(char *buf, size_t len)
  4112     long errval;
  4114     if ((errval = GetLastError()) != 0)
  4116       /* DOS error */
  4117       size_t n = (size_t)FormatMessage(
  4118             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  4119             NULL,
  4120             errval,
  4121             0,
  4122             buf,
  4123             (DWORD)len,
  4124             NULL);
  4125       if (n > 3) {
  4126         /* Drop final '.', CR, LF */
  4127         if (buf[n - 1] == '\n') n--;
  4128         if (buf[n - 1] == '\r') n--;
  4129         if (buf[n - 1] == '.') n--;
  4130         buf[n] = '\0';
  4132       return (int)n;
  4135     if (errno != 0)
  4137       /* C runtime error that has no corresponding DOS error code */
  4138       const char *s = strerror(errno);
  4139       size_t n = strlen(s);
  4140       if (n >= len) n = len - 1;
  4141       strncpy(buf, s, n);
  4142       buf[n] = '\0';
  4143       return (int)n;
  4145     return 0;

mercurial