src/cpu/x86/vm/cppInterpreter_x86.cpp

Tue, 02 Sep 2014 12:48:45 -0700

author
kvn
date
Tue, 02 Sep 2014 12:48:45 -0700
changeset 7152
166d744df0de
parent 6723
0bf37f737702
child 6876
710a3c8b516e
child 8368
32b682649973
permissions
-rw-r--r--

8055494: Add C2 x86 intrinsic for BigInteger::multiplyToLen() method
Summary: Add new C2 intrinsic for BigInteger::multiplyToLen() on x86 in 64-bit VM.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/cppInterpreter.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #include "utilities/macros.hpp"
    49 #ifdef SHARK
    50 #include "shark/shark_globals.hpp"
    51 #endif
    53 #ifdef CC_INTERP
    55 // Routine exists to make tracebacks look decent in debugger
    56 // while we are recursed in the frame manager/c++ interpreter.
    57 // We could use an address in the frame manager but having
    58 // frames look natural in the debugger is a plus.
    59 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
    60 {
    61   //
    62   ShouldNotReachHere();
    63 }
    66 #define __ _masm->
    67 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
    69 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    70                                       // c++ interpreter entry point this holds that entry point label.
    72 // default registers for state and sender_sp
    73 // state and sender_sp are the same on 32bit because we have no choice.
    74 // state could be rsi on 64bit but it is an arg reg and not callee save
    75 // so r13 is better choice.
    77 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
    78 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
    80 // NEEDED for JVMTI?
    81 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
    83 static address unctrap_frame_manager_entry  = NULL;
    85 static address deopt_frame_manager_return_atos  = NULL;
    86 static address deopt_frame_manager_return_btos  = NULL;
    87 static address deopt_frame_manager_return_itos  = NULL;
    88 static address deopt_frame_manager_return_ltos  = NULL;
    89 static address deopt_frame_manager_return_ftos  = NULL;
    90 static address deopt_frame_manager_return_dtos  = NULL;
    91 static address deopt_frame_manager_return_vtos  = NULL;
    93 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    94   int i = 0;
    95   switch (type) {
    96     case T_BOOLEAN: i = 0; break;
    97     case T_CHAR   : i = 1; break;
    98     case T_BYTE   : i = 2; break;
    99     case T_SHORT  : i = 3; break;
   100     case T_INT    : i = 4; break;
   101     case T_VOID   : i = 5; break;
   102     case T_FLOAT  : i = 8; break;
   103     case T_LONG   : i = 9; break;
   104     case T_DOUBLE : i = 6; break;
   105     case T_OBJECT : // fall through
   106     case T_ARRAY  : i = 7; break;
   107     default       : ShouldNotReachHere();
   108   }
   109   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   110   return i;
   111 }
   113 // Is this pc anywhere within code owned by the interpreter?
   114 // This only works for pc that might possibly be exposed to frame
   115 // walkers. It clearly misses all of the actual c++ interpreter
   116 // implementation
   117 bool CppInterpreter::contains(address pc)            {
   118     return (_code->contains(pc) ||
   119             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
   120 }
   123 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
   124   address entry = __ pc();
   125   switch (type) {
   126     case T_BOOLEAN: __ c2bool(rax);            break;
   127     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
   128     case T_BYTE   : __ sign_extend_byte (rax); break;
   129     case T_SHORT  : __ sign_extend_short(rax); break;
   130     case T_VOID   : // fall thru
   131     case T_LONG   : // fall thru
   132     case T_INT    : /* nothing to do */        break;
   134     case T_DOUBLE :
   135     case T_FLOAT  :
   136       {
   137         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   138         __ pop(t);                            // remove return address first
   139         // Must return a result for interpreter or compiler. In SSE
   140         // mode, results are returned in xmm0 and the FPU stack must
   141         // be empty.
   142         if (type == T_FLOAT && UseSSE >= 1) {
   143 #ifndef _LP64
   144           // Load ST0
   145           __ fld_d(Address(rsp, 0));
   146           // Store as float and empty fpu stack
   147           __ fstp_s(Address(rsp, 0));
   148 #endif // !_LP64
   149           // and reload
   150           __ movflt(xmm0, Address(rsp, 0));
   151         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   152           __ movdbl(xmm0, Address(rsp, 0));
   153         } else {
   154           // restore ST0
   155           __ fld_d(Address(rsp, 0));
   156         }
   157         // and pop the temp
   158         __ addptr(rsp, 2 * wordSize);
   159         __ push(t);                            // restore return address
   160       }
   161       break;
   162     case T_OBJECT :
   163       // retrieve result from frame
   164       __ movptr(rax, STATE(_oop_temp));
   165       // and verify it
   166       __ verify_oop(rax);
   167       break;
   168     default       : ShouldNotReachHere();
   169   }
   170   __ ret(0);                                   // return from result handler
   171   return entry;
   172 }
   174 // tosca based result to c++ interpreter stack based result.
   175 // Result goes to top of native stack.
   177 #undef EXTEND  // SHOULD NOT BE NEEDED
   178 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   179   // A result is in the tosca (abi result) from either a native method call or compiled
   180   // code. Place this result on the java expression stack so C++ interpreter can use it.
   181   address entry = __ pc();
   183   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   184   __ pop(t);                            // remove return address first
   185   switch (type) {
   186     case T_VOID:
   187        break;
   188     case T_BOOLEAN:
   189 #ifdef EXTEND
   190       __ c2bool(rax);
   191 #endif
   192       __ push(rax);
   193       break;
   194     case T_CHAR   :
   195 #ifdef EXTEND
   196       __ andl(rax, 0xFFFF);
   197 #endif
   198       __ push(rax);
   199       break;
   200     case T_BYTE   :
   201 #ifdef EXTEND
   202       __ sign_extend_byte (rax);
   203 #endif
   204       __ push(rax);
   205       break;
   206     case T_SHORT  :
   207 #ifdef EXTEND
   208       __ sign_extend_short(rax);
   209 #endif
   210       __ push(rax);
   211       break;
   212     case T_LONG    :
   213       __ push(rdx);                             // pushes useless junk on 64bit
   214       __ push(rax);
   215       break;
   216     case T_INT    :
   217       __ push(rax);
   218       break;
   219     case T_FLOAT  :
   220       // Result is in ST(0)/xmm0
   221       __ subptr(rsp, wordSize);
   222       if ( UseSSE < 1) {
   223         __ fstp_s(Address(rsp, 0));
   224       } else {
   225         __ movflt(Address(rsp, 0), xmm0);
   226       }
   227       break;
   228     case T_DOUBLE  :
   229       __ subptr(rsp, 2*wordSize);
   230       if ( UseSSE < 2 ) {
   231         __ fstp_d(Address(rsp, 0));
   232       } else {
   233         __ movdbl(Address(rsp, 0), xmm0);
   234       }
   235       break;
   236     case T_OBJECT :
   237       __ verify_oop(rax);                      // verify it
   238       __ push(rax);
   239       break;
   240     default       : ShouldNotReachHere();
   241   }
   242   __ jmp(t);                                   // return from result handler
   243   return entry;
   244 }
   246 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   247   // A result is in the java expression stack of the interpreted method that has just
   248   // returned. Place this result on the java expression stack of the caller.
   249   //
   250   // The current interpreter activation in rsi/r13 is for the method just returning its
   251   // result. So we know that the result of this method is on the top of the current
   252   // execution stack (which is pre-pushed) and will be return to the top of the caller
   253   // stack. The top of the callers stack is the bottom of the locals of the current
   254   // activation.
   255   // Because of the way activation are managed by the frame manager the value of rsp is
   256   // below both the stack top of the current activation and naturally the stack top
   257   // of the calling activation. This enable this routine to leave the return address
   258   // to the frame manager on the stack and do a vanilla return.
   259   //
   260   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   261   // On Return: rsi/r13 - unchanged
   262   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
   263   //
   264   // Can destroy rdx, rcx.
   265   //
   267   address entry = __ pc();
   268   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   269   switch (type) {
   270     case T_VOID:
   271       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
   272       __ addptr(rax, wordSize);                                         // account for prepush before we return
   273       break;
   274     case T_FLOAT  :
   275     case T_BOOLEAN:
   276     case T_CHAR   :
   277     case T_BYTE   :
   278     case T_SHORT  :
   279     case T_INT    :
   280       // 1 word result
   281       __ movptr(rdx, STATE(_stack));
   282       __ movptr(rax, STATE(_locals));                                   // address for result
   283       __ movl(rdx, Address(rdx, wordSize));                             // get result
   284       __ movptr(Address(rax, 0), rdx);                                  // and store it
   285       break;
   286     case T_LONG    :
   287     case T_DOUBLE  :
   288       // return top two words on current expression stack to caller's expression stack
   289       // The caller's expression stack is adjacent to the current frame manager's intepretState
   290       // except we allocated one extra word for this intepretState so we won't overwrite it
   291       // when we return a two word result.
   293       __ movptr(rax, STATE(_locals));                                   // address for result
   294       __ movptr(rcx, STATE(_stack));
   295       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
   296       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
   297       __ movptr(Address(rax, wordSize), rdx);                           // and store it
   298       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
   299       __ movptr(Address(rax, 0), rdx);                                  // and store it
   300       break;
   301     case T_OBJECT :
   302       __ movptr(rdx, STATE(_stack));
   303       __ movptr(rax, STATE(_locals));                                   // address for result
   304       __ movptr(rdx, Address(rdx, wordSize));                           // get result
   305       __ verify_oop(rdx);                                               // verify it
   306       __ movptr(Address(rax, 0), rdx);                                  // and store it
   307       break;
   308     default       : ShouldNotReachHere();
   309   }
   310   __ ret(0);
   311   return entry;
   312 }
   314 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   315   // A result is in the java expression stack of the interpreted method that has just
   316   // returned. Place this result in the native abi that the caller expects.
   317   //
   318   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   319   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   320   // and so rather than return result onto caller's java expression stack we return the
   321   // result in the expected location based on the native abi.
   322   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   323   // On Return: rsi/r13 - unchanged
   324   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
   326   address entry = __ pc();
   327   switch (type) {
   328     case T_VOID:
   329        break;
   330     case T_BOOLEAN:
   331     case T_CHAR   :
   332     case T_BYTE   :
   333     case T_SHORT  :
   334     case T_INT    :
   335       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   336       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
   337       break;
   338     case T_LONG    :
   339       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   340       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
   341       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
   342       break;
   343     case T_FLOAT  :
   344       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   345       if ( UseSSE >= 1) {
   346         __ movflt(xmm0, Address(rdx, wordSize));
   347       } else {
   348         __ fld_s(Address(rdx, wordSize));                               // pushd float result
   349       }
   350       break;
   351     case T_DOUBLE  :
   352       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   353       if ( UseSSE > 1) {
   354         __ movdbl(xmm0, Address(rdx, wordSize));
   355       } else {
   356         __ fld_d(Address(rdx, wordSize));                               // push double result
   357       }
   358       break;
   359     case T_OBJECT :
   360       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   361       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
   362       __ verify_oop(rax);                                               // verify it
   363       break;
   364     default       : ShouldNotReachHere();
   365   }
   366   __ ret(0);
   367   return entry;
   368 }
   370 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
   371   // make it look good in the debugger
   372   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
   373 }
   375 address CppInterpreter::deopt_entry(TosState state, int length) {
   376   address ret = NULL;
   377   if (length != 0) {
   378     switch (state) {
   379       case atos: ret = deopt_frame_manager_return_atos; break;
   380       case btos: ret = deopt_frame_manager_return_btos; break;
   381       case ctos:
   382       case stos:
   383       case itos: ret = deopt_frame_manager_return_itos; break;
   384       case ltos: ret = deopt_frame_manager_return_ltos; break;
   385       case ftos: ret = deopt_frame_manager_return_ftos; break;
   386       case dtos: ret = deopt_frame_manager_return_dtos; break;
   387       case vtos: ret = deopt_frame_manager_return_vtos; break;
   388     }
   389   } else {
   390     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   391   }
   392   assert(ret != NULL, "Not initialized");
   393   return ret;
   394 }
   396 // C++ Interpreter
   397 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
   398                                                                  const Register locals,
   399                                                                  const Register sender_sp,
   400                                                                  bool native) {
   402   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
   403   // a static method). "state" contains any previous frame manager state which we must save a link
   404   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
   405   // state object. We must allocate and initialize a new interpretState object and the method
   406   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
   407   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
   408   // be sure to leave space on the caller's stack so that this result will not overwrite values when
   409   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
   410   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
   411   // non-product builds and initialize this last local with the previous interpreterState as
   412   // this makes things look real nice in the debugger.
   414   // State on entry
   415   // Assumes locals == &locals[0]
   416   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
   417   // Assumes rax = return address
   418   // rcx == senders_sp
   419   // rbx == method
   420   // Modifies rcx, rdx, rax
   421   // Returns:
   422   // state == address of new interpreterState
   423   // rsp == bottom of method's expression stack.
   425   const Address const_offset      (rbx, Method::const_offset());
   428   // On entry sp is the sender's sp. This includes the space for the arguments
   429   // that the sender pushed. If the sender pushed no args (a static) and the
   430   // caller returns a long then we need two words on the sender's stack which
   431   // are not present (although when we return a restore full size stack the
   432   // space will be present). If we didn't allocate two words here then when
   433   // we "push" the result of the caller's stack we would overwrite the return
   434   // address and the saved rbp. Not good. So simply allocate 2 words now
   435   // just to be safe. This is the "static long no_params() method" issue.
   436   // See Lo.java for a testcase.
   437   // We don't need this for native calls because they return result in
   438   // register and the stack is expanded in the caller before we store
   439   // the results on the stack.
   441   if (!native) {
   442 #ifdef PRODUCT
   443     __ subptr(rsp, 2*wordSize);
   444 #else /* PRODUCT */
   445     __ push((int32_t)NULL_WORD);
   446     __ push(state);                         // make it look like a real argument
   447 #endif /* PRODUCT */
   448   }
   450   // Now that we are assure of space for stack result, setup typical linkage
   452   __ push(rax);
   453   __ enter();
   455   __ mov(rax, state);                                  // save current state
   457   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
   458   __ mov(state, rsp);
   460   // rsi/r13 == state/locals rax == prevstate
   462   // initialize the "shadow" frame so that use since C++ interpreter not directly
   463   // recursive. Simpler to recurse but we can't trim expression stack as we call
   464   // new methods.
   465   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
   466   __ movptr(STATE(_self_link), state);                  // point to self
   467   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
   468   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
   469 #ifdef _LP64
   470   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
   471 #else
   472   __ get_thread(rax);                                   // get vm's javathread*
   473   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
   474 #endif // _LP64
   475   __ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop
   476   __ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base
   477   if (native) {
   478     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
   479   } else {
   480     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
   481   }
   482   __ xorptr(rdx, rdx);
   483   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
   484   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
   485   __ movptr(rdx, Address(rbx, Method::const_offset()));
   486   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   487   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   488   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
   490   __ movptr(STATE(_method), rbx);                       // state->_method = method()
   491   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
   492   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
   495   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
   496                                                         // entries run from -1..x where &monitor[x] ==
   498   {
   499     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
   500     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
   501     // immediately.
   503     // synchronize method
   504     const Address access_flags      (rbx, Method::access_flags_offset());
   505     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   506     Label not_synced;
   508     __ movl(rax, access_flags);
   509     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   510     __ jcc(Assembler::zero, not_synced);
   512     // Allocate initial monitor and pre initialize it
   513     // get synchronization object
   515     Label done;
   516     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   517     __ movl(rax, access_flags);
   518     __ testl(rax, JVM_ACC_STATIC);
   519     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
   520     __ jcc(Assembler::zero, done);
   521     __ movptr(rax, Address(rbx, Method::const_offset()));
   522     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   523     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   524     __ movptr(rax, Address(rax, mirror_offset));
   525     __ bind(done);
   526     // add space for monitor & lock
   527     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   528     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   529     __ bind(not_synced);
   530   }
   532   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
   533   if (native) {
   534     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   535     __ movptr(STATE(_stack_limit), rsp);
   536   } else {
   537     __ subptr(rsp, wordSize);                                             // pre-push stack
   538     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   540     // compute full expression stack limit
   542     __ movptr(rdx, Address(rbx, Method::const_offset()));
   543     __ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words
   544     __ negptr(rdx);                                                       // so we can subtract in next step
   545     // Allocate expression stack
   546     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words()));
   547     __ movptr(STATE(_stack_limit), rsp);
   548   }
   550 #ifdef _LP64
   551   // Make sure stack is properly aligned and sized for the abi
   552   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   553   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   554 #endif // _LP64
   558 }
   560 // Helpers for commoning out cases in the various type of method entries.
   561 //
   563 // increment invocation count & check for overflow
   564 //
   565 // Note: checking for negative value instead of overflow
   566 //       so we have a 'sticky' overflow test
   567 //
   568 // rbx,: method
   569 // rcx: invocation counter
   570 //
   571 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   572   Label done;
   573   const Address invocation_counter(rax,
   574                 MethodCounters::invocation_counter_offset() +
   575                 InvocationCounter::counter_offset());
   576   const Address backedge_counter  (rax,
   577                 MethodCounter::backedge_counter_offset() +
   578                 InvocationCounter::counter_offset());
   580   __ get_method_counters(rbx, rax, done);
   582   if (ProfileInterpreter) {
   583     __ incrementl(Address(rax,
   584             MethodCounters::interpreter_invocation_counter_offset()));
   585   }
   586   // Update standard invocation counters
   587   __ movl(rcx, invocation_counter);
   588   __ increment(rcx, InvocationCounter::count_increment);
   589   __ movl(invocation_counter, rcx);             // save invocation count
   591   __ movl(rax, backedge_counter);               // load backedge counter
   592   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   594   __ addl(rcx, rax);                            // add both counters
   596   // profile_method is non-null only for interpreted method so
   597   // profile_method != NULL == !native_call
   598   // BytecodeInterpreter only calls for native so code is elided.
   600   __ cmp32(rcx,
   601            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   602   __ jcc(Assembler::aboveEqual, *overflow);
   603   __ bind(done);
   604 }
   606 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   608   // C++ interpreter on entry
   609   // rsi/r13 - new interpreter state pointer
   610   // rbp - interpreter frame pointer
   611   // rbx - method
   613   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   614   // rbx, - method
   615   // rcx - rcvr (assuming there is one)
   616   // top of stack return address of interpreter caller
   617   // rsp - sender_sp
   619   // C++ interpreter only
   620   // rsi/r13 - previous interpreter state pointer
   622   // InterpreterRuntime::frequency_counter_overflow takes one argument
   623   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   624   // The call returns the address of the verified entry point for the method or NULL
   625   // if the compilation did not complete (either went background or bailed out).
   626   __ movptr(rax, (int32_t)false);
   627   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   629   // for c++ interpreter can rsi really be munged?
   630   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
   631   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
   632   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
   634   __ jmp(*do_continue, relocInfo::none);
   636 }
   638 void InterpreterGenerator::generate_stack_overflow_check(void) {
   639   // see if we've got enough room on the stack for locals plus overhead.
   640   // the expression stack grows down incrementally, so the normal guard
   641   // page mechanism will work for that.
   642   //
   643   // Registers live on entry:
   644   //
   645   // Asm interpreter
   646   // rdx: number of additional locals this frame needs (what we must check)
   647   // rbx,: Method*
   649   // C++ Interpreter
   650   // rsi/r13: previous interpreter frame state object
   651   // rdi: &locals[0]
   652   // rcx: # of locals
   653   // rdx: number of additional locals this frame needs (what we must check)
   654   // rbx: Method*
   656   // destroyed on exit
   657   // rax,
   659   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   660   // generate_method_entry) so the guard should work for them too.
   661   //
   663   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
   664   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   666   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   667   // be sure to change this if you add/subtract anything to/from the overhead area
   668   const int overhead_size = (int)sizeof(BytecodeInterpreter);
   670   const int page_size = os::vm_page_size();
   672   Label after_frame_check;
   674   // compute rsp as if this were going to be the last frame on
   675   // the stack before the red zone
   677   Label after_frame_check_pop;
   679   // save rsi == caller's bytecode ptr (c++ previous interp. state)
   680   // QQQ problem here?? rsi overload????
   681   __ push(state);
   683   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
   685   NOT_LP64(__ get_thread(thread));
   687   const Address stack_base(thread, Thread::stack_base_offset());
   688   const Address stack_size(thread, Thread::stack_size_offset());
   690   // locals + overhead, in bytes
   691   // Always give one monitor to allow us to start interp if sync method.
   692   // Any additional monitors need a check when moving the expression stack
   693   const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
   694   __ movptr(rax, Address(rbx, Method::const_offset()));
   695   __ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words
   696   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words()));
   697   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
   699 #ifdef ASSERT
   700   Label stack_base_okay, stack_size_okay;
   701   // verify that thread stack base is non-zero
   702   __ cmpptr(stack_base, (int32_t)0);
   703   __ jcc(Assembler::notEqual, stack_base_okay);
   704   __ stop("stack base is zero");
   705   __ bind(stack_base_okay);
   706   // verify that thread stack size is non-zero
   707   __ cmpptr(stack_size, (int32_t)0);
   708   __ jcc(Assembler::notEqual, stack_size_okay);
   709   __ stop("stack size is zero");
   710   __ bind(stack_size_okay);
   711 #endif
   713   // Add stack base to locals and subtract stack size
   714   __ addptr(rax, stack_base);
   715   __ subptr(rax, stack_size);
   717   // We should have a magic number here for the size of the c++ interpreter frame.
   718   // We can't actually tell this ahead of time. The debug version size is around 3k
   719   // product is 1k and fastdebug is 4k
   720   const int slop = 6 * K;
   722   // Use the maximum number of pages we might bang.
   723   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   724                                                                               (StackRedPages+StackYellowPages);
   725   // Only need this if we are stack banging which is temporary while
   726   // we're debugging.
   727   __ addptr(rax, slop + 2*max_pages * page_size);
   729   // check against the current stack bottom
   730   __ cmpptr(rsp, rax);
   731   __ jcc(Assembler::above, after_frame_check_pop);
   733   __ pop(state);  //  get c++ prev state.
   735      // throw exception return address becomes throwing pc
   736   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   738   // all done with frame size check
   739   __ bind(after_frame_check_pop);
   740   __ pop(state);
   742   __ bind(after_frame_check);
   743 }
   745 // Find preallocated  monitor and lock method (C++ interpreter)
   746 // rbx - Method*
   747 //
   748 void InterpreterGenerator::lock_method(void) {
   749   // assumes state == rsi/r13 == pointer to current interpreterState
   750   // minimally destroys rax, rdx|c_rarg1, rdi
   751   //
   752   // synchronize method
   753   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   754   const Address access_flags      (rbx, Method::access_flags_offset());
   756   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
   758   // find initial monitor i.e. monitors[-1]
   759   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
   760   __ subptr(monitor, entry_size);                                             // point to initial monitor
   762 #ifdef ASSERT
   763   { Label L;
   764     __ movl(rax, access_flags);
   765     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   766     __ jcc(Assembler::notZero, L);
   767     __ stop("method doesn't need synchronization");
   768     __ bind(L);
   769   }
   770 #endif // ASSERT
   771   // get synchronization object
   772   { Label done;
   773     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   774     __ movl(rax, access_flags);
   775     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
   776     __ testl(rax, JVM_ACC_STATIC);
   777     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
   778     __ jcc(Assembler::zero, done);
   779     __ movptr(rax, Address(rbx, Method::const_offset()));
   780     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   781     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   782     __ movptr(rax, Address(rax, mirror_offset));
   783     __ bind(done);
   784   }
   785 #ifdef ASSERT
   786   { Label L;
   787     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
   788     __ jcc(Assembler::equal, L);
   789     __ stop("wrong synchronization lobject");
   790     __ bind(L);
   791   }
   792 #endif // ASSERT
   793   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
   794   __ lock_object(monitor);
   795 }
   797 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   799 address InterpreterGenerator::generate_accessor_entry(void) {
   801   // rbx: Method*
   803   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
   805   Label xreturn_path;
   807   // do fastpath for resolved accessor methods
   808   if (UseFastAccessorMethods) {
   810     address entry_point = __ pc();
   812     Label slow_path;
   813     // If we need a safepoint check, generate full interpreter entry.
   814     ExternalAddress state(SafepointSynchronize::address_of_state());
   815     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   816              SafepointSynchronize::_not_synchronized);
   818     __ jcc(Assembler::notEqual, slow_path);
   819     // ASM/C++ Interpreter
   820     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   821     // Note: We can only use this code if the getfield has been resolved
   822     //       and if we don't have a null-pointer exception => check for
   823     //       these conditions first and use slow path if necessary.
   824     // rbx,: method
   825     // rcx: receiver
   826     __ movptr(rax, Address(rsp, wordSize));
   828     // check if local 0 != NULL and read field
   829     __ testptr(rax, rax);
   830     __ jcc(Assembler::zero, slow_path);
   832     // read first instruction word and extract bytecode @ 1 and index @ 2
   833     __ movptr(rdx, Address(rbx, Method::const_offset()));
   834     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   835     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   836     // Shift codes right to get the index on the right.
   837     // The bytecode fetched looks like <index><0xb4><0x2a>
   838     __ shrl(rdx, 2*BitsPerByte);
   839     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   840     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   842     // rax,: local 0
   843     // rbx,: method
   844     // rcx: receiver - do not destroy since it is needed for slow path!
   845     // rcx: scratch
   846     // rdx: constant pool cache index
   847     // rdi: constant pool cache
   848     // rsi/r13: sender sp
   850     // check if getfield has been resolved and read constant pool cache entry
   851     // check the validity of the cache entry by testing whether _indices field
   852     // contains Bytecode::_getfield in b1 byte.
   853     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   854     __ movl(rcx,
   855             Address(rdi,
   856                     rdx,
   857                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   858     __ shrl(rcx, 2*BitsPerByte);
   859     __ andl(rcx, 0xFF);
   860     __ cmpl(rcx, Bytecodes::_getfield);
   861     __ jcc(Assembler::notEqual, slow_path);
   863     // Note: constant pool entry is not valid before bytecode is resolved
   864     __ movptr(rcx,
   865             Address(rdi,
   866                     rdx,
   867                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   868     __ movl(rdx,
   869             Address(rdi,
   870                     rdx,
   871                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   873     Label notByte, notShort, notChar;
   874     const Address field_address (rax, rcx, Address::times_1);
   876     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   877     // because they are different sizes.
   878     // Use the type from the constant pool cache
   879     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   880     // Make sure we don't need to mask rdx after the above shift
   881     ConstantPoolCacheEntry::verify_tos_state_shift();
   882 #ifdef _LP64
   883     Label notObj;
   884     __ cmpl(rdx, atos);
   885     __ jcc(Assembler::notEqual, notObj);
   886     // atos
   887     __ movptr(rax, field_address);
   888     __ jmp(xreturn_path);
   890     __ bind(notObj);
   891 #endif // _LP64
   892     __ cmpl(rdx, btos);
   893     __ jcc(Assembler::notEqual, notByte);
   894     __ load_signed_byte(rax, field_address);
   895     __ jmp(xreturn_path);
   897     __ bind(notByte);
   898     __ cmpl(rdx, stos);
   899     __ jcc(Assembler::notEqual, notShort);
   900     __ load_signed_short(rax, field_address);
   901     __ jmp(xreturn_path);
   903     __ bind(notShort);
   904     __ cmpl(rdx, ctos);
   905     __ jcc(Assembler::notEqual, notChar);
   906     __ load_unsigned_short(rax, field_address);
   907     __ jmp(xreturn_path);
   909     __ bind(notChar);
   910 #ifdef ASSERT
   911     Label okay;
   912 #ifndef _LP64
   913     __ cmpl(rdx, atos);
   914     __ jcc(Assembler::equal, okay);
   915 #endif // _LP64
   916     __ cmpl(rdx, itos);
   917     __ jcc(Assembler::equal, okay);
   918     __ stop("what type is this?");
   919     __ bind(okay);
   920 #endif // ASSERT
   921     // All the rest are a 32 bit wordsize
   922     __ movl(rax, field_address);
   924     __ bind(xreturn_path);
   926     // _ireturn/_areturn
   927     __ pop(rdi);                               // get return address
   928     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
   929     __ jmp(rdi);
   931     // generate a vanilla interpreter entry as the slow path
   932     __ bind(slow_path);
   933     // We will enter c++ interpreter looking like it was
   934     // called by the call_stub this will cause it to return
   935     // a tosca result to the invoker which might have been
   936     // the c++ interpreter itself.
   938     __ jmp(fast_accessor_slow_entry_path);
   939     return entry_point;
   941   } else {
   942     return NULL;
   943   }
   945 }
   947 address InterpreterGenerator::generate_Reference_get_entry(void) {
   948 #if INCLUDE_ALL_GCS
   949   if (UseG1GC) {
   950     // We need to generate have a routine that generates code to:
   951     //   * load the value in the referent field
   952     //   * passes that value to the pre-barrier.
   953     //
   954     // In the case of G1 this will record the value of the
   955     // referent in an SATB buffer if marking is active.
   956     // This will cause concurrent marking to mark the referent
   957     // field as live.
   958     Unimplemented();
   959   }
   960 #endif // INCLUDE_ALL_GCS
   962   // If G1 is not enabled then attempt to go through the accessor entry point
   963   // Reference.get is an accessor
   964   return generate_accessor_entry();
   965 }
   967 //
   968 // C++ Interpreter stub for calling a native method.
   969 // This sets up a somewhat different looking stack for calling the native method
   970 // than the typical interpreter frame setup but still has the pointer to
   971 // an interpreter state.
   972 //
   974 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   975   // determine code generation flags
   976   bool inc_counter  = UseCompiler || CountCompiledCalls;
   978   // rbx: Method*
   979   // rcx: receiver (unused)
   980   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
   981   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
   982   //      to save/restore.
   983   address entry_point = __ pc();
   985   const Address constMethod       (rbx, Method::const_offset());
   986   const Address access_flags      (rbx, Method::access_flags_offset());
   987   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
   989   // rsi/r13 == state/locals rdi == prevstate
   990   const Register locals = rdi;
   992   // get parameter size (always needed)
   993   __ movptr(rcx, constMethod);
   994   __ load_unsigned_short(rcx, size_of_parameters);
   996   // rbx: Method*
   997   // rcx: size of parameters
   998   __ pop(rax);                                       // get return address
   999   // for natives the size of locals is zero
  1001   // compute beginning of parameters /locals
  1003   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
  1005   // initialize fixed part of activation frame
  1007   // Assumes rax = return address
  1009   // allocate and initialize new interpreterState and method expression stack
  1010   // IN(locals) ->  locals
  1011   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
  1012   // destroys rax, rcx, rdx
  1013   // OUT (state) -> new interpreterState
  1014   // OUT(rsp) -> bottom of methods expression stack
  1016   // save sender_sp
  1017   __ mov(rcx, sender_sp_on_entry);
  1018   // start with NULL previous state
  1019   __ movptr(state, (int32_t)NULL_WORD);
  1020   generate_compute_interpreter_state(state, locals, rcx, true);
  1022 #ifdef ASSERT
  1023   { Label L;
  1024     __ movptr(rax, STATE(_stack_base));
  1025 #ifdef _LP64
  1026     // duplicate the alignment rsp got after setting stack_base
  1027     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
  1028     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1029 #endif // _LP64
  1030     __ cmpptr(rax, rsp);
  1031     __ jcc(Assembler::equal, L);
  1032     __ stop("broken stack frame setup in interpreter");
  1033     __ bind(L);
  1035 #endif
  1037   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
  1038   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
  1039   // Since at this point in the method invocation the exception handler
  1040   // would try to exit the monitor of synchronized methods which hasn't
  1041   // been entered yet, we set the thread local variable
  1042   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1043   // check this flag.
  1045   const Address do_not_unlock_if_synchronized(unlock_thread,
  1046         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1047   __ movbool(do_not_unlock_if_synchronized, true);
  1049   // make sure method is native & not abstract
  1050 #ifdef ASSERT
  1051   __ movl(rax, access_flags);
  1053     Label L;
  1054     __ testl(rax, JVM_ACC_NATIVE);
  1055     __ jcc(Assembler::notZero, L);
  1056     __ stop("tried to execute non-native method as native");
  1057     __ bind(L);
  1059   { Label L;
  1060     __ testl(rax, JVM_ACC_ABSTRACT);
  1061     __ jcc(Assembler::zero, L);
  1062     __ stop("tried to execute abstract method in interpreter");
  1063     __ bind(L);
  1065 #endif
  1068   // increment invocation count & check for overflow
  1069   Label invocation_counter_overflow;
  1070   if (inc_counter) {
  1071     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1074   Label continue_after_compile;
  1076   __ bind(continue_after_compile);
  1078   bang_stack_shadow_pages(true);
  1080   // reset the _do_not_unlock_if_synchronized flag
  1081   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
  1082   __ movbool(do_not_unlock_if_synchronized, false);
  1085   // check for synchronized native methods
  1086   //
  1087   // Note: This must happen *after* invocation counter check, since
  1088   //       when overflow happens, the method should not be locked.
  1089   if (synchronized) {
  1090     // potentially kills rax, rcx, rdx, rdi
  1091     lock_method();
  1092   } else {
  1093     // no synchronization necessary
  1094 #ifdef ASSERT
  1095       { Label L;
  1096         __ movl(rax, access_flags);
  1097         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1098         __ jcc(Assembler::zero, L);
  1099         __ stop("method needs synchronization");
  1100         __ bind(L);
  1102 #endif
  1105   // start execution
  1107   // jvmti support
  1108   __ notify_method_entry();
  1110   // work registers
  1111   const Register method = rbx;
  1112   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
  1113   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
  1114   const Address constMethod       (method, Method::const_offset());
  1115   const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset());
  1117   // allocate space for parameters
  1118   __ movptr(method, STATE(_method));
  1119   __ verify_method_ptr(method);
  1120   __ movptr(t, constMethod);
  1121   __ load_unsigned_short(t, size_of_parameters);
  1122   __ shll(t, 2);
  1123 #ifdef _LP64
  1124   __ subptr(rsp, t);
  1125   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1126   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1127 #else
  1128   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1129   __ subptr(rsp, t);
  1130   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1131 #endif // _LP64
  1133   // get signature handler
  1134     Label pending_exception_present;
  1136   { Label L;
  1137     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1138     __ testptr(t, t);
  1139     __ jcc(Assembler::notZero, L);
  1140     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
  1141     __ movptr(method, STATE(_method));
  1142     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1143     __ jcc(Assembler::notEqual, pending_exception_present);
  1144     __ verify_method_ptr(method);
  1145     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1146     __ bind(L);
  1148 #ifdef ASSERT
  1150     Label L;
  1151     __ push(t);
  1152     __ get_thread(t);                                   // get vm's javathread*
  1153     __ cmpptr(t, STATE(_thread));
  1154     __ jcc(Assembler::equal, L);
  1155     __ int3();
  1156     __ bind(L);
  1157     __ pop(t);
  1159 #endif //
  1161   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
  1162   // call signature handler
  1163   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1165   // The generated handlers do not touch RBX (the method oop).
  1166   // However, large signatures cannot be cached and are generated
  1167   // each time here.  The slow-path generator will blow RBX
  1168   // sometime, so we must reload it after the call.
  1169   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
  1170   __ call(t);
  1171   __ movptr(method, STATE(_method));
  1172   __ verify_method_ptr(method);
  1174   // result handler is in rax
  1175   // set result handler
  1176   __ movptr(STATE(_result_handler), rax);
  1179   // get native function entry point
  1180   { Label L;
  1181     __ movptr(rax, Address(method, Method::native_function_offset()));
  1182     __ testptr(rax, rax);
  1183     __ jcc(Assembler::notZero, L);
  1184     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1185     __ movptr(method, STATE(_method));
  1186     __ verify_method_ptr(method);
  1187     __ movptr(rax, Address(method, Method::native_function_offset()));
  1188     __ bind(L);
  1191   // pass mirror handle if static call
  1192   { Label L;
  1193     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1194     __ movl(t, Address(method, Method::access_flags_offset()));
  1195     __ testl(t, JVM_ACC_STATIC);
  1196     __ jcc(Assembler::zero, L);
  1197     // get mirror
  1198     __ movptr(t, Address(method, Method:: const_offset()));
  1199     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1200     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1201     __ movptr(t, Address(t, mirror_offset));
  1202     // copy mirror into activation object
  1203     __ movptr(STATE(_oop_temp), t);
  1204     // pass handle to mirror
  1205 #ifdef _LP64
  1206     __ lea(c_rarg1, STATE(_oop_temp));
  1207 #else
  1208     __ lea(t, STATE(_oop_temp));
  1209     __ movptr(Address(rsp, wordSize), t);
  1210 #endif // _LP64
  1211     __ bind(L);
  1213 #ifdef ASSERT
  1215     Label L;
  1216     __ push(t);
  1217     __ get_thread(t);                                   // get vm's javathread*
  1218     __ cmpptr(t, STATE(_thread));
  1219     __ jcc(Assembler::equal, L);
  1220     __ int3();
  1221     __ bind(L);
  1222     __ pop(t);
  1224 #endif //
  1226   // pass JNIEnv
  1227 #ifdef _LP64
  1228   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
  1229 #else
  1230   __ movptr(thread, STATE(_thread));          // get thread
  1231   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1233   __ movptr(Address(rsp, 0), t);
  1234 #endif // _LP64
  1236 #ifdef ASSERT
  1238     Label L;
  1239     __ push(t);
  1240     __ get_thread(t);                                   // get vm's javathread*
  1241     __ cmpptr(t, STATE(_thread));
  1242     __ jcc(Assembler::equal, L);
  1243     __ int3();
  1244     __ bind(L);
  1245     __ pop(t);
  1247 #endif //
  1249 #ifdef ASSERT
  1250   { Label L;
  1251     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1252     __ cmpl(t, _thread_in_Java);
  1253     __ jcc(Assembler::equal, L);
  1254     __ stop("Wrong thread state in native stub");
  1255     __ bind(L);
  1257 #endif
  1259   // Change state to native (we save the return address in the thread, since it might not
  1260   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1261   // points into the right code segment. It does not have to be the correct return pc.
  1263   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1265   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1267   __ call(rax);
  1269   // result potentially in rdx:rax or ST0
  1270   __ movptr(method, STATE(_method));
  1271   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
  1273   // The potential result is in ST(0) & rdx:rax
  1274   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
  1275   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
  1276   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
  1277   // be destroyed.
  1278   // It is safe to do these pushes because state is _thread_in_native and return address will be found
  1279   // via _last_native_pc and not via _last_jave_sp
  1281     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
  1282     { Label Lpush, Lskip;
  1283       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1284       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1285       __ cmpptr(STATE(_result_handler), float_handler.addr());
  1286       __ jcc(Assembler::equal, Lpush);
  1287       __ cmpptr(STATE(_result_handler), double_handler.addr());
  1288       __ jcc(Assembler::notEqual, Lskip);
  1289       __ bind(Lpush);
  1290       __ subptr(rsp, 2*wordSize);
  1291       if ( UseSSE < 2 ) {
  1292         __ fstp_d(Address(rsp, 0));
  1293       } else {
  1294         __ movdbl(Address(rsp, 0), xmm0);
  1296       __ bind(Lskip);
  1299   // save rax:rdx for potential use by result handler.
  1300   __ push(rax);
  1301 #ifndef _LP64
  1302   __ push(rdx);
  1303 #endif // _LP64
  1305   // Verify or restore cpu control state after JNI call
  1306   __ restore_cpu_control_state_after_jni();
  1308   // change thread state
  1309   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1310   if(os::is_MP()) {
  1311     // Write serialization page so VM thread can do a pseudo remote membar.
  1312     // We use the current thread pointer to calculate a thread specific
  1313     // offset to write to within the page. This minimizes bus traffic
  1314     // due to cache line collision.
  1315     __ serialize_memory(thread, rcx);
  1318   // check for safepoint operation in progress and/or pending suspend requests
  1319   { Label Continue;
  1321     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1322              SafepointSynchronize::_not_synchronized);
  1324     // threads running native code and they are expected to self-suspend
  1325     // when leaving the _thread_in_native state. We need to check for
  1326     // pending suspend requests here.
  1327     Label L;
  1328     __ jcc(Assembler::notEqual, L);
  1329     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1330     __ jcc(Assembler::equal, Continue);
  1331     __ bind(L);
  1333     // Don't use call_VM as it will see a possible pending exception and forward it
  1334     // and never return here preventing us from clearing _last_native_pc down below.
  1335     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1336     // preserved and correspond to the bcp/locals pointers.
  1337     //
  1339     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1340                           thread);
  1341     __ increment(rsp, wordSize);
  1343     __ movptr(method, STATE(_method));
  1344     __ verify_method_ptr(method);
  1345     __ movptr(thread, STATE(_thread));                       // get thread
  1347     __ bind(Continue);
  1350   // change thread state
  1351   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1353   __ reset_last_Java_frame(thread, true, true);
  1355   // reset handle block
  1356   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1357   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1359   // If result was an oop then unbox and save it in the frame
  1360   { Label L;
  1361     Label no_oop, store_result;
  1362       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
  1363     __ cmpptr(STATE(_result_handler), oop_handler.addr());
  1364     __ jcc(Assembler::notEqual, no_oop);
  1365 #ifndef _LP64
  1366     __ pop(rdx);
  1367 #endif // _LP64
  1368     __ pop(rax);
  1369     __ testptr(rax, rax);
  1370     __ jcc(Assembler::zero, store_result);
  1371     // unbox
  1372     __ movptr(rax, Address(rax, 0));
  1373     __ bind(store_result);
  1374     __ movptr(STATE(_oop_temp), rax);
  1375     // keep stack depth as expected by pushing oop which will eventually be discarded
  1376     __ push(rax);
  1377 #ifndef _LP64
  1378     __ push(rdx);
  1379 #endif // _LP64
  1380     __ bind(no_oop);
  1384      Label no_reguard;
  1385      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1386      __ jcc(Assembler::notEqual, no_reguard);
  1388      __ pusha();
  1389      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1390      __ popa();
  1392      __ bind(no_reguard);
  1396   // QQQ Seems like for native methods we simply return and the caller will see the pending
  1397   // exception and do the right thing. Certainly the interpreter will, don't know about
  1398   // compiled methods.
  1399   // Seems that the answer to above is no this is wrong. The old code would see the exception
  1400   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
  1401   // This seems wrong need to investigate the spec.
  1403   // handle exceptions (exception handling will handle unlocking!)
  1404   { Label L;
  1405     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1406     __ jcc(Assembler::zero, L);
  1407     __ bind(pending_exception_present);
  1409     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
  1410     // return and let caller deal with exception. This skips the unlocking here which
  1411     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
  1412     // Note: must preverve method in rbx
  1413     //
  1415     // remove activation
  1417     __ movptr(t, STATE(_sender_sp));
  1418     __ leave();                                  // remove frame anchor
  1419     __ pop(rdi);                                 // get return address
  1420     __ movptr(state, STATE(_prev_link));         // get previous state for return
  1421     __ mov(rsp, t);                              // set sp to sender sp
  1422     __ push(rdi);                                // push throwing pc
  1423     // The skips unlocking!! This seems to be what asm interpreter does but seems
  1424     // very wrong. Not clear if this violates the spec.
  1425     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1426     __ bind(L);
  1429   // do unlocking if necessary
  1430   { Label L;
  1431     __ movl(t, Address(method, Method::access_flags_offset()));
  1432     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1433     __ jcc(Assembler::zero, L);
  1434     // the code below should be shared with interpreter macro assembler implementation
  1435     { Label unlock;
  1436     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
  1437       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1438       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1439       __ movptr(monitor, STATE(_monitor_base));
  1440       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
  1442       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
  1443       __ testptr(t, t);
  1444       __ jcc(Assembler::notZero, unlock);
  1446       // Entry already unlocked, need to throw exception
  1447       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1448       __ should_not_reach_here();
  1450       __ bind(unlock);
  1451       __ unlock_object(monitor);
  1452       // unlock can blow rbx so restore it for path that needs it below
  1453       __ movptr(method, STATE(_method));
  1455     __ bind(L);
  1458   // jvmti support
  1459   // Note: This must happen _after_ handling/throwing any exceptions since
  1460   //       the exception handler code notifies the runtime of method exits
  1461   //       too. If this happens before, method entry/exit notifications are
  1462   //       not properly paired (was bug - gri 11/22/99).
  1463   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1465   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1466 #ifndef _LP64
  1467   __ pop(rdx);
  1468 #endif // _LP64
  1469   __ pop(rax);
  1470   __ movptr(t, STATE(_result_handler));       // get result handler
  1471   __ call(t);                                 // call result handler to convert to tosca form
  1473   // remove activation
  1475   __ movptr(t, STATE(_sender_sp));
  1477   __ leave();                                  // remove frame anchor
  1478   __ pop(rdi);                                 // get return address
  1479   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
  1480   __ mov(rsp, t);                              // set sp to sender sp
  1481   __ jmp(rdi);
  1483   // invocation counter overflow
  1484   if (inc_counter) {
  1485     // Handle overflow of counter and compile method
  1486     __ bind(invocation_counter_overflow);
  1487     generate_counter_overflow(&continue_after_compile);
  1490   return entry_point;
  1493 // Generate entries that will put a result type index into rcx
  1494 void CppInterpreterGenerator::generate_deopt_handling() {
  1496   Label return_from_deopt_common;
  1498   // Generate entries that will put a result type index into rcx
  1499   // deopt needs to jump to here to enter the interpreter (return a result)
  1500   deopt_frame_manager_return_atos  = __ pc();
  1502   // rax is live here
  1503   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
  1504   __ jmp(return_from_deopt_common);
  1507   // deopt needs to jump to here to enter the interpreter (return a result)
  1508   deopt_frame_manager_return_btos  = __ pc();
  1510   // rax is live here
  1511   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
  1512   __ jmp(return_from_deopt_common);
  1514   // deopt needs to jump to here to enter the interpreter (return a result)
  1515   deopt_frame_manager_return_itos  = __ pc();
  1517   // rax is live here
  1518   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
  1519   __ jmp(return_from_deopt_common);
  1521   // deopt needs to jump to here to enter the interpreter (return a result)
  1523   deopt_frame_manager_return_ltos  = __ pc();
  1524   // rax,rdx are live here
  1525   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
  1526   __ jmp(return_from_deopt_common);
  1528   // deopt needs to jump to here to enter the interpreter (return a result)
  1530   deopt_frame_manager_return_ftos  = __ pc();
  1531   // st(0) is live here
  1532   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1533   __ jmp(return_from_deopt_common);
  1535   // deopt needs to jump to here to enter the interpreter (return a result)
  1536   deopt_frame_manager_return_dtos  = __ pc();
  1538   // st(0) is live here
  1539   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1540   __ jmp(return_from_deopt_common);
  1542   // deopt needs to jump to here to enter the interpreter (return a result)
  1543   deopt_frame_manager_return_vtos  = __ pc();
  1545   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
  1547   // Deopt return common
  1548   // an index is present in rcx that lets us move any possible result being
  1549   // return to the interpreter's stack
  1550   //
  1551   // Because we have a full sized interpreter frame on the youngest
  1552   // activation the stack is pushed too deep to share the tosca to
  1553   // stack converters directly. We shrink the stack to the desired
  1554   // amount and then push result and then re-extend the stack.
  1555   // We could have the code in size_activation layout a short
  1556   // frame for the top activation but that would look different
  1557   // than say sparc (which needs a full size activation because
  1558   // the windows are in the way. Really it could be short? QQQ
  1559   //
  1560   __ bind(return_from_deopt_common);
  1562   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1564   // setup rsp so we can push the "result" as needed.
  1565   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
  1566   __ addptr(rsp, wordSize);                                        // undo prepush
  1568   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1569   // Address index(noreg, rcx, Address::times_ptr);
  1570   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1571   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1572   __ call(rcx);                                                   // call result converter
  1574   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
  1575   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  1576   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  1577                                                                    // result if any on stack already )
  1578   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1581 // Generate the code to handle a more_monitors message from the c++ interpreter
  1582 void CppInterpreterGenerator::generate_more_monitors() {
  1585   Label entry, loop;
  1586   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1587   // 1. compute new pointers                     // rsp: old expression stack top
  1588   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
  1589   __ subptr(rsp, entry_size);                    // move expression stack top limit
  1590   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
  1591   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
  1592   __ subptr(rdx, entry_size);                    // move expression stack bottom
  1593   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
  1594   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
  1595   __ jmp(entry);
  1596   // 2. move expression stack contents
  1597   __ bind(loop);
  1598   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  1599   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
  1600   __ addptr(rcx, wordSize);                      // advance to next word
  1601   __ bind(entry);
  1602   __ cmpptr(rcx, rdx);                           // check if bottom reached
  1603   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
  1604   // now zero the slot so we can find it.
  1605   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  1606   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
  1610 // Initial entry to C++ interpreter from the call_stub.
  1611 // This entry point is called the frame manager since it handles the generation
  1612 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1613 // and via requests from the interpreter. The requests from the call_stub happen
  1614 // directly thru the entry point. Requests from the interpreter happen via returning
  1615 // from the interpreter and examining the message the interpreter has returned to
  1616 // the frame manager. The frame manager can take the following requests:
  1618 // NO_REQUEST - error, should never happen.
  1619 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1620 //                 allocate a new monitor.
  1621 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1622 //               happens during entry during the entry via the call stub.
  1623 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1624 //
  1625 // Arguments:
  1626 //
  1627 // rbx: Method*
  1628 // rcx: receiver - unused (retrieved from stack as needed)
  1629 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
  1630 //
  1631 //
  1632 // Stack layout at entry
  1633 //
  1634 // [ return address     ] <--- rsp
  1635 // [ parameter n        ]
  1636 //   ...
  1637 // [ parameter 1        ]
  1638 // [ expression stack   ]
  1639 //
  1640 //
  1641 // We are free to blow any registers we like because the call_stub which brought us here
  1642 // initially has preserved the callee save registers already.
  1643 //
  1644 //
  1646 static address interpreter_frame_manager = NULL;
  1648 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1650   // rbx: Method*
  1651   // rsi/r13: sender sp
  1653   // Because we redispatch "recursive" interpreter entries thru this same entry point
  1654   // the "input" register usage is a little strange and not what you expect coming
  1655   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
  1656   // state are NULL but on "recursive" dispatches they are what you'd expect.
  1657   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
  1660   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1661   // the code is pretty much ready. Would need to change the test below and for good measure
  1662   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1663   // routines. Not clear this is worth it yet.
  1665   if (interpreter_frame_manager) return interpreter_frame_manager;
  1667   address entry_point = __ pc();
  1669   // Fast accessor methods share this entry point.
  1670   // This works because frame manager is in the same codelet
  1671   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
  1673   Label dispatch_entry_2;
  1674   __ movptr(rcx, sender_sp_on_entry);
  1675   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
  1677   __ jmp(dispatch_entry_2);
  1679   const Register locals  = rdi;
  1681   Label re_dispatch;
  1683   __ bind(re_dispatch);
  1685   // save sender sp (doesn't include return address
  1686   __ lea(rcx, Address(rsp, wordSize));
  1688   __ bind(dispatch_entry_2);
  1690   // save sender sp
  1691   __ push(rcx);
  1693   const Address constMethod       (rbx, Method::const_offset());
  1694   const Address access_flags      (rbx, Method::access_flags_offset());
  1695   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
  1696   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
  1698   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1699   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  1700   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1702   // get parameter size (always needed)
  1703   __ movptr(rdx, constMethod);
  1704   __ load_unsigned_short(rcx, size_of_parameters);
  1706   // rbx: Method*
  1707   // rcx: size of parameters
  1708   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
  1710   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
  1712   // see if we've got enough room on the stack for locals plus overhead.
  1713   generate_stack_overflow_check();                                 // C++
  1715   // c++ interpreter does not use stack banging or any implicit exceptions
  1716   // leave for now to verify that check is proper.
  1717   bang_stack_shadow_pages(false);
  1721   // compute beginning of parameters (rdi)
  1722   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
  1724   // save sender's sp
  1725   // __ movl(rcx, rsp);
  1727   // get sender's sp
  1728   __ pop(rcx);
  1730   // get return address
  1731   __ pop(rax);
  1733   // rdx - # of additional locals
  1734   // allocate space for locals
  1735   // explicitly initialize locals
  1737     Label exit, loop;
  1738     __ testl(rdx, rdx);                               // (32bit ok)
  1739     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1740     __ bind(loop);
  1741     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1742     __ decrement(rdx);                                // until everything initialized
  1743     __ jcc(Assembler::greater, loop);
  1744     __ bind(exit);
  1748   // Assumes rax = return address
  1750   // allocate and initialize new interpreterState and method expression stack
  1751   // IN(locals) ->  locals
  1752   // IN(state) -> any current interpreter activation
  1753   // destroys rax, rcx, rdx, rdi
  1754   // OUT (state) -> new interpreterState
  1755   // OUT(rsp) -> bottom of methods expression stack
  1757   generate_compute_interpreter_state(state, locals, rcx, false);
  1759   // Call interpreter
  1761   Label call_interpreter;
  1762   __ bind(call_interpreter);
  1764   // c++ interpreter does not use stack banging or any implicit exceptions
  1765   // leave for now to verify that check is proper.
  1766   bang_stack_shadow_pages(false);
  1769   // Call interpreter enter here if message is
  1770   // set and we know stack size is valid
  1772   Label call_interpreter_2;
  1774   __ bind(call_interpreter_2);
  1777     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
  1779 #ifdef _LP64
  1780     __ mov(c_rarg0, state);
  1781 #else
  1782     __ push(state);                                                 // push arg to interpreter
  1783     __ movptr(thread, STATE(_thread));
  1784 #endif // _LP64
  1786     // We can setup the frame anchor with everything we want at this point
  1787     // as we are thread_in_Java and no safepoints can occur until we go to
  1788     // vm mode. We do have to clear flags on return from vm but that is it
  1789     //
  1790     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
  1791     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
  1793     // Call the interpreter
  1795     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
  1796     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
  1798     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
  1799     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
  1800     //
  1801     // state is preserved since it is callee saved
  1802     //
  1804     // reset_last_Java_frame
  1806     NOT_LP64(__ movl(thread, STATE(_thread));)
  1807     __ reset_last_Java_frame(thread, true, true);
  1810   // examine msg from interpreter to determine next action
  1812   __ movl(rdx, STATE(_msg));                                       // Get new message
  1814   Label call_method;
  1815   Label return_from_interpreted_method;
  1816   Label throw_exception;
  1817   Label bad_msg;
  1818   Label do_OSR;
  1820   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
  1821   __ jcc(Assembler::equal, call_method);
  1822   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
  1823   __ jcc(Assembler::equal, return_from_interpreted_method);
  1824   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
  1825   __ jcc(Assembler::equal, do_OSR);
  1826   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
  1827   __ jcc(Assembler::equal, throw_exception);
  1828   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
  1829   __ jcc(Assembler::notEqual, bad_msg);
  1831   // Allocate more monitor space, shuffle expression stack....
  1833   generate_more_monitors();
  1835   __ jmp(call_interpreter);
  1837   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1838   unctrap_frame_manager_entry  = __ pc();
  1839   //
  1840   // Load the registers we need.
  1841   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1842   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1843   __ jmp(call_interpreter_2);
  1847   //=============================================================================
  1848   // Returning from a compiled method into a deopted method. The bytecode at the
  1849   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1850   // for the template based interpreter). Any stack space that was used by the
  1851   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1852   // so all that we have to do is place any pending result on the expression stack
  1853   // and resume execution on the next bytecode.
  1856   generate_deopt_handling();
  1857   __ jmp(call_interpreter);
  1860   // Current frame has caught an exception we need to dispatch to the
  1861   // handler. We can get here because a native interpreter frame caught
  1862   // an exception in which case there is no handler and we must rethrow
  1863   // If it is a vanilla interpreted frame the we simply drop into the
  1864   // interpreter and let it do the lookup.
  1866   Interpreter::_rethrow_exception_entry = __ pc();
  1867   // rax: exception
  1868   // rdx: return address/pc that threw exception
  1870   Label return_with_exception;
  1871   Label unwind_and_forward;
  1873   // restore state pointer.
  1874   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1876   __ movptr(rbx, STATE(_method));                       // get method
  1877 #ifdef _LP64
  1878   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
  1879 #else
  1880   __ movl(rcx, STATE(_thread));                       // get thread
  1882   // Store exception with interpreter will expect it
  1883   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
  1884 #endif // _LP64
  1886   // is current frame vanilla or native?
  1888   __ movl(rdx, access_flags);
  1889   __ testl(rdx, JVM_ACC_NATIVE);
  1890   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
  1892   // We drop thru to unwind a native interpreted frame with a pending exception
  1893   // We jump here for the initial interpreter frame with exception pending
  1894   // We unwind the current acivation and forward it to our caller.
  1896   __ bind(unwind_and_forward);
  1898   // unwind rbp, return stack to unextended value and re-push return address
  1900   __ movptr(rcx, STATE(_sender_sp));
  1901   __ leave();
  1902   __ pop(rdx);
  1903   __ mov(rsp, rcx);
  1904   __ push(rdx);
  1905   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1907   // Return point from a call which returns a result in the native abi
  1908   // (c1/c2/jni-native). This result must be processed onto the java
  1909   // expression stack.
  1910   //
  1911   // A pending exception may be present in which case there is no result present
  1913   Label resume_interpreter;
  1914   Label do_float;
  1915   Label do_double;
  1916   Label done_conv;
  1918   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
  1919   if (UseSSE < 2) {
  1920     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1921     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
  1922     __ movl(rcx, Address(rbx, Method::result_index_offset()));
  1923     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1924     __ jcc(Assembler::equal, do_float);
  1925     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1926     __ jcc(Assembler::equal, do_double);
  1927 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  1928     __ empty_FPU_stack();
  1929 #endif // COMPILER2
  1930     __ jmp(done_conv);
  1932     __ bind(do_float);
  1933 #ifdef COMPILER2
  1934     for (int i = 1; i < 8; i++) {
  1935       __ ffree(i);
  1937 #endif // COMPILER2
  1938     __ jmp(done_conv);
  1939     __ bind(do_double);
  1940 #ifdef COMPILER2
  1941     for (int i = 1; i < 8; i++) {
  1942       __ ffree(i);
  1944 #endif // COMPILER2
  1945     __ jmp(done_conv);
  1946   } else {
  1947     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
  1948     __ jmp(done_conv);
  1951   // Return point to interpreter from compiled/native method
  1952   InternalAddress return_from_native_method(__ pc());
  1954   __ bind(done_conv);
  1957   // Result if any is in tosca. The java expression stack is in the state that the
  1958   // calling convention left it (i.e. params may or may not be present)
  1959   // Copy the result from tosca and place it on java expression stack.
  1961   // Restore rsi/r13 as compiled code may not preserve it
  1963   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1965   // restore stack to what we had when we left (in case i2c extended it)
  1967   __ movptr(rsp, STATE(_stack));
  1968   __ lea(rsp, Address(rsp, wordSize));
  1970   // If there is a pending exception then we don't really have a result to process
  1972 #ifdef _LP64
  1973   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1974 #else
  1975   __ movptr(rcx, STATE(_thread));                       // get thread
  1976   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1977 #endif // _LP64
  1978   __ jcc(Assembler::notZero, return_with_exception);
  1980   // get method just executed
  1981   __ movptr(rbx, STATE(_result._to_call._callee));
  1983   // callee left args on top of expression stack, remove them
  1984   __ movptr(rcx, constMethod);
  1985   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
  1987   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
  1989   __ movl(rcx, Address(rbx, Method::result_index_offset()));
  1990   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1991   // Address index(noreg, rax, Address::times_ptr);
  1992   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1993   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1994   __ call(rcx);                                               // call result converter
  1995   __ jmp(resume_interpreter);
  1997   // An exception is being caught on return to a vanilla interpreter frame.
  1998   // Empty the stack and resume interpreter
  2000   __ bind(return_with_exception);
  2002   // Exception present, empty stack
  2003   __ movptr(rsp, STATE(_stack_base));
  2004   __ jmp(resume_interpreter);
  2006   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  2007   // interpreter call, or native) and unwind this interpreter activation.
  2008   // All monitors should be unlocked.
  2010   __ bind(return_from_interpreted_method);
  2012   Label return_to_initial_caller;
  2014   __ movptr(rbx, STATE(_method));                                   // get method just executed
  2015   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
  2016   __ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index
  2017   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
  2019   // Copy result to callers java stack
  2020   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
  2021   // Address index(noreg, rax, Address::times_ptr);
  2023   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
  2024   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
  2025   __ call(rax);                                                     // call result converter
  2027   Label unwind_recursive_activation;
  2028   __ bind(unwind_recursive_activation);
  2030   // returning to interpreter method from "recursive" interpreter call
  2031   // result converter left rax pointing to top of the java stack for method we are returning
  2032   // to. Now all we must do is unwind the state from the completed call
  2034   __ movptr(state, STATE(_prev_link));                              // unwind state
  2035   __ leave();                                                       // pop the frame
  2036   __ mov(rsp, rax);                                                 // unwind stack to remove args
  2038   // Resume the interpreter. The current frame contains the current interpreter
  2039   // state object.
  2040   //
  2042   __ bind(resume_interpreter);
  2044   // state == interpreterState object for method we are resuming
  2046   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
  2047   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  2048   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  2049                                                                    // result if any on stack already )
  2050   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  2051   __ jmp(call_interpreter_2);                                      // No need to bang
  2053   // interpreter returning to native code (call_stub/c1/c2)
  2054   // convert result and unwind initial activation
  2055   // rax - result index
  2057   __ bind(return_to_initial_caller);
  2058   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
  2059   // Address index(noreg, rax, Address::times_ptr);
  2061   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
  2062   __ call(rax);                                                    // call result converter
  2064   Label unwind_initial_activation;
  2065   __ bind(unwind_initial_activation);
  2067   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
  2069   /* Current stack picture
  2071         [ incoming parameters ]
  2072         [ extra locals ]
  2073         [ return address to CALL_STUB/C1/C2]
  2074   fp -> [ CALL_STUB/C1/C2 fp ]
  2075         BytecodeInterpreter object
  2076         expression stack
  2077   sp ->
  2079   */
  2081   // return restoring the stack to the original sender_sp value
  2083   __ movptr(rcx, STATE(_sender_sp));
  2084   __ leave();
  2085   __ pop(rdi);                                                        // get return address
  2086   // set stack to sender's sp
  2087   __ mov(rsp, rcx);
  2088   __ jmp(rdi);                                                        // return to call_stub
  2090   // OSR request, adjust return address to make current frame into adapter frame
  2091   // and enter OSR nmethod
  2093   __ bind(do_OSR);
  2095   Label remove_initial_frame;
  2097   // We are going to pop this frame. Is there another interpreter frame underneath
  2098   // it or is it callstub/compiled?
  2100   // Move buffer to the expected parameter location
  2101   __ movptr(rcx, STATE(_result._osr._osr_buf));
  2103   __ movptr(rax, STATE(_result._osr._osr_entry));
  2105   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
  2106   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
  2108   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
  2109   __ leave();                                                  // pop the frame
  2110   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
  2113   // We know we are calling compiled so push specialized return
  2114   // method uses specialized entry, push a return so we look like call stub setup
  2115   // this path will handle fact that result is returned in registers and not
  2116   // on the java stack.
  2118   __ pushptr(return_from_native_method.addr());
  2120   __ jmp(rax);
  2122   __ bind(remove_initial_frame);
  2124   __ movptr(rdx, STATE(_sender_sp));
  2125   __ leave();
  2126   // get real return
  2127   __ pop(rsi);
  2128   // set stack to sender's sp
  2129   __ mov(rsp, rdx);
  2130   // repush real return
  2131   __ push(rsi);
  2132   // Enter OSR nmethod
  2133   __ jmp(rax);
  2138   // Call a new method. All we do is (temporarily) trim the expression stack
  2139   // push a return address to bring us back to here and leap to the new entry.
  2141   __ bind(call_method);
  2143   // stack points to next free location and not top element on expression stack
  2144   // method expects sp to be pointing to topmost element
  2146   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
  2147   __ lea(rsp, Address(rsp, wordSize));
  2149   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
  2151   // don't need a return address if reinvoking interpreter
  2153   // Make it look like call_stub calling conventions
  2155   // Get (potential) receiver
  2156   // get size of parameters in words
  2157   __ movptr(rcx, constMethod);
  2158   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
  2160   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
  2161   __ pushptr(recursive.addr());                                      // make it look good in the debugger
  2163   InternalAddress entry(entry_point);
  2164   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
  2165   __ jcc(Assembler::equal, re_dispatch);                             // yes
  2167   __ pop(rax);                                                       // pop dummy address
  2170   // get specialized entry
  2171   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
  2172   // set sender SP
  2173   __ mov(sender_sp_on_entry, rsp);
  2175   // method uses specialized entry, push a return so we look like call stub setup
  2176   // this path will handle fact that result is returned in registers and not
  2177   // on the java stack.
  2179   __ pushptr(return_from_native_method.addr());
  2181   __ jmp(rax);
  2183   __ bind(bad_msg);
  2184   __ stop("Bad message from interpreter");
  2186   // Interpreted method "returned" with an exception pass it on...
  2187   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2188   // We handle result (if any) differently based on return to interpreter or call_stub
  2190   Label unwind_initial_with_pending_exception;
  2192   __ bind(throw_exception);
  2193   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
  2194   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
  2195   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
  2196   __ addptr(rax, wordSize);                                         // account for prepush before we return
  2197   __ jmp(unwind_recursive_activation);
  2199   __ bind(unwind_initial_with_pending_exception);
  2201   // We will unwind the current (initial) interpreter frame and forward
  2202   // the exception to the caller. We must put the exception in the
  2203   // expected register and clear pending exception and then forward.
  2205   __ jmp(unwind_and_forward);
  2207   interpreter_frame_manager = entry_point;
  2208   return entry_point;
  2211 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  2212   // determine code generation flags
  2213   bool synchronized = false;
  2214   address entry_point = NULL;
  2216   switch (kind) {
  2217     case Interpreter::zerolocals             :                                                                             break;
  2218     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  2219     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  2220     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  2221     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  2222     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  2223     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  2224     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  2226     case Interpreter::java_lang_math_sin     : // fall thru
  2227     case Interpreter::java_lang_math_cos     : // fall thru
  2228     case Interpreter::java_lang_math_tan     : // fall thru
  2229     case Interpreter::java_lang_math_abs     : // fall thru
  2230     case Interpreter::java_lang_math_log     : // fall thru
  2231     case Interpreter::java_lang_math_log10   : // fall thru
  2232     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  2233     case Interpreter::java_lang_ref_reference_get
  2234                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  2235     default                                  : ShouldNotReachHere();                                                       break;
  2238   if (entry_point) return entry_point;
  2240   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  2244 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2245  : CppInterpreterGenerator(code) {
  2246    generate_all(); // down here so it can be "virtual"
  2249 // Deoptimization helpers for C++ interpreter
  2251 // How much stack a method activation needs in words.
  2252 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  2254   const int stub_code = 4;  // see generate_call_stub
  2255   // Save space for one monitor to get into the interpreted method in case
  2256   // the method is synchronized
  2257   int monitor_size    = method->is_synchronized() ?
  2258                                 1*frame::interpreter_frame_monitor_size() : 0;
  2260   // total static overhead size. Account for interpreter state object, return
  2261   // address, saved rbp and 2 words for a "static long no_params() method" issue.
  2263   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
  2264     ( frame::sender_sp_offset - frame::link_offset) + 2;
  2266   const int method_stack = (method->max_locals() + method->max_stack()) *
  2267                            Interpreter::stackElementWords;
  2268   return overhead_size + method_stack + stub_code;
  2271 // returns the activation size.
  2272 static int size_activation_helper(int extra_locals_size, int monitor_size) {
  2273   return (extra_locals_size +                  // the addition space for locals
  2274           2*BytesPerWord +                     // return address and saved rbp
  2275           2*BytesPerWord +                     // "static long no_params() method" issue
  2276           sizeof(BytecodeInterpreter) +               // interpreterState
  2277           monitor_size);                       // monitors
  2280 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2281                                            frame* caller,
  2282                                            frame* current,
  2283                                            Method* method,
  2284                                            intptr_t* locals,
  2285                                            intptr_t* stack,
  2286                                            intptr_t* stack_base,
  2287                                            intptr_t* monitor_base,
  2288                                            intptr_t* frame_bottom,
  2289                                            bool is_top_frame
  2292   // What about any vtable?
  2293   //
  2294   to_fill->_thread = JavaThread::current();
  2295   // This gets filled in later but make it something recognizable for now
  2296   to_fill->_bcp = method->code_base();
  2297   to_fill->_locals = locals;
  2298   to_fill->_constants = method->constants()->cache();
  2299   to_fill->_method = method;
  2300   to_fill->_mdx = NULL;
  2301   to_fill->_stack = stack;
  2302   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2303     to_fill->_msg = deopt_resume2;
  2304   } else {
  2305     to_fill->_msg = method_resume;
  2307   to_fill->_result._to_call._bcp_advance = 0;
  2308   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2309   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2310   to_fill->_prev_link = NULL;
  2312   to_fill->_sender_sp = caller->unextended_sp();
  2314   if (caller->is_interpreted_frame()) {
  2315     interpreterState prev  = caller->get_interpreterState();
  2316     to_fill->_prev_link = prev;
  2317     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
  2318     // Make the prev callee look proper
  2319     prev->_result._to_call._callee = method;
  2320     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2321       prev->_result._to_call._bcp_advance = 5;
  2322     } else {
  2323       prev->_result._to_call._bcp_advance = 3;
  2326   to_fill->_oop_temp = NULL;
  2327   to_fill->_stack_base = stack_base;
  2328   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2329   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2330   // See generate_compute_interpreter_state.
  2331   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
  2332   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2334   to_fill->_self_link = to_fill;
  2335   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
  2336          "Stack top out of range");
  2340 static int frame_size_helper(int max_stack,
  2341                              int tempcount,
  2342                              int moncount,
  2343                              int callee_param_count,
  2344                              int callee_locals,
  2345                              bool is_top_frame,
  2346                              int& monitor_size,
  2347                              int& full_frame_size) {
  2348   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
  2349   monitor_size = sizeof(BasicObjectLock) * moncount;
  2351   // First calculate the frame size without any java expression stack
  2352   int short_frame_size = size_activation_helper(extra_locals_size,
  2353                                                 monitor_size);
  2355   // Now with full size expression stack
  2356   full_frame_size = short_frame_size + max_stack * BytesPerWord;
  2358   // and now with only live portion of the expression stack
  2359   short_frame_size = short_frame_size + tempcount * BytesPerWord;
  2361   // the size the activation is right now. Only top frame is full size
  2362   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
  2363   return frame_size;
  2366 int AbstractInterpreter::size_activation(int max_stack,
  2367                                          int tempcount,
  2368                                          int extra_args,
  2369                                          int moncount,
  2370                                          int callee_param_count,
  2371                                          int callee_locals,
  2372                                          bool is_top_frame) {
  2373   assert(extra_args == 0, "FIX ME");
  2374   // NOTE: return size is in words not bytes
  2376   // Calculate the amount our frame will be adjust by the callee. For top frame
  2377   // this is zero.
  2379   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2380   // calculates the extra locals based on itself. Not what the callee does
  2381   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2382   // as getting sender_sp correct.
  2384   int unused_monitor_size = 0;
  2385   int unused_full_frame_size = 0;
  2386   return frame_size_helper(max_stack, tempcount, moncount, callee_param_count, callee_locals,
  2387                            is_top_frame, unused_monitor_size, unused_full_frame_size)/BytesPerWord;
  2390 void AbstractInterpreter::layout_activation(Method* method,
  2391                                             int tempcount,  //
  2392                                             int popframe_extra_args,
  2393                                             int moncount,
  2394                                             int caller_actual_parameters,
  2395                                             int callee_param_count,
  2396                                             int callee_locals,
  2397                                             frame* caller,
  2398                                             frame* interpreter_frame,
  2399                                             bool is_top_frame,
  2400                                             bool is_bottom_frame) {
  2402   assert(popframe_extra_args == 0, "FIX ME");
  2403   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2404   // does as far as allocating an interpreter frame.
  2405   // Set up the method, locals, and monitors.
  2406   // The frame interpreter_frame is guaranteed to be the right size,
  2407   // as determined by a previous call to the size_activation() method.
  2408   // It is also guaranteed to be walkable even though it is in a skeletal state
  2409   // NOTE: tempcount is the current size of the java expression stack. For top most
  2410   //       frames we will allocate a full sized expression stack and not the curback
  2411   //       version that non-top frames have.
  2413   int monitor_size = 0;
  2414   int full_frame_size = 0;
  2415   int frame_size = frame_size_helper(method->max_stack(), tempcount, moncount, callee_param_count, callee_locals,
  2416                                      is_top_frame, monitor_size, full_frame_size);
  2418 #ifdef ASSERT
  2419   assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  2420 #endif
  2422   // MUCHO HACK
  2424   intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
  2426   /* Now fillin the interpreterState object */
  2428   // The state object is the first thing on the frame and easily located
  2430   interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
  2433   // Find the locals pointer. This is rather simple on x86 because there is no
  2434   // confusing rounding at the callee to account for. We can trivially locate
  2435   // our locals based on the current fp().
  2436   // Note: the + 2 is for handling the "static long no_params() method" issue.
  2437   // (too bad I don't really remember that issue well...)
  2439   intptr_t* locals;
  2440   // If the caller is interpreted we need to make sure that locals points to the first
  2441   // argument that the caller passed and not in an area where the stack might have been extended.
  2442   // because the stack to stack to converter needs a proper locals value in order to remove the
  2443   // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
  2444   // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
  2445   // adjust the stack?? HMMM QQQ
  2446   //
  2447   if (caller->is_interpreted_frame()) {
  2448     // locals must agree with the caller because it will be used to set the
  2449     // caller's tos when we return.
  2450     interpreterState prev  = caller->get_interpreterState();
  2451     // stack() is prepushed.
  2452     locals = prev->stack() + method->size_of_parameters();
  2453     // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
  2454     if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
  2455       // os::breakpoint();
  2457   } else {
  2458     // this is where a c2i would have placed locals (except for the +2)
  2459     locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
  2462   intptr_t* monitor_base = (intptr_t*) cur_state;
  2463   intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
  2464   /* +1 because stack is always prepushed */
  2465   intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
  2468   BytecodeInterpreter::layout_interpreterState(cur_state,
  2469                                                caller,
  2470                                                interpreter_frame,
  2471                                                method,
  2472                                                locals,
  2473                                                stack,
  2474                                                stack_base,
  2475                                                monitor_base,
  2476                                                frame_bottom,
  2477                                                is_top_frame);
  2479   // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2482 #endif // CC_INTERP (all)

mercurial