src/cpu/mips/vm/macroAssembler_mips.cpp

Mon, 23 Oct 2017 17:07:19 +0800

author
fujie
date
Mon, 23 Oct 2017 17:07:19 +0800
changeset 8000
1510f9dcc0fa
parent 7997
6cbff0651f1a
child 8001
76b73e112cb7
permissions
-rw-r--r--

[G1] Initial porting of MacroAssembler::g1_write_barrier_{pre/post}

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2017, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/assembler.hpp"
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/macroAssembler.inline.hpp"
    30 #include "compiler/disassembler.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.hpp"
    36 #include "prims/methodHandles.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/interfaceSupport.hpp"
    39 #include "runtime/objectMonitor.hpp"
    40 #include "runtime/os.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "utilities/macros.hpp"
    44 #if INCLUDE_ALL_GCS
    45 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    46 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    47 #include "gc_implementation/g1/heapRegion.hpp"
    48 #endif // INCLUDE_ALL_GCS
    50 // Implementation of MacroAssembler
    52 intptr_t MacroAssembler::i[32] = {0};
    53 float MacroAssembler::f[32] = {0.0};
    55 void MacroAssembler::print(outputStream *s) {
    56   unsigned int k;
    57   for(k=0; k<sizeof(i)/sizeof(i[0]); k++) {
    58     s->print_cr("i%d = 0x%.16lx", k, i[k]);
    59   }
    60   s->cr();
    62   for(k=0; k<sizeof(f)/sizeof(f[0]); k++) {
    63     s->print_cr("f%d = %f", k, f[k]);
    64   }
    65   s->cr();
    66 }
    68 int MacroAssembler::i_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->i[k]; }
    69 int MacroAssembler::f_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->f[k]; }
    71 void MacroAssembler::save_registers(MacroAssembler *masm) {
    72 #define __ masm->
    73   for(int k=0; k<32; k++) {
    74     __ sw (as_Register(k), A0, i_offset(k));
    75   }
    77   for(int k=0; k<32; k++) {
    78     __ swc1 (as_FloatRegister(k), A0, f_offset(k));
    79   }
    80 #undef __
    81 }
    83 void MacroAssembler::restore_registers(MacroAssembler *masm) {
    84 #define __ masm->
    85   for(int k=0; k<32; k++) {
    86     __ lw (as_Register(k), A0, i_offset(k));
    87   }
    89   for(int k=0; k<32; k++) {
    90     __ lwc1 (as_FloatRegister(k), A0, f_offset(k));
    91   }
    92 #undef __
    93 }
    96 void MacroAssembler::pd_patch_instruction(address branch, address target) {
    97   jint& stub_inst = *(jint*) branch;
    99 /* *
   100   move(AT, RA); // dadd
   101   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   102   nop();
   103         lui(T9, 0); // to be patched
   104         ori(T9, 0);
   105   daddu(T9, T9, RA);
   106   move(RA, AT);
   107   jr(T9);
   108  */
   109   if(special(stub_inst) == dadd_op) {
   110     jint *pc = (jint *)branch;
   112     assert(opcode(pc[3]) == lui_op
   113           && opcode(pc[4]) == ori_op
   114           && special(pc[5]) == daddu_op, "Not a branch label patch");
   115     if(!(opcode(pc[3]) == lui_op
   116           && opcode(pc[4]) == ori_op
   117           && special(pc[5]) == daddu_op)) { tty->print_cr("Not a branch label patch"); }
   119     int offset = target - branch;
   120     if (!is_simm16(offset))
   121     {
   122       pc[3] = (pc[3] & 0xffff0000) | high16(offset - 12);
   123       pc[4] = (pc[4] & 0xffff0000) | low16(offset - 12);
   124     }
   125     else
   126     {
   127       /* revert to "beq + nop" */
   128       CodeBuffer cb(branch, 4 * 10);
   129       MacroAssembler masm(&cb);
   130 #define __ masm.
   131       __ b(target);
   132       __ nop();
   133       __ nop();
   134       __ nop();
   135       __ nop();
   136       __ nop();
   137       __ nop();
   138       __ nop();
   139     }
   140     return;
   141   }
   143 #ifndef PRODUCT
   144   if (!is_simm16((target - branch - 4) >> 2))
   145   {
   146     tty->print_cr("Illegal patching: target=0x%lx", target);
   147     int *p = (int *)branch;
   148     for (int i = -10; i < 10; i++)
   149     {
   150        tty->print("0x%lx, ", p[i]);
   151     }
   152     tty->print_cr("");
   153   }
   154 #endif
   156   stub_inst = patched_branch(target - branch, stub_inst, 0);
   157 }
   159 static inline address first_cache_address() {
   160   return CodeCache::low_bound() + sizeof(HeapBlock::Header);
   161 }
   163 static inline address last_cache_address() {
   164   return CodeCache::high_bound() - Assembler::InstructionSize;
   165 }
   167 int MacroAssembler::call_size(address target, bool far, bool patchable) {
   168   if (patchable) return 6 << Assembler::LogInstructionSize;
   169   if (!far) return 2 << Assembler::LogInstructionSize; // jal + nop
   170   return (insts_for_set64((jlong)target) + 2) << Assembler::LogInstructionSize;
   171 }
   173 // Can we reach target using jal/j from anywhere
   174 // in the code cache (because code can be relocated)?
   175 bool MacroAssembler::reachable_from_cache(address target) {
   176   address cl = first_cache_address();
   177   address ch = last_cache_address();
   179   return fit_in_jal(target, cl) && fit_in_jal(target, ch);
   180 }
   182 void MacroAssembler::general_jump(address target) {
   183   if (reachable_from_cache(target)) {
   184     j(target);
   185     nop();
   186   } else {
   187     set64(T9, (long)target);
   188     jr(T9);
   189     nop();
   190   }
   191 }
   193 int MacroAssembler::insts_for_general_jump(address target) {
   194   if (reachable_from_cache(target)) {
   195     //j(target);
   196     //nop();
   197     return 2;
   198   } else {
   199     //set64(T9, (long)target);
   200     //jr(T9);
   201     //nop();
   202     return insts_for_set64((jlong)target) + 2;
   203   }
   204 }
   206 void MacroAssembler::patchable_jump(address target) {
   207   if (reachable_from_cache(target)) {
   208     nop();
   209     nop();
   210     nop();
   211     nop();
   212     j(target);
   213     nop();
   214   } else {
   215     patchable_set48(T9, (long)target);
   216     jr(T9);
   217     nop();
   218   }
   219 }
   221 int MacroAssembler::insts_for_patchable_jump(address target) {
   222   return 6;
   223 }
   225 void MacroAssembler::general_call(address target) {
   226   if (reachable_from_cache(target)) {
   227     jal(target);
   228     nop();
   229   } else {
   230     set64(T9, (long)target);
   231     jalr(T9);
   232     nop();
   233   }
   234 }
   236 int MacroAssembler::insts_for_general_call(address target) {
   237   if (reachable_from_cache(target)) {
   238     //jal(target);
   239     //nop();
   240     return 2;
   241   } else {
   242     //set64(T9, (long)target);
   243     //jalr(T9);
   244     //nop();
   245     return insts_for_set64((jlong)target) + 2;
   246   }
   247 }
   249 void MacroAssembler::patchable_call(address target) {
   250   if (reachable_from_cache(target)) {
   251     nop();
   252     nop();
   253     nop();
   254     nop();
   255     jal(target);
   256     nop();
   257   } else {
   258     patchable_set48(T9, (long)target);
   259     jalr(T9);
   260     nop();
   261   }
   262 }
   264 int MacroAssembler::insts_for_patchable_call(address target) {
   265   return 6;
   266 }
   268 void MacroAssembler::beq_far(Register rs, Register rt, address entry)
   269 {
   270   u_char * cur_pc = pc();
   272   /* Jin: Near/Far jump */
   273   if(is_simm16((entry - pc() - 4) / 4))
   274   {
   275     Assembler::beq(rs, rt, offset(entry));
   276   }
   277   else
   278   {
   279     Label not_jump;
   280     bne(rs, rt, not_jump);
   281     delayed()->nop();
   283     b_far(entry);
   284     delayed()->nop();
   286     bind(not_jump);
   287     has_delay_slot();
   288   }
   289 }
   291 void MacroAssembler::beq_far(Register rs, Register rt, Label& L)
   292 {
   293   if (L.is_bound()) {
   294     beq_far(rs, rt, target(L));
   295   } else {
   296     u_char * cur_pc = pc();
   297     Label not_jump;
   298     bne(rs, rt, not_jump);
   299     delayed()->nop();
   301     b_far(L);
   302     delayed()->nop();
   304     bind(not_jump);
   305     has_delay_slot();
   306   }
   307 }
   309 void MacroAssembler::bne_far(Register rs, Register rt, address entry)
   310 {
   311   u_char * cur_pc = pc();
   313   /* Jin: Near/Far jump */
   314   if(is_simm16((entry - pc() - 4) / 4))
   315   {
   316     Assembler::bne(rs, rt, offset(entry));
   317   }
   318   else
   319   {
   320     Label not_jump;
   321     beq(rs, rt, not_jump);
   322     delayed()->nop();
   324     b_far(entry);
   325     delayed()->nop();
   327     bind(not_jump);
   328     has_delay_slot();
   329   }
   330 }
   332 void MacroAssembler::bne_far(Register rs, Register rt, Label& L)
   333 {
   334   if (L.is_bound()) {
   335     bne_far(rs, rt, target(L));
   336   } else {
   337     u_char * cur_pc = pc();
   338     Label not_jump;
   339     beq(rs, rt, not_jump);
   340     delayed()->nop();
   342     b_far(L);
   343     delayed()->nop();
   345     bind(not_jump);
   346     has_delay_slot();
   347   }
   348 }
   350 void MacroAssembler::b_far(Label& L)
   351 {
   352   if (L.is_bound()) {
   353     b_far(target(L));
   354   } else {
   355   volatile address dest = target(L);
   356 /*
   357 MacroAssembler::pd_patch_instruction branch=55651ed514, target=55651ef6d8
   358    0x00000055651ed514: dadd at, ra, zero
   359    0x00000055651ed518: [4110001]bgezal zero, 0x00000055651ed520
   361    0x00000055651ed51c: sll zero, zero, 0
   362    0x00000055651ed520: lui t9, 0x0
   363    0x00000055651ed524: ori t9, t9, 0x21b8
   364    0x00000055651ed528: daddu t9, t9, ra
   365    0x00000055651ed52c: dadd ra, at, zero
   366    0x00000055651ed530: jr t9
   367    0x00000055651ed534: sll zero, zero, 0
   368 */
   369   move(AT, RA);
   370   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   371   nop();
   372         lui(T9, 0); // to be patched
   373         ori(T9, T9, 0);
   374   daddu(T9, T9, RA);
   375   move(RA, AT);
   376   jr(T9);
   377   }
   378 }
   380 void MacroAssembler::b_far(address entry)
   381 {
   382   u_char * cur_pc = pc();
   384   /* Jin: Near/Far jump */
   385   if(is_simm16((entry - pc() - 4) / 4))
   386   {
   387     b(offset(entry));
   388   }
   389   else
   390   {
   391     /* address must be bounded */
   392     move(AT, RA);
   393      emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   394     nop();
   395     li32(T9, entry - pc());
   396     daddu(T9, T9, RA);
   397     move(RA, AT);
   398     jr(T9);
   399   }
   400 }
   402 void MacroAssembler::ld_ptr(Register rt, Register offset, Register base) {
   403   addu_long(AT, base, offset);
   404   ld_ptr(rt, 0, AT);
   405 }
   407 void MacroAssembler::st_ptr(Register rt, Register offset, Register base) {
   408   addu_long(AT, base, offset);
   409   st_ptr(rt, 0, AT);
   410 }
   412 void MacroAssembler::ld_long(Register rt, Register offset, Register base) {
   413   addu_long(AT, base, offset);
   414   ld_long(rt, 0, AT);
   415 }
   417 void MacroAssembler::st_long(Register rt, Register offset, Register base) {
   418   addu_long(AT, base, offset);
   419   st_long(rt, 0, AT);
   420 }
   422 Address MacroAssembler::as_Address(AddressLiteral adr) {
   423   return Address(adr.target(), adr.rspec());
   424 }
   426 Address MacroAssembler::as_Address(ArrayAddress adr) {
   427   return Address::make_array(adr);
   428 }
   430 // tmp_reg1 and tmp_reg2 should be saved outside of atomic_inc32 (caller saved).
   431 void MacroAssembler::atomic_inc32(address counter_addr, int inc, Register tmp_reg1, Register tmp_reg2) {
   432   Label again;
   434   li(tmp_reg1, counter_addr);
   435   bind(again);
   436   if(!Use3A2000) sync();
   437   ll(tmp_reg2, tmp_reg1, 0);
   438   addi(tmp_reg2, tmp_reg2, inc);
   439   sc(tmp_reg2, tmp_reg1, 0);
   440   beq(tmp_reg2, R0, again);
   441   delayed()->nop();
   442 }
   444 int MacroAssembler::biased_locking_enter(Register lock_reg,
   445                                          Register obj_reg,
   446                                          Register swap_reg,
   447                                          Register tmp_reg,
   448                                          bool swap_reg_contains_mark,
   449                                          Label& done,
   450                                          Label* slow_case,
   451                                          BiasedLockingCounters* counters) {
   452   assert(UseBiasedLocking, "why call this otherwise?");
   453   bool need_tmp_reg = false;
   454   if (tmp_reg == noreg) {
   455     need_tmp_reg = true;
   456     tmp_reg = T9;
   457   }
   458   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, AT);
   459   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   460   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   461   Address saved_mark_addr(lock_reg, 0);
   463   // Biased locking
   464   // See whether the lock is currently biased toward our thread and
   465   // whether the epoch is still valid
   466   // Note that the runtime guarantees sufficient alignment of JavaThread
   467   // pointers to allow age to be placed into low bits
   468   // First check to see whether biasing is even enabled for this object
   469   Label cas_label;
   470   int null_check_offset = -1;
   471   if (!swap_reg_contains_mark) {
   472     null_check_offset = offset();
   473     ld_ptr(swap_reg, mark_addr);
   474   }
   476   if (need_tmp_reg) {
   477     push(tmp_reg);
   478   }
   479   move(tmp_reg, swap_reg);
   480   andi(tmp_reg, tmp_reg, markOopDesc::biased_lock_mask_in_place);
   481 #ifdef _LP64
   482   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   483   dsub(AT, AT, tmp_reg);
   484 #else
   485   addi(AT, R0, markOopDesc::biased_lock_pattern);
   486   sub(AT, AT, tmp_reg);
   487 #endif
   488   if (need_tmp_reg) {
   489     pop(tmp_reg);
   490   }
   492   bne(AT, R0, cas_label);
   493   delayed()->nop();
   496   // The bias pattern is present in the object's header. Need to check
   497   // whether the bias owner and the epoch are both still current.
   498   // Note that because there is no current thread register on MIPS we
   499   // need to store off the mark word we read out of the object to
   500   // avoid reloading it and needing to recheck invariants below. This
   501   // store is unfortunate but it makes the overall code shorter and
   502   // simpler.
   503   st_ptr(swap_reg, saved_mark_addr);
   504   if (need_tmp_reg) {
   505     push(tmp_reg);
   506   }
   507   if (swap_reg_contains_mark) {
   508     null_check_offset = offset();
   509   }
   510   load_prototype_header(tmp_reg, obj_reg);
   511   xorr(tmp_reg, tmp_reg, swap_reg);
   512   get_thread(swap_reg);
   513   xorr(swap_reg, swap_reg, tmp_reg);
   515   move(AT, ~((int) markOopDesc::age_mask_in_place));
   516   andr(swap_reg, swap_reg, AT);
   518   if (PrintBiasedLockingStatistics) {
   519     Label L;
   520     bne(swap_reg, R0, L);
   521     delayed()->nop();
   522     push(tmp_reg);
   523     push(A0);
   524     atomic_inc32((address)BiasedLocking::biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   525     pop(A0);
   526     pop(tmp_reg);
   527     bind(L);
   528   }
   529   if (need_tmp_reg) {
   530     pop(tmp_reg);
   531   }
   532   beq(swap_reg, R0, done);
   533   delayed()->nop();
   534   Label try_revoke_bias;
   535   Label try_rebias;
   537   // At this point we know that the header has the bias pattern and
   538   // that we are not the bias owner in the current epoch. We need to
   539   // figure out more details about the state of the header in order to
   540   // know what operations can be legally performed on the object's
   541   // header.
   543   // If the low three bits in the xor result aren't clear, that means
   544   // the prototype header is no longer biased and we have to revoke
   545   // the bias on this object.
   547   move(AT, markOopDesc::biased_lock_mask_in_place);
   548   andr(AT, swap_reg, AT);
   549   bne(AT, R0, try_revoke_bias);
   550   delayed()->nop();
   551   // Biasing is still enabled for this data type. See whether the
   552   // epoch of the current bias is still valid, meaning that the epoch
   553   // bits of the mark word are equal to the epoch bits of the
   554   // prototype header. (Note that the prototype header's epoch bits
   555   // only change at a safepoint.) If not, attempt to rebias the object
   556   // toward the current thread. Note that we must be absolutely sure
   557   // that the current epoch is invalid in order to do this because
   558   // otherwise the manipulations it performs on the mark word are
   559   // illegal.
   561   move(AT, markOopDesc::epoch_mask_in_place);
   562   andr(AT,swap_reg, AT);
   563   bne(AT, R0, try_rebias);
   564   delayed()->nop();
   565   // The epoch of the current bias is still valid but we know nothing
   566   // about the owner; it might be set or it might be clear. Try to
   567   // acquire the bias of the object using an atomic operation. If this
   568   // fails we will go in to the runtime to revoke the object's bias.
   569   // Note that we first construct the presumed unbiased header so we
   570   // don't accidentally blow away another thread's valid bias.
   572   ld_ptr(swap_reg, saved_mark_addr);
   574   move(AT, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   575   andr(swap_reg, swap_reg, AT);
   577   if (need_tmp_reg) {
   578     push(tmp_reg);
   579   }
   580   get_thread(tmp_reg);
   581   orr(tmp_reg, tmp_reg, swap_reg);
   582   //if (os::is_MP()) {
   583   //  sync();
   584   //}
   585   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   586   if (need_tmp_reg) {
   587     pop(tmp_reg);
   588   }
   589   // If the biasing toward our thread failed, this means that
   590   // another thread succeeded in biasing it toward itself and we
   591   // need to revoke that bias. The revocation will occur in the
   592   // interpreter runtime in the slow case.
   593   if (PrintBiasedLockingStatistics) {
   594     Label L;
   595     bne(AT, R0, L);
   596     delayed()->nop();
   597     push(tmp_reg);
   598     push(A0);
   599     atomic_inc32((address)BiasedLocking::anonymously_biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   600     pop(A0);
   601     pop(tmp_reg);
   602     bind(L);
   603   }
   604   if (slow_case != NULL) {
   605     beq_far(AT, R0, *slow_case);
   606     delayed()->nop();
   607   }
   608   b(done);
   609   delayed()->nop();
   611   bind(try_rebias);
   612   // At this point we know the epoch has expired, meaning that the
   613   // current "bias owner", if any, is actually invalid. Under these
   614   // circumstances _only_, we are allowed to use the current header's
   615   // value as the comparison value when doing the cas to acquire the
   616   // bias in the current epoch. In other words, we allow transfer of
   617   // the bias from one thread to another directly in this situation.
   618   //
   619   // FIXME: due to a lack of registers we currently blow away the age
   620   // bits in this situation. Should attempt to preserve them.
   621   if (need_tmp_reg) {
   622     push(tmp_reg);
   623   }
   624   load_prototype_header(tmp_reg, obj_reg);
   625   get_thread(swap_reg);
   626   orr(tmp_reg, tmp_reg, swap_reg);
   627   ld_ptr(swap_reg, saved_mark_addr);
   629   //if (os::is_MP()) {
   630   //  sync();
   631   //}
   632   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   633   if (need_tmp_reg) {
   634     pop(tmp_reg);
   635   }
   636   // If the biasing toward our thread failed, then another thread
   637   // succeeded in biasing it toward itself and we need to revoke that
   638   // bias. The revocation will occur in the runtime in the slow case.
   639   if (PrintBiasedLockingStatistics) {
   640     Label L;
   641     bne(AT, R0, L);
   642     delayed()->nop();
   643     push(AT);
   644     push(tmp_reg);
   645     atomic_inc32((address)BiasedLocking::rebiased_lock_entry_count_addr(), 1, AT, tmp_reg);
   646     pop(tmp_reg);
   647     pop(AT);
   648     bind(L);
   649   }
   650   if (slow_case != NULL) {
   651     beq_far(AT, R0, *slow_case);
   652     delayed()->nop();
   653   }
   655   b(done);
   656   delayed()->nop();
   657   bind(try_revoke_bias);
   658   // The prototype mark in the klass doesn't have the bias bit set any
   659   // more, indicating that objects of this data type are not supposed
   660   // to be biased any more. We are going to try to reset the mark of
   661   // this object to the prototype value and fall through to the
   662   // CAS-based locking scheme. Note that if our CAS fails, it means
   663   // that another thread raced us for the privilege of revoking the
   664   // bias of this particular object, so it's okay to continue in the
   665   // normal locking code.
   666   //
   667   // FIXME: due to a lack of registers we currently blow away the age
   668   // bits in this situation. Should attempt to preserve them.
   669   ld_ptr(swap_reg, saved_mark_addr);
   671   if (need_tmp_reg) {
   672     push(tmp_reg);
   673   }
   674   load_prototype_header(tmp_reg, obj_reg);
   675   //if (os::is_MP()) {
   676   // lock();
   677   //}
   678   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   679   if (need_tmp_reg) {
   680     pop(tmp_reg);
   681   }
   682   // Fall through to the normal CAS-based lock, because no matter what
   683   // the result of the above CAS, some thread must have succeeded in
   684   // removing the bias bit from the object's header.
   685   if (PrintBiasedLockingStatistics) {
   686     Label L;
   687     bne(AT, R0, L);
   688     delayed()->nop();
   689     push(AT);
   690     push(tmp_reg);
   691     atomic_inc32((address)BiasedLocking::revoked_lock_entry_count_addr(), 1, AT, tmp_reg);
   692     pop(tmp_reg);
   693     pop(AT);
   694     bind(L);
   695   }
   697   bind(cas_label);
   698   return null_check_offset;
   699 }
   701 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
   702   assert(UseBiasedLocking, "why call this otherwise?");
   704   // Check for biased locking unlock case, which is a no-op
   705   // Note: we do not have to check the thread ID for two reasons.
   706   // First, the interpreter checks for IllegalMonitorStateException at
   707   // a higher level. Second, if the bias was revoked while we held the
   708   // lock, the object could not be rebiased toward another thread, so
   709   // the bias bit would be clear.
   710 #ifdef _LP64
   711   ld(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   712   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   713   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   714 #else
   715   lw(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   716   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   717   addi(AT, R0, markOopDesc::biased_lock_pattern);
   718 #endif
   720   beq(AT, temp_reg, done);
   721   delayed()->nop();
   722 }
   724 // NOTE: we dont increment the SP after call like the x86 version, maybe this is a problem, FIXME.
   725 // the stack pointer adjustment is needed. see InterpreterMacroAssembler::super_call_VM_leaf
   726 // this method will handle the stack problem, you need not to preserve the stack space for the argument now
   727 void MacroAssembler::call_VM_leaf_base(address entry_point,
   728     int number_of_arguments) {
   729   //call(RuntimeAddress(entry_point));
   730   //increment(rsp, number_of_arguments * wordSize);
   731   Label L, E;
   733   assert(number_of_arguments <= 4, "just check");
   735   andi(AT, SP, 0xf);
   736   beq(AT, R0, L);
   737   delayed()->nop();
   738   daddi(SP, SP, -8);
   739   call(entry_point, relocInfo::runtime_call_type);
   740   delayed()->nop();
   741   daddi(SP, SP, 8);
   742   b(E);
   743   delayed()->nop();
   745   bind(L);
   746   call(entry_point, relocInfo::runtime_call_type);
   747   delayed()->nop();
   748   bind(E);
   749 }
   752 void MacroAssembler::jmp(address entry) {
   753   patchable_set48(T9, (long)entry);
   754   jr(T9);
   755 }
   757 void MacroAssembler::jmp(address entry, relocInfo::relocType rtype) {
   758   switch (rtype) {
   759     case relocInfo::runtime_call_type:
   760     case relocInfo::none:
   761       jmp(entry);
   762       break;
   763     default:
   764       {
   765       InstructionMark im(this);
   766       relocate(rtype);
   767       patchable_set48(T9, (long)entry);
   768       jr(T9);
   769       }
   770       break;
   771   }
   772 }
   774 void MacroAssembler::call(address entry) {
   775 // c/c++ code assume T9 is entry point, so we just always move entry to t9
   776 // maybe there is some more graceful method to handle this. FIXME
   777 // For more info, see class NativeCall.
   778 #ifndef _LP64
   779   move(T9, (int)entry);
   780 #else
   781   patchable_set48(T9, (long)entry);
   782 #endif
   783   jalr(T9);
   784 }
   786 void MacroAssembler::call(address entry, relocInfo::relocType rtype) {
   787   switch (rtype) {
   788     case relocInfo::runtime_call_type:
   789     case relocInfo::none:
   790       call(entry);
   791       break;
   792     default:
   793       {
   794   InstructionMark im(this);
   795   relocate(rtype);
   796   call(entry);
   797       }
   798       break;
   799   }
   800 }
   802 void MacroAssembler::call(address entry, RelocationHolder& rh)
   803 {
   804   switch (rh.type()) {
   805     case relocInfo::runtime_call_type:
   806     case relocInfo::none:
   807       call(entry);
   808       break;
   809     default:
   810       {
   811   InstructionMark im(this);
   812   relocate(rh);
   813   call(entry);
   814       }
   815       break;
   816   }
   817 }
   819 void MacroAssembler::ic_call(address entry) {
   820   RelocationHolder rh = virtual_call_Relocation::spec(pc());
   821   patchable_set48(IC_Klass, (long)Universe::non_oop_word());
   822   assert(entry != NULL, "call most probably wrong");
   823   InstructionMark im(this);
   824   relocate(rh);
   825         patchable_call(entry);
   826 }
   828 void MacroAssembler::c2bool(Register r) {
   829   Label L;
   830   Assembler::beq(r, R0, L);
   831   delayed()->nop();
   832   move(r, 1);
   833   bind(L);
   834 }
   836 #ifndef PRODUCT
   837 extern "C" void findpc(intptr_t x);
   838 #endif
   840 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   841   // In order to get locks to work, we need to fake a in_VM state
   842   JavaThread* thread = JavaThread::current();
   843   JavaThreadState saved_state = thread->thread_state();
   844   thread->set_thread_state(_thread_in_vm);
   845   if (ShowMessageBoxOnError) {
   846     JavaThread* thread = JavaThread::current();
   847     JavaThreadState saved_state = thread->thread_state();
   848     thread->set_thread_state(_thread_in_vm);
   849     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   850       ttyLocker ttyl;
   851       BytecodeCounter::print();
   852     }
   853     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   854     // This is the value of eip which points to where verify_oop will return.
   855     if (os::message_box(msg, "Execution stopped, print registers?")) {
   856       ttyLocker ttyl;
   857       tty->print_cr("eip = 0x%08x", eip);
   858 #ifndef PRODUCT
   859       tty->cr();
   860       findpc(eip);
   861       tty->cr();
   862 #endif
   863       tty->print_cr("rax, = 0x%08x", rax);
   864       tty->print_cr("rbx, = 0x%08x", rbx);
   865       tty->print_cr("rcx = 0x%08x", rcx);
   866       tty->print_cr("rdx = 0x%08x", rdx);
   867       tty->print_cr("rdi = 0x%08x", rdi);
   868       tty->print_cr("rsi = 0x%08x", rsi);
   869       tty->print_cr("rbp, = 0x%08x", rbp);
   870       tty->print_cr("rsp = 0x%08x", rsp);
   871       BREAKPOINT;
   872     }
   873   } else {
   874     ttyLocker ttyl;
   875     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   876     assert(false, "DEBUG MESSAGE");
   877   }
   878   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   879 }
   881 void MacroAssembler::debug(char* msg/*, RegistersForDebugging* regs*/) {
   882   if ( ShowMessageBoxOnError ) {
   883     JavaThreadState saved_state = JavaThread::current()->thread_state();
   884     JavaThread::current()->set_thread_state(_thread_in_vm);
   885     {
   886       // In order to get locks work, we need to fake a in_VM state
   887       ttyLocker ttyl;
   888       ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
   889       if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   890   BytecodeCounter::print();
   891       }
   893       //      if (os::message_box(msg, "Execution stopped, print registers?"))
   894       //        regs->print(::tty);
   895     }
   896     ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
   897   }
   898   else
   899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   900 }
   903 void MacroAssembler::stop(const char* msg) {
   904   li(A0, (long)msg);
   905 #ifndef _LP64
   906   //reserver space for argument. added by yjl 7/10/2005
   907   addiu(SP, SP, - 1 * wordSize);
   908 #endif
   909   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   910   delayed()->nop();
   911 #ifndef _LP64
   912   //restore space for argument
   913   addiu(SP, SP, 1 * wordSize);
   914 #endif
   915   brk(17);
   916 }
   918 void MacroAssembler::warn(const char* msg) {
   919 #ifdef _LP64
   920   pushad();
   921   li(A0, (long)msg);
   922   push(S2);
   923   move(AT, -(StackAlignmentInBytes));
   924   move(S2, SP);     // use S2 as a sender SP holder
   925   andr(SP, SP, AT); // align stack as required by ABI
   926   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   927   delayed()->nop();
   928   move(SP, S2);     // use S2 as a sender SP holder
   929   pop(S2);
   930   popad();
   931 #else
   932   pushad();
   933   addi(SP, SP, -4);
   934   sw(A0, SP, -1 * wordSize);
   935   li(A0, (long)msg);
   936   addi(SP, SP, -1 * wordSize);
   937   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   938   delayed()->nop();
   939   addi(SP, SP, 1 * wordSize);
   940   lw(A0, SP, -1 * wordSize);
   941   addi(SP, SP, 4);
   942   popad();
   943 #endif
   944 }
   946 void MacroAssembler::print_reg(Register reg) {
   947 /*
   948 char *s = getenv("PRINT_REG");
   949 if (s == NULL)
   950   return;
   951 if (strcmp(s, "1") != 0)
   952   return;
   953 */
   954   void * cur_pc = pc();
   955   pushad();
   956   NOT_LP64(push(FP);)
   958   li(A0, (long)reg->name());
   959   if (reg == SP)
   960     addiu(A1, SP, wordSize * 23); //23 registers saved in pushad()
   961   else if (reg == A0)
   962     ld(A1, SP, wordSize * 19); //A0 has been modified by li(A0, (long)reg->name()). Ugly Code!
   963   else
   964     move(A1, reg);
   965   li(A2, (long)cur_pc);
   966   push(S2);
   967   move(AT, -(StackAlignmentInBytes));
   968   move(S2, SP);     // use S2 as a sender SP holder
   969   andr(SP, SP, AT); // align stack as required by ABI
   970   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_reg_with_pc),relocInfo::runtime_call_type);
   971   delayed()->nop();
   972   move(SP, S2);     // use S2 as a sender SP holder
   973   pop(S2);
   974   NOT_LP64(pop(FP);)
   975   popad();
   977 /*
   978   pushad();
   979 #ifdef _LP64
   980   if (reg == SP)
   981     addiu(A0, SP, wordSize * 23); //23 registers saved in pushad()
   982   else
   983     move(A0, reg);
   984   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
   985   delayed()->nop();
   986 #else
   987   push(FP);
   988   move(A0, reg);
   989   dsrl32(A1, reg, 0);
   990   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_int),relocInfo::runtime_call_type);
   991   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
   992   delayed()->nop();
   993   pop(FP);
   994 #endif
   995   popad();
   996   pushad();
   997   NOT_LP64(push(FP);)
   998   char b[50];
   999   sprintf((char *)b, " pc: %p\n",cur_pc);
  1000   li(A0, (long)(char *)b);
  1001   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1002   delayed()->nop();
  1003   NOT_LP64(pop(FP);)
  1004   popad();
  1005 */
  1008 void MacroAssembler::print_reg(FloatRegister reg) {
  1009   void * cur_pc = pc();
  1010   pushad();
  1011   NOT_LP64(push(FP);)
  1012   li(A0, (long)reg->name());
  1013   push(S2);
  1014   move(AT, -(StackAlignmentInBytes));
  1015   move(S2, SP);     // use S2 as a sender SP holder
  1016   andr(SP, SP, AT); // align stack as required by ABI
  1017   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1018   delayed()->nop();
  1019   move(SP, S2);     // use S2 as a sender SP holder
  1020   pop(S2);
  1021   NOT_LP64(pop(FP);)
  1022   popad();
  1024   pushad();
  1025   NOT_LP64(push(FP);)
  1026 #if 1
  1027   move(FP, SP);
  1028   move(AT, -(StackAlignmentInBytes));
  1029   andr(SP , SP , AT);
  1030   mov_d(F12, reg);
  1031   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_double),relocInfo::runtime_call_type);
  1032   delayed()->nop();
  1033   move(SP, FP);
  1034 #else
  1035   mov_s(F12, reg);
  1036   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_float),relocInfo::runtime_call_type);
  1037   //delayed()->nop();
  1038 #endif
  1039   NOT_LP64(pop(FP);)
  1040   popad();
  1042 #if 0
  1043   pushad();
  1044   NOT_LP64(push(FP);)
  1045   char* b = new char[50];
  1046   sprintf(b, " pc: %p\n", cur_pc);
  1047   li(A0, (long)b);
  1048   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1049   delayed()->nop();
  1050   NOT_LP64(pop(FP);)
  1051   popad();
  1052 #endif
  1055 void MacroAssembler::increment(Register reg, int imm) {
  1056   if (!imm) return;
  1057   if (is_simm16(imm)) {
  1058 #ifdef _LP64
  1059     daddiu(reg, reg, imm);
  1060 #else
  1061     addiu(reg, reg, imm);
  1062 #endif
  1063   } else {
  1064     move(AT, imm);
  1065 #ifdef _LP64
  1066     daddu(reg, reg, AT);
  1067 #else
  1068     addu(reg, reg, AT);
  1069 #endif
  1073 void MacroAssembler::decrement(Register reg, int imm) {
  1074   increment(reg, -imm);
  1078 void MacroAssembler::call_VM(Register oop_result,
  1079                              address entry_point,
  1080                              bool check_exceptions) {
  1081   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1084 void MacroAssembler::call_VM(Register oop_result,
  1085                              address entry_point,
  1086                              Register arg_1,
  1087                              bool check_exceptions) {
  1088   if (arg_1!=A1) move(A1, arg_1);
  1089   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1092 void MacroAssembler::call_VM(Register oop_result,
  1093                              address entry_point,
  1094                              Register arg_1,
  1095                              Register arg_2,
  1096                              bool check_exceptions) {
  1097   if (arg_1!=A1) move(A1, arg_1);
  1098   if (arg_2!=A2) move(A2, arg_2);
  1099   assert(arg_2 != A1, "smashed argument");
  1100   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1103 void MacroAssembler::call_VM(Register oop_result,
  1104                              address entry_point,
  1105                              Register arg_1,
  1106                              Register arg_2,
  1107                              Register arg_3,
  1108                              bool check_exceptions) {
  1109   if (arg_1!=A1) move(A1, arg_1);
  1110   if (arg_2!=A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1111   if (arg_3!=A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1112   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1115 void MacroAssembler::call_VM(Register oop_result,
  1116                              Register last_java_sp,
  1117                              address entry_point,
  1118                              int number_of_arguments,
  1119                              bool check_exceptions) {
  1120   call_VM_base(oop_result, NOREG, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1123 void MacroAssembler::call_VM(Register oop_result,
  1124                              Register last_java_sp,
  1125                              address entry_point,
  1126                              Register arg_1,
  1127                              bool check_exceptions) {
  1128   if (arg_1 != A1) move(A1, arg_1);
  1129   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1132 void MacroAssembler::call_VM(Register oop_result,
  1133                              Register last_java_sp,
  1134                              address entry_point,
  1135                              Register arg_1,
  1136                              Register arg_2,
  1137                              bool check_exceptions) {
  1138   if (arg_1 != A1) move(A1, arg_1);
  1139   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1140   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1143 void MacroAssembler::call_VM(Register oop_result,
  1144                              Register last_java_sp,
  1145                              address entry_point,
  1146                              Register arg_1,
  1147                              Register arg_2,
  1148                              Register arg_3,
  1149                              bool check_exceptions) {
  1150   if (arg_1 != A1) move(A1, arg_1);
  1151   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1152   if (arg_3 != A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1153   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1156 void MacroAssembler::call_VM_base(Register oop_result,
  1157                                   Register java_thread,
  1158                                   Register last_java_sp,
  1159                                   address  entry_point,
  1160                                   int      number_of_arguments,
  1161           bool     check_exceptions) {
  1163   address before_call_pc;
  1164   // determine java_thread register
  1165   if (!java_thread->is_valid()) {
  1166 #ifndef OPT_THREAD
  1167     java_thread = T2;
  1168     get_thread(java_thread);
  1169 #else
  1170     java_thread = TREG;
  1171 #endif
  1173   // determine last_java_sp register
  1174   if (!last_java_sp->is_valid()) {
  1175     last_java_sp = SP;
  1177   // debugging support
  1178   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1179   assert(number_of_arguments <= 4   , "cannot have negative number of arguments");
  1180   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1181   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1183   assert(last_java_sp != FP, "this code doesn't work for last_java_sp == fp, which currently can't portably work anyway since C2 doesn't save ebp");
  1185   // set last Java frame before call
  1186   before_call_pc = (address)pc();
  1187   set_last_Java_frame(java_thread, last_java_sp, FP, before_call_pc);
  1189   // do the call
  1190   move(A0, java_thread);
  1191   call(entry_point, relocInfo::runtime_call_type);
  1192   delayed()->nop();
  1194   // restore the thread (cannot use the pushed argument since arguments
  1195   // may be overwritten by C code generated by an optimizing compiler);
  1196   // however can use the register value directly if it is callee saved.
  1197 #ifndef OPT_THREAD
  1198   get_thread(java_thread);
  1199 #else
  1200 #ifdef ASSERT
  1202     Label L;
  1203     get_thread(AT);
  1204     beq(java_thread, AT, L);
  1205     delayed()->nop();
  1206     stop("MacroAssembler::call_VM_base: edi not callee saved?");
  1207     bind(L);
  1209 #endif
  1210 #endif
  1212   // discard thread and arguments
  1213   ld_ptr(SP, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1214   // reset last Java frame
  1215   reset_last_Java_frame(java_thread, false, true);
  1217   check_and_handle_popframe(java_thread);
  1218   check_and_handle_earlyret(java_thread);
  1219   if (check_exceptions) {
  1220     // check for pending exceptions (java_thread is set upon return)
  1221     Label L;
  1222 #ifdef _LP64
  1223     ld(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1224 #else
  1225     lw(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1226 #endif
  1227     beq(AT, R0, L);
  1228     delayed()->nop();
  1229     li(AT, before_call_pc);
  1230     push(AT);
  1231     jmp(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1232     delayed()->nop();
  1233     bind(L);
  1236   // get oop result if there is one and reset the value in the thread
  1237   if (oop_result->is_valid()) {
  1238 #ifdef _LP64
  1239     ld(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1240     sd(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1241 #else
  1242     lw(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1243     sw(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1244 #endif
  1245     verify_oop(oop_result);
  1249 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1251   move(V0, SP);
  1252   //we also reserve space for java_thread here
  1253 #ifndef _LP64
  1254   daddi(SP, SP, (1 + number_of_arguments) * (- wordSize));
  1255 #endif
  1256   move(AT, -(StackAlignmentInBytes));
  1257   andr(SP, SP, AT);
  1258   call_VM_base(oop_result, NOREG, V0, entry_point, number_of_arguments, check_exceptions);
  1262 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1263   call_VM_leaf_base(entry_point, number_of_arguments);
  1266 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1267   if (arg_0 != A0) move(A0, arg_0);
  1268   call_VM_leaf(entry_point, 1);
  1271 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1272   if (arg_0 != A0) move(A0, arg_0);
  1273   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1274   call_VM_leaf(entry_point, 2);
  1277 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1278   if (arg_0 != A0) move(A0, arg_0);
  1279   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1280   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A0 && arg_2 != A1, "smashed argument");
  1281   call_VM_leaf(entry_point, 3);
  1283 void MacroAssembler::super_call_VM_leaf(address entry_point) {
  1284   MacroAssembler::call_VM_leaf_base(entry_point, 0);
  1288 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1289                                                    Register arg_1) {
  1290   if (arg_1 != A0) move(A0, arg_1);
  1291   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1295 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1296                                                    Register arg_1,
  1297                                                    Register arg_2) {
  1298   if (arg_1 != A0) move(A0, arg_1);
  1299   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1300   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1302 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1303                                                    Register arg_1,
  1304                                                    Register arg_2,
  1305                                                    Register arg_3) {
  1306   if (arg_1 != A0) move(A0, arg_1);
  1307   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1308   if (arg_3 != A2) move(A2, arg_3); assert(arg_3 != A0 && arg_3 != A1, "smashed argument");
  1309   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1312 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1315 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1318 void MacroAssembler::null_check(Register reg, int offset) {
  1319   if (needs_explicit_null_check(offset)) {
  1320     // provoke OS NULL exception if reg = NULL by
  1321     // accessing M[reg] w/o changing any (non-CC) registers
  1322     // NOTE: cmpl is plenty here to provoke a segv
  1323     lw(AT, reg, 0);
  1324     // Note: should probably use testl(rax, Address(reg, 0));
  1325     //       may be shorter code (however, this version of
  1326     //       testl needs to be implemented first)
  1327   } else {
  1328     // nothing to do, (later) access of M[reg + offset]
  1329     // will provoke OS NULL exception if reg = NULL
  1333 void MacroAssembler::enter() {
  1334   push2(RA, FP);
  1335   move(FP, SP);
  1338 void MacroAssembler::leave() {
  1339 #ifndef _LP64
  1340   //move(SP, FP);
  1341   //pop2(FP, RA);
  1342   addi(SP, FP, 2 * wordSize);
  1343   lw(RA, SP, - 1 * wordSize);
  1344   lw(FP, SP, - 2 * wordSize);
  1345 #else
  1346   daddi(SP, FP, 2 * wordSize);
  1347   ld(RA, SP, - 1 * wordSize);
  1348   ld(FP, SP, - 2 * wordSize);
  1349 #endif
  1351 /*
  1352 void MacroAssembler::os_breakpoint() {
  1353   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  1354   // (e.g., MSVC can't call ps() otherwise)
  1355   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  1357 */
  1358 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  1359   // determine java_thread register
  1360   if (!java_thread->is_valid()) {
  1361 #ifndef OPT_THREAD
  1362     java_thread = T1;
  1363     get_thread(java_thread);
  1364 #else
  1365     java_thread = TREG;
  1366 #endif
  1368   // we must set sp to zero to clear frame
  1369   st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1370   // must clear fp, so that compiled frames are not confused; it is possible
  1371   // that we need it only for debugging
  1372   if(clear_fp)
  1373     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1375   if (clear_pc)
  1376     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1379 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1380                                            bool clear_pc) {
  1381   Register thread = TREG;
  1382 #ifndef OPT_THREAD
  1383   get_thread(thread);
  1384 #endif
  1385   // we must set sp to zero to clear frame
  1386   sd(R0, Address(thread, JavaThread::last_Java_sp_offset()));
  1387   // must clear fp, so that compiled frames are not confused; it is
  1388   // possible that we need it only for debugging
  1389   if (clear_fp) {
  1390     sd(R0, Address(thread, JavaThread::last_Java_fp_offset()));
  1393   if (clear_pc) {
  1394     sd(R0, Address(thread, JavaThread::last_Java_pc_offset()));
  1398 // Write serialization page so VM thread can do a pseudo remote membar.
  1399 // We use the current thread pointer to calculate a thread specific
  1400 // offset to write to within the page. This minimizes bus traffic
  1401 // due to cache line collision.
  1402 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  1403   move(tmp, thread);
  1404   srl(tmp, tmp,os::get_serialize_page_shift_count());
  1405   move(AT, (os::vm_page_size() - sizeof(int)));
  1406   andr(tmp, tmp,AT);
  1407   sw(tmp,Address(tmp, (intptr_t)os::get_memory_serialize_page()));
  1410 // Calls to C land
  1411 //
  1412 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  1413 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  1414 // has to be reset to 0. This is required to allow proper stack traversal.
  1415 void MacroAssembler::set_last_Java_frame(Register java_thread,
  1416                                          Register last_java_sp,
  1417                                          Register last_java_fp,
  1418                                          address  last_java_pc) {
  1419   // determine java_thread register
  1420   if (!java_thread->is_valid()) {
  1421 #ifndef OPT_THREAD
  1422     java_thread = T2;
  1423     get_thread(java_thread);
  1424 #else
  1425     java_thread = TREG;
  1426 #endif
  1428   // determine last_java_sp register
  1429   if (!last_java_sp->is_valid()) {
  1430     last_java_sp = SP;
  1433   // last_java_fp is optional
  1435   if (last_java_fp->is_valid()) {
  1436     st_ptr(last_java_fp, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1439   // last_java_pc is optional
  1441   if (last_java_pc != NULL) {
  1442     relocate(relocInfo::internal_pc_type);
  1443     patchable_set48(AT, (long)last_java_pc);
  1444     st_ptr(AT, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1446   st_ptr(last_java_sp, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1449 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1450                                          Register last_java_fp,
  1451                                          address  last_java_pc) {
  1452   // determine last_java_sp register
  1453   if (!last_java_sp->is_valid()) {
  1454     last_java_sp = SP;
  1457   Register thread = TREG;
  1458 #ifndef OPT_THREAD
  1459   get_thread(thread);
  1460 #endif
  1461   // last_java_fp is optional
  1462   if (last_java_fp->is_valid()) {
  1463     sd(last_java_fp, Address(thread, JavaThread::last_Java_fp_offset()));
  1466   // last_java_pc is optional
  1467   if (last_java_pc != NULL) {
  1468     Address java_pc(thread,
  1469                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1470     li(AT, (intptr_t)(last_java_pc));
  1471     sd(AT, java_pc);
  1474   sd(last_java_sp, Address(thread, JavaThread::last_Java_sp_offset()));
  1478 //////////////////////////////////////////////////////////////////////////////////
  1479 #if INCLUDE_ALL_GCS
  1481 void MacroAssembler::g1_write_barrier_pre(Register obj,
  1482                                           Register pre_val,
  1483                                           Register thread,
  1484                                           Register tmp,
  1485                                           bool tosca_live,
  1486                                           bool expand_call) {
  1488   // If expand_call is true then we expand the call_VM_leaf macro
  1489   // directly to skip generating the check by
  1490   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  1492 #ifdef _LP64
  1493   assert(thread == TREG, "must be");
  1494 #endif // _LP64
  1496   Label done;
  1497   Label runtime;
  1499   assert(pre_val != noreg, "check this code");
  1501   if (obj != noreg) {
  1502     assert_different_registers(obj, pre_val, tmp);
  1503     assert(pre_val != V0, "check this code");
  1506   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1507                                        PtrQueue::byte_offset_of_active()));
  1508   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1509                                        PtrQueue::byte_offset_of_index()));
  1510   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1511                                        PtrQueue::byte_offset_of_buf()));
  1514   // Is marking active?
  1515   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1516     //cmpl(in_progress, 0);
  1517     lw(AT, in_progress);
  1518   } else {
  1519     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  1520     //cmpb(in_progress, 0);
  1521     lb(AT, in_progress);
  1523   //jcc(Assembler::equal, done);
  1524   beq(AT, R0, done);
  1525   nop();
  1527   // Do we need to load the previous value?
  1528   if (obj != noreg) {
  1529     load_heap_oop(pre_val, Address(obj, 0));
  1532   // Is the previous value null?
  1533   //cmpptr(pre_val, (int32_t) NULL_WORD);
  1534   //jcc(Assembler::equal, done);
  1535   beq(pre_val, R0, done);
  1536   nop();
  1538   // Can we store original value in the thread's buffer?
  1539   // Is index == 0?
  1540   // (The index field is typed as size_t.)
  1542   //movptr(tmp, index);                   // tmp := *index_adr
  1543   ld(tmp, index);
  1544   //cmpptr(tmp, 0);                       // tmp == 0?
  1545   //jcc(Assembler::equal, runtime);       // If yes, goto runtime
  1546   beq(tmp, R0, runtime);
  1547   nop();
  1549   //subptr(tmp, wordSize);                // tmp := tmp - wordSize
  1550   //movptr(index, tmp);                   // *index_adr := tmp
  1551   //addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  1552   daddiu(tmp, tmp, -1 * wordSize);
  1553   sd(tmp, index);
  1554   ld(AT, buffer);
  1555   daddu(tmp, tmp, AT);
  1557   // Record the previous value
  1558   //movptr(Address(tmp, 0), pre_val);
  1559   //jmp(done);
  1560   sd(pre_val, tmp, 0);
  1561   beq(R0, R0, done);
  1562   nop();
  1564   bind(runtime);
  1565   // save the live input values
  1566   //if(tosca_live) push(rax);
  1567   if(tosca_live) push(V0);
  1569   //if (obj != noreg && obj != rax)
  1570   if (obj != noreg && obj != V0)
  1571     push(obj);
  1573   //if (pre_val != rax)
  1574   if (pre_val != V0)
  1575     push(pre_val);
  1577   // Calling the runtime using the regular call_VM_leaf mechanism generates
  1578   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  1579   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  1580   //
  1581   // If we care generating the pre-barrier without a frame (e.g. in the
  1582   // intrinsified Reference.get() routine) then ebp might be pointing to
  1583   // the caller frame and so this check will most likely fail at runtime.
  1584   //
  1585   // Expanding the call directly bypasses the generation of the check.
  1586   // So when we do not have have a full interpreter frame on the stack
  1587   // expand_call should be passed true.
  1589   NOT_LP64( push(thread); )
  1591   if (expand_call) {
  1592     //LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  1593     LP64_ONLY( assert(pre_val != A1, "smashed arg"); )
  1594     //pass_arg1(this, thread);
  1595     if (thread != A1) move(A1, thread);
  1596     //pass_arg0(this, pre_val);
  1597     if (pre_val != A0) move(A0, pre_val);
  1598     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  1599   } else {
  1600     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  1603   NOT_LP64( pop(thread); )
  1605   // save the live input values
  1606   //if (pre_val != rax)
  1607   if (pre_val != V0)
  1608     pop(pre_val);
  1610   //if (obj != noreg && obj != rax)
  1611   if (obj != noreg && obj != V0)
  1612     pop(obj);
  1614   //if(tosca_live) pop(rax);
  1615   if(tosca_live) pop(V0);
  1617   bind(done);
  1620 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  1621                                            Register new_val,
  1622                                            Register thread,
  1623                                            Register tmp,
  1624                                            Register tmp2) {
  1625   assert(tmp  == AT, "must be");
  1626   assert(tmp2 == AT, "must be");
  1627 #ifdef _LP64
  1628   assert(thread == TREG, "must be");
  1629 #endif // _LP64
  1631   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1632                                        PtrQueue::byte_offset_of_index()));
  1633   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1634                                        PtrQueue::byte_offset_of_buf()));
  1636   BarrierSet* bs = Universe::heap()->barrier_set();
  1637   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1638   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1640   Label done;
  1641   Label runtime;
  1643   // Does store cross heap regions?
  1645   //movptr(tmp, store_addr);
  1646   //xorptr(tmp, new_val);
  1647   //shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  1648   //jcc(Assembler::equal, done);
  1649   xorr(AT, store_addr, new_val);
  1650   dsrl(AT, AT, HeapRegion::LogOfHRGrainBytes);
  1651   beq(AT, R0, done);
  1652   nop();
  1655   // crosses regions, storing NULL?
  1657   //cmpptr(new_val, (int32_t) NULL_WORD);
  1658   //jcc(Assembler::equal, done);
  1659   beq(new_val, R0, done);
  1660   nop();
  1662   // storing region crossing non-NULL, is card already dirty?
  1664   const Register card_addr = tmp;
  1665   const Register cardtable = tmp2;
  1667   //movptr(card_addr, store_addr);
  1668   //shrptr(card_addr, CardTableModRefBS::card_shift);
  1669   move(card_addr, store_addr);
  1670   dsrl(card_addr, card_addr, CardTableModRefBS::card_shift);
  1671   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  1672   // a valid address and therefore is not properly handled by the relocation code.
  1673   //movptr(cardtable, (intptr_t)ct->byte_map_base);
  1674   //addptr(card_addr, cardtable);
  1675   set64(cardtable, (intptr_t)ct->byte_map_base);
  1676   daddu(card_addr, card_addr, cardtable);
  1678   //cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  1679   //jcc(Assembler::equal, done);
  1680   lb(AT, card_addr, 0);
  1681   daddiu(AT, AT, -1 * (int)G1SATBCardTableModRefBS::g1_young_card_val());
  1682   beq(AT, R0, done);
  1683   nop();
  1685   //membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  1686   //cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  1687   //jcc(Assembler::equal, done);
  1688   sync();
  1689   lb(AT, card_addr, 0);
  1690   daddiu(AT, AT, -1 * (int)(int)CardTableModRefBS::dirty_card_val());
  1691   beq(AT, R0, done);
  1692   nop();
  1695   // storing a region crossing, non-NULL oop, card is clean.
  1696   // dirty card and log.
  1698   //movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  1699   move(AT, (int)CardTableModRefBS::dirty_card_val()); 
  1700   sb(AT, card_addr, 0);
  1702   //cmpl(queue_index, 0);
  1703   //jcc(Assembler::equal, runtime);
  1704   //subl(queue_index, wordSize);
  1705   //movptr(tmp2, buffer);
  1706   lw(AT, queue_index);
  1707   beq(AT, R0, runtime);
  1708   nop();
  1709   daddiu(AT, AT, -1 * wordSize);
  1710   sw(AT, queue_index);
  1711   ld(tmp2, buffer);
  1712 #ifdef _LP64
  1713   //movslq(rscratch1, queue_index);
  1714   //addq(tmp2, rscratch1);
  1715   //movq(Address(tmp2, 0), card_addr);
  1716   ld(AT, queue_index);
  1717   daddu(tmp2, tmp2, AT);
  1718   sd(card_addr, tmp2, 0);
  1719 #else
  1720   //addl(tmp2, queue_index);
  1721   //movl(Address(tmp2, 0), card_addr);
  1722   lw(AT, queue_index);
  1723   addu32(tmp2, tmp2, AT);
  1724   sw(card_addr, tmp2, 0);
  1725 #endif
  1726   //jmp(done);
  1727   beq(R0, R0, done);
  1728   nop();
  1730   bind(runtime);
  1731   // save the live input values
  1732   push(store_addr);
  1733   push(new_val);
  1734 #ifdef _LP64
  1735   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, TREG);
  1736 #else
  1737   push(thread);
  1738   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1739   pop(thread);
  1740 #endif
  1741   pop(new_val);
  1742   pop(store_addr);
  1744   bind(done);
  1747 #endif // INCLUDE_ALL_GCS
  1748 //////////////////////////////////////////////////////////////////////////////////
  1751 void MacroAssembler::store_check(Register obj) {
  1752   // Does a store check for the oop in register obj. The content of
  1753   // register obj is destroyed afterwards.
  1754   store_check_part_1(obj);
  1755   store_check_part_2(obj);
  1758 void MacroAssembler::store_check(Register obj, Address dst) {
  1759   store_check(obj);
  1763 // split the store check operation so that other instructions can be scheduled inbetween
  1764 void MacroAssembler::store_check_part_1(Register obj) {
  1765   BarrierSet* bs = Universe::heap()->barrier_set();
  1766   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1767 #ifdef _LP64
  1768   dsrl(obj, obj, CardTableModRefBS::card_shift);
  1769 #else
  1770   shr(obj, CardTableModRefBS::card_shift);
  1771 #endif
  1774 void MacroAssembler::store_check_part_2(Register obj) {
  1775   BarrierSet* bs = Universe::heap()->barrier_set();
  1776   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1777   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1778   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1780   li(AT, (long)ct->byte_map_base);
  1781 #ifdef _LP64
  1782   dadd(AT, AT, obj);
  1783 #else
  1784   add(AT, AT, obj);
  1785 #endif
  1786   sb(R0, AT, 0);
  1787   sync();
  1790 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  1791 void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1792                                    Register t1, Register t2, Label& slow_case) {
  1793   assert_different_registers(obj, var_size_in_bytes, t1, t2, AT);
  1795   Register end = t2;
  1796 #ifndef OPT_THREAD
  1797   Register thread = t1;
  1798   get_thread(thread);
  1799 #else
  1800   Register thread = TREG;
  1801 #endif
  1802   verify_tlab(t1, t2);//blows t1&t2
  1804   ld_ptr(obj, thread, in_bytes(JavaThread::tlab_top_offset()));
  1806   if (var_size_in_bytes == NOREG) {
  1807     // i dont think we need move con_size_in_bytes to a register first.
  1808     // by yjl 8/17/2005
  1809     assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1810     addi(end, obj, con_size_in_bytes);
  1811   } else {
  1812     add(end, obj, var_size_in_bytes);
  1815   ld_ptr(AT, thread, in_bytes(JavaThread::tlab_end_offset()));
  1816   sltu(AT, AT, end);
  1817   bne_far(AT, R0, slow_case);
  1818   delayed()->nop();
  1821   // update the tlab top pointer
  1822   st_ptr(end, thread, in_bytes(JavaThread::tlab_top_offset()));
  1824   // recover var_size_in_bytes if necessary
  1825   /*if (var_size_in_bytes == end) {
  1826     sub(var_size_in_bytes, end, obj);
  1827     }*/
  1829   verify_tlab(t1, t2);
  1832 // Defines obj, preserves var_size_in_bytes
  1833 void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1834                                    Register t1, Register t2, Label& slow_case) {
  1835   assert_different_registers(obj, var_size_in_bytes, t1, AT);
  1836   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1837     // No allocation in the shared eden.
  1838     b_far(slow_case);
  1839     delayed()->nop();
  1840   } else {
  1842 #ifndef _LP64
  1843     Address heap_top(t1, Assembler::split_low((intptr_t)Universe::heap()->top_addr()));
  1844     lui(t1, split_high((intptr_t)Universe::heap()->top_addr()));
  1845 #else
  1846     Address heap_top(t1);
  1847     li(t1, (long)Universe::heap()->top_addr());
  1848 #endif
  1849     ld_ptr(obj, heap_top);
  1851     Register end = t2;
  1852     Label retry;
  1854     bind(retry);
  1855     if (var_size_in_bytes == NOREG) {
  1856     // i dont think we need move con_size_in_bytes to a register first.
  1857       assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1858       addi(end, obj, con_size_in_bytes);
  1859     } else {
  1860       add(end, obj, var_size_in_bytes);
  1862     // if end < obj then we wrapped around => object too long => slow case
  1863     sltu(AT, end, obj);
  1864     bne_far(AT, R0, slow_case);
  1865     delayed()->nop();
  1867     li(AT, (long)Universe::heap()->end_addr());
  1868     sltu(AT, AT, end);
  1869     bne_far(AT, R0, slow_case);
  1870     delayed()->nop();
  1871     // Compare obj with the top addr, and if still equal, store the new top addr in
  1872     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  1873     // it otherwise. Use lock prefix for atomicity on MPs.
  1874     //if (os::is_MP()) {
  1875     //  sync();
  1876     //}
  1878     // if someone beat us on the allocation, try again, otherwise continue
  1879     cmpxchg(end, heap_top, obj);
  1880     beq_far(AT, R0, retry);    //by yyq
  1881     delayed()->nop();
  1886 // C2 doesn't invoke this one.
  1887 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  1888   Register top = T0;
  1889   Register t1  = T1;
  1890 /* Jin: tlab_refill() is called in
  1892      [c1_Runtime1_mips.cpp] Runtime1::generate_code_for(new_type_array_id);
  1894   In generate_code_for(), T2 has been assigned as a register(length), which is used
  1895  after calling tlab_refill();
  1896   Therefore, tlab_refill() should not use T2.
  1898  Source:
  1900 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
  1901         at java.lang.System.arraycopy(Native Method)
  1902         at java.util.Arrays.copyOf(Arrays.java:2799)  <-- alloc_array
  1903         at sun.misc.Resource.getBytes(Resource.java:117)
  1904         at java.net.URLClassLoader.defineClass(URLClassLoader.java:273)
  1905         at java.net.URLClassLoader.findClass(URLClassLoader.java:205)
  1906         at java.lang.ClassLoader.loadClass(ClassLoader.java:321)
  1907  */
  1908   Register t2  = T9;
  1909   Register t3  = T3;
  1910   Register thread_reg = T8;
  1911   Label do_refill, discard_tlab;
  1912   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1913     // No allocation in the shared eden.
  1914     b(slow_case);
  1915     delayed()->nop();
  1918   get_thread(thread_reg);
  1920   ld_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  1921   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  1923   // calculate amount of free space
  1924   sub(t1, t1, top);
  1925   shr(t1, LogHeapWordSize);
  1927   // Retain tlab and allocate object in shared space if
  1928   // the amount free in the tlab is too large to discard.
  1929   ld_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1930   slt(AT, t2, t1);
  1931   beq(AT, R0, discard_tlab);
  1932   delayed()->nop();
  1934   // Retain
  1936 #ifndef _LP64
  1937   move(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1938 #else
  1939   li(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1940 #endif
  1941   add(t2, t2, AT);
  1942   st_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1944   if (TLABStats) {
  1945     // increment number of slow_allocations
  1946     lw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1947     addiu(AT, AT, 1);
  1948     sw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1950   b(try_eden);
  1951   delayed()->nop();
  1953   bind(discard_tlab);
  1954   if (TLABStats) {
  1955     // increment number of refills
  1956     lw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1957     addi(AT, AT, 1);
  1958     sw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1959     // accumulate wastage -- t1 is amount free in tlab
  1960     lw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1961     add(AT, AT, t1);
  1962     sw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1965   // if tlab is currently allocated (top or end != null) then
  1966   // fill [top, end + alignment_reserve) with array object
  1967   beq(top, R0, do_refill);
  1968   delayed()->nop();
  1970   // set up the mark word
  1971   li(AT, (long)markOopDesc::prototype()->copy_set_hash(0x2));
  1972   st_ptr(AT, top, oopDesc::mark_offset_in_bytes());
  1974   // set the length to the remaining space
  1975   addi(t1, t1, - typeArrayOopDesc::header_size(T_INT));
  1976   addi(t1, t1, ThreadLocalAllocBuffer::alignment_reserve());
  1977   shl(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  1978   sw(t1, top, arrayOopDesc::length_offset_in_bytes());
  1980   // set klass to intArrayKlass
  1981 #ifndef _LP64
  1982   lui(AT, split_high((intptr_t)Universe::intArrayKlassObj_addr()));
  1983   lw(t1, AT, split_low((intptr_t)Universe::intArrayKlassObj_addr()));
  1984 #else
  1985   li(AT, (intptr_t)Universe::intArrayKlassObj_addr());
  1986   ld_ptr(t1, AT, 0);
  1987 #endif
  1988   //st_ptr(t1, top, oopDesc::klass_offset_in_bytes());
  1989   store_klass(top, t1);
  1991   // refill the tlab with an eden allocation
  1992   bind(do_refill);
  1993   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  1994   shl(t1, LogHeapWordSize);
  1995   // add object_size ??
  1996   eden_allocate(top, t1, 0, t2, t3, slow_case);
  1998   // Check that t1 was preserved in eden_allocate.
  1999 #ifdef ASSERT
  2000   if (UseTLAB) {
  2001     Label ok;
  2002     assert_different_registers(thread_reg, t1);
  2003     ld_ptr(AT, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  2004     shl(AT, LogHeapWordSize);
  2005     beq(AT, t1, ok);
  2006     delayed()->nop();
  2007     stop("assert(t1 != tlab size)");
  2008     should_not_reach_here();
  2010     bind(ok);
  2012 #endif
  2013   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_start_offset()));
  2014   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  2015   add(top, top, t1);
  2016   addi(top, top, - ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  2017   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  2018   verify_tlab(t1, t2);
  2019   b(retry);
  2020   delayed()->nop();
  2023 static const double     pi_4 =  0.7853981633974483;
  2025 // the x86 version is to clumsy, i dont think we need that fuss. maybe i'm wrong, FIXME
  2026 // must get argument(a double) in F12/F13
  2027 //void MacroAssembler::trigfunc(char trig, bool preserve_cpu_regs, int num_fpu_regs_in_use) {
  2028 //We need to preseve the register which maybe modified during the Call @Jerome
  2029 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  2030 //save all modified register here
  2031 //  if (preserve_cpu_regs) {
  2032 //  }
  2033 //FIXME, in the disassembly of tirgfunc, only used V0,V1,T9, SP,RA,so we ony save V0,V1,T9
  2034   pushad();
  2035 //we should preserve the stack space before we call
  2036   addi(SP, SP, -wordSize * 2);
  2037         switch (trig){
  2038     case 's' :
  2039                   call( CAST_FROM_FN_PTR(address, SharedRuntime::dsin), relocInfo::runtime_call_type );
  2040       delayed()->nop();
  2041       break;
  2042     case 'c':
  2043       call( CAST_FROM_FN_PTR(address, SharedRuntime::dcos), relocInfo::runtime_call_type );
  2044       delayed()->nop();
  2045       break;
  2046     case 't':
  2047       call( CAST_FROM_FN_PTR(address, SharedRuntime::dtan), relocInfo::runtime_call_type );
  2048       delayed()->nop();
  2049       break;
  2050     default:assert (false, "bad intrinsic");
  2051     break;
  2055   addi(SP, SP, wordSize * 2);
  2056   popad();
  2057 //  if (preserve_cpu_regs) {
  2058 //  }
  2061 #ifdef _LP64
  2062 void MacroAssembler::li(Register rd, long imm) {
  2063   if (imm <= max_jint && imm >= min_jint) {
  2064     li32(rd, (int)imm);
  2065   } else if (julong(imm) <= 0xFFFFFFFF) {
  2066     assert_not_delayed();
  2067     // lui sign-extends, so we can't use that.
  2068     ori(rd, R0, julong(imm) >> 16);
  2069     dsll(rd, rd, 16);
  2070     ori(rd, rd, split_low(imm));
  2071   //aoqi_test
  2072   //} else if ((imm > 0) && ((imm >> 48) == 0)) {
  2073   } else if ((imm > 0) && is_simm16(imm >> 32)) {
  2074     /* A 48-bit address */
  2075     li48(rd, imm);
  2076   } else {
  2077     li64(rd, imm);
  2080 #else
  2081 void MacroAssembler::li(Register rd, long imm) {
  2082   li32(rd, (int)imm);
  2084 #endif
  2086 void MacroAssembler::li32(Register reg, int imm) {
  2087   if (is_simm16(imm)) {
  2088     /* Jin: for imm < 0, we should use addi instead of addiu.
  2090      *  java.lang.StringCoding$StringDecoder.decode(jobject, jint, jint)
  2092      *  78 move [int:-1|I] [a0|I]
  2093      *    : daddi a0, zero, 0xffffffff  (correct)
  2094      *    : daddiu a0, zero, 0xffffffff (incorrect)
  2095      */
  2096     if (imm >= 0)
  2097       addiu(reg, R0, imm);
  2098     else
  2099       addi(reg, R0, imm);
  2100   } else {
  2101     lui(reg, split_low(imm >> 16));
  2102     if (split_low(imm))
  2103       ori(reg, reg, split_low(imm));
  2107 #ifdef _LP64
  2108 void MacroAssembler::set64(Register d, jlong value) {
  2109   assert_not_delayed();
  2111   int hi = (int)(value >> 32);
  2112   int lo = (int)(value & ~0);
  2114   if (value == lo) {  // 32-bit integer
  2115     if (is_simm16(value)) {
  2116       daddiu(d, R0, value);
  2117     } else {
  2118       lui(d, split_low(value >> 16));
  2119       if (split_low(value)) {
  2120         ori(d, d, split_low(value));
  2123   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2124       ori(d, R0, julong(value) >> 16);
  2125       dsll(d, d, 16);
  2126       if (split_low(value)) {
  2127         ori(d, d, split_low(value));
  2129   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  2130     // 4 insts
  2131     li48(d, value);
  2132   } else {  // li64
  2133     // 6 insts
  2134     li64(d, value);
  2139 int MacroAssembler::insts_for_set64(jlong value) {
  2140   int hi = (int)(value >> 32);
  2141   int lo = (int)(value & ~0);
  2143   int count = 0;
  2145   if (value == lo) {  // 32-bit integer
  2146     if (is_simm16(value)) {
  2147       //daddiu(d, R0, value);
  2148       count++;
  2149     } else {
  2150       //lui(d, split_low(value >> 16));
  2151       count++;
  2152       if (split_low(value)) {
  2153         //ori(d, d, split_low(value));
  2154         count++;
  2157   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2158       //ori(d, R0, julong(value) >> 16);
  2159       //dsll(d, d, 16);
  2160       count += 2;
  2161       if (split_low(value)) {
  2162         //ori(d, d, split_low(value));
  2163         count++;
  2165   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  2166     // 4 insts
  2167     //li48(d, value);
  2168     count += 4;
  2169   } else {  // li64
  2170     // 6 insts
  2171     //li64(d, value);
  2172     count += 6;
  2175   return count;
  2178 void MacroAssembler::patchable_set48(Register d, jlong value) {
  2179   assert_not_delayed();
  2181   int hi = (int)(value >> 32);
  2182   int lo = (int)(value & ~0);
  2184   int count = 0;
  2186   if (value == lo) {  // 32-bit integer
  2187     if (is_simm16(value)) {
  2188       daddiu(d, R0, value);
  2189       count += 1;
  2190     } else {
  2191       lui(d, split_low(value >> 16));
  2192       count += 1;
  2193       if (split_low(value)) {
  2194         ori(d, d, split_low(value));
  2195         count += 1;
  2198   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2199       ori(d, R0, julong(value) >> 16);
  2200       dsll(d, d, 16);
  2201       count += 2;
  2202       if (split_low(value)) {
  2203         ori(d, d, split_low(value));
  2204         count += 1;
  2206   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  2207     // 4 insts
  2208     li48(d, value);
  2209     count += 4;
  2210   } else {  // li64
  2211     tty->print_cr("value = 0x%x", value);
  2212     guarantee(false, "Not supported yet !");
  2215   for (count; count < 4; count++) {
  2216     nop();
  2220 void MacroAssembler::patchable_set32(Register d, jlong value) {
  2221   assert_not_delayed();
  2223   int hi = (int)(value >> 32);
  2224   int lo = (int)(value & ~0);
  2226   int count = 0;
  2228   if (value == lo) {  // 32-bit integer
  2229     if (is_simm16(value)) {
  2230       daddiu(d, R0, value);
  2231       count += 1;
  2232     } else {
  2233       lui(d, split_low(value >> 16));
  2234       count += 1;
  2235       if (split_low(value)) {
  2236         ori(d, d, split_low(value));
  2237         count += 1;
  2240   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2241       ori(d, R0, julong(value) >> 16);
  2242       dsll(d, d, 16);
  2243       count += 2;
  2244       if (split_low(value)) {
  2245         ori(d, d, split_low(value));
  2246         count += 1;
  2248   } else {
  2249     tty->print_cr("value = 0x%x", value);
  2250     guarantee(false, "Not supported yet !");
  2253   for (count; count < 3; count++) {
  2254     nop();
  2258 void MacroAssembler::patchable_call32(Register d, jlong value) {
  2259   assert_not_delayed();
  2261   int hi = (int)(value >> 32);
  2262   int lo = (int)(value & ~0);
  2264   int count = 0;
  2266   if (value == lo) {  // 32-bit integer
  2267     if (is_simm16(value)) {
  2268       daddiu(d, R0, value);
  2269       count += 1;
  2270     } else {
  2271       lui(d, split_low(value >> 16));
  2272       count += 1;
  2273       if (split_low(value)) {
  2274         ori(d, d, split_low(value));
  2275         count += 1;
  2278   } else {
  2279     tty->print_cr("value = 0x%x", value);
  2280     guarantee(false, "Not supported yet !");
  2283   for (count; count < 2; count++) {
  2284     nop();
  2288 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  2289   assert(UseCompressedClassPointers, "should only be used for compressed header");
  2290   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2292   int klass_index = oop_recorder()->find_index(k);
  2293   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2294   long narrowKlass = (long)Klass::encode_klass(k);
  2296   relocate(rspec, Assembler::narrow_oop_operand);
  2297   patchable_set48(dst, narrowKlass);
  2301 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  2302   assert(UseCompressedOops, "should only be used for compressed header");
  2303   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2305   int oop_index = oop_recorder()->find_index(obj);
  2306   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2308   relocate(rspec, Assembler::narrow_oop_operand);
  2309   patchable_set48(dst, oop_index);
  2312 void MacroAssembler::li64(Register rd, long imm) {
  2313   assert_not_delayed();
  2314   lui(rd, imm >> 48);
  2315   ori(rd, rd, split_low(imm >> 32));
  2316   dsll(rd, rd, 16);
  2317   ori(rd, rd, split_low(imm >> 16));
  2318   dsll(rd, rd, 16);
  2319   ori(rd, rd, split_low(imm));
  2322 void MacroAssembler::li48(Register rd, long imm) {
  2323   assert_not_delayed();
  2324   assert(is_simm16(imm >> 32), "Not a 48-bit address");
  2325   lui(rd, imm >> 32);
  2326   ori(rd, rd, split_low(imm >> 16));
  2327   dsll(rd, rd, 16);
  2328   ori(rd, rd, split_low(imm));
  2330 #endif
  2331 // NOTE: i dont push eax as i486.
  2332 // the x86 save eax for it use eax as the jump register
  2333 void MacroAssembler::verify_oop(Register reg, const char* s) {
  2334   /*
  2335      if (!VerifyOops) return;
  2337   // Pass register number to verify_oop_subroutine
  2338   char* b = new char[strlen(s) + 50];
  2339   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  2340   push(rax);                          // save rax,
  2341   push(reg);                          // pass register argument
  2342   ExternalAddress buffer((address) b);
  2343   // avoid using pushptr, as it modifies scratch registers
  2344   // and our contract is not to modify anything
  2345   movptr(rax, buffer.addr());
  2346   push(rax);
  2347   // call indirectly to solve generation ordering problem
  2348   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  2349   call(rax);
  2350    */
  2351   if (!VerifyOops) return;
  2352   const char * b = NULL;
  2353   stringStream ss;
  2354   ss.print("verify_oop: %s: %s", reg->name(), s);
  2355   b = code_string(ss.as_string());
  2356 #ifdef _LP64
  2357   pushad();
  2358   move(A1, reg);
  2359   li(A0, (long)b);
  2360   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2361   ld(T9, AT, 0);
  2362   jalr(T9);
  2363   delayed()->nop();
  2364   popad();
  2365 #else
  2366   // Pass register number to verify_oop_subroutine
  2367   sw(T0, SP, - wordSize);
  2368   sw(T1, SP, - 2*wordSize);
  2369   sw(RA, SP, - 3*wordSize);
  2370   sw(A0, SP ,- 4*wordSize);
  2371   sw(A1, SP ,- 5*wordSize);
  2372   sw(AT, SP ,- 6*wordSize);
  2373   sw(T9, SP ,- 7*wordSize);
  2374   addiu(SP, SP, - 7 * wordSize);
  2375   move(A1, reg);
  2376   li(A0, (long)b);
  2377   // call indirectly to solve generation ordering problem
  2378   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2379   lw(T9, AT, 0);
  2380   jalr(T9);
  2381   delayed()->nop();
  2382   lw(T0, SP, 6* wordSize);
  2383   lw(T1, SP, 5* wordSize);
  2384   lw(RA, SP, 4* wordSize);
  2385   lw(A0, SP, 3* wordSize);
  2386   lw(A1, SP, 2* wordSize);
  2387   lw(AT, SP, 1* wordSize);
  2388   lw(T9, SP, 0* wordSize);
  2389   addiu(SP, SP, 7 * wordSize);
  2390 #endif
  2394 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  2395   if (!VerifyOops) {
  2396     nop();
  2397     return;
  2399   // Pass register number to verify_oop_subroutine
  2400   const char * b = NULL;
  2401   stringStream ss;
  2402   ss.print("verify_oop_addr: %s",  s);
  2403   b = code_string(ss.as_string());
  2405   st_ptr(T0, SP, - wordSize);
  2406   st_ptr(T1, SP, - 2*wordSize);
  2407   st_ptr(RA, SP, - 3*wordSize);
  2408   st_ptr(A0, SP, - 4*wordSize);
  2409   st_ptr(A1, SP, - 5*wordSize);
  2410   st_ptr(AT, SP, - 6*wordSize);
  2411   st_ptr(T9, SP, - 7*wordSize);
  2412   ld_ptr(A1, addr);   // addr may use SP, so load from it before change SP
  2413   addiu(SP, SP, - 7 * wordSize);
  2415   li(A0, (long)b);
  2416   // call indirectly to solve generation ordering problem
  2417   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2418   ld_ptr(T9, AT, 0);
  2419   jalr(T9);
  2420   delayed()->nop();
  2421   ld_ptr(T0, SP, 6* wordSize);
  2422   ld_ptr(T1, SP, 5* wordSize);
  2423   ld_ptr(RA, SP, 4* wordSize);
  2424   ld_ptr(A0, SP, 3* wordSize);
  2425   ld_ptr(A1, SP, 2* wordSize);
  2426   ld_ptr(AT, SP, 1* wordSize);
  2427   ld_ptr(T9, SP, 0* wordSize);
  2428   addiu(SP, SP, 7 * wordSize);
  2431 // used registers :  T0, T1
  2432 void MacroAssembler::verify_oop_subroutine() {
  2433   // RA: ra
  2434   // A0: char* error message
  2435   // A1: oop   object to verify
  2437   Label exit, error;
  2438   // increment counter
  2439   li(T0, (long)StubRoutines::verify_oop_count_addr());
  2440   lw(AT, T0, 0);
  2441 #ifdef _LP64
  2442   daddi(AT, AT, 1);
  2443 #else
  2444   addi(AT, AT, 1);
  2445 #endif
  2446   sw(AT, T0, 0);
  2448   // make sure object is 'reasonable'
  2449   beq(A1, R0, exit);         // if obj is NULL it is ok
  2450   delayed()->nop();
  2452   // Check if the oop is in the right area of memory
  2453   //const int oop_mask = Universe::verify_oop_mask();
  2454   //const int oop_bits = Universe::verify_oop_bits();
  2455   const uintptr_t oop_mask = Universe::verify_oop_mask();
  2456   const uintptr_t oop_bits = Universe::verify_oop_bits();
  2457   li(AT, oop_mask);
  2458   andr(T0, A1, AT);
  2459   li(AT, oop_bits);
  2460   bne(T0, AT, error);
  2461   delayed()->nop();
  2463   // make sure klass is 'reasonable'
  2464   //add for compressedoops
  2465   reinit_heapbase();
  2466   //add for compressedoops
  2467   load_klass(T0, A1);
  2468   beq(T0, R0, error);                        // if klass is NULL it is broken
  2469   delayed()->nop();
  2470   #if 0
  2471   //FIXME:wuhui.
  2472   // Check if the klass is in the right area of memory
  2473   //const int klass_mask = Universe::verify_klass_mask();
  2474   //const int klass_bits = Universe::verify_klass_bits();
  2475   const uintptr_t klass_mask = Universe::verify_klass_mask();
  2476   const uintptr_t klass_bits = Universe::verify_klass_bits();
  2478   li(AT, klass_mask);
  2479   andr(T1, T0, AT);
  2480   li(AT, klass_bits);
  2481   bne(T1, AT, error);
  2482   delayed()->nop();
  2483   // make sure klass' klass is 'reasonable'
  2484   //add for compressedoops
  2485   load_klass(T0, T0);
  2486   beq(T0, R0, error);  // if klass' klass is NULL it is broken
  2487   delayed()->nop();
  2489   li(AT, klass_mask);
  2490   andr(T1, T0, AT);
  2491   li(AT, klass_bits);
  2492   bne(T1, AT, error);
  2493   delayed()->nop();     // if klass not in right area of memory it is broken too.
  2494 #endif
  2495   // return if everything seems ok
  2496   bind(exit);
  2498   jr(RA);
  2499   delayed()->nop();
  2501   // handle errors
  2502   bind(error);
  2503   pushad();
  2504 #ifndef _LP64
  2505   addi(SP, SP, (-1) * wordSize);
  2506 #endif
  2507   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2508   delayed()->nop();
  2509 #ifndef _LP64
  2510   addiu(SP, SP, 1 * wordSize);
  2511 #endif
  2512   popad();
  2513   jr(RA);
  2514   delayed()->nop();
  2517 void MacroAssembler::verify_tlab(Register t1, Register t2) {
  2518 #ifdef ASSERT
  2519   assert_different_registers(t1, t2, AT);
  2520   if (UseTLAB && VerifyOops) {
  2521     Label next, ok;
  2523     get_thread(t1);
  2525     ld_ptr(t2, t1, in_bytes(JavaThread::tlab_top_offset()));
  2526     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_start_offset()));
  2527     sltu(AT, t2, AT);
  2528     beq(AT, R0, next);
  2529     delayed()->nop();
  2531     stop("assert(top >= start)");
  2533     bind(next);
  2534     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_end_offset()));
  2535     sltu(AT, AT, t2);
  2536     beq(AT, R0, ok);
  2537     delayed()->nop();
  2539     stop("assert(top <= end)");
  2541     bind(ok);
  2544 #endif
  2546  RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2547                                                        Register tmp,
  2548                                                        int offset) {
  2549    intptr_t value = *delayed_value_addr;
  2550    if (value != 0)
  2551    return RegisterOrConstant(value + offset);
  2552    AddressLiteral a(delayed_value_addr);
  2553    // load indirectly to solve generation ordering problem
  2554    //movptr(tmp, ExternalAddress((address) delayed_value_addr));
  2555    //ld(tmp, a);
  2556    if (offset != 0)
  2557      daddi(tmp,tmp, offset);
  2559    return RegisterOrConstant(tmp);
  2562 void MacroAssembler::hswap(Register reg) {
  2563   //short
  2564   //andi(reg, reg, 0xffff);
  2565   srl(AT, reg, 8);
  2566   sll(reg, reg, 24);
  2567   sra(reg, reg, 16);
  2568   orr(reg, reg, AT);
  2571 void MacroAssembler::huswap(Register reg) {
  2572 #ifdef _LP64
  2573   dsrl(AT, reg, 8);
  2574   dsll(reg, reg, 24);
  2575   dsrl(reg, reg, 16);
  2576   orr(reg, reg, AT);
  2577   andi(reg, reg, 0xffff);
  2578 #else
  2579   //andi(reg, reg, 0xffff);
  2580   srl(AT, reg, 8);
  2581   sll(reg, reg, 24);
  2582   srl(reg, reg, 16);
  2583   orr(reg, reg, AT);
  2584 #endif
  2587 // something funny to do this will only one more register AT
  2588 // 32 bits
  2589 void MacroAssembler::swap(Register reg) {
  2590   srl(AT, reg, 8);
  2591   sll(reg, reg, 24);
  2592   orr(reg, reg, AT);
  2593   //reg : 4 1 2 3
  2594   srl(AT, AT, 16);
  2595   xorr(AT, AT, reg);
  2596   andi(AT, AT, 0xff);
  2597   //AT : 0 0 0 1^3);
  2598   xorr(reg, reg, AT);
  2599   //reg : 4 1 2 1
  2600   sll(AT, AT, 16);
  2601   xorr(reg, reg, AT);
  2602   //reg : 4 3 2 1
  2605 #ifdef _LP64
  2607 /* do 32-bit CAS using MIPS64 lld/scd
  2609   Jin: cas_int should only compare 32-bits of the memory value.
  2610        However, lld/scd will do 64-bit operation, which violates the intention of cas_int.
  2611        To simulate a 32-bit atomic operation, the value loaded with LLD should be split into
  2612        tow halves, and only the low-32 bits is compared. If equals, the low-32 bits of newval,
  2613        plus the high-32 bits or memory value, are stored togethor with SCD.
  2615 Example:
  2617       double d = 3.1415926;
  2618       System.err.println("hello" + d);
  2620   sun.misc.FloatingDecimal$1.<init>()
  2622    `- java.util.concurrent.atomic.AtomicInteger::compareAndSet()
  2624   38 cas_int [a7a7|J] [a0|I] [a6|I]
  2625 // a0: 0xffffffffe8ea9f63 pc: 0x55647f3354
  2626 // a6: 0x4ab325aa
  2628 again:
  2629    0x00000055647f3c5c: lld at, 0x0(a7)                          ; 64-bit load, "0xe8ea9f63"
  2631    0x00000055647f3c60: sll t9, at, 0                            ; t9: low-32 bits (sign extended)
  2632    0x00000055647f3c64: dsrl32 t8, at, 0                         ; t8: high-32 bits
  2633    0x00000055647f3c68: dsll32 t8, t8, 0
  2634    0x00000055647f3c6c: bne t9, a0, 0x00000055647f3c9c           ; goto nequal
  2635    0x00000055647f3c70: sll zero, zero, 0
  2637    0x00000055647f3c74: ori v1, zero, 0xffffffff                 ; v1: low-32 bits of newval (sign unextended)
  2638    0x00000055647f3c78: dsll v1, v1, 16                          ; v1 = a6 & 0xFFFFFFFF;
  2639    0x00000055647f3c7c: ori v1, v1, 0xffffffff
  2640    0x00000055647f3c80: and v1, a6, v1
  2641    0x00000055647f3c84: or at, t8, v1
  2642    0x00000055647f3c88: scd at, 0x0(a7)
  2643    0x00000055647f3c8c: beq at, zero, 0x00000055647f3c5c         ; goto again
  2644    0x00000055647f3c90: sll zero, zero, 0
  2645    0x00000055647f3c94: beq zero, zero, 0x00000055647f45ac       ; goto done
  2646    0x00000055647f3c98: sll zero, zero, 0
  2647 nequal:
  2648    0x00000055647f45a4: dadd a0, t9, zero
  2649    0x00000055647f45a8: dadd at, zero, zero
  2650 done:
  2651 */
  2653 void MacroAssembler::cmpxchg32(Register x_reg, Address dest, Register c_reg) {
  2654   /* 2012/11/11 Jin: MIPS64 can use ll/sc for 32-bit atomic memory access */
  2655   Label done, again, nequal;
  2657   bind(again);
  2659   if(!Use3A2000) sync();
  2660   ll(AT, dest);
  2661   bne(AT, c_reg, nequal);
  2662   delayed()->nop();
  2664   move(AT, x_reg);
  2665   sc(AT, dest);
  2666   beq(AT, R0, again);
  2667   delayed()->nop();
  2668   b(done);
  2669   delayed()->nop();
  2671   // not xchged
  2672   bind(nequal);
  2673   sync();
  2674   move(c_reg, AT);
  2675   move(AT, R0);
  2677   bind(done);
  2679 #endif  // cmpxchg32
  2681 void MacroAssembler::cmpxchg(Register x_reg, Address dest, Register c_reg) {
  2682   Label done, again, nequal;
  2684   bind(again);
  2685 #ifdef _LP64
  2686   if(!Use3A2000) sync();
  2687   lld(AT, dest);
  2688 #else
  2689   if(!Use3A2000) sync();
  2690   ll(AT, dest);
  2691 #endif
  2692   bne(AT, c_reg, nequal);
  2693   delayed()->nop();
  2695   move(AT, x_reg);
  2696 #ifdef _LP64
  2697   scd(AT, dest);
  2698 #else
  2699   sc(AT, dest);
  2700 #endif
  2701   beq(AT, R0, again);
  2702   delayed()->nop();
  2703   b(done);
  2704   delayed()->nop();
  2706   // not xchged
  2707   bind(nequal);
  2708   sync();
  2709   move(c_reg, AT);
  2710   move(AT, R0);
  2712   bind(done);
  2715 void MacroAssembler::cmpxchg8(Register x_regLo, Register x_regHi, Address dest, Register c_regLo, Register c_regHi) {
  2716   Label done, again, nequal;
  2718   Register x_reg = x_regLo;
  2719   dsll32(x_regHi, x_regHi, 0);
  2720   dsll32(x_regLo, x_regLo, 0);
  2721   dsrl32(x_regLo, x_regLo, 0);
  2722   orr(x_reg, x_regLo, x_regHi);
  2724   Register c_reg = c_regLo;
  2725   dsll32(c_regHi, c_regHi, 0);
  2726   dsll32(c_regLo, c_regLo, 0);
  2727   dsrl32(c_regLo, c_regLo, 0);
  2728   orr(c_reg, c_regLo, c_regHi);
  2730   bind(again);
  2732         if(!Use3A2000) sync();
  2733   lld(AT, dest);
  2734   bne(AT, c_reg, nequal);
  2735   delayed()->nop();
  2737   //move(AT, x_reg);
  2738   dadd(AT, x_reg, R0);
  2739   scd(AT, dest);
  2740   beq(AT, R0, again);
  2741   delayed()->nop();
  2742   b(done);
  2743   delayed()->nop();
  2745   // not xchged
  2746   bind(nequal);
  2747   sync();
  2748   //move(c_reg, AT);
  2749   //move(AT, R0);
  2750   dadd(c_reg, AT, R0);
  2751   dadd(AT, R0, R0);
  2752   bind(done);
  2755 // be sure the three register is different
  2756 void MacroAssembler::rem_s(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2757   assert_different_registers(tmp, fs, ft);
  2758   div_s(tmp, fs, ft);
  2759   trunc_l_s(tmp, tmp);
  2760   cvt_s_l(tmp, tmp);
  2761   mul_s(tmp, tmp, ft);
  2762   sub_s(fd, fs, tmp);
  2765 // be sure the three register is different
  2766 void MacroAssembler::rem_d(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2767   assert_different_registers(tmp, fs, ft);
  2768   div_d(tmp, fs, ft);
  2769   trunc_l_d(tmp, tmp);
  2770   cvt_d_l(tmp, tmp);
  2771   mul_d(tmp, tmp, ft);
  2772   sub_d(fd, fs, tmp);
  2775 // Fast_Lock and Fast_Unlock used by C2
  2777 // Because the transitions from emitted code to the runtime
  2778 // monitorenter/exit helper stubs are so slow it's critical that
  2779 // we inline both the stack-locking fast-path and the inflated fast path.
  2780 //
  2781 // See also: cmpFastLock and cmpFastUnlock.
  2782 //
  2783 // What follows is a specialized inline transliteration of the code
  2784 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2785 // another option would be to emit TrySlowEnter and TrySlowExit methods
  2786 // at startup-time.  These methods would accept arguments as
  2787 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2788 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2789 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2790 // In practice, however, the # of lock sites is bounded and is usually small.
  2791 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2792 // if the processor uses simple bimodal branch predictors keyed by EIP
  2793 // Since the helper routines would be called from multiple synchronization
  2794 // sites.
  2795 //
  2796 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2797 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2798 // to those specialized methods.  That'd give us a mostly platform-independent
  2799 // implementation that the JITs could optimize and inline at their pleasure.
  2800 // Done correctly, the only time we'd need to cross to native could would be
  2801 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2802 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2803 // (b) explicit barriers or fence operations.
  2804 //
  2805 // TODO:
  2806 //
  2807 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2808 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2809 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2810 //    the lock operators would typically be faster than reifying Self.
  2811 //
  2812 // *  Ideally I'd define the primitives as:
  2813 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2814 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2815 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2816 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2817 //    Furthermore the register assignments are overconstrained, possibly resulting in
  2818 //    sub-optimal code near the synchronization site.
  2819 //
  2820 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2821 //    Alternately, use a better sp-proximity test.
  2822 //
  2823 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2824 //    Either one is sufficient to uniquely identify a thread.
  2825 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2826 //
  2827 // *  Intrinsify notify() and notifyAll() for the common cases where the
  2828 //    object is locked by the calling thread but the waitlist is empty.
  2829 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2830 //
  2831 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2832 //    But beware of excessive branch density on AMD Opterons.
  2833 //
  2834 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2835 //    or failure of the fast-path.  If the fast-path fails then we pass
  2836 //    control to the slow-path, typically in C.  In Fast_Lock and
  2837 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2838 //    will emit a conditional branch immediately after the node.
  2839 //    So we have branches to branches and lots of ICC.ZF games.
  2840 //    Instead, it might be better to have C2 pass a "FailureLabel"
  2841 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2842 //    will drop through the node.  ICC.ZF is undefined at exit.
  2843 //    In the case of failure, the node will branch directly to the
  2844 //    FailureLabel
  2847 // obj: object to lock
  2848 // box: on-stack box address (displaced header location) - KILLED
  2849 // rax,: tmp -- KILLED
  2850 // scr: tmp -- KILLED
  2851 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg, Register scrReg) {
  2853   // Ensure the register assignents are disjoint
  2854   guarantee (objReg != boxReg, "") ;
  2855   guarantee (objReg != tmpReg, "") ;
  2856   guarantee (objReg != scrReg, "") ;
  2857   guarantee (boxReg != tmpReg, "") ;
  2858   guarantee (boxReg != scrReg, "") ;
  2861   block_comment("FastLock");
  2862   /*
  2863      move(AT, 0x0);
  2864      return;
  2865      */
  2866   if (PrintBiasedLockingStatistics) {
  2867     push(tmpReg);
  2868     atomic_inc32((address)BiasedLocking::total_entry_count_addr(), 1, AT, tmpReg);
  2869     pop(tmpReg);
  2872   if (EmitSync & 1) {
  2873     move(AT, 0x0);
  2874     return;
  2875   } else
  2876     if (EmitSync & 2) {
  2877       Label DONE_LABEL ;
  2878       if (UseBiasedLocking) {
  2879         // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  2880         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2883       ld(tmpReg, Address(objReg, 0)) ;          // fetch markword
  2884       ori(tmpReg, tmpReg, 0x1);
  2885       sd(tmpReg, Address(boxReg, 0));           // Anticipate successful CAS
  2887       cmpxchg(boxReg, Address(objReg, 0), tmpReg);          // Updates tmpReg
  2888       bne(AT, R0, DONE_LABEL);
  2889       delayed()->nop();
  2891       // Recursive locking
  2892       dsubu(tmpReg, tmpReg, SP);
  2893       li(AT, (7 - os::vm_page_size() ));
  2894       andr(tmpReg, tmpReg, AT);
  2895       sd(tmpReg, Address(boxReg, 0));
  2896       bind(DONE_LABEL) ;
  2897     } else {
  2898       // Possible cases that we'll encounter in fast_lock
  2899       // ------------------------------------------------
  2900       // * Inflated
  2901       //    -- unlocked
  2902       //    -- Locked
  2903       //       = by self
  2904       //       = by other
  2905       // * biased
  2906       //    -- by Self
  2907       //    -- by other
  2908       // * neutral
  2909       // * stack-locked
  2910       //    -- by self
  2911       //       = sp-proximity test hits
  2912       //       = sp-proximity test generates false-negative
  2913       //    -- by other
  2914       //
  2916       Label IsInflated, DONE_LABEL, PopDone ;
  2918       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  2919       // order to reduce the number of conditional branches in the most common cases.
  2920       // Beware -- there's a subtle invariant that fetch of the markword
  2921       // at [FETCH], below, will never observe a biased encoding (*101b).
  2922       // If this invariant is not held we risk exclusion (safety) failure.
  2923       if (UseBiasedLocking && !UseOptoBiasInlining) {
  2924         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2927       ld(tmpReg, Address(objReg, 0)) ;         //Fetch the markword of the object.
  2928       andi(AT, tmpReg, markOopDesc::monitor_value);
  2929       bne(AT, R0, IsInflated);                      // inflated vs stack-locked|neutral|bias
  2930       delayed()->nop();
  2932       // Attempt stack-locking ...
  2933       ori (tmpReg, tmpReg, markOopDesc::unlocked_value);
  2934       sd(tmpReg, Address(boxReg, 0));          // Anticipate successful CAS
  2935       //if (os::is_MP()) {
  2936       //  sync();
  2937       //}
  2939       cmpxchg(boxReg, Address(objReg, 0), tmpReg);           // Updates tmpReg
  2940       //AT == 1: unlocked
  2942       if (PrintBiasedLockingStatistics) {
  2943         Label L;
  2944         beq(AT, R0, L);
  2945         delayed()->nop();
  2946         push(T0);
  2947         push(T1);
  2948         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2949         pop(T1);
  2950         pop(T0);
  2951         bind(L);
  2953       bne(AT, R0, DONE_LABEL);
  2954       delayed()->nop();
  2956       // Recursive locking
  2957       // The object is stack-locked: markword contains stack pointer to BasicLock.
  2958       // Locked by current thread if difference with current SP is less than one page.
  2959       dsubu(tmpReg, tmpReg, SP);
  2960       li(AT, 7 - os::vm_page_size() );
  2961       andr(tmpReg, tmpReg, AT);
  2962       sd(tmpReg, Address(boxReg, 0));
  2963       if (PrintBiasedLockingStatistics) {
  2964         Label L;
  2965         // tmpReg == 0 => BiasedLocking::_fast_path_entry_count++
  2966         bne(tmpReg, R0, L);
  2967         delayed()->nop();
  2968         push(T0);
  2969         push(T1);
  2970         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2971         pop(T1);
  2972         pop(T0);
  2973         bind(L);
  2975       sltiu(AT, tmpReg, 1); /* AT = (tmpReg == 0) ? 1 : 0 */
  2977       b(DONE_LABEL) ;
  2978       delayed()->nop();
  2980       bind(IsInflated) ;
  2981       // The object's monitor m is unlocked iff m->owner == NULL,
  2982       // otherwise m->owner may contain a thread or a stack address.
  2984       // TODO: someday avoid the ST-before-CAS penalty by
  2985       // relocating (deferring) the following ST.
  2986       // We should also think about trying a CAS without having
  2987       // fetched _owner.  If the CAS is successful we may
  2988       // avoid an RTO->RTS upgrade on the $line.
  2989       // Without cast to int32_t a movptr will destroy r10 which is typically obj
  2990       li(AT, (int32_t)intptr_t(markOopDesc::unused_mark()));
  2991       sd(AT, Address(boxReg, 0));
  2993       move(boxReg, tmpReg) ;
  2994       ld(tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2995       // if (m->owner != 0) => AT = 0, goto slow path.
  2996       move(AT, R0);
  2997       bne(tmpReg, R0, DONE_LABEL);
  2998       delayed()->nop();
  3000 #ifndef OPT_THREAD
  3001       get_thread (TREG) ;
  3002 #endif
  3003       // It's inflated and appears unlocked
  3004       //if (os::is_MP()) {
  3005       //  sync();
  3006       //}
  3007       cmpxchg(TREG, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), tmpReg) ;
  3008       // Intentional fall-through into DONE_LABEL ...
  3011       // DONE_LABEL is a hot target - we'd really like to place it at the
  3012       // start of cache line by padding with NOPs.
  3013       // See the AMD and Intel software optimization manuals for the
  3014       // most efficient "long" NOP encodings.
  3015       // Unfortunately none of our alignment mechanisms suffice.
  3016       bind(DONE_LABEL);
  3018       // At DONE_LABEL the AT is set as follows ...
  3019       // Fast_Unlock uses the same protocol.
  3020       // AT == 1 -> Success
  3021       // AT == 0 -> Failure - force control through the slow-path
  3023       // Avoid branch-to-branch on AMD processors
  3024       // This appears to be superstition.
  3025       if (EmitSync & 32) nop() ;
  3030 // obj: object to unlock
  3031 // box: box address (displaced header location), killed.  Must be EAX.
  3032 // rbx,: killed tmp; cannot be obj nor box.
  3033 //
  3034 // Some commentary on balanced locking:
  3035 //
  3036 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3037 // Methods that don't have provably balanced locking are forced to run in the
  3038 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3039 // The interpreter provides two properties:
  3040 // I1:  At return-time the interpreter automatically and quietly unlocks any
  3041 //      objects acquired the current activation (frame).  Recall that the
  3042 //      interpreter maintains an on-stack list of locks currently held by
  3043 //      a frame.
  3044 // I2:  If a method attempts to unlock an object that is not held by the
  3045 //      the frame the interpreter throws IMSX.
  3046 //
  3047 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3048 // B() doesn't have provably balanced locking so it runs in the interpreter.
  3049 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3050 // is still locked by A().
  3051 //
  3052 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3053 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3054 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3055 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3057 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg) {
  3059   guarantee (objReg != boxReg, "") ;
  3060   guarantee (objReg != tmpReg, "") ;
  3061   guarantee (boxReg != tmpReg, "") ;
  3065   block_comment("FastUnlock");
  3068   if (EmitSync & 4) {
  3069     // Disable - inhibit all inlining.  Force control through the slow-path
  3070     move(AT, 0x0);
  3071     return;
  3072   } else
  3073     if (EmitSync & 8) {
  3074       Label DONE_LABEL ;
  3075       if (UseBiasedLocking) {
  3076         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3078       // classic stack-locking code ...
  3079       ld(tmpReg, Address(boxReg, 0)) ;
  3080       beq(tmpReg, R0, DONE_LABEL) ;
  3081       move(AT, 0x1);  // delay slot
  3083       cmpxchg(tmpReg, Address(objReg, 0), boxReg);          // Uses EAX which is box
  3084       bind(DONE_LABEL);
  3085     } else {
  3086       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3088       // Critically, the biased locking test must have precedence over
  3089       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3090       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3091         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3094       ld(AT, Address(boxReg, 0)) ;            // Examine the displaced header
  3095       beq(AT, R0, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3096       delayed()->daddiu(AT, R0, 0x1);
  3098       ld(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3099       andi(AT, tmpReg, markOopDesc::monitor_value) ;                     // Inflated?
  3100       beq(AT, R0, Stacked) ;                     // Inflated?
  3101       delayed()->nop();
  3103       bind(Inflated) ;
  3104       // It's inflated.
  3105       // Despite our balanced locking property we still check that m->_owner == Self
  3106       // as java routines or native JNI code called by this thread might
  3107       // have released the lock.
  3108       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3109       // state in _succ so we can avoid fetching EntryList|cxq.
  3110       //
  3111       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3112       // such as recursive enter and exit -- but we have to be wary of
  3113       // I$ bloat, T$ effects and BP$ effects.
  3114       //
  3115       // If there's no contention try a 1-0 exit.  That is, exit without
  3116       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3117       // we detect and recover from the race that the 1-0 exit admits.
  3118       //
  3119       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3120       // before it STs null into _owner, releasing the lock.  Updates
  3121       // to data protected by the critical section must be visible before
  3122       // we drop the lock (and thus before any other thread could acquire
  3123       // the lock and observe the fields protected by the lock).
  3124       // IA32's memory-model is SPO, so STs are ordered with respect to
  3125       // each other and there's no need for an explicit barrier (fence).
  3126       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3127 #ifndef OPT_THREAD
  3128       get_thread (TREG) ;
  3129 #endif
  3131       // It's inflated
  3132       ld(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3133       xorr(boxReg, boxReg, TREG);
  3135       ld(AT, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3136       orr(boxReg, boxReg, AT);
  3138       move(AT, R0);
  3139       bne(boxReg, R0, DONE_LABEL);
  3140       delayed()->nop();
  3142       ld(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
  3143       ld(AT, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
  3144       orr(boxReg, boxReg, AT);
  3146       move(AT, R0);
  3147       bne(boxReg, R0, DONE_LABEL);
  3148       delayed()->nop();
  3150       sync();
  3151       sd(R0, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3152       move(AT, 0x1);
  3153       b(DONE_LABEL);
  3154       delayed()->nop();
  3156       bind  (Stacked);
  3157       ld(tmpReg, Address(boxReg, 0)) ;
  3158       //if (os::is_MP()) { sync(); }
  3159       cmpxchg(tmpReg, Address(objReg, 0), boxReg);
  3161       if (EmitSync & 65536) {
  3162         bind (CheckSucc);
  3165       bind(DONE_LABEL);
  3167       // Avoid branch to branch on AMD processors
  3168       if (EmitSync & 32768) { nop() ; }
  3172 void MacroAssembler::align(int modulus) {
  3173   while (offset() % modulus != 0) nop();
  3177 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3178   //Unimplemented();
  3181 #ifdef _LP64
  3182 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, A4, A5, A6, A7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  3184 /* FIXME: Jin: In MIPS64, F0~23 are all caller-saved registers */
  3185 FloatRegister caller_saved_fpu_registers[] = {F0, F12, F13};
  3186 #else
  3187 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, T4, T5, T6, T7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  3189 Register caller_saved_fpu_registers[] = {};
  3190 #endif
  3192 //We preserve all caller-saved register
  3193 void  MacroAssembler::pushad(){
  3194   int i;
  3196   /* Fixed-point registers */
  3197   int len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  3198   daddi(SP, SP, -1 * len * wordSize);
  3199   for (i = 0; i < len; i++)
  3201 #ifdef _LP64
  3202     sd(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3203 #else
  3204     sw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3205 #endif
  3208   /* Floating-point registers */
  3209   len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  3210   daddi(SP, SP, -1 * len * wordSize);
  3211   for (i = 0; i < len; i++)
  3213 #ifdef _LP64
  3214     sdc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3215 #else
  3216     swc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3217 #endif
  3219 };
  3221 void  MacroAssembler::popad(){
  3222   int i;
  3224   /* Floating-point registers */
  3225   int len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  3226   for (i = 0; i < len; i++)
  3228 #ifdef _LP64
  3229     ldc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3230 #else
  3231     lwc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3232 #endif
  3234   daddi(SP, SP, len * wordSize);
  3236   /* Fixed-point registers */
  3237   len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  3238   for (i = 0; i < len; i++)
  3240 #ifdef _LP64
  3241     ld(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3242 #else
  3243     lw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3244 #endif
  3246   daddi(SP, SP, len * wordSize);
  3247 };
  3249 void MacroAssembler::push2(Register reg1, Register reg2) {
  3250 #ifdef _LP64
  3251   daddi(SP, SP, -16);
  3252   sd(reg2, SP, 0);
  3253   sd(reg1, SP, 8);
  3254 #else
  3255   addi(SP, SP, -8);
  3256   sw(reg2, SP, 0);
  3257   sw(reg1, SP, 4);
  3258 #endif
  3261 void MacroAssembler::pop2(Register reg1, Register reg2) {
  3262 #ifdef _LP64
  3263   ld(reg1, SP, 0);
  3264   ld(reg2, SP, 8);
  3265   daddi(SP, SP, 16);
  3266 #else
  3267   lw(reg1, SP, 0);
  3268   lw(reg2, SP, 4);
  3269   addi(SP, SP, 8);
  3270 #endif
  3273 //for UseCompressedOops Option
  3274 void MacroAssembler::load_klass(Register dst, Register src) {
  3275 #ifdef _LP64
  3276     if(UseCompressedClassPointers){
  3277         lwu(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  3278   decode_klass_not_null(dst);
  3279     } else
  3280 #endif
  3281         ld(dst, src, oopDesc::klass_offset_in_bytes());
  3284 void MacroAssembler::store_klass(Register dst, Register src) {
  3285 #ifdef _LP64
  3286     if(UseCompressedClassPointers){
  3287     encode_klass_not_null(src);
  3288     sw(src, dst, oopDesc::klass_offset_in_bytes());
  3289     } else {
  3290 #endif
  3291     sd(src, dst, oopDesc::klass_offset_in_bytes());
  3295 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  3296   load_klass(dst, src);
  3297   ld(dst, Address(dst, Klass::prototype_header_offset()));
  3300 #ifdef _LP64
  3301 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  3302   if (UseCompressedClassPointers) {
  3303     sw(src, dst, oopDesc::klass_gap_offset_in_bytes());
  3307 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  3308     if(UseCompressedOops){
  3309   lwu(dst, src);
  3310   decode_heap_oop(dst);
  3311     } else{
  3312   ld(dst, src);
  3316 void MacroAssembler::store_heap_oop(Address dst, Register src){
  3317     if(UseCompressedOops){
  3318        assert(!dst.uses(src), "not enough registers");
  3319        encode_heap_oop(src);
  3320        sw(src, dst);
  3321     } else{
  3322        sd(src, dst);
  3326 #ifdef ASSERT
  3327 void MacroAssembler::verify_heapbase(const char* msg) {
  3328   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
  3329   assert (Universe::heap() != NULL, "java heap should be initialized");
  3331 #endif
  3334 // Algorithm must match oop.inline.hpp encode_heap_oop.
  3335 void MacroAssembler::encode_heap_oop(Register r) {
  3336 #ifdef ASSERT
  3337   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3338 #endif
  3339   verify_oop(r, "broken oop in encode_heap_oop");
  3340   if (Universe::narrow_oop_base() == NULL) {
  3341     if (Universe::narrow_oop_shift() != 0) {
  3342       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3343       shr(r, LogMinObjAlignmentInBytes);
  3345     return;
  3348     movz(r, S5_heapbase, r);
  3349     dsub(r, r, S5_heapbase);
  3350     if (Universe::narrow_oop_shift() != 0) {
  3351       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3352       shr(r, LogMinObjAlignmentInBytes);
  3356 void MacroAssembler::encode_heap_oop(Register dst, Register src) {
  3357 #ifdef ASSERT
  3358   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3359 #endif
  3360   verify_oop(src, "broken oop in encode_heap_oop");
  3361   if (Universe::narrow_oop_base() == NULL) {
  3362     if (Universe::narrow_oop_shift() != 0) {
  3363       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3364       dsrl(dst, src, LogMinObjAlignmentInBytes);
  3365     } else {
  3366       if (dst != src) move(dst, src);
  3368   } else {
  3369     if (dst == src) {
  3370       movz(dst, S5_heapbase, dst);
  3371       dsub(dst, dst, S5_heapbase);
  3372       if (Universe::narrow_oop_shift() != 0) {
  3373         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3374         shr(dst, LogMinObjAlignmentInBytes);
  3376     } else {
  3377       dsub(dst, src, S5_heapbase);
  3378       if (Universe::narrow_oop_shift() != 0) {
  3379         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3380         shr(dst, LogMinObjAlignmentInBytes);
  3382       movz(dst, R0, src);
  3387 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  3388     assert (UseCompressedOops, "should be compressed");
  3389 #ifdef ASSERT
  3390     if (CheckCompressedOops) {
  3391   Label ok;
  3392   bne(r, R0, ok);
  3393   delayed()->nop();
  3394   stop("null oop passed to encode_heap_oop_not_null");
  3395   bind(ok);
  3397 #endif
  3398   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  3399   if (Universe::narrow_oop_base() != NULL) {
  3400     dsub(r, r, S5_heapbase);
  3402   if (Universe::narrow_oop_shift() != 0) {
  3403     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3404     shr(r, LogMinObjAlignmentInBytes);
  3409 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  3410     assert (UseCompressedOops, "should be compressed");
  3411 #ifdef ASSERT
  3412     if (CheckCompressedOops) {
  3413   Label ok;
  3414   bne(src, R0, ok);
  3415   delayed()->nop();
  3416   stop("null oop passed to encode_heap_oop_not_null2");
  3417   bind(ok);
  3419 #endif
  3420     verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  3422     if (Universe::narrow_oop_base() != NULL) {
  3423       dsub(dst, src, S5_heapbase);
  3424         if (Universe::narrow_oop_shift() != 0) {
  3425         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3426         shr(dst, LogMinObjAlignmentInBytes);
  3428     } else {
  3429         if (Universe::narrow_oop_shift() != 0) {
  3430         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3431           dsrl(dst, src, LogMinObjAlignmentInBytes);
  3432         } else {
  3433           if (dst != src) move(dst, src);
  3438 void  MacroAssembler::decode_heap_oop(Register r) {
  3439 #ifdef ASSERT
  3440   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3441 #endif
  3442   if (Universe::narrow_oop_base() == NULL) {
  3443     if (Universe::narrow_oop_shift() != 0) {
  3444       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3445       shl(r, LogMinObjAlignmentInBytes);
  3447   } else {
  3448     move(AT, r);
  3449     if (Universe::narrow_oop_shift() != 0) {
  3450       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3451       shl(r, LogMinObjAlignmentInBytes);
  3453     dadd(r, r, S5_heapbase);
  3454     movz(r, R0, AT);
  3456   verify_oop(r, "broken oop in decode_heap_oop");
  3459 void  MacroAssembler::decode_heap_oop(Register dst, Register src) {
  3460 #ifdef ASSERT
  3461   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3462 #endif
  3463   if (Universe::narrow_oop_base() == NULL) {
  3464     if (Universe::narrow_oop_shift() != 0) {
  3465       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3466       if (dst != src) nop(); // DON'T DELETE THIS GUY.
  3467       dsll(dst, src, LogMinObjAlignmentInBytes);
  3468     } else {
  3469       if (dst != src) move(dst, src);
  3471   } else {
  3472     if (dst == src) {
  3473       move(AT, dst);
  3474       if (Universe::narrow_oop_shift() != 0) {
  3475         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3476         shl(dst, LogMinObjAlignmentInBytes);
  3478       dadd(dst, dst, S5_heapbase);
  3479       movz(dst, R0, AT);
  3480     } else {
  3481       if (Universe::narrow_oop_shift() != 0) {
  3482         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3483         dsll(dst, src, LogMinObjAlignmentInBytes);
  3484         daddu(dst, dst, S5_heapbase);
  3485       } else {
  3486         daddu(dst, src, S5_heapbase);
  3488       movz(dst, R0, src);
  3491   verify_oop(dst, "broken oop in decode_heap_oop");
  3494 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  3495   // Note: it will change flags
  3496   assert (UseCompressedOops, "should only be used for compressed headers");
  3497   assert (Universe::heap() != NULL, "java heap should be initialized");
  3498   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3499   // vtableStubs also counts instructions in pd_code_size_limit.
  3500   // Also do not verify_oop as this is called by verify_oop.
  3501   if (Universe::narrow_oop_shift() != 0) {
  3502     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3503     shl(r, LogMinObjAlignmentInBytes);
  3504     if (Universe::narrow_oop_base() != NULL) {
  3505       daddu(r, r, S5_heapbase);
  3507   } else {
  3508     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3512 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  3513   assert (UseCompressedOops, "should only be used for compressed headers");
  3514   assert (Universe::heap() != NULL, "java heap should be initialized");
  3516   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3517   // vtableStubs also counts instructions in pd_code_size_limit.
  3518   // Also do not verify_oop as this is called by verify_oop.
  3519   //lea(dst, Address(S5_heapbase, src, Address::times_8, 0));
  3520   if (Universe::narrow_oop_shift() != 0) {
  3521     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3522     if (LogMinObjAlignmentInBytes == Address::times_8) {
  3523       dsll(dst, src, LogMinObjAlignmentInBytes);
  3524       daddu(dst, dst, S5_heapbase);
  3525     } else {
  3526       dsll(dst, src, LogMinObjAlignmentInBytes);
  3527       if (Universe::narrow_oop_base() != NULL) {
  3528         daddu(dst, dst, S5_heapbase);
  3531   } else {
  3532     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3533     if (dst != src) {
  3534       move(dst, src);
  3539 void MacroAssembler::encode_klass_not_null(Register r) {
  3540   if (Universe::narrow_klass_base() != NULL) {
  3541     assert(r != AT, "Encoding a klass in AT");
  3542     set64(AT, (int64_t)Universe::narrow_klass_base());
  3543     dsub(r, r, AT);
  3545   if (Universe::narrow_klass_shift() != 0) {
  3546     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3547     shr(r, LogKlassAlignmentInBytes);
  3549   // Not neccessary for MIPS at all.
  3550   //if (Universe::narrow_klass_base() != NULL) {
  3551   //  reinit_heapbase();
  3552   //}
  3555 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  3556   if (dst == src) {
  3557     encode_klass_not_null(src);
  3558   } else {
  3559     if (Universe::narrow_klass_base() != NULL) {
  3560       set64(dst, (int64_t)Universe::narrow_klass_base());
  3561       dsub(dst, src, dst);
  3562       if (Universe::narrow_klass_shift() != 0) {
  3563         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3564         shr(dst, LogKlassAlignmentInBytes);
  3566     } else {
  3567       if (Universe::narrow_klass_shift() != 0) {
  3568         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3569         dsrl(dst, src, LogKlassAlignmentInBytes);
  3570       } else {
  3571         move(dst, src);
  3577 // Function instr_size_for_decode_klass_not_null() counts the instructions
  3578 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  3579 // when (Universe::heap() != NULL).  Hence, if the instructions they
  3580 // generate change, then this method needs to be updated.
  3581 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  3582   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  3583   if (Universe::narrow_klass_base() != NULL) {
  3584     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  3585     return (Universe::narrow_klass_shift() == 0 ? 4 * 9 : 4 * 10);
  3586   } else {
  3587     // longest load decode klass function, mov64, leaq
  3588     return (Universe::narrow_klass_shift() == 0 ? 4 * 0 : 4 * 1);
  3592 void  MacroAssembler::decode_klass_not_null(Register r) {
  3593   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3594   assert(r != AT, "Decoding a klass in AT");
  3595   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3596   // vtableStubs also counts instructions in pd_code_size_limit.
  3597   // Also do not verify_oop as this is called by verify_oop.
  3598   if (Universe::narrow_klass_shift() != 0) {
  3599     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3600     shl(r, LogKlassAlignmentInBytes);
  3602   if (Universe::narrow_klass_base() != NULL) {
  3603     set64(AT, (int64_t)Universe::narrow_klass_base());
  3604     daddu(r, r, AT);
  3605     //Not neccessary for MIPS at all.
  3606     //reinit_heapbase();
  3610 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  3611   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3613   if (dst == src) {
  3614     decode_klass_not_null(dst);
  3615   } else {
  3616     // Cannot assert, unverified entry point counts instructions (see .ad file)
  3617     // vtableStubs also counts instructions in pd_code_size_limit.
  3618     // Also do not verify_oop as this is called by verify_oop.
  3619     set64(dst, (int64_t)Universe::narrow_klass_base());
  3620     if (Universe::narrow_klass_shift() != 0) {
  3621       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3622       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  3623       dsll(AT, src, Address::times_8);
  3624       daddu(dst, dst, AT);
  3625     } else {
  3626       daddu(dst, src, dst);
  3631 void MacroAssembler::incrementl(Register reg, int value) {
  3632   if (value == min_jint) {
  3633      move(AT, value);
  3634      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3635      return;
  3637   if (value <  0) { decrementl(reg, -value); return; }
  3638   if (value == 0) {                        ; return; }
  3640   if(Assembler::is_simm16(value)) {
  3641      NOT_LP64(addiu(reg, reg, value));
  3642      LP64_ONLY(move(AT, value); addu32(reg, reg, AT));
  3643   } else {
  3644      move(AT, value);
  3645      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3649 void MacroAssembler::decrementl(Register reg, int value) {
  3650   if (value == min_jint) {
  3651      move(AT, value);
  3652      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3653      return;
  3655   if (value <  0) { incrementl(reg, -value); return; }
  3656   if (value == 0) {                        ; return; }
  3658   if(Assembler::is_simm16(value)) {
  3659      NOT_LP64(addiu(reg, reg, -value));
  3660      LP64_ONLY(move(AT, value); subu32(reg, reg, AT));
  3661   } else {
  3662      move(AT, value);
  3663      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3667 void MacroAssembler::reinit_heapbase() {
  3668   if (UseCompressedOops || UseCompressedClassPointers) {
  3669     if (Universe::heap() != NULL) {
  3670       if (Universe::narrow_oop_base() == NULL) {
  3671         move(S5_heapbase, R0);
  3672       } else {
  3673         set64(S5_heapbase, (int64_t)Universe::narrow_ptrs_base());
  3675     } else {
  3676       set64(S5_heapbase, (intptr_t)Universe::narrow_ptrs_base_addr());
  3677       ld(S5_heapbase, S5_heapbase, 0);
  3681 #endif // _LP64
  3683 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3684                            Register super_klass,
  3685                            Register temp_reg,
  3686                            Label& L_success) {
  3687 //implement ind   gen_subtype_check
  3688   Label L_failure;
  3689   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  3690   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  3691   bind(L_failure);
  3694 SkipIfEqual::SkipIfEqual(
  3695     MacroAssembler* masm, const bool* flag_addr, bool value) {
  3696   _masm = masm;
  3697   _masm->li(AT, (address)flag_addr);
  3698   _masm->lb(AT,AT,0);
  3699   _masm->addi(AT,AT,-value);
  3700   _masm->beq(AT,R0,_label);
  3701   _masm->delayed()->nop();
  3703 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3704                                                    Register super_klass,
  3705                                                    Register temp_reg,
  3706                                                    Label* L_success,
  3707                                                    Label* L_failure,
  3708                                                    Label* L_slow_path,
  3709                                         RegisterOrConstant super_check_offset) {
  3710   assert_different_registers(sub_klass, super_klass, temp_reg);
  3711   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  3712   if (super_check_offset.is_register()) {
  3713     assert_different_registers(sub_klass, super_klass,
  3714                                super_check_offset.as_register());
  3715   } else if (must_load_sco) {
  3716     assert(temp_reg != noreg, "supply either a temp or a register offset");
  3719   Label L_fallthrough;
  3720   int label_nulls = 0;
  3721   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3722   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3723   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3724   assert(label_nulls <= 1, "at most one NULL in the batch");
  3726   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3727   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3728   // If the pointers are equal, we are done (e.g., String[] elements).
  3729   // This self-check enables sharing of secondary supertype arrays among
  3730   // non-primary types such as array-of-interface.  Otherwise, each such
  3731   // type would need its own customized SSA.
  3732   // We move this check to the front of the fast path because many
  3733   // type checks are in fact trivially successful in this manner,
  3734   // so we get a nicely predicted branch right at the start of the check.
  3735   //cmpptr(sub_klass, super_klass);
  3736   //local_jcc(Assembler::equal, *L_success);
  3737   beq(sub_klass, super_klass, *L_success);
  3738   delayed()->nop();
  3739   // Check the supertype display:
  3740   if (must_load_sco) {
  3741     // Positive movl does right thing on LP64.
  3742   lwu(temp_reg, super_klass, sco_offset);
  3743     super_check_offset = RegisterOrConstant(temp_reg);
  3745   dsll(AT, super_check_offset.register_or_noreg(), Address::times_1);
  3746   daddu(AT, sub_klass, AT);
  3747   ld(AT, AT, super_check_offset.constant_or_zero()*Address::times_1);
  3749   // This check has worked decisively for primary supers.
  3750   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3751   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3752   // This works in the same check above because of a tricky aliasing
  3753   // between the super_cache and the primary super display elements.
  3754   // (The 'super_check_addr' can address either, as the case requires.)
  3755   // Note that the cache is updated below if it does not help us find
  3756   // what we need immediately.
  3757   // So if it was a primary super, we can just fail immediately.
  3758   // Otherwise, it's the slow path for us (no success at this point).
  3760   if (super_check_offset.is_register()) {
  3761   beq(super_klass, AT, *L_success);
  3762   delayed()->nop();
  3763   addi(AT, super_check_offset.as_register(), -sc_offset);
  3764     if (L_failure == &L_fallthrough) {
  3765     beq(AT, R0, *L_slow_path);
  3766     delayed()->nop();
  3767     } else {
  3768     bne(AT, R0, *L_failure);
  3769     delayed()->nop();
  3770     b(*L_slow_path);
  3771     delayed()->nop();
  3773   } else if (super_check_offset.as_constant() == sc_offset) {
  3774     // Need a slow path; fast failure is impossible.
  3775     if (L_slow_path == &L_fallthrough) {
  3776     beq(super_klass, AT, *L_success);
  3777     delayed()->nop();
  3778     } else {
  3779     bne(super_klass, AT, *L_slow_path);
  3780     delayed()->nop();
  3781     b(*L_success);
  3782     delayed()->nop();
  3784   } else {
  3785     // No slow path; it's a fast decision.
  3786     if (L_failure == &L_fallthrough) {
  3787     beq(super_klass, AT, *L_success);
  3788     delayed()->nop();
  3789     } else {
  3790     bne(super_klass, AT, *L_failure);
  3791     delayed()->nop();
  3792     b(*L_success);
  3793     delayed()->nop();
  3797   bind(L_fallthrough);
  3802 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3803                                                    Register super_klass,
  3804                                                    Register temp_reg,
  3805                                                    Register temp2_reg,
  3806                                                    Label* L_success,
  3807                                                    Label* L_failure,
  3808                                                    bool set_cond_codes) {
  3809   assert_different_registers(sub_klass, super_klass, temp_reg);
  3810   if (temp2_reg != noreg)
  3811     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  3812   else
  3813     temp2_reg = T9;
  3814 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  3816   Label L_fallthrough;
  3817   int label_nulls = 0;
  3818   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3819   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3820   assert(label_nulls <= 1, "at most one NULL in the batch");
  3822   // a couple of useful fields in sub_klass:
  3823   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  3824   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3825   Address secondary_supers_addr(sub_klass, ss_offset);
  3826   Address super_cache_addr(     sub_klass, sc_offset);
  3828   // Do a linear scan of the secondary super-klass chain.
  3829   // This code is rarely used, so simplicity is a virtue here.
  3830   // The repne_scan instruction uses fixed registers, which we must spill.
  3831   // Don't worry too much about pre-existing connections with the input regs.
  3833 #if 0
  3834   assert(sub_klass != T9, "killed reg"); // killed by mov(rax, super)
  3835   assert(sub_klass != T1, "killed reg"); // killed by lea(rcx, &pst_counter)
  3836 #endif
  3838   // Get super_klass value into rax (even if it was in rdi or rcx).
  3839 #ifndef PRODUCT
  3840   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3841   ExternalAddress pst_counter_addr((address) pst_counter);
  3842   NOT_LP64(  incrementl(pst_counter_addr) );
  3843   //LP64_ONLY( lea(rcx, pst_counter_addr) );
  3844   //LP64_ONLY( incrementl(Address(rcx, 0)) );
  3845 #endif //PRODUCT
  3847   // We will consult the secondary-super array.
  3848   ld(temp_reg, secondary_supers_addr);
  3849   // Load the array length.  (Positive movl does right thing on LP64.)
  3850   lw(temp2_reg, Address(temp_reg, Array<Klass*>::length_offset_in_bytes()));
  3851   // Skip to start of data.
  3852   daddiu(temp_reg, temp_reg, Array<Klass*>::base_offset_in_bytes());
  3854   // Scan RCX words at [RDI] for an occurrence of RAX.
  3855   // Set NZ/Z based on last compare.
  3856   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  3857   // not change flags (only scas instruction which is repeated sets flags).
  3858   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  3860   /* 2013/4/3 Jin: OpenJDK8 never compresses klass pointers in secondary-super array. */
  3861   Label Loop, subtype;
  3862   bind(Loop);
  3863   beq(temp2_reg, R0, *L_failure);
  3864   delayed()->nop();
  3865   ld(AT, temp_reg, 0);
  3866   beq(AT, super_klass, subtype);
  3867   delayed()->daddi(temp_reg, temp_reg, 1 * wordSize);
  3868   b(Loop);
  3869   delayed()->daddi(temp2_reg, temp2_reg, -1);
  3871   bind(subtype);
  3872   sd(super_klass, super_cache_addr);
  3873   if (L_success != &L_fallthrough) {
  3874     b(*L_success);
  3875     delayed()->nop();
  3878   // Success.  Cache the super we found and proceed in triumph.
  3879 #undef IS_A_TEMP
  3881   bind(L_fallthrough);
  3883 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  3884   ld(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  3885   sd(R0, Address(java_thread, JavaThread::vm_result_offset()));
  3886   verify_oop(oop_result, "broken oop in call_VM_base");
  3889 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  3890   ld(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  3891   sd(R0, Address(java_thread, JavaThread::vm_result_2_offset()));
  3894 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3895                                          int extra_slot_offset) {
  3896   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3897   int stackElementSize = Interpreter::stackElementSize;
  3898   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  3899 #ifdef ASSERT
  3900   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  3901   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  3902 #endif
  3903   Register             scale_reg    = NOREG;
  3904   Address::ScaleFactor scale_factor = Address::no_scale;
  3905   if (arg_slot.is_constant()) {
  3906     offset += arg_slot.as_constant() * stackElementSize;
  3907   } else {
  3908     scale_reg    = arg_slot.as_register();
  3909     scale_factor = Address::times_8;
  3911   // 2014/07/31 Fu: We don't push RA on stack in prepare_invoke.
  3912   //  offset += wordSize;           // return PC is on stack
  3913   if(scale_reg==NOREG) return Address(SP, offset);
  3914   else {
  3915   dsll(scale_reg, scale_reg, scale_factor);
  3916   daddu(scale_reg, SP, scale_reg);
  3917   return Address(scale_reg, offset);
  3921 SkipIfEqual::~SkipIfEqual() {
  3922   _masm->bind(_label);
  3925 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3926   switch (size_in_bytes) {
  3927 #ifndef _LP64
  3928   case  8:
  3929     assert(dst2 != noreg, "second dest register required");
  3930     lw(dst,  src);
  3931     lw(dst2, src.plus_disp(BytesPerInt));
  3932     break;
  3933 #else
  3934   case  8:  ld(dst, src); break;
  3935 #endif
  3936   case  4:  lw(dst, src); break;
  3937   case  2:  is_signed ? lh(dst, src) : lhu(dst, src); break;
  3938   case  1:  is_signed ? lb( dst, src) : lbu( dst, src); break;
  3939   default:  ShouldNotReachHere();
  3943 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3944   switch (size_in_bytes) {
  3945 #ifndef _LP64
  3946   case  8:
  3947     assert(src2 != noreg, "second source register required");
  3948     sw(src, dst);
  3949     sw(src2, dst.plus_disp(BytesPerInt));
  3950     break;
  3951 #else
  3952   case  8:  sd(src, dst); break;
  3953 #endif
  3954   case  4:  sw(src, dst); break;
  3955   case  2:  sh(src, dst); break;
  3956   case  1:  sb(src, dst); break;
  3957   default:  ShouldNotReachHere();
  3961 // Look up the method for a megamorphic invokeinterface call.
  3962 // The target method is determined by <intf_klass, itable_index>.
  3963 // The receiver klass is in recv_klass.
  3964 // On success, the result will be in method_result, and execution falls through.
  3965 // On failure, execution transfers to the given label.
  3966 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3967                                              Register intf_klass,
  3968                                              RegisterOrConstant itable_index,
  3969                                              Register method_result,
  3970                                              Register scan_temp,
  3971                                              Label& L_no_such_interface) {
  3972   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3973   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3974          "caller must use same register for non-constant itable index as for method");
  3976   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3977   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3978   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3979   int scan_step   = itableOffsetEntry::size() * wordSize;
  3980   int vte_size    = vtableEntry::size() * wordSize;
  3981   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3982   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3984   lw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3986   // %%% Could store the aligned, prescaled offset in the klassoop.
  3987   dsll(scan_temp, scan_temp, times_vte_scale);
  3988   daddu(scan_temp, recv_klass, scan_temp);
  3989   daddiu(scan_temp, scan_temp, vtable_base);
  3990   if (HeapWordsPerLong > 1) {
  3991     // Round up to align_object_offset boundary
  3992     // see code for InstanceKlass::start_of_itable!
  3993     round_to(scan_temp, BytesPerLong);
  3996   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3997   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3998 //  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  3999   if (itable_index.is_constant()) {
  4000     set64(AT, (int)itable_index.is_constant());
  4001     dsll(AT, AT, (int)Address::times_ptr);
  4002   } else {
  4003     dsll(AT, itable_index.as_register(), (int)Address::times_ptr);
  4005   daddu(AT, AT, recv_klass);
  4006   daddiu(recv_klass, AT, itentry_off);
  4008   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  4009   //   if (scan->interface() == intf) {
  4010   //     result = (klass + scan->offset() + itable_index);
  4011   //   }
  4012   // }
  4013   Label search, found_method;
  4015   for (int peel = 1; peel >= 0; peel--) {
  4016     ld(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4018     if (peel) {
  4019       beq(intf_klass, method_result, found_method);
  4020       nop();
  4021     } else {
  4022       bne(intf_klass, method_result, search);
  4023       nop();
  4024       // (invert the test to fall through to found_method...)
  4027     if (!peel)  break;
  4029     bind(search);
  4031     // Check that the previous entry is non-null.  A null entry means that
  4032     // the receiver class doesn't implement the interface, and wasn't the
  4033     // same as when the caller was compiled.
  4034     beq(method_result, R0, L_no_such_interface);
  4035     nop();
  4036     daddiu(scan_temp, scan_temp, scan_step);
  4039   bind(found_method);
  4041   // Got a hit.
  4042   lw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4043   //ld(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4044   if(UseLoongsonISA) {
  4045     gsldx(method_result, recv_klass, scan_temp, 0);
  4046   } else {
  4047     daddu(AT, recv_klass, scan_temp);
  4048     ld(method_result, AT);
  4053 // virtual method calling
  4054 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4055                                            RegisterOrConstant vtable_index,
  4056                                            Register method_result) {
  4057   Register tmp = GP;
  4058   push(tmp);
  4060   if (vtable_index.is_constant()) {
  4061     assert_different_registers(recv_klass, method_result, tmp);
  4062   } else {
  4063     assert_different_registers(recv_klass, method_result, vtable_index.as_register(), tmp);
  4065   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4066   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4067 /*
  4068   Address vtable_entry_addr(recv_klass,
  4069                             vtable_index, Address::times_ptr,
  4070                             base + vtableEntry::method_offset_in_bytes());
  4071 */
  4072   if (vtable_index.is_constant()) {
  4073     set64(AT, vtable_index.as_constant());
  4074     dsll(AT, AT, (int)Address::times_ptr);
  4075   } else {
  4076     dsll(AT, vtable_index.as_register(), (int)Address::times_ptr);
  4078   set64(tmp, base + vtableEntry::method_offset_in_bytes());
  4079   daddu(tmp, tmp, AT);
  4080   daddu(tmp, tmp, recv_klass);
  4081   ld(method_result, tmp, 0);
  4083   pop(tmp);

mercurial