src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Fri, 06 May 2011 16:33:13 -0700

author
never
date
Fri, 06 May 2011 16:33:13 -0700
changeset 2895
167b70ff3abc
parent 2687
3d58a4983660
child 2950
cba7b5c2d53f
permissions
-rw-r--r--

6939861: JVM should handle more conversion operations
Reviewed-by: twisti, jrose

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    45 #ifdef COMPILER2
    46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    47 ExceptionBlob      *OptoRuntime::_exception_blob;
    48 #endif // COMPILER2
    50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    60 #define __ masm->
    62 class SimpleRuntimeFrame {
    64   public:
    66   // Most of the runtime stubs have this simple frame layout.
    67   // This class exists to make the layout shared in one place.
    68   // Offsets are for compiler stack slots, which are jints.
    69   enum layout {
    70     // The frame sender code expects that rbp will be in the "natural" place and
    71     // will override any oopMap setting for it. We must therefore force the layout
    72     // so that it agrees with the frame sender code.
    73     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    74     rbp_off2,
    75     return_off, return_off2,
    76     framesize
    77   };
    78 };
    80 class RegisterSaver {
    81   // Capture info about frame layout.  Layout offsets are in jint
    82   // units because compiler frame slots are jints.
    83 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    84   enum layout {
    85     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    86     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    87     DEF_XMM_OFFS(0),
    88     DEF_XMM_OFFS(1),
    89     DEF_XMM_OFFS(2),
    90     DEF_XMM_OFFS(3),
    91     DEF_XMM_OFFS(4),
    92     DEF_XMM_OFFS(5),
    93     DEF_XMM_OFFS(6),
    94     DEF_XMM_OFFS(7),
    95     DEF_XMM_OFFS(8),
    96     DEF_XMM_OFFS(9),
    97     DEF_XMM_OFFS(10),
    98     DEF_XMM_OFFS(11),
    99     DEF_XMM_OFFS(12),
   100     DEF_XMM_OFFS(13),
   101     DEF_XMM_OFFS(14),
   102     DEF_XMM_OFFS(15),
   103     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
   104     fpu_stateH_end,
   105     r15_off, r15H_off,
   106     r14_off, r14H_off,
   107     r13_off, r13H_off,
   108     r12_off, r12H_off,
   109     r11_off, r11H_off,
   110     r10_off, r10H_off,
   111     r9_off,  r9H_off,
   112     r8_off,  r8H_off,
   113     rdi_off, rdiH_off,
   114     rsi_off, rsiH_off,
   115     ignore_off, ignoreH_off,  // extra copy of rbp
   116     rsp_off, rspH_off,
   117     rbx_off, rbxH_off,
   118     rdx_off, rdxH_off,
   119     rcx_off, rcxH_off,
   120     rax_off, raxH_off,
   121     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   122     align_off, alignH_off,
   123     flags_off, flagsH_off,
   124     // The frame sender code expects that rbp will be in the "natural" place and
   125     // will override any oopMap setting for it. We must therefore force the layout
   126     // so that it agrees with the frame sender code.
   127     rbp_off, rbpH_off,        // copy of rbp we will restore
   128     return_off, returnH_off,  // slot for return address
   129     reg_save_size             // size in compiler stack slots
   130   };
   132  public:
   133   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   134   static void restore_live_registers(MacroAssembler* masm);
   136   // Offsets into the register save area
   137   // Used by deoptimization when it is managing result register
   138   // values on its own
   140   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   141   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   142   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   143   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   144   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   146   // During deoptimization only the result registers need to be restored,
   147   // all the other values have already been extracted.
   148   static void restore_result_registers(MacroAssembler* masm);
   149 };
   151 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   153   // Always make the frame size 16-byte aligned
   154   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   155                                      reg_save_size*BytesPerInt, 16);
   156   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   157   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   158   // The caller will allocate additional_frame_words
   159   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   160   // CodeBlob frame size is in words.
   161   int frame_size_in_words = frame_size_in_bytes / wordSize;
   162   *total_frame_words = frame_size_in_words;
   164   // Save registers, fpu state, and flags.
   165   // We assume caller has already pushed the return address onto the
   166   // stack, so rsp is 8-byte aligned here.
   167   // We push rpb twice in this sequence because we want the real rbp
   168   // to be under the return like a normal enter.
   170   __ enter();          // rsp becomes 16-byte aligned here
   171   __ push_CPU_state(); // Push a multiple of 16 bytes
   172   if (frame::arg_reg_save_area_bytes != 0) {
   173     // Allocate argument register save area
   174     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   175   }
   177   // Set an oopmap for the call site.  This oopmap will map all
   178   // oop-registers and debug-info registers as callee-saved.  This
   179   // will allow deoptimization at this safepoint to find all possible
   180   // debug-info recordings, as well as let GC find all oops.
   182   OopMapSet *oop_maps = new OopMapSet();
   183   OopMap* map = new OopMap(frame_size_in_slots, 0);
   184   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
   185   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
   186   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
   187   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
   188   // rbp location is known implicitly by the frame sender code, needs no oopmap
   189   // and the location where rbp was saved by is ignored
   190   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
   191   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
   192   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
   193   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
   194   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
   195   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
   196   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
   197   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
   198   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
   199   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
   200   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
   201   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
   202   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
   203   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
   204   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
   205   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
   206   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
   207   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
   208   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
   209   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
   210   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
   211   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
   212   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
   213   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
   214   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
   215   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
   217   // %%% These should all be a waste but we'll keep things as they were for now
   218   if (true) {
   219     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
   220                           rax->as_VMReg()->next());
   221     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
   222                           rcx->as_VMReg()->next());
   223     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
   224                           rdx->as_VMReg()->next());
   225     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
   226                           rbx->as_VMReg()->next());
   227     // rbp location is known implicitly by the frame sender code, needs no oopmap
   228     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
   229                           rsi->as_VMReg()->next());
   230     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
   231                           rdi->as_VMReg()->next());
   232     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
   233                           r8->as_VMReg()->next());
   234     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
   235                           r9->as_VMReg()->next());
   236     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
   237                           r10->as_VMReg()->next());
   238     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
   239                           r11->as_VMReg()->next());
   240     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
   241                           r12->as_VMReg()->next());
   242     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
   243                           r13->as_VMReg()->next());
   244     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
   245                           r14->as_VMReg()->next());
   246     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
   247                           r15->as_VMReg()->next());
   248     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
   249                           xmm0->as_VMReg()->next());
   250     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
   251                           xmm1->as_VMReg()->next());
   252     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
   253                           xmm2->as_VMReg()->next());
   254     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
   255                           xmm3->as_VMReg()->next());
   256     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
   257                           xmm4->as_VMReg()->next());
   258     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
   259                           xmm5->as_VMReg()->next());
   260     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
   261                           xmm6->as_VMReg()->next());
   262     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
   263                           xmm7->as_VMReg()->next());
   264     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
   265                           xmm8->as_VMReg()->next());
   266     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
   267                           xmm9->as_VMReg()->next());
   268     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
   269                           xmm10->as_VMReg()->next());
   270     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
   271                           xmm11->as_VMReg()->next());
   272     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
   273                           xmm12->as_VMReg()->next());
   274     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
   275                           xmm13->as_VMReg()->next());
   276     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
   277                           xmm14->as_VMReg()->next());
   278     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
   279                           xmm15->as_VMReg()->next());
   280   }
   282   return map;
   283 }
   285 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   286   if (frame::arg_reg_save_area_bytes != 0) {
   287     // Pop arg register save area
   288     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   289   }
   290   // Recover CPU state
   291   __ pop_CPU_state();
   292   // Get the rbp described implicitly by the calling convention (no oopMap)
   293   __ pop(rbp);
   294 }
   296 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   298   // Just restore result register. Only used by deoptimization. By
   299   // now any callee save register that needs to be restored to a c2
   300   // caller of the deoptee has been extracted into the vframeArray
   301   // and will be stuffed into the c2i adapter we create for later
   302   // restoration so only result registers need to be restored here.
   304   // Restore fp result register
   305   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   306   // Restore integer result register
   307   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   308   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   310   // Pop all of the register save are off the stack except the return address
   311   __ addptr(rsp, return_offset_in_bytes());
   312 }
   314 // The java_calling_convention describes stack locations as ideal slots on
   315 // a frame with no abi restrictions. Since we must observe abi restrictions
   316 // (like the placement of the register window) the slots must be biased by
   317 // the following value.
   318 static int reg2offset_in(VMReg r) {
   319   // Account for saved rbp and return address
   320   // This should really be in_preserve_stack_slots
   321   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   322 }
   324 static int reg2offset_out(VMReg r) {
   325   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   326 }
   328 // ---------------------------------------------------------------------------
   329 // Read the array of BasicTypes from a signature, and compute where the
   330 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   331 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   332 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   333 // as framesizes are fixed.
   334 // VMRegImpl::stack0 refers to the first slot 0(sp).
   335 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   336 // up to RegisterImpl::number_of_registers) are the 64-bit
   337 // integer registers.
   339 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   340 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   341 // units regardless of build. Of course for i486 there is no 64 bit build
   343 // The Java calling convention is a "shifted" version of the C ABI.
   344 // By skipping the first C ABI register we can call non-static jni methods
   345 // with small numbers of arguments without having to shuffle the arguments
   346 // at all. Since we control the java ABI we ought to at least get some
   347 // advantage out of it.
   349 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   350                                            VMRegPair *regs,
   351                                            int total_args_passed,
   352                                            int is_outgoing) {
   354   // Create the mapping between argument positions and
   355   // registers.
   356   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   357     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   358   };
   359   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   360     j_farg0, j_farg1, j_farg2, j_farg3,
   361     j_farg4, j_farg5, j_farg6, j_farg7
   362   };
   365   uint int_args = 0;
   366   uint fp_args = 0;
   367   uint stk_args = 0; // inc by 2 each time
   369   for (int i = 0; i < total_args_passed; i++) {
   370     switch (sig_bt[i]) {
   371     case T_BOOLEAN:
   372     case T_CHAR:
   373     case T_BYTE:
   374     case T_SHORT:
   375     case T_INT:
   376       if (int_args < Argument::n_int_register_parameters_j) {
   377         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   378       } else {
   379         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   380         stk_args += 2;
   381       }
   382       break;
   383     case T_VOID:
   384       // halves of T_LONG or T_DOUBLE
   385       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   386       regs[i].set_bad();
   387       break;
   388     case T_LONG:
   389       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   390       // fall through
   391     case T_OBJECT:
   392     case T_ARRAY:
   393     case T_ADDRESS:
   394       if (int_args < Argument::n_int_register_parameters_j) {
   395         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   396       } else {
   397         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   398         stk_args += 2;
   399       }
   400       break;
   401     case T_FLOAT:
   402       if (fp_args < Argument::n_float_register_parameters_j) {
   403         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   404       } else {
   405         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   406         stk_args += 2;
   407       }
   408       break;
   409     case T_DOUBLE:
   410       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   411       if (fp_args < Argument::n_float_register_parameters_j) {
   412         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   413       } else {
   414         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   415         stk_args += 2;
   416       }
   417       break;
   418     default:
   419       ShouldNotReachHere();
   420       break;
   421     }
   422   }
   424   return round_to(stk_args, 2);
   425 }
   427 // Patch the callers callsite with entry to compiled code if it exists.
   428 static void patch_callers_callsite(MacroAssembler *masm) {
   429   Label L;
   430   __ verify_oop(rbx);
   431   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   432   __ jcc(Assembler::equal, L);
   434   // Save the current stack pointer
   435   __ mov(r13, rsp);
   436   // Schedule the branch target address early.
   437   // Call into the VM to patch the caller, then jump to compiled callee
   438   // rax isn't live so capture return address while we easily can
   439   __ movptr(rax, Address(rsp, 0));
   441   // align stack so push_CPU_state doesn't fault
   442   __ andptr(rsp, -(StackAlignmentInBytes));
   443   __ push_CPU_state();
   446   __ verify_oop(rbx);
   447   // VM needs caller's callsite
   448   // VM needs target method
   449   // This needs to be a long call since we will relocate this adapter to
   450   // the codeBuffer and it may not reach
   452   // Allocate argument register save area
   453   if (frame::arg_reg_save_area_bytes != 0) {
   454     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   455   }
   456   __ mov(c_rarg0, rbx);
   457   __ mov(c_rarg1, rax);
   458   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   460   // De-allocate argument register save area
   461   if (frame::arg_reg_save_area_bytes != 0) {
   462     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   463   }
   465   __ pop_CPU_state();
   466   // restore sp
   467   __ mov(rsp, r13);
   468   __ bind(L);
   469 }
   472 static void gen_c2i_adapter(MacroAssembler *masm,
   473                             int total_args_passed,
   474                             int comp_args_on_stack,
   475                             const BasicType *sig_bt,
   476                             const VMRegPair *regs,
   477                             Label& skip_fixup) {
   478   // Before we get into the guts of the C2I adapter, see if we should be here
   479   // at all.  We've come from compiled code and are attempting to jump to the
   480   // interpreter, which means the caller made a static call to get here
   481   // (vcalls always get a compiled target if there is one).  Check for a
   482   // compiled target.  If there is one, we need to patch the caller's call.
   483   patch_callers_callsite(masm);
   485   __ bind(skip_fixup);
   487   // Since all args are passed on the stack, total_args_passed *
   488   // Interpreter::stackElementSize is the space we need. Plus 1 because
   489   // we also account for the return address location since
   490   // we store it first rather than hold it in rax across all the shuffling
   492   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   494   // stack is aligned, keep it that way
   495   extraspace = round_to(extraspace, 2*wordSize);
   497   // Get return address
   498   __ pop(rax);
   500   // set senderSP value
   501   __ mov(r13, rsp);
   503   __ subptr(rsp, extraspace);
   505   // Store the return address in the expected location
   506   __ movptr(Address(rsp, 0), rax);
   508   // Now write the args into the outgoing interpreter space
   509   for (int i = 0; i < total_args_passed; i++) {
   510     if (sig_bt[i] == T_VOID) {
   511       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   512       continue;
   513     }
   515     // offset to start parameters
   516     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   517     int next_off = st_off - Interpreter::stackElementSize;
   519     // Say 4 args:
   520     // i   st_off
   521     // 0   32 T_LONG
   522     // 1   24 T_VOID
   523     // 2   16 T_OBJECT
   524     // 3    8 T_BOOL
   525     // -    0 return address
   526     //
   527     // However to make thing extra confusing. Because we can fit a long/double in
   528     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   529     // leaves one slot empty and only stores to a single slot. In this case the
   530     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   532     VMReg r_1 = regs[i].first();
   533     VMReg r_2 = regs[i].second();
   534     if (!r_1->is_valid()) {
   535       assert(!r_2->is_valid(), "");
   536       continue;
   537     }
   538     if (r_1->is_stack()) {
   539       // memory to memory use rax
   540       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   541       if (!r_2->is_valid()) {
   542         // sign extend??
   543         __ movl(rax, Address(rsp, ld_off));
   544         __ movptr(Address(rsp, st_off), rax);
   546       } else {
   548         __ movq(rax, Address(rsp, ld_off));
   550         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   551         // T_DOUBLE and T_LONG use two slots in the interpreter
   552         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   553           // ld_off == LSW, ld_off+wordSize == MSW
   554           // st_off == MSW, next_off == LSW
   555           __ movq(Address(rsp, next_off), rax);
   556 #ifdef ASSERT
   557           // Overwrite the unused slot with known junk
   558           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   559           __ movptr(Address(rsp, st_off), rax);
   560 #endif /* ASSERT */
   561         } else {
   562           __ movq(Address(rsp, st_off), rax);
   563         }
   564       }
   565     } else if (r_1->is_Register()) {
   566       Register r = r_1->as_Register();
   567       if (!r_2->is_valid()) {
   568         // must be only an int (or less ) so move only 32bits to slot
   569         // why not sign extend??
   570         __ movl(Address(rsp, st_off), r);
   571       } else {
   572         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   573         // T_DOUBLE and T_LONG use two slots in the interpreter
   574         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   575           // long/double in gpr
   576 #ifdef ASSERT
   577           // Overwrite the unused slot with known junk
   578           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   579           __ movptr(Address(rsp, st_off), rax);
   580 #endif /* ASSERT */
   581           __ movq(Address(rsp, next_off), r);
   582         } else {
   583           __ movptr(Address(rsp, st_off), r);
   584         }
   585       }
   586     } else {
   587       assert(r_1->is_XMMRegister(), "");
   588       if (!r_2->is_valid()) {
   589         // only a float use just part of the slot
   590         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   591       } else {
   592 #ifdef ASSERT
   593         // Overwrite the unused slot with known junk
   594         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   595         __ movptr(Address(rsp, st_off), rax);
   596 #endif /* ASSERT */
   597         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   598       }
   599     }
   600   }
   602   // Schedule the branch target address early.
   603   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   604   __ jmp(rcx);
   605 }
   607 static void gen_i2c_adapter(MacroAssembler *masm,
   608                             int total_args_passed,
   609                             int comp_args_on_stack,
   610                             const BasicType *sig_bt,
   611                             const VMRegPair *regs) {
   613   // Note: r13 contains the senderSP on entry. We must preserve it since
   614   // we may do a i2c -> c2i transition if we lose a race where compiled
   615   // code goes non-entrant while we get args ready.
   616   // In addition we use r13 to locate all the interpreter args as
   617   // we must align the stack to 16 bytes on an i2c entry else we
   618   // lose alignment we expect in all compiled code and register
   619   // save code can segv when fxsave instructions find improperly
   620   // aligned stack pointer.
   622   // Pick up the return address
   623   __ movptr(rax, Address(rsp, 0));
   625   // Must preserve original SP for loading incoming arguments because
   626   // we need to align the outgoing SP for compiled code.
   627   __ movptr(r11, rsp);
   629   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   630   // in registers, we will occasionally have no stack args.
   631   int comp_words_on_stack = 0;
   632   if (comp_args_on_stack) {
   633     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   634     // registers are below.  By subtracting stack0, we either get a negative
   635     // number (all values in registers) or the maximum stack slot accessed.
   637     // Convert 4-byte c2 stack slots to words.
   638     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   639     // Round up to miminum stack alignment, in wordSize
   640     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   641     __ subptr(rsp, comp_words_on_stack * wordSize);
   642   }
   645   // Ensure compiled code always sees stack at proper alignment
   646   __ andptr(rsp, -16);
   648   // push the return address and misalign the stack that youngest frame always sees
   649   // as far as the placement of the call instruction
   650   __ push(rax);
   652   // Put saved SP in another register
   653   const Register saved_sp = rax;
   654   __ movptr(saved_sp, r11);
   656   // Will jump to the compiled code just as if compiled code was doing it.
   657   // Pre-load the register-jump target early, to schedule it better.
   658   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   660   // Now generate the shuffle code.  Pick up all register args and move the
   661   // rest through the floating point stack top.
   662   for (int i = 0; i < total_args_passed; i++) {
   663     if (sig_bt[i] == T_VOID) {
   664       // Longs and doubles are passed in native word order, but misaligned
   665       // in the 32-bit build.
   666       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   667       continue;
   668     }
   670     // Pick up 0, 1 or 2 words from SP+offset.
   672     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   673             "scrambled load targets?");
   674     // Load in argument order going down.
   675     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   676     // Point to interpreter value (vs. tag)
   677     int next_off = ld_off - Interpreter::stackElementSize;
   678     //
   679     //
   680     //
   681     VMReg r_1 = regs[i].first();
   682     VMReg r_2 = regs[i].second();
   683     if (!r_1->is_valid()) {
   684       assert(!r_2->is_valid(), "");
   685       continue;
   686     }
   687     if (r_1->is_stack()) {
   688       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   689       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   691       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   692       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   693       // will be generated.
   694       if (!r_2->is_valid()) {
   695         // sign extend???
   696         __ movl(r13, Address(saved_sp, ld_off));
   697         __ movptr(Address(rsp, st_off), r13);
   698       } else {
   699         //
   700         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   701         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   702         // So we must adjust where to pick up the data to match the interpreter.
   703         //
   704         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   705         // are accessed as negative so LSW is at LOW address
   707         // ld_off is MSW so get LSW
   708         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   709                            next_off : ld_off;
   710         __ movq(r13, Address(saved_sp, offset));
   711         // st_off is LSW (i.e. reg.first())
   712         __ movq(Address(rsp, st_off), r13);
   713       }
   714     } else if (r_1->is_Register()) {  // Register argument
   715       Register r = r_1->as_Register();
   716       assert(r != rax, "must be different");
   717       if (r_2->is_valid()) {
   718         //
   719         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   720         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   721         // So we must adjust where to pick up the data to match the interpreter.
   723         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   724                            next_off : ld_off;
   726         // this can be a misaligned move
   727         __ movq(r, Address(saved_sp, offset));
   728       } else {
   729         // sign extend and use a full word?
   730         __ movl(r, Address(saved_sp, ld_off));
   731       }
   732     } else {
   733       if (!r_2->is_valid()) {
   734         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   735       } else {
   736         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   737       }
   738     }
   739   }
   741   // 6243940 We might end up in handle_wrong_method if
   742   // the callee is deoptimized as we race thru here. If that
   743   // happens we don't want to take a safepoint because the
   744   // caller frame will look interpreted and arguments are now
   745   // "compiled" so it is much better to make this transition
   746   // invisible to the stack walking code. Unfortunately if
   747   // we try and find the callee by normal means a safepoint
   748   // is possible. So we stash the desired callee in the thread
   749   // and the vm will find there should this case occur.
   751   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   753   // put methodOop where a c2i would expect should we end up there
   754   // only needed becaus eof c2 resolve stubs return methodOop as a result in
   755   // rax
   756   __ mov(rax, rbx);
   757   __ jmp(r11);
   758 }
   760 // ---------------------------------------------------------------
   761 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   762                                                             int total_args_passed,
   763                                                             int comp_args_on_stack,
   764                                                             const BasicType *sig_bt,
   765                                                             const VMRegPair *regs,
   766                                                             AdapterFingerPrint* fingerprint) {
   767   address i2c_entry = __ pc();
   769   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   771   // -------------------------------------------------------------------------
   772   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
   773   // to the interpreter.  The args start out packed in the compiled layout.  They
   774   // need to be unpacked into the interpreter layout.  This will almost always
   775   // require some stack space.  We grow the current (compiled) stack, then repack
   776   // the args.  We  finally end in a jump to the generic interpreter entry point.
   777   // On exit from the interpreter, the interpreter will restore our SP (lest the
   778   // compiled code, which relys solely on SP and not RBP, get sick).
   780   address c2i_unverified_entry = __ pc();
   781   Label skip_fixup;
   782   Label ok;
   784   Register holder = rax;
   785   Register receiver = j_rarg0;
   786   Register temp = rbx;
   788   {
   789     __ verify_oop(holder);
   790     __ load_klass(temp, receiver);
   791     __ verify_oop(temp);
   793     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   794     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   795     __ jcc(Assembler::equal, ok);
   796     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   798     __ bind(ok);
   799     // Method might have been compiled since the call site was patched to
   800     // interpreted if that is the case treat it as a miss so we can get
   801     // the call site corrected.
   802     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   803     __ jcc(Assembler::equal, skip_fixup);
   804     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   805   }
   807   address c2i_entry = __ pc();
   809   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   811   __ flush();
   812   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   813 }
   815 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   816                                          VMRegPair *regs,
   817                                          int total_args_passed) {
   818 // We return the amount of VMRegImpl stack slots we need to reserve for all
   819 // the arguments NOT counting out_preserve_stack_slots.
   821 // NOTE: These arrays will have to change when c1 is ported
   822 #ifdef _WIN64
   823     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   824       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   825     };
   826     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   827       c_farg0, c_farg1, c_farg2, c_farg3
   828     };
   829 #else
   830     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   831       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   832     };
   833     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   834       c_farg0, c_farg1, c_farg2, c_farg3,
   835       c_farg4, c_farg5, c_farg6, c_farg7
   836     };
   837 #endif // _WIN64
   840     uint int_args = 0;
   841     uint fp_args = 0;
   842     uint stk_args = 0; // inc by 2 each time
   844     for (int i = 0; i < total_args_passed; i++) {
   845       switch (sig_bt[i]) {
   846       case T_BOOLEAN:
   847       case T_CHAR:
   848       case T_BYTE:
   849       case T_SHORT:
   850       case T_INT:
   851         if (int_args < Argument::n_int_register_parameters_c) {
   852           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   853 #ifdef _WIN64
   854           fp_args++;
   855           // Allocate slots for callee to stuff register args the stack.
   856           stk_args += 2;
   857 #endif
   858         } else {
   859           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   860           stk_args += 2;
   861         }
   862         break;
   863       case T_LONG:
   864         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   865         // fall through
   866       case T_OBJECT:
   867       case T_ARRAY:
   868       case T_ADDRESS:
   869         if (int_args < Argument::n_int_register_parameters_c) {
   870           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   871 #ifdef _WIN64
   872           fp_args++;
   873           stk_args += 2;
   874 #endif
   875         } else {
   876           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   877           stk_args += 2;
   878         }
   879         break;
   880       case T_FLOAT:
   881         if (fp_args < Argument::n_float_register_parameters_c) {
   882           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   883 #ifdef _WIN64
   884           int_args++;
   885           // Allocate slots for callee to stuff register args the stack.
   886           stk_args += 2;
   887 #endif
   888         } else {
   889           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   890           stk_args += 2;
   891         }
   892         break;
   893       case T_DOUBLE:
   894         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   895         if (fp_args < Argument::n_float_register_parameters_c) {
   896           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   897 #ifdef _WIN64
   898           int_args++;
   899           // Allocate slots for callee to stuff register args the stack.
   900           stk_args += 2;
   901 #endif
   902         } else {
   903           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   904           stk_args += 2;
   905         }
   906         break;
   907       case T_VOID: // Halves of longs and doubles
   908         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   909         regs[i].set_bad();
   910         break;
   911       default:
   912         ShouldNotReachHere();
   913         break;
   914       }
   915     }
   916 #ifdef _WIN64
   917   // windows abi requires that we always allocate enough stack space
   918   // for 4 64bit registers to be stored down.
   919   if (stk_args < 8) {
   920     stk_args = 8;
   921   }
   922 #endif // _WIN64
   924   return stk_args;
   925 }
   927 // On 64 bit we will store integer like items to the stack as
   928 // 64 bits items (sparc abi) even though java would only store
   929 // 32bits for a parameter. On 32bit it will simply be 32 bits
   930 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
   931 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   932   if (src.first()->is_stack()) {
   933     if (dst.first()->is_stack()) {
   934       // stack to stack
   935       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
   936       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   937     } else {
   938       // stack to reg
   939       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
   940     }
   941   } else if (dst.first()->is_stack()) {
   942     // reg to stack
   943     // Do we really have to sign extend???
   944     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
   945     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   946   } else {
   947     // Do we really have to sign extend???
   948     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
   949     if (dst.first() != src.first()) {
   950       __ movq(dst.first()->as_Register(), src.first()->as_Register());
   951     }
   952   }
   953 }
   956 // An oop arg. Must pass a handle not the oop itself
   957 static void object_move(MacroAssembler* masm,
   958                         OopMap* map,
   959                         int oop_handle_offset,
   960                         int framesize_in_slots,
   961                         VMRegPair src,
   962                         VMRegPair dst,
   963                         bool is_receiver,
   964                         int* receiver_offset) {
   966   // must pass a handle. First figure out the location we use as a handle
   968   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
   970   // See if oop is NULL if it is we need no handle
   972   if (src.first()->is_stack()) {
   974     // Oop is already on the stack as an argument
   975     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   976     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   977     if (is_receiver) {
   978       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   979     }
   981     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
   982     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
   983     // conditionally move a NULL
   984     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
   985   } else {
   987     // Oop is in an a register we must store it to the space we reserve
   988     // on the stack for oop_handles and pass a handle if oop is non-NULL
   990     const Register rOop = src.first()->as_Register();
   991     int oop_slot;
   992     if (rOop == j_rarg0)
   993       oop_slot = 0;
   994     else if (rOop == j_rarg1)
   995       oop_slot = 1;
   996     else if (rOop == j_rarg2)
   997       oop_slot = 2;
   998     else if (rOop == j_rarg3)
   999       oop_slot = 3;
  1000     else if (rOop == j_rarg4)
  1001       oop_slot = 4;
  1002     else {
  1003       assert(rOop == j_rarg5, "wrong register");
  1004       oop_slot = 5;
  1007     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1008     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1010     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1011     // Store oop in handle area, may be NULL
  1012     __ movptr(Address(rsp, offset), rOop);
  1013     if (is_receiver) {
  1014       *receiver_offset = offset;
  1017     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1018     __ lea(rHandle, Address(rsp, offset));
  1019     // conditionally move a NULL from the handle area where it was just stored
  1020     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1023   // If arg is on the stack then place it otherwise it is already in correct reg.
  1024   if (dst.first()->is_stack()) {
  1025     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1029 // A float arg may have to do float reg int reg conversion
  1030 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1031   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1033   // The calling conventions assures us that each VMregpair is either
  1034   // all really one physical register or adjacent stack slots.
  1035   // This greatly simplifies the cases here compared to sparc.
  1037   if (src.first()->is_stack()) {
  1038     if (dst.first()->is_stack()) {
  1039       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1040       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1041     } else {
  1042       // stack to reg
  1043       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1044       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1046   } else if (dst.first()->is_stack()) {
  1047     // reg to stack
  1048     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1049     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1050   } else {
  1051     // reg to reg
  1052     // In theory these overlap but the ordering is such that this is likely a nop
  1053     if ( src.first() != dst.first()) {
  1054       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1059 // A long move
  1060 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1062   // The calling conventions assures us that each VMregpair is either
  1063   // all really one physical register or adjacent stack slots.
  1064   // This greatly simplifies the cases here compared to sparc.
  1066   if (src.is_single_phys_reg() ) {
  1067     if (dst.is_single_phys_reg()) {
  1068       if (dst.first() != src.first()) {
  1069         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1071     } else {
  1072       assert(dst.is_single_reg(), "not a stack pair");
  1073       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1075   } else if (dst.is_single_phys_reg()) {
  1076     assert(src.is_single_reg(),  "not a stack pair");
  1077     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1078   } else {
  1079     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1080     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1081     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1085 // A double move
  1086 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1088   // The calling conventions assures us that each VMregpair is either
  1089   // all really one physical register or adjacent stack slots.
  1090   // This greatly simplifies the cases here compared to sparc.
  1092   if (src.is_single_phys_reg() ) {
  1093     if (dst.is_single_phys_reg()) {
  1094       // In theory these overlap but the ordering is such that this is likely a nop
  1095       if ( src.first() != dst.first()) {
  1096         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1098     } else {
  1099       assert(dst.is_single_reg(), "not a stack pair");
  1100       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1102   } else if (dst.is_single_phys_reg()) {
  1103     assert(src.is_single_reg(),  "not a stack pair");
  1104     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1105   } else {
  1106     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1107     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1108     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1113 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1114   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1115   // which by this time is free to use
  1116   switch (ret_type) {
  1117   case T_FLOAT:
  1118     __ movflt(Address(rbp, -wordSize), xmm0);
  1119     break;
  1120   case T_DOUBLE:
  1121     __ movdbl(Address(rbp, -wordSize), xmm0);
  1122     break;
  1123   case T_VOID:  break;
  1124   default: {
  1125     __ movptr(Address(rbp, -wordSize), rax);
  1130 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1131   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1132   // which by this time is free to use
  1133   switch (ret_type) {
  1134   case T_FLOAT:
  1135     __ movflt(xmm0, Address(rbp, -wordSize));
  1136     break;
  1137   case T_DOUBLE:
  1138     __ movdbl(xmm0, Address(rbp, -wordSize));
  1139     break;
  1140   case T_VOID:  break;
  1141   default: {
  1142     __ movptr(rax, Address(rbp, -wordSize));
  1147 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1148     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1149       if (args[i].first()->is_Register()) {
  1150         __ push(args[i].first()->as_Register());
  1151       } else if (args[i].first()->is_XMMRegister()) {
  1152         __ subptr(rsp, 2*wordSize);
  1153         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1158 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1159     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1160       if (args[i].first()->is_Register()) {
  1161         __ pop(args[i].first()->as_Register());
  1162       } else if (args[i].first()->is_XMMRegister()) {
  1163         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1164         __ addptr(rsp, 2*wordSize);
  1169 // ---------------------------------------------------------------------------
  1170 // Generate a native wrapper for a given method.  The method takes arguments
  1171 // in the Java compiled code convention, marshals them to the native
  1172 // convention (handlizes oops, etc), transitions to native, makes the call,
  1173 // returns to java state (possibly blocking), unhandlizes any result and
  1174 // returns.
  1175 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1176                                                 methodHandle method,
  1177                                                 int compile_id,
  1178                                                 int total_in_args,
  1179                                                 int comp_args_on_stack,
  1180                                                 BasicType *in_sig_bt,
  1181                                                 VMRegPair *in_regs,
  1182                                                 BasicType ret_type) {
  1183   // Native nmethod wrappers never take possesion of the oop arguments.
  1184   // So the caller will gc the arguments. The only thing we need an
  1185   // oopMap for is if the call is static
  1186   //
  1187   // An OopMap for lock (and class if static)
  1188   OopMapSet *oop_maps = new OopMapSet();
  1189   intptr_t start = (intptr_t)__ pc();
  1191   // We have received a description of where all the java arg are located
  1192   // on entry to the wrapper. We need to convert these args to where
  1193   // the jni function will expect them. To figure out where they go
  1194   // we convert the java signature to a C signature by inserting
  1195   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1197   int total_c_args = total_in_args + 1;
  1198   if (method->is_static()) {
  1199     total_c_args++;
  1202   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1203   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1205   int argc = 0;
  1206   out_sig_bt[argc++] = T_ADDRESS;
  1207   if (method->is_static()) {
  1208     out_sig_bt[argc++] = T_OBJECT;
  1211   for (int i = 0; i < total_in_args ; i++ ) {
  1212     out_sig_bt[argc++] = in_sig_bt[i];
  1215   // Now figure out where the args must be stored and how much stack space
  1216   // they require.
  1217   //
  1218   int out_arg_slots;
  1219   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1221   // Compute framesize for the wrapper.  We need to handlize all oops in
  1222   // incoming registers
  1224   // Calculate the total number of stack slots we will need.
  1226   // First count the abi requirement plus all of the outgoing args
  1227   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1229   // Now the space for the inbound oop handle area
  1231   int oop_handle_offset = stack_slots;
  1232   stack_slots += 6*VMRegImpl::slots_per_word;
  1234   // Now any space we need for handlizing a klass if static method
  1236   int oop_temp_slot_offset = 0;
  1237   int klass_slot_offset = 0;
  1238   int klass_offset = -1;
  1239   int lock_slot_offset = 0;
  1240   bool is_static = false;
  1242   if (method->is_static()) {
  1243     klass_slot_offset = stack_slots;
  1244     stack_slots += VMRegImpl::slots_per_word;
  1245     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1246     is_static = true;
  1249   // Plus a lock if needed
  1251   if (method->is_synchronized()) {
  1252     lock_slot_offset = stack_slots;
  1253     stack_slots += VMRegImpl::slots_per_word;
  1256   // Now a place (+2) to save return values or temp during shuffling
  1257   // + 4 for return address (which we own) and saved rbp
  1258   stack_slots += 6;
  1260   // Ok The space we have allocated will look like:
  1261   //
  1262   //
  1263   // FP-> |                     |
  1264   //      |---------------------|
  1265   //      | 2 slots for moves   |
  1266   //      |---------------------|
  1267   //      | lock box (if sync)  |
  1268   //      |---------------------| <- lock_slot_offset
  1269   //      | klass (if static)   |
  1270   //      |---------------------| <- klass_slot_offset
  1271   //      | oopHandle area      |
  1272   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1273   //      | outbound memory     |
  1274   //      | based arguments     |
  1275   //      |                     |
  1276   //      |---------------------|
  1277   //      |                     |
  1278   // SP-> | out_preserved_slots |
  1279   //
  1280   //
  1283   // Now compute actual number of stack words we need rounding to make
  1284   // stack properly aligned.
  1285   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1287   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1290   // First thing make an ic check to see if we should even be here
  1292   // We are free to use all registers as temps without saving them and
  1293   // restoring them except rbp. rbp is the only callee save register
  1294   // as far as the interpreter and the compiler(s) are concerned.
  1297   const Register ic_reg = rax;
  1298   const Register receiver = j_rarg0;
  1300   Label ok;
  1301   Label exception_pending;
  1303   assert_different_registers(ic_reg, receiver, rscratch1);
  1304   __ verify_oop(receiver);
  1305   __ load_klass(rscratch1, receiver);
  1306   __ cmpq(ic_reg, rscratch1);
  1307   __ jcc(Assembler::equal, ok);
  1309   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1311   __ bind(ok);
  1313   // Verified entry point must be aligned
  1314   __ align(8);
  1316   int vep_offset = ((intptr_t)__ pc()) - start;
  1318   // The instruction at the verified entry point must be 5 bytes or longer
  1319   // because it can be patched on the fly by make_non_entrant. The stack bang
  1320   // instruction fits that requirement.
  1322   // Generate stack overflow check
  1324   if (UseStackBanging) {
  1325     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1326   } else {
  1327     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1328     __ fat_nop();
  1331   // Generate a new frame for the wrapper.
  1332   __ enter();
  1333   // -2 because return address is already present and so is saved rbp
  1334   __ subptr(rsp, stack_size - 2*wordSize);
  1336     // Frame is now completed as far as size and linkage.
  1338     int frame_complete = ((intptr_t)__ pc()) - start;
  1340 #ifdef ASSERT
  1342       Label L;
  1343       __ mov(rax, rsp);
  1344       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1345       __ cmpptr(rax, rsp);
  1346       __ jcc(Assembler::equal, L);
  1347       __ stop("improperly aligned stack");
  1348       __ bind(L);
  1350 #endif /* ASSERT */
  1353   // We use r14 as the oop handle for the receiver/klass
  1354   // It is callee save so it survives the call to native
  1356   const Register oop_handle_reg = r14;
  1360   //
  1361   // We immediately shuffle the arguments so that any vm call we have to
  1362   // make from here on out (sync slow path, jvmti, etc.) we will have
  1363   // captured the oops from our caller and have a valid oopMap for
  1364   // them.
  1366   // -----------------
  1367   // The Grand Shuffle
  1369   // The Java calling convention is either equal (linux) or denser (win64) than the
  1370   // c calling convention. However the because of the jni_env argument the c calling
  1371   // convention always has at least one more (and two for static) arguments than Java.
  1372   // Therefore if we move the args from java -> c backwards then we will never have
  1373   // a register->register conflict and we don't have to build a dependency graph
  1374   // and figure out how to break any cycles.
  1375   //
  1377   // Record esp-based slot for receiver on stack for non-static methods
  1378   int receiver_offset = -1;
  1380   // This is a trick. We double the stack slots so we can claim
  1381   // the oops in the caller's frame. Since we are sure to have
  1382   // more args than the caller doubling is enough to make
  1383   // sure we can capture all the incoming oop args from the
  1384   // caller.
  1385   //
  1386   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1388   // Mark location of rbp (someday)
  1389   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  1391   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  1392   // All inbound args are referenced based on rbp and all outbound args via rsp.
  1395 #ifdef ASSERT
  1396   bool reg_destroyed[RegisterImpl::number_of_registers];
  1397   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  1398   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  1399     reg_destroyed[r] = false;
  1401   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  1402     freg_destroyed[f] = false;
  1405 #endif /* ASSERT */
  1408   int c_arg = total_c_args - 1;
  1409   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  1410 #ifdef ASSERT
  1411     if (in_regs[i].first()->is_Register()) {
  1412       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  1413     } else if (in_regs[i].first()->is_XMMRegister()) {
  1414       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  1416     if (out_regs[c_arg].first()->is_Register()) {
  1417       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  1418     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  1419       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  1421 #endif /* ASSERT */
  1422     switch (in_sig_bt[i]) {
  1423       case T_ARRAY:
  1424       case T_OBJECT:
  1425         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1426                     ((i == 0) && (!is_static)),
  1427                     &receiver_offset);
  1428         break;
  1429       case T_VOID:
  1430         break;
  1432       case T_FLOAT:
  1433         float_move(masm, in_regs[i], out_regs[c_arg]);
  1434           break;
  1436       case T_DOUBLE:
  1437         assert( i + 1 < total_in_args &&
  1438                 in_sig_bt[i + 1] == T_VOID &&
  1439                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1440         double_move(masm, in_regs[i], out_regs[c_arg]);
  1441         break;
  1443       case T_LONG :
  1444         long_move(masm, in_regs[i], out_regs[c_arg]);
  1445         break;
  1447       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1449       default:
  1450         move32_64(masm, in_regs[i], out_regs[c_arg]);
  1454   // point c_arg at the first arg that is already loaded in case we
  1455   // need to spill before we call out
  1456   c_arg++;
  1458   // Pre-load a static method's oop into r14.  Used both by locking code and
  1459   // the normal JNI call code.
  1460   if (method->is_static()) {
  1462     //  load oop into a register
  1463     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1465     // Now handlize the static class mirror it's known not-null.
  1466     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1467     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1469     // Now get the handle
  1470     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1471     // store the klass handle as second argument
  1472     __ movptr(c_rarg1, oop_handle_reg);
  1473     // and protect the arg if we must spill
  1474     c_arg--;
  1477   // Change state to native (we save the return address in the thread, since it might not
  1478   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1479   // points into the right code segment. It does not have to be the correct return pc.
  1480   // We use the same pc/oopMap repeatedly when we call out
  1482   intptr_t the_pc = (intptr_t) __ pc();
  1483   oop_maps->add_gc_map(the_pc - start, map);
  1485   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  1488   // We have all of the arguments setup at this point. We must not touch any register
  1489   // argument registers at this point (what if we save/restore them there are no oop?
  1492     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1493     // protect the args we've loaded
  1494     save_args(masm, total_c_args, c_arg, out_regs);
  1495     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1496     __ call_VM_leaf(
  1497       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1498       r15_thread, c_rarg1);
  1499     restore_args(masm, total_c_args, c_arg, out_regs);
  1502   // RedefineClasses() tracing support for obsolete method entry
  1503   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1504     // protect the args we've loaded
  1505     save_args(masm, total_c_args, c_arg, out_regs);
  1506     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1507     __ call_VM_leaf(
  1508       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1509       r15_thread, c_rarg1);
  1510     restore_args(masm, total_c_args, c_arg, out_regs);
  1513   // Lock a synchronized method
  1515   // Register definitions used by locking and unlocking
  1517   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  1518   const Register obj_reg  = rbx;  // Will contain the oop
  1519   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  1520   const Register old_hdr  = r13;  // value of old header at unlock time
  1522   Label slow_path_lock;
  1523   Label lock_done;
  1525   if (method->is_synchronized()) {
  1528     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1530     // Get the handle (the 2nd argument)
  1531     __ mov(oop_handle_reg, c_rarg1);
  1533     // Get address of the box
  1535     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1537     // Load the oop from the handle
  1538     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1540     if (UseBiasedLocking) {
  1541       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  1544     // Load immediate 1 into swap_reg %rax
  1545     __ movl(swap_reg, 1);
  1547     // Load (object->mark() | 1) into swap_reg %rax
  1548     __ orptr(swap_reg, Address(obj_reg, 0));
  1550     // Save (object->mark() | 1) into BasicLock's displaced header
  1551     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1553     if (os::is_MP()) {
  1554       __ lock();
  1557     // src -> dest iff dest == rax else rax <- dest
  1558     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1559     __ jcc(Assembler::equal, lock_done);
  1561     // Hmm should this move to the slow path code area???
  1563     // Test if the oopMark is an obvious stack pointer, i.e.,
  1564     //  1) (mark & 3) == 0, and
  1565     //  2) rsp <= mark < mark + os::pagesize()
  1566     // These 3 tests can be done by evaluating the following
  1567     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1568     // assuming both stack pointer and pagesize have their
  1569     // least significant 2 bits clear.
  1570     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  1572     __ subptr(swap_reg, rsp);
  1573     __ andptr(swap_reg, 3 - os::vm_page_size());
  1575     // Save the test result, for recursive case, the result is zero
  1576     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1577     __ jcc(Assembler::notEqual, slow_path_lock);
  1579     // Slow path will re-enter here
  1581     __ bind(lock_done);
  1585   // Finally just about ready to make the JNI call
  1588   // get JNIEnv* which is first argument to native
  1590   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  1592   // Now set thread in native
  1593   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  1595   __ call(RuntimeAddress(method->native_function()));
  1597     // Either restore the MXCSR register after returning from the JNI Call
  1598     // or verify that it wasn't changed.
  1599     if (RestoreMXCSROnJNICalls) {
  1600       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  1603     else if (CheckJNICalls ) {
  1604       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  1608   // Unpack native results.
  1609   switch (ret_type) {
  1610   case T_BOOLEAN: __ c2bool(rax);            break;
  1611   case T_CHAR   : __ movzwl(rax, rax);      break;
  1612   case T_BYTE   : __ sign_extend_byte (rax); break;
  1613   case T_SHORT  : __ sign_extend_short(rax); break;
  1614   case T_INT    : /* nothing to do */        break;
  1615   case T_DOUBLE :
  1616   case T_FLOAT  :
  1617     // Result is in xmm0 we'll save as needed
  1618     break;
  1619   case T_ARRAY:                 // Really a handle
  1620   case T_OBJECT:                // Really a handle
  1621       break; // can't de-handlize until after safepoint check
  1622   case T_VOID: break;
  1623   case T_LONG: break;
  1624   default       : ShouldNotReachHere();
  1627   // Switch thread to "native transition" state before reading the synchronization state.
  1628   // This additional state is necessary because reading and testing the synchronization
  1629   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1630   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1631   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1632   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1633   //     didn't see any synchronization is progress, and escapes.
  1634   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1636   if(os::is_MP()) {
  1637     if (UseMembar) {
  1638       // Force this write out before the read below
  1639       __ membar(Assembler::Membar_mask_bits(
  1640            Assembler::LoadLoad | Assembler::LoadStore |
  1641            Assembler::StoreLoad | Assembler::StoreStore));
  1642     } else {
  1643       // Write serialization page so VM thread can do a pseudo remote membar.
  1644       // We use the current thread pointer to calculate a thread specific
  1645       // offset to write to within the page. This minimizes bus traffic
  1646       // due to cache line collision.
  1647       __ serialize_memory(r15_thread, rcx);
  1652   // check for safepoint operation in progress and/or pending suspend requests
  1654     Label Continue;
  1656     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1657              SafepointSynchronize::_not_synchronized);
  1659     Label L;
  1660     __ jcc(Assembler::notEqual, L);
  1661     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1662     __ jcc(Assembler::equal, Continue);
  1663     __ bind(L);
  1665     // Don't use call_VM as it will see a possible pending exception and forward it
  1666     // and never return here preventing us from clearing _last_native_pc down below.
  1667     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1668     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1669     // by hand.
  1670     //
  1671     save_native_result(masm, ret_type, stack_slots);
  1672     __ mov(c_rarg0, r15_thread);
  1673     __ mov(r12, rsp); // remember sp
  1674     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1675     __ andptr(rsp, -16); // align stack as required by ABI
  1676     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1677     __ mov(rsp, r12); // restore sp
  1678     __ reinit_heapbase();
  1679     // Restore any method result value
  1680     restore_native_result(masm, ret_type, stack_slots);
  1681     __ bind(Continue);
  1684   // change thread state
  1685   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1687   Label reguard;
  1688   Label reguard_done;
  1689   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1690   __ jcc(Assembler::equal, reguard);
  1691   __ bind(reguard_done);
  1693   // native result if any is live
  1695   // Unlock
  1696   Label unlock_done;
  1697   Label slow_path_unlock;
  1698   if (method->is_synchronized()) {
  1700     // Get locked oop from the handle we passed to jni
  1701     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1703     Label done;
  1705     if (UseBiasedLocking) {
  1706       __ biased_locking_exit(obj_reg, old_hdr, done);
  1709     // Simple recursive lock?
  1711     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  1712     __ jcc(Assembler::equal, done);
  1714     // Must save rax if if it is live now because cmpxchg must use it
  1715     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1716       save_native_result(masm, ret_type, stack_slots);
  1720     // get address of the stack lock
  1721     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1722     //  get old displaced header
  1723     __ movptr(old_hdr, Address(rax, 0));
  1725     // Atomic swap old header if oop still contains the stack lock
  1726     if (os::is_MP()) {
  1727       __ lock();
  1729     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  1730     __ jcc(Assembler::notEqual, slow_path_unlock);
  1732     // slow path re-enters here
  1733     __ bind(unlock_done);
  1734     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1735       restore_native_result(masm, ret_type, stack_slots);
  1738     __ bind(done);
  1742     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1743     save_native_result(masm, ret_type, stack_slots);
  1744     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1745     __ call_VM_leaf(
  1746          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1747          r15_thread, c_rarg1);
  1748     restore_native_result(masm, ret_type, stack_slots);
  1751   __ reset_last_Java_frame(false, true);
  1753   // Unpack oop result
  1754   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1755       Label L;
  1756       __ testptr(rax, rax);
  1757       __ jcc(Assembler::zero, L);
  1758       __ movptr(rax, Address(rax, 0));
  1759       __ bind(L);
  1760       __ verify_oop(rax);
  1763   // reset handle block
  1764   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  1765   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1767   // pop our frame
  1769   __ leave();
  1771   // Any exception pending?
  1772   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1773   __ jcc(Assembler::notEqual, exception_pending);
  1775   // Return
  1777   __ ret(0);
  1779   // Unexpected paths are out of line and go here
  1781   // forward the exception
  1782   __ bind(exception_pending);
  1784   // and forward the exception
  1785   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1788   // Slow path locking & unlocking
  1789   if (method->is_synchronized()) {
  1791     // BEGIN Slow path lock
  1792     __ bind(slow_path_lock);
  1794     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1795     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1797     // protect the args we've loaded
  1798     save_args(masm, total_c_args, c_arg, out_regs);
  1800     __ mov(c_rarg0, obj_reg);
  1801     __ mov(c_rarg1, lock_reg);
  1802     __ mov(c_rarg2, r15_thread);
  1804     // Not a leaf but we have last_Java_frame setup as we want
  1805     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  1806     restore_args(masm, total_c_args, c_arg, out_regs);
  1808 #ifdef ASSERT
  1809     { Label L;
  1810     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1811     __ jcc(Assembler::equal, L);
  1812     __ stop("no pending exception allowed on exit from monitorenter");
  1813     __ bind(L);
  1815 #endif
  1816     __ jmp(lock_done);
  1818     // END Slow path lock
  1820     // BEGIN Slow path unlock
  1821     __ bind(slow_path_unlock);
  1823     // If we haven't already saved the native result we must save it now as xmm registers
  1824     // are still exposed.
  1826     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1827       save_native_result(masm, ret_type, stack_slots);
  1830     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1832     __ mov(c_rarg0, obj_reg);
  1833     __ mov(r12, rsp); // remember sp
  1834     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1835     __ andptr(rsp, -16); // align stack as required by ABI
  1837     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1838     // NOTE that obj_reg == rbx currently
  1839     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  1840     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1842     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1843     __ mov(rsp, r12); // restore sp
  1844     __ reinit_heapbase();
  1845 #ifdef ASSERT
  1847       Label L;
  1848       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1849       __ jcc(Assembler::equal, L);
  1850       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1851       __ bind(L);
  1853 #endif /* ASSERT */
  1855     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  1857     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1858       restore_native_result(masm, ret_type, stack_slots);
  1860     __ jmp(unlock_done);
  1862     // END Slow path unlock
  1864   } // synchronized
  1866   // SLOW PATH Reguard the stack if needed
  1868   __ bind(reguard);
  1869   save_native_result(masm, ret_type, stack_slots);
  1870   __ mov(r12, rsp); // remember sp
  1871   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1872   __ andptr(rsp, -16); // align stack as required by ABI
  1873   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1874   __ mov(rsp, r12); // restore sp
  1875   __ reinit_heapbase();
  1876   restore_native_result(masm, ret_type, stack_slots);
  1877   // and continue
  1878   __ jmp(reguard_done);
  1882   __ flush();
  1884   nmethod *nm = nmethod::new_native_nmethod(method,
  1885                                             compile_id,
  1886                                             masm->code(),
  1887                                             vep_offset,
  1888                                             frame_complete,
  1889                                             stack_slots / VMRegImpl::slots_per_word,
  1890                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1891                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1892                                             oop_maps);
  1893   return nm;
  1897 #ifdef HAVE_DTRACE_H
  1898 // ---------------------------------------------------------------------------
  1899 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1900 // in the Java compiled code convention, marshals them to the native
  1901 // abi and then leaves nops at the position you would expect to call a native
  1902 // function. When the probe is enabled the nops are replaced with a trap
  1903 // instruction that dtrace inserts and the trace will cause a notification
  1904 // to dtrace.
  1905 //
  1906 // The probes are only able to take primitive types and java/lang/String as
  1907 // arguments.  No other java types are allowed. Strings are converted to utf8
  1908 // strings so that from dtrace point of view java strings are converted to C
  1909 // strings. There is an arbitrary fixed limit on the total space that a method
  1910 // can use for converting the strings. (256 chars per string in the signature).
  1911 // So any java string larger then this is truncated.
  1913 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  1914 static bool offsets_initialized = false;
  1917 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  1918                                                 methodHandle method) {
  1921   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1922   // be single threaded in this method.
  1923   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1925   if (!offsets_initialized) {
  1926     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  1927     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  1928     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  1929     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  1930     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  1931     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  1933     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  1934     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  1935     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  1936     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  1937     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  1938     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  1939     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  1940     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  1942     offsets_initialized = true;
  1944   // Fill in the signature array, for the calling-convention call.
  1945   int total_args_passed = method->size_of_parameters();
  1947   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1948   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1950   // The signature we are going to use for the trap that dtrace will see
  1951   // java/lang/String is converted. We drop "this" and any other object
  1952   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1953   // is converted to a two-slot long, which is why we double the allocation).
  1954   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1955   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1957   int i=0;
  1958   int total_strings = 0;
  1959   int first_arg_to_pass = 0;
  1960   int total_c_args = 0;
  1962   // Skip the receiver as dtrace doesn't want to see it
  1963   if( !method->is_static() ) {
  1964     in_sig_bt[i++] = T_OBJECT;
  1965     first_arg_to_pass = 1;
  1968   // We need to convert the java args to where a native (non-jni) function
  1969   // would expect them. To figure out where they go we convert the java
  1970   // signature to a C signature.
  1972   SignatureStream ss(method->signature());
  1973   for ( ; !ss.at_return_type(); ss.next()) {
  1974     BasicType bt = ss.type();
  1975     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1976     out_sig_bt[total_c_args++] = bt;
  1977     if( bt == T_OBJECT) {
  1978       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  1979       if (s == vmSymbols::java_lang_String()) {
  1980         total_strings++;
  1981         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1982       } else if (s == vmSymbols::java_lang_Boolean() ||
  1983                  s == vmSymbols::java_lang_Character() ||
  1984                  s == vmSymbols::java_lang_Byte() ||
  1985                  s == vmSymbols::java_lang_Short() ||
  1986                  s == vmSymbols::java_lang_Integer() ||
  1987                  s == vmSymbols::java_lang_Float()) {
  1988         out_sig_bt[total_c_args-1] = T_INT;
  1989       } else if (s == vmSymbols::java_lang_Long() ||
  1990                  s == vmSymbols::java_lang_Double()) {
  1991         out_sig_bt[total_c_args-1] = T_LONG;
  1992         out_sig_bt[total_c_args++] = T_VOID;
  1994     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  1995       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1996       // We convert double to long
  1997       out_sig_bt[total_c_args-1] = T_LONG;
  1998       out_sig_bt[total_c_args++] = T_VOID;
  1999     } else if ( bt == T_FLOAT) {
  2000       // We convert float to int
  2001       out_sig_bt[total_c_args-1] = T_INT;
  2005   assert(i==total_args_passed, "validly parsed signature");
  2007   // Now get the compiled-Java layout as input arguments
  2008   int comp_args_on_stack;
  2009   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2010       in_sig_bt, in_regs, total_args_passed, false);
  2012   // Now figure out where the args must be stored and how much stack space
  2013   // they require (neglecting out_preserve_stack_slots but space for storing
  2014   // the 1st six register arguments). It's weird see int_stk_helper.
  2016   int out_arg_slots;
  2017   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2019   // Calculate the total number of stack slots we will need.
  2021   // First count the abi requirement plus all of the outgoing args
  2022   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2024   // Now space for the string(s) we must convert
  2025   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2026   for (i = 0; i < total_strings ; i++) {
  2027     string_locs[i] = stack_slots;
  2028     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2031   // Plus the temps we might need to juggle register args
  2032   // regs take two slots each
  2033   stack_slots += (Argument::n_int_register_parameters_c +
  2034                   Argument::n_float_register_parameters_c) * 2;
  2037   // + 4 for return address (which we own) and saved rbp,
  2039   stack_slots += 4;
  2041   // Ok The space we have allocated will look like:
  2042   //
  2043   //
  2044   // FP-> |                     |
  2045   //      |---------------------|
  2046   //      | string[n]           |
  2047   //      |---------------------| <- string_locs[n]
  2048   //      | string[n-1]         |
  2049   //      |---------------------| <- string_locs[n-1]
  2050   //      | ...                 |
  2051   //      | ...                 |
  2052   //      |---------------------| <- string_locs[1]
  2053   //      | string[0]           |
  2054   //      |---------------------| <- string_locs[0]
  2055   //      | outbound memory     |
  2056   //      | based arguments     |
  2057   //      |                     |
  2058   //      |---------------------|
  2059   //      |                     |
  2060   // SP-> | out_preserved_slots |
  2061   //
  2062   //
  2064   // Now compute actual number of stack words we need rounding to make
  2065   // stack properly aligned.
  2066   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2068   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2070   intptr_t start = (intptr_t)__ pc();
  2072   // First thing make an ic check to see if we should even be here
  2074   // We are free to use all registers as temps without saving them and
  2075   // restoring them except rbp. rbp, is the only callee save register
  2076   // as far as the interpreter and the compiler(s) are concerned.
  2078   const Register ic_reg = rax;
  2079   const Register receiver = rcx;
  2080   Label hit;
  2081   Label exception_pending;
  2084   __ verify_oop(receiver);
  2085   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2086   __ jcc(Assembler::equal, hit);
  2088   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2090   // verified entry must be aligned for code patching.
  2091   // and the first 5 bytes must be in the same cache line
  2092   // if we align at 8 then we will be sure 5 bytes are in the same line
  2093   __ align(8);
  2095   __ bind(hit);
  2097   int vep_offset = ((intptr_t)__ pc()) - start;
  2100   // The instruction at the verified entry point must be 5 bytes or longer
  2101   // because it can be patched on the fly by make_non_entrant. The stack bang
  2102   // instruction fits that requirement.
  2104   // Generate stack overflow check
  2106   if (UseStackBanging) {
  2107     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2108       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2109     } else {
  2110       __ movl(rax, stack_size);
  2111       __ bang_stack_size(rax, rbx);
  2113   } else {
  2114     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2115     __ fat_nop();
  2118   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2119          "valid size for make_non_entrant");
  2121   // Generate a new frame for the wrapper.
  2122   __ enter();
  2124   // -4 because return address is already present and so is saved rbp,
  2125   if (stack_size - 2*wordSize != 0) {
  2126     __ subq(rsp, stack_size - 2*wordSize);
  2129   // Frame is now completed as far a size and linkage.
  2131   int frame_complete = ((intptr_t)__ pc()) - start;
  2133   int c_arg, j_arg;
  2135   // State of input register args
  2137   bool  live[ConcreteRegisterImpl::number_of_registers];
  2139   live[j_rarg0->as_VMReg()->value()] = false;
  2140   live[j_rarg1->as_VMReg()->value()] = false;
  2141   live[j_rarg2->as_VMReg()->value()] = false;
  2142   live[j_rarg3->as_VMReg()->value()] = false;
  2143   live[j_rarg4->as_VMReg()->value()] = false;
  2144   live[j_rarg5->as_VMReg()->value()] = false;
  2146   live[j_farg0->as_VMReg()->value()] = false;
  2147   live[j_farg1->as_VMReg()->value()] = false;
  2148   live[j_farg2->as_VMReg()->value()] = false;
  2149   live[j_farg3->as_VMReg()->value()] = false;
  2150   live[j_farg4->as_VMReg()->value()] = false;
  2151   live[j_farg5->as_VMReg()->value()] = false;
  2152   live[j_farg6->as_VMReg()->value()] = false;
  2153   live[j_farg7->as_VMReg()->value()] = false;
  2156   bool rax_is_zero = false;
  2158   // All args (except strings) destined for the stack are moved first
  2159   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2160        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2161     VMRegPair src = in_regs[j_arg];
  2162     VMRegPair dst = out_regs[c_arg];
  2164     // Get the real reg value or a dummy (rsp)
  2166     int src_reg = src.first()->is_reg() ?
  2167                   src.first()->value() :
  2168                   rsp->as_VMReg()->value();
  2170     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2171                     (in_sig_bt[j_arg] == T_OBJECT &&
  2172                      out_sig_bt[c_arg] != T_INT &&
  2173                      out_sig_bt[c_arg] != T_ADDRESS &&
  2174                      out_sig_bt[c_arg] != T_LONG);
  2176     live[src_reg] = !useless;
  2178     if (dst.first()->is_stack()) {
  2180       // Even though a string arg in a register is still live after this loop
  2181       // after the string conversion loop (next) it will be dead so we take
  2182       // advantage of that now for simpler code to manage live.
  2184       live[src_reg] = false;
  2185       switch (in_sig_bt[j_arg]) {
  2187         case T_ARRAY:
  2188         case T_OBJECT:
  2190             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2192             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2193               // need to unbox a one-word value
  2194               Register in_reg = rax;
  2195               if ( src.first()->is_reg() ) {
  2196                 in_reg = src.first()->as_Register();
  2197               } else {
  2198                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2199                 rax_is_zero = false;
  2201               Label skipUnbox;
  2202               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2203                         (int32_t)NULL_WORD);
  2204               __ testq(in_reg, in_reg);
  2205               __ jcc(Assembler::zero, skipUnbox);
  2207               BasicType bt = out_sig_bt[c_arg];
  2208               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2209               Address src1(in_reg, box_offset);
  2210               if ( bt == T_LONG ) {
  2211                 __ movq(in_reg,  src1);
  2212                 __ movq(stack_dst, in_reg);
  2213                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2214                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2215               } else {
  2216                 __ movl(in_reg,  src1);
  2217                 __ movl(stack_dst, in_reg);
  2220               __ bind(skipUnbox);
  2221             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2222               // Convert the arg to NULL
  2223               if (!rax_is_zero) {
  2224                 __ xorq(rax, rax);
  2225                 rax_is_zero = true;
  2227               __ movq(stack_dst, rax);
  2230           break;
  2232         case T_VOID:
  2233           break;
  2235         case T_FLOAT:
  2236           // This does the right thing since we know it is destined for the
  2237           // stack
  2238           float_move(masm, src, dst);
  2239           break;
  2241         case T_DOUBLE:
  2242           // This does the right thing since we know it is destined for the
  2243           // stack
  2244           double_move(masm, src, dst);
  2245           break;
  2247         case T_LONG :
  2248           long_move(masm, src, dst);
  2249           break;
  2251         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2253         default:
  2254           move32_64(masm, src, dst);
  2260   // If we have any strings we must store any register based arg to the stack
  2261   // This includes any still live xmm registers too.
  2263   int sid = 0;
  2265   if (total_strings > 0 ) {
  2266     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2267          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2268       VMRegPair src = in_regs[j_arg];
  2269       VMRegPair dst = out_regs[c_arg];
  2271       if (src.first()->is_reg()) {
  2272         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  2274         // string oops were left untouched by the previous loop even if the
  2275         // eventual (converted) arg is destined for the stack so park them
  2276         // away now (except for first)
  2278         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2279           Address utf8_addr = Address(
  2280               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2281           if (sid != 1) {
  2282             // The first string arg won't be killed until after the utf8
  2283             // conversion
  2284             __ movq(utf8_addr, src.first()->as_Register());
  2286         } else if (dst.first()->is_reg()) {
  2287           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  2289             // Convert the xmm register to an int and store it in the reserved
  2290             // location for the eventual c register arg
  2291             XMMRegister f = src.first()->as_XMMRegister();
  2292             if (in_sig_bt[j_arg] == T_FLOAT) {
  2293               __ movflt(src_tmp, f);
  2294             } else {
  2295               __ movdbl(src_tmp, f);
  2297           } else {
  2298             // If the arg is an oop type we don't support don't bother to store
  2299             // it remember string was handled above.
  2300             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2301                             (in_sig_bt[j_arg] == T_OBJECT &&
  2302                              out_sig_bt[c_arg] != T_INT &&
  2303                              out_sig_bt[c_arg] != T_LONG);
  2305             if (!useless) {
  2306               __ movq(src_tmp, src.first()->as_Register());
  2311       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2312         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2313         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2317     // Now that the volatile registers are safe, convert all the strings
  2318     sid = 0;
  2320     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2321          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2322       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2323         // It's a string
  2324         Address utf8_addr = Address(
  2325             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2326         // The first string we find might still be in the original java arg
  2327         // register
  2329         VMReg src = in_regs[j_arg].first();
  2331         // We will need to eventually save the final argument to the trap
  2332         // in the von-volatile location dedicated to src. This is the offset
  2333         // from fp we will use.
  2334         int src_off = src->is_reg() ?
  2335             fp_offset[src->value()] : reg2offset_in(src);
  2337         // This is where the argument will eventually reside
  2338         VMRegPair dst = out_regs[c_arg];
  2340         if (src->is_reg()) {
  2341           if (sid == 1) {
  2342             __ movq(c_rarg0, src->as_Register());
  2343           } else {
  2344             __ movq(c_rarg0, utf8_addr);
  2346         } else {
  2347           // arg is still in the original location
  2348           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  2350         Label done, convert;
  2352         // see if the oop is NULL
  2353         __ testq(c_rarg0, c_rarg0);
  2354         __ jcc(Assembler::notEqual, convert);
  2356         if (dst.first()->is_reg()) {
  2357           // Save the ptr to utf string in the origina src loc or the tmp
  2358           // dedicated to it
  2359           __ movq(Address(rbp, src_off), c_rarg0);
  2360         } else {
  2361           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  2363         __ jmp(done);
  2365         __ bind(convert);
  2367         __ lea(c_rarg1, utf8_addr);
  2368         if (dst.first()->is_reg()) {
  2369           __ movq(Address(rbp, src_off), c_rarg1);
  2370         } else {
  2371           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  2373         // And do the conversion
  2374         __ call(RuntimeAddress(
  2375                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  2377         __ bind(done);
  2379       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2380         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2381         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2384     // The get_utf call killed all the c_arg registers
  2385     live[c_rarg0->as_VMReg()->value()] = false;
  2386     live[c_rarg1->as_VMReg()->value()] = false;
  2387     live[c_rarg2->as_VMReg()->value()] = false;
  2388     live[c_rarg3->as_VMReg()->value()] = false;
  2389     live[c_rarg4->as_VMReg()->value()] = false;
  2390     live[c_rarg5->as_VMReg()->value()] = false;
  2392     live[c_farg0->as_VMReg()->value()] = false;
  2393     live[c_farg1->as_VMReg()->value()] = false;
  2394     live[c_farg2->as_VMReg()->value()] = false;
  2395     live[c_farg3->as_VMReg()->value()] = false;
  2396     live[c_farg4->as_VMReg()->value()] = false;
  2397     live[c_farg5->as_VMReg()->value()] = false;
  2398     live[c_farg6->as_VMReg()->value()] = false;
  2399     live[c_farg7->as_VMReg()->value()] = false;
  2402   // Now we can finally move the register args to their desired locations
  2404   rax_is_zero = false;
  2406   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2407        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2409     VMRegPair src = in_regs[j_arg];
  2410     VMRegPair dst = out_regs[c_arg];
  2412     // Only need to look for args destined for the interger registers (since we
  2413     // convert float/double args to look like int/long outbound)
  2414     if (dst.first()->is_reg()) {
  2415       Register r =  dst.first()->as_Register();
  2417       // Check if the java arg is unsupported and thereofre useless
  2418       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2419                       (in_sig_bt[j_arg] == T_OBJECT &&
  2420                        out_sig_bt[c_arg] != T_INT &&
  2421                        out_sig_bt[c_arg] != T_ADDRESS &&
  2422                        out_sig_bt[c_arg] != T_LONG);
  2425       // If we're going to kill an existing arg save it first
  2426       if (live[dst.first()->value()]) {
  2427         // you can't kill yourself
  2428         if (src.first() != dst.first()) {
  2429           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  2432       if (src.first()->is_reg()) {
  2433         if (live[src.first()->value()] ) {
  2434           if (in_sig_bt[j_arg] == T_FLOAT) {
  2435             __ movdl(r, src.first()->as_XMMRegister());
  2436           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  2437             __ movdq(r, src.first()->as_XMMRegister());
  2438           } else if (r != src.first()->as_Register()) {
  2439             if (!useless) {
  2440               __ movq(r, src.first()->as_Register());
  2443         } else {
  2444           // If the arg is an oop type we don't support don't bother to store
  2445           // it
  2446           if (!useless) {
  2447             if (in_sig_bt[j_arg] == T_DOUBLE ||
  2448                 in_sig_bt[j_arg] == T_LONG  ||
  2449                 in_sig_bt[j_arg] == T_OBJECT ) {
  2450               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  2451             } else {
  2452               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  2456         live[src.first()->value()] = false;
  2457       } else if (!useless) {
  2458         // full sized move even for int should be ok
  2459         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  2462       // At this point r has the original java arg in the final location
  2463       // (assuming it wasn't useless). If the java arg was an oop
  2464       // we have a bit more to do
  2466       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  2467         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2468           // need to unbox a one-word value
  2469           Label skip;
  2470           __ testq(r, r);
  2471           __ jcc(Assembler::equal, skip);
  2472           BasicType bt = out_sig_bt[c_arg];
  2473           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2474           Address src1(r, box_offset);
  2475           if ( bt == T_LONG ) {
  2476             __ movq(r, src1);
  2477           } else {
  2478             __ movl(r, src1);
  2480           __ bind(skip);
  2482         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2483           // Convert the arg to NULL
  2484           __ xorq(r, r);
  2488       // dst can longer be holding an input value
  2489       live[dst.first()->value()] = false;
  2491     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2492       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2493       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2498   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2499   // patch in the trap
  2500   int patch_offset = ((intptr_t)__ pc()) - start;
  2502   __ nop();
  2505   // Return
  2507   __ leave();
  2508   __ ret(0);
  2510   __ flush();
  2512   nmethod *nm = nmethod::new_dtrace_nmethod(
  2513       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2514       stack_slots / VMRegImpl::slots_per_word);
  2515   return nm;
  2519 #endif // HAVE_DTRACE_H
  2521 // this function returns the adjust size (in number of words) to a c2i adapter
  2522 // activation for use during deoptimization
  2523 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2524   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2528 uint SharedRuntime::out_preserve_stack_slots() {
  2529   return 0;
  2533 //----------------------------generate_ricochet_blob---------------------------
  2534 void SharedRuntime::generate_ricochet_blob() {
  2535   if (!EnableInvokeDynamic)  return;  // leave it as a null
  2537   // allocate space for the code
  2538   ResourceMark rm;
  2539   // setup code generation tools
  2540   CodeBuffer   buffer("ricochet_blob", 512, 512);
  2541   MacroAssembler* masm = new MacroAssembler(&buffer);
  2543   int frame_size_in_words = -1, bounce_offset = -1, exception_offset = -1;
  2544   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &frame_size_in_words, &bounce_offset, &exception_offset);
  2546   // -------------
  2547   // make sure all code is generated
  2548   masm->flush();
  2550   // failed to generate?
  2551   if (frame_size_in_words < 0 || bounce_offset < 0 || exception_offset < 0) {
  2552     assert(false, "bad ricochet blob");
  2553     return;
  2556   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
  2559 //------------------------------generate_deopt_blob----------------------------
  2560 void SharedRuntime::generate_deopt_blob() {
  2561   // Allocate space for the code
  2562   ResourceMark rm;
  2563   // Setup code generation tools
  2564   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2565   MacroAssembler* masm = new MacroAssembler(&buffer);
  2566   int frame_size_in_words;
  2567   OopMap* map = NULL;
  2568   OopMapSet *oop_maps = new OopMapSet();
  2570   // -------------
  2571   // This code enters when returning to a de-optimized nmethod.  A return
  2572   // address has been pushed on the the stack, and return values are in
  2573   // registers.
  2574   // If we are doing a normal deopt then we were called from the patched
  2575   // nmethod from the point we returned to the nmethod. So the return
  2576   // address on the stack is wrong by NativeCall::instruction_size
  2577   // We will adjust the value so it looks like we have the original return
  2578   // address on the stack (like when we eagerly deoptimized).
  2579   // In the case of an exception pending when deoptimizing, we enter
  2580   // with a return address on the stack that points after the call we patched
  2581   // into the exception handler. We have the following register state from,
  2582   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  2583   //    rax: exception oop
  2584   //    rbx: exception handler
  2585   //    rdx: throwing pc
  2586   // So in this case we simply jam rdx into the useless return address and
  2587   // the stack looks just like we want.
  2588   //
  2589   // At this point we need to de-opt.  We save the argument return
  2590   // registers.  We call the first C routine, fetch_unroll_info().  This
  2591   // routine captures the return values and returns a structure which
  2592   // describes the current frame size and the sizes of all replacement frames.
  2593   // The current frame is compiled code and may contain many inlined
  2594   // functions, each with their own JVM state.  We pop the current frame, then
  2595   // push all the new frames.  Then we call the C routine unpack_frames() to
  2596   // populate these frames.  Finally unpack_frames() returns us the new target
  2597   // address.  Notice that callee-save registers are BLOWN here; they have
  2598   // already been captured in the vframeArray at the time the return PC was
  2599   // patched.
  2600   address start = __ pc();
  2601   Label cont;
  2603   // Prolog for non exception case!
  2605   // Save everything in sight.
  2606   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2608   // Normal deoptimization.  Save exec mode for unpack_frames.
  2609   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  2610   __ jmp(cont);
  2612   int reexecute_offset = __ pc() - start;
  2614   // Reexecute case
  2615   // return address is the pc describes what bci to do re-execute at
  2617   // No need to update map as each call to save_live_registers will produce identical oopmap
  2618   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2620   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  2621   __ jmp(cont);
  2623   int exception_offset = __ pc() - start;
  2625   // Prolog for exception case
  2627   // all registers are dead at this entry point, except for rax, and
  2628   // rdx which contain the exception oop and exception pc
  2629   // respectively.  Set them in TLS and fall thru to the
  2630   // unpack_with_exception_in_tls entry point.
  2632   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  2633   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  2635   int exception_in_tls_offset = __ pc() - start;
  2637   // new implementation because exception oop is now passed in JavaThread
  2639   // Prolog for exception case
  2640   // All registers must be preserved because they might be used by LinearScan
  2641   // Exceptiop oop and throwing PC are passed in JavaThread
  2642   // tos: stack at point of call to method that threw the exception (i.e. only
  2643   // args are on the stack, no return address)
  2645   // make room on stack for the return address
  2646   // It will be patched later with the throwing pc. The correct value is not
  2647   // available now because loading it from memory would destroy registers.
  2648   __ push(0);
  2650   // Save everything in sight.
  2651   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2653   // Now it is safe to overwrite any register
  2655   // Deopt during an exception.  Save exec mode for unpack_frames.
  2656   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  2658   // load throwing pc from JavaThread and patch it as the return address
  2659   // of the current frame. Then clear the field in JavaThread
  2661   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  2662   __ movptr(Address(rbp, wordSize), rdx);
  2663   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2665 #ifdef ASSERT
  2666   // verify that there is really an exception oop in JavaThread
  2667   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  2668   __ verify_oop(rax);
  2670   // verify that there is no pending exception
  2671   Label no_pending_exception;
  2672   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  2673   __ testptr(rax, rax);
  2674   __ jcc(Assembler::zero, no_pending_exception);
  2675   __ stop("must not have pending exception here");
  2676   __ bind(no_pending_exception);
  2677 #endif
  2679   __ bind(cont);
  2681   // Call C code.  Need thread and this frame, but NOT official VM entry
  2682   // crud.  We cannot block on this call, no GC can happen.
  2683   //
  2684   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  2686   // fetch_unroll_info needs to call last_java_frame().
  2688   __ set_last_Java_frame(noreg, noreg, NULL);
  2689 #ifdef ASSERT
  2690   { Label L;
  2691     __ cmpptr(Address(r15_thread,
  2692                     JavaThread::last_Java_fp_offset()),
  2693             (int32_t)0);
  2694     __ jcc(Assembler::equal, L);
  2695     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  2696     __ bind(L);
  2698 #endif // ASSERT
  2699   __ mov(c_rarg0, r15_thread);
  2700   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2702   // Need to have an oopmap that tells fetch_unroll_info where to
  2703   // find any register it might need.
  2704   oop_maps->add_gc_map(__ pc() - start, map);
  2706   __ reset_last_Java_frame(false, false);
  2708   // Load UnrollBlock* into rdi
  2709   __ mov(rdi, rax);
  2711    Label noException;
  2712   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  2713   __ jcc(Assembler::notEqual, noException);
  2714   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  2715   // QQQ this is useless it was NULL above
  2716   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  2717   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  2718   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2720   __ verify_oop(rax);
  2722   // Overwrite the result registers with the exception results.
  2723   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2724   // I think this is useless
  2725   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  2727   __ bind(noException);
  2729   // Only register save data is on the stack.
  2730   // Now restore the result registers.  Everything else is either dead
  2731   // or captured in the vframeArray.
  2732   RegisterSaver::restore_result_registers(masm);
  2734   // All of the register save area has been popped of the stack. Only the
  2735   // return address remains.
  2737   // Pop all the frames we must move/replace.
  2738   //
  2739   // Frame picture (youngest to oldest)
  2740   // 1: self-frame (no frame link)
  2741   // 2: deopting frame  (no frame link)
  2742   // 3: caller of deopting frame (could be compiled/interpreted).
  2743   //
  2744   // Note: by leaving the return address of self-frame on the stack
  2745   // and using the size of frame 2 to adjust the stack
  2746   // when we are done the return to frame 3 will still be on the stack.
  2748   // Pop deoptimized frame
  2749   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2750   __ addptr(rsp, rcx);
  2752   // rsp should be pointing at the return address to the caller (3)
  2754   // Stack bang to make sure there's enough room for these interpreter frames.
  2755   if (UseStackBanging) {
  2756     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2757     __ bang_stack_size(rbx, rcx);
  2760   // Load address of array of frame pcs into rcx
  2761   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2763   // Trash the old pc
  2764   __ addptr(rsp, wordSize);
  2766   // Load address of array of frame sizes into rsi
  2767   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2769   // Load counter into rdx
  2770   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2772   // Pick up the initial fp we should save
  2773   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2775   // Now adjust the caller's stack to make up for the extra locals
  2776   // but record the original sp so that we can save it in the skeletal interpreter
  2777   // frame and the stack walking of interpreter_sender will get the unextended sp
  2778   // value and not the "real" sp value.
  2780   const Register sender_sp = r8;
  2782   __ mov(sender_sp, rsp);
  2783   __ movl(rbx, Address(rdi,
  2784                        Deoptimization::UnrollBlock::
  2785                        caller_adjustment_offset_in_bytes()));
  2786   __ subptr(rsp, rbx);
  2788   // Push interpreter frames in a loop
  2789   Label loop;
  2790   __ bind(loop);
  2791   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2792 #ifdef CC_INTERP
  2793   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2794 #ifdef ASSERT
  2795   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2796   __ push(0xDEADDEAD);
  2797 #else /* ASSERT */
  2798   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2799 #endif /* ASSERT */
  2800 #else
  2801   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  2802 #endif // CC_INTERP
  2803   __ pushptr(Address(rcx, 0));          // Save return address
  2804   __ enter();                           // Save old & set new ebp
  2805   __ subptr(rsp, rbx);                  // Prolog
  2806 #ifdef CC_INTERP
  2807   __ movptr(Address(rbp,
  2808                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2809             sender_sp); // Make it walkable
  2810 #else /* CC_INTERP */
  2811   // This value is corrected by layout_activation_impl
  2812   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2813   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  2814 #endif /* CC_INTERP */
  2815   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  2816   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2817   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2818   __ decrementl(rdx);                   // Decrement counter
  2819   __ jcc(Assembler::notZero, loop);
  2820   __ pushptr(Address(rcx, 0));          // Save final return address
  2822   // Re-push self-frame
  2823   __ enter();                           // Save old & set new ebp
  2825   // Allocate a full sized register save area.
  2826   // Return address and rbp are in place, so we allocate two less words.
  2827   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  2829   // Restore frame locals after moving the frame
  2830   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  2831   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2833   // Call C code.  Need thread but NOT official VM entry
  2834   // crud.  We cannot block on this call, no GC can happen.  Call should
  2835   // restore return values to their stack-slots with the new SP.
  2836   //
  2837   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  2839   // Use rbp because the frames look interpreted now
  2840   __ set_last_Java_frame(noreg, rbp, NULL);
  2842   __ mov(c_rarg0, r15_thread);
  2843   __ movl(c_rarg1, r14); // second arg: exec_mode
  2844   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2846   // Set an oopmap for the call site
  2847   oop_maps->add_gc_map(__ pc() - start,
  2848                        new OopMap( frame_size_in_words, 0 ));
  2850   __ reset_last_Java_frame(true, false);
  2852   // Collect return values
  2853   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  2854   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  2855   // I think this is useless (throwing pc?)
  2856   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  2858   // Pop self-frame.
  2859   __ leave();                           // Epilog
  2861   // Jump to interpreter
  2862   __ ret(0);
  2864   // Make sure all code is generated
  2865   masm->flush();
  2867   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2868   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2871 #ifdef COMPILER2
  2872 //------------------------------generate_uncommon_trap_blob--------------------
  2873 void SharedRuntime::generate_uncommon_trap_blob() {
  2874   // Allocate space for the code
  2875   ResourceMark rm;
  2876   // Setup code generation tools
  2877   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2878   MacroAssembler* masm = new MacroAssembler(&buffer);
  2880   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  2882   address start = __ pc();
  2884   // Push self-frame.  We get here with a return address on the
  2885   // stack, so rsp is 8-byte aligned until we allocate our frame.
  2886   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  2888   // No callee saved registers. rbp is assumed implicitly saved
  2889   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  2891   // compiler left unloaded_class_index in j_rarg0 move to where the
  2892   // runtime expects it.
  2893   __ movl(c_rarg1, j_rarg0);
  2895   __ set_last_Java_frame(noreg, noreg, NULL);
  2897   // Call C code.  Need thread but NOT official VM entry
  2898   // crud.  We cannot block on this call, no GC can happen.  Call should
  2899   // capture callee-saved registers as well as return values.
  2900   // Thread is in rdi already.
  2901   //
  2902   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  2904   __ mov(c_rarg0, r15_thread);
  2905   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2907   // Set an oopmap for the call site
  2908   OopMapSet* oop_maps = new OopMapSet();
  2909   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  2911   // location of rbp is known implicitly by the frame sender code
  2913   oop_maps->add_gc_map(__ pc() - start, map);
  2915   __ reset_last_Java_frame(false, false);
  2917   // Load UnrollBlock* into rdi
  2918   __ mov(rdi, rax);
  2920   // Pop all the frames we must move/replace.
  2921   //
  2922   // Frame picture (youngest to oldest)
  2923   // 1: self-frame (no frame link)
  2924   // 2: deopting frame  (no frame link)
  2925   // 3: caller of deopting frame (could be compiled/interpreted).
  2927   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  2928   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  2930   // Pop deoptimized frame (int)
  2931   __ movl(rcx, Address(rdi,
  2932                        Deoptimization::UnrollBlock::
  2933                        size_of_deoptimized_frame_offset_in_bytes()));
  2934   __ addptr(rsp, rcx);
  2936   // rsp should be pointing at the return address to the caller (3)
  2938   // Stack bang to make sure there's enough room for these interpreter frames.
  2939   if (UseStackBanging) {
  2940     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2941     __ bang_stack_size(rbx, rcx);
  2944   // Load address of array of frame pcs into rcx (address*)
  2945   __ movptr(rcx,
  2946             Address(rdi,
  2947                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2949   // Trash the return pc
  2950   __ addptr(rsp, wordSize);
  2952   // Load address of array of frame sizes into rsi (intptr_t*)
  2953   __ movptr(rsi, Address(rdi,
  2954                          Deoptimization::UnrollBlock::
  2955                          frame_sizes_offset_in_bytes()));
  2957   // Counter
  2958   __ movl(rdx, Address(rdi,
  2959                        Deoptimization::UnrollBlock::
  2960                        number_of_frames_offset_in_bytes())); // (int)
  2962   // Pick up the initial fp we should save
  2963   __ movptr(rbp,
  2964             Address(rdi,
  2965                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2967   // Now adjust the caller's stack to make up for the extra locals but
  2968   // record the original sp so that we can save it in the skeletal
  2969   // interpreter frame and the stack walking of interpreter_sender
  2970   // will get the unextended sp value and not the "real" sp value.
  2972   const Register sender_sp = r8;
  2974   __ mov(sender_sp, rsp);
  2975   __ movl(rbx, Address(rdi,
  2976                        Deoptimization::UnrollBlock::
  2977                        caller_adjustment_offset_in_bytes())); // (int)
  2978   __ subptr(rsp, rbx);
  2980   // Push interpreter frames in a loop
  2981   Label loop;
  2982   __ bind(loop);
  2983   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  2984   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  2985   __ pushptr(Address(rcx, 0));     // Save return address
  2986   __ enter();                      // Save old & set new rbp
  2987   __ subptr(rsp, rbx);             // Prolog
  2988 #ifdef CC_INTERP
  2989   __ movptr(Address(rbp,
  2990                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2991             sender_sp); // Make it walkable
  2992 #else // CC_INTERP
  2993   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  2994             sender_sp);            // Make it walkable
  2995   // This value is corrected by layout_activation_impl
  2996   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2997 #endif // CC_INTERP
  2998   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  2999   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  3000   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  3001   __ decrementl(rdx);              // Decrement counter
  3002   __ jcc(Assembler::notZero, loop);
  3003   __ pushptr(Address(rcx, 0));     // Save final return address
  3005   // Re-push self-frame
  3006   __ enter();                 // Save old & set new rbp
  3007   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  3008                               // Prolog
  3010   // Use rbp because the frames look interpreted now
  3011   __ set_last_Java_frame(noreg, rbp, NULL);
  3013   // Call C code.  Need thread but NOT official VM entry
  3014   // crud.  We cannot block on this call, no GC can happen.  Call should
  3015   // restore return values to their stack-slots with the new SP.
  3016   // Thread is in rdi already.
  3017   //
  3018   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3020   __ mov(c_rarg0, r15_thread);
  3021   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3022   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3024   // Set an oopmap for the call site
  3025   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3027   __ reset_last_Java_frame(true, false);
  3029   // Pop self-frame.
  3030   __ leave();                 // Epilog
  3032   // Jump to interpreter
  3033   __ ret(0);
  3035   // Make sure all code is generated
  3036   masm->flush();
  3038   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3039                                                  SimpleRuntimeFrame::framesize >> 1);
  3041 #endif // COMPILER2
  3044 //------------------------------generate_handler_blob------
  3045 //
  3046 // Generate a special Compile2Runtime blob that saves all registers,
  3047 // and setup oopmap.
  3048 //
  3049 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  3050   assert(StubRoutines::forward_exception_entry() != NULL,
  3051          "must be generated before");
  3053   ResourceMark rm;
  3054   OopMapSet *oop_maps = new OopMapSet();
  3055   OopMap* map;
  3057   // Allocate space for the code.  Setup code generation tools.
  3058   CodeBuffer buffer("handler_blob", 2048, 1024);
  3059   MacroAssembler* masm = new MacroAssembler(&buffer);
  3061   address start   = __ pc();
  3062   address call_pc = NULL;
  3063   int frame_size_in_words;
  3065   // Make room for return address (or push it again)
  3066   if (!cause_return) {
  3067     __ push(rbx);
  3070   // Save registers, fpu state, and flags
  3071   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3073   // The following is basically a call_VM.  However, we need the precise
  3074   // address of the call in order to generate an oopmap. Hence, we do all the
  3075   // work outselves.
  3077   __ set_last_Java_frame(noreg, noreg, NULL);
  3079   // The return address must always be correct so that frame constructor never
  3080   // sees an invalid pc.
  3082   if (!cause_return) {
  3083     // overwrite the dummy value we pushed on entry
  3084     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3085     __ movptr(Address(rbp, wordSize), c_rarg0);
  3088   // Do the call
  3089   __ mov(c_rarg0, r15_thread);
  3090   __ call(RuntimeAddress(call_ptr));
  3092   // Set an oopmap for the call site.  This oopmap will map all
  3093   // oop-registers and debug-info registers as callee-saved.  This
  3094   // will allow deoptimization at this safepoint to find all possible
  3095   // debug-info recordings, as well as let GC find all oops.
  3097   oop_maps->add_gc_map( __ pc() - start, map);
  3099   Label noException;
  3101   __ reset_last_Java_frame(false, false);
  3103   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3104   __ jcc(Assembler::equal, noException);
  3106   // Exception pending
  3108   RegisterSaver::restore_live_registers(masm);
  3110   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3112   // No exception case
  3113   __ bind(noException);
  3115   // Normal exit, restore registers and exit.
  3116   RegisterSaver::restore_live_registers(masm);
  3118   __ ret(0);
  3120   // Make sure all code is generated
  3121   masm->flush();
  3123   // Fill-out other meta info
  3124   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3127 //
  3128 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3129 //
  3130 // Generate a stub that calls into vm to find out the proper destination
  3131 // of a java call. All the argument registers are live at this point
  3132 // but since this is generic code we don't know what they are and the caller
  3133 // must do any gc of the args.
  3134 //
  3135 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3136   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3138   // allocate space for the code
  3139   ResourceMark rm;
  3141   CodeBuffer buffer(name, 1000, 512);
  3142   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3144   int frame_size_in_words;
  3146   OopMapSet *oop_maps = new OopMapSet();
  3147   OopMap* map = NULL;
  3149   int start = __ offset();
  3151   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3153   int frame_complete = __ offset();
  3155   __ set_last_Java_frame(noreg, noreg, NULL);
  3157   __ mov(c_rarg0, r15_thread);
  3159   __ call(RuntimeAddress(destination));
  3162   // Set an oopmap for the call site.
  3163   // We need this not only for callee-saved registers, but also for volatile
  3164   // registers that the compiler might be keeping live across a safepoint.
  3166   oop_maps->add_gc_map( __ offset() - start, map);
  3168   // rax contains the address we are going to jump to assuming no exception got installed
  3170   // clear last_Java_sp
  3171   __ reset_last_Java_frame(false, false);
  3172   // check for pending exceptions
  3173   Label pending;
  3174   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3175   __ jcc(Assembler::notEqual, pending);
  3177   // get the returned methodOop
  3178   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
  3179   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3181   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3183   RegisterSaver::restore_live_registers(masm);
  3185   // We are back the the original state on entry and ready to go.
  3187   __ jmp(rax);
  3189   // Pending exception after the safepoint
  3191   __ bind(pending);
  3193   RegisterSaver::restore_live_registers(masm);
  3195   // exception pending => remove activation and forward to exception handler
  3197   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3199   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3200   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3202   // -------------
  3203   // make sure all code is generated
  3204   masm->flush();
  3206   // return the  blob
  3207   // frame_size_words or bytes??
  3208   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3212 void SharedRuntime::generate_stubs() {
  3214   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3215                                         "wrong_method_stub");
  3216   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3217                                         "ic_miss_stub");
  3218   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3219                                         "resolve_opt_virtual_call");
  3221   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3222                                         "resolve_virtual_call");
  3224   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3225                                         "resolve_static_call");
  3226   _polling_page_safepoint_handler_blob =
  3227     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3228                    SafepointSynchronize::handle_polling_page_exception), false);
  3230   _polling_page_return_handler_blob =
  3231     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3232                    SafepointSynchronize::handle_polling_page_exception), true);
  3234   generate_ricochet_blob();
  3236   generate_deopt_blob();
  3238 #ifdef COMPILER2
  3239   generate_uncommon_trap_blob();
  3240 #endif // COMPILER2
  3244 #ifdef COMPILER2
  3245 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3246 //
  3247 //------------------------------generate_exception_blob---------------------------
  3248 // creates exception blob at the end
  3249 // Using exception blob, this code is jumped from a compiled method.
  3250 // (see emit_exception_handler in x86_64.ad file)
  3251 //
  3252 // Given an exception pc at a call we call into the runtime for the
  3253 // handler in this method. This handler might merely restore state
  3254 // (i.e. callee save registers) unwind the frame and jump to the
  3255 // exception handler for the nmethod if there is no Java level handler
  3256 // for the nmethod.
  3257 //
  3258 // This code is entered with a jmp.
  3259 //
  3260 // Arguments:
  3261 //   rax: exception oop
  3262 //   rdx: exception pc
  3263 //
  3264 // Results:
  3265 //   rax: exception oop
  3266 //   rdx: exception pc in caller or ???
  3267 //   destination: exception handler of caller
  3268 //
  3269 // Note: the exception pc MUST be at a call (precise debug information)
  3270 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3271 //
  3273 void OptoRuntime::generate_exception_blob() {
  3274   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3275   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3276   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3278   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3280   // Allocate space for the code
  3281   ResourceMark rm;
  3282   // Setup code generation tools
  3283   CodeBuffer buffer("exception_blob", 2048, 1024);
  3284   MacroAssembler* masm = new MacroAssembler(&buffer);
  3287   address start = __ pc();
  3289   // Exception pc is 'return address' for stack walker
  3290   __ push(rdx);
  3291   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3293   // Save callee-saved registers.  See x86_64.ad.
  3295   // rbp is an implicitly saved callee saved register (i.e. the calling
  3296   // convention will save restore it in prolog/epilog) Other than that
  3297   // there are no callee save registers now that adapter frames are gone.
  3299   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3301   // Store exception in Thread object. We cannot pass any arguments to the
  3302   // handle_exception call, since we do not want to make any assumption
  3303   // about the size of the frame where the exception happened in.
  3304   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  3305   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  3306   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3308   // This call does all the hard work.  It checks if an exception handler
  3309   // exists in the method.
  3310   // If so, it returns the handler address.
  3311   // If not, it prepares for stack-unwinding, restoring the callee-save
  3312   // registers of the frame being removed.
  3313   //
  3314   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  3316   __ set_last_Java_frame(noreg, noreg, NULL);
  3317   __ mov(c_rarg0, r15_thread);
  3318   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  3320   // Set an oopmap for the call site.  This oopmap will only be used if we
  3321   // are unwinding the stack.  Hence, all locations will be dead.
  3322   // Callee-saved registers will be the same as the frame above (i.e.,
  3323   // handle_exception_stub), since they were restored when we got the
  3324   // exception.
  3326   OopMapSet* oop_maps = new OopMapSet();
  3328   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3330   __ reset_last_Java_frame(false, false);
  3332   // Restore callee-saved registers
  3334   // rbp is an implicitly saved callee saved register (i.e. the calling
  3335   // convention will save restore it in prolog/epilog) Other than that
  3336   // there are no callee save registers no that adapter frames are gone.
  3338   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  3340   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  3341   __ pop(rdx);                  // No need for exception pc anymore
  3343   // rax: exception handler
  3345   // Restore SP from BP if the exception PC is a MethodHandle call site.
  3346   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  3347   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
  3349   // We have a handler in rax (could be deopt blob).
  3350   __ mov(r8, rax);
  3352   // Get the exception oop
  3353   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3354   // Get the exception pc in case we are deoptimized
  3355   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3356 #ifdef ASSERT
  3357   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  3358   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  3359 #endif
  3360   // Clear the exception oop so GC no longer processes it as a root.
  3361   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  3363   // rax: exception oop
  3364   // r8:  exception handler
  3365   // rdx: exception pc
  3366   // Jump to handler
  3368   __ jmp(r8);
  3370   // Make sure all code is generated
  3371   masm->flush();
  3373   // Set exception blob
  3374   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  3376 #endif // COMPILER2

mercurial