src/share/vm/code/relocInfo.hpp

Tue, 15 Sep 2009 21:53:47 -0700

author
jrose
date
Tue, 15 Sep 2009 21:53:47 -0700
changeset 1424
148e5441d916
parent 772
9ee9cf798b59
child 1907
c18cbe5936b8
child 1918
1a5913bf5e19
permissions
-rw-r--r--

6863023: need non-perm oops in code cache for JSR 292
Summary: Make a special root-list for those few nmethods which might contain non-perm oops.
Reviewed-by: twisti, kvn, never, jmasa, ysr

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Types in this file:
    26 //    relocInfo
    27 //      One element of an array of halfwords encoding compressed relocations.
    28 //      Also, the source of relocation types (relocInfo::oop_type, ...).
    29 //    Relocation
    30 //      A flyweight object representing a single relocation.
    31 //      It is fully unpacked from the compressed relocation array.
    32 //    oop_Relocation, ... (subclasses of Relocation)
    33 //      The location of some type-specific operations (oop_addr, ...).
    34 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
    35 //    RelocationHolder
    36 //      A ValueObj type which acts as a union holding a Relocation object.
    37 //      Represents a relocation spec passed into a CodeBuffer during assembly.
    38 //    RelocIterator
    39 //      A StackObj which iterates over the relocations associated with
    40 //      a range of code addresses.  Can be used to operate a copy of code.
    41 //    PatchingRelocIterator
    42 //      Specialized subtype of RelocIterator which removes breakpoints
    43 //      temporarily during iteration, then restores them.
    44 //    BoundRelocation
    45 //      An _internal_ type shared by packers and unpackers of relocations.
    46 //      It pastes together a RelocationHolder with some pointers into
    47 //      code and relocInfo streams.
    50 // Notes on relocType:
    51 //
    52 // These hold enough information to read or write a value embedded in
    53 // the instructions of an CodeBlob.  They're used to update:
    54 //
    55 //   1) embedded oops     (isOop()          == true)
    56 //   2) inline caches     (isIC()           == true)
    57 //   3) runtime calls     (isRuntimeCall()  == true)
    58 //   4) internal word ref (isInternalWord() == true)
    59 //   5) external word ref (isExternalWord() == true)
    60 //
    61 // when objects move (GC) or if code moves (compacting the code heap).
    62 // They are also used to patch the code (if a call site must change)
    63 //
    64 // A relocInfo is represented in 16 bits:
    65 //   4 bits indicating the relocation type
    66 //  12 bits indicating the offset from the previous relocInfo address
    67 //
    68 // The offsets accumulate along the relocInfo stream to encode the
    69 // address within the CodeBlob, which is named RelocIterator::addr().
    70 // The address of a particular relocInfo always points to the first
    71 // byte of the relevant instruction (and not to any of its subfields
    72 // or embedded immediate constants).
    73 //
    74 // The offset value is scaled appropriately for the target machine.
    75 // (See relocInfo_<arch>.hpp for the offset scaling.)
    76 //
    77 // On some machines, there may also be a "format" field which may provide
    78 // additional information about the format of the instruction stream
    79 // at the corresponding code address.  The format value is usually zero.
    80 // Any machine (such as Intel) whose instructions can sometimes contain
    81 // more than one relocatable constant needs format codes to distinguish
    82 // which operand goes with a given relocation.
    83 //
    84 // If the target machine needs N format bits, the offset has 12-N bits,
    85 // the format is encoded between the offset and the type, and the
    86 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
    87 //
    88 // If the type is "data_prefix_tag" then the offset bits are further encoded,
    89 // and in fact represent not a code-stream offset but some inline data.
    90 // The data takes the form of a counted sequence of halfwords, which
    91 // precedes the actual relocation record.  (Clients never see it directly.)
    92 // The interpetation of this extra data depends on the relocation type.
    93 //
    94 // On machines that have 32-bit immediate fields, there is usually
    95 // little need for relocation "prefix" data, because the instruction stream
    96 // is a perfectly reasonable place to store the value.  On machines in
    97 // which 32-bit values must be "split" across instructions, the relocation
    98 // data is the "true" specification of the value, which is then applied
    99 // to some field of the instruction (22 or 13 bits, on SPARC).
   100 //
   101 // Whenever the location of the CodeBlob changes, any PC-relative
   102 // relocations, and any internal_word_type relocations, must be reapplied.
   103 // After the GC runs, oop_type relocations must be reapplied.
   104 //
   105 //
   106 // Here are meanings of the types:
   107 //
   108 // relocInfo::none -- a filler record
   109 //   Value:  none
   110 //   Instruction: The corresponding code address is ignored
   111 //   Data:  Any data prefix and format code are ignored
   112 //   (This means that any relocInfo can be disabled by setting
   113 //   its type to none.  See relocInfo::remove.)
   114 //
   115 // relocInfo::oop_type -- a reference to an oop
   116 //   Value:  an oop, or else the address (handle) of an oop
   117 //   Instruction types: memory (load), set (load address)
   118 //   Data:  []       an oop stored in 4 bytes of instruction
   119 //          [n]      n is the index of an oop in the CodeBlob's oop pool
   120 //          [[N]n l] and l is a byte offset to be applied to the oop
   121 //          [Nn Ll]  both index and offset may be 32 bits if necessary
   122 //   Here is a special hack, used only by the old compiler:
   123 //          [[N]n 00] the value is the __address__ of the nth oop in the pool
   124 //   (Note that the offset allows optimal references to class variables.)
   125 //
   126 // relocInfo::internal_word_type -- an address within the same CodeBlob
   127 // relocInfo::section_word_type -- same, but can refer to another section
   128 //   Value:  an address in the CodeBlob's code or constants section
   129 //   Instruction types: memory (load), set (load address)
   130 //   Data:  []     stored in 4 bytes of instruction
   131 //          [[L]l] a relative offset (see [About Offsets] below)
   132 //   In the case of section_word_type, the offset is relative to a section
   133 //   base address, and the section number (e.g., SECT_INSTS) is encoded
   134 //   into the low two bits of the offset L.
   135 //
   136 // relocInfo::external_word_type -- a fixed address in the runtime system
   137 //   Value:  an address
   138 //   Instruction types: memory (load), set (load address)
   139 //   Data:  []   stored in 4 bytes of instruction
   140 //          [n]  the index of a "well-known" stub (usual case on RISC)
   141 //          [Ll] a 32-bit address
   142 //
   143 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
   144 //   Value:  an address
   145 //   Instruction types: PC-relative call (or a PC-relative branch)
   146 //   Data:  []   stored in 4 bytes of instruction
   147 //
   148 // relocInfo::static_call_type -- a static call
   149 //   Value:  an CodeBlob, a stub, or a fixup routine
   150 //   Instruction types: a call
   151 //   Data:  []
   152 //   The identity of the callee is extracted from debugging information.
   153 //   //%note reloc_3
   154 //
   155 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
   156 //                                 cache)
   157 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
   158 //   Instruction types: a call, plus some associated set-oop instructions
   159 //   Data:  []       the associated set-oops are adjacent to the call
   160 //          [n]      n is a relative offset to the first set-oop
   161 //          [[N]n l] and l is a limit within which the set-oops occur
   162 //          [Nn Ll]  both n and l may be 32 bits if necessary
   163 //   The identity of the callee is extracted from debugging information.
   164 //
   165 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
   166 //
   167 //    Same info as a static_call_type. We use a special type, so the handling of
   168 //    virtuals and statics are separated.
   169 //
   170 //
   171 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
   172 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
   173 //   exclusively to the IC call, which can be patched along with the call.
   174 //
   175 //   The locations of any other set-oops are found by searching the relocation
   176 //   information starting at the first set-oop, and continuing until all
   177 //   relocations up through l have been inspected.  The value l is another
   178 //   relative offset.  (Both n and l are relative to the call's first byte.)
   179 //
   180 //   The limit l of the search is exclusive.  However, if it points within
   181 //   the call (e.g., offset zero), it is adjusted to point after the call and
   182 //   any associated machine-specific delay slot.
   183 //
   184 //   Since the offsets could be as wide as 32-bits, these conventions
   185 //   put no restrictions whatever upon code reorganization.
   186 //
   187 //   The compiler is responsible for ensuring that transition from a clean
   188 //   state to a monomorphic compiled state is MP-safe.  This implies that
   189 //   the system must respond well to intermediate states where a random
   190 //   subset of the set-oops has been correctly from the clean state
   191 //   upon entry to the VEP of the compiled method.  In the case of a
   192 //   machine (Intel) with a single set-oop instruction, the 32-bit
   193 //   immediate field must not straddle a unit of memory coherence.
   194 //   //%note reloc_3
   195 //
   196 // relocInfo::breakpoint_type -- a conditional breakpoint in the code
   197 //   Value:  none
   198 //   Instruction types: any whatsoever
   199 //   Data:  [b [T]t  i...]
   200 //   The b is a bit-packed word representing the breakpoint's attributes.
   201 //   The t is a target address which the breakpoint calls (when it is enabled).
   202 //   The i... is a place to store one or two instruction words overwritten
   203 //   by a trap, so that the breakpoint may be subsequently removed.
   204 //
   205 // relocInfo::static_stub_type -- an extra stub for each static_call_type
   206 //   Value:  none
   207 //   Instruction types: a virtual call:  { set_oop; jump; }
   208 //   Data:  [[N]n]  the offset of the associated static_call reloc
   209 //   This stub becomes the target of a static call which must be upgraded
   210 //   to a virtual call (because the callee is interpreted).
   211 //   See [About Offsets] below.
   212 //   //%note reloc_2
   213 //
   214 // For example:
   215 //
   216 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
   217 //   ------------                               ----    -----------
   218 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
   219 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
   220 // add R2, 1, R2
   221 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
   222 //%note reloc_1
   223 //
   224 // This uses 4 instruction words, 8 relocation halfwords,
   225 // and an entry (which is sharable) in the CodeBlob's oop pool,
   226 // for a total of 36 bytes.
   227 //
   228 // Note that the compiler is responsible for ensuring the "fldOffset" when
   229 // added to "%lo(myObject)" does not overflow the immediate fields of the
   230 // memory instructions.
   231 //
   232 //
   233 // [About Offsets] Relative offsets are supplied to this module as
   234 // positive byte offsets, but they may be internally stored scaled
   235 // and/or negated, depending on what is most compact for the target
   236 // system.  Since the object pointed to by the offset typically
   237 // precedes the relocation address, it is profitable to store
   238 // these negative offsets as positive numbers, but this decision
   239 // is internal to the relocation information abstractions.
   240 //
   242 class Relocation;
   243 class CodeBuffer;
   244 class CodeSection;
   245 class RelocIterator;
   247 class relocInfo VALUE_OBJ_CLASS_SPEC {
   248   friend class RelocIterator;
   249  public:
   250   enum relocType {
   251     none                    =  0, // Used when no relocation should be generated
   252     oop_type                =  1, // embedded oop
   253     virtual_call_type       =  2, // a standard inline cache call for a virtual send
   254     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
   255     static_call_type        =  4, // a static send
   256     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
   257     runtime_call_type       =  6, // call to fixed external routine
   258     external_word_type      =  7, // reference to fixed external address
   259     internal_word_type      =  8, // reference within the current code blob
   260     section_word_type       =  9, // internal, but a cross-section reference
   261     poll_type               = 10, // polling instruction for safepoints
   262     poll_return_type        = 11, // polling instruction for safepoints at return
   263     breakpoint_type         = 12, // an initialization barrier or safepoint
   264     yet_unused_type         = 13, // Still unused
   265     yet_unused_type_2       = 14, // Still unused
   266     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
   267     type_mask               = 15  // A mask which selects only the above values
   268   };
   270  protected:
   271   unsigned short _value;
   273   enum RawBitsToken { RAW_BITS };
   274   relocInfo(relocType type, RawBitsToken ignore, int bits)
   275     : _value((type << nontype_width) + bits) { }
   277   relocInfo(relocType type, RawBitsToken ignore, int off, int f)
   278     : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
   280  public:
   281   // constructor
   282   relocInfo(relocType type, int offset, int format = 0)
   283 #ifndef ASSERT
   284   {
   285     (*this) = relocInfo(type, RAW_BITS, offset, format);
   286   }
   287 #else
   288   // Put a bunch of assertions out-of-line.
   289   ;
   290 #endif
   292   #define APPLY_TO_RELOCATIONS(visitor) \
   293     visitor(oop) \
   294     visitor(virtual_call) \
   295     visitor(opt_virtual_call) \
   296     visitor(static_call) \
   297     visitor(static_stub) \
   298     visitor(runtime_call) \
   299     visitor(external_word) \
   300     visitor(internal_word) \
   301     visitor(poll) \
   302     visitor(poll_return) \
   303     visitor(breakpoint) \
   304     visitor(section_word) \
   307  public:
   308   enum {
   309     value_width             = sizeof(unsigned short) * BitsPerByte,
   310     type_width              = 4,   // == log2(type_mask+1)
   311     nontype_width           = value_width - type_width,
   312     datalen_width           = nontype_width-1,
   313     datalen_tag             = 1 << datalen_width,  // or-ed into _value
   314     datalen_limit           = 1 << datalen_width,
   315     datalen_mask            = (1 << datalen_width)-1
   316   };
   318   // accessors
   319  public:
   320   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
   321   int  format()           const { return format_mask==0? 0: format_mask &
   322                                          ((unsigned)_value >> offset_width); }
   323   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
   324                                   return (_value & offset_mask)*offset_unit; }
   326  protected:
   327   const short* data()     const { assert(is_datalen(), "must have data");
   328                                   return (const short*)(this + 1); }
   329   int          datalen()  const { assert(is_datalen(), "must have data");
   330                                   return (_value & datalen_mask); }
   331   int         immediate() const { assert(is_immediate(), "must have immed");
   332                                   return (_value & datalen_mask); }
   333  public:
   334   static int addr_unit()        { return offset_unit; }
   335   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
   337   void set_type(relocType type);
   338   void set_format(int format);
   340   void remove() { set_type(none); }
   342  protected:
   343   bool is_none()                const { return type() == none; }
   344   bool is_prefix()              const { return type() == data_prefix_tag; }
   345   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
   346                                         return (_value & datalen_tag) != 0; }
   347   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
   348                                         return (_value & datalen_tag) == 0; }
   350  public:
   351   // Occasionally records of type relocInfo::none will appear in the stream.
   352   // We do not bother to filter these out, but clients should ignore them.
   353   // These records serve as "filler" in three ways:
   354   //  - to skip large spans of unrelocated code (this is rare)
   355   //  - to pad out the relocInfo array to the required oop alignment
   356   //  - to disable old relocation information which is no longer applicable
   358   inline friend relocInfo filler_relocInfo();
   360   // Every non-prefix relocation may be preceded by at most one prefix,
   361   // which supplies 1 or more halfwords of associated data.  Conventionally,
   362   // an int is represented by 0, 1, or 2 halfwords, depending on how
   363   // many bits are required to represent the value.  (In addition,
   364   // if the sole halfword is a 10-bit unsigned number, it is made
   365   // "immediate" in the prefix header word itself.  This optimization
   366   // is invisible outside this module.)
   368   inline friend relocInfo prefix_relocInfo(int datalen = 0);
   370  protected:
   371   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
   372   static relocInfo immediate_relocInfo(int data0) {
   373     assert(fits_into_immediate(data0), "data0 in limits");
   374     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
   375   }
   376   static bool fits_into_immediate(int data0) {
   377     return (data0 >= 0 && data0 < datalen_limit);
   378   }
   380  public:
   381   // Support routines for compilers.
   383   // This routine takes an infant relocInfo (unprefixed) and
   384   // edits in its prefix, if any.  It also updates dest.locs_end.
   385   void initialize(CodeSection* dest, Relocation* reloc);
   387   // This routine updates a prefix and returns the limit pointer.
   388   // It tries to compress the prefix from 32 to 16 bits, and if
   389   // successful returns a reduced "prefix_limit" pointer.
   390   relocInfo* finish_prefix(short* prefix_limit);
   392   // bit-packers for the data array:
   394   // As it happens, the bytes within the shorts are ordered natively,
   395   // but the shorts within the word are ordered big-endian.
   396   // This is an arbitrary choice, made this way mainly to ease debugging.
   397   static int data0_from_int(jint x)         { return x >> value_width; }
   398   static int data1_from_int(jint x)         { return (short)x; }
   399   static jint jint_from_data(short* data) {
   400     return (data[0] << value_width) + (unsigned short)data[1];
   401   }
   403   static jint short_data_at(int n, short* data, int datalen) {
   404     return datalen > n ? data[n] : 0;
   405   }
   407   static jint jint_data_at(int n, short* data, int datalen) {
   408     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
   409   }
   411   // Update methods for relocation information
   412   // (since code is dynamically patched, we also need to dynamically update the relocation info)
   413   // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
   414   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
   415   static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
   417   // Machine dependent stuff
   418   #include "incls/_relocInfo_pd.hpp.incl"
   420  protected:
   421   // Derived constant, based on format_width which is PD:
   422   enum {
   423     offset_width       = nontype_width - format_width,
   424     offset_mask        = (1<<offset_width) - 1,
   425     format_mask        = (1<<format_width) - 1
   426   };
   427  public:
   428   enum {
   429     // Conservatively large estimate of maximum length (in shorts)
   430     // of any relocation record (probably breakpoints are largest).
   431     // Extended format is length prefix, data words, and tag/offset suffix.
   432     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
   433     have_format        = format_width > 0
   434   };
   435 };
   437 #define FORWARD_DECLARE_EACH_CLASS(name)              \
   438 class name##_Relocation;
   439 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
   440 #undef FORWARD_DECLARE_EACH_CLASS
   444 inline relocInfo filler_relocInfo() {
   445   return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
   446 }
   448 inline relocInfo prefix_relocInfo(int datalen) {
   449   assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
   450   return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
   451 }
   454 // Holder for flyweight relocation objects.
   455 // Although the flyweight subclasses are of varying sizes,
   456 // the holder is "one size fits all".
   457 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
   458   friend class Relocation;
   459   friend class CodeSection;
   461  private:
   462   // this preallocated memory must accommodate all subclasses of Relocation
   463   // (this number is assertion-checked in Relocation::operator new)
   464   enum { _relocbuf_size = 5 };
   465   void* _relocbuf[ _relocbuf_size ];
   467  public:
   468   Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
   469   inline relocInfo::relocType type() const;
   471   // Add a constant offset to a relocation.  Helper for class Address.
   472   RelocationHolder plus(int offset) const;
   474   inline RelocationHolder();                // initializes type to none
   476   inline RelocationHolder(Relocation* r);   // make a copy
   478   static const RelocationHolder none;
   479 };
   481 // A RelocIterator iterates through the relocation information of a CodeBlob.
   482 // It is a variable BoundRelocation which is able to take on successive
   483 // values as it is advanced through a code stream.
   484 // Usage:
   485 //   RelocIterator iter(nm);
   486 //   while (iter.next()) {
   487 //     iter.reloc()->some_operation();
   488 //   }
   489 // or:
   490 //   RelocIterator iter(nm);
   491 //   while (iter.next()) {
   492 //     switch (iter.type()) {
   493 //      case relocInfo::oop_type          :
   494 //      case relocInfo::ic_type           :
   495 //      case relocInfo::prim_type         :
   496 //      case relocInfo::uncommon_type     :
   497 //      case relocInfo::runtime_call_type :
   498 //      case relocInfo::internal_word_type:
   499 //      case relocInfo::external_word_type:
   500 //      ...
   501 //     }
   502 //   }
   504 class RelocIterator : public StackObj {
   505   enum { SECT_CONSTS = 2,
   506          SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT
   507   friend class Relocation;
   508   friend class relocInfo;       // for change_reloc_info_for_address only
   509   typedef relocInfo::relocType relocType;
   511  private:
   512   address    _limit;   // stop producing relocations after this _addr
   513   relocInfo* _current; // the current relocation information
   514   relocInfo* _end;     // end marker; we're done iterating when _current == _end
   515   CodeBlob*  _code;    // compiled method containing _addr
   516   address    _addr;    // instruction to which the relocation applies
   517   short      _databuf; // spare buffer for compressed data
   518   short*     _data;    // pointer to the relocation's data
   519   short      _datalen; // number of halfwords in _data
   520   char       _format;  // position within the instruction
   522   // Base addresses needed to compute targets of section_word_type relocs.
   523   address    _section_start[SECT_LIMIT];
   525   void set_has_current(bool b) {
   526     _datalen = !b ? -1 : 0;
   527     debug_only(_data = NULL);
   528   }
   529   void set_current(relocInfo& ri) {
   530     _current = &ri;
   531     set_has_current(true);
   532   }
   534   RelocationHolder _rh; // where the current relocation is allocated
   536   relocInfo* current() const { assert(has_current(), "must have current");
   537                                return _current; }
   539   void set_limits(address begin, address limit);
   541   void advance_over_prefix();    // helper method
   543   void initialize_misc() {
   544     set_has_current(false);
   545     for (int i = 0; i < SECT_LIMIT; i++) {
   546       _section_start[i] = NULL;  // these will be lazily computed, if needed
   547     }
   548   }
   550   address compute_section_start(int n) const;  // out-of-line helper
   552   void initialize(CodeBlob* nm, address begin, address limit);
   554   friend class PatchingRelocIterator;
   555   // make an uninitialized one, for PatchingRelocIterator:
   556   RelocIterator() { initialize_misc(); }
   558  public:
   559   // constructor
   560   RelocIterator(CodeBlob* cb,    address begin = NULL, address limit = NULL);
   561   RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
   563   // get next reloc info, return !eos
   564   bool next() {
   565     _current++;
   566     assert(_current <= _end, "must not overrun relocInfo");
   567     if (_current == _end) {
   568       set_has_current(false);
   569       return false;
   570     }
   571     set_has_current(true);
   573     if (_current->is_prefix()) {
   574       advance_over_prefix();
   575       assert(!current()->is_prefix(), "only one prefix at a time");
   576     }
   578     _addr += _current->addr_offset();
   580     if (_limit != NULL && _addr >= _limit) {
   581       set_has_current(false);
   582       return false;
   583     }
   585     if (relocInfo::have_format)  _format = current()->format();
   586     return true;
   587   }
   589   // accessors
   590   address      limit()        const { return _limit; }
   591   void     set_limit(address x);
   592   relocType    type()         const { return current()->type(); }
   593   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
   594   address      addr()         const { return _addr; }
   595   CodeBlob*    code()         const { return _code; }
   596   short*       data()         const { return _data; }
   597   int          datalen()      const { return _datalen; }
   598   bool     has_current()      const { return _datalen >= 0; }
   600   void       set_addr(address addr) { _addr = addr; }
   601   bool   addr_in_const()      const { return addr() >= section_start(SECT_CONSTS); }
   603   address section_start(int n) const {
   604     address res = _section_start[n];
   605     return (res != NULL) ? res : compute_section_start(n);
   606   }
   608   // The address points to the affected displacement part of the instruction.
   609   // For RISC, this is just the whole instruction.
   610   // For Intel, this is an unaligned 32-bit word.
   612   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
   613   #define EACH_TYPE(name)                               \
   614   inline name##_Relocation* name##_reloc();
   615   APPLY_TO_RELOCATIONS(EACH_TYPE)
   616   #undef EACH_TYPE
   617   // generic relocation accessor; switches on type to call the above
   618   Relocation* reloc();
   620   // CodeBlob's have relocation indexes for faster random access:
   621   static int locs_and_index_size(int code_size, int locs_size);
   622   // Store an index into [dest_start+dest_count..dest_end).
   623   // At dest_start[0..dest_count] is the actual relocation information.
   624   // Everything else up to dest_end is free space for the index.
   625   static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
   627 #ifndef PRODUCT
   628  public:
   629   void print();
   630   void print_current();
   631 #endif
   632 };
   635 // A Relocation is a flyweight object allocated within a RelocationHolder.
   636 // It represents the relocation data of relocation record.
   637 // So, the RelocIterator unpacks relocInfos into Relocations.
   639 class Relocation VALUE_OBJ_CLASS_SPEC {
   640   friend class RelocationHolder;
   641   friend class RelocIterator;
   643  private:
   644   static void guarantee_size();
   646   // When a relocation has been created by a RelocIterator,
   647   // this field is non-null.  It allows the relocation to know
   648   // its context, such as the address to which it applies.
   649   RelocIterator* _binding;
   651  protected:
   652   RelocIterator* binding() const {
   653     assert(_binding != NULL, "must be bound");
   654     return _binding;
   655   }
   656   void set_binding(RelocIterator* b) {
   657     assert(_binding == NULL, "must be unbound");
   658     _binding = b;
   659     assert(_binding != NULL, "must now be bound");
   660   }
   662   Relocation() {
   663     _binding = NULL;
   664   }
   666   static RelocationHolder newHolder() {
   667     return RelocationHolder();
   668   }
   670  public:
   671   void* operator new(size_t size, const RelocationHolder& holder) {
   672     if (size > sizeof(holder._relocbuf)) guarantee_size();
   673     assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
   674     return holder.reloc();
   675   }
   677   // make a generic relocation for a given type (if possible)
   678   static RelocationHolder spec_simple(relocInfo::relocType rtype);
   680   // here is the type-specific hook which writes relocation data:
   681   virtual void pack_data_to(CodeSection* dest) { }
   683   // here is the type-specific hook which reads (unpacks) relocation data:
   684   virtual void unpack_data() {
   685     assert(datalen()==0 || type()==relocInfo::none, "no data here");
   686   }
   688  protected:
   689   // Helper functions for pack_data_to() and unpack_data().
   691   // Most of the compression logic is confined here.
   692   // (The "immediate data" mechanism of relocInfo works independently
   693   // of this stuff, and acts to further compress most 1-word data prefixes.)
   695   // A variable-width int is encoded as a short if it will fit in 16 bits.
   696   // The decoder looks at datalen to decide whether to unpack short or jint.
   697   // Most relocation records are quite simple, containing at most two ints.
   699   static bool is_short(jint x) { return x == (short)x; }
   700   static short* add_short(short* p, int x)  { *p++ = x; return p; }
   701   static short* add_jint (short* p, jint x) {
   702     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
   703     return p;
   704   }
   705   static short* add_var_int(short* p, jint x) {   // add a variable-width int
   706     if (is_short(x))  p = add_short(p, x);
   707     else              p = add_jint (p, x);
   708     return p;
   709   }
   711   static short* pack_1_int_to(short* p, jint x0) {
   712     // Format is one of:  [] [x] [Xx]
   713     if (x0 != 0)  p = add_var_int(p, x0);
   714     return p;
   715   }
   716   int unpack_1_int() {
   717     assert(datalen() <= 2, "too much data");
   718     return relocInfo::jint_data_at(0, data(), datalen());
   719   }
   721   // With two ints, the short form is used only if both ints are short.
   722   short* pack_2_ints_to(short* p, jint x0, jint x1) {
   723     // Format is one of:  [] [x y?] [Xx Y?y]
   724     if (x0 == 0 && x1 == 0) {
   725       // no halfwords needed to store zeroes
   726     } else if (is_short(x0) && is_short(x1)) {
   727       // 1-2 halfwords needed to store shorts
   728       p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
   729     } else {
   730       // 3-4 halfwords needed to store jints
   731       p = add_jint(p, x0);             p = add_var_int(p, x1);
   732     }
   733     return p;
   734   }
   735   void unpack_2_ints(jint& x0, jint& x1) {
   736     int    dlen = datalen();
   737     short* dp  = data();
   738     if (dlen <= 2) {
   739       x0 = relocInfo::short_data_at(0, dp, dlen);
   740       x1 = relocInfo::short_data_at(1, dp, dlen);
   741     } else {
   742       assert(dlen <= 4, "too much data");
   743       x0 = relocInfo::jint_data_at(0, dp, dlen);
   744       x1 = relocInfo::jint_data_at(2, dp, dlen);
   745     }
   746   }
   748  protected:
   749   // platform-dependent utilities for decoding and patching instructions
   750   void       pd_set_data_value       (address x, intptr_t off); // a set or mem-ref
   751   address    pd_call_destination     (address orig_addr = NULL);
   752   void       pd_set_call_destination (address x);
   753   void       pd_swap_in_breakpoint   (address x, short* instrs, int instrlen);
   754   void       pd_swap_out_breakpoint  (address x, short* instrs, int instrlen);
   755   static int pd_breakpoint_size      ();
   757   // this extracts the address of an address in the code stream instead of the reloc data
   758   address* pd_address_in_code       ();
   760   // this extracts an address from the code stream instead of the reloc data
   761   address  pd_get_address_from_code ();
   763   // these convert from byte offsets, to scaled offsets, to addresses
   764   static jint scaled_offset(address x, address base) {
   765     int byte_offset = x - base;
   766     int offset = -byte_offset / relocInfo::addr_unit();
   767     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
   768     return offset;
   769   }
   770   static jint scaled_offset_null_special(address x, address base) {
   771     // Some relocations treat offset=0 as meaning NULL.
   772     // Handle this extra convention carefully.
   773     if (x == NULL)  return 0;
   774     assert(x != base, "offset must not be zero");
   775     return scaled_offset(x, base);
   776   }
   777   static address address_from_scaled_offset(jint offset, address base) {
   778     int byte_offset = -( offset * relocInfo::addr_unit() );
   779     return base + byte_offset;
   780   }
   782   // these convert between indexes and addresses in the runtime system
   783   static int32_t runtime_address_to_index(address runtime_address);
   784   static address index_to_runtime_address(int32_t index);
   786   // helpers for mapping between old and new addresses after a move or resize
   787   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
   788   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
   789   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
   791  public:
   792   // accessors which only make sense for a bound Relocation
   793   address   addr()         const { return binding()->addr(); }
   794   CodeBlob* code()         const { return binding()->code(); }
   795   bool      addr_in_const() const { return binding()->addr_in_const(); }
   796  protected:
   797   short*   data()         const { return binding()->data(); }
   798   int      datalen()      const { return binding()->datalen(); }
   799   int      format()       const { return binding()->format(); }
   801  public:
   802   virtual relocInfo::relocType type()            { return relocInfo::none; }
   804   // is it a call instruction?
   805   virtual bool is_call()                         { return false; }
   807   // is it a data movement instruction?
   808   virtual bool is_data()                         { return false; }
   810   // some relocations can compute their own values
   811   virtual address  value();
   813   // all relocations are able to reassert their values
   814   virtual void set_value(address x);
   816   virtual void clear_inline_cache()              { }
   818   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
   819   // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
   820   // probably a reasonable assumption, since empty caches simplifies code reloacation.
   821   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
   823   void print();
   824 };
   827 // certain inlines must be deferred until class Relocation is defined:
   829 inline RelocationHolder::RelocationHolder() {
   830   // initialize the vtbl, just to keep things type-safe
   831   new(*this) Relocation();
   832 }
   835 inline RelocationHolder::RelocationHolder(Relocation* r) {
   836   // wordwise copy from r (ok if it copies garbage after r)
   837   for (int i = 0; i < _relocbuf_size; i++) {
   838     _relocbuf[i] = ((void**)r)[i];
   839   }
   840 }
   843 relocInfo::relocType RelocationHolder::type() const {
   844   return reloc()->type();
   845 }
   847 // A DataRelocation always points at a memory or load-constant instruction..
   848 // It is absolute on most machines, and the constant is split on RISCs.
   849 // The specific subtypes are oop, external_word, and internal_word.
   850 // By convention, the "value" does not include a separately reckoned "offset".
   851 class DataRelocation : public Relocation {
   852  public:
   853   bool          is_data()                      { return true; }
   855   // both target and offset must be computed somehow from relocation data
   856   virtual int    offset()                      { return 0; }
   857   address         value()                      = 0;
   858   void        set_value(address x)             { set_value(x, offset()); }
   859   void        set_value(address x, intptr_t o) {
   860     if (addr_in_const())
   861       *(address*)addr() = x;
   862     else
   863       pd_set_data_value(x, o);
   864   }
   866   // The "o" (displacement) argument is relevant only to split relocations
   867   // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
   868   // can encode more than 32 bits between them.  This allows compilers to
   869   // share set-hi instructions between addresses that differ by a small
   870   // offset (e.g., different static variables in the same class).
   871   // On such machines, the "x" argument to set_value on all set-lo
   872   // instructions must be the same as the "x" argument for the
   873   // corresponding set-hi instructions.  The "o" arguments for the
   874   // set-hi instructions are ignored, and must not affect the high-half
   875   // immediate constant.  The "o" arguments for the set-lo instructions are
   876   // added into the low-half immediate constant, and must not overflow it.
   877 };
   879 // A CallRelocation always points at a call instruction.
   880 // It is PC-relative on most machines.
   881 class CallRelocation : public Relocation {
   882  public:
   883   bool is_call() { return true; }
   885   address  destination()                    { return pd_call_destination(); }
   886   void     set_destination(address x); // pd_set_call_destination
   888   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
   889   address  value()                          { return destination();  }
   890   void     set_value(address x)             { set_destination(x); }
   891 };
   893 class oop_Relocation : public DataRelocation {
   894   relocInfo::relocType type() { return relocInfo::oop_type; }
   896  public:
   897   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
   898   // an oop in the CodeBlob's oop pool
   899   static RelocationHolder spec(int oop_index, int offset = 0) {
   900     assert(oop_index > 0, "must be a pool-resident oop");
   901     RelocationHolder rh = newHolder();
   902     new(rh) oop_Relocation(oop_index, offset);
   903     return rh;
   904   }
   905   // an oop in the instruction stream
   906   static RelocationHolder spec_for_immediate() {
   907     const int oop_index = 0;
   908     const int offset    = 0;    // if you want an offset, use the oop pool
   909     RelocationHolder rh = newHolder();
   910     new(rh) oop_Relocation(oop_index, offset);
   911     return rh;
   912   }
   914  private:
   915   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
   916   jint _offset;                     // byte offset to apply to the oop itself
   918   oop_Relocation(int oop_index, int offset) {
   919     _oop_index = oop_index; _offset = offset;
   920   }
   922   friend class RelocIterator;
   923   oop_Relocation() { }
   925  public:
   926   int oop_index() { return _oop_index; }
   927   int offset()    { return _offset; }
   929   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
   930   void pack_data_to(CodeSection* dest);
   931   void unpack_data();
   933   void fix_oop_relocation();        // reasserts oop value
   935   address value()  { return (address) *oop_addr(); }
   937   bool oop_is_immediate()  { return oop_index() == 0; }
   939   oop* oop_addr();                  // addr or &pool[jint_data]
   940   oop  oop_value();                 // *oop_addr
   941   // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
   942 };
   944 class virtual_call_Relocation : public CallRelocation {
   945   relocInfo::relocType type() { return relocInfo::virtual_call_type; }
   947  public:
   948   // "first_oop" points to the first associated set-oop.
   949   // The oop_limit helps find the last associated set-oop.
   950   // (See comments at the top of this file.)
   951   static RelocationHolder spec(address first_oop, address oop_limit = NULL) {
   952     RelocationHolder rh = newHolder();
   953     new(rh) virtual_call_Relocation(first_oop, oop_limit);
   954     return rh;
   955   }
   957   virtual_call_Relocation(address first_oop, address oop_limit) {
   958     _first_oop = first_oop; _oop_limit = oop_limit;
   959     assert(first_oop != NULL, "first oop address must be specified");
   960   }
   962  private:
   963   address _first_oop;               // location of first set-oop instruction
   964   address _oop_limit;               // search limit for set-oop instructions
   966   friend class RelocIterator;
   967   virtual_call_Relocation() { }
   970  public:
   971   address first_oop();
   972   address oop_limit();
   974   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
   975   // oop_limit is set to 0 if the limit falls somewhere within the call.
   976   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
   977   // (This has the effect of bringing in the call's delay slot on SPARC.)
   978   void pack_data_to(CodeSection* dest);
   979   void unpack_data();
   981   void clear_inline_cache();
   983   // Figure out where an ic_call is hiding, given a set-oop or call.
   984   // Either ic_call or first_oop must be non-null; the other is deduced.
   985   // Code if non-NULL must be the CodeBlob, else it is deduced.
   986   // The address of the patchable oop is also deduced.
   987   // The returned iterator will enumerate over the oops and the ic_call,
   988   // as well as any other relocations that happen to be in that span of code.
   989   // Recognize relevant set_oops with:  oop_reloc()->oop_addr() == oop_addr.
   990   static RelocIterator parse_ic(CodeBlob* &code, address &ic_call, address &first_oop, oop* &oop_addr, bool *is_optimized);
   991 };
   994 class opt_virtual_call_Relocation : public CallRelocation {
   995   relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
   997  public:
   998   static RelocationHolder spec() {
   999     RelocationHolder rh = newHolder();
  1000     new(rh) opt_virtual_call_Relocation();
  1001     return rh;
  1004  private:
  1005   friend class RelocIterator;
  1006   opt_virtual_call_Relocation() { }
  1008  public:
  1009   void clear_inline_cache();
  1011   // find the matching static_stub
  1012   address static_stub();
  1013 };
  1016 class static_call_Relocation : public CallRelocation {
  1017   relocInfo::relocType type() { return relocInfo::static_call_type; }
  1019  public:
  1020   static RelocationHolder spec() {
  1021     RelocationHolder rh = newHolder();
  1022     new(rh) static_call_Relocation();
  1023     return rh;
  1026  private:
  1027   friend class RelocIterator;
  1028   static_call_Relocation() { }
  1030  public:
  1031   void clear_inline_cache();
  1033   // find the matching static_stub
  1034   address static_stub();
  1035 };
  1037 class static_stub_Relocation : public Relocation {
  1038   relocInfo::relocType type() { return relocInfo::static_stub_type; }
  1040  public:
  1041   static RelocationHolder spec(address static_call) {
  1042     RelocationHolder rh = newHolder();
  1043     new(rh) static_stub_Relocation(static_call);
  1044     return rh;
  1047  private:
  1048   address _static_call;             // location of corresponding static_call
  1050   static_stub_Relocation(address static_call) {
  1051     _static_call = static_call;
  1054   friend class RelocIterator;
  1055   static_stub_Relocation() { }
  1057  public:
  1058   void clear_inline_cache();
  1060   address static_call() { return _static_call; }
  1062   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
  1063   void pack_data_to(CodeSection* dest);
  1064   void unpack_data();
  1065 };
  1067 class runtime_call_Relocation : public CallRelocation {
  1068   relocInfo::relocType type() { return relocInfo::runtime_call_type; }
  1070  public:
  1071   static RelocationHolder spec() {
  1072     RelocationHolder rh = newHolder();
  1073     new(rh) runtime_call_Relocation();
  1074     return rh;
  1077  private:
  1078   friend class RelocIterator;
  1079   runtime_call_Relocation() { }
  1081  public:
  1082 };
  1084 class external_word_Relocation : public DataRelocation {
  1085   relocInfo::relocType type() { return relocInfo::external_word_type; }
  1087  public:
  1088   static RelocationHolder spec(address target) {
  1089     assert(target != NULL, "must not be null");
  1090     RelocationHolder rh = newHolder();
  1091     new(rh) external_word_Relocation(target);
  1092     return rh;
  1095   // Use this one where all 32/64 bits of the target live in the code stream.
  1096   // The target must be an intptr_t, and must be absolute (not relative).
  1097   static RelocationHolder spec_for_immediate() {
  1098     RelocationHolder rh = newHolder();
  1099     new(rh) external_word_Relocation(NULL);
  1100     return rh;
  1103  private:
  1104   address _target;                  // address in runtime
  1106   external_word_Relocation(address target) {
  1107     _target = target;
  1110   friend class RelocIterator;
  1111   external_word_Relocation() { }
  1113  public:
  1114   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
  1115   // The function runtime_address_to_index is used to turn full addresses
  1116   // to short indexes, if they are pre-registered by the stub mechanism.
  1117   // If the "a" value is 0 (i.e., _target is NULL), the address is stored
  1118   // in the code stream.  See external_word_Relocation::target().
  1119   void pack_data_to(CodeSection* dest);
  1120   void unpack_data();
  1122   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1123   address  target();        // if _target==NULL, fetch addr from code stream
  1124   address  value()          { return target(); }
  1125 };
  1127 class internal_word_Relocation : public DataRelocation {
  1128   relocInfo::relocType type() { return relocInfo::internal_word_type; }
  1130  public:
  1131   static RelocationHolder spec(address target) {
  1132     assert(target != NULL, "must not be null");
  1133     RelocationHolder rh = newHolder();
  1134     new(rh) internal_word_Relocation(target);
  1135     return rh;
  1138   // use this one where all the bits of the target can fit in the code stream:
  1139   static RelocationHolder spec_for_immediate() {
  1140     RelocationHolder rh = newHolder();
  1141     new(rh) internal_word_Relocation(NULL);
  1142     return rh;
  1145   internal_word_Relocation(address target) {
  1146     _target  = target;
  1147     _section = -1;  // self-relative
  1150  protected:
  1151   address _target;                  // address in CodeBlob
  1152   int     _section;                 // section providing base address, if any
  1154   friend class RelocIterator;
  1155   internal_word_Relocation() { }
  1157   // bit-width of LSB field in packed offset, if section >= 0
  1158   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
  1160  public:
  1161   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
  1162   // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
  1163   // in the code stream.  See internal_word_Relocation::target().
  1164   // If _section is not -1, it is appended to the low bits of the offset.
  1165   void pack_data_to(CodeSection* dest);
  1166   void unpack_data();
  1168   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1169   address  target();        // if _target==NULL, fetch addr from code stream
  1170   int      section()        { return _section;   }
  1171   address  value()          { return target();   }
  1172 };
  1174 class section_word_Relocation : public internal_word_Relocation {
  1175   relocInfo::relocType type() { return relocInfo::section_word_type; }
  1177  public:
  1178   static RelocationHolder spec(address target, int section) {
  1179     RelocationHolder rh = newHolder();
  1180     new(rh) section_word_Relocation(target, section);
  1181     return rh;
  1184   section_word_Relocation(address target, int section) {
  1185     assert(target != NULL, "must not be null");
  1186     assert(section >= 0, "must be a valid section");
  1187     _target  = target;
  1188     _section = section;
  1191   //void pack_data_to -- inherited
  1192   void unpack_data();
  1194  private:
  1195   friend class RelocIterator;
  1196   section_word_Relocation() { }
  1197 };
  1200 class poll_Relocation : public Relocation {
  1201   bool          is_data()                      { return true; }
  1202   relocInfo::relocType type() { return relocInfo::poll_type; }
  1203   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1204 };
  1206 class poll_return_Relocation : public Relocation {
  1207   bool          is_data()                      { return true; }
  1208   relocInfo::relocType type() { return relocInfo::poll_return_type; }
  1209   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1210 };
  1213 class breakpoint_Relocation : public Relocation {
  1214   relocInfo::relocType type() { return relocInfo::breakpoint_type; }
  1216   enum {
  1217     // attributes which affect the interpretation of the data:
  1218     removable_attr = 0x0010,   // buffer [i...] allows for undoing the trap
  1219     internal_attr  = 0x0020,   // the target is an internal addr (local stub)
  1220     settable_attr  = 0x0040,   // the target is settable
  1222     // states which can change over time:
  1223     enabled_state  = 0x0100,   // breakpoint must be active in running code
  1224     active_state   = 0x0200,   // breakpoint instruction actually in code
  1226     kind_mask      = 0x000F,   // mask for extracting kind
  1227     high_bit       = 0x4000    // extra bit which is always set
  1228   };
  1230  public:
  1231   enum {
  1232     // kinds:
  1233     initialization = 1,
  1234     safepoint      = 2
  1235   };
  1237   // If target is NULL, 32 bits are reserved for a later set_target().
  1238   static RelocationHolder spec(int kind, address target = NULL, bool internal_target = false) {
  1239     RelocationHolder rh = newHolder();
  1240     new(rh) breakpoint_Relocation(kind, target, internal_target);
  1241     return rh;
  1244  private:
  1245   // We require every bits value to NOT to fit into relocInfo::datalen_width,
  1246   // because we are going to actually store state in the reloc, and so
  1247   // cannot allow it to be compressed (and hence copied by the iterator).
  1249   short   _bits;                  // bit-encoded kind, attrs, & state
  1250   address _target;
  1252   breakpoint_Relocation(int kind, address target, bool internal_target);
  1254   friend class RelocIterator;
  1255   breakpoint_Relocation() { }
  1257   short    bits()       const { return _bits; }
  1258   short&   live_bits()  const { return data()[0]; }
  1259   short*   instrs()     const { return data() + datalen() - instrlen(); }
  1260   int      instrlen()   const { return removable() ? pd_breakpoint_size() : 0; }
  1262   void set_bits(short x) {
  1263     assert(live_bits() == _bits, "must be the only mutator of reloc info");
  1264     live_bits() = _bits = x;
  1267  public:
  1268   address  target()     const;
  1269   void set_target(address x);
  1271   int  kind()           const { return  bits() & kind_mask; }
  1272   bool enabled()        const { return (bits() &  enabled_state) != 0; }
  1273   bool active()         const { return (bits() &   active_state) != 0; }
  1274   bool internal()       const { return (bits() &  internal_attr) != 0; }
  1275   bool removable()      const { return (bits() & removable_attr) != 0; }
  1276   bool settable()       const { return (bits() &  settable_attr) != 0; }
  1278   void set_enabled(bool b);     // to activate, you must also say set_active
  1279   void set_active(bool b);      // actually inserts bpt (must be enabled 1st)
  1281   // data is packed as 16 bits, followed by the target (1 or 2 words), followed
  1282   // if necessary by empty storage for saving away original instruction bytes.
  1283   void pack_data_to(CodeSection* dest);
  1284   void unpack_data();
  1286   // during certain operations, breakpoints must be out of the way:
  1287   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
  1288     assert(!active(), "cannot perform relocation on enabled breakpoints");
  1290 };
  1293 // We know all the xxx_Relocation classes, so now we can define these:
  1294 #define EACH_CASE(name)                                         \
  1295 inline name##_Relocation* RelocIterator::name##_reloc() {       \
  1296   assert(type() == relocInfo::name##_type, "type must agree");  \
  1297   /* The purpose of the placed "new" is to re-use the same */   \
  1298   /* stack storage for each new iteration. */                   \
  1299   name##_Relocation* r = new(_rh) name##_Relocation();          \
  1300   r->set_binding(this);                                         \
  1301   r->name##_Relocation::unpack_data();                          \
  1302   return r;                                                     \
  1304 APPLY_TO_RELOCATIONS(EACH_CASE);
  1305 #undef EACH_CASE
  1307 inline RelocIterator::RelocIterator(CodeBlob* cb, address begin, address limit) {
  1308   initialize(cb, begin, limit);
  1311 // if you are going to patch code, you should use this subclass of
  1312 // RelocIterator
  1313 class PatchingRelocIterator : public RelocIterator {
  1314  private:
  1315   RelocIterator _init_state;
  1317   void prepass();               // deactivates all breakpoints
  1318   void postpass();              // reactivates all enabled breakpoints
  1320   // do not copy these puppies; it would have unpredictable side effects
  1321   // these are private and have no bodies defined because they should not be called
  1322   PatchingRelocIterator(const RelocIterator&);
  1323   void        operator=(const RelocIterator&);
  1325  public:
  1326   PatchingRelocIterator(CodeBlob* cb, address begin =NULL, address limit =NULL)
  1327     : RelocIterator(cb, begin, limit)                { prepass();  }
  1329   ~PatchingRelocIterator()                           { postpass(); }
  1330 };

mercurial