src/share/vm/opto/type.hpp

Thu, 26 Aug 2010 11:05:25 -0700

author
kvn
date
Thu, 26 Aug 2010 11:05:25 -0700
changeset 2116
14b92b91f460
parent 1907
c18cbe5936b8
child 2147
d20603ee9e10
permissions
-rw-r--r--

6976400: "Meet Not Symmetric"
Summary: Use NULL as klass for TypeAryPtr::RANGE. Add klass verification into TypeAryPtr ctor.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 // This class defines a Type lattice.  The lattice is used in the constant
    31 // propagation algorithms, and for some type-checking of the iloc code.
    32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    33 // float & double precision constants, sets of data-labels and code-labels.
    34 // The complete lattice is described below.  Subtypes have no relationship to
    35 // up or down in the lattice; that is entirely determined by the behavior of
    36 // the MEET/JOIN functions.
    38 class Dict;
    39 class Type;
    40 class   TypeD;
    41 class   TypeF;
    42 class   TypeInt;
    43 class   TypeLong;
    44 class   TypeNarrowOop;
    45 class   TypeAry;
    46 class   TypeTuple;
    47 class   TypePtr;
    48 class     TypeRawPtr;
    49 class     TypeOopPtr;
    50 class       TypeInstPtr;
    51 class       TypeAryPtr;
    52 class       TypeKlassPtr;
    54 //------------------------------Type-------------------------------------------
    55 // Basic Type object, represents a set of primitive Values.
    56 // Types are hash-cons'd into a private class dictionary, so only one of each
    57 // different kind of Type exists.  Types are never modified after creation, so
    58 // all their interesting fields are constant.
    59 class Type {
    60 public:
    61   enum TYPES {
    62     Bad=0,                      // Type check
    63     Control,                    // Control of code (not in lattice)
    64     Top,                        // Top of the lattice
    65     Int,                        // Integer range (lo-hi)
    66     Long,                       // Long integer range (lo-hi)
    67     Half,                       // Placeholder half of doubleword
    68     NarrowOop,                  // Compressed oop pointer
    70     Tuple,                      // Method signature or object layout
    71     Array,                      // Array types
    73     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    74     RawPtr,                     // Raw (non-oop) pointers
    75     OopPtr,                     // Any and all Java heap entities
    76     InstPtr,                    // Instance pointers (non-array objects)
    77     AryPtr,                     // Array pointers
    78     KlassPtr,                   // Klass pointers
    79     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    81     Function,                   // Function signature
    82     Abio,                       // Abstract I/O
    83     Return_Address,             // Subroutine return address
    84     Memory,                     // Abstract store
    85     FloatTop,                   // No float value
    86     FloatCon,                   // Floating point constant
    87     FloatBot,                   // Any float value
    88     DoubleTop,                  // No double value
    89     DoubleCon,                  // Double precision constant
    90     DoubleBot,                  // Any double value
    91     Bottom,                     // Bottom of lattice
    92     lastype                     // Bogus ending type (not in lattice)
    93   };
    95   // Signal values for offsets from a base pointer
    96   enum OFFSET_SIGNALS {
    97     OffsetTop = -2000000000,    // undefined offset
    98     OffsetBot = -2000000001     // any possible offset
    99   };
   101   // Min and max WIDEN values.
   102   enum WIDEN {
   103     WidenMin = 0,
   104     WidenMax = 3
   105   };
   107 private:
   108   // Dictionary of types shared among compilations.
   109   static Dict* _shared_type_dict;
   111   static int uhash( const Type *const t );
   112   // Structural equality check.  Assumes that cmp() has already compared
   113   // the _base types and thus knows it can cast 't' appropriately.
   114   virtual bool eq( const Type *t ) const;
   116   // Top-level hash-table of types
   117   static Dict *type_dict() {
   118     return Compile::current()->type_dict();
   119   }
   121   // DUAL operation: reflect around lattice centerline.  Used instead of
   122   // join to ensure my lattice is symmetric up and down.  Dual is computed
   123   // lazily, on demand, and cached in _dual.
   124   const Type *_dual;            // Cached dual value
   125   // Table for efficient dualing of base types
   126   static const TYPES dual_type[lastype];
   128 protected:
   129   // Each class of type is also identified by its base.
   130   const TYPES _base;            // Enum of Types type
   132   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   133   // ~Type();                   // Use fast deallocation
   134   const Type *hashcons();       // Hash-cons the type
   136 public:
   138   inline void* operator new( size_t x ) {
   139     Compile* compile = Compile::current();
   140     compile->set_type_last_size(x);
   141     void *temp = compile->type_arena()->Amalloc_D(x);
   142     compile->set_type_hwm(temp);
   143     return temp;
   144   }
   145   inline void operator delete( void* ptr ) {
   146     Compile* compile = Compile::current();
   147     compile->type_arena()->Afree(ptr,compile->type_last_size());
   148   }
   150   // Initialize the type system for a particular compilation.
   151   static void Initialize(Compile* compile);
   153   // Initialize the types shared by all compilations.
   154   static void Initialize_shared(Compile* compile);
   156   TYPES base() const {
   157     assert(_base > Bad && _base < lastype, "sanity");
   158     return _base;
   159   }
   161   // Create a new hash-consd type
   162   static const Type *make(enum TYPES);
   163   // Test for equivalence of types
   164   static int cmp( const Type *const t1, const Type *const t2 );
   165   // Test for higher or equal in lattice
   166   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   168   // MEET operation; lower in lattice.
   169   const Type *meet( const Type *t ) const;
   170   // WIDEN: 'widens' for Ints and other range types
   171   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   172   // NARROW: complement for widen, used by pessimistic phases
   173   virtual const Type *narrow( const Type *old ) const { return this; }
   175   // DUAL operation: reflect around lattice centerline.  Used instead of
   176   // join to ensure my lattice is symmetric up and down.
   177   const Type *dual() const { return _dual; }
   179   // Compute meet dependent on base type
   180   virtual const Type *xmeet( const Type *t ) const;
   181   virtual const Type *xdual() const;    // Compute dual right now.
   183   // JOIN operation; higher in lattice.  Done by finding the dual of the
   184   // meet of the dual of the 2 inputs.
   185   const Type *join( const Type *t ) const {
   186     return dual()->meet(t->dual())->dual(); }
   188   // Modified version of JOIN adapted to the needs Node::Value.
   189   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   190   // Currently, it also works around limitations involving interface types.
   191   virtual const Type *filter( const Type *kills ) const;
   193 #ifdef ASSERT
   194   // One type is interface, the other is oop
   195   virtual bool interface_vs_oop(const Type *t) const;
   196 #endif
   198   // Returns true if this pointer points at memory which contains a
   199   // compressed oop references.
   200   bool is_ptr_to_narrowoop() const;
   202   // Convenience access
   203   float getf() const;
   204   double getd() const;
   206   const TypeInt    *is_int() const;
   207   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   208   const TypeLong   *is_long() const;
   209   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   210   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   211   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   212   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   213   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   214   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   215   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   216   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   217   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   218   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   219   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   220   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   221   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   222   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   223   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   224   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   225   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   226   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   227   const TypeInstPtr  *is_instptr() const;        // Instance
   228   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   229   const TypeAryPtr   *is_aryptr() const;         // Array oop
   230   virtual bool      is_finite() const;           // Has a finite value
   231   virtual bool      is_nan()    const;           // Is not a number (NaN)
   233   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   234   const TypePtr* make_ptr() const;
   236   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   237   // Asserts if the underlying type is not an oopptr or narrowoop.
   238   const TypeOopPtr* make_oopptr() const;
   240   // Returns this compressed pointer or the equivalent compressed version
   241   // of this pointer type.
   242   const TypeNarrowOop* make_narrowoop() const;
   244   // Special test for register pressure heuristic
   245   bool is_floatingpoint() const;        // True if Float or Double base type
   247   // Do you have memory, directly or through a tuple?
   248   bool has_memory( ) const;
   250   // Are you a pointer type or not?
   251   bool isa_oop_ptr() const;
   253   // TRUE if type is a singleton
   254   virtual bool singleton(void) const;
   256   // TRUE if type is above the lattice centerline, and is therefore vacuous
   257   virtual bool empty(void) const;
   259   // Return a hash for this type.  The hash function is public so ConNode
   260   // (constants) can hash on their constant, which is represented by a Type.
   261   virtual int hash() const;
   263   // Map ideal registers (machine types) to ideal types
   264   static const Type *mreg2type[];
   266   // Printing, statistics
   267   static const char * const msg[lastype]; // Printable strings
   268 #ifndef PRODUCT
   269   void         dump_on(outputStream *st) const;
   270   void         dump() const {
   271     dump_on(tty);
   272   }
   273   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   274   static  void dump_stats();
   275   static  void verify_lastype();          // Check that arrays match type enum
   276 #endif
   277   void typerr(const Type *t) const; // Mixing types error
   279   // Create basic type
   280   static const Type* get_const_basic_type(BasicType type) {
   281     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   282     return _const_basic_type[type];
   283   }
   285   // Mapping to the array element's basic type.
   286   BasicType array_element_basic_type() const;
   288   // Create standard type for a ciType:
   289   static const Type* get_const_type(ciType* type);
   291   // Create standard zero value:
   292   static const Type* get_zero_type(BasicType type) {
   293     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   294     return _zero_type[type];
   295   }
   297   // Report if this is a zero value (not top).
   298   bool is_zero_type() const {
   299     BasicType type = basic_type();
   300     if (type == T_VOID || type >= T_CONFLICT)
   301       return false;
   302     else
   303       return (this == _zero_type[type]);
   304   }
   306   // Convenience common pre-built types.
   307   static const Type *ABIO;
   308   static const Type *BOTTOM;
   309   static const Type *CONTROL;
   310   static const Type *DOUBLE;
   311   static const Type *FLOAT;
   312   static const Type *HALF;
   313   static const Type *MEMORY;
   314   static const Type *MULTI;
   315   static const Type *RETURN_ADDRESS;
   316   static const Type *TOP;
   318   // Mapping from compiler type to VM BasicType
   319   BasicType basic_type() const { return _basic_type[_base]; }
   321   // Mapping from CI type system to compiler type:
   322   static const Type* get_typeflow_type(ciType* type);
   324 private:
   325   // support arrays
   326   static const BasicType _basic_type[];
   327   static const Type*        _zero_type[T_CONFLICT+1];
   328   static const Type* _const_basic_type[T_CONFLICT+1];
   329 };
   331 //------------------------------TypeF------------------------------------------
   332 // Class of Float-Constant Types.
   333 class TypeF : public Type {
   334   TypeF( float f ) : Type(FloatCon), _f(f) {};
   335 public:
   336   virtual bool eq( const Type *t ) const;
   337   virtual int  hash() const;             // Type specific hashing
   338   virtual bool singleton(void) const;    // TRUE if type is a singleton
   339   virtual bool empty(void) const;        // TRUE if type is vacuous
   340 public:
   341   const float _f;               // Float constant
   343   static const TypeF *make(float f);
   345   virtual bool        is_finite() const;  // Has a finite value
   346   virtual bool        is_nan()    const;  // Is not a number (NaN)
   348   virtual const Type *xmeet( const Type *t ) const;
   349   virtual const Type *xdual() const;    // Compute dual right now.
   350   // Convenience common pre-built types.
   351   static const TypeF *ZERO; // positive zero only
   352   static const TypeF *ONE;
   353 #ifndef PRODUCT
   354   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   355 #endif
   356 };
   358 //------------------------------TypeD------------------------------------------
   359 // Class of Double-Constant Types.
   360 class TypeD : public Type {
   361   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   362 public:
   363   virtual bool eq( const Type *t ) const;
   364   virtual int  hash() const;             // Type specific hashing
   365   virtual bool singleton(void) const;    // TRUE if type is a singleton
   366   virtual bool empty(void) const;        // TRUE if type is vacuous
   367 public:
   368   const double _d;              // Double constant
   370   static const TypeD *make(double d);
   372   virtual bool        is_finite() const;  // Has a finite value
   373   virtual bool        is_nan()    const;  // Is not a number (NaN)
   375   virtual const Type *xmeet( const Type *t ) const;
   376   virtual const Type *xdual() const;    // Compute dual right now.
   377   // Convenience common pre-built types.
   378   static const TypeD *ZERO; // positive zero only
   379   static const TypeD *ONE;
   380 #ifndef PRODUCT
   381   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   382 #endif
   383 };
   385 //------------------------------TypeInt----------------------------------------
   386 // Class of integer ranges, the set of integers between a lower bound and an
   387 // upper bound, inclusive.
   388 class TypeInt : public Type {
   389   TypeInt( jint lo, jint hi, int w );
   390 public:
   391   virtual bool eq( const Type *t ) const;
   392   virtual int  hash() const;             // Type specific hashing
   393   virtual bool singleton(void) const;    // TRUE if type is a singleton
   394   virtual bool empty(void) const;        // TRUE if type is vacuous
   395 public:
   396   const jint _lo, _hi;          // Lower bound, upper bound
   397   const short _widen;           // Limit on times we widen this sucker
   399   static const TypeInt *make(jint lo);
   400   // must always specify w
   401   static const TypeInt *make(jint lo, jint hi, int w);
   403   // Check for single integer
   404   int is_con() const { return _lo==_hi; }
   405   bool is_con(int i) const { return is_con() && _lo == i; }
   406   jint get_con() const { assert( is_con(), "" );  return _lo; }
   408   virtual bool        is_finite() const;  // Has a finite value
   410   virtual const Type *xmeet( const Type *t ) const;
   411   virtual const Type *xdual() const;    // Compute dual right now.
   412   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   413   virtual const Type *narrow( const Type *t ) const;
   414   // Do not kill _widen bits.
   415   virtual const Type *filter( const Type *kills ) const;
   416   // Convenience common pre-built types.
   417   static const TypeInt *MINUS_1;
   418   static const TypeInt *ZERO;
   419   static const TypeInt *ONE;
   420   static const TypeInt *BOOL;
   421   static const TypeInt *CC;
   422   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   423   static const TypeInt *CC_GT;  // [1]   == ONE
   424   static const TypeInt *CC_EQ;  // [0]   == ZERO
   425   static const TypeInt *CC_LE;  // [-1,0]
   426   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   427   static const TypeInt *BYTE;
   428   static const TypeInt *UBYTE;
   429   static const TypeInt *CHAR;
   430   static const TypeInt *SHORT;
   431   static const TypeInt *POS;
   432   static const TypeInt *POS1;
   433   static const TypeInt *INT;
   434   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   435 #ifndef PRODUCT
   436   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   437 #endif
   438 };
   441 //------------------------------TypeLong---------------------------------------
   442 // Class of long integer ranges, the set of integers between a lower bound and
   443 // an upper bound, inclusive.
   444 class TypeLong : public Type {
   445   TypeLong( jlong lo, jlong hi, int w );
   446 public:
   447   virtual bool eq( const Type *t ) const;
   448   virtual int  hash() const;             // Type specific hashing
   449   virtual bool singleton(void) const;    // TRUE if type is a singleton
   450   virtual bool empty(void) const;        // TRUE if type is vacuous
   451 public:
   452   const jlong _lo, _hi;         // Lower bound, upper bound
   453   const short _widen;           // Limit on times we widen this sucker
   455   static const TypeLong *make(jlong lo);
   456   // must always specify w
   457   static const TypeLong *make(jlong lo, jlong hi, int w);
   459   // Check for single integer
   460   int is_con() const { return _lo==_hi; }
   461   bool is_con(int i) const { return is_con() && _lo == i; }
   462   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   464   virtual bool        is_finite() const;  // Has a finite value
   466   virtual const Type *xmeet( const Type *t ) const;
   467   virtual const Type *xdual() const;    // Compute dual right now.
   468   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   469   virtual const Type *narrow( const Type *t ) const;
   470   // Do not kill _widen bits.
   471   virtual const Type *filter( const Type *kills ) const;
   472   // Convenience common pre-built types.
   473   static const TypeLong *MINUS_1;
   474   static const TypeLong *ZERO;
   475   static const TypeLong *ONE;
   476   static const TypeLong *POS;
   477   static const TypeLong *LONG;
   478   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   479   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   480 #ifndef PRODUCT
   481   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   482 #endif
   483 };
   485 //------------------------------TypeTuple--------------------------------------
   486 // Class of Tuple Types, essentially type collections for function signatures
   487 // and class layouts.  It happens to also be a fast cache for the HotSpot
   488 // signature types.
   489 class TypeTuple : public Type {
   490   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   491 public:
   492   virtual bool eq( const Type *t ) const;
   493   virtual int  hash() const;             // Type specific hashing
   494   virtual bool singleton(void) const;    // TRUE if type is a singleton
   495   virtual bool empty(void) const;        // TRUE if type is vacuous
   497 public:
   498   const uint          _cnt;              // Count of fields
   499   const Type ** const _fields;           // Array of field types
   501   // Accessors:
   502   uint cnt() const { return _cnt; }
   503   const Type* field_at(uint i) const {
   504     assert(i < _cnt, "oob");
   505     return _fields[i];
   506   }
   507   void set_field_at(uint i, const Type* t) {
   508     assert(i < _cnt, "oob");
   509     _fields[i] = t;
   510   }
   512   static const TypeTuple *make( uint cnt, const Type **fields );
   513   static const TypeTuple *make_range(ciSignature *sig);
   514   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   516   // Subroutine call type with space allocated for argument types
   517   static const Type **fields( uint arg_cnt );
   519   virtual const Type *xmeet( const Type *t ) const;
   520   virtual const Type *xdual() const;    // Compute dual right now.
   521   // Convenience common pre-built types.
   522   static const TypeTuple *IFBOTH;
   523   static const TypeTuple *IFFALSE;
   524   static const TypeTuple *IFTRUE;
   525   static const TypeTuple *IFNEITHER;
   526   static const TypeTuple *LOOPBODY;
   527   static const TypeTuple *MEMBAR;
   528   static const TypeTuple *STORECONDITIONAL;
   529   static const TypeTuple *START_I2C;
   530   static const TypeTuple *INT_PAIR;
   531   static const TypeTuple *LONG_PAIR;
   532 #ifndef PRODUCT
   533   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   534 #endif
   535 };
   537 //------------------------------TypeAry----------------------------------------
   538 // Class of Array Types
   539 class TypeAry : public Type {
   540   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   541     _elem(elem), _size(size) {}
   542 public:
   543   virtual bool eq( const Type *t ) const;
   544   virtual int  hash() const;             // Type specific hashing
   545   virtual bool singleton(void) const;    // TRUE if type is a singleton
   546   virtual bool empty(void) const;        // TRUE if type is vacuous
   548 private:
   549   const Type *_elem;            // Element type of array
   550   const TypeInt *_size;         // Elements in array
   551   friend class TypeAryPtr;
   553 public:
   554   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   556   virtual const Type *xmeet( const Type *t ) const;
   557   virtual const Type *xdual() const;    // Compute dual right now.
   558   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   559 #ifdef ASSERT
   560   // One type is interface, the other is oop
   561   virtual bool interface_vs_oop(const Type *t) const;
   562 #endif
   563 #ifndef PRODUCT
   564   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   565 #endif
   566 };
   568 //------------------------------TypePtr----------------------------------------
   569 // Class of machine Pointer Types: raw data, instances or arrays.
   570 // If the _base enum is AnyPtr, then this refers to all of the above.
   571 // Otherwise the _base will indicate which subset of pointers is affected,
   572 // and the class will be inherited from.
   573 class TypePtr : public Type {
   574   friend class TypeNarrowOop;
   575 public:
   576   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   577 protected:
   578   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   579   virtual bool eq( const Type *t ) const;
   580   virtual int  hash() const;             // Type specific hashing
   581   static const PTR ptr_meet[lastPTR][lastPTR];
   582   static const PTR ptr_dual[lastPTR];
   583   static const char * const ptr_msg[lastPTR];
   585 public:
   586   const int _offset;            // Offset into oop, with TOP & BOT
   587   const PTR _ptr;               // Pointer equivalence class
   589   const int offset() const { return _offset; }
   590   const PTR ptr()    const { return _ptr; }
   592   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   594   // Return a 'ptr' version of this type
   595   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   597   virtual intptr_t get_con() const;
   599   int xadd_offset( intptr_t offset ) const;
   600   virtual const TypePtr *add_offset( intptr_t offset ) const;
   602   virtual bool singleton(void) const;    // TRUE if type is a singleton
   603   virtual bool empty(void) const;        // TRUE if type is vacuous
   604   virtual const Type *xmeet( const Type *t ) const;
   605   int meet_offset( int offset ) const;
   606   int dual_offset( ) const;
   607   virtual const Type *xdual() const;    // Compute dual right now.
   609   // meet, dual and join over pointer equivalence sets
   610   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   611   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   613   // This is textually confusing unless one recalls that
   614   // join(t) == dual()->meet(t->dual())->dual().
   615   PTR join_ptr( const PTR in_ptr ) const {
   616     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   617   }
   619   // Tests for relation to centerline of type lattice:
   620   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   621   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   622   // Convenience common pre-built types.
   623   static const TypePtr *NULL_PTR;
   624   static const TypePtr *NOTNULL;
   625   static const TypePtr *BOTTOM;
   626 #ifndef PRODUCT
   627   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   628 #endif
   629 };
   631 //------------------------------TypeRawPtr-------------------------------------
   632 // Class of raw pointers, pointers to things other than Oops.  Examples
   633 // include the stack pointer, top of heap, card-marking area, handles, etc.
   634 class TypeRawPtr : public TypePtr {
   635 protected:
   636   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   637 public:
   638   virtual bool eq( const Type *t ) const;
   639   virtual int  hash() const;     // Type specific hashing
   641   const address _bits;          // Constant value, if applicable
   643   static const TypeRawPtr *make( PTR ptr );
   644   static const TypeRawPtr *make( address bits );
   646   // Return a 'ptr' version of this type
   647   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   649   virtual intptr_t get_con() const;
   651   virtual const TypePtr *add_offset( intptr_t offset ) const;
   653   virtual const Type *xmeet( const Type *t ) const;
   654   virtual const Type *xdual() const;    // Compute dual right now.
   655   // Convenience common pre-built types.
   656   static const TypeRawPtr *BOTTOM;
   657   static const TypeRawPtr *NOTNULL;
   658 #ifndef PRODUCT
   659   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   660 #endif
   661 };
   663 //------------------------------TypeOopPtr-------------------------------------
   664 // Some kind of oop (Java pointer), either klass or instance or array.
   665 class TypeOopPtr : public TypePtr {
   666 protected:
   667   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   668 public:
   669   virtual bool eq( const Type *t ) const;
   670   virtual int  hash() const;             // Type specific hashing
   671   virtual bool singleton(void) const;    // TRUE if type is a singleton
   672   enum {
   673    InstanceTop = -1,   // undefined instance
   674    InstanceBot = 0     // any possible instance
   675   };
   676 protected:
   678   // Oop is NULL, unless this is a constant oop.
   679   ciObject*     _const_oop;   // Constant oop
   680   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   681   ciKlass*      _klass;       // Klass object
   682   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   683   bool          _klass_is_exact;
   684   bool          _is_ptr_to_narrowoop;
   686   // If not InstanceTop or InstanceBot, indicates that this is
   687   // a particular instance of this type which is distinct.
   688   // This is the the node index of the allocation node creating this instance.
   689   int           _instance_id;
   691   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   693   int dual_instance_id() const;
   694   int meet_instance_id(int uid) const;
   696 public:
   697   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   698   // Respects UseUniqueSubclasses.
   699   // If the klass is final, the resulting type will be exact.
   700   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   701     return make_from_klass_common(klass, true, false);
   702   }
   703   // Same as before, but will produce an exact type, even if
   704   // the klass is not final, as long as it has exactly one implementation.
   705   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   706     return make_from_klass_common(klass, true, true);
   707   }
   708   // Same as before, but does not respects UseUniqueSubclasses.
   709   // Use this only for creating array element types.
   710   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   711     return make_from_klass_common(klass, false, false);
   712   }
   713   // Creates a singleton type given an object.
   714   // If the object cannot be rendered as a constant,
   715   // may return a non-singleton type.
   716   // If require_constant, produce a NULL if a singleton is not possible.
   717   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
   719   // Make a generic (unclassed) pointer to an oop.
   720   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   722   ciObject* const_oop()    const { return _const_oop; }
   723   virtual ciKlass* klass() const { return _klass;     }
   724   bool klass_is_exact()    const { return _klass_is_exact; }
   726   // Returns true if this pointer points at memory which contains a
   727   // compressed oop references.
   728   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   730   bool is_known_instance()       const { return _instance_id > 0; }
   731   int  instance_id()             const { return _instance_id; }
   732   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   734   virtual intptr_t get_con() const;
   736   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   738   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   740   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   742   // corresponding pointer to klass, for a given instance
   743   const TypeKlassPtr* as_klass_type() const;
   745   virtual const TypePtr *add_offset( intptr_t offset ) const;
   747   virtual const Type *xmeet( const Type *t ) const;
   748   virtual const Type *xdual() const;    // Compute dual right now.
   750   // Do not allow interface-vs.-noninterface joins to collapse to top.
   751   virtual const Type *filter( const Type *kills ) const;
   753   // Convenience common pre-built type.
   754   static const TypeOopPtr *BOTTOM;
   755 #ifndef PRODUCT
   756   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   757 #endif
   758 };
   760 //------------------------------TypeInstPtr------------------------------------
   761 // Class of Java object pointers, pointing either to non-array Java instances
   762 // or to a klassOop (including array klasses).
   763 class TypeInstPtr : public TypeOopPtr {
   764   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   765   virtual bool eq( const Type *t ) const;
   766   virtual int  hash() const;             // Type specific hashing
   768   ciSymbol*  _name;        // class name
   770  public:
   771   ciSymbol* name()         const { return _name; }
   773   bool  is_loaded() const { return _klass->is_loaded(); }
   775   // Make a pointer to a constant oop.
   776   static const TypeInstPtr *make(ciObject* o) {
   777     return make(TypePtr::Constant, o->klass(), true, o, 0);
   778   }
   780   // Make a pointer to a constant oop with offset.
   781   static const TypeInstPtr *make(ciObject* o, int offset) {
   782     return make(TypePtr::Constant, o->klass(), true, o, offset);
   783   }
   785   // Make a pointer to some value of type klass.
   786   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   787     return make(ptr, klass, false, NULL, 0);
   788   }
   790   // Make a pointer to some non-polymorphic value of exactly type klass.
   791   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   792     return make(ptr, klass, true, NULL, 0);
   793   }
   795   // Make a pointer to some value of type klass with offset.
   796   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   797     return make(ptr, klass, false, NULL, offset);
   798   }
   800   // Make a pointer to an oop.
   801   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   803   // If this is a java.lang.Class constant, return the type for it or NULL.
   804   // Pass to Type::get_const_type to turn it to a type, which will usually
   805   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   806   ciType* java_mirror_type() const;
   808   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   810   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   812   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   814   virtual const TypePtr *add_offset( intptr_t offset ) const;
   816   virtual const Type *xmeet( const Type *t ) const;
   817   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   818   virtual const Type *xdual() const;    // Compute dual right now.
   820   // Convenience common pre-built types.
   821   static const TypeInstPtr *NOTNULL;
   822   static const TypeInstPtr *BOTTOM;
   823   static const TypeInstPtr *MIRROR;
   824   static const TypeInstPtr *MARK;
   825   static const TypeInstPtr *KLASS;
   826 #ifndef PRODUCT
   827   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   828 #endif
   829 };
   831 //------------------------------TypeAryPtr-------------------------------------
   832 // Class of Java array pointers
   833 class TypeAryPtr : public TypeOopPtr {
   834   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
   835 #ifdef ASSERT
   836     if (k != NULL) {
   837       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   838       ciKlass* ck = compute_klass(true);
   839       if (UseNewCode || k != ck) {
   840         this->dump(); tty->cr();
   841         tty->print(" k: ");
   842         k->print(); tty->cr();
   843         tty->print("ck: ");
   844         if (ck != NULL) ck->print();
   845         else tty->print("<NULL>");
   846         tty->cr();
   847         assert(false, "unexpected TypeAryPtr::_klass");
   848       }
   849     }
   850 #endif
   851   }
   852   virtual bool eq( const Type *t ) const;
   853   virtual int hash() const;     // Type specific hashing
   854   const TypeAry *_ary;          // Array we point into
   856   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   858 public:
   859   // Accessors
   860   ciKlass* klass() const;
   861   const TypeAry* ary() const  { return _ary; }
   862   const Type*    elem() const { return _ary->_elem; }
   863   const TypeInt* size() const { return _ary->_size; }
   865   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   866   // Constant pointer to array
   867   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   869   // Return a 'ptr' version of this type
   870   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   872   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   874   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   876   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   877   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   879   virtual bool empty(void) const;        // TRUE if type is vacuous
   880   virtual const TypePtr *add_offset( intptr_t offset ) const;
   882   virtual const Type *xmeet( const Type *t ) const;
   883   virtual const Type *xdual() const;    // Compute dual right now.
   885   // Convenience common pre-built types.
   886   static const TypeAryPtr *RANGE;
   887   static const TypeAryPtr *OOPS;
   888   static const TypeAryPtr *NARROWOOPS;
   889   static const TypeAryPtr *BYTES;
   890   static const TypeAryPtr *SHORTS;
   891   static const TypeAryPtr *CHARS;
   892   static const TypeAryPtr *INTS;
   893   static const TypeAryPtr *LONGS;
   894   static const TypeAryPtr *FLOATS;
   895   static const TypeAryPtr *DOUBLES;
   896   // selects one of the above:
   897   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   898     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   899     return _array_body_type[elem];
   900   }
   901   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   902   // sharpen the type of an int which is used as an array size
   903 #ifdef ASSERT
   904   // One type is interface, the other is oop
   905   virtual bool interface_vs_oop(const Type *t) const;
   906 #endif
   907 #ifndef PRODUCT
   908   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   909 #endif
   910 };
   912 //------------------------------TypeKlassPtr-----------------------------------
   913 // Class of Java Klass pointers
   914 class TypeKlassPtr : public TypeOopPtr {
   915   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   917   virtual bool eq( const Type *t ) const;
   918   virtual int hash() const;             // Type specific hashing
   920 public:
   921   ciSymbol* name()  const { return _klass->name(); }
   923   bool  is_loaded() const { return _klass->is_loaded(); }
   925   // ptr to klass 'k'
   926   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   927   // ptr to klass 'k' with offset
   928   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   929   // ptr to klass 'k' or sub-klass
   930   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   932   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   934   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   936   // corresponding pointer to instance, for a given class
   937   const TypeOopPtr* as_instance_type() const;
   939   virtual const TypePtr *add_offset( intptr_t offset ) const;
   940   virtual const Type    *xmeet( const Type *t ) const;
   941   virtual const Type    *xdual() const;      // Compute dual right now.
   943   // Convenience common pre-built types.
   944   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   945   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   946 #ifndef PRODUCT
   947   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   948 #endif
   949 };
   951 //------------------------------TypeNarrowOop----------------------------------
   952 // A compressed reference to some kind of Oop.  This type wraps around
   953 // a preexisting TypeOopPtr and forwards most of it's operations to
   954 // the underlying type.  It's only real purpose is to track the
   955 // oopness of the compressed oop value when we expose the conversion
   956 // between the normal and the compressed form.
   957 class TypeNarrowOop : public Type {
   958 protected:
   959   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
   961   TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
   962     _ptrtype(ptrtype) {
   963     assert(ptrtype->offset() == 0 ||
   964            ptrtype->offset() == OffsetBot ||
   965            ptrtype->offset() == OffsetTop, "no real offsets");
   966   }
   967 public:
   968   virtual bool eq( const Type *t ) const;
   969   virtual int  hash() const;             // Type specific hashing
   970   virtual bool singleton(void) const;    // TRUE if type is a singleton
   972   virtual const Type *xmeet( const Type *t ) const;
   973   virtual const Type *xdual() const;    // Compute dual right now.
   975   virtual intptr_t get_con() const;
   977   // Do not allow interface-vs.-noninterface joins to collapse to top.
   978   virtual const Type *filter( const Type *kills ) const;
   980   virtual bool empty(void) const;        // TRUE if type is vacuous
   982   static const TypeNarrowOop *make( const TypePtr* type);
   984   static const TypeNarrowOop* make_from_constant(ciObject* con) {
   985     return make(TypeOopPtr::make_from_constant(con));
   986   }
   988   // returns the equivalent ptr type for this compressed pointer
   989   const TypePtr *get_ptrtype() const {
   990     return _ptrtype;
   991   }
   993   static const TypeNarrowOop *BOTTOM;
   994   static const TypeNarrowOop *NULL_PTR;
   996 #ifndef PRODUCT
   997   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   998 #endif
   999 };
  1001 //------------------------------TypeFunc---------------------------------------
  1002 // Class of Array Types
  1003 class TypeFunc : public Type {
  1004   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1005   virtual bool eq( const Type *t ) const;
  1006   virtual int  hash() const;             // Type specific hashing
  1007   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1008   virtual bool empty(void) const;        // TRUE if type is vacuous
  1009 public:
  1010   // Constants are shared among ADLC and VM
  1011   enum { Control    = AdlcVMDeps::Control,
  1012          I_O        = AdlcVMDeps::I_O,
  1013          Memory     = AdlcVMDeps::Memory,
  1014          FramePtr   = AdlcVMDeps::FramePtr,
  1015          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1016          Parms      = AdlcVMDeps::Parms
  1017   };
  1019   const TypeTuple* const _domain;     // Domain of inputs
  1020   const TypeTuple* const _range;      // Range of results
  1022   // Accessors:
  1023   const TypeTuple* domain() const { return _domain; }
  1024   const TypeTuple* range()  const { return _range; }
  1026   static const TypeFunc *make(ciMethod* method);
  1027   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1028   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1030   virtual const Type *xmeet( const Type *t ) const;
  1031   virtual const Type *xdual() const;    // Compute dual right now.
  1033   BasicType return_type() const;
  1035 #ifndef PRODUCT
  1036   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1037   void print_flattened() const; // Print a 'flattened' signature
  1038 #endif
  1039   // Convenience common pre-built types.
  1040 };
  1042 //------------------------------accessors--------------------------------------
  1043 inline bool Type::is_ptr_to_narrowoop() const {
  1044 #ifdef _LP64
  1045   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1046 #else
  1047   return false;
  1048 #endif
  1051 inline float Type::getf() const {
  1052   assert( _base == FloatCon, "Not a FloatCon" );
  1053   return ((TypeF*)this)->_f;
  1056 inline double Type::getd() const {
  1057   assert( _base == DoubleCon, "Not a DoubleCon" );
  1058   return ((TypeD*)this)->_d;
  1061 inline const TypeF *Type::is_float_constant() const {
  1062   assert( _base == FloatCon, "Not a Float" );
  1063   return (TypeF*)this;
  1066 inline const TypeF *Type::isa_float_constant() const {
  1067   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1070 inline const TypeD *Type::is_double_constant() const {
  1071   assert( _base == DoubleCon, "Not a Double" );
  1072   return (TypeD*)this;
  1075 inline const TypeD *Type::isa_double_constant() const {
  1076   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1079 inline const TypeInt *Type::is_int() const {
  1080   assert( _base == Int, "Not an Int" );
  1081   return (TypeInt*)this;
  1084 inline const TypeInt *Type::isa_int() const {
  1085   return ( _base == Int ? (TypeInt*)this : NULL);
  1088 inline const TypeLong *Type::is_long() const {
  1089   assert( _base == Long, "Not a Long" );
  1090   return (TypeLong*)this;
  1093 inline const TypeLong *Type::isa_long() const {
  1094   return ( _base == Long ? (TypeLong*)this : NULL);
  1097 inline const TypeTuple *Type::is_tuple() const {
  1098   assert( _base == Tuple, "Not a Tuple" );
  1099   return (TypeTuple*)this;
  1102 inline const TypeAry *Type::is_ary() const {
  1103   assert( _base == Array , "Not an Array" );
  1104   return (TypeAry*)this;
  1107 inline const TypePtr *Type::is_ptr() const {
  1108   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1109   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1110   return (TypePtr*)this;
  1113 inline const TypePtr *Type::isa_ptr() const {
  1114   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1115   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1118 inline const TypeOopPtr *Type::is_oopptr() const {
  1119   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1120   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1121   return (TypeOopPtr*)this;
  1124 inline const TypeOopPtr *Type::isa_oopptr() const {
  1125   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1126   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1129 inline const TypeRawPtr *Type::isa_rawptr() const {
  1130   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1133 inline const TypeRawPtr *Type::is_rawptr() const {
  1134   assert( _base == RawPtr, "Not a raw pointer" );
  1135   return (TypeRawPtr*)this;
  1138 inline const TypeInstPtr *Type::isa_instptr() const {
  1139   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1142 inline const TypeInstPtr *Type::is_instptr() const {
  1143   assert( _base == InstPtr, "Not an object pointer" );
  1144   return (TypeInstPtr*)this;
  1147 inline const TypeAryPtr *Type::isa_aryptr() const {
  1148   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1151 inline const TypeAryPtr *Type::is_aryptr() const {
  1152   assert( _base == AryPtr, "Not an array pointer" );
  1153   return (TypeAryPtr*)this;
  1156 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1157   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1158   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1159   return (TypeNarrowOop*)this;
  1162 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1163   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1164   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1167 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1168   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1171 inline const TypeKlassPtr *Type::is_klassptr() const {
  1172   assert( _base == KlassPtr, "Not a klass pointer" );
  1173   return (TypeKlassPtr*)this;
  1176 inline const TypePtr* Type::make_ptr() const {
  1177   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1178                                 (isa_ptr() ? is_ptr() : NULL);
  1181 inline const TypeOopPtr* Type::make_oopptr() const {
  1182   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1185 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1186   return (_base == NarrowOop) ? is_narrowoop() :
  1187                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1190 inline bool Type::is_floatingpoint() const {
  1191   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1192       (_base == DoubleCon) || (_base == DoubleBot) )
  1193     return true;
  1194   return false;
  1198 // ===============================================================
  1199 // Things that need to be 64-bits in the 64-bit build but
  1200 // 32-bits in the 32-bit build.  Done this way to get full
  1201 // optimization AND strong typing.
  1202 #ifdef _LP64
  1204 // For type queries and asserts
  1205 #define is_intptr_t  is_long
  1206 #define isa_intptr_t isa_long
  1207 #define find_intptr_t_type find_long_type
  1208 #define find_intptr_t_con  find_long_con
  1209 #define TypeX        TypeLong
  1210 #define Type_X       Type::Long
  1211 #define TypeX_X      TypeLong::LONG
  1212 #define TypeX_ZERO   TypeLong::ZERO
  1213 // For 'ideal_reg' machine registers
  1214 #define Op_RegX      Op_RegL
  1215 // For phase->intcon variants
  1216 #define MakeConX     longcon
  1217 #define ConXNode     ConLNode
  1218 // For array index arithmetic
  1219 #define MulXNode     MulLNode
  1220 #define AndXNode     AndLNode
  1221 #define OrXNode      OrLNode
  1222 #define CmpXNode     CmpLNode
  1223 #define SubXNode     SubLNode
  1224 #define LShiftXNode  LShiftLNode
  1225 // For object size computation:
  1226 #define AddXNode     AddLNode
  1227 #define RShiftXNode  RShiftLNode
  1228 // For card marks and hashcodes
  1229 #define URShiftXNode URShiftLNode
  1230 // UseOptoBiasInlining
  1231 #define XorXNode     XorLNode
  1232 #define StoreXConditionalNode StoreLConditionalNode
  1233 // Opcodes
  1234 #define Op_LShiftX   Op_LShiftL
  1235 #define Op_AndX      Op_AndL
  1236 #define Op_AddX      Op_AddL
  1237 #define Op_SubX      Op_SubL
  1238 #define Op_XorX      Op_XorL
  1239 #define Op_URShiftX  Op_URShiftL
  1240 // conversions
  1241 #define ConvI2X(x)   ConvI2L(x)
  1242 #define ConvL2X(x)   (x)
  1243 #define ConvX2I(x)   ConvL2I(x)
  1244 #define ConvX2L(x)   (x)
  1246 #else
  1248 // For type queries and asserts
  1249 #define is_intptr_t  is_int
  1250 #define isa_intptr_t isa_int
  1251 #define find_intptr_t_type find_int_type
  1252 #define find_intptr_t_con  find_int_con
  1253 #define TypeX        TypeInt
  1254 #define Type_X       Type::Int
  1255 #define TypeX_X      TypeInt::INT
  1256 #define TypeX_ZERO   TypeInt::ZERO
  1257 // For 'ideal_reg' machine registers
  1258 #define Op_RegX      Op_RegI
  1259 // For phase->intcon variants
  1260 #define MakeConX     intcon
  1261 #define ConXNode     ConINode
  1262 // For array index arithmetic
  1263 #define MulXNode     MulINode
  1264 #define AndXNode     AndINode
  1265 #define OrXNode      OrINode
  1266 #define CmpXNode     CmpINode
  1267 #define SubXNode     SubINode
  1268 #define LShiftXNode  LShiftINode
  1269 // For object size computation:
  1270 #define AddXNode     AddINode
  1271 #define RShiftXNode  RShiftINode
  1272 // For card marks and hashcodes
  1273 #define URShiftXNode URShiftINode
  1274 // UseOptoBiasInlining
  1275 #define XorXNode     XorINode
  1276 #define StoreXConditionalNode StoreIConditionalNode
  1277 // Opcodes
  1278 #define Op_LShiftX   Op_LShiftI
  1279 #define Op_AndX      Op_AndI
  1280 #define Op_AddX      Op_AddI
  1281 #define Op_SubX      Op_SubI
  1282 #define Op_XorX      Op_XorI
  1283 #define Op_URShiftX  Op_URShiftI
  1284 // conversions
  1285 #define ConvI2X(x)   (x)
  1286 #define ConvL2X(x)   ConvL2I(x)
  1287 #define ConvX2I(x)   (x)
  1288 #define ConvX2L(x)   ConvI2L(x)
  1290 #endif

mercurial