src/share/vm/memory/space.cpp

Thu, 26 Jun 2014 11:36:58 +0200

author
mgerdin
date
Thu, 26 Jun 2014 11:36:58 +0200
changeset 6990
1526a938e670
parent 6981
ff1e37e7eb83
child 7031
ee019285a52c
permissions
-rw-r--r--

8047818: G1 HeapRegions can no longer be ContiguousSpaces
Summary: Change parent of G1OffsetTableContigSpace to CompactibleSpace, reimplement missing functionality
Reviewed-by: stefank, jmasa, tschatzl

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "gc_implementation/shared/liveRange.hpp"
    29 #include "gc_implementation/shared/markSweep.hpp"
    30 #include "gc_implementation/shared/spaceDecorator.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/defNewGeneration.hpp"
    33 #include "memory/genCollectedHeap.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/oop.inline2.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/prefetch.inline.hpp"
    41 #include "runtime/orderAccess.inline.hpp"
    42 #include "runtime/safepoint.hpp"
    43 #include "utilities/copy.hpp"
    44 #include "utilities/globalDefinitions.hpp"
    45 #include "utilities/macros.hpp"
    47 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    49 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    50                                                 HeapWord* top_obj) {
    51   if (top_obj != NULL) {
    52     if (_sp->block_is_obj(top_obj)) {
    53       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    54         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    55           // An arrayOop is starting on the dirty card - since we do exact
    56           // store checks for objArrays we are done.
    57         } else {
    58           // Otherwise, it is possible that the object starting on the dirty
    59           // card spans the entire card, and that the store happened on a
    60           // later card.  Figure out where the object ends.
    61           // Use the block_size() method of the space over which
    62           // the iteration is being done.  That space (e.g. CMS) may have
    63           // specific requirements on object sizes which will
    64           // be reflected in the block_size() method.
    65           top = top_obj + oop(top_obj)->size();
    66         }
    67       }
    68     } else {
    69       top = top_obj;
    70     }
    71   } else {
    72     assert(top == _sp->end(), "only case where top_obj == NULL");
    73   }
    74   return top;
    75 }
    77 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    78                                             HeapWord* bottom,
    79                                             HeapWord* top) {
    80   // 1. Blocks may or may not be objects.
    81   // 2. Even when a block_is_obj(), it may not entirely
    82   //    occupy the block if the block quantum is larger than
    83   //    the object size.
    84   // We can and should try to optimize by calling the non-MemRegion
    85   // version of oop_iterate() for all but the extremal objects
    86   // (for which we need to call the MemRegion version of
    87   // oop_iterate()) To be done post-beta XXX
    88   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    89     // As in the case of contiguous space above, we'd like to
    90     // just use the value returned by oop_iterate to increment the
    91     // current pointer; unfortunately, that won't work in CMS because
    92     // we'd need an interface change (it seems) to have the space
    93     // "adjust the object size" (for instance pad it up to its
    94     // block alignment or minimum block size restrictions. XXX
    95     if (_sp->block_is_obj(bottom) &&
    96         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    97       oop(bottom)->oop_iterate(_cl, mr);
    98     }
    99   }
   100 }
   102 // We get called with "mr" representing the dirty region
   103 // that we want to process. Because of imprecise marking,
   104 // we may need to extend the incoming "mr" to the right,
   105 // and scan more. However, because we may already have
   106 // scanned some of that extended region, we may need to
   107 // trim its right-end back some so we do not scan what
   108 // we (or another worker thread) may already have scanned
   109 // or planning to scan.
   110 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
   112   // Some collectors need to do special things whenever their dirty
   113   // cards are processed. For instance, CMS must remember mutator updates
   114   // (i.e. dirty cards) so as to re-scan mutated objects.
   115   // Such work can be piggy-backed here on dirty card scanning, so as to make
   116   // it slightly more efficient than doing a complete non-detructive pre-scan
   117   // of the card table.
   118   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
   119   if (pCl != NULL) {
   120     pCl->do_MemRegion(mr);
   121   }
   123   HeapWord* bottom = mr.start();
   124   HeapWord* last = mr.last();
   125   HeapWord* top = mr.end();
   126   HeapWord* bottom_obj;
   127   HeapWord* top_obj;
   129   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   130          _precision == CardTableModRefBS::Precise,
   131          "Only ones we deal with for now.");
   133   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   134          _cl->idempotent() || _last_bottom == NULL ||
   135          top <= _last_bottom,
   136          "Not decreasing");
   137   NOT_PRODUCT(_last_bottom = mr.start());
   139   bottom_obj = _sp->block_start(bottom);
   140   top_obj    = _sp->block_start(last);
   142   assert(bottom_obj <= bottom, "just checking");
   143   assert(top_obj    <= top,    "just checking");
   145   // Given what we think is the top of the memory region and
   146   // the start of the object at the top, get the actual
   147   // value of the top.
   148   top = get_actual_top(top, top_obj);
   150   // If the previous call did some part of this region, don't redo.
   151   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   152       _min_done != NULL &&
   153       _min_done < top) {
   154     top = _min_done;
   155   }
   157   // Top may have been reset, and in fact may be below bottom,
   158   // e.g. the dirty card region is entirely in a now free object
   159   // -- something that could happen with a concurrent sweeper.
   160   bottom = MIN2(bottom, top);
   161   MemRegion extended_mr = MemRegion(bottom, top);
   162   assert(bottom <= top &&
   163          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   164           _min_done == NULL ||
   165           top <= _min_done),
   166          "overlap!");
   168   // Walk the region if it is not empty; otherwise there is nothing to do.
   169   if (!extended_mr.is_empty()) {
   170     walk_mem_region(extended_mr, bottom_obj, top);
   171   }
   173   // An idempotent closure might be applied in any order, so we don't
   174   // record a _min_done for it.
   175   if (!_cl->idempotent()) {
   176     _min_done = bottom;
   177   } else {
   178     assert(_min_done == _last_explicit_min_done,
   179            "Don't update _min_done for idempotent cl");
   180   }
   181 }
   183 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
   184                                           CardTableModRefBS::PrecisionStyle precision,
   185                                           HeapWord* boundary) {
   186   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   187 }
   189 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   190                                                HeapWord* top_obj) {
   191   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   192     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   193       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   194         // An arrayOop is starting on the dirty card - since we do exact
   195         // store checks for objArrays we are done.
   196       } else {
   197         // Otherwise, it is possible that the object starting on the dirty
   198         // card spans the entire card, and that the store happened on a
   199         // later card.  Figure out where the object ends.
   200         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   201           "Block size and object size mismatch");
   202         top = top_obj + oop(top_obj)->size();
   203       }
   204     }
   205   } else {
   206     top = (_sp->toContiguousSpace())->top();
   207   }
   208   return top;
   209 }
   211 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   212                                       HeapWord* bottom,
   213                                       HeapWord* top) {
   214   // Note that this assumption won't hold if we have a concurrent
   215   // collector in this space, which may have freed up objects after
   216   // they were dirtied and before the stop-the-world GC that is
   217   // examining cards here.
   218   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   220   if (_boundary != NULL) {
   221     // We have a boundary outside of which we don't want to look
   222     // at objects, so create a filtering closure around the
   223     // oop closure before walking the region.
   224     FilteringClosure filter(_boundary, _cl);
   225     walk_mem_region_with_cl(mr, bottom, top, &filter);
   226   } else {
   227     // No boundary, simply walk the heap with the oop closure.
   228     walk_mem_region_with_cl(mr, bottom, top, _cl);
   229   }
   231 }
   233 // We must replicate this so that the static type of "FilteringClosure"
   234 // (see above) is apparent at the oop_iterate calls.
   235 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   236 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   237                                                    HeapWord* bottom,    \
   238                                                    HeapWord* top,       \
   239                                                    ClosureType* cl) {   \
   240   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   241   if (bottom < top) {                                                   \
   242     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   243     while (next_obj < top) {                                            \
   244       /* Bottom lies entirely below top, so we can call the */          \
   245       /* non-memRegion version of oop_iterate below. */                 \
   246       oop(bottom)->oop_iterate(cl);                                     \
   247       bottom = next_obj;                                                \
   248       next_obj = bottom + oop(bottom)->size();                          \
   249     }                                                                   \
   250     /* Last object. */                                                  \
   251     oop(bottom)->oop_iterate(cl, mr);                                   \
   252   }                                                                     \
   253 }
   255 // (There are only two of these, rather than N, because the split is due
   256 // only to the introduction of the FilteringClosure, a local part of the
   257 // impl of this abstraction.)
   258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
   259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   261 DirtyCardToOopClosure*
   262 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
   263                              CardTableModRefBS::PrecisionStyle precision,
   264                              HeapWord* boundary) {
   265   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   266 }
   268 void Space::initialize(MemRegion mr,
   269                        bool clear_space,
   270                        bool mangle_space) {
   271   HeapWord* bottom = mr.start();
   272   HeapWord* end    = mr.end();
   273   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   274          "invalid space boundaries");
   275   set_bottom(bottom);
   276   set_end(end);
   277   if (clear_space) clear(mangle_space);
   278 }
   280 void Space::clear(bool mangle_space) {
   281   if (ZapUnusedHeapArea && mangle_space) {
   282     mangle_unused_area();
   283   }
   284 }
   286 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   287     _concurrent_iteration_safe_limit(NULL) {
   288   _mangler = new GenSpaceMangler(this);
   289 }
   291 ContiguousSpace::~ContiguousSpace() {
   292   delete _mangler;
   293 }
   295 void ContiguousSpace::initialize(MemRegion mr,
   296                                  bool clear_space,
   297                                  bool mangle_space)
   298 {
   299   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   300   set_concurrent_iteration_safe_limit(top());
   301 }
   303 void ContiguousSpace::clear(bool mangle_space) {
   304   set_top(bottom());
   305   set_saved_mark();
   306   CompactibleSpace::clear(mangle_space);
   307 }
   309 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   310   return p >= _top;
   311 }
   313 void OffsetTableContigSpace::clear(bool mangle_space) {
   314   ContiguousSpace::clear(mangle_space);
   315   _offsets.initialize_threshold();
   316 }
   318 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   319   Space::set_bottom(new_bottom);
   320   _offsets.set_bottom(new_bottom);
   321 }
   323 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   324   // Space should not advertize an increase in size
   325   // until after the underlying offest table has been enlarged.
   326   _offsets.resize(pointer_delta(new_end, bottom()));
   327   Space::set_end(new_end);
   328 }
   330 #ifndef PRODUCT
   332 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   333   mangler()->set_top_for_allocations(v);
   334 }
   335 void ContiguousSpace::set_top_for_allocations() {
   336   mangler()->set_top_for_allocations(top());
   337 }
   338 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   339   mangler()->check_mangled_unused_area(limit);
   340 }
   342 void ContiguousSpace::check_mangled_unused_area_complete() {
   343   mangler()->check_mangled_unused_area_complete();
   344 }
   346 // Mangled only the unused space that has not previously
   347 // been mangled and that has not been allocated since being
   348 // mangled.
   349 void ContiguousSpace::mangle_unused_area() {
   350   mangler()->mangle_unused_area();
   351 }
   352 void ContiguousSpace::mangle_unused_area_complete() {
   353   mangler()->mangle_unused_area_complete();
   354 }
   355 void ContiguousSpace::mangle_region(MemRegion mr) {
   356   // Although this method uses SpaceMangler::mangle_region() which
   357   // is not specific to a space, the when the ContiguousSpace version
   358   // is called, it is always with regard to a space and this
   359   // bounds checking is appropriate.
   360   MemRegion space_mr(bottom(), end());
   361   assert(space_mr.contains(mr), "Mangling outside space");
   362   SpaceMangler::mangle_region(mr);
   363 }
   364 #endif  // NOT_PRODUCT
   366 void CompactibleSpace::initialize(MemRegion mr,
   367                                   bool clear_space,
   368                                   bool mangle_space) {
   369   Space::initialize(mr, clear_space, mangle_space);
   370   set_compaction_top(bottom());
   371   _next_compaction_space = NULL;
   372 }
   374 void CompactibleSpace::clear(bool mangle_space) {
   375   Space::clear(mangle_space);
   376   _compaction_top = bottom();
   377 }
   379 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   380                                     CompactPoint* cp, HeapWord* compact_top) {
   381   // q is alive
   382   // First check if we should switch compaction space
   383   assert(this == cp->space, "'this' should be current compaction space.");
   384   size_t compaction_max_size = pointer_delta(end(), compact_top);
   385   while (size > compaction_max_size) {
   386     // switch to next compaction space
   387     cp->space->set_compaction_top(compact_top);
   388     cp->space = cp->space->next_compaction_space();
   389     if (cp->space == NULL) {
   390       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   391       assert(cp->gen != NULL, "compaction must succeed");
   392       cp->space = cp->gen->first_compaction_space();
   393       assert(cp->space != NULL, "generation must have a first compaction space");
   394     }
   395     compact_top = cp->space->bottom();
   396     cp->space->set_compaction_top(compact_top);
   397     cp->threshold = cp->space->initialize_threshold();
   398     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   399   }
   401   // store the forwarding pointer into the mark word
   402   if ((HeapWord*)q != compact_top) {
   403     q->forward_to(oop(compact_top));
   404     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   405   } else {
   406     // if the object isn't moving we can just set the mark to the default
   407     // mark and handle it specially later on.
   408     q->init_mark();
   409     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   410   }
   412   compact_top += size;
   414   // we need to update the offset table so that the beginnings of objects can be
   415   // found during scavenge.  Note that we are updating the offset table based on
   416   // where the object will be once the compaction phase finishes.
   417   if (compact_top > cp->threshold)
   418     cp->threshold =
   419       cp->space->cross_threshold(compact_top - size, compact_top);
   420   return compact_top;
   421 }
   424 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   425                                         HeapWord* q, size_t deadlength) {
   426   if (allowed_deadspace_words >= deadlength) {
   427     allowed_deadspace_words -= deadlength;
   428     CollectedHeap::fill_with_object(q, deadlength);
   429     oop(q)->set_mark(oop(q)->mark()->set_marked());
   430     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   431     // Recall that we required "q == compaction_top".
   432     return true;
   433   } else {
   434     allowed_deadspace_words = 0;
   435     return false;
   436   }
   437 }
   439 #define block_is_always_obj(q) true
   440 #define obj_size(q) oop(q)->size()
   441 #define adjust_obj_size(s) s
   443 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   444   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   445 }
   447 // Faster object search.
   448 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   449   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   450 }
   452 void Space::adjust_pointers() {
   453   // adjust all the interior pointers to point at the new locations of objects
   454   // Used by MarkSweep::mark_sweep_phase3()
   456   // First check to see if there is any work to be done.
   457   if (used() == 0) {
   458     return;  // Nothing to do.
   459   }
   461   // Otherwise...
   462   HeapWord* q = bottom();
   463   HeapWord* t = end();
   465   debug_only(HeapWord* prev_q = NULL);
   466   while (q < t) {
   467     if (oop(q)->is_gc_marked()) {
   468       // q is alive
   470       // point all the oops to the new location
   471       size_t size = oop(q)->adjust_pointers();
   473       debug_only(prev_q = q);
   475       q += size;
   476     } else {
   477       // q is not a live object.  But we're not in a compactible space,
   478       // So we don't have live ranges.
   479       debug_only(prev_q = q);
   480       q += block_size(q);
   481       assert(q > prev_q, "we should be moving forward through memory");
   482     }
   483   }
   484   assert(q == t, "just checking");
   485 }
   487 void CompactibleSpace::adjust_pointers() {
   488   // Check first is there is any work to do.
   489   if (used() == 0) {
   490     return;   // Nothing to do.
   491   }
   493   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   494 }
   496 void CompactibleSpace::compact() {
   497   SCAN_AND_COMPACT(obj_size);
   498 }
   500 void Space::print_short() const { print_short_on(tty); }
   502 void Space::print_short_on(outputStream* st) const {
   503   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   504               (int) ((double) used() * 100 / capacity()));
   505 }
   507 void Space::print() const { print_on(tty); }
   509 void Space::print_on(outputStream* st) const {
   510   print_short_on(st);
   511   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   512                 bottom(), end());
   513 }
   515 void ContiguousSpace::print_on(outputStream* st) const {
   516   print_short_on(st);
   517   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   518                 bottom(), top(), end());
   519 }
   521 void OffsetTableContigSpace::print_on(outputStream* st) const {
   522   print_short_on(st);
   523   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   524                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   525               bottom(), top(), _offsets.threshold(), end());
   526 }
   528 void ContiguousSpace::verify() const {
   529   HeapWord* p = bottom();
   530   HeapWord* t = top();
   531   HeapWord* prev_p = NULL;
   532   while (p < t) {
   533     oop(p)->verify();
   534     prev_p = p;
   535     p += oop(p)->size();
   536   }
   537   guarantee(p == top(), "end of last object must match end of space");
   538   if (top() != end()) {
   539     guarantee(top() == block_start_const(end()-1) &&
   540               top() == block_start_const(top()),
   541               "top should be start of unallocated block, if it exists");
   542   }
   543 }
   545 void Space::oop_iterate(ExtendedOopClosure* blk) {
   546   ObjectToOopClosure blk2(blk);
   547   object_iterate(&blk2);
   548 }
   550 bool Space::obj_is_alive(const HeapWord* p) const {
   551   assert (block_is_obj(p), "The address should point to an object");
   552   return true;
   553 }
   555 #if INCLUDE_ALL_GCS
   556 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   557                                                                             \
   558   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   559     HeapWord* obj_addr = mr.start();                                        \
   560     HeapWord* t = mr.end();                                                 \
   561     while (obj_addr < t) {                                                  \
   562       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   563       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   564     }                                                                       \
   565   }
   567   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   569 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   570 #endif // INCLUDE_ALL_GCS
   572 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
   573   if (is_empty()) return;
   574   HeapWord* obj_addr = bottom();
   575   HeapWord* t = top();
   576   // Could call objects iterate, but this is easier.
   577   while (obj_addr < t) {
   578     obj_addr += oop(obj_addr)->oop_iterate(blk);
   579   }
   580 }
   582 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   583   if (is_empty()) return;
   584   WaterMark bm = bottom_mark();
   585   object_iterate_from(bm, blk);
   586 }
   588 // For a continguous space object_iterate() and safe_object_iterate()
   589 // are the same.
   590 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   591   object_iterate(blk);
   592 }
   594 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   595   assert(mark.space() == this, "Mark does not match space");
   596   HeapWord* p = mark.point();
   597   while (p < top()) {
   598     blk->do_object(oop(p));
   599     p += oop(p)->size();
   600   }
   601 }
   603 HeapWord*
   604 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   605   HeapWord * limit = concurrent_iteration_safe_limit();
   606   assert(limit <= top(), "sanity check");
   607   for (HeapWord* p = bottom(); p < limit;) {
   608     size_t size = blk->do_object_careful(oop(p));
   609     if (size == 0) {
   610       return p;  // failed at p
   611     } else {
   612       p += size;
   613     }
   614   }
   615   return NULL; // all done
   616 }
   618 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   619                                                                           \
   620 void ContiguousSpace::                                                    \
   621 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   622   HeapWord* t;                                                            \
   623   HeapWord* p = saved_mark_word();                                        \
   624   assert(p != NULL, "expected saved mark");                               \
   625                                                                           \
   626   const intx interval = PrefetchScanIntervalInBytes;                      \
   627   do {                                                                    \
   628     t = top();                                                            \
   629     while (p < t) {                                                       \
   630       Prefetch::write(p, interval);                                       \
   631       debug_only(HeapWord* prev = p);                                     \
   632       oop m = oop(p);                                                     \
   633       p += m->oop_iterate(blk);                                           \
   634     }                                                                     \
   635   } while (t < top());                                                    \
   636                                                                           \
   637   set_saved_mark_word(p);                                                 \
   638 }
   640 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   642 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   644 // Very general, slow implementation.
   645 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   646   assert(MemRegion(bottom(), end()).contains(p),
   647          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   648                   p, bottom(), end()));
   649   if (p >= top()) {
   650     return top();
   651   } else {
   652     HeapWord* last = bottom();
   653     HeapWord* cur = last;
   654     while (cur <= p) {
   655       last = cur;
   656       cur += oop(cur)->size();
   657     }
   658     assert(oop(last)->is_oop(),
   659            err_msg(PTR_FORMAT " should be an object start", last));
   660     return last;
   661   }
   662 }
   664 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   665   assert(MemRegion(bottom(), end()).contains(p),
   666          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   667                   p, bottom(), end()));
   668   HeapWord* current_top = top();
   669   assert(p <= current_top,
   670          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
   671                   p, current_top));
   672   assert(p == current_top || oop(p)->is_oop(),
   673          err_msg("p (" PTR_FORMAT ") is not a block start - "
   674                  "current_top: " PTR_FORMAT ", is_oop: %s",
   675                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
   676   if (p < current_top) {
   677     return oop(p)->size();
   678   } else {
   679     assert(p == current_top, "just checking");
   680     return pointer_delta(end(), (HeapWord*) p);
   681   }
   682 }
   684 // This version requires locking.
   685 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   686                                                 HeapWord* const end_value) {
   687   assert(Heap_lock->owned_by_self() ||
   688          (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
   689          "not locked");
   690   HeapWord* obj = top();
   691   if (pointer_delta(end_value, obj) >= size) {
   692     HeapWord* new_top = obj + size;
   693     set_top(new_top);
   694     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   695     return obj;
   696   } else {
   697     return NULL;
   698   }
   699 }
   701 // This version is lock-free.
   702 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   703                                                     HeapWord* const end_value) {
   704   do {
   705     HeapWord* obj = top();
   706     if (pointer_delta(end_value, obj) >= size) {
   707       HeapWord* new_top = obj + size;
   708       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   709       // result can be one of two:
   710       //  the old top value: the exchange succeeded
   711       //  otherwise: the new value of the top is returned.
   712       if (result == obj) {
   713         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   714         return obj;
   715       }
   716     } else {
   717       return NULL;
   718     }
   719   } while (true);
   720 }
   722 // Requires locking.
   723 HeapWord* ContiguousSpace::allocate(size_t size) {
   724   return allocate_impl(size, end());
   725 }
   727 // Lock-free.
   728 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   729   return par_allocate_impl(size, end());
   730 }
   732 void ContiguousSpace::allocate_temporary_filler(int factor) {
   733   // allocate temporary type array decreasing free size with factor 'factor'
   734   assert(factor >= 0, "just checking");
   735   size_t size = pointer_delta(end(), top());
   737   // if space is full, return
   738   if (size == 0) return;
   740   if (factor > 0) {
   741     size -= size/factor;
   742   }
   743   size = align_object_size(size);
   745   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
   746   if (size >= (size_t)align_object_size(array_header_size)) {
   747     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
   748     // allocate uninitialized int array
   749     typeArrayOop t = (typeArrayOop) allocate(size);
   750     assert(t != NULL, "allocation should succeed");
   751     t->set_mark(markOopDesc::prototype());
   752     t->set_klass(Universe::intArrayKlassObj());
   753     t->set_length((int)length);
   754   } else {
   755     assert(size == CollectedHeap::min_fill_size(),
   756            "size for smallest fake object doesn't match");
   757     instanceOop obj = (instanceOop) allocate(size);
   758     obj->set_mark(markOopDesc::prototype());
   759     obj->set_klass_gap(0);
   760     obj->set_klass(SystemDictionary::Object_klass());
   761   }
   762 }
   764 void EdenSpace::clear(bool mangle_space) {
   765   ContiguousSpace::clear(mangle_space);
   766   set_soft_end(end());
   767 }
   769 // Requires locking.
   770 HeapWord* EdenSpace::allocate(size_t size) {
   771   return allocate_impl(size, soft_end());
   772 }
   774 // Lock-free.
   775 HeapWord* EdenSpace::par_allocate(size_t size) {
   776   return par_allocate_impl(size, soft_end());
   777 }
   779 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   780 {
   781   do {
   782     // The invariant is top() should be read before end() because
   783     // top() can't be greater than end(), so if an update of _soft_end
   784     // occurs between 'end_val = end();' and 'top_val = top();' top()
   785     // also can grow up to the new end() and the condition
   786     // 'top_val > end_val' is true. To ensure the loading order
   787     // OrderAccess::loadload() is required after top() read.
   788     HeapWord* obj = top();
   789     OrderAccess::loadload();
   790     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   791       HeapWord* new_top = obj + size;
   792       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   793       // result can be one of two:
   794       //  the old top value: the exchange succeeded
   795       //  otherwise: the new value of the top is returned.
   796       if (result == obj) {
   797         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   798         return obj;
   799       }
   800     } else {
   801       return NULL;
   802     }
   803   } while (true);
   804 }
   807 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   808   return _offsets.initialize_threshold();
   809 }
   811 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   812   _offsets.alloc_block(start, end);
   813   return _offsets.threshold();
   814 }
   816 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   817                                                MemRegion mr) :
   818   _offsets(sharedOffsetArray, mr),
   819   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   820 {
   821   _offsets.set_contig_space(this);
   822   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   823 }
   825 #define OBJ_SAMPLE_INTERVAL 0
   826 #define BLOCK_SAMPLE_INTERVAL 100
   828 void OffsetTableContigSpace::verify() const {
   829   HeapWord* p = bottom();
   830   HeapWord* prev_p = NULL;
   831   int objs = 0;
   832   int blocks = 0;
   834   if (VerifyObjectStartArray) {
   835     _offsets.verify();
   836   }
   838   while (p < top()) {
   839     size_t size = oop(p)->size();
   840     // For a sampling of objects in the space, find it using the
   841     // block offset table.
   842     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   843       guarantee(p == block_start_const(p + (size/2)),
   844                 "check offset computation");
   845       blocks = 0;
   846     } else {
   847       blocks++;
   848     }
   850     if (objs == OBJ_SAMPLE_INTERVAL) {
   851       oop(p)->verify();
   852       objs = 0;
   853     } else {
   854       objs++;
   855     }
   856     prev_p = p;
   857     p += size;
   858   }
   859   guarantee(p == top(), "end of last object must match end of space");
   860 }
   863 size_t TenuredSpace::allowed_dead_ratio() const {
   864   return MarkSweepDeadRatio;
   865 }

mercurial