src/share/vm/opto/escape.cpp

Thu, 10 Sep 2009 10:36:24 -0700

author
kvn
date
Thu, 10 Sep 2009 10:36:24 -0700
changeset 1392
159d56b94894
parent 1301
18f526145aea
child 1423
7e309ecb83ce
permissions
-rw-r--r--

6880574: C2 assert in escape.cpp:445 on linux-amd64
Summary: Look through chained AddP nodes in get_addp_base().
Reviewed-by: jrose

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    29   uint v = (targIdx << EdgeShift) + ((uint) et);
    30   if (_edges == NULL) {
    31      Arena *a = Compile::current()->comp_arena();
    32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    33   }
    34   _edges->append_if_missing(v);
    35 }
    37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    38   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   _edges->remove(v);
    41 }
    43 #ifndef PRODUCT
    44 static const char *node_type_names[] = {
    45   "UnknownType",
    46   "JavaObject",
    47   "LocalVar",
    48   "Field"
    49 };
    51 static const char *esc_names[] = {
    52   "UnknownEscape",
    53   "NoEscape",
    54   "ArgEscape",
    55   "GlobalEscape"
    56 };
    58 static const char *edge_type_suffix[] = {
    59  "?", // UnknownEdge
    60  "P", // PointsToEdge
    61  "D", // DeferredEdge
    62  "F"  // FieldEdge
    63 };
    65 void PointsToNode::dump(bool print_state) const {
    66   NodeType nt = node_type();
    67   tty->print("%s ", node_type_names[(int) nt]);
    68   if (print_state) {
    69     EscapeState es = escape_state();
    70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
    71   }
    72   tty->print("[[");
    73   for (uint i = 0; i < edge_count(); i++) {
    74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    75   }
    76   tty->print("]]  ");
    77   if (_node == NULL)
    78     tty->print_cr("<null>");
    79   else
    80     _node->dump();
    81 }
    82 #endif
    84 ConnectionGraph::ConnectionGraph(Compile * C) :
    85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
    86   _processed(C->comp_arena()),
    87   _collecting(true),
    88   _compile(C),
    89   _node_map(C->comp_arena()) {
    91   _phantom_object = C->top()->_idx,
    92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
    94   // Add ConP(#NULL) and ConN(#NULL) nodes.
    95   PhaseGVN* igvn = C->initial_gvn();
    96   Node* oop_null = igvn->zerocon(T_OBJECT);
    97   _oop_null = oop_null->_idx;
    98   assert(_oop_null < C->unique(), "should be created already");
    99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   101   if (UseCompressedOops) {
   102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
   103     _noop_null = noop_null->_idx;
   104     assert(_noop_null < C->unique(), "should be created already");
   105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   106   }
   107 }
   109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   110   PointsToNode *f = ptnode_adr(from_i);
   111   PointsToNode *t = ptnode_adr(to_i);
   113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   116   f->add_edge(to_i, PointsToNode::PointsToEdge);
   117 }
   119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   120   PointsToNode *f = ptnode_adr(from_i);
   121   PointsToNode *t = ptnode_adr(to_i);
   123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   126   // don't add a self-referential edge, this can occur during removal of
   127   // deferred edges
   128   if (from_i != to_i)
   129     f->add_edge(to_i, PointsToNode::DeferredEdge);
   130 }
   132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   133   const Type *adr_type = phase->type(adr);
   134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   135       adr->in(AddPNode::Address)->is_Proj() &&
   136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   137     // We are computing a raw address for a store captured by an Initialize
   138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   140     assert(offs != Type::OffsetBot ||
   141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   142            "offset must be a constant or it is initialization of array");
   143     return offs;
   144   }
   145   const TypePtr *t_ptr = adr_type->isa_ptr();
   146   assert(t_ptr != NULL, "must be a pointer type");
   147   return t_ptr->offset();
   148 }
   150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   151   PointsToNode *f = ptnode_adr(from_i);
   152   PointsToNode *t = ptnode_adr(to_i);
   154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   158   t->set_offset(offset);
   160   f->add_edge(to_i, PointsToNode::FieldEdge);
   161 }
   163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   164   PointsToNode *npt = ptnode_adr(ni);
   165   PointsToNode::EscapeState old_es = npt->escape_state();
   166   if (es > old_es)
   167     npt->set_escape_state(es);
   168 }
   170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   171                                PointsToNode::EscapeState es, bool done) {
   172   PointsToNode* ptadr = ptnode_adr(n->_idx);
   173   ptadr->_node = n;
   174   ptadr->set_node_type(nt);
   176   // inline set_escape_state(idx, es);
   177   PointsToNode::EscapeState old_es = ptadr->escape_state();
   178   if (es > old_es)
   179     ptadr->set_escape_state(es);
   181   if (done)
   182     _processed.set(n->_idx);
   183 }
   185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   186   uint idx = n->_idx;
   187   PointsToNode::EscapeState es;
   189   // If we are still collecting or there were no non-escaping allocations
   190   // we don't know the answer yet
   191   if (_collecting)
   192     return PointsToNode::UnknownEscape;
   194   // if the node was created after the escape computation, return
   195   // UnknownEscape
   196   if (idx >= nodes_size())
   197     return PointsToNode::UnknownEscape;
   199   es = ptnode_adr(idx)->escape_state();
   201   // if we have already computed a value, return it
   202   if (es != PointsToNode::UnknownEscape &&
   203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
   204     return es;
   206   // PointsTo() calls n->uncast() which can return a new ideal node.
   207   if (n->uncast()->_idx >= nodes_size())
   208     return PointsToNode::UnknownEscape;
   210   // compute max escape state of anything this node could point to
   211   VectorSet ptset(Thread::current()->resource_area());
   212   PointsTo(ptset, n, phase);
   213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   214     uint pt = i.elem;
   215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
   216     if (pes > es)
   217       es = pes;
   218   }
   219   // cache the computed escape state
   220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   221   ptnode_adr(idx)->set_escape_state(es);
   222   return es;
   223 }
   225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   226   VectorSet visited(Thread::current()->resource_area());
   227   GrowableArray<uint>  worklist;
   229 #ifdef ASSERT
   230   Node *orig_n = n;
   231 #endif
   233   n = n->uncast();
   234   PointsToNode* npt = ptnode_adr(n->_idx);
   236   // If we have a JavaObject, return just that object
   237   if (npt->node_type() == PointsToNode::JavaObject) {
   238     ptset.set(n->_idx);
   239     return;
   240   }
   241 #ifdef ASSERT
   242   if (npt->_node == NULL) {
   243     if (orig_n != n)
   244       orig_n->dump();
   245     n->dump();
   246     assert(npt->_node != NULL, "unregistered node");
   247   }
   248 #endif
   249   worklist.push(n->_idx);
   250   while(worklist.length() > 0) {
   251     int ni = worklist.pop();
   252     if (visited.test_set(ni))
   253       continue;
   255     PointsToNode* pn = ptnode_adr(ni);
   256     // ensure that all inputs of a Phi have been processed
   257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
   259     int edges_processed = 0;
   260     uint e_cnt = pn->edge_count();
   261     for (uint e = 0; e < e_cnt; e++) {
   262       uint etgt = pn->edge_target(e);
   263       PointsToNode::EdgeType et = pn->edge_type(e);
   264       if (et == PointsToNode::PointsToEdge) {
   265         ptset.set(etgt);
   266         edges_processed++;
   267       } else if (et == PointsToNode::DeferredEdge) {
   268         worklist.push(etgt);
   269         edges_processed++;
   270       } else {
   271         assert(false,"neither PointsToEdge or DeferredEdge");
   272       }
   273     }
   274     if (edges_processed == 0) {
   275       // no deferred or pointsto edges found.  Assume the value was set
   276       // outside this method.  Add the phantom object to the pointsto set.
   277       ptset.set(_phantom_object);
   278     }
   279   }
   280 }
   282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
   283   // This method is most expensive during ConnectionGraph construction.
   284   // Reuse vectorSet and an additional growable array for deferred edges.
   285   deferred_edges->clear();
   286   visited->Clear();
   288   visited->set(ni);
   289   PointsToNode *ptn = ptnode_adr(ni);
   291   // Mark current edges as visited and move deferred edges to separate array.
   292   for (uint i = 0; i < ptn->edge_count(); ) {
   293     uint t = ptn->edge_target(i);
   294 #ifdef ASSERT
   295     assert(!visited->test_set(t), "expecting no duplications");
   296 #else
   297     visited->set(t);
   298 #endif
   299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
   300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   301       deferred_edges->append(t);
   302     } else {
   303       i++;
   304     }
   305   }
   306   for (int next = 0; next < deferred_edges->length(); ++next) {
   307     uint t = deferred_edges->at(next);
   308     PointsToNode *ptt = ptnode_adr(t);
   309     uint e_cnt = ptt->edge_count();
   310     for (uint e = 0; e < e_cnt; e++) {
   311       uint etgt = ptt->edge_target(e);
   312       if (visited->test_set(etgt))
   313         continue;
   315       PointsToNode::EdgeType et = ptt->edge_type(e);
   316       if (et == PointsToNode::PointsToEdge) {
   317         add_pointsto_edge(ni, etgt);
   318         if(etgt == _phantom_object) {
   319           // Special case - field set outside (globally escaping).
   320           ptn->set_escape_state(PointsToNode::GlobalEscape);
   321         }
   322       } else if (et == PointsToNode::DeferredEdge) {
   323         deferred_edges->append(etgt);
   324       } else {
   325         assert(false,"invalid connection graph");
   326       }
   327     }
   328   }
   329 }
   332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   334 //  a pointsto edge is added if it is a JavaObject
   336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   337   PointsToNode* an = ptnode_adr(adr_i);
   338   PointsToNode* to = ptnode_adr(to_i);
   339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
   341   for (uint fe = 0; fe < an->edge_count(); fe++) {
   342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   343     int fi = an->edge_target(fe);
   344     PointsToNode* pf = ptnode_adr(fi);
   345     int po = pf->offset();
   346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   347       if (deferred)
   348         add_deferred_edge(fi, to_i);
   349       else
   350         add_pointsto_edge(fi, to_i);
   351     }
   352   }
   353 }
   355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   356 // whose offset matches "offset".
   357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   358   PointsToNode* an = ptnode_adr(adr_i);
   359   for (uint fe = 0; fe < an->edge_count(); fe++) {
   360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   361     int fi = an->edge_target(fe);
   362     PointsToNode* pf = ptnode_adr(fi);
   363     int po = pf->offset();
   364     if (pf->edge_count() == 0) {
   365       // we have not seen any stores to this field, assume it was set outside this method
   366       add_pointsto_edge(fi, _phantom_object);
   367     }
   368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   369       add_deferred_edge(from_i, fi);
   370     }
   371   }
   372 }
   374 // Helper functions
   376 static Node* get_addp_base(Node *addp) {
   377   assert(addp->is_AddP(), "must be AddP");
   378   //
   379   // AddP cases for Base and Address inputs:
   380   // case #1. Direct object's field reference:
   381   //     Allocate
   382   //       |
   383   //     Proj #5 ( oop result )
   384   //       |
   385   //     CheckCastPP (cast to instance type)
   386   //      | |
   387   //     AddP  ( base == address )
   388   //
   389   // case #2. Indirect object's field reference:
   390   //      Phi
   391   //       |
   392   //     CastPP (cast to instance type)
   393   //      | |
   394   //     AddP  ( base == address )
   395   //
   396   // case #3. Raw object's field reference for Initialize node:
   397   //      Allocate
   398   //        |
   399   //      Proj #5 ( oop result )
   400   //  top   |
   401   //     \  |
   402   //     AddP  ( base == top )
   403   //
   404   // case #4. Array's element reference:
   405   //   {CheckCastPP | CastPP}
   406   //     |  | |
   407   //     |  AddP ( array's element offset )
   408   //     |  |
   409   //     AddP ( array's offset )
   410   //
   411   // case #5. Raw object's field reference for arraycopy stub call:
   412   //          The inline_native_clone() case when the arraycopy stub is called
   413   //          after the allocation before Initialize and CheckCastPP nodes.
   414   //      Allocate
   415   //        |
   416   //      Proj #5 ( oop result )
   417   //       | |
   418   //       AddP  ( base == address )
   419   //
   420   // case #6. Constant Pool, ThreadLocal, CastX2P or
   421   //          Raw object's field reference:
   422   //      {ConP, ThreadLocal, CastX2P, raw Load}
   423   //  top   |
   424   //     \  |
   425   //     AddP  ( base == top )
   426   //
   427   // case #7. Klass's field reference.
   428   //      LoadKlass
   429   //       | |
   430   //       AddP  ( base == address )
   431   //
   432   // case #8. narrow Klass's field reference.
   433   //      LoadNKlass
   434   //       |
   435   //      DecodeN
   436   //       | |
   437   //       AddP  ( base == address )
   438   //
   439   Node *base = addp->in(AddPNode::Base)->uncast();
   440   if (base->is_top()) { // The AddP case #3 and #6.
   441     base = addp->in(AddPNode::Address)->uncast();
   442     while (base->is_AddP()) {
   443       // Case #6 (unsafe access) may have several chained AddP nodes.
   444       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
   445       base = base->in(AddPNode::Address)->uncast();
   446     }
   447     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   448            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
   449            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
   450            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
   451   }
   452   return base;
   453 }
   455 static Node* find_second_addp(Node* addp, Node* n) {
   456   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   458   Node* addp2 = addp->raw_out(0);
   459   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   460       addp2->in(AddPNode::Base) == n &&
   461       addp2->in(AddPNode::Address) == addp) {
   463     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   464     //
   465     // Find array's offset to push it on worklist first and
   466     // as result process an array's element offset first (pushed second)
   467     // to avoid CastPP for the array's offset.
   468     // Otherwise the inserted CastPP (LocalVar) will point to what
   469     // the AddP (Field) points to. Which would be wrong since
   470     // the algorithm expects the CastPP has the same point as
   471     // as AddP's base CheckCastPP (LocalVar).
   472     //
   473     //    ArrayAllocation
   474     //     |
   475     //    CheckCastPP
   476     //     |
   477     //    memProj (from ArrayAllocation CheckCastPP)
   478     //     |  ||
   479     //     |  ||   Int (element index)
   480     //     |  ||    |   ConI (log(element size))
   481     //     |  ||    |   /
   482     //     |  ||   LShift
   483     //     |  ||  /
   484     //     |  AddP (array's element offset)
   485     //     |  |
   486     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   487     //     | / /
   488     //     AddP (array's offset)
   489     //      |
   490     //     Load/Store (memory operation on array's element)
   491     //
   492     return addp2;
   493   }
   494   return NULL;
   495 }
   497 //
   498 // Adjust the type and inputs of an AddP which computes the
   499 // address of a field of an instance
   500 //
   501 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   502   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   503   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
   504   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   505   if (t == NULL) {
   506     // We are computing a raw address for a store captured by an Initialize
   507     // compute an appropriate address type (cases #3 and #5).
   508     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   509     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   510     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   511     assert(offs != Type::OffsetBot, "offset must be a constant");
   512     t = base_t->add_offset(offs)->is_oopptr();
   513   }
   514   int inst_id =  base_t->instance_id();
   515   assert(!t->is_known_instance() || t->instance_id() == inst_id,
   516                              "old type must be non-instance or match new type");
   518   // The type 't' could be subclass of 'base_t'.
   519   // As result t->offset() could be large then base_t's size and it will
   520   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
   521   // constructor verifies correctness of the offset.
   522   //
   523   // It could happened on subclass's branch (from the type profiling
   524   // inlining) which was not eliminated during parsing since the exactness
   525   // of the allocation type was not propagated to the subclass type check.
   526   //
   527   // Do nothing for such AddP node and don't process its users since
   528   // this code branch will go away.
   529   //
   530   if (!t->is_known_instance() &&
   531       !t->klass()->equals(base_t->klass()) &&
   532       t->klass()->is_subtype_of(base_t->klass())) {
   533      return false; // bail out
   534   }
   536   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   537   // Do NOT remove the next call: ensure an new alias index is allocated
   538   // for the instance type
   539   int alias_idx = _compile->get_alias_index(tinst);
   540   igvn->set_type(addp, tinst);
   541   // record the allocation in the node map
   542   set_map(addp->_idx, get_map(base->_idx));
   544   // Set addp's Base and Address to 'base'.
   545   Node *abase = addp->in(AddPNode::Base);
   546   Node *adr   = addp->in(AddPNode::Address);
   547   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
   548       adr->in(0)->_idx == (uint)inst_id) {
   549     // Skip AddP cases #3 and #5.
   550   } else {
   551     assert(!abase->is_top(), "sanity"); // AddP case #3
   552     if (abase != base) {
   553       igvn->hash_delete(addp);
   554       addp->set_req(AddPNode::Base, base);
   555       if (abase == adr) {
   556         addp->set_req(AddPNode::Address, base);
   557       } else {
   558         // AddP case #4 (adr is array's element offset AddP node)
   559 #ifdef ASSERT
   560         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
   561         assert(adr->is_AddP() && atype != NULL &&
   562                atype->instance_id() == inst_id, "array's element offset should be processed first");
   563 #endif
   564       }
   565       igvn->hash_insert(addp);
   566     }
   567   }
   568   // Put on IGVN worklist since at least addp's type was changed above.
   569   record_for_optimizer(addp);
   570   return true;
   571 }
   573 //
   574 // Create a new version of orig_phi if necessary. Returns either the newly
   575 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   576 // phi was created.  Cache the last newly created phi in the node map.
   577 //
   578 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   579   Compile *C = _compile;
   580   new_created = false;
   581   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   582   // nothing to do if orig_phi is bottom memory or matches alias_idx
   583   if (phi_alias_idx == alias_idx) {
   584     return orig_phi;
   585   }
   586   // Have we recently created a Phi for this alias index?
   587   PhiNode *result = get_map_phi(orig_phi->_idx);
   588   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   589     return result;
   590   }
   591   // Previous check may fail when the same wide memory Phi was split into Phis
   592   // for different memory slices. Search all Phis for this region.
   593   if (result != NULL) {
   594     Node* region = orig_phi->in(0);
   595     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   596       Node* phi = region->fast_out(i);
   597       if (phi->is_Phi() &&
   598           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
   599         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
   600         return phi->as_Phi();
   601       }
   602     }
   603   }
   604   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   605     if (C->do_escape_analysis() == true && !C->failing()) {
   606       // Retry compilation without escape analysis.
   607       // If this is the first failure, the sentinel string will "stick"
   608       // to the Compile object, and the C2Compiler will see it and retry.
   609       C->record_failure(C2Compiler::retry_no_escape_analysis());
   610     }
   611     return NULL;
   612   }
   613   orig_phi_worklist.append_if_missing(orig_phi);
   614   const TypePtr *atype = C->get_adr_type(alias_idx);
   615   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   616   C->copy_node_notes_to(result, orig_phi);
   617   set_map_phi(orig_phi->_idx, result);
   618   igvn->set_type(result, result->bottom_type());
   619   record_for_optimizer(result);
   620   new_created = true;
   621   return result;
   622 }
   624 //
   625 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   626 // specified alias index.
   627 //
   628 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   630   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   631   Compile *C = _compile;
   632   bool new_phi_created;
   633   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   634   if (!new_phi_created) {
   635     return result;
   636   }
   638   GrowableArray<PhiNode *>  phi_list;
   639   GrowableArray<uint>  cur_input;
   641   PhiNode *phi = orig_phi;
   642   uint idx = 1;
   643   bool finished = false;
   644   while(!finished) {
   645     while (idx < phi->req()) {
   646       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   647       if (mem != NULL && mem->is_Phi()) {
   648         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   649         if (new_phi_created) {
   650           // found an phi for which we created a new split, push current one on worklist and begin
   651           // processing new one
   652           phi_list.push(phi);
   653           cur_input.push(idx);
   654           phi = mem->as_Phi();
   655           result = newphi;
   656           idx = 1;
   657           continue;
   658         } else {
   659           mem = newphi;
   660         }
   661       }
   662       if (C->failing()) {
   663         return NULL;
   664       }
   665       result->set_req(idx++, mem);
   666     }
   667 #ifdef ASSERT
   668     // verify that the new Phi has an input for each input of the original
   669     assert( phi->req() == result->req(), "must have same number of inputs.");
   670     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   671 #endif
   672     // Check if all new phi's inputs have specified alias index.
   673     // Otherwise use old phi.
   674     for (uint i = 1; i < phi->req(); i++) {
   675       Node* in = result->in(i);
   676       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   677     }
   678     // we have finished processing a Phi, see if there are any more to do
   679     finished = (phi_list.length() == 0 );
   680     if (!finished) {
   681       phi = phi_list.pop();
   682       idx = cur_input.pop();
   683       PhiNode *prev_result = get_map_phi(phi->_idx);
   684       prev_result->set_req(idx++, result);
   685       result = prev_result;
   686     }
   687   }
   688   return result;
   689 }
   692 //
   693 // The next methods are derived from methods in MemNode.
   694 //
   695 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   696   Node *mem = mmem;
   697   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   698   // means an array I have not precisely typed yet.  Do not do any
   699   // alias stuff with it any time soon.
   700   if( tinst->base() != Type::AnyPtr &&
   701       !(tinst->klass()->is_java_lang_Object() &&
   702         tinst->offset() == Type::OffsetBot) ) {
   703     mem = mmem->memory_at(alias_idx);
   704     // Update input if it is progress over what we have now
   705   }
   706   return mem;
   707 }
   709 //
   710 // Search memory chain of "mem" to find a MemNode whose address
   711 // is the specified alias index.
   712 //
   713 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   714   if (orig_mem == NULL)
   715     return orig_mem;
   716   Compile* C = phase->C;
   717   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   718   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
   719   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   720   Node *prev = NULL;
   721   Node *result = orig_mem;
   722   while (prev != result) {
   723     prev = result;
   724     if (result == start_mem)
   725       break;  // hit one of our sentinels
   726     if (result->is_Mem()) {
   727       const Type *at = phase->type(result->in(MemNode::Address));
   728       if (at != Type::TOP) {
   729         assert (at->isa_ptr() != NULL, "pointer type required.");
   730         int idx = C->get_alias_index(at->is_ptr());
   731         if (idx == alias_idx)
   732           break;
   733       }
   734       result = result->in(MemNode::Memory);
   735     }
   736     if (!is_instance)
   737       continue;  // don't search further for non-instance types
   738     // skip over a call which does not affect this memory slice
   739     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   740       Node *proj_in = result->in(0);
   741       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
   742         break;  // hit one of our sentinels
   743       } else if (proj_in->is_Call()) {
   744         CallNode *call = proj_in->as_Call();
   745         if (!call->may_modify(tinst, phase)) {
   746           result = call->in(TypeFunc::Memory);
   747         }
   748       } else if (proj_in->is_Initialize()) {
   749         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   750         // Stop if this is the initialization for the object instance which
   751         // which contains this memory slice, otherwise skip over it.
   752         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
   753           result = proj_in->in(TypeFunc::Memory);
   754         }
   755       } else if (proj_in->is_MemBar()) {
   756         result = proj_in->in(TypeFunc::Memory);
   757       }
   758     } else if (result->is_MergeMem()) {
   759       MergeMemNode *mmem = result->as_MergeMem();
   760       result = step_through_mergemem(mmem, alias_idx, tinst);
   761       if (result == mmem->base_memory()) {
   762         // Didn't find instance memory, search through general slice recursively.
   763         result = mmem->memory_at(C->get_general_index(alias_idx));
   764         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   765         if (C->failing()) {
   766           return NULL;
   767         }
   768         mmem->set_memory_at(alias_idx, result);
   769       }
   770     } else if (result->is_Phi() &&
   771                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   772       Node *un = result->as_Phi()->unique_input(phase);
   773       if (un != NULL) {
   774         result = un;
   775       } else {
   776         break;
   777       }
   778     } else if (result->Opcode() == Op_SCMemProj) {
   779       assert(result->in(0)->is_LoadStore(), "sanity");
   780       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
   781       if (at != Type::TOP) {
   782         assert (at->isa_ptr() != NULL, "pointer type required.");
   783         int idx = C->get_alias_index(at->is_ptr());
   784         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
   785         break;
   786       }
   787       result = result->in(0)->in(MemNode::Memory);
   788     }
   789   }
   790   if (result->is_Phi()) {
   791     PhiNode *mphi = result->as_Phi();
   792     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   793     const TypePtr *t = mphi->adr_type();
   794     if (C->get_alias_index(t) != alias_idx) {
   795       // Create a new Phi with the specified alias index type.
   796       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   797     } else if (!is_instance) {
   798       // Push all non-instance Phis on the orig_phis worklist to update inputs
   799       // during Phase 4 if needed.
   800       orig_phis.append_if_missing(mphi);
   801     }
   802   }
   803   // the result is either MemNode, PhiNode, InitializeNode.
   804   return result;
   805 }
   808 //
   809 //  Convert the types of unescaped object to instance types where possible,
   810 //  propagate the new type information through the graph, and update memory
   811 //  edges and MergeMem inputs to reflect the new type.
   812 //
   813 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   814 //  The processing is done in 4 phases:
   815 //
   816 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   817 //            types for the CheckCastPP for allocations where possible.
   818 //            Propagate the the new types through users as follows:
   819 //               casts and Phi:  push users on alloc_worklist
   820 //               AddP:  cast Base and Address inputs to the instance type
   821 //                      push any AddP users on alloc_worklist and push any memnode
   822 //                      users onto memnode_worklist.
   823 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   824 //            search the Memory chain for a store with the appropriate type
   825 //            address type.  If a Phi is found, create a new version with
   826 //            the appropriate memory slices from each of the Phi inputs.
   827 //            For stores, process the users as follows:
   828 //               MemNode:  push on memnode_worklist
   829 //               MergeMem: push on mergemem_worklist
   830 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   831 //            moving the first node encountered of each  instance type to the
   832 //            the input corresponding to its alias index.
   833 //            appropriate memory slice.
   834 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   835 //
   836 // In the following example, the CheckCastPP nodes are the cast of allocation
   837 // results and the allocation of node 29 is unescaped and eligible to be an
   838 // instance type.
   839 //
   840 // We start with:
   841 //
   842 //     7 Parm #memory
   843 //    10  ConI  "12"
   844 //    19  CheckCastPP   "Foo"
   845 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   846 //    29  CheckCastPP   "Foo"
   847 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   848 //
   849 //    40  StoreP  25   7  20   ... alias_index=4
   850 //    50  StoreP  35  40  30   ... alias_index=4
   851 //    60  StoreP  45  50  20   ... alias_index=4
   852 //    70  LoadP    _  60  30   ... alias_index=4
   853 //    80  Phi     75  50  60   Memory alias_index=4
   854 //    90  LoadP    _  80  30   ... alias_index=4
   855 //   100  LoadP    _  80  20   ... alias_index=4
   856 //
   857 //
   858 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   859 // and creating a new alias index for node 30.  This gives:
   860 //
   861 //     7 Parm #memory
   862 //    10  ConI  "12"
   863 //    19  CheckCastPP   "Foo"
   864 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   865 //    29  CheckCastPP   "Foo"  iid=24
   866 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   867 //
   868 //    40  StoreP  25   7  20   ... alias_index=4
   869 //    50  StoreP  35  40  30   ... alias_index=6
   870 //    60  StoreP  45  50  20   ... alias_index=4
   871 //    70  LoadP    _  60  30   ... alias_index=6
   872 //    80  Phi     75  50  60   Memory alias_index=4
   873 //    90  LoadP    _  80  30   ... alias_index=6
   874 //   100  LoadP    _  80  20   ... alias_index=4
   875 //
   876 // In phase 2, new memory inputs are computed for the loads and stores,
   877 // And a new version of the phi is created.  In phase 4, the inputs to
   878 // node 80 are updated and then the memory nodes are updated with the
   879 // values computed in phase 2.  This results in:
   880 //
   881 //     7 Parm #memory
   882 //    10  ConI  "12"
   883 //    19  CheckCastPP   "Foo"
   884 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   885 //    29  CheckCastPP   "Foo"  iid=24
   886 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   887 //
   888 //    40  StoreP  25  7   20   ... alias_index=4
   889 //    50  StoreP  35  7   30   ... alias_index=6
   890 //    60  StoreP  45  40  20   ... alias_index=4
   891 //    70  LoadP    _  50  30   ... alias_index=6
   892 //    80  Phi     75  40  60   Memory alias_index=4
   893 //   120  Phi     75  50  50   Memory alias_index=6
   894 //    90  LoadP    _ 120  30   ... alias_index=6
   895 //   100  LoadP    _  80  20   ... alias_index=4
   896 //
   897 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   898   GrowableArray<Node *>  memnode_worklist;
   899   GrowableArray<Node *>  mergemem_worklist;
   900   GrowableArray<PhiNode *>  orig_phis;
   901   PhaseGVN  *igvn = _compile->initial_gvn();
   902   uint new_index_start = (uint) _compile->num_alias_types();
   903   VectorSet visited(Thread::current()->resource_area());
   904   VectorSet ptset(Thread::current()->resource_area());
   907   //  Phase 1:  Process possible allocations from alloc_worklist.
   908   //  Create instance types for the CheckCastPP for allocations where possible.
   909   //
   910   // (Note: don't forget to change the order of the second AddP node on
   911   //  the alloc_worklist if the order of the worklist processing is changed,
   912   //  see the comment in find_second_addp().)
   913   //
   914   while (alloc_worklist.length() != 0) {
   915     Node *n = alloc_worklist.pop();
   916     uint ni = n->_idx;
   917     const TypeOopPtr* tinst = NULL;
   918     if (n->is_Call()) {
   919       CallNode *alloc = n->as_Call();
   920       // copy escape information to call node
   921       PointsToNode* ptn = ptnode_adr(alloc->_idx);
   922       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   923       // We have an allocation or call which returns a Java object,
   924       // see if it is unescaped.
   925       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   926         continue;
   928       // Find CheckCastPP for the allocate or for the return value of a call
   929       n = alloc->result_cast();
   930       if (n == NULL) {            // No uses except Initialize node
   931         if (alloc->is_Allocate()) {
   932           // Set the scalar_replaceable flag for allocation
   933           // so it could be eliminated if it has no uses.
   934           alloc->as_Allocate()->_is_scalar_replaceable = true;
   935         }
   936         continue;
   937       }
   938       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
   939         assert(!alloc->is_Allocate(), "allocation should have unique type");
   940         continue;
   941       }
   943       // The inline code for Object.clone() casts the allocation result to
   944       // java.lang.Object and then to the actual type of the allocated
   945       // object. Detect this case and use the second cast.
   946       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
   947       // the allocation result is cast to java.lang.Object and then
   948       // to the actual Array type.
   949       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   950           && (alloc->is_AllocateArray() ||
   951               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
   952         Node *cast2 = NULL;
   953         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   954           Node *use = n->fast_out(i);
   955           if (use->is_CheckCastPP()) {
   956             cast2 = use;
   957             break;
   958           }
   959         }
   960         if (cast2 != NULL) {
   961           n = cast2;
   962         } else {
   963           // Non-scalar replaceable if the allocation type is unknown statically
   964           // (reflection allocation), the object can't be restored during
   965           // deoptimization without precise type.
   966           continue;
   967         }
   968       }
   969       if (alloc->is_Allocate()) {
   970         // Set the scalar_replaceable flag for allocation
   971         // so it could be eliminated.
   972         alloc->as_Allocate()->_is_scalar_replaceable = true;
   973       }
   974       set_escape_state(n->_idx, es);
   975       // in order for an object to be scalar-replaceable, it must be:
   976       //   - a direct allocation (not a call returning an object)
   977       //   - non-escaping
   978       //   - eligible to be a unique type
   979       //   - not determined to be ineligible by escape analysis
   980       set_map(alloc->_idx, n);
   981       set_map(n->_idx, alloc);
   982       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   983       if (t == NULL)
   984         continue;  // not a TypeInstPtr
   985       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
   986       igvn->hash_delete(n);
   987       igvn->set_type(n,  tinst);
   988       n->raise_bottom_type(tinst);
   989       igvn->hash_insert(n);
   990       record_for_optimizer(n);
   991       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
   992           (t->isa_instptr() || t->isa_aryptr())) {
   994         // First, put on the worklist all Field edges from Connection Graph
   995         // which is more accurate then putting immediate users from Ideal Graph.
   996         for (uint e = 0; e < ptn->edge_count(); e++) {
   997           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
   998           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
   999                  "only AddP nodes are Field edges in CG");
  1000           if (use->outcnt() > 0) { // Don't process dead nodes
  1001             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  1002             if (addp2 != NULL) {
  1003               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1004               alloc_worklist.append_if_missing(addp2);
  1006             alloc_worklist.append_if_missing(use);
  1010         // An allocation may have an Initialize which has raw stores. Scan
  1011         // the users of the raw allocation result and push AddP users
  1012         // on alloc_worklist.
  1013         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  1014         assert (raw_result != NULL, "must have an allocation result");
  1015         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  1016           Node *use = raw_result->fast_out(i);
  1017           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  1018             Node* addp2 = find_second_addp(use, raw_result);
  1019             if (addp2 != NULL) {
  1020               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1021               alloc_worklist.append_if_missing(addp2);
  1023             alloc_worklist.append_if_missing(use);
  1024           } else if (use->is_Initialize()) {
  1025             memnode_worklist.append_if_missing(use);
  1029     } else if (n->is_AddP()) {
  1030       ptset.Clear();
  1031       PointsTo(ptset, get_addp_base(n), igvn);
  1032       assert(ptset.Size() == 1, "AddP address is unique");
  1033       uint elem = ptset.getelem(); // Allocation node's index
  1034       if (elem == _phantom_object)
  1035         continue; // Assume the value was set outside this method.
  1036       Node *base = get_map(elem);  // CheckCastPP node
  1037       if (!split_AddP(n, base, igvn)) continue; // wrong type
  1038       tinst = igvn->type(base)->isa_oopptr();
  1039     } else if (n->is_Phi() ||
  1040                n->is_CheckCastPP() ||
  1041                n->is_EncodeP() ||
  1042                n->is_DecodeN() ||
  1043                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  1044       if (visited.test_set(n->_idx)) {
  1045         assert(n->is_Phi(), "loops only through Phi's");
  1046         continue;  // already processed
  1048       ptset.Clear();
  1049       PointsTo(ptset, n, igvn);
  1050       if (ptset.Size() == 1) {
  1051         uint elem = ptset.getelem(); // Allocation node's index
  1052         if (elem == _phantom_object)
  1053           continue; // Assume the value was set outside this method.
  1054         Node *val = get_map(elem);   // CheckCastPP node
  1055         TypeNode *tn = n->as_Type();
  1056         tinst = igvn->type(val)->isa_oopptr();
  1057         assert(tinst != NULL && tinst->is_known_instance() &&
  1058                (uint)tinst->instance_id() == elem , "instance type expected.");
  1060         const Type *tn_type = igvn->type(tn);
  1061         const TypeOopPtr *tn_t;
  1062         if (tn_type->isa_narrowoop()) {
  1063           tn_t = tn_type->make_ptr()->isa_oopptr();
  1064         } else {
  1065           tn_t = tn_type->isa_oopptr();
  1068         if (tn_t != NULL &&
  1069             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
  1070           if (tn_type->isa_narrowoop()) {
  1071             tn_type = tinst->make_narrowoop();
  1072           } else {
  1073             tn_type = tinst;
  1075           igvn->hash_delete(tn);
  1076           igvn->set_type(tn, tn_type);
  1077           tn->set_type(tn_type);
  1078           igvn->hash_insert(tn);
  1079           record_for_optimizer(n);
  1080         } else {
  1081           continue; // wrong type
  1084     } else {
  1085       continue;
  1087     // push users on appropriate worklist
  1088     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1089       Node *use = n->fast_out(i);
  1090       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  1091         memnode_worklist.append_if_missing(use);
  1092       } else if (use->is_Initialize()) {
  1093         memnode_worklist.append_if_missing(use);
  1094       } else if (use->is_MergeMem()) {
  1095         mergemem_worklist.append_if_missing(use);
  1096       } else if (use->is_SafePoint() && tinst != NULL) {
  1097         // Look for MergeMem nodes for calls which reference unique allocation
  1098         // (through CheckCastPP nodes) even for debug info.
  1099         Node* m = use->in(TypeFunc::Memory);
  1100         uint iid = tinst->instance_id();
  1101         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
  1102                m->in(0) != use && !m->in(0)->_idx != iid) {
  1103           m = m->in(0)->in(TypeFunc::Memory);
  1105         if (m->is_MergeMem()) {
  1106           mergemem_worklist.append_if_missing(m);
  1108       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  1109         Node* addp2 = find_second_addp(use, n);
  1110         if (addp2 != NULL) {
  1111           alloc_worklist.append_if_missing(addp2);
  1113         alloc_worklist.append_if_missing(use);
  1114       } else if (use->is_Phi() ||
  1115                  use->is_CheckCastPP() ||
  1116                  use->is_EncodeP() ||
  1117                  use->is_DecodeN() ||
  1118                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  1119         alloc_worklist.append_if_missing(use);
  1124   // New alias types were created in split_AddP().
  1125   uint new_index_end = (uint) _compile->num_alias_types();
  1127   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  1128   //            compute new values for Memory inputs  (the Memory inputs are not
  1129   //            actually updated until phase 4.)
  1130   if (memnode_worklist.length() == 0)
  1131     return;  // nothing to do
  1133   while (memnode_worklist.length() != 0) {
  1134     Node *n = memnode_worklist.pop();
  1135     if (visited.test_set(n->_idx))
  1136       continue;
  1137     if (n->is_Phi()) {
  1138       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
  1139       // we don't need to do anything, but the users must be pushed if we haven't processed
  1140       // this Phi before
  1141     } else if (n->is_Initialize()) {
  1142       // we don't need to do anything, but the users of the memory projection must be pushed
  1143       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
  1144       if (n == NULL)
  1145         continue;
  1146     } else {
  1147       assert(n->is_Mem(), "memory node required.");
  1148       Node *addr = n->in(MemNode::Address);
  1149       assert(addr->is_AddP(), "AddP required");
  1150       const Type *addr_t = igvn->type(addr);
  1151       if (addr_t == Type::TOP)
  1152         continue;
  1153       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  1154       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  1155       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  1156       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
  1157       if (_compile->failing()) {
  1158         return;
  1160       if (mem != n->in(MemNode::Memory)) {
  1161         set_map(n->_idx, mem);
  1162         ptnode_adr(n->_idx)->_node = n;
  1164       if (n->is_Load()) {
  1165         continue;  // don't push users
  1166       } else if (n->is_LoadStore()) {
  1167         // get the memory projection
  1168         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1169           Node *use = n->fast_out(i);
  1170           if (use->Opcode() == Op_SCMemProj) {
  1171             n = use;
  1172             break;
  1175         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1178     // push user on appropriate worklist
  1179     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1180       Node *use = n->fast_out(i);
  1181       if (use->is_Phi()) {
  1182         memnode_worklist.append_if_missing(use);
  1183       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1184         memnode_worklist.append_if_missing(use);
  1185       } else if (use->is_Initialize()) {
  1186         memnode_worklist.append_if_missing(use);
  1187       } else if (use->is_MergeMem()) {
  1188         mergemem_worklist.append_if_missing(use);
  1193   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1194   //            Walk each memory moving the first node encountered of each
  1195   //            instance type to the the input corresponding to its alias index.
  1196   while (mergemem_worklist.length() != 0) {
  1197     Node *n = mergemem_worklist.pop();
  1198     assert(n->is_MergeMem(), "MergeMem node required.");
  1199     if (visited.test_set(n->_idx))
  1200       continue;
  1201     MergeMemNode *nmm = n->as_MergeMem();
  1202     // Note: we don't want to use MergeMemStream here because we only want to
  1203     //  scan inputs which exist at the start, not ones we add during processing.
  1204     uint nslices = nmm->req();
  1205     igvn->hash_delete(nmm);
  1206     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1207       Node* mem = nmm->in(i);
  1208       Node* cur = NULL;
  1209       if (mem == NULL || mem->is_top())
  1210         continue;
  1211       while (mem->is_Mem()) {
  1212         const Type *at = igvn->type(mem->in(MemNode::Address));
  1213         if (at != Type::TOP) {
  1214           assert (at->isa_ptr() != NULL, "pointer type required.");
  1215           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1216           if (idx == i) {
  1217             if (cur == NULL)
  1218               cur = mem;
  1219           } else {
  1220             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1221               nmm->set_memory_at(idx, mem);
  1225         mem = mem->in(MemNode::Memory);
  1227       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1228       // Find any instance of the current type if we haven't encountered
  1229       // a value of the instance along the chain.
  1230       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1231         if((uint)_compile->get_general_index(ni) == i) {
  1232           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1233           if (nmm->is_empty_memory(m)) {
  1234             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1235             if (_compile->failing()) {
  1236               return;
  1238             nmm->set_memory_at(ni, result);
  1243     // Find the rest of instances values
  1244     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1245       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1246       Node* result = step_through_mergemem(nmm, ni, tinst);
  1247       if (result == nmm->base_memory()) {
  1248         // Didn't find instance memory, search through general slice recursively.
  1249         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1250         result = find_inst_mem(result, ni, orig_phis, igvn);
  1251         if (_compile->failing()) {
  1252           return;
  1254         nmm->set_memory_at(ni, result);
  1257     igvn->hash_insert(nmm);
  1258     record_for_optimizer(nmm);
  1260     // Propagate new memory slices to following MergeMem nodes.
  1261     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1262       Node *use = n->fast_out(i);
  1263       if (use->is_Call()) {
  1264         CallNode* in = use->as_Call();
  1265         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1266           Node* m = in->proj_out(TypeFunc::Memory);
  1267           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1268             Node* mm = m->fast_out(j);
  1269             if (mm->is_MergeMem()) {
  1270               mergemem_worklist.append_if_missing(mm);
  1274         if (use->is_Allocate()) {
  1275           use = use->as_Allocate()->initialization();
  1276           if (use == NULL) {
  1277             continue;
  1281       if (use->is_Initialize()) {
  1282         InitializeNode* in = use->as_Initialize();
  1283         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1284           Node* m = in->proj_out(TypeFunc::Memory);
  1285           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1286             Node* mm = m->fast_out(j);
  1287             if (mm->is_MergeMem()) {
  1288               mergemem_worklist.append_if_missing(mm);
  1296   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1297   //            the Memory input of memnodes
  1298   // First update the inputs of any non-instance Phi's from
  1299   // which we split out an instance Phi.  Note we don't have
  1300   // to recursively process Phi's encounted on the input memory
  1301   // chains as is done in split_memory_phi() since they  will
  1302   // also be processed here.
  1303   for (int j = 0; j < orig_phis.length(); j++) {
  1304     PhiNode *phi = orig_phis.at(j);
  1305     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1306     igvn->hash_delete(phi);
  1307     for (uint i = 1; i < phi->req(); i++) {
  1308       Node *mem = phi->in(i);
  1309       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1310       if (_compile->failing()) {
  1311         return;
  1313       if (mem != new_mem) {
  1314         phi->set_req(i, new_mem);
  1317     igvn->hash_insert(phi);
  1318     record_for_optimizer(phi);
  1321   // Update the memory inputs of MemNodes with the value we computed
  1322   // in Phase 2.
  1323   for (uint i = 0; i < nodes_size(); i++) {
  1324     Node *nmem = get_map(i);
  1325     if (nmem != NULL) {
  1326       Node *n = ptnode_adr(i)->_node;
  1327       if (n != NULL && n->is_Mem()) {
  1328         igvn->hash_delete(n);
  1329         n->set_req(MemNode::Memory, nmem);
  1330         igvn->hash_insert(n);
  1331         record_for_optimizer(n);
  1337 bool ConnectionGraph::has_candidates(Compile *C) {
  1338   // EA brings benefits only when the code has allocations and/or locks which
  1339   // are represented by ideal Macro nodes.
  1340   int cnt = C->macro_count();
  1341   for( int i=0; i < cnt; i++ ) {
  1342     Node *n = C->macro_node(i);
  1343     if ( n->is_Allocate() )
  1344       return true;
  1345     if( n->is_Lock() ) {
  1346       Node* obj = n->as_Lock()->obj_node()->uncast();
  1347       if( !(obj->is_Parm() || obj->is_Con()) )
  1348         return true;
  1351   return false;
  1354 bool ConnectionGraph::compute_escape() {
  1355   Compile* C = _compile;
  1357   // 1. Populate Connection Graph (CG) with Ideal nodes.
  1359   Unique_Node_List worklist_init;
  1360   worklist_init.map(C->unique(), NULL);  // preallocate space
  1362   // Initialize worklist
  1363   if (C->root() != NULL) {
  1364     worklist_init.push(C->root());
  1367   GrowableArray<int> cg_worklist;
  1368   PhaseGVN* igvn = C->initial_gvn();
  1369   bool has_allocations = false;
  1371   // Push all useful nodes onto CG list and set their type.
  1372   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1373     Node* n = worklist_init.at(next);
  1374     record_for_escape_analysis(n, igvn);
  1375     // Only allocations and java static calls results are checked
  1376     // for an escape status. See process_call_result() below.
  1377     if (n->is_Allocate() || n->is_CallStaticJava() &&
  1378         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1379       has_allocations = true;
  1381     if(n->is_AddP())
  1382       cg_worklist.append(n->_idx);
  1383     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1384       Node* m = n->fast_out(i);   // Get user
  1385       worklist_init.push(m);
  1389   if (!has_allocations) {
  1390     _collecting = false;
  1391     return false; // Nothing to do.
  1394   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1395   uint delayed_size = _delayed_worklist.size();
  1396   for( uint next = 0; next < delayed_size; ++next ) {
  1397     Node* n = _delayed_worklist.at(next);
  1398     build_connection_graph(n, igvn);
  1401   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1402   uint cg_length = cg_worklist.length();
  1403   for( uint next = 0; next < cg_length; ++next ) {
  1404     int ni = cg_worklist.at(next);
  1405     build_connection_graph(ptnode_adr(ni)->_node, igvn);
  1408   cg_worklist.clear();
  1409   cg_worklist.append(_phantom_object);
  1411   // 4. Build Connection Graph which need
  1412   //    to walk the connection graph.
  1413   for (uint ni = 0; ni < nodes_size(); ni++) {
  1414     PointsToNode* ptn = ptnode_adr(ni);
  1415     Node *n = ptn->_node;
  1416     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1417       build_connection_graph(n, igvn);
  1418       if (ptn->node_type() != PointsToNode::UnknownType)
  1419         cg_worklist.append(n->_idx); // Collect CG nodes
  1423   VectorSet ptset(Thread::current()->resource_area());
  1424   GrowableArray<uint>  deferred_edges;
  1425   VectorSet visited(Thread::current()->resource_area());
  1427   // 5. Remove deferred edges from the graph and collect
  1428   //    information needed for type splitting.
  1429   cg_length = cg_worklist.length();
  1430   for( uint next = 0; next < cg_length; ++next ) {
  1431     int ni = cg_worklist.at(next);
  1432     PointsToNode* ptn = ptnode_adr(ni);
  1433     PointsToNode::NodeType nt = ptn->node_type();
  1434     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1435       remove_deferred(ni, &deferred_edges, &visited);
  1436       Node *n = ptn->_node;
  1437       if (n->is_AddP()) {
  1438         // Search for objects which are not scalar replaceable.
  1439         // Mark their escape state as ArgEscape to propagate the state
  1440         // to referenced objects.
  1441         // Note: currently there are no difference in compiler optimizations
  1442         // for ArgEscape objects and NoEscape objects which are not
  1443         // scalar replaceable.
  1445         int offset = ptn->offset();
  1446         Node *base = get_addp_base(n);
  1447         ptset.Clear();
  1448         PointsTo(ptset, base, igvn);
  1449         int ptset_size = ptset.Size();
  1451         // Check if a field's initializing value is recorded and add
  1452         // a corresponding NULL field's value if it is not recorded.
  1453         // Connection Graph does not record a default initialization by NULL
  1454         // captured by Initialize node.
  1455         //
  1456         // Note: it will disable scalar replacement in some cases:
  1457         //
  1458         //    Point p[] = new Point[1];
  1459         //    p[0] = new Point(); // Will be not scalar replaced
  1460         //
  1461         // but it will save us from incorrect optimizations in next cases:
  1462         //
  1463         //    Point p[] = new Point[1];
  1464         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1465         //
  1466         // Without a control flow analysis we can't distinguish above cases.
  1467         //
  1468         if (offset != Type::OffsetBot && ptset_size == 1) {
  1469           uint elem = ptset.getelem(); // Allocation node's index
  1470           // It does not matter if it is not Allocation node since
  1471           // only non-escaping allocations are scalar replaced.
  1472           if (ptnode_adr(elem)->_node->is_Allocate() &&
  1473               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
  1474             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
  1475             InitializeNode* ini = alloc->initialization();
  1476             Node* value = NULL;
  1477             if (ini != NULL) {
  1478               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
  1479               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
  1480               if (store != NULL && store->is_Store())
  1481                 value = store->in(MemNode::ValueIn);
  1483             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
  1484               // A field's initializing value was not recorded. Add NULL.
  1485               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
  1486               add_pointsto_edge(ni, null_idx);
  1491         // An object is not scalar replaceable if the field which may point
  1492         // to it has unknown offset (unknown element of an array of objects).
  1493         //
  1494         if (offset == Type::OffsetBot) {
  1495           uint e_cnt = ptn->edge_count();
  1496           for (uint ei = 0; ei < e_cnt; ei++) {
  1497             uint npi = ptn->edge_target(ei);
  1498             set_escape_state(npi, PointsToNode::ArgEscape);
  1499             ptnode_adr(npi)->_scalar_replaceable = false;
  1503         // Currently an object is not scalar replaceable if a LoadStore node
  1504         // access its field since the field value is unknown after it.
  1505         //
  1506         bool has_LoadStore = false;
  1507         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1508           Node *use = n->fast_out(i);
  1509           if (use->is_LoadStore()) {
  1510             has_LoadStore = true;
  1511             break;
  1514         // An object is not scalar replaceable if the address points
  1515         // to unknown field (unknown element for arrays, offset is OffsetBot).
  1516         //
  1517         // Or the address may point to more then one object. This may produce
  1518         // the false positive result (set scalar_replaceable to false)
  1519         // since the flow-insensitive escape analysis can't separate
  1520         // the case when stores overwrite the field's value from the case
  1521         // when stores happened on different control branches.
  1522         //
  1523         if (ptset_size > 1 || ptset_size != 0 &&
  1524             (has_LoadStore || offset == Type::OffsetBot)) {
  1525           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1526             set_escape_state(j.elem, PointsToNode::ArgEscape);
  1527             ptnode_adr(j.elem)->_scalar_replaceable = false;
  1534   // 6. Propagate escape states.
  1535   GrowableArray<int>  worklist;
  1536   bool has_non_escaping_obj = false;
  1538   // push all GlobalEscape nodes on the worklist
  1539   for( uint next = 0; next < cg_length; ++next ) {
  1540     int nk = cg_worklist.at(next);
  1541     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
  1542       worklist.push(nk);
  1544   // mark all nodes reachable from GlobalEscape nodes
  1545   while(worklist.length() > 0) {
  1546     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1547     uint e_cnt = ptn->edge_count();
  1548     for (uint ei = 0; ei < e_cnt; ei++) {
  1549       uint npi = ptn->edge_target(ei);
  1550       PointsToNode *np = ptnode_adr(npi);
  1551       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1552         np->set_escape_state(PointsToNode::GlobalEscape);
  1553         worklist.push(npi);
  1558   // push all ArgEscape nodes on the worklist
  1559   for( uint next = 0; next < cg_length; ++next ) {
  1560     int nk = cg_worklist.at(next);
  1561     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
  1562       worklist.push(nk);
  1564   // mark all nodes reachable from ArgEscape nodes
  1565   while(worklist.length() > 0) {
  1566     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1567     if (ptn->node_type() == PointsToNode::JavaObject)
  1568       has_non_escaping_obj = true; // Non GlobalEscape
  1569     uint e_cnt = ptn->edge_count();
  1570     for (uint ei = 0; ei < e_cnt; ei++) {
  1571       uint npi = ptn->edge_target(ei);
  1572       PointsToNode *np = ptnode_adr(npi);
  1573       if (np->escape_state() < PointsToNode::ArgEscape) {
  1574         np->set_escape_state(PointsToNode::ArgEscape);
  1575         worklist.push(npi);
  1580   GrowableArray<Node*> alloc_worklist;
  1582   // push all NoEscape nodes on the worklist
  1583   for( uint next = 0; next < cg_length; ++next ) {
  1584     int nk = cg_worklist.at(next);
  1585     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
  1586       worklist.push(nk);
  1588   // mark all nodes reachable from NoEscape nodes
  1589   while(worklist.length() > 0) {
  1590     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1591     if (ptn->node_type() == PointsToNode::JavaObject)
  1592       has_non_escaping_obj = true; // Non GlobalEscape
  1593     Node* n = ptn->_node;
  1594     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
  1595       // Push scalar replaceable allocations on alloc_worklist
  1596       // for processing in split_unique_types().
  1597       alloc_worklist.append(n);
  1599     uint e_cnt = ptn->edge_count();
  1600     for (uint ei = 0; ei < e_cnt; ei++) {
  1601       uint npi = ptn->edge_target(ei);
  1602       PointsToNode *np = ptnode_adr(npi);
  1603       if (np->escape_state() < PointsToNode::NoEscape) {
  1604         np->set_escape_state(PointsToNode::NoEscape);
  1605         worklist.push(npi);
  1610   _collecting = false;
  1611   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
  1613   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
  1614   if ( has_scalar_replaceable_candidates &&
  1615        C->AliasLevel() >= 3 && EliminateAllocations ) {
  1617     // Now use the escape information to create unique types for
  1618     // scalar replaceable objects.
  1619     split_unique_types(alloc_worklist);
  1621     if (C->failing())  return false;
  1623     // Clean up after split unique types.
  1624     ResourceMark rm;
  1625     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
  1627     C->print_method("After Escape Analysis", 2);
  1629 #ifdef ASSERT
  1630   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
  1631     tty->print("=== No allocations eliminated for ");
  1632     C->method()->print_short_name();
  1633     if(!EliminateAllocations) {
  1634       tty->print(" since EliminateAllocations is off ===");
  1635     } else if(!has_scalar_replaceable_candidates) {
  1636       tty->print(" since there are no scalar replaceable candidates ===");
  1637     } else if(C->AliasLevel() < 3) {
  1638       tty->print(" since AliasLevel < 3 ===");
  1640     tty->cr();
  1641 #endif
  1643   return has_non_escaping_obj;
  1646 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1648     switch (call->Opcode()) {
  1649 #ifdef ASSERT
  1650     case Op_Allocate:
  1651     case Op_AllocateArray:
  1652     case Op_Lock:
  1653     case Op_Unlock:
  1654       assert(false, "should be done already");
  1655       break;
  1656 #endif
  1657     case Op_CallLeafNoFP:
  1659       // Stub calls, objects do not escape but they are not scale replaceable.
  1660       // Adjust escape state for outgoing arguments.
  1661       const TypeTuple * d = call->tf()->domain();
  1662       VectorSet ptset(Thread::current()->resource_area());
  1663       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1664         const Type* at = d->field_at(i);
  1665         Node *arg = call->in(i)->uncast();
  1666         const Type *aat = phase->type(arg);
  1667         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
  1668           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1669                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1670           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1671           if (arg->is_AddP()) {
  1672             //
  1673             // The inline_native_clone() case when the arraycopy stub is called
  1674             // after the allocation before Initialize and CheckCastPP nodes.
  1675             //
  1676             // Set AddP's base (Allocate) as not scalar replaceable since
  1677             // pointer to the base (with offset) is passed as argument.
  1678             //
  1679             arg = get_addp_base(arg);
  1681           ptset.Clear();
  1682           PointsTo(ptset, arg, phase);
  1683           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1684             uint pt = j.elem;
  1685             set_escape_state(pt, PointsToNode::ArgEscape);
  1689       break;
  1692     case Op_CallStaticJava:
  1693     // For a static call, we know exactly what method is being called.
  1694     // Use bytecode estimator to record the call's escape affects
  1696       ciMethod *meth = call->as_CallJava()->method();
  1697       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1698       // fall-through if not a Java method or no analyzer information
  1699       if (call_analyzer != NULL) {
  1700         const TypeTuple * d = call->tf()->domain();
  1701         VectorSet ptset(Thread::current()->resource_area());
  1702         bool copy_dependencies = false;
  1703         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1704           const Type* at = d->field_at(i);
  1705           int k = i - TypeFunc::Parms;
  1707           if (at->isa_oopptr() != NULL) {
  1708             Node *arg = call->in(i)->uncast();
  1710             bool global_escapes = false;
  1711             bool fields_escapes = false;
  1712             if (!call_analyzer->is_arg_stack(k)) {
  1713               // The argument global escapes, mark everything it could point to
  1714               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1715               global_escapes = true;
  1716             } else {
  1717               if (!call_analyzer->is_arg_local(k)) {
  1718                 // The argument itself doesn't escape, but any fields might
  1719                 fields_escapes = true;
  1721               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1722               copy_dependencies = true;
  1725             ptset.Clear();
  1726             PointsTo(ptset, arg, phase);
  1727             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1728               uint pt = j.elem;
  1729               if (global_escapes) {
  1730                 //The argument global escapes, mark everything it could point to
  1731                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1732               } else {
  1733                 if (fields_escapes) {
  1734                   // The argument itself doesn't escape, but any fields might
  1735                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1737                 set_escape_state(pt, PointsToNode::ArgEscape);
  1742         if (copy_dependencies)
  1743           call_analyzer->copy_dependencies(_compile->dependencies());
  1744         break;
  1748     default:
  1749     // Fall-through here if not a Java method or no analyzer information
  1750     // or some other type of call, assume the worst case: all arguments
  1751     // globally escape.
  1753       // adjust escape state for  outgoing arguments
  1754       const TypeTuple * d = call->tf()->domain();
  1755       VectorSet ptset(Thread::current()->resource_area());
  1756       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1757         const Type* at = d->field_at(i);
  1758         if (at->isa_oopptr() != NULL) {
  1759           Node *arg = call->in(i)->uncast();
  1760           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1761           ptset.Clear();
  1762           PointsTo(ptset, arg, phase);
  1763           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1764             uint pt = j.elem;
  1765             set_escape_state(pt, PointsToNode::GlobalEscape);
  1772 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1773   CallNode   *call = resproj->in(0)->as_Call();
  1774   uint    call_idx = call->_idx;
  1775   uint resproj_idx = resproj->_idx;
  1777   switch (call->Opcode()) {
  1778     case Op_Allocate:
  1780       Node *k = call->in(AllocateNode::KlassNode);
  1781       const TypeKlassPtr *kt;
  1782       if (k->Opcode() == Op_LoadKlass) {
  1783         kt = k->as_Load()->type()->isa_klassptr();
  1784       } else {
  1785         // Also works for DecodeN(LoadNKlass).
  1786         kt = k->as_Type()->type()->isa_klassptr();
  1788       assert(kt != NULL, "TypeKlassPtr  required.");
  1789       ciKlass* cik = kt->klass();
  1790       ciInstanceKlass* ciik = cik->as_instance_klass();
  1792       PointsToNode::EscapeState es;
  1793       uint edge_to;
  1794       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1795         es = PointsToNode::GlobalEscape;
  1796         edge_to = _phantom_object; // Could not be worse
  1797       } else {
  1798         es = PointsToNode::NoEscape;
  1799         edge_to = call_idx;
  1801       set_escape_state(call_idx, es);
  1802       add_pointsto_edge(resproj_idx, edge_to);
  1803       _processed.set(resproj_idx);
  1804       break;
  1807     case Op_AllocateArray:
  1809       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1810       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1811         // Not scalar replaceable if the length is not constant or too big.
  1812         ptnode_adr(call_idx)->_scalar_replaceable = false;
  1814       set_escape_state(call_idx, PointsToNode::NoEscape);
  1815       add_pointsto_edge(resproj_idx, call_idx);
  1816       _processed.set(resproj_idx);
  1817       break;
  1820     case Op_CallStaticJava:
  1821     // For a static call, we know exactly what method is being called.
  1822     // Use bytecode estimator to record whether the call's return value escapes
  1824       bool done = true;
  1825       const TypeTuple *r = call->tf()->range();
  1826       const Type* ret_type = NULL;
  1828       if (r->cnt() > TypeFunc::Parms)
  1829         ret_type = r->field_at(TypeFunc::Parms);
  1831       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1832       //        _multianewarray functions return a TypeRawPtr.
  1833       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1834         _processed.set(resproj_idx);
  1835         break;  // doesn't return a pointer type
  1837       ciMethod *meth = call->as_CallJava()->method();
  1838       const TypeTuple * d = call->tf()->domain();
  1839       if (meth == NULL) {
  1840         // not a Java method, assume global escape
  1841         set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1842         add_pointsto_edge(resproj_idx, _phantom_object);
  1843       } else {
  1844         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1845         bool copy_dependencies = false;
  1847         if (call_analyzer->is_return_allocated()) {
  1848           // Returns a newly allocated unescaped object, simply
  1849           // update dependency information.
  1850           // Mark it as NoEscape so that objects referenced by
  1851           // it's fields will be marked as NoEscape at least.
  1852           set_escape_state(call_idx, PointsToNode::NoEscape);
  1853           add_pointsto_edge(resproj_idx, call_idx);
  1854           copy_dependencies = true;
  1855         } else if (call_analyzer->is_return_local()) {
  1856           // determine whether any arguments are returned
  1857           set_escape_state(call_idx, PointsToNode::NoEscape);
  1858           bool ret_arg = false;
  1859           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1860             const Type* at = d->field_at(i);
  1862             if (at->isa_oopptr() != NULL) {
  1863               Node *arg = call->in(i)->uncast();
  1865               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1866                 ret_arg = true;
  1867                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1868                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1869                   done = false;
  1870                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1871                   add_pointsto_edge(resproj_idx, arg->_idx);
  1872                 else
  1873                   add_deferred_edge(resproj_idx, arg->_idx);
  1874                 arg_esp->_hidden_alias = true;
  1878           if (done && !ret_arg) {
  1879             // Returns unknown object.
  1880             set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1881             add_pointsto_edge(resproj_idx, _phantom_object);
  1883           copy_dependencies = true;
  1884         } else {
  1885           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1886           add_pointsto_edge(resproj_idx, _phantom_object);
  1887           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1888             const Type* at = d->field_at(i);
  1889             if (at->isa_oopptr() != NULL) {
  1890               Node *arg = call->in(i)->uncast();
  1891               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1892               arg_esp->_hidden_alias = true;
  1896         if (copy_dependencies)
  1897           call_analyzer->copy_dependencies(_compile->dependencies());
  1899       if (done)
  1900         _processed.set(resproj_idx);
  1901       break;
  1904     default:
  1905     // Some other type of call, assume the worst case that the
  1906     // returned value, if any, globally escapes.
  1908       const TypeTuple *r = call->tf()->range();
  1909       if (r->cnt() > TypeFunc::Parms) {
  1910         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1912         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1913         //        _multianewarray functions return a TypeRawPtr.
  1914         if (ret_type->isa_ptr() != NULL) {
  1915           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1916           add_pointsto_edge(resproj_idx, _phantom_object);
  1919       _processed.set(resproj_idx);
  1924 // Populate Connection Graph with Ideal nodes and create simple
  1925 // connection graph edges (do not need to check the node_type of inputs
  1926 // or to call PointsTo() to walk the connection graph).
  1927 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1928   if (_processed.test(n->_idx))
  1929     return; // No need to redefine node's state.
  1931   if (n->is_Call()) {
  1932     // Arguments to allocation and locking don't escape.
  1933     if (n->is_Allocate()) {
  1934       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1935       record_for_optimizer(n);
  1936     } else if (n->is_Lock() || n->is_Unlock()) {
  1937       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1938       // the first IGVN optimization when escape information is still available.
  1939       record_for_optimizer(n);
  1940       _processed.set(n->_idx);
  1941     } else {
  1942       // Have to process call's arguments first.
  1943       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  1945       // Check if a call returns an object.
  1946       const TypeTuple *r = n->as_Call()->tf()->range();
  1947       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
  1948           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  1949         // Note:  use isa_ptr() instead of isa_oopptr() here because
  1950         //        the _multianewarray functions return a TypeRawPtr.
  1951         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  1952           nt = PointsToNode::JavaObject;
  1955       add_node(n, nt, PointsToNode::UnknownEscape, false);
  1957     return;
  1960   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  1961   // ThreadLocal has RawPrt type.
  1962   switch (n->Opcode()) {
  1963     case Op_AddP:
  1965       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  1966       break;
  1968     case Op_CastX2P:
  1969     { // "Unsafe" memory access.
  1970       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1971       break;
  1973     case Op_CastPP:
  1974     case Op_CheckCastPP:
  1975     case Op_EncodeP:
  1976     case Op_DecodeN:
  1978       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1979       int ti = n->in(1)->_idx;
  1980       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  1981       if (nt == PointsToNode::UnknownType) {
  1982         _delayed_worklist.push(n); // Process it later.
  1983         break;
  1984       } else if (nt == PointsToNode::JavaObject) {
  1985         add_pointsto_edge(n->_idx, ti);
  1986       } else {
  1987         add_deferred_edge(n->_idx, ti);
  1989       _processed.set(n->_idx);
  1990       break;
  1992     case Op_ConP:
  1994       // assume all pointer constants globally escape except for null
  1995       PointsToNode::EscapeState es;
  1996       if (phase->type(n) == TypePtr::NULL_PTR)
  1997         es = PointsToNode::NoEscape;
  1998       else
  1999         es = PointsToNode::GlobalEscape;
  2001       add_node(n, PointsToNode::JavaObject, es, true);
  2002       break;
  2004     case Op_ConN:
  2006       // assume all narrow oop constants globally escape except for null
  2007       PointsToNode::EscapeState es;
  2008       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
  2009         es = PointsToNode::NoEscape;
  2010       else
  2011         es = PointsToNode::GlobalEscape;
  2013       add_node(n, PointsToNode::JavaObject, es, true);
  2014       break;
  2016     case Op_CreateEx:
  2018       // assume that all exception objects globally escape
  2019       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2020       break;
  2022     case Op_LoadKlass:
  2023     case Op_LoadNKlass:
  2025       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2026       break;
  2028     case Op_LoadP:
  2029     case Op_LoadN:
  2031       const Type *t = phase->type(n);
  2032       if (t->make_ptr() == NULL) {
  2033         _processed.set(n->_idx);
  2034         return;
  2036       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2037       break;
  2039     case Op_Parm:
  2041       _processed.set(n->_idx); // No need to redefine it state.
  2042       uint con = n->as_Proj()->_con;
  2043       if (con < TypeFunc::Parms)
  2044         return;
  2045       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  2046       if (t->isa_ptr() == NULL)
  2047         return;
  2048       // We have to assume all input parameters globally escape
  2049       // (Note: passing 'false' since _processed is already set).
  2050       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  2051       break;
  2053     case Op_Phi:
  2055       const Type *t = n->as_Phi()->type();
  2056       if (t->make_ptr() == NULL) {
  2057         // nothing to do if not an oop or narrow oop
  2058         _processed.set(n->_idx);
  2059         return;
  2061       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2062       uint i;
  2063       for (i = 1; i < n->req() ; i++) {
  2064         Node* in = n->in(i);
  2065         if (in == NULL)
  2066           continue;  // ignore NULL
  2067         in = in->uncast();
  2068         if (in->is_top() || in == n)
  2069           continue;  // ignore top or inputs which go back this node
  2070         int ti = in->_idx;
  2071         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2072         if (nt == PointsToNode::UnknownType) {
  2073           break;
  2074         } else if (nt == PointsToNode::JavaObject) {
  2075           add_pointsto_edge(n->_idx, ti);
  2076         } else {
  2077           add_deferred_edge(n->_idx, ti);
  2080       if (i >= n->req())
  2081         _processed.set(n->_idx);
  2082       else
  2083         _delayed_worklist.push(n);
  2084       break;
  2086     case Op_Proj:
  2088       // we are only interested in the result projection from a call
  2089       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2090         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2091         process_call_result(n->as_Proj(), phase);
  2092         if (!_processed.test(n->_idx)) {
  2093           // The call's result may need to be processed later if the call
  2094           // returns it's argument and the argument is not processed yet.
  2095           _delayed_worklist.push(n);
  2097       } else {
  2098         _processed.set(n->_idx);
  2100       break;
  2102     case Op_Return:
  2104       if( n->req() > TypeFunc::Parms &&
  2105           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2106         // Treat Return value as LocalVar with GlobalEscape escape state.
  2107         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  2108         int ti = n->in(TypeFunc::Parms)->_idx;
  2109         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2110         if (nt == PointsToNode::UnknownType) {
  2111           _delayed_worklist.push(n); // Process it later.
  2112           break;
  2113         } else if (nt == PointsToNode::JavaObject) {
  2114           add_pointsto_edge(n->_idx, ti);
  2115         } else {
  2116           add_deferred_edge(n->_idx, ti);
  2119       _processed.set(n->_idx);
  2120       break;
  2122     case Op_StoreP:
  2123     case Op_StoreN:
  2125       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2126       adr_type = adr_type->make_ptr();
  2127       if (adr_type->isa_oopptr()) {
  2128         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2129       } else {
  2130         Node* adr = n->in(MemNode::Address);
  2131         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  2132             adr->in(AddPNode::Address)->is_Proj() &&
  2133             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2134           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2135           // We are computing a raw address for a store captured
  2136           // by an Initialize compute an appropriate address type.
  2137           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2138           assert(offs != Type::OffsetBot, "offset must be a constant");
  2139         } else {
  2140           _processed.set(n->_idx);
  2141           return;
  2144       break;
  2146     case Op_StorePConditional:
  2147     case Op_CompareAndSwapP:
  2148     case Op_CompareAndSwapN:
  2150       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2151       adr_type = adr_type->make_ptr();
  2152       if (adr_type->isa_oopptr()) {
  2153         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2154       } else {
  2155         _processed.set(n->_idx);
  2156         return;
  2158       break;
  2160     case Op_ThreadLocal:
  2162       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  2163       break;
  2165     default:
  2167       // nothing to do
  2169   return;
  2172 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  2173   uint n_idx = n->_idx;
  2175   // Don't set processed bit for AddP, LoadP, StoreP since
  2176   // they may need more then one pass to process.
  2177   if (_processed.test(n_idx))
  2178     return; // No need to redefine node's state.
  2180   if (n->is_Call()) {
  2181     CallNode *call = n->as_Call();
  2182     process_call_arguments(call, phase);
  2183     _processed.set(n_idx);
  2184     return;
  2187   switch (n->Opcode()) {
  2188     case Op_AddP:
  2190       Node *base = get_addp_base(n);
  2191       // Create a field edge to this node from everything base could point to.
  2192       VectorSet ptset(Thread::current()->resource_area());
  2193       PointsTo(ptset, base, phase);
  2194       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2195         uint pt = i.elem;
  2196         add_field_edge(pt, n_idx, address_offset(n, phase));
  2198       break;
  2200     case Op_CastX2P:
  2202       assert(false, "Op_CastX2P");
  2203       break;
  2205     case Op_CastPP:
  2206     case Op_CheckCastPP:
  2207     case Op_EncodeP:
  2208     case Op_DecodeN:
  2210       int ti = n->in(1)->_idx;
  2211       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2212         add_pointsto_edge(n_idx, ti);
  2213       } else {
  2214         add_deferred_edge(n_idx, ti);
  2216       _processed.set(n_idx);
  2217       break;
  2219     case Op_ConP:
  2221       assert(false, "Op_ConP");
  2222       break;
  2224     case Op_ConN:
  2226       assert(false, "Op_ConN");
  2227       break;
  2229     case Op_CreateEx:
  2231       assert(false, "Op_CreateEx");
  2232       break;
  2234     case Op_LoadKlass:
  2235     case Op_LoadNKlass:
  2237       assert(false, "Op_LoadKlass");
  2238       break;
  2240     case Op_LoadP:
  2241     case Op_LoadN:
  2243       const Type *t = phase->type(n);
  2244 #ifdef ASSERT
  2245       if (t->make_ptr() == NULL)
  2246         assert(false, "Op_LoadP");
  2247 #endif
  2249       Node* adr = n->in(MemNode::Address)->uncast();
  2250       const Type *adr_type = phase->type(adr);
  2251       Node* adr_base;
  2252       if (adr->is_AddP()) {
  2253         adr_base = get_addp_base(adr);
  2254       } else {
  2255         adr_base = adr;
  2258       // For everything "adr_base" could point to, create a deferred edge from
  2259       // this node to each field with the same offset.
  2260       VectorSet ptset(Thread::current()->resource_area());
  2261       PointsTo(ptset, adr_base, phase);
  2262       int offset = address_offset(adr, phase);
  2263       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2264         uint pt = i.elem;
  2265         add_deferred_edge_to_fields(n_idx, pt, offset);
  2267       break;
  2269     case Op_Parm:
  2271       assert(false, "Op_Parm");
  2272       break;
  2274     case Op_Phi:
  2276 #ifdef ASSERT
  2277       const Type *t = n->as_Phi()->type();
  2278       if (t->make_ptr() == NULL)
  2279         assert(false, "Op_Phi");
  2280 #endif
  2281       for (uint i = 1; i < n->req() ; i++) {
  2282         Node* in = n->in(i);
  2283         if (in == NULL)
  2284           continue;  // ignore NULL
  2285         in = in->uncast();
  2286         if (in->is_top() || in == n)
  2287           continue;  // ignore top or inputs which go back this node
  2288         int ti = in->_idx;
  2289         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2290         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
  2291         if (nt == PointsToNode::JavaObject) {
  2292           add_pointsto_edge(n_idx, ti);
  2293         } else {
  2294           add_deferred_edge(n_idx, ti);
  2297       _processed.set(n_idx);
  2298       break;
  2300     case Op_Proj:
  2302       // we are only interested in the result projection from a call
  2303       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2304         process_call_result(n->as_Proj(), phase);
  2305         assert(_processed.test(n_idx), "all call results should be processed");
  2306       } else {
  2307         assert(false, "Op_Proj");
  2309       break;
  2311     case Op_Return:
  2313 #ifdef ASSERT
  2314       if( n->req() <= TypeFunc::Parms ||
  2315           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2316         assert(false, "Op_Return");
  2318 #endif
  2319       int ti = n->in(TypeFunc::Parms)->_idx;
  2320       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2321         add_pointsto_edge(n_idx, ti);
  2322       } else {
  2323         add_deferred_edge(n_idx, ti);
  2325       _processed.set(n_idx);
  2326       break;
  2328     case Op_StoreP:
  2329     case Op_StoreN:
  2330     case Op_StorePConditional:
  2331     case Op_CompareAndSwapP:
  2332     case Op_CompareAndSwapN:
  2334       Node *adr = n->in(MemNode::Address);
  2335       const Type *adr_type = phase->type(adr)->make_ptr();
  2336 #ifdef ASSERT
  2337       if (!adr_type->isa_oopptr())
  2338         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2339 #endif
  2341       assert(adr->is_AddP(), "expecting an AddP");
  2342       Node *adr_base = get_addp_base(adr);
  2343       Node *val = n->in(MemNode::ValueIn)->uncast();
  2344       // For everything "adr_base" could point to, create a deferred edge
  2345       // to "val" from each field with the same offset.
  2346       VectorSet ptset(Thread::current()->resource_area());
  2347       PointsTo(ptset, adr_base, phase);
  2348       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2349         uint pt = i.elem;
  2350         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2352       break;
  2354     case Op_ThreadLocal:
  2356       assert(false, "Op_ThreadLocal");
  2357       break;
  2359     default:
  2361       // nothing to do
  2365 #ifndef PRODUCT
  2366 void ConnectionGraph::dump() {
  2367   PhaseGVN  *igvn = _compile->initial_gvn();
  2368   bool first = true;
  2370   uint size = nodes_size();
  2371   for (uint ni = 0; ni < size; ni++) {
  2372     PointsToNode *ptn = ptnode_adr(ni);
  2373     PointsToNode::NodeType ptn_type = ptn->node_type();
  2375     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2376       continue;
  2377     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2378     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2379       if (first) {
  2380         tty->cr();
  2381         tty->print("======== Connection graph for ");
  2382         _compile->method()->print_short_name();
  2383         tty->cr();
  2384         first = false;
  2386       tty->print("%6d ", ni);
  2387       ptn->dump();
  2388       // Print all locals which reference this allocation
  2389       for (uint li = ni; li < size; li++) {
  2390         PointsToNode *ptn_loc = ptnode_adr(li);
  2391         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2392         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2393              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2394           ptnode_adr(li)->dump(false);
  2397       if (Verbose) {
  2398         // Print all fields which reference this allocation
  2399         for (uint i = 0; i < ptn->edge_count(); i++) {
  2400           uint ei = ptn->edge_target(i);
  2401           ptnode_adr(ei)->dump(false);
  2404       tty->cr();
  2408 #endif

mercurial