src/share/vm/opto/library_call.cpp

Sun, 03 Apr 2011 12:00:54 +0200

author
roland
date
Sun, 03 Apr 2011 12:00:54 +0200
changeset 2728
13bc79b5c9c8
parent 2726
07acc51c1d2a
child 2787
5d046bf49ce7
child 2810
66b0e2371912
permissions
-rw-r--r--

7033154: Improve C1 arraycopy performance
Summary: better static analysis. Take advantage of array copy stubs.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68  public:
    69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    70     : GraphKit(caller),
    71       _intrinsic(intrinsic)
    72   {
    73   }
    75   ciMethod*         caller()    const    { return jvms()->method(); }
    76   int               bci()       const    { return jvms()->bci(); }
    77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    79   ciMethod*         callee()    const    { return _intrinsic->method(); }
    80   ciSignature*      signature() const    { return callee()->signature(); }
    81   int               arg_size()  const    { return callee()->arg_size(); }
    83   bool try_to_inline();
    85   // Helper functions to inline natives
    86   void push_result(RegionNode* region, PhiNode* value);
    87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    88   Node* generate_slow_guard(Node* test, RegionNode* region);
    89   Node* generate_fair_guard(Node* test, RegionNode* region);
    90   Node* generate_negative_guard(Node* index, RegionNode* region,
    91                                 // resulting CastII of index:
    92                                 Node* *pos_index = NULL);
    93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    94                                    // resulting CastII of index:
    95                                    Node* *pos_index = NULL);
    96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    97                              Node* array_length,
    98                              RegionNode* region);
    99   Node* generate_current_thread(Node* &tls_output);
   100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   102   Node* load_mirror_from_klass(Node* klass);
   103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   104                                       int nargs,
   105                                       RegionNode* region, int null_path,
   106                                       int offset);
   107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   108                                RegionNode* region, int null_path) {
   109     int offset = java_lang_Class::klass_offset_in_bytes();
   110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   111                                          region, null_path,
   112                                          offset);
   113   }
   114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   115                                      int nargs,
   116                                      RegionNode* region, int null_path) {
   117     int offset = java_lang_Class::array_klass_offset_in_bytes();
   118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   119                                          region, null_path,
   120                                          offset);
   121   }
   122   Node* generate_access_flags_guard(Node* kls,
   123                                     int modifier_mask, int modifier_bits,
   124                                     RegionNode* region);
   125   Node* generate_interface_guard(Node* kls, RegionNode* region);
   126   Node* generate_array_guard(Node* kls, RegionNode* region) {
   127     return generate_array_guard_common(kls, region, false, false);
   128   }
   129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   130     return generate_array_guard_common(kls, region, false, true);
   131   }
   132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   133     return generate_array_guard_common(kls, region, true, false);
   134   }
   135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   136     return generate_array_guard_common(kls, region, true, true);
   137   }
   138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   139                                     bool obj_array, bool not_array);
   140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   142                                      bool is_virtual = false, bool is_static = false);
   143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   144     return generate_method_call(method_id, false, true);
   145   }
   146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   147     return generate_method_call(method_id, true, false);
   148   }
   150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   151   bool inline_string_compareTo();
   152   bool inline_string_indexOf();
   153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   154   bool inline_string_equals();
   155   Node* pop_math_arg();
   156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   157   bool inline_math_native(vmIntrinsics::ID id);
   158   bool inline_trig(vmIntrinsics::ID id);
   159   bool inline_trans(vmIntrinsics::ID id);
   160   bool inline_abs(vmIntrinsics::ID id);
   161   bool inline_sqrt(vmIntrinsics::ID id);
   162   bool inline_pow(vmIntrinsics::ID id);
   163   bool inline_exp(vmIntrinsics::ID id);
   164   bool inline_min_max(vmIntrinsics::ID id);
   165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   167   int classify_unsafe_addr(Node* &base, Node* &offset);
   168   Node* make_unsafe_address(Node* base, Node* offset);
   169   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   170   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   171   bool inline_unsafe_allocate();
   172   bool inline_unsafe_copyMemory();
   173   bool inline_native_currentThread();
   174   bool inline_native_time_funcs(bool isNano);
   175   bool inline_native_isInterrupted();
   176   bool inline_native_Class_query(vmIntrinsics::ID id);
   177   bool inline_native_subtype_check();
   179   bool inline_native_newArray();
   180   bool inline_native_getLength();
   181   bool inline_array_copyOf(bool is_copyOfRange);
   182   bool inline_array_equals();
   183   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   184   bool inline_native_clone(bool is_virtual);
   185   bool inline_native_Reflection_getCallerClass();
   186   bool inline_native_AtomicLong_get();
   187   bool inline_native_AtomicLong_attemptUpdate();
   188   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   189   // Helper function for inlining native object hash method
   190   bool inline_native_hashcode(bool is_virtual, bool is_static);
   191   bool inline_native_getClass();
   193   // Helper functions for inlining arraycopy
   194   bool inline_arraycopy();
   195   void generate_arraycopy(const TypePtr* adr_type,
   196                           BasicType basic_elem_type,
   197                           Node* src,  Node* src_offset,
   198                           Node* dest, Node* dest_offset,
   199                           Node* copy_length,
   200                           bool disjoint_bases = false,
   201                           bool length_never_negative = false,
   202                           RegionNode* slow_region = NULL);
   203   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   204                                                 RegionNode* slow_region);
   205   void generate_clear_array(const TypePtr* adr_type,
   206                             Node* dest,
   207                             BasicType basic_elem_type,
   208                             Node* slice_off,
   209                             Node* slice_len,
   210                             Node* slice_end);
   211   bool generate_block_arraycopy(const TypePtr* adr_type,
   212                                 BasicType basic_elem_type,
   213                                 AllocateNode* alloc,
   214                                 Node* src,  Node* src_offset,
   215                                 Node* dest, Node* dest_offset,
   216                                 Node* dest_size, bool dest_uninitialized);
   217   void generate_slow_arraycopy(const TypePtr* adr_type,
   218                                Node* src,  Node* src_offset,
   219                                Node* dest, Node* dest_offset,
   220                                Node* copy_length, bool dest_uninitialized);
   221   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   222                                      Node* dest_elem_klass,
   223                                      Node* src,  Node* src_offset,
   224                                      Node* dest, Node* dest_offset,
   225                                      Node* copy_length, bool dest_uninitialized);
   226   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   227                                    Node* src,  Node* src_offset,
   228                                    Node* dest, Node* dest_offset,
   229                                    Node* copy_length, bool dest_uninitialized);
   230   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   231                                     BasicType basic_elem_type,
   232                                     bool disjoint_bases,
   233                                     Node* src,  Node* src_offset,
   234                                     Node* dest, Node* dest_offset,
   235                                     Node* copy_length, bool dest_uninitialized);
   236   bool inline_unsafe_CAS(BasicType type);
   237   bool inline_unsafe_ordered_store(BasicType type);
   238   bool inline_fp_conversions(vmIntrinsics::ID id);
   239   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   240   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   241   bool inline_bitCount(vmIntrinsics::ID id);
   242   bool inline_reverseBytes(vmIntrinsics::ID id);
   243 };
   246 //---------------------------make_vm_intrinsic----------------------------
   247 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   248   vmIntrinsics::ID id = m->intrinsic_id();
   249   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   251   if (DisableIntrinsic[0] != '\0'
   252       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   253     // disabled by a user request on the command line:
   254     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   255     return NULL;
   256   }
   258   if (!m->is_loaded()) {
   259     // do not attempt to inline unloaded methods
   260     return NULL;
   261   }
   263   // Only a few intrinsics implement a virtual dispatch.
   264   // They are expensive calls which are also frequently overridden.
   265   if (is_virtual) {
   266     switch (id) {
   267     case vmIntrinsics::_hashCode:
   268     case vmIntrinsics::_clone:
   269       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   270       break;
   271     default:
   272       return NULL;
   273     }
   274   }
   276   // -XX:-InlineNatives disables nearly all intrinsics:
   277   if (!InlineNatives) {
   278     switch (id) {
   279     case vmIntrinsics::_indexOf:
   280     case vmIntrinsics::_compareTo:
   281     case vmIntrinsics::_equals:
   282     case vmIntrinsics::_equalsC:
   283       break;  // InlineNatives does not control String.compareTo
   284     default:
   285       return NULL;
   286     }
   287   }
   289   switch (id) {
   290   case vmIntrinsics::_compareTo:
   291     if (!SpecialStringCompareTo)  return NULL;
   292     break;
   293   case vmIntrinsics::_indexOf:
   294     if (!SpecialStringIndexOf)  return NULL;
   295     break;
   296   case vmIntrinsics::_equals:
   297     if (!SpecialStringEquals)  return NULL;
   298     break;
   299   case vmIntrinsics::_equalsC:
   300     if (!SpecialArraysEquals)  return NULL;
   301     break;
   302   case vmIntrinsics::_arraycopy:
   303     if (!InlineArrayCopy)  return NULL;
   304     break;
   305   case vmIntrinsics::_copyMemory:
   306     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   307     if (!InlineArrayCopy)  return NULL;
   308     break;
   309   case vmIntrinsics::_hashCode:
   310     if (!InlineObjectHash)  return NULL;
   311     break;
   312   case vmIntrinsics::_clone:
   313   case vmIntrinsics::_copyOf:
   314   case vmIntrinsics::_copyOfRange:
   315     if (!InlineObjectCopy)  return NULL;
   316     // These also use the arraycopy intrinsic mechanism:
   317     if (!InlineArrayCopy)  return NULL;
   318     break;
   319   case vmIntrinsics::_checkIndex:
   320     // We do not intrinsify this.  The optimizer does fine with it.
   321     return NULL;
   323   case vmIntrinsics::_get_AtomicLong:
   324   case vmIntrinsics::_attemptUpdate:
   325     if (!InlineAtomicLong)  return NULL;
   326     break;
   328   case vmIntrinsics::_getCallerClass:
   329     if (!UseNewReflection)  return NULL;
   330     if (!InlineReflectionGetCallerClass)  return NULL;
   331     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   332     break;
   334   case vmIntrinsics::_bitCount_i:
   335   case vmIntrinsics::_bitCount_l:
   336     if (!UsePopCountInstruction)  return NULL;
   337     break;
   339  default:
   340     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   341     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   342     break;
   343   }
   345   // -XX:-InlineClassNatives disables natives from the Class class.
   346   // The flag applies to all reflective calls, notably Array.newArray
   347   // (visible to Java programmers as Array.newInstance).
   348   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   349       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   350     if (!InlineClassNatives)  return NULL;
   351   }
   353   // -XX:-InlineThreadNatives disables natives from the Thread class.
   354   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   355     if (!InlineThreadNatives)  return NULL;
   356   }
   358   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   359   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   360       m->holder()->name() == ciSymbol::java_lang_Float() ||
   361       m->holder()->name() == ciSymbol::java_lang_Double()) {
   362     if (!InlineMathNatives)  return NULL;
   363   }
   365   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   366   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   367     if (!InlineUnsafeOps)  return NULL;
   368   }
   370   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   371 }
   373 //----------------------register_library_intrinsics-----------------------
   374 // Initialize this file's data structures, for each Compile instance.
   375 void Compile::register_library_intrinsics() {
   376   // Nothing to do here.
   377 }
   379 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   380   LibraryCallKit kit(jvms, this);
   381   Compile* C = kit.C;
   382   int nodes = C->unique();
   383 #ifndef PRODUCT
   384   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   385     char buf[1000];
   386     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   387     tty->print_cr("Intrinsic %s", str);
   388   }
   389 #endif
   390   if (kit.try_to_inline()) {
   391     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   392       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   393     }
   394     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   395     if (C->log()) {
   396       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   397                      vmIntrinsics::name_at(intrinsic_id()),
   398                      (is_virtual() ? " virtual='1'" : ""),
   399                      C->unique() - nodes);
   400     }
   401     return kit.transfer_exceptions_into_jvms();
   402   }
   404   if (PrintIntrinsics) {
   405     tty->print("Did not inline intrinsic %s%s at bci:%d in",
   406                vmIntrinsics::name_at(intrinsic_id()),
   407                (is_virtual() ? " (virtual)" : ""), kit.bci());
   408     kit.caller()->print_short_name(tty);
   409     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   410   }
   411   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   412   return NULL;
   413 }
   415 bool LibraryCallKit::try_to_inline() {
   416   // Handle symbolic names for otherwise undistinguished boolean switches:
   417   const bool is_store       = true;
   418   const bool is_native_ptr  = true;
   419   const bool is_static      = true;
   421   switch (intrinsic_id()) {
   422   case vmIntrinsics::_hashCode:
   423     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   424   case vmIntrinsics::_identityHashCode:
   425     return inline_native_hashcode(/*!virtual*/ false, is_static);
   426   case vmIntrinsics::_getClass:
   427     return inline_native_getClass();
   429   case vmIntrinsics::_dsin:
   430   case vmIntrinsics::_dcos:
   431   case vmIntrinsics::_dtan:
   432   case vmIntrinsics::_dabs:
   433   case vmIntrinsics::_datan2:
   434   case vmIntrinsics::_dsqrt:
   435   case vmIntrinsics::_dexp:
   436   case vmIntrinsics::_dlog:
   437   case vmIntrinsics::_dlog10:
   438   case vmIntrinsics::_dpow:
   439     return inline_math_native(intrinsic_id());
   441   case vmIntrinsics::_min:
   442   case vmIntrinsics::_max:
   443     return inline_min_max(intrinsic_id());
   445   case vmIntrinsics::_arraycopy:
   446     return inline_arraycopy();
   448   case vmIntrinsics::_compareTo:
   449     return inline_string_compareTo();
   450   case vmIntrinsics::_indexOf:
   451     return inline_string_indexOf();
   452   case vmIntrinsics::_equals:
   453     return inline_string_equals();
   455   case vmIntrinsics::_getObject:
   456     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   457   case vmIntrinsics::_getBoolean:
   458     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   459   case vmIntrinsics::_getByte:
   460     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   461   case vmIntrinsics::_getShort:
   462     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   463   case vmIntrinsics::_getChar:
   464     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   465   case vmIntrinsics::_getInt:
   466     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   467   case vmIntrinsics::_getLong:
   468     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   469   case vmIntrinsics::_getFloat:
   470     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   471   case vmIntrinsics::_getDouble:
   472     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   474   case vmIntrinsics::_putObject:
   475     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   476   case vmIntrinsics::_putBoolean:
   477     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   478   case vmIntrinsics::_putByte:
   479     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   480   case vmIntrinsics::_putShort:
   481     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   482   case vmIntrinsics::_putChar:
   483     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   484   case vmIntrinsics::_putInt:
   485     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   486   case vmIntrinsics::_putLong:
   487     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   488   case vmIntrinsics::_putFloat:
   489     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   490   case vmIntrinsics::_putDouble:
   491     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   493   case vmIntrinsics::_getByte_raw:
   494     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   495   case vmIntrinsics::_getShort_raw:
   496     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   497   case vmIntrinsics::_getChar_raw:
   498     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   499   case vmIntrinsics::_getInt_raw:
   500     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   501   case vmIntrinsics::_getLong_raw:
   502     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   503   case vmIntrinsics::_getFloat_raw:
   504     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   505   case vmIntrinsics::_getDouble_raw:
   506     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   507   case vmIntrinsics::_getAddress_raw:
   508     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   510   case vmIntrinsics::_putByte_raw:
   511     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   512   case vmIntrinsics::_putShort_raw:
   513     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   514   case vmIntrinsics::_putChar_raw:
   515     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   516   case vmIntrinsics::_putInt_raw:
   517     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   518   case vmIntrinsics::_putLong_raw:
   519     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   520   case vmIntrinsics::_putFloat_raw:
   521     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   522   case vmIntrinsics::_putDouble_raw:
   523     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   524   case vmIntrinsics::_putAddress_raw:
   525     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   527   case vmIntrinsics::_getObjectVolatile:
   528     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   529   case vmIntrinsics::_getBooleanVolatile:
   530     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   531   case vmIntrinsics::_getByteVolatile:
   532     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   533   case vmIntrinsics::_getShortVolatile:
   534     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   535   case vmIntrinsics::_getCharVolatile:
   536     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   537   case vmIntrinsics::_getIntVolatile:
   538     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   539   case vmIntrinsics::_getLongVolatile:
   540     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   541   case vmIntrinsics::_getFloatVolatile:
   542     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   543   case vmIntrinsics::_getDoubleVolatile:
   544     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   546   case vmIntrinsics::_putObjectVolatile:
   547     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   548   case vmIntrinsics::_putBooleanVolatile:
   549     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   550   case vmIntrinsics::_putByteVolatile:
   551     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   552   case vmIntrinsics::_putShortVolatile:
   553     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   554   case vmIntrinsics::_putCharVolatile:
   555     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   556   case vmIntrinsics::_putIntVolatile:
   557     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   558   case vmIntrinsics::_putLongVolatile:
   559     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   560   case vmIntrinsics::_putFloatVolatile:
   561     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   562   case vmIntrinsics::_putDoubleVolatile:
   563     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   565   case vmIntrinsics::_prefetchRead:
   566     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   567   case vmIntrinsics::_prefetchWrite:
   568     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   569   case vmIntrinsics::_prefetchReadStatic:
   570     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   571   case vmIntrinsics::_prefetchWriteStatic:
   572     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   574   case vmIntrinsics::_compareAndSwapObject:
   575     return inline_unsafe_CAS(T_OBJECT);
   576   case vmIntrinsics::_compareAndSwapInt:
   577     return inline_unsafe_CAS(T_INT);
   578   case vmIntrinsics::_compareAndSwapLong:
   579     return inline_unsafe_CAS(T_LONG);
   581   case vmIntrinsics::_putOrderedObject:
   582     return inline_unsafe_ordered_store(T_OBJECT);
   583   case vmIntrinsics::_putOrderedInt:
   584     return inline_unsafe_ordered_store(T_INT);
   585   case vmIntrinsics::_putOrderedLong:
   586     return inline_unsafe_ordered_store(T_LONG);
   588   case vmIntrinsics::_currentThread:
   589     return inline_native_currentThread();
   590   case vmIntrinsics::_isInterrupted:
   591     return inline_native_isInterrupted();
   593   case vmIntrinsics::_currentTimeMillis:
   594     return inline_native_time_funcs(false);
   595   case vmIntrinsics::_nanoTime:
   596     return inline_native_time_funcs(true);
   597   case vmIntrinsics::_allocateInstance:
   598     return inline_unsafe_allocate();
   599   case vmIntrinsics::_copyMemory:
   600     return inline_unsafe_copyMemory();
   601   case vmIntrinsics::_newArray:
   602     return inline_native_newArray();
   603   case vmIntrinsics::_getLength:
   604     return inline_native_getLength();
   605   case vmIntrinsics::_copyOf:
   606     return inline_array_copyOf(false);
   607   case vmIntrinsics::_copyOfRange:
   608     return inline_array_copyOf(true);
   609   case vmIntrinsics::_equalsC:
   610     return inline_array_equals();
   611   case vmIntrinsics::_clone:
   612     return inline_native_clone(intrinsic()->is_virtual());
   614   case vmIntrinsics::_isAssignableFrom:
   615     return inline_native_subtype_check();
   617   case vmIntrinsics::_isInstance:
   618   case vmIntrinsics::_getModifiers:
   619   case vmIntrinsics::_isInterface:
   620   case vmIntrinsics::_isArray:
   621   case vmIntrinsics::_isPrimitive:
   622   case vmIntrinsics::_getSuperclass:
   623   case vmIntrinsics::_getComponentType:
   624   case vmIntrinsics::_getClassAccessFlags:
   625     return inline_native_Class_query(intrinsic_id());
   627   case vmIntrinsics::_floatToRawIntBits:
   628   case vmIntrinsics::_floatToIntBits:
   629   case vmIntrinsics::_intBitsToFloat:
   630   case vmIntrinsics::_doubleToRawLongBits:
   631   case vmIntrinsics::_doubleToLongBits:
   632   case vmIntrinsics::_longBitsToDouble:
   633     return inline_fp_conversions(intrinsic_id());
   635   case vmIntrinsics::_numberOfLeadingZeros_i:
   636   case vmIntrinsics::_numberOfLeadingZeros_l:
   637     return inline_numberOfLeadingZeros(intrinsic_id());
   639   case vmIntrinsics::_numberOfTrailingZeros_i:
   640   case vmIntrinsics::_numberOfTrailingZeros_l:
   641     return inline_numberOfTrailingZeros(intrinsic_id());
   643   case vmIntrinsics::_bitCount_i:
   644   case vmIntrinsics::_bitCount_l:
   645     return inline_bitCount(intrinsic_id());
   647   case vmIntrinsics::_reverseBytes_i:
   648   case vmIntrinsics::_reverseBytes_l:
   649   case vmIntrinsics::_reverseBytes_s:
   650   case vmIntrinsics::_reverseBytes_c:
   651     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   653   case vmIntrinsics::_get_AtomicLong:
   654     return inline_native_AtomicLong_get();
   655   case vmIntrinsics::_attemptUpdate:
   656     return inline_native_AtomicLong_attemptUpdate();
   658   case vmIntrinsics::_getCallerClass:
   659     return inline_native_Reflection_getCallerClass();
   661   default:
   662     // If you get here, it may be that someone has added a new intrinsic
   663     // to the list in vmSymbols.hpp without implementing it here.
   664 #ifndef PRODUCT
   665     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   666       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   667                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   668     }
   669 #endif
   670     return false;
   671   }
   672 }
   674 //------------------------------push_result------------------------------
   675 // Helper function for finishing intrinsics.
   676 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   677   record_for_igvn(region);
   678   set_control(_gvn.transform(region));
   679   BasicType value_type = value->type()->basic_type();
   680   push_node(value_type, _gvn.transform(value));
   681 }
   683 //------------------------------generate_guard---------------------------
   684 // Helper function for generating guarded fast-slow graph structures.
   685 // The given 'test', if true, guards a slow path.  If the test fails
   686 // then a fast path can be taken.  (We generally hope it fails.)
   687 // In all cases, GraphKit::control() is updated to the fast path.
   688 // The returned value represents the control for the slow path.
   689 // The return value is never 'top'; it is either a valid control
   690 // or NULL if it is obvious that the slow path can never be taken.
   691 // Also, if region and the slow control are not NULL, the slow edge
   692 // is appended to the region.
   693 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   694   if (stopped()) {
   695     // Already short circuited.
   696     return NULL;
   697   }
   699   // Build an if node and its projections.
   700   // If test is true we take the slow path, which we assume is uncommon.
   701   if (_gvn.type(test) == TypeInt::ZERO) {
   702     // The slow branch is never taken.  No need to build this guard.
   703     return NULL;
   704   }
   706   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   708   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   709   if (if_slow == top()) {
   710     // The slow branch is never taken.  No need to build this guard.
   711     return NULL;
   712   }
   714   if (region != NULL)
   715     region->add_req(if_slow);
   717   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   718   set_control(if_fast);
   720   return if_slow;
   721 }
   723 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   724   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   725 }
   726 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   727   return generate_guard(test, region, PROB_FAIR);
   728 }
   730 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   731                                                      Node* *pos_index) {
   732   if (stopped())
   733     return NULL;                // already stopped
   734   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   735     return NULL;                // index is already adequately typed
   736   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   737   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   738   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   739   if (is_neg != NULL && pos_index != NULL) {
   740     // Emulate effect of Parse::adjust_map_after_if.
   741     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   742     ccast->set_req(0, control());
   743     (*pos_index) = _gvn.transform(ccast);
   744   }
   745   return is_neg;
   746 }
   748 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   749                                                         Node* *pos_index) {
   750   if (stopped())
   751     return NULL;                // already stopped
   752   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   753     return NULL;                // index is already adequately typed
   754   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   755   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   756   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   757   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   758   if (is_notp != NULL && pos_index != NULL) {
   759     // Emulate effect of Parse::adjust_map_after_if.
   760     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   761     ccast->set_req(0, control());
   762     (*pos_index) = _gvn.transform(ccast);
   763   }
   764   return is_notp;
   765 }
   767 // Make sure that 'position' is a valid limit index, in [0..length].
   768 // There are two equivalent plans for checking this:
   769 //   A. (offset + copyLength)  unsigned<=  arrayLength
   770 //   B. offset  <=  (arrayLength - copyLength)
   771 // We require that all of the values above, except for the sum and
   772 // difference, are already known to be non-negative.
   773 // Plan A is robust in the face of overflow, if offset and copyLength
   774 // are both hugely positive.
   775 //
   776 // Plan B is less direct and intuitive, but it does not overflow at
   777 // all, since the difference of two non-negatives is always
   778 // representable.  Whenever Java methods must perform the equivalent
   779 // check they generally use Plan B instead of Plan A.
   780 // For the moment we use Plan A.
   781 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   782                                                   Node* subseq_length,
   783                                                   Node* array_length,
   784                                                   RegionNode* region) {
   785   if (stopped())
   786     return NULL;                // already stopped
   787   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   788   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   789     return NULL;                // common case of whole-array copy
   790   Node* last = subseq_length;
   791   if (!zero_offset)             // last += offset
   792     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   793   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   794   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   795   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   796   return is_over;
   797 }
   800 //--------------------------generate_current_thread--------------------
   801 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   802   ciKlass*    thread_klass = env()->Thread_klass();
   803   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   804   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   805   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   806   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   807   tls_output = thread;
   808   return threadObj;
   809 }
   812 //------------------------------make_string_method_node------------------------
   813 // Helper method for String intrinsic finctions.
   814 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   815   const int value_offset  = java_lang_String::value_offset_in_bytes();
   816   const int count_offset  = java_lang_String::count_offset_in_bytes();
   817   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   819   Node* no_ctrl = NULL;
   821   ciInstanceKlass* klass = env()->String_klass();
   822   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   824   const TypeAryPtr* value_type =
   825         TypeAryPtr::make(TypePtr::NotNull,
   826                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   827                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   829   // Get start addr of string and substring
   830   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   831   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   832   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   833   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   834   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   836   // Pin loads from String::equals() argument since it could be NULL.
   837   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
   838   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   839   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   840   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   841   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   842   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   844   Node* result = NULL;
   845   switch (opcode) {
   846   case Op_StrIndexOf:
   847     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   848                                        str1_start, cnt1, str2_start, cnt2);
   849     break;
   850   case Op_StrComp:
   851     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   852                                     str1_start, cnt1, str2_start, cnt2);
   853     break;
   854   case Op_StrEquals:
   855     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   856                                       str1_start, str2_start, cnt1);
   857     break;
   858   default:
   859     ShouldNotReachHere();
   860     return NULL;
   861   }
   863   // All these intrinsics have checks.
   864   C->set_has_split_ifs(true); // Has chance for split-if optimization
   866   return _gvn.transform(result);
   867 }
   869 //------------------------------inline_string_compareTo------------------------
   870 bool LibraryCallKit::inline_string_compareTo() {
   872   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   874   const int value_offset = java_lang_String::value_offset_in_bytes();
   875   const int count_offset = java_lang_String::count_offset_in_bytes();
   876   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   878   _sp += 2;
   879   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   880   Node *receiver = pop();
   882   // Null check on self without removing any arguments.  The argument
   883   // null check technically happens in the wrong place, which can lead to
   884   // invalid stack traces when string compare is inlined into a method
   885   // which handles NullPointerExceptions.
   886   _sp += 2;
   887   receiver = do_null_check(receiver, T_OBJECT);
   888   argument = do_null_check(argument, T_OBJECT);
   889   _sp -= 2;
   890   if (stopped()) {
   891     return true;
   892   }
   894   ciInstanceKlass* klass = env()->String_klass();
   895   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   896   Node* no_ctrl = NULL;
   898   // Get counts for string and argument
   899   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   900   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   902   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   903   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   905   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   906   push(compare);
   907   return true;
   908 }
   910 //------------------------------inline_string_equals------------------------
   911 bool LibraryCallKit::inline_string_equals() {
   913   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   915   const int value_offset = java_lang_String::value_offset_in_bytes();
   916   const int count_offset = java_lang_String::count_offset_in_bytes();
   917   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   919   int nargs = 2;
   920   _sp += nargs;
   921   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   922   Node* receiver = pop();
   924   // Null check on self without removing any arguments.  The argument
   925   // null check technically happens in the wrong place, which can lead to
   926   // invalid stack traces when string compare is inlined into a method
   927   // which handles NullPointerExceptions.
   928   _sp += nargs;
   929   receiver = do_null_check(receiver, T_OBJECT);
   930   //should not do null check for argument for String.equals(), because spec
   931   //allows to specify NULL as argument.
   932   _sp -= nargs;
   934   if (stopped()) {
   935     return true;
   936   }
   938   // paths (plus control) merge
   939   RegionNode* region = new (C, 5) RegionNode(5);
   940   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   942   // does source == target string?
   943   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   944   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   946   Node* if_eq = generate_slow_guard(bol, NULL);
   947   if (if_eq != NULL) {
   948     // receiver == argument
   949     phi->init_req(2, intcon(1));
   950     region->init_req(2, if_eq);
   951   }
   953   // get String klass for instanceOf
   954   ciInstanceKlass* klass = env()->String_klass();
   956   if (!stopped()) {
   957     _sp += nargs;          // gen_instanceof might do an uncommon trap
   958     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   959     _sp -= nargs;
   960     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   961     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   963     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   964     //instanceOf == true, fallthrough
   966     if (inst_false != NULL) {
   967       phi->init_req(3, intcon(0));
   968       region->init_req(3, inst_false);
   969     }
   970   }
   972   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   974   Node* no_ctrl = NULL;
   975   Node* receiver_cnt;
   976   Node* argument_cnt;
   978   if (!stopped()) {
   979     // Properly cast the argument to String
   980     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
   982     // Get counts for string and argument
   983     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   984     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   986     // Pin load from argument string since it could be NULL.
   987     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   988     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   990     // Check for receiver count != argument count
   991     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
   992     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
   993     Node* if_ne = generate_slow_guard(bol, NULL);
   994     if (if_ne != NULL) {
   995       phi->init_req(4, intcon(0));
   996       region->init_req(4, if_ne);
   997     }
   998   }
  1000   // Check for count == 0 is done by mach node StrEquals.
  1002   if (!stopped()) {
  1003     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
  1004     phi->init_req(1, equals);
  1005     region->init_req(1, control());
  1008   // post merge
  1009   set_control(_gvn.transform(region));
  1010   record_for_igvn(region);
  1012   push(_gvn.transform(phi));
  1014   return true;
  1017 //------------------------------inline_array_equals----------------------------
  1018 bool LibraryCallKit::inline_array_equals() {
  1020   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1022   _sp += 2;
  1023   Node *argument2 = pop();
  1024   Node *argument1 = pop();
  1026   Node* equals =
  1027     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1028                                         argument1, argument2) );
  1029   push(equals);
  1030   return true;
  1033 // Java version of String.indexOf(constant string)
  1034 // class StringDecl {
  1035 //   StringDecl(char[] ca) {
  1036 //     offset = 0;
  1037 //     count = ca.length;
  1038 //     value = ca;
  1039 //   }
  1040 //   int offset;
  1041 //   int count;
  1042 //   char[] value;
  1043 // }
  1044 //
  1045 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1046 //                             int targetOffset, int cache_i, int md2) {
  1047 //   int cache = cache_i;
  1048 //   int sourceOffset = string_object.offset;
  1049 //   int sourceCount = string_object.count;
  1050 //   int targetCount = target_object.length;
  1051 //
  1052 //   int targetCountLess1 = targetCount - 1;
  1053 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1054 //
  1055 //   char[] source = string_object.value;
  1056 //   char[] target = target_object;
  1057 //   int lastChar = target[targetCountLess1];
  1058 //
  1059 //  outer_loop:
  1060 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1061 //     int src = source[i + targetCountLess1];
  1062 //     if (src == lastChar) {
  1063 //       // With random strings and a 4-character alphabet,
  1064 //       // reverse matching at this point sets up 0.8% fewer
  1065 //       // frames, but (paradoxically) makes 0.3% more probes.
  1066 //       // Since those probes are nearer the lastChar probe,
  1067 //       // there is may be a net D$ win with reverse matching.
  1068 //       // But, reversing loop inhibits unroll of inner loop
  1069 //       // for unknown reason.  So, does running outer loop from
  1070 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1071 //       for (int j = 0; j < targetCountLess1; j++) {
  1072 //         if (target[targetOffset + j] != source[i+j]) {
  1073 //           if ((cache & (1 << source[i+j])) == 0) {
  1074 //             if (md2 < j+1) {
  1075 //               i += j+1;
  1076 //               continue outer_loop;
  1077 //             }
  1078 //           }
  1079 //           i += md2;
  1080 //           continue outer_loop;
  1081 //         }
  1082 //       }
  1083 //       return i - sourceOffset;
  1084 //     }
  1085 //     if ((cache & (1 << src)) == 0) {
  1086 //       i += targetCountLess1;
  1087 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1088 //     i++;
  1089 //   }
  1090 //   return -1;
  1091 // }
  1093 //------------------------------string_indexOf------------------------
  1094 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1095                                      jint cache_i, jint md2_i) {
  1097   Node* no_ctrl  = NULL;
  1098   float likely   = PROB_LIKELY(0.9);
  1099   float unlikely = PROB_UNLIKELY(0.9);
  1101   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1103   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1104   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1105   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1107   ciInstanceKlass* klass = env()->String_klass();
  1108   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1109   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1111   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1112   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1113   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1114   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1115   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1116   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1118   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1119   jint target_length = target_array->length();
  1120   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1121   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1123   IdealKit kit(this, false, true);
  1124 #define __ kit.
  1125   Node* zero             = __ ConI(0);
  1126   Node* one              = __ ConI(1);
  1127   Node* cache            = __ ConI(cache_i);
  1128   Node* md2              = __ ConI(md2_i);
  1129   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1130   Node* targetCount      = __ ConI(target_length);
  1131   Node* targetCountLess1 = __ ConI(target_length - 1);
  1132   Node* targetOffset     = __ ConI(targetOffset_i);
  1133   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1135   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1136   Node* outer_loop = __ make_label(2 /* goto */);
  1137   Node* return_    = __ make_label(1);
  1139   __ set(rtn,__ ConI(-1));
  1140   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1141        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1142        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1143        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1144        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1145          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1146               Node* tpj = __ AddI(targetOffset, __ value(j));
  1147               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1148               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1149               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1150               __ if_then(targ, BoolTest::ne, src2); {
  1151                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1152                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1153                     __ increment(i, __ AddI(__ value(j), one));
  1154                     __ goto_(outer_loop);
  1155                   } __ end_if(); __ dead(j);
  1156                 }__ end_if(); __ dead(j);
  1157                 __ increment(i, md2);
  1158                 __ goto_(outer_loop);
  1159               }__ end_if();
  1160               __ increment(j, one);
  1161          }__ end_loop(); __ dead(j);
  1162          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1163          __ goto_(return_);
  1164        }__ end_if();
  1165        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1166          __ increment(i, targetCountLess1);
  1167        }__ end_if();
  1168        __ increment(i, one);
  1169        __ bind(outer_loop);
  1170   }__ end_loop(); __ dead(i);
  1171   __ bind(return_);
  1173   // Final sync IdealKit and GraphKit.
  1174   final_sync(kit);
  1175   Node* result = __ value(rtn);
  1176 #undef __
  1177   C->set_has_loops(true);
  1178   return result;
  1181 //------------------------------inline_string_indexOf------------------------
  1182 bool LibraryCallKit::inline_string_indexOf() {
  1184   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1185   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1186   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1188   _sp += 2;
  1189   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1190   Node *receiver = pop();
  1192   Node* result;
  1193   // Disable the use of pcmpestri until it can be guaranteed that
  1194   // the load doesn't cross into the uncommited space.
  1195   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1196       UseSSE42Intrinsics) {
  1197     // Generate SSE4.2 version of indexOf
  1198     // We currently only have match rules that use SSE4.2
  1200     // Null check on self without removing any arguments.  The argument
  1201     // null check technically happens in the wrong place, which can lead to
  1202     // invalid stack traces when string compare is inlined into a method
  1203     // which handles NullPointerExceptions.
  1204     _sp += 2;
  1205     receiver = do_null_check(receiver, T_OBJECT);
  1206     argument = do_null_check(argument, T_OBJECT);
  1207     _sp -= 2;
  1209     if (stopped()) {
  1210       return true;
  1213     ciInstanceKlass* str_klass = env()->String_klass();
  1214     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1216     // Make the merge point
  1217     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1218     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1219     Node* no_ctrl  = NULL;
  1221     // Get counts for string and substr
  1222     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1223     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1225     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1226     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1228     // Check for substr count > string count
  1229     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1230     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1231     Node* if_gt = generate_slow_guard(bol, NULL);
  1232     if (if_gt != NULL) {
  1233       result_phi->init_req(2, intcon(-1));
  1234       result_rgn->init_req(2, if_gt);
  1237     if (!stopped()) {
  1238       // Check for substr count == 0
  1239       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1240       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1241       Node* if_zero = generate_slow_guard(bol, NULL);
  1242       if (if_zero != NULL) {
  1243         result_phi->init_req(3, intcon(0));
  1244         result_rgn->init_req(3, if_zero);
  1248     if (!stopped()) {
  1249       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1250       result_phi->init_req(1, result);
  1251       result_rgn->init_req(1, control());
  1253     set_control(_gvn.transform(result_rgn));
  1254     record_for_igvn(result_rgn);
  1255     result = _gvn.transform(result_phi);
  1257   } else { // Use LibraryCallKit::string_indexOf
  1258     // don't intrinsify if argument isn't a constant string.
  1259     if (!argument->is_Con()) {
  1260      return false;
  1262     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1263     if (str_type == NULL) {
  1264       return false;
  1266     ciInstanceKlass* klass = env()->String_klass();
  1267     ciObject* str_const = str_type->const_oop();
  1268     if (str_const == NULL || str_const->klass() != klass) {
  1269       return false;
  1271     ciInstance* str = str_const->as_instance();
  1272     assert(str != NULL, "must be instance");
  1274     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1275     int       o = str->field_value_by_offset(offset_offset).as_int();
  1276     int       c = str->field_value_by_offset(count_offset).as_int();
  1277     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1279     // constant strings have no offset and count == length which
  1280     // simplifies the resulting code somewhat so lets optimize for that.
  1281     if (o != 0 || c != pat->length()) {
  1282      return false;
  1285     // Null check on self without removing any arguments.  The argument
  1286     // null check technically happens in the wrong place, which can lead to
  1287     // invalid stack traces when string compare is inlined into a method
  1288     // which handles NullPointerExceptions.
  1289     _sp += 2;
  1290     receiver = do_null_check(receiver, T_OBJECT);
  1291     // No null check on the argument is needed since it's a constant String oop.
  1292     _sp -= 2;
  1293     if (stopped()) {
  1294       return true;
  1297     // The null string as a pattern always returns 0 (match at beginning of string)
  1298     if (c == 0) {
  1299       push(intcon(0));
  1300       return true;
  1303     // Generate default indexOf
  1304     jchar lastChar = pat->char_at(o + (c - 1));
  1305     int cache = 0;
  1306     int i;
  1307     for (i = 0; i < c - 1; i++) {
  1308       assert(i < pat->length(), "out of range");
  1309       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1312     int md2 = c;
  1313     for (i = 0; i < c - 1; i++) {
  1314       assert(i < pat->length(), "out of range");
  1315       if (pat->char_at(o + i) == lastChar) {
  1316         md2 = (c - 1) - i;
  1320     result = string_indexOf(receiver, pat, o, cache, md2);
  1323   push(result);
  1324   return true;
  1327 //--------------------------pop_math_arg--------------------------------
  1328 // Pop a double argument to a math function from the stack
  1329 // rounding it if necessary.
  1330 Node * LibraryCallKit::pop_math_arg() {
  1331   Node *arg = pop_pair();
  1332   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1333     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1334   return arg;
  1337 //------------------------------inline_trig----------------------------------
  1338 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1339 // argument reduction which will turn into a fast/slow diamond.
  1340 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1341   _sp += arg_size();            // restore stack pointer
  1342   Node* arg = pop_math_arg();
  1343   Node* trig = NULL;
  1345   switch (id) {
  1346   case vmIntrinsics::_dsin:
  1347     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1348     break;
  1349   case vmIntrinsics::_dcos:
  1350     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1351     break;
  1352   case vmIntrinsics::_dtan:
  1353     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1354     break;
  1355   default:
  1356     assert(false, "bad intrinsic was passed in");
  1357     return false;
  1360   // Rounding required?  Check for argument reduction!
  1361   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1363     static const double     pi_4 =  0.7853981633974483;
  1364     static const double neg_pi_4 = -0.7853981633974483;
  1365     // pi/2 in 80-bit extended precision
  1366     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1367     // -pi/2 in 80-bit extended precision
  1368     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1369     // Cutoff value for using this argument reduction technique
  1370     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1371     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1373     // Pseudocode for sin:
  1374     // if (x <= Math.PI / 4.0) {
  1375     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1376     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1377     // } else {
  1378     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1379     // }
  1380     // return StrictMath.sin(x);
  1382     // Pseudocode for cos:
  1383     // if (x <= Math.PI / 4.0) {
  1384     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1385     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1386     // } else {
  1387     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1388     // }
  1389     // return StrictMath.cos(x);
  1391     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1392     // requires a special machine instruction to load it.  Instead we'll try
  1393     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1394     // probably do the math inside the SIN encoding.
  1396     // Make the merge point
  1397     RegionNode *r = new (C, 3) RegionNode(3);
  1398     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1400     // Flatten arg so we need only 1 test
  1401     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1402     // Node for PI/4 constant
  1403     Node *pi4 = makecon(TypeD::make(pi_4));
  1404     // Check PI/4 : abs(arg)
  1405     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1406     // Check: If PI/4 < abs(arg) then go slow
  1407     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1408     // Branch either way
  1409     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1410     set_control(opt_iff(r,iff));
  1412     // Set fast path result
  1413     phi->init_req(2,trig);
  1415     // Slow path - non-blocking leaf call
  1416     Node* call = NULL;
  1417     switch (id) {
  1418     case vmIntrinsics::_dsin:
  1419       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1420                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1421                                "Sin", NULL, arg, top());
  1422       break;
  1423     case vmIntrinsics::_dcos:
  1424       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1425                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1426                                "Cos", NULL, arg, top());
  1427       break;
  1428     case vmIntrinsics::_dtan:
  1429       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1430                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1431                                "Tan", NULL, arg, top());
  1432       break;
  1434     assert(control()->in(0) == call, "");
  1435     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1436     r->init_req(1,control());
  1437     phi->init_req(1,slow_result);
  1439     // Post-merge
  1440     set_control(_gvn.transform(r));
  1441     record_for_igvn(r);
  1442     trig = _gvn.transform(phi);
  1444     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1446   // Push result back on JVM stack
  1447   push_pair(trig);
  1448   return true;
  1451 //------------------------------inline_sqrt-------------------------------------
  1452 // Inline square root instruction, if possible.
  1453 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1454   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1455   _sp += arg_size();        // restore stack pointer
  1456   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1457   return true;
  1460 //------------------------------inline_abs-------------------------------------
  1461 // Inline absolute value instruction, if possible.
  1462 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1463   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1464   _sp += arg_size();        // restore stack pointer
  1465   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1466   return true;
  1469 //------------------------------inline_exp-------------------------------------
  1470 // Inline exp instructions, if possible.  The Intel hardware only misses
  1471 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1472 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1473   assert(id == vmIntrinsics::_dexp, "Not exp");
  1475   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1476   // every again.  NaN results requires StrictMath.exp handling.
  1477   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1479   // Do not intrinsify on older platforms which lack cmove.
  1480   if (ConditionalMoveLimit == 0)  return false;
  1482   _sp += arg_size();        // restore stack pointer
  1483   Node *x = pop_math_arg();
  1484   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1486   //-------------------
  1487   //result=(result.isNaN())? StrictMath::exp():result;
  1488   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1489   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1490   // Build the boolean node
  1491   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1493   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1494     // End the current control-flow path
  1495     push_pair(x);
  1496     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1497     // to handle.  Recompile without intrinsifying Math.exp
  1498     uncommon_trap(Deoptimization::Reason_intrinsic,
  1499                   Deoptimization::Action_make_not_entrant);
  1502   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1504   push_pair(result);
  1506   return true;
  1509 //------------------------------inline_pow-------------------------------------
  1510 // Inline power instructions, if possible.
  1511 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1512   assert(id == vmIntrinsics::_dpow, "Not pow");
  1514   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1515   // every again.  NaN results requires StrictMath.pow handling.
  1516   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1518   // Do not intrinsify on older platforms which lack cmove.
  1519   if (ConditionalMoveLimit == 0)  return false;
  1521   // Pseudocode for pow
  1522   // if (x <= 0.0) {
  1523   //   if ((double)((int)y)==y) { // if y is int
  1524   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1525   //   } else {
  1526   //     result = NaN;
  1527   //   }
  1528   // } else {
  1529   //   result = DPow(x,y);
  1530   // }
  1531   // if (result != result)?  {
  1532   //   uncommon_trap();
  1533   // }
  1534   // return result;
  1536   _sp += arg_size();        // restore stack pointer
  1537   Node* y = pop_math_arg();
  1538   Node* x = pop_math_arg();
  1540   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1542   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1543   // inside of something) then skip the fancy tests and just check for
  1544   // NaN result.
  1545   Node *result = NULL;
  1546   if( jvms()->depth() >= 1 ) {
  1547     result = fast_result;
  1548   } else {
  1550     // Set the merge point for If node with condition of (x <= 0.0)
  1551     // There are four possible paths to region node and phi node
  1552     RegionNode *r = new (C, 4) RegionNode(4);
  1553     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1555     // Build the first if node: if (x <= 0.0)
  1556     // Node for 0 constant
  1557     Node *zeronode = makecon(TypeD::ZERO);
  1558     // Check x:0
  1559     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1560     // Check: If (x<=0) then go complex path
  1561     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1562     // Branch either way
  1563     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1564     Node *opt_test = _gvn.transform(if1);
  1565     //assert( opt_test->is_If(), "Expect an IfNode");
  1566     IfNode *opt_if1 = (IfNode*)opt_test;
  1567     // Fast path taken; set region slot 3
  1568     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1569     r->init_req(3,fast_taken); // Capture fast-control
  1571     // Fast path not-taken, i.e. slow path
  1572     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1574     // Set fast path result
  1575     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1576     phi->init_req(3, fast_result);
  1578     // Complex path
  1579     // Build the second if node (if y is int)
  1580     // Node for (int)y
  1581     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1582     // Node for (double)((int) y)
  1583     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1584     // Check (double)((int) y) : y
  1585     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1586     // Check if (y isn't int) then go to slow path
  1588     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1589     // Branch either way
  1590     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1591     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1593     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1594     // Node for constant 1
  1595     Node *conone = intcon(1);
  1596     // 1& (int)y
  1597     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1598     // zero node
  1599     Node *conzero = intcon(0);
  1600     // Check (1&(int)y)==0?
  1601     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1602     // Check if (1&(int)y)!=0?, if so the result is negative
  1603     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1604     // abs(x)
  1605     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1606     // abs(x)^y
  1607     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1608     // -abs(x)^y
  1609     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1610     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1611     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1612     // Set complex path fast result
  1613     phi->init_req(2, signresult);
  1615     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1616     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1617     r->init_req(1,slow_path);
  1618     phi->init_req(1,slow_result);
  1620     // Post merge
  1621     set_control(_gvn.transform(r));
  1622     record_for_igvn(r);
  1623     result=_gvn.transform(phi);
  1626   //-------------------
  1627   //result=(result.isNaN())? uncommon_trap():result;
  1628   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1629   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1630   // Build the boolean node
  1631   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1633   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1634     // End the current control-flow path
  1635     push_pair(x);
  1636     push_pair(y);
  1637     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1638     // to handle.  Recompile without intrinsifying Math.pow.
  1639     uncommon_trap(Deoptimization::Reason_intrinsic,
  1640                   Deoptimization::Action_make_not_entrant);
  1643   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1645   push_pair(result);
  1647   return true;
  1650 //------------------------------inline_trans-------------------------------------
  1651 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1652 // these right, no funny corner cases missed.
  1653 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1654   _sp += arg_size();        // restore stack pointer
  1655   Node* arg = pop_math_arg();
  1656   Node* trans = NULL;
  1658   switch (id) {
  1659   case vmIntrinsics::_dlog:
  1660     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1661     break;
  1662   case vmIntrinsics::_dlog10:
  1663     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1664     break;
  1665   default:
  1666     assert(false, "bad intrinsic was passed in");
  1667     return false;
  1670   // Push result back on JVM stack
  1671   push_pair(trans);
  1672   return true;
  1675 //------------------------------runtime_math-----------------------------
  1676 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1677   Node* a = NULL;
  1678   Node* b = NULL;
  1680   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1681          "must be (DD)D or (D)D type");
  1683   // Inputs
  1684   _sp += arg_size();        // restore stack pointer
  1685   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1686     b = pop_math_arg();
  1688   a = pop_math_arg();
  1690   const TypePtr* no_memory_effects = NULL;
  1691   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1692                                  no_memory_effects,
  1693                                  a, top(), b, b ? top() : NULL);
  1694   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1695 #ifdef ASSERT
  1696   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1697   assert(value_top == top(), "second value must be top");
  1698 #endif
  1700   push_pair(value);
  1701   return true;
  1704 //------------------------------inline_math_native-----------------------------
  1705 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1706   switch (id) {
  1707     // These intrinsics are not properly supported on all hardware
  1708   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1709     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1710   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1711     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1712   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1713     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1715   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1716     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1717   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1718     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1720     // These intrinsics are supported on all hardware
  1721   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1722   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1724     // These intrinsics don't work on X86.  The ad implementation doesn't
  1725     // handle NaN's properly.  Instead of returning infinity, the ad
  1726     // implementation returns a NaN on overflow. See bug: 6304089
  1727     // Once the ad implementations are fixed, change the code below
  1728     // to match the intrinsics above
  1730   case vmIntrinsics::_dexp:  return
  1731     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1732   case vmIntrinsics::_dpow:  return
  1733     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1735    // These intrinsics are not yet correctly implemented
  1736   case vmIntrinsics::_datan2:
  1737     return false;
  1739   default:
  1740     ShouldNotReachHere();
  1741     return false;
  1745 static bool is_simple_name(Node* n) {
  1746   return (n->req() == 1         // constant
  1747           || (n->is_Type() && n->as_Type()->type()->singleton())
  1748           || n->is_Proj()       // parameter or return value
  1749           || n->is_Phi()        // local of some sort
  1750           );
  1753 //----------------------------inline_min_max-----------------------------------
  1754 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1755   push(generate_min_max(id, argument(0), argument(1)));
  1757   return true;
  1760 Node*
  1761 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1762   // These are the candidate return value:
  1763   Node* xvalue = x0;
  1764   Node* yvalue = y0;
  1766   if (xvalue == yvalue) {
  1767     return xvalue;
  1770   bool want_max = (id == vmIntrinsics::_max);
  1772   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1773   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1774   if (txvalue == NULL || tyvalue == NULL)  return top();
  1775   // This is not really necessary, but it is consistent with a
  1776   // hypothetical MaxINode::Value method:
  1777   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1779   // %%% This folding logic should (ideally) be in a different place.
  1780   // Some should be inside IfNode, and there to be a more reliable
  1781   // transformation of ?: style patterns into cmoves.  We also want
  1782   // more powerful optimizations around cmove and min/max.
  1784   // Try to find a dominating comparison of these guys.
  1785   // It can simplify the index computation for Arrays.copyOf
  1786   // and similar uses of System.arraycopy.
  1787   // First, compute the normalized version of CmpI(x, y).
  1788   int   cmp_op = Op_CmpI;
  1789   Node* xkey = xvalue;
  1790   Node* ykey = yvalue;
  1791   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1792   if (ideal_cmpxy->is_Cmp()) {
  1793     // E.g., if we have CmpI(length - offset, count),
  1794     // it might idealize to CmpI(length, count + offset)
  1795     cmp_op = ideal_cmpxy->Opcode();
  1796     xkey = ideal_cmpxy->in(1);
  1797     ykey = ideal_cmpxy->in(2);
  1800   // Start by locating any relevant comparisons.
  1801   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1802   Node* cmpxy = NULL;
  1803   Node* cmpyx = NULL;
  1804   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1805     Node* cmp = start_from->fast_out(k);
  1806     if (cmp->outcnt() > 0 &&            // must have prior uses
  1807         cmp->in(0) == NULL &&           // must be context-independent
  1808         cmp->Opcode() == cmp_op) {      // right kind of compare
  1809       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1810       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1814   const int NCMPS = 2;
  1815   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1816   int cmpn;
  1817   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1818     if (cmps[cmpn] != NULL)  break;     // find a result
  1820   if (cmpn < NCMPS) {
  1821     // Look for a dominating test that tells us the min and max.
  1822     int depth = 0;                // Limit search depth for speed
  1823     Node* dom = control();
  1824     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1825       if (++depth >= 100)  break;
  1826       Node* ifproj = dom;
  1827       if (!ifproj->is_Proj())  continue;
  1828       Node* iff = ifproj->in(0);
  1829       if (!iff->is_If())  continue;
  1830       Node* bol = iff->in(1);
  1831       if (!bol->is_Bool())  continue;
  1832       Node* cmp = bol->in(1);
  1833       if (cmp == NULL)  continue;
  1834       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1835         if (cmps[cmpn] == cmp)  break;
  1836       if (cmpn == NCMPS)  continue;
  1837       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1838       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1839       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1840       // At this point, we know that 'x btest y' is true.
  1841       switch (btest) {
  1842       case BoolTest::eq:
  1843         // They are proven equal, so we can collapse the min/max.
  1844         // Either value is the answer.  Choose the simpler.
  1845         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1846           return yvalue;
  1847         return xvalue;
  1848       case BoolTest::lt:          // x < y
  1849       case BoolTest::le:          // x <= y
  1850         return (want_max ? yvalue : xvalue);
  1851       case BoolTest::gt:          // x > y
  1852       case BoolTest::ge:          // x >= y
  1853         return (want_max ? xvalue : yvalue);
  1858   // We failed to find a dominating test.
  1859   // Let's pick a test that might GVN with prior tests.
  1860   Node*          best_bol   = NULL;
  1861   BoolTest::mask best_btest = BoolTest::illegal;
  1862   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1863     Node* cmp = cmps[cmpn];
  1864     if (cmp == NULL)  continue;
  1865     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1866       Node* bol = cmp->fast_out(j);
  1867       if (!bol->is_Bool())  continue;
  1868       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1869       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1870       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1871       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1872         best_bol   = bol->as_Bool();
  1873         best_btest = btest;
  1878   Node* answer_if_true  = NULL;
  1879   Node* answer_if_false = NULL;
  1880   switch (best_btest) {
  1881   default:
  1882     if (cmpxy == NULL)
  1883       cmpxy = ideal_cmpxy;
  1884     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1885     // and fall through:
  1886   case BoolTest::lt:          // x < y
  1887   case BoolTest::le:          // x <= y
  1888     answer_if_true  = (want_max ? yvalue : xvalue);
  1889     answer_if_false = (want_max ? xvalue : yvalue);
  1890     break;
  1891   case BoolTest::gt:          // x > y
  1892   case BoolTest::ge:          // x >= y
  1893     answer_if_true  = (want_max ? xvalue : yvalue);
  1894     answer_if_false = (want_max ? yvalue : xvalue);
  1895     break;
  1898   jint hi, lo;
  1899   if (want_max) {
  1900     // We can sharpen the minimum.
  1901     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1902     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1903   } else {
  1904     // We can sharpen the maximum.
  1905     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1906     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1909   // Use a flow-free graph structure, to avoid creating excess control edges
  1910   // which could hinder other optimizations.
  1911   // Since Math.min/max is often used with arraycopy, we want
  1912   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1913   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1914                                answer_if_false, answer_if_true,
  1915                                TypeInt::make(lo, hi, widen));
  1917   return _gvn.transform(cmov);
  1919   /*
  1920   // This is not as desirable as it may seem, since Min and Max
  1921   // nodes do not have a full set of optimizations.
  1922   // And they would interfere, anyway, with 'if' optimizations
  1923   // and with CMoveI canonical forms.
  1924   switch (id) {
  1925   case vmIntrinsics::_min:
  1926     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1927   case vmIntrinsics::_max:
  1928     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1929   default:
  1930     ShouldNotReachHere();
  1932   */
  1935 inline int
  1936 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1937   const TypePtr* base_type = TypePtr::NULL_PTR;
  1938   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1939   if (base_type == NULL) {
  1940     // Unknown type.
  1941     return Type::AnyPtr;
  1942   } else if (base_type == TypePtr::NULL_PTR) {
  1943     // Since this is a NULL+long form, we have to switch to a rawptr.
  1944     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1945     offset = MakeConX(0);
  1946     return Type::RawPtr;
  1947   } else if (base_type->base() == Type::RawPtr) {
  1948     return Type::RawPtr;
  1949   } else if (base_type->isa_oopptr()) {
  1950     // Base is never null => always a heap address.
  1951     if (base_type->ptr() == TypePtr::NotNull) {
  1952       return Type::OopPtr;
  1954     // Offset is small => always a heap address.
  1955     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1956     if (offset_type != NULL &&
  1957         base_type->offset() == 0 &&     // (should always be?)
  1958         offset_type->_lo >= 0 &&
  1959         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1960       return Type::OopPtr;
  1962     // Otherwise, it might either be oop+off or NULL+addr.
  1963     return Type::AnyPtr;
  1964   } else {
  1965     // No information:
  1966     return Type::AnyPtr;
  1970 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1971   int kind = classify_unsafe_addr(base, offset);
  1972   if (kind == Type::RawPtr) {
  1973     return basic_plus_adr(top(), base, offset);
  1974   } else {
  1975     return basic_plus_adr(base, offset);
  1979 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1980 // inline int Integer.numberOfLeadingZeros(int)
  1981 // inline int Long.numberOfLeadingZeros(long)
  1982 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1983   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1984   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1985   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1986   _sp += arg_size();  // restore stack pointer
  1987   switch (id) {
  1988   case vmIntrinsics::_numberOfLeadingZeros_i:
  1989     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1990     break;
  1991   case vmIntrinsics::_numberOfLeadingZeros_l:
  1992     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1993     break;
  1994   default:
  1995     ShouldNotReachHere();
  1997   return true;
  2000 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2001 // inline int Integer.numberOfTrailingZeros(int)
  2002 // inline int Long.numberOfTrailingZeros(long)
  2003 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2004   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2005   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2006   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2007   _sp += arg_size();  // restore stack pointer
  2008   switch (id) {
  2009   case vmIntrinsics::_numberOfTrailingZeros_i:
  2010     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2011     break;
  2012   case vmIntrinsics::_numberOfTrailingZeros_l:
  2013     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2014     break;
  2015   default:
  2016     ShouldNotReachHere();
  2018   return true;
  2021 //----------------------------inline_bitCount_int/long-----------------------
  2022 // inline int Integer.bitCount(int)
  2023 // inline int Long.bitCount(long)
  2024 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2025   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2026   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2027   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2028   _sp += arg_size();  // restore stack pointer
  2029   switch (id) {
  2030   case vmIntrinsics::_bitCount_i:
  2031     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2032     break;
  2033   case vmIntrinsics::_bitCount_l:
  2034     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2035     break;
  2036   default:
  2037     ShouldNotReachHere();
  2039   return true;
  2042 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2043 // inline Integer.reverseBytes(int)
  2044 // inline Long.reverseBytes(long)
  2045 // inline Character.reverseBytes(char)
  2046 // inline Short.reverseBytes(short)
  2047 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2048   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2049          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2050          "not reverse Bytes");
  2051   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2052   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2053   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2054   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2055   _sp += arg_size();        // restore stack pointer
  2056   switch (id) {
  2057   case vmIntrinsics::_reverseBytes_i:
  2058     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2059     break;
  2060   case vmIntrinsics::_reverseBytes_l:
  2061     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2062     break;
  2063   case vmIntrinsics::_reverseBytes_c:
  2064     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2065     break;
  2066   case vmIntrinsics::_reverseBytes_s:
  2067     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2068     break;
  2069   default:
  2072   return true;
  2075 //----------------------------inline_unsafe_access----------------------------
  2077 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2079 // Interpret Unsafe.fieldOffset cookies correctly:
  2080 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2082 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2083   if (callee()->is_static())  return false;  // caller must have the capability!
  2085 #ifndef PRODUCT
  2087     ResourceMark rm;
  2088     // Check the signatures.
  2089     ciSignature* sig = signature();
  2090 #ifdef ASSERT
  2091     if (!is_store) {
  2092       // Object getObject(Object base, int/long offset), etc.
  2093       BasicType rtype = sig->return_type()->basic_type();
  2094       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2095           rtype = T_ADDRESS;  // it is really a C void*
  2096       assert(rtype == type, "getter must return the expected value");
  2097       if (!is_native_ptr) {
  2098         assert(sig->count() == 2, "oop getter has 2 arguments");
  2099         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2100         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2101       } else {
  2102         assert(sig->count() == 1, "native getter has 1 argument");
  2103         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2105     } else {
  2106       // void putObject(Object base, int/long offset, Object x), etc.
  2107       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2108       if (!is_native_ptr) {
  2109         assert(sig->count() == 3, "oop putter has 3 arguments");
  2110         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2111         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2112       } else {
  2113         assert(sig->count() == 2, "native putter has 2 arguments");
  2114         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2116       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2117       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2118         vtype = T_ADDRESS;  // it is really a C void*
  2119       assert(vtype == type, "putter must accept the expected value");
  2121 #endif // ASSERT
  2123 #endif //PRODUCT
  2125   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2127   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2129   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2130   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2132   debug_only(int saved_sp = _sp);
  2133   _sp += nargs;
  2135   Node* val;
  2136   debug_only(val = (Node*)(uintptr_t)-1);
  2139   if (is_store) {
  2140     // Get the value being stored.  (Pop it first; it was pushed last.)
  2141     switch (type) {
  2142     case T_DOUBLE:
  2143     case T_LONG:
  2144     case T_ADDRESS:
  2145       val = pop_pair();
  2146       break;
  2147     default:
  2148       val = pop();
  2152   // Build address expression.  See the code in inline_unsafe_prefetch.
  2153   Node *adr;
  2154   Node *heap_base_oop = top();
  2155   if (!is_native_ptr) {
  2156     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2157     Node* offset = pop_pair();
  2158     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2159     Node* base   = pop();
  2160     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2161     // to be plain byte offsets, which are also the same as those accepted
  2162     // by oopDesc::field_base.
  2163     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2164            "fieldOffset must be byte-scaled");
  2165     // 32-bit machines ignore the high half!
  2166     offset = ConvL2X(offset);
  2167     adr = make_unsafe_address(base, offset);
  2168     heap_base_oop = base;
  2169   } else {
  2170     Node* ptr = pop_pair();
  2171     // Adjust Java long to machine word:
  2172     ptr = ConvL2X(ptr);
  2173     adr = make_unsafe_address(NULL, ptr);
  2176   // Pop receiver last:  it was pushed first.
  2177   Node *receiver = pop();
  2179   assert(saved_sp == _sp, "must have correct argument count");
  2181   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2183   // First guess at the value type.
  2184   const Type *value_type = Type::get_const_basic_type(type);
  2186   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2187   // there was not enough information to nail it down.
  2188   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2189   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2191   // We will need memory barriers unless we can determine a unique
  2192   // alias category for this reference.  (Note:  If for some reason
  2193   // the barriers get omitted and the unsafe reference begins to "pollute"
  2194   // the alias analysis of the rest of the graph, either Compile::can_alias
  2195   // or Compile::must_alias will throw a diagnostic assert.)
  2196   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2198   if (!is_store && type == T_OBJECT) {
  2199     // Attempt to infer a sharper value type from the offset and base type.
  2200     ciKlass* sharpened_klass = NULL;
  2202     // See if it is an instance field, with an object type.
  2203     if (alias_type->field() != NULL) {
  2204       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2205       if (alias_type->field()->type()->is_klass()) {
  2206         sharpened_klass = alias_type->field()->type()->as_klass();
  2210     // See if it is a narrow oop array.
  2211     if (adr_type->isa_aryptr()) {
  2212       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2213         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2214         if (elem_type != NULL) {
  2215           sharpened_klass = elem_type->klass();
  2220     if (sharpened_klass != NULL) {
  2221       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2223       // Sharpen the value type.
  2224       value_type = tjp;
  2226 #ifndef PRODUCT
  2227       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2228         tty->print("  from base type:  ");   adr_type->dump();
  2229         tty->print("  sharpened value: "); value_type->dump();
  2231 #endif
  2235   // Null check on self without removing any arguments.  The argument
  2236   // null check technically happens in the wrong place, which can lead to
  2237   // invalid stack traces when the primitive is inlined into a method
  2238   // which handles NullPointerExceptions.
  2239   _sp += nargs;
  2240   do_null_check(receiver, T_OBJECT);
  2241   _sp -= nargs;
  2242   if (stopped()) {
  2243     return true;
  2245   // Heap pointers get a null-check from the interpreter,
  2246   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2247   // and it is not possible to fully distinguish unintended nulls
  2248   // from intended ones in this API.
  2250   if (is_volatile) {
  2251     // We need to emit leading and trailing CPU membars (see below) in
  2252     // addition to memory membars when is_volatile. This is a little
  2253     // too strong, but avoids the need to insert per-alias-type
  2254     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2255     // we cannot do effectively here because we probably only have a
  2256     // rough approximation of type.
  2257     need_mem_bar = true;
  2258     // For Stores, place a memory ordering barrier now.
  2259     if (is_store)
  2260       insert_mem_bar(Op_MemBarRelease);
  2263   // Memory barrier to prevent normal and 'unsafe' accesses from
  2264   // bypassing each other.  Happens after null checks, so the
  2265   // exception paths do not take memory state from the memory barrier,
  2266   // so there's no problems making a strong assert about mixing users
  2267   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2268   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2269   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2271   if (!is_store) {
  2272     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2273     // load value and push onto stack
  2274     switch (type) {
  2275     case T_BOOLEAN:
  2276     case T_CHAR:
  2277     case T_BYTE:
  2278     case T_SHORT:
  2279     case T_INT:
  2280     case T_FLOAT:
  2281     case T_OBJECT:
  2282       push( p );
  2283       break;
  2284     case T_ADDRESS:
  2285       // Cast to an int type.
  2286       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2287       p = ConvX2L(p);
  2288       push_pair(p);
  2289       break;
  2290     case T_DOUBLE:
  2291     case T_LONG:
  2292       push_pair( p );
  2293       break;
  2294     default: ShouldNotReachHere();
  2296   } else {
  2297     // place effect of store into memory
  2298     switch (type) {
  2299     case T_DOUBLE:
  2300       val = dstore_rounding(val);
  2301       break;
  2302     case T_ADDRESS:
  2303       // Repackage the long as a pointer.
  2304       val = ConvL2X(val);
  2305       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2306       break;
  2309     if (type != T_OBJECT ) {
  2310       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2311     } else {
  2312       // Possibly an oop being stored to Java heap or native memory
  2313       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2314         // oop to Java heap.
  2315         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2316       } else {
  2317         // We can't tell at compile time if we are storing in the Java heap or outside
  2318         // of it. So we need to emit code to conditionally do the proper type of
  2319         // store.
  2321         IdealKit ideal(this);
  2322 #define __ ideal.
  2323         // QQQ who knows what probability is here??
  2324         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2325           // Sync IdealKit and graphKit.
  2326           sync_kit(ideal);
  2327           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2328           // Update IdealKit memory.
  2329           __ sync_kit(this);
  2330         } __ else_(); {
  2331           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2332         } __ end_if();
  2333         // Final sync IdealKit and GraphKit.
  2334         final_sync(ideal);
  2335 #undef __
  2340   if (is_volatile) {
  2341     if (!is_store)
  2342       insert_mem_bar(Op_MemBarAcquire);
  2343     else
  2344       insert_mem_bar(Op_MemBarVolatile);
  2347   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2349   return true;
  2352 //----------------------------inline_unsafe_prefetch----------------------------
  2354 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2355 #ifndef PRODUCT
  2357     ResourceMark rm;
  2358     // Check the signatures.
  2359     ciSignature* sig = signature();
  2360 #ifdef ASSERT
  2361     // Object getObject(Object base, int/long offset), etc.
  2362     BasicType rtype = sig->return_type()->basic_type();
  2363     if (!is_native_ptr) {
  2364       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2365       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2366       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2367     } else {
  2368       assert(sig->count() == 1, "native prefetch has 1 argument");
  2369       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2371 #endif // ASSERT
  2373 #endif // !PRODUCT
  2375   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2377   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2378   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2380   debug_only(int saved_sp = _sp);
  2381   _sp += nargs;
  2383   // Build address expression.  See the code in inline_unsafe_access.
  2384   Node *adr;
  2385   if (!is_native_ptr) {
  2386     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2387     Node* offset = pop_pair();
  2388     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2389     Node* base   = pop();
  2390     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2391     // to be plain byte offsets, which are also the same as those accepted
  2392     // by oopDesc::field_base.
  2393     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2394            "fieldOffset must be byte-scaled");
  2395     // 32-bit machines ignore the high half!
  2396     offset = ConvL2X(offset);
  2397     adr = make_unsafe_address(base, offset);
  2398   } else {
  2399     Node* ptr = pop_pair();
  2400     // Adjust Java long to machine word:
  2401     ptr = ConvL2X(ptr);
  2402     adr = make_unsafe_address(NULL, ptr);
  2405   if (is_static) {
  2406     assert(saved_sp == _sp, "must have correct argument count");
  2407   } else {
  2408     // Pop receiver last:  it was pushed first.
  2409     Node *receiver = pop();
  2410     assert(saved_sp == _sp, "must have correct argument count");
  2412     // Null check on self without removing any arguments.  The argument
  2413     // null check technically happens in the wrong place, which can lead to
  2414     // invalid stack traces when the primitive is inlined into a method
  2415     // which handles NullPointerExceptions.
  2416     _sp += nargs;
  2417     do_null_check(receiver, T_OBJECT);
  2418     _sp -= nargs;
  2419     if (stopped()) {
  2420       return true;
  2424   // Generate the read or write prefetch
  2425   Node *prefetch;
  2426   if (is_store) {
  2427     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2428   } else {
  2429     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2431   prefetch->init_req(0, control());
  2432   set_i_o(_gvn.transform(prefetch));
  2434   return true;
  2437 //----------------------------inline_unsafe_CAS----------------------------
  2439 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2440   // This basic scheme here is the same as inline_unsafe_access, but
  2441   // differs in enough details that combining them would make the code
  2442   // overly confusing.  (This is a true fact! I originally combined
  2443   // them, but even I was confused by it!) As much code/comments as
  2444   // possible are retained from inline_unsafe_access though to make
  2445   // the correspondences clearer. - dl
  2447   if (callee()->is_static())  return false;  // caller must have the capability!
  2449 #ifndef PRODUCT
  2451     ResourceMark rm;
  2452     // Check the signatures.
  2453     ciSignature* sig = signature();
  2454 #ifdef ASSERT
  2455     BasicType rtype = sig->return_type()->basic_type();
  2456     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2457     assert(sig->count() == 4, "CAS has 4 arguments");
  2458     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2459     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2460 #endif // ASSERT
  2462 #endif //PRODUCT
  2464   // number of stack slots per value argument (1 or 2)
  2465   int type_words = type2size[type];
  2467   // Cannot inline wide CAS on machines that don't support it natively
  2468   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2469     return false;
  2471   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2473   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2474   int nargs = 1 + 1 + 2  + type_words + type_words;
  2476   // pop arguments: newval, oldval, offset, base, and receiver
  2477   debug_only(int saved_sp = _sp);
  2478   _sp += nargs;
  2479   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2480   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2481   Node *offset   = pop_pair();
  2482   Node *base     = pop();
  2483   Node *receiver = pop();
  2484   assert(saved_sp == _sp, "must have correct argument count");
  2486   //  Null check receiver.
  2487   _sp += nargs;
  2488   do_null_check(receiver, T_OBJECT);
  2489   _sp -= nargs;
  2490   if (stopped()) {
  2491     return true;
  2494   // Build field offset expression.
  2495   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2496   // to be plain byte offsets, which are also the same as those accepted
  2497   // by oopDesc::field_base.
  2498   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2499   // 32-bit machines ignore the high half of long offsets
  2500   offset = ConvL2X(offset);
  2501   Node* adr = make_unsafe_address(base, offset);
  2502   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2504   // (Unlike inline_unsafe_access, there seems no point in trying
  2505   // to refine types. Just use the coarse types here.
  2506   const Type *value_type = Type::get_const_basic_type(type);
  2507   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2508   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2509   int alias_idx = C->get_alias_index(adr_type);
  2511   // Memory-model-wise, a CAS acts like a little synchronized block,
  2512   // so needs barriers on each side.  These don't translate into
  2513   // actual barriers on most machines, but we still need rest of
  2514   // compiler to respect ordering.
  2516   insert_mem_bar(Op_MemBarRelease);
  2517   insert_mem_bar(Op_MemBarCPUOrder);
  2519   // 4984716: MemBars must be inserted before this
  2520   //          memory node in order to avoid a false
  2521   //          dependency which will confuse the scheduler.
  2522   Node *mem = memory(alias_idx);
  2524   // For now, we handle only those cases that actually exist: ints,
  2525   // longs, and Object. Adding others should be straightforward.
  2526   Node* cas;
  2527   switch(type) {
  2528   case T_INT:
  2529     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2530     break;
  2531   case T_LONG:
  2532     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2533     break;
  2534   case T_OBJECT:
  2535      // reference stores need a store barrier.
  2536     // (They don't if CAS fails, but it isn't worth checking.)
  2537     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
  2538 #ifdef _LP64
  2539     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2540       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2541       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2542       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2543                                                           newval_enc, oldval_enc));
  2544     } else
  2545 #endif
  2547       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2549     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2550     break;
  2551   default:
  2552     ShouldNotReachHere();
  2553     break;
  2556   // SCMemProjNodes represent the memory state of CAS. Their main
  2557   // role is to prevent CAS nodes from being optimized away when their
  2558   // results aren't used.
  2559   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2560   set_memory(proj, alias_idx);
  2562   // Add the trailing membar surrounding the access
  2563   insert_mem_bar(Op_MemBarCPUOrder);
  2564   insert_mem_bar(Op_MemBarAcquire);
  2566   push(cas);
  2567   return true;
  2570 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2571   // This is another variant of inline_unsafe_access, differing in
  2572   // that it always issues store-store ("release") barrier and ensures
  2573   // store-atomicity (which only matters for "long").
  2575   if (callee()->is_static())  return false;  // caller must have the capability!
  2577 #ifndef PRODUCT
  2579     ResourceMark rm;
  2580     // Check the signatures.
  2581     ciSignature* sig = signature();
  2582 #ifdef ASSERT
  2583     BasicType rtype = sig->return_type()->basic_type();
  2584     assert(rtype == T_VOID, "must return void");
  2585     assert(sig->count() == 3, "has 3 arguments");
  2586     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2587     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2588 #endif // ASSERT
  2590 #endif //PRODUCT
  2592   // number of stack slots per value argument (1 or 2)
  2593   int type_words = type2size[type];
  2595   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2597   // Argument words:  "this" plus oop plus offset plus value;
  2598   int nargs = 1 + 1 + 2 + type_words;
  2600   // pop arguments: val, offset, base, and receiver
  2601   debug_only(int saved_sp = _sp);
  2602   _sp += nargs;
  2603   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2604   Node *offset   = pop_pair();
  2605   Node *base     = pop();
  2606   Node *receiver = pop();
  2607   assert(saved_sp == _sp, "must have correct argument count");
  2609   //  Null check receiver.
  2610   _sp += nargs;
  2611   do_null_check(receiver, T_OBJECT);
  2612   _sp -= nargs;
  2613   if (stopped()) {
  2614     return true;
  2617   // Build field offset expression.
  2618   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2619   // 32-bit machines ignore the high half of long offsets
  2620   offset = ConvL2X(offset);
  2621   Node* adr = make_unsafe_address(base, offset);
  2622   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2623   const Type *value_type = Type::get_const_basic_type(type);
  2624   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2626   insert_mem_bar(Op_MemBarRelease);
  2627   insert_mem_bar(Op_MemBarCPUOrder);
  2628   // Ensure that the store is atomic for longs:
  2629   bool require_atomic_access = true;
  2630   Node* store;
  2631   if (type == T_OBJECT) // reference stores need a store barrier.
  2632     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2633   else {
  2634     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2636   insert_mem_bar(Op_MemBarCPUOrder);
  2637   return true;
  2640 bool LibraryCallKit::inline_unsafe_allocate() {
  2641   if (callee()->is_static())  return false;  // caller must have the capability!
  2642   int nargs = 1 + 1;
  2643   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2644   null_check_receiver(callee());  // check then ignore argument(0)
  2645   _sp += nargs;  // set original stack for use by uncommon_trap
  2646   Node* cls = do_null_check(argument(1), T_OBJECT);
  2647   _sp -= nargs;
  2648   if (stopped())  return true;
  2650   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2651   _sp += nargs;  // set original stack for use by uncommon_trap
  2652   kls = do_null_check(kls, T_OBJECT);
  2653   _sp -= nargs;
  2654   if (stopped())  return true;  // argument was like int.class
  2656   // Note:  The argument might still be an illegal value like
  2657   // Serializable.class or Object[].class.   The runtime will handle it.
  2658   // But we must make an explicit check for initialization.
  2659   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2660   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2661   Node* bits = intcon(instanceKlass::fully_initialized);
  2662   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2663   // The 'test' is non-zero if we need to take a slow path.
  2665   Node* obj = new_instance(kls, test);
  2666   push(obj);
  2668   return true;
  2671 //------------------------inline_native_time_funcs--------------
  2672 // inline code for System.currentTimeMillis() and System.nanoTime()
  2673 // these have the same type and signature
  2674 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2675   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2676                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2677   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2678   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2679   const TypePtr* no_memory_effects = NULL;
  2680   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2681   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2682 #ifdef ASSERT
  2683   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2684   assert(value_top == top(), "second value must be top");
  2685 #endif
  2686   push_pair(value);
  2687   return true;
  2690 //------------------------inline_native_currentThread------------------
  2691 bool LibraryCallKit::inline_native_currentThread() {
  2692   Node* junk = NULL;
  2693   push(generate_current_thread(junk));
  2694   return true;
  2697 //------------------------inline_native_isInterrupted------------------
  2698 bool LibraryCallKit::inline_native_isInterrupted() {
  2699   const int nargs = 1+1;  // receiver + boolean
  2700   assert(nargs == arg_size(), "sanity");
  2701   // Add a fast path to t.isInterrupted(clear_int):
  2702   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2703   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2704   // So, in the common case that the interrupt bit is false,
  2705   // we avoid making a call into the VM.  Even if the interrupt bit
  2706   // is true, if the clear_int argument is false, we avoid the VM call.
  2707   // However, if the receiver is not currentThread, we must call the VM,
  2708   // because there must be some locking done around the operation.
  2710   // We only go to the fast case code if we pass two guards.
  2711   // Paths which do not pass are accumulated in the slow_region.
  2712   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2713   record_for_igvn(slow_region);
  2714   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2715   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2716   enum { no_int_result_path   = 1,
  2717          no_clear_result_path = 2,
  2718          slow_result_path     = 3
  2719   };
  2721   // (a) Receiving thread must be the current thread.
  2722   Node* rec_thr = argument(0);
  2723   Node* tls_ptr = NULL;
  2724   Node* cur_thr = generate_current_thread(tls_ptr);
  2725   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2726   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2728   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2729   if (!known_current_thread)
  2730     generate_slow_guard(bol_thr, slow_region);
  2732   // (b) Interrupt bit on TLS must be false.
  2733   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2734   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2735   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2736   // Set the control input on the field _interrupted read to prevent it floating up.
  2737   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2738   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2739   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2741   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2743   // First fast path:  if (!TLS._interrupted) return false;
  2744   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2745   result_rgn->init_req(no_int_result_path, false_bit);
  2746   result_val->init_req(no_int_result_path, intcon(0));
  2748   // drop through to next case
  2749   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2751   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2752   Node* clr_arg = argument(1);
  2753   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2754   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2755   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2757   // Second fast path:  ... else if (!clear_int) return true;
  2758   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2759   result_rgn->init_req(no_clear_result_path, false_arg);
  2760   result_val->init_req(no_clear_result_path, intcon(1));
  2762   // drop through to next case
  2763   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2765   // (d) Otherwise, go to the slow path.
  2766   slow_region->add_req(control());
  2767   set_control( _gvn.transform(slow_region) );
  2769   if (stopped()) {
  2770     // There is no slow path.
  2771     result_rgn->init_req(slow_result_path, top());
  2772     result_val->init_req(slow_result_path, top());
  2773   } else {
  2774     // non-virtual because it is a private non-static
  2775     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2777     Node* slow_val = set_results_for_java_call(slow_call);
  2778     // this->control() comes from set_results_for_java_call
  2780     // If we know that the result of the slow call will be true, tell the optimizer!
  2781     if (known_current_thread)  slow_val = intcon(1);
  2783     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2784     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2785     // These two phis are pre-filled with copies of of the fast IO and Memory
  2786     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2787     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2789     result_rgn->init_req(slow_result_path, control());
  2790     io_phi    ->init_req(slow_result_path, i_o());
  2791     mem_phi   ->init_req(slow_result_path, reset_memory());
  2792     result_val->init_req(slow_result_path, slow_val);
  2794     set_all_memory( _gvn.transform(mem_phi) );
  2795     set_i_o(        _gvn.transform(io_phi) );
  2798   push_result(result_rgn, result_val);
  2799   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2801   return true;
  2804 //---------------------------load_mirror_from_klass----------------------------
  2805 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2806 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2807   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2808   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2811 //-----------------------load_klass_from_mirror_common-------------------------
  2812 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2813 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2814 // and branch to the given path on the region.
  2815 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2816 // compile for the non-null case.
  2817 // If the region is NULL, force never_see_null = true.
  2818 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2819                                                     bool never_see_null,
  2820                                                     int nargs,
  2821                                                     RegionNode* region,
  2822                                                     int null_path,
  2823                                                     int offset) {
  2824   if (region == NULL)  never_see_null = true;
  2825   Node* p = basic_plus_adr(mirror, offset);
  2826   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2827   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2828   _sp += nargs; // any deopt will start just before call to enclosing method
  2829   Node* null_ctl = top();
  2830   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2831   if (region != NULL) {
  2832     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2833     region->init_req(null_path, null_ctl);
  2834   } else {
  2835     assert(null_ctl == top(), "no loose ends");
  2837   _sp -= nargs;
  2838   return kls;
  2841 //--------------------(inline_native_Class_query helpers)---------------------
  2842 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2843 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2844 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2845   // Branch around if the given klass has the given modifier bit set.
  2846   // Like generate_guard, adds a new path onto the region.
  2847   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2848   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2849   Node* mask = intcon(modifier_mask);
  2850   Node* bits = intcon(modifier_bits);
  2851   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2852   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2853   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2854   return generate_fair_guard(bol, region);
  2856 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2857   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2860 //-------------------------inline_native_Class_query-------------------
  2861 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2862   int nargs = 1+0;  // just the Class mirror, in most cases
  2863   const Type* return_type = TypeInt::BOOL;
  2864   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2865   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2866   bool expect_prim = false;     // most of these guys expect to work on refs
  2868   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2870   switch (id) {
  2871   case vmIntrinsics::_isInstance:
  2872     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2873     // nothing is an instance of a primitive type
  2874     prim_return_value = intcon(0);
  2875     break;
  2876   case vmIntrinsics::_getModifiers:
  2877     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2878     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2879     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2880     break;
  2881   case vmIntrinsics::_isInterface:
  2882     prim_return_value = intcon(0);
  2883     break;
  2884   case vmIntrinsics::_isArray:
  2885     prim_return_value = intcon(0);
  2886     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2887     break;
  2888   case vmIntrinsics::_isPrimitive:
  2889     prim_return_value = intcon(1);
  2890     expect_prim = true;  // obviously
  2891     break;
  2892   case vmIntrinsics::_getSuperclass:
  2893     prim_return_value = null();
  2894     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2895     break;
  2896   case vmIntrinsics::_getComponentType:
  2897     prim_return_value = null();
  2898     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2899     break;
  2900   case vmIntrinsics::_getClassAccessFlags:
  2901     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2902     return_type = TypeInt::INT;  // not bool!  6297094
  2903     break;
  2904   default:
  2905     ShouldNotReachHere();
  2908   Node* mirror =                      argument(0);
  2909   Node* obj    = (nargs <= 1)? top(): argument(1);
  2911   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2912   if (mirror_con == NULL)  return false;  // cannot happen?
  2914 #ifndef PRODUCT
  2915   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2916     ciType* k = mirror_con->java_mirror_type();
  2917     if (k) {
  2918       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2919       k->print_name();
  2920       tty->cr();
  2923 #endif
  2925   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2926   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2927   record_for_igvn(region);
  2928   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2930   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2931   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2932   // if it is. See bug 4774291.
  2934   // For Reflection.getClassAccessFlags(), the null check occurs in
  2935   // the wrong place; see inline_unsafe_access(), above, for a similar
  2936   // situation.
  2937   _sp += nargs;  // set original stack for use by uncommon_trap
  2938   mirror = do_null_check(mirror, T_OBJECT);
  2939   _sp -= nargs;
  2940   // If mirror or obj is dead, only null-path is taken.
  2941   if (stopped())  return true;
  2943   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2945   // Now load the mirror's klass metaobject, and null-check it.
  2946   // Side-effects region with the control path if the klass is null.
  2947   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2948                                      region, _prim_path);
  2949   // If kls is null, we have a primitive mirror.
  2950   phi->init_req(_prim_path, prim_return_value);
  2951   if (stopped()) { push_result(region, phi); return true; }
  2953   Node* p;  // handy temp
  2954   Node* null_ctl;
  2956   // Now that we have the non-null klass, we can perform the real query.
  2957   // For constant classes, the query will constant-fold in LoadNode::Value.
  2958   Node* query_value = top();
  2959   switch (id) {
  2960   case vmIntrinsics::_isInstance:
  2961     // nothing is an instance of a primitive type
  2962     _sp += nargs;          // gen_instanceof might do an uncommon trap
  2963     query_value = gen_instanceof(obj, kls);
  2964     _sp -= nargs;
  2965     break;
  2967   case vmIntrinsics::_getModifiers:
  2968     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2969     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2970     break;
  2972   case vmIntrinsics::_isInterface:
  2973     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2974     if (generate_interface_guard(kls, region) != NULL)
  2975       // A guard was added.  If the guard is taken, it was an interface.
  2976       phi->add_req(intcon(1));
  2977     // If we fall through, it's a plain class.
  2978     query_value = intcon(0);
  2979     break;
  2981   case vmIntrinsics::_isArray:
  2982     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2983     if (generate_array_guard(kls, region) != NULL)
  2984       // A guard was added.  If the guard is taken, it was an array.
  2985       phi->add_req(intcon(1));
  2986     // If we fall through, it's a plain class.
  2987     query_value = intcon(0);
  2988     break;
  2990   case vmIntrinsics::_isPrimitive:
  2991     query_value = intcon(0); // "normal" path produces false
  2992     break;
  2994   case vmIntrinsics::_getSuperclass:
  2995     // The rules here are somewhat unfortunate, but we can still do better
  2996     // with random logic than with a JNI call.
  2997     // Interfaces store null or Object as _super, but must report null.
  2998     // Arrays store an intermediate super as _super, but must report Object.
  2999     // Other types can report the actual _super.
  3000     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3001     if (generate_interface_guard(kls, region) != NULL)
  3002       // A guard was added.  If the guard is taken, it was an interface.
  3003       phi->add_req(null());
  3004     if (generate_array_guard(kls, region) != NULL)
  3005       // A guard was added.  If the guard is taken, it was an array.
  3006       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3007     // If we fall through, it's a plain class.  Get its _super.
  3008     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  3009     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3010     null_ctl = top();
  3011     kls = null_check_oop(kls, &null_ctl);
  3012     if (null_ctl != top()) {
  3013       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3014       region->add_req(null_ctl);
  3015       phi   ->add_req(null());
  3017     if (!stopped()) {
  3018       query_value = load_mirror_from_klass(kls);
  3020     break;
  3022   case vmIntrinsics::_getComponentType:
  3023     if (generate_array_guard(kls, region) != NULL) {
  3024       // Be sure to pin the oop load to the guard edge just created:
  3025       Node* is_array_ctrl = region->in(region->req()-1);
  3026       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  3027       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3028       phi->add_req(cmo);
  3030     query_value = null();  // non-array case is null
  3031     break;
  3033   case vmIntrinsics::_getClassAccessFlags:
  3034     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3035     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3036     break;
  3038   default:
  3039     ShouldNotReachHere();
  3042   // Fall-through is the normal case of a query to a real class.
  3043   phi->init_req(1, query_value);
  3044   region->init_req(1, control());
  3046   push_result(region, phi);
  3047   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3049   return true;
  3052 //--------------------------inline_native_subtype_check------------------------
  3053 // This intrinsic takes the JNI calls out of the heart of
  3054 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3055 bool LibraryCallKit::inline_native_subtype_check() {
  3056   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3058   // Pull both arguments off the stack.
  3059   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3060   args[0] = argument(0);
  3061   args[1] = argument(1);
  3062   Node* klasses[2];             // corresponding Klasses: superk, subk
  3063   klasses[0] = klasses[1] = top();
  3065   enum {
  3066     // A full decision tree on {superc is prim, subc is prim}:
  3067     _prim_0_path = 1,           // {P,N} => false
  3068                                 // {P,P} & superc!=subc => false
  3069     _prim_same_path,            // {P,P} & superc==subc => true
  3070     _prim_1_path,               // {N,P} => false
  3071     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3072     _both_ref_path,             // {N,N} & subtype check loses => false
  3073     PATH_LIMIT
  3074   };
  3076   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3077   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3078   record_for_igvn(region);
  3080   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3081   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3082   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3084   // First null-check both mirrors and load each mirror's klass metaobject.
  3085   int which_arg;
  3086   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3087     Node* arg = args[which_arg];
  3088     _sp += nargs;  // set original stack for use by uncommon_trap
  3089     arg = do_null_check(arg, T_OBJECT);
  3090     _sp -= nargs;
  3091     if (stopped())  break;
  3092     args[which_arg] = _gvn.transform(arg);
  3094     Node* p = basic_plus_adr(arg, class_klass_offset);
  3095     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3096     klasses[which_arg] = _gvn.transform(kls);
  3099   // Having loaded both klasses, test each for null.
  3100   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3101   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3102     Node* kls = klasses[which_arg];
  3103     Node* null_ctl = top();
  3104     _sp += nargs;  // set original stack for use by uncommon_trap
  3105     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3106     _sp -= nargs;
  3107     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3108     region->init_req(prim_path, null_ctl);
  3109     if (stopped())  break;
  3110     klasses[which_arg] = kls;
  3113   if (!stopped()) {
  3114     // now we have two reference types, in klasses[0..1]
  3115     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3116     Node* superk = klasses[0];  // the receiver
  3117     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3118     // now we have a successful reference subtype check
  3119     region->set_req(_ref_subtype_path, control());
  3122   // If both operands are primitive (both klasses null), then
  3123   // we must return true when they are identical primitives.
  3124   // It is convenient to test this after the first null klass check.
  3125   set_control(region->in(_prim_0_path)); // go back to first null check
  3126   if (!stopped()) {
  3127     // Since superc is primitive, make a guard for the superc==subc case.
  3128     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3129     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3130     generate_guard(bol_eq, region, PROB_FAIR);
  3131     if (region->req() == PATH_LIMIT+1) {
  3132       // A guard was added.  If the added guard is taken, superc==subc.
  3133       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3134       region->del_req(PATH_LIMIT);
  3136     region->set_req(_prim_0_path, control()); // Not equal after all.
  3139   // these are the only paths that produce 'true':
  3140   phi->set_req(_prim_same_path,   intcon(1));
  3141   phi->set_req(_ref_subtype_path, intcon(1));
  3143   // pull together the cases:
  3144   assert(region->req() == PATH_LIMIT, "sane region");
  3145   for (uint i = 1; i < region->req(); i++) {
  3146     Node* ctl = region->in(i);
  3147     if (ctl == NULL || ctl == top()) {
  3148       region->set_req(i, top());
  3149       phi   ->set_req(i, top());
  3150     } else if (phi->in(i) == NULL) {
  3151       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3155   set_control(_gvn.transform(region));
  3156   push(_gvn.transform(phi));
  3158   return true;
  3161 //---------------------generate_array_guard_common------------------------
  3162 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3163                                                   bool obj_array, bool not_array) {
  3164   // If obj_array/non_array==false/false:
  3165   // Branch around if the given klass is in fact an array (either obj or prim).
  3166   // If obj_array/non_array==false/true:
  3167   // Branch around if the given klass is not an array klass of any kind.
  3168   // If obj_array/non_array==true/true:
  3169   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3170   // If obj_array/non_array==true/false:
  3171   // Branch around if the kls is an oop array (Object[] or subtype)
  3172   //
  3173   // Like generate_guard, adds a new path onto the region.
  3174   jint  layout_con = 0;
  3175   Node* layout_val = get_layout_helper(kls, layout_con);
  3176   if (layout_val == NULL) {
  3177     bool query = (obj_array
  3178                   ? Klass::layout_helper_is_objArray(layout_con)
  3179                   : Klass::layout_helper_is_javaArray(layout_con));
  3180     if (query == not_array) {
  3181       return NULL;                       // never a branch
  3182     } else {                             // always a branch
  3183       Node* always_branch = control();
  3184       if (region != NULL)
  3185         region->add_req(always_branch);
  3186       set_control(top());
  3187       return always_branch;
  3190   // Now test the correct condition.
  3191   jint  nval = (obj_array
  3192                 ? ((jint)Klass::_lh_array_tag_type_value
  3193                    <<    Klass::_lh_array_tag_shift)
  3194                 : Klass::_lh_neutral_value);
  3195   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3196   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3197   // invert the test if we are looking for a non-array
  3198   if (not_array)  btest = BoolTest(btest).negate();
  3199   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3200   return generate_fair_guard(bol, region);
  3204 //-----------------------inline_native_newArray--------------------------
  3205 bool LibraryCallKit::inline_native_newArray() {
  3206   int nargs = 2;
  3207   Node* mirror    = argument(0);
  3208   Node* count_val = argument(1);
  3210   _sp += nargs;  // set original stack for use by uncommon_trap
  3211   mirror = do_null_check(mirror, T_OBJECT);
  3212   _sp -= nargs;
  3213   // If mirror or obj is dead, only null-path is taken.
  3214   if (stopped())  return true;
  3216   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3217   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3218   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3219                                                       TypeInstPtr::NOTNULL);
  3220   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3221   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3222                                                       TypePtr::BOTTOM);
  3224   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3225   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3226                                                   nargs,
  3227                                                   result_reg, _slow_path);
  3228   Node* normal_ctl   = control();
  3229   Node* no_array_ctl = result_reg->in(_slow_path);
  3231   // Generate code for the slow case.  We make a call to newArray().
  3232   set_control(no_array_ctl);
  3233   if (!stopped()) {
  3234     // Either the input type is void.class, or else the
  3235     // array klass has not yet been cached.  Either the
  3236     // ensuing call will throw an exception, or else it
  3237     // will cache the array klass for next time.
  3238     PreserveJVMState pjvms(this);
  3239     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3240     Node* slow_result = set_results_for_java_call(slow_call);
  3241     // this->control() comes from set_results_for_java_call
  3242     result_reg->set_req(_slow_path, control());
  3243     result_val->set_req(_slow_path, slow_result);
  3244     result_io ->set_req(_slow_path, i_o());
  3245     result_mem->set_req(_slow_path, reset_memory());
  3248   set_control(normal_ctl);
  3249   if (!stopped()) {
  3250     // Normal case:  The array type has been cached in the java.lang.Class.
  3251     // The following call works fine even if the array type is polymorphic.
  3252     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3253     Node* obj = new_array(klass_node, count_val, nargs);
  3254     result_reg->init_req(_normal_path, control());
  3255     result_val->init_req(_normal_path, obj);
  3256     result_io ->init_req(_normal_path, i_o());
  3257     result_mem->init_req(_normal_path, reset_memory());
  3260   // Return the combined state.
  3261   set_i_o(        _gvn.transform(result_io)  );
  3262   set_all_memory( _gvn.transform(result_mem) );
  3263   push_result(result_reg, result_val);
  3264   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3266   return true;
  3269 //----------------------inline_native_getLength--------------------------
  3270 bool LibraryCallKit::inline_native_getLength() {
  3271   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3273   int nargs = 1;
  3274   Node* array = argument(0);
  3276   _sp += nargs;  // set original stack for use by uncommon_trap
  3277   array = do_null_check(array, T_OBJECT);
  3278   _sp -= nargs;
  3280   // If array is dead, only null-path is taken.
  3281   if (stopped())  return true;
  3283   // Deoptimize if it is a non-array.
  3284   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3286   if (non_array != NULL) {
  3287     PreserveJVMState pjvms(this);
  3288     set_control(non_array);
  3289     _sp += nargs;  // push the arguments back on the stack
  3290     uncommon_trap(Deoptimization::Reason_intrinsic,
  3291                   Deoptimization::Action_maybe_recompile);
  3294   // If control is dead, only non-array-path is taken.
  3295   if (stopped())  return true;
  3297   // The works fine even if the array type is polymorphic.
  3298   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3299   push( load_array_length(array) );
  3301   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3303   return true;
  3306 //------------------------inline_array_copyOf----------------------------
  3307 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3308   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3310   // Restore the stack and pop off the arguments.
  3311   int nargs = 3 + (is_copyOfRange? 1: 0);
  3312   Node* original          = argument(0);
  3313   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3314   Node* end               = is_copyOfRange? argument(2): argument(1);
  3315   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3317   Node* newcopy;
  3319   //set the original stack and the reexecute bit for the interpreter to reexecute
  3320   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3321   { PreserveReexecuteState preexecs(this);
  3322     _sp += nargs;
  3323     jvms()->set_should_reexecute(true);
  3325     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3326     original          = do_null_check(original, T_OBJECT);
  3328     // Check if a null path was taken unconditionally.
  3329     if (stopped())  return true;
  3331     Node* orig_length = load_array_length(original);
  3333     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3334                                               NULL, 0);
  3335     klass_node = do_null_check(klass_node, T_OBJECT);
  3337     RegionNode* bailout = new (C, 1) RegionNode(1);
  3338     record_for_igvn(bailout);
  3340     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3341     // Bail out if that is so.
  3342     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3343     if (not_objArray != NULL) {
  3344       // Improve the klass node's type from the new optimistic assumption:
  3345       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3346       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3347       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3348       cast->init_req(0, control());
  3349       klass_node = _gvn.transform(cast);
  3352     // Bail out if either start or end is negative.
  3353     generate_negative_guard(start, bailout, &start);
  3354     generate_negative_guard(end,   bailout, &end);
  3356     Node* length = end;
  3357     if (_gvn.type(start) != TypeInt::ZERO) {
  3358       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3361     // Bail out if length is negative.
  3362     // ...Not needed, since the new_array will throw the right exception.
  3363     //generate_negative_guard(length, bailout, &length);
  3365     if (bailout->req() > 1) {
  3366       PreserveJVMState pjvms(this);
  3367       set_control( _gvn.transform(bailout) );
  3368       uncommon_trap(Deoptimization::Reason_intrinsic,
  3369                     Deoptimization::Action_maybe_recompile);
  3372     if (!stopped()) {
  3374       // How many elements will we copy from the original?
  3375       // The answer is MinI(orig_length - start, length).
  3376       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3377       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3379       const bool raw_mem_only = true;
  3380       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3382       // Generate a direct call to the right arraycopy function(s).
  3383       // We know the copy is disjoint but we might not know if the
  3384       // oop stores need checking.
  3385       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3386       // This will fail a store-check if x contains any non-nulls.
  3387       bool disjoint_bases = true;
  3388       bool length_never_negative = true;
  3389       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3390                          original, start, newcopy, intcon(0), moved,
  3391                          disjoint_bases, length_never_negative);
  3393   } //original reexecute and sp are set back here
  3395   if(!stopped()) {
  3396     push(newcopy);
  3399   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3401   return true;
  3405 //----------------------generate_virtual_guard---------------------------
  3406 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3407 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3408                                              RegionNode* slow_region) {
  3409   ciMethod* method = callee();
  3410   int vtable_index = method->vtable_index();
  3411   // Get the methodOop out of the appropriate vtable entry.
  3412   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3413                      vtable_index*vtableEntry::size()) * wordSize +
  3414                      vtableEntry::method_offset_in_bytes();
  3415   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3416   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3418   // Compare the target method with the expected method (e.g., Object.hashCode).
  3419   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3421   Node* native_call = makecon(native_call_addr);
  3422   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3423   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3425   return generate_slow_guard(test_native, slow_region);
  3428 //-----------------------generate_method_call----------------------------
  3429 // Use generate_method_call to make a slow-call to the real
  3430 // method if the fast path fails.  An alternative would be to
  3431 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3432 // This only works for expanding the current library call,
  3433 // not another intrinsic.  (E.g., don't use this for making an
  3434 // arraycopy call inside of the copyOf intrinsic.)
  3435 CallJavaNode*
  3436 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3437   // When compiling the intrinsic method itself, do not use this technique.
  3438   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3440   ciMethod* method = callee();
  3441   // ensure the JVMS we have will be correct for this call
  3442   guarantee(method_id == method->intrinsic_id(), "must match");
  3444   const TypeFunc* tf = TypeFunc::make(method);
  3445   int tfdc = tf->domain()->cnt();
  3446   CallJavaNode* slow_call;
  3447   if (is_static) {
  3448     assert(!is_virtual, "");
  3449     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3450                                 SharedRuntime::get_resolve_static_call_stub(),
  3451                                 method, bci());
  3452   } else if (is_virtual) {
  3453     null_check_receiver(method);
  3454     int vtable_index = methodOopDesc::invalid_vtable_index;
  3455     if (UseInlineCaches) {
  3456       // Suppress the vtable call
  3457     } else {
  3458       // hashCode and clone are not a miranda methods,
  3459       // so the vtable index is fixed.
  3460       // No need to use the linkResolver to get it.
  3461        vtable_index = method->vtable_index();
  3463     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3464                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3465                                 method, vtable_index, bci());
  3466   } else {  // neither virtual nor static:  opt_virtual
  3467     null_check_receiver(method);
  3468     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3469                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3470                                 method, bci());
  3471     slow_call->set_optimized_virtual(true);
  3473   set_arguments_for_java_call(slow_call);
  3474   set_edges_for_java_call(slow_call);
  3475   return slow_call;
  3479 //------------------------------inline_native_hashcode--------------------
  3480 // Build special case code for calls to hashCode on an object.
  3481 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3482   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3483   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3485   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3487   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3488   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3489                                                       TypeInt::INT);
  3490   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3491   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3492                                                       TypePtr::BOTTOM);
  3493   Node* obj = NULL;
  3494   if (!is_static) {
  3495     // Check for hashing null object
  3496     obj = null_check_receiver(callee());
  3497     if (stopped())  return true;        // unconditionally null
  3498     result_reg->init_req(_null_path, top());
  3499     result_val->init_req(_null_path, top());
  3500   } else {
  3501     // Do a null check, and return zero if null.
  3502     // System.identityHashCode(null) == 0
  3503     obj = argument(0);
  3504     Node* null_ctl = top();
  3505     obj = null_check_oop(obj, &null_ctl);
  3506     result_reg->init_req(_null_path, null_ctl);
  3507     result_val->init_req(_null_path, _gvn.intcon(0));
  3510   // Unconditionally null?  Then return right away.
  3511   if (stopped()) {
  3512     set_control( result_reg->in(_null_path) );
  3513     if (!stopped())
  3514       push(      result_val ->in(_null_path) );
  3515     return true;
  3518   // After null check, get the object's klass.
  3519   Node* obj_klass = load_object_klass(obj);
  3521   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3522   // For each case we generate slightly different code.
  3524   // We only go to the fast case code if we pass a number of guards.  The
  3525   // paths which do not pass are accumulated in the slow_region.
  3526   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3527   record_for_igvn(slow_region);
  3529   // If this is a virtual call, we generate a funny guard.  We pull out
  3530   // the vtable entry corresponding to hashCode() from the target object.
  3531   // If the target method which we are calling happens to be the native
  3532   // Object hashCode() method, we pass the guard.  We do not need this
  3533   // guard for non-virtual calls -- the caller is known to be the native
  3534   // Object hashCode().
  3535   if (is_virtual) {
  3536     generate_virtual_guard(obj_klass, slow_region);
  3539   // Get the header out of the object, use LoadMarkNode when available
  3540   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3541   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3543   // Test the header to see if it is unlocked.
  3544   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3545   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3546   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3547   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3548   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3550   generate_slow_guard(test_unlocked, slow_region);
  3552   // Get the hash value and check to see that it has been properly assigned.
  3553   // We depend on hash_mask being at most 32 bits and avoid the use of
  3554   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3555   // vm: see markOop.hpp.
  3556   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3557   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3558   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3559   // This hack lets the hash bits live anywhere in the mark object now, as long
  3560   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3561   // Java spec says that HashCode is an int so there's no point in capturing
  3562   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3563   hshifted_header      = ConvX2I(hshifted_header);
  3564   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3566   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3567   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3568   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3570   generate_slow_guard(test_assigned, slow_region);
  3572   Node* init_mem = reset_memory();
  3573   // fill in the rest of the null path:
  3574   result_io ->init_req(_null_path, i_o());
  3575   result_mem->init_req(_null_path, init_mem);
  3577   result_val->init_req(_fast_path, hash_val);
  3578   result_reg->init_req(_fast_path, control());
  3579   result_io ->init_req(_fast_path, i_o());
  3580   result_mem->init_req(_fast_path, init_mem);
  3582   // Generate code for the slow case.  We make a call to hashCode().
  3583   set_control(_gvn.transform(slow_region));
  3584   if (!stopped()) {
  3585     // No need for PreserveJVMState, because we're using up the present state.
  3586     set_all_memory(init_mem);
  3587     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3588     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3589     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3590     Node* slow_result = set_results_for_java_call(slow_call);
  3591     // this->control() comes from set_results_for_java_call
  3592     result_reg->init_req(_slow_path, control());
  3593     result_val->init_req(_slow_path, slow_result);
  3594     result_io  ->set_req(_slow_path, i_o());
  3595     result_mem ->set_req(_slow_path, reset_memory());
  3598   // Return the combined state.
  3599   set_i_o(        _gvn.transform(result_io)  );
  3600   set_all_memory( _gvn.transform(result_mem) );
  3601   push_result(result_reg, result_val);
  3603   return true;
  3606 //---------------------------inline_native_getClass----------------------------
  3607 // Build special case code for calls to getClass on an object.
  3608 bool LibraryCallKit::inline_native_getClass() {
  3609   Node* obj = null_check_receiver(callee());
  3610   if (stopped())  return true;
  3611   push( load_mirror_from_klass(load_object_klass(obj)) );
  3612   return true;
  3615 //-----------------inline_native_Reflection_getCallerClass---------------------
  3616 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3617 //
  3618 // NOTE that this code must perform the same logic as
  3619 // vframeStream::security_get_caller_frame in that it must skip
  3620 // Method.invoke() and auxiliary frames.
  3625 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3626   ciMethod*       method = callee();
  3628 #ifndef PRODUCT
  3629   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3630     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3632 #endif
  3634   debug_only(int saved_sp = _sp);
  3636   // Argument words:  (int depth)
  3637   int nargs = 1;
  3639   _sp += nargs;
  3640   Node* caller_depth_node = pop();
  3642   assert(saved_sp == _sp, "must have correct argument count");
  3644   // The depth value must be a constant in order for the runtime call
  3645   // to be eliminated.
  3646   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3647   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3648 #ifndef PRODUCT
  3649     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3650       tty->print_cr("  Bailing out because caller depth was not a constant");
  3652 #endif
  3653     return false;
  3655   // Note that the JVM state at this point does not include the
  3656   // getCallerClass() frame which we are trying to inline. The
  3657   // semantics of getCallerClass(), however, are that the "first"
  3658   // frame is the getCallerClass() frame, so we subtract one from the
  3659   // requested depth before continuing. We don't inline requests of
  3660   // getCallerClass(0).
  3661   int caller_depth = caller_depth_type->get_con() - 1;
  3662   if (caller_depth < 0) {
  3663 #ifndef PRODUCT
  3664     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3665       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3667 #endif
  3668     return false;
  3671   if (!jvms()->has_method()) {
  3672 #ifndef PRODUCT
  3673     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3674       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3676 #endif
  3677     return false;
  3679   int _depth = jvms()->depth();  // cache call chain depth
  3681   // Walk back up the JVM state to find the caller at the required
  3682   // depth. NOTE that this code must perform the same logic as
  3683   // vframeStream::security_get_caller_frame in that it must skip
  3684   // Method.invoke() and auxiliary frames. Note also that depth is
  3685   // 1-based (1 is the bottom of the inlining).
  3686   int inlining_depth = _depth;
  3687   JVMState* caller_jvms = NULL;
  3689   if (inlining_depth > 0) {
  3690     caller_jvms = jvms();
  3691     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3692     do {
  3693       // The following if-tests should be performed in this order
  3694       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3695         // Skip a Method.invoke() or auxiliary frame
  3696       } else if (caller_depth > 0) {
  3697         // Skip real frame
  3698         --caller_depth;
  3699       } else {
  3700         // We're done: reached desired caller after skipping.
  3701         break;
  3703       caller_jvms = caller_jvms->caller();
  3704       --inlining_depth;
  3705     } while (inlining_depth > 0);
  3708   if (inlining_depth == 0) {
  3709 #ifndef PRODUCT
  3710     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3711       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3712       tty->print_cr("  JVM state at this point:");
  3713       for (int i = _depth; i >= 1; i--) {
  3714         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3717 #endif
  3718     return false; // Reached end of inlining
  3721   // Acquire method holder as java.lang.Class
  3722   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3723   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3724   // Push this as a constant
  3725   push(makecon(TypeInstPtr::make(caller_mirror)));
  3726 #ifndef PRODUCT
  3727   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3728     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3729     tty->print_cr("  JVM state at this point:");
  3730     for (int i = _depth; i >= 1; i--) {
  3731       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3734 #endif
  3735   return true;
  3738 // Helper routine for above
  3739 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3740   ciMethod* method = jvms->method();
  3742   // Is this the Method.invoke method itself?
  3743   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3744     return true;
  3746   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3747   ciKlass* k = method->holder();
  3748   if (k->is_instance_klass()) {
  3749     ciInstanceKlass* ik = k->as_instance_klass();
  3750     for (; ik != NULL; ik = ik->super()) {
  3751       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3752           ik == env()->find_system_klass(ik->name())) {
  3753         return true;
  3757   else if (method->is_method_handle_adapter()) {
  3758     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3759     return true;
  3762   return false;
  3765 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3766                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3767                                      // computing it since there is no lookup field by name function in the
  3768                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3769                                      // Using a static variable here is safe even if we have multiple compilation
  3770                                      // threads because the offset is constant.  At worst the same offset will be
  3771                                      // computed and  stored multiple
  3773 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3774   // Restore the stack and pop off the argument
  3775   _sp+=1;
  3776   Node *obj = pop();
  3778   // get the offset of the "value" field. Since the CI interfaces
  3779   // does not provide a way to look up a field by name, we scan the bytecodes
  3780   // to get the field index.  We expect the first 2 instructions of the method
  3781   // to be:
  3782   //    0 aload_0
  3783   //    1 getfield "value"
  3784   ciMethod* method = callee();
  3785   if (value_field_offset == -1)
  3787     ciField* value_field;
  3788     ciBytecodeStream iter(method);
  3789     Bytecodes::Code bc = iter.next();
  3791     if ((bc != Bytecodes::_aload_0) &&
  3792               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3793       return false;
  3794     bc = iter.next();
  3795     if (bc != Bytecodes::_getfield)
  3796       return false;
  3797     bool ignore;
  3798     value_field = iter.get_field(ignore);
  3799     value_field_offset = value_field->offset_in_bytes();
  3802   // Null check without removing any arguments.
  3803   _sp++;
  3804   obj = do_null_check(obj, T_OBJECT);
  3805   _sp--;
  3806   // Check for locking null object
  3807   if (stopped()) return true;
  3809   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3810   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3811   int alias_idx = C->get_alias_index(adr_type);
  3813   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3815   push_pair(result);
  3817   return true;
  3820 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3821   // Restore the stack and pop off the arguments
  3822   _sp+=5;
  3823   Node *newVal = pop_pair();
  3824   Node *oldVal = pop_pair();
  3825   Node *obj = pop();
  3827   // we need the offset of the "value" field which was computed when
  3828   // inlining the get() method.  Give up if we don't have it.
  3829   if (value_field_offset == -1)
  3830     return false;
  3832   // Null check without removing any arguments.
  3833   _sp+=5;
  3834   obj = do_null_check(obj, T_OBJECT);
  3835   _sp-=5;
  3836   // Check for locking null object
  3837   if (stopped()) return true;
  3839   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3840   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3841   int alias_idx = C->get_alias_index(adr_type);
  3843   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3844   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3845   set_memory(store_proj, alias_idx);
  3846   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3848   Node *result;
  3849   // CMove node is not used to be able fold a possible check code
  3850   // after attemptUpdate() call. This code could be transformed
  3851   // into CMove node by loop optimizations.
  3853     RegionNode *r = new (C, 3) RegionNode(3);
  3854     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3856     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3857     Node *iftrue = opt_iff(r, iff);
  3858     r->init_req(1, iftrue);
  3859     result->init_req(1, intcon(1));
  3860     result->init_req(2, intcon(0));
  3862     set_control(_gvn.transform(r));
  3863     record_for_igvn(r);
  3865     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3868   push(_gvn.transform(result));
  3869   return true;
  3872 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3873   // restore the arguments
  3874   _sp += arg_size();
  3876   switch (id) {
  3877   case vmIntrinsics::_floatToRawIntBits:
  3878     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3879     break;
  3881   case vmIntrinsics::_intBitsToFloat:
  3882     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3883     break;
  3885   case vmIntrinsics::_doubleToRawLongBits:
  3886     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3887     break;
  3889   case vmIntrinsics::_longBitsToDouble:
  3890     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3891     break;
  3893   case vmIntrinsics::_doubleToLongBits: {
  3894     Node* value = pop_pair();
  3896     // two paths (plus control) merge in a wood
  3897     RegionNode *r = new (C, 3) RegionNode(3);
  3898     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3900     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3901     // Build the boolean node
  3902     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3904     // Branch either way.
  3905     // NaN case is less traveled, which makes all the difference.
  3906     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3907     Node *opt_isnan = _gvn.transform(ifisnan);
  3908     assert( opt_isnan->is_If(), "Expect an IfNode");
  3909     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3910     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3912     set_control(iftrue);
  3914     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3915     Node *slow_result = longcon(nan_bits); // return NaN
  3916     phi->init_req(1, _gvn.transform( slow_result ));
  3917     r->init_req(1, iftrue);
  3919     // Else fall through
  3920     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3921     set_control(iffalse);
  3923     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3924     r->init_req(2, iffalse);
  3926     // Post merge
  3927     set_control(_gvn.transform(r));
  3928     record_for_igvn(r);
  3930     Node* result = _gvn.transform(phi);
  3931     assert(result->bottom_type()->isa_long(), "must be");
  3932     push_pair(result);
  3934     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3936     break;
  3939   case vmIntrinsics::_floatToIntBits: {
  3940     Node* value = pop();
  3942     // two paths (plus control) merge in a wood
  3943     RegionNode *r = new (C, 3) RegionNode(3);
  3944     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3946     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3947     // Build the boolean node
  3948     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3950     // Branch either way.
  3951     // NaN case is less traveled, which makes all the difference.
  3952     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3953     Node *opt_isnan = _gvn.transform(ifisnan);
  3954     assert( opt_isnan->is_If(), "Expect an IfNode");
  3955     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3956     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3958     set_control(iftrue);
  3960     static const jint nan_bits = 0x7fc00000;
  3961     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3962     phi->init_req(1, _gvn.transform( slow_result ));
  3963     r->init_req(1, iftrue);
  3965     // Else fall through
  3966     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3967     set_control(iffalse);
  3969     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3970     r->init_req(2, iffalse);
  3972     // Post merge
  3973     set_control(_gvn.transform(r));
  3974     record_for_igvn(r);
  3976     Node* result = _gvn.transform(phi);
  3977     assert(result->bottom_type()->isa_int(), "must be");
  3978     push(result);
  3980     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3982     break;
  3985   default:
  3986     ShouldNotReachHere();
  3989   return true;
  3992 #ifdef _LP64
  3993 #define XTOP ,top() /*additional argument*/
  3994 #else  //_LP64
  3995 #define XTOP        /*no additional argument*/
  3996 #endif //_LP64
  3998 //----------------------inline_unsafe_copyMemory-------------------------
  3999 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4000   if (callee()->is_static())  return false;  // caller must have the capability!
  4001   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4002   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4003   null_check_receiver(callee());  // check then ignore argument(0)
  4004   if (stopped())  return true;
  4006   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4008   Node* src_ptr = argument(1);
  4009   Node* src_off = ConvL2X(argument(2));
  4010   assert(argument(3)->is_top(), "2nd half of long");
  4011   Node* dst_ptr = argument(4);
  4012   Node* dst_off = ConvL2X(argument(5));
  4013   assert(argument(6)->is_top(), "2nd half of long");
  4014   Node* size    = ConvL2X(argument(7));
  4015   assert(argument(8)->is_top(), "2nd half of long");
  4017   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4018          "fieldOffset must be byte-scaled");
  4020   Node* src = make_unsafe_address(src_ptr, src_off);
  4021   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4023   // Conservatively insert a memory barrier on all memory slices.
  4024   // Do not let writes of the copy source or destination float below the copy.
  4025   insert_mem_bar(Op_MemBarCPUOrder);
  4027   // Call it.  Note that the length argument is not scaled.
  4028   make_runtime_call(RC_LEAF|RC_NO_FP,
  4029                     OptoRuntime::fast_arraycopy_Type(),
  4030                     StubRoutines::unsafe_arraycopy(),
  4031                     "unsafe_arraycopy",
  4032                     TypeRawPtr::BOTTOM,
  4033                     src, dst, size XTOP);
  4035   // Do not let reads of the copy destination float above the copy.
  4036   insert_mem_bar(Op_MemBarCPUOrder);
  4038   return true;
  4041 //------------------------clone_coping-----------------------------------
  4042 // Helper function for inline_native_clone.
  4043 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4044   assert(obj_size != NULL, "");
  4045   Node* raw_obj = alloc_obj->in(1);
  4046   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4048   if (ReduceBulkZeroing) {
  4049     // We will be completely responsible for initializing this object -
  4050     // mark Initialize node as complete.
  4051     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4052     // The object was just allocated - there should be no any stores!
  4053     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4056   // Copy the fastest available way.
  4057   // TODO: generate fields copies for small objects instead.
  4058   Node* src  = obj;
  4059   Node* dest = alloc_obj;
  4060   Node* size = _gvn.transform(obj_size);
  4062   // Exclude the header but include array length to copy by 8 bytes words.
  4063   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4064   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4065                             instanceOopDesc::base_offset_in_bytes();
  4066   // base_off:
  4067   // 8  - 32-bit VM
  4068   // 12 - 64-bit VM, compressed oops
  4069   // 16 - 64-bit VM, normal oops
  4070   if (base_off % BytesPerLong != 0) {
  4071     assert(UseCompressedOops, "");
  4072     if (is_array) {
  4073       // Exclude length to copy by 8 bytes words.
  4074       base_off += sizeof(int);
  4075     } else {
  4076       // Include klass to copy by 8 bytes words.
  4077       base_off = instanceOopDesc::klass_offset_in_bytes();
  4079     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4081   src  = basic_plus_adr(src,  base_off);
  4082   dest = basic_plus_adr(dest, base_off);
  4084   // Compute the length also, if needed:
  4085   Node* countx = size;
  4086   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4087   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4089   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4090   bool disjoint_bases = true;
  4091   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4092                                src, NULL, dest, NULL, countx,
  4093                                /*dest_uninitialized*/true);
  4095   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4096   if (card_mark) {
  4097     assert(!is_array, "");
  4098     // Put in store barrier for any and all oops we are sticking
  4099     // into this object.  (We could avoid this if we could prove
  4100     // that the object type contains no oop fields at all.)
  4101     Node* no_particular_value = NULL;
  4102     Node* no_particular_field = NULL;
  4103     int raw_adr_idx = Compile::AliasIdxRaw;
  4104     post_barrier(control(),
  4105                  memory(raw_adr_type),
  4106                  alloc_obj,
  4107                  no_particular_field,
  4108                  raw_adr_idx,
  4109                  no_particular_value,
  4110                  T_OBJECT,
  4111                  false);
  4114   // Do not let reads from the cloned object float above the arraycopy.
  4115   insert_mem_bar(Op_MemBarCPUOrder);
  4118 //------------------------inline_native_clone----------------------------
  4119 // Here are the simple edge cases:
  4120 //  null receiver => normal trap
  4121 //  virtual and clone was overridden => slow path to out-of-line clone
  4122 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4123 //
  4124 // The general case has two steps, allocation and copying.
  4125 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4126 //
  4127 // Copying also has two cases, oop arrays and everything else.
  4128 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4129 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4130 //
  4131 // These steps fold up nicely if and when the cloned object's klass
  4132 // can be sharply typed as an object array, a type array, or an instance.
  4133 //
  4134 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4135   int nargs = 1;
  4136   PhiNode* result_val;
  4138   //set the original stack and the reexecute bit for the interpreter to reexecute
  4139   //the bytecode that invokes Object.clone if deoptimization happens
  4140   { PreserveReexecuteState preexecs(this);
  4141     jvms()->set_should_reexecute(true);
  4143     //null_check_receiver will adjust _sp (push and pop)
  4144     Node* obj = null_check_receiver(callee());
  4145     if (stopped())  return true;
  4147     _sp += nargs;
  4149     Node* obj_klass = load_object_klass(obj);
  4150     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4151     const TypeOopPtr*   toop   = ((tklass != NULL)
  4152                                 ? tklass->as_instance_type()
  4153                                 : TypeInstPtr::NOTNULL);
  4155     // Conservatively insert a memory barrier on all memory slices.
  4156     // Do not let writes into the original float below the clone.
  4157     insert_mem_bar(Op_MemBarCPUOrder);
  4159     // paths into result_reg:
  4160     enum {
  4161       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4162       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4163       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4164       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4165       PATH_LIMIT
  4166     };
  4167     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4168     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4169                                                         TypeInstPtr::NOTNULL);
  4170     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4171     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4172                                                         TypePtr::BOTTOM);
  4173     record_for_igvn(result_reg);
  4175     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4176     int raw_adr_idx = Compile::AliasIdxRaw;
  4177     const bool raw_mem_only = true;
  4180     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4181     if (array_ctl != NULL) {
  4182       // It's an array.
  4183       PreserveJVMState pjvms(this);
  4184       set_control(array_ctl);
  4185       Node* obj_length = load_array_length(obj);
  4186       Node* obj_size  = NULL;
  4187       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4188                                   raw_mem_only, &obj_size);
  4190       if (!use_ReduceInitialCardMarks()) {
  4191         // If it is an oop array, it requires very special treatment,
  4192         // because card marking is required on each card of the array.
  4193         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4194         if (is_obja != NULL) {
  4195           PreserveJVMState pjvms2(this);
  4196           set_control(is_obja);
  4197           // Generate a direct call to the right arraycopy function(s).
  4198           bool disjoint_bases = true;
  4199           bool length_never_negative = true;
  4200           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4201                              obj, intcon(0), alloc_obj, intcon(0),
  4202                              obj_length,
  4203                              disjoint_bases, length_never_negative);
  4204           result_reg->init_req(_objArray_path, control());
  4205           result_val->init_req(_objArray_path, alloc_obj);
  4206           result_i_o ->set_req(_objArray_path, i_o());
  4207           result_mem ->set_req(_objArray_path, reset_memory());
  4210       // Otherwise, there are no card marks to worry about.
  4211       // (We can dispense with card marks if we know the allocation
  4212       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4213       //  causes the non-eden paths to take compensating steps to
  4214       //  simulate a fresh allocation, so that no further
  4215       //  card marks are required in compiled code to initialize
  4216       //  the object.)
  4218       if (!stopped()) {
  4219         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4221         // Present the results of the copy.
  4222         result_reg->init_req(_array_path, control());
  4223         result_val->init_req(_array_path, alloc_obj);
  4224         result_i_o ->set_req(_array_path, i_o());
  4225         result_mem ->set_req(_array_path, reset_memory());
  4229     // We only go to the instance fast case code if we pass a number of guards.
  4230     // The paths which do not pass are accumulated in the slow_region.
  4231     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4232     record_for_igvn(slow_region);
  4233     if (!stopped()) {
  4234       // It's an instance (we did array above).  Make the slow-path tests.
  4235       // If this is a virtual call, we generate a funny guard.  We grab
  4236       // the vtable entry corresponding to clone() from the target object.
  4237       // If the target method which we are calling happens to be the
  4238       // Object clone() method, we pass the guard.  We do not need this
  4239       // guard for non-virtual calls; the caller is known to be the native
  4240       // Object clone().
  4241       if (is_virtual) {
  4242         generate_virtual_guard(obj_klass, slow_region);
  4245       // The object must be cloneable and must not have a finalizer.
  4246       // Both of these conditions may be checked in a single test.
  4247       // We could optimize the cloneable test further, but we don't care.
  4248       generate_access_flags_guard(obj_klass,
  4249                                   // Test both conditions:
  4250                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4251                                   // Must be cloneable but not finalizer:
  4252                                   JVM_ACC_IS_CLONEABLE,
  4253                                   slow_region);
  4256     if (!stopped()) {
  4257       // It's an instance, and it passed the slow-path tests.
  4258       PreserveJVMState pjvms(this);
  4259       Node* obj_size  = NULL;
  4260       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4262       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4264       // Present the results of the slow call.
  4265       result_reg->init_req(_instance_path, control());
  4266       result_val->init_req(_instance_path, alloc_obj);
  4267       result_i_o ->set_req(_instance_path, i_o());
  4268       result_mem ->set_req(_instance_path, reset_memory());
  4271     // Generate code for the slow case.  We make a call to clone().
  4272     set_control(_gvn.transform(slow_region));
  4273     if (!stopped()) {
  4274       PreserveJVMState pjvms(this);
  4275       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4276       Node* slow_result = set_results_for_java_call(slow_call);
  4277       // this->control() comes from set_results_for_java_call
  4278       result_reg->init_req(_slow_path, control());
  4279       result_val->init_req(_slow_path, slow_result);
  4280       result_i_o ->set_req(_slow_path, i_o());
  4281       result_mem ->set_req(_slow_path, reset_memory());
  4284     // Return the combined state.
  4285     set_control(    _gvn.transform(result_reg) );
  4286     set_i_o(        _gvn.transform(result_i_o) );
  4287     set_all_memory( _gvn.transform(result_mem) );
  4288   } //original reexecute and sp are set back here
  4290   push(_gvn.transform(result_val));
  4292   return true;
  4295 //------------------------------basictype2arraycopy----------------------------
  4296 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4297                                             Node* src_offset,
  4298                                             Node* dest_offset,
  4299                                             bool disjoint_bases,
  4300                                             const char* &name,
  4301                                             bool dest_uninitialized) {
  4302   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4303   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4305   bool aligned = false;
  4306   bool disjoint = disjoint_bases;
  4308   // if the offsets are the same, we can treat the memory regions as
  4309   // disjoint, because either the memory regions are in different arrays,
  4310   // or they are identical (which we can treat as disjoint.)  We can also
  4311   // treat a copy with a destination index  less that the source index
  4312   // as disjoint since a low->high copy will work correctly in this case.
  4313   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4314       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4315     // both indices are constants
  4316     int s_offs = src_offset_inttype->get_con();
  4317     int d_offs = dest_offset_inttype->get_con();
  4318     int element_size = type2aelembytes(t);
  4319     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4320               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4321     if (s_offs >= d_offs)  disjoint = true;
  4322   } else if (src_offset == dest_offset && src_offset != NULL) {
  4323     // This can occur if the offsets are identical non-constants.
  4324     disjoint = true;
  4327   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4331 //------------------------------inline_arraycopy-----------------------
  4332 bool LibraryCallKit::inline_arraycopy() {
  4333   // Restore the stack and pop off the arguments.
  4334   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4335   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4337   Node *src         = argument(0);
  4338   Node *src_offset  = argument(1);
  4339   Node *dest        = argument(2);
  4340   Node *dest_offset = argument(3);
  4341   Node *length      = argument(4);
  4343   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4344   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4345   // is.  The checks we choose to mandate at compile time are:
  4346   //
  4347   // (1) src and dest are arrays.
  4348   const Type* src_type = src->Value(&_gvn);
  4349   const Type* dest_type = dest->Value(&_gvn);
  4350   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4351   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4352   if (top_src  == NULL || top_src->klass()  == NULL ||
  4353       top_dest == NULL || top_dest->klass() == NULL) {
  4354     // Conservatively insert a memory barrier on all memory slices.
  4355     // Do not let writes into the source float below the arraycopy.
  4356     insert_mem_bar(Op_MemBarCPUOrder);
  4358     // Call StubRoutines::generic_arraycopy stub.
  4359     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4360                        src, src_offset, dest, dest_offset, length);
  4362     // Do not let reads from the destination float above the arraycopy.
  4363     // Since we cannot type the arrays, we don't know which slices
  4364     // might be affected.  We could restrict this barrier only to those
  4365     // memory slices which pertain to array elements--but don't bother.
  4366     if (!InsertMemBarAfterArraycopy)
  4367       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4368       insert_mem_bar(Op_MemBarCPUOrder);
  4369     return true;
  4372   // (2) src and dest arrays must have elements of the same BasicType
  4373   // Figure out the size and type of the elements we will be copying.
  4374   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4375   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4376   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4377   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4379   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4380     // The component types are not the same or are not recognized.  Punt.
  4381     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4382     generate_slow_arraycopy(TypePtr::BOTTOM,
  4383                             src, src_offset, dest, dest_offset, length,
  4384                             /*dest_uninitialized*/false);
  4385     return true;
  4388   //---------------------------------------------------------------------------
  4389   // We will make a fast path for this call to arraycopy.
  4391   // We have the following tests left to perform:
  4392   //
  4393   // (3) src and dest must not be null.
  4394   // (4) src_offset must not be negative.
  4395   // (5) dest_offset must not be negative.
  4396   // (6) length must not be negative.
  4397   // (7) src_offset + length must not exceed length of src.
  4398   // (8) dest_offset + length must not exceed length of dest.
  4399   // (9) each element of an oop array must be assignable
  4401   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4402   record_for_igvn(slow_region);
  4404   // (3) operands must not be null
  4405   // We currently perform our null checks with the do_null_check routine.
  4406   // This means that the null exceptions will be reported in the caller
  4407   // rather than (correctly) reported inside of the native arraycopy call.
  4408   // This should be corrected, given time.  We do our null check with the
  4409   // stack pointer restored.
  4410   _sp += nargs;
  4411   src  = do_null_check(src,  T_ARRAY);
  4412   dest = do_null_check(dest, T_ARRAY);
  4413   _sp -= nargs;
  4415   // (4) src_offset must not be negative.
  4416   generate_negative_guard(src_offset, slow_region);
  4418   // (5) dest_offset must not be negative.
  4419   generate_negative_guard(dest_offset, slow_region);
  4421   // (6) length must not be negative (moved to generate_arraycopy()).
  4422   // generate_negative_guard(length, slow_region);
  4424   // (7) src_offset + length must not exceed length of src.
  4425   generate_limit_guard(src_offset, length,
  4426                        load_array_length(src),
  4427                        slow_region);
  4429   // (8) dest_offset + length must not exceed length of dest.
  4430   generate_limit_guard(dest_offset, length,
  4431                        load_array_length(dest),
  4432                        slow_region);
  4434   // (9) each element of an oop array must be assignable
  4435   // The generate_arraycopy subroutine checks this.
  4437   // This is where the memory effects are placed:
  4438   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4439   generate_arraycopy(adr_type, dest_elem,
  4440                      src, src_offset, dest, dest_offset, length,
  4441                      false, false, slow_region);
  4443   return true;
  4446 //-----------------------------generate_arraycopy----------------------
  4447 // Generate an optimized call to arraycopy.
  4448 // Caller must guard against non-arrays.
  4449 // Caller must determine a common array basic-type for both arrays.
  4450 // Caller must validate offsets against array bounds.
  4451 // The slow_region has already collected guard failure paths
  4452 // (such as out of bounds length or non-conformable array types).
  4453 // The generated code has this shape, in general:
  4454 //
  4455 //     if (length == 0)  return   // via zero_path
  4456 //     slowval = -1
  4457 //     if (types unknown) {
  4458 //       slowval = call generic copy loop
  4459 //       if (slowval == 0)  return  // via checked_path
  4460 //     } else if (indexes in bounds) {
  4461 //       if ((is object array) && !(array type check)) {
  4462 //         slowval = call checked copy loop
  4463 //         if (slowval == 0)  return  // via checked_path
  4464 //       } else {
  4465 //         call bulk copy loop
  4466 //         return  // via fast_path
  4467 //       }
  4468 //     }
  4469 //     // adjust params for remaining work:
  4470 //     if (slowval != -1) {
  4471 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4472 //     }
  4473 //   slow_region:
  4474 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4475 //     return  // via slow_call_path
  4476 //
  4477 // This routine is used from several intrinsics:  System.arraycopy,
  4478 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4479 //
  4480 void
  4481 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4482                                    BasicType basic_elem_type,
  4483                                    Node* src,  Node* src_offset,
  4484                                    Node* dest, Node* dest_offset,
  4485                                    Node* copy_length,
  4486                                    bool disjoint_bases,
  4487                                    bool length_never_negative,
  4488                                    RegionNode* slow_region) {
  4490   if (slow_region == NULL) {
  4491     slow_region = new(C,1) RegionNode(1);
  4492     record_for_igvn(slow_region);
  4495   Node* original_dest      = dest;
  4496   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4497   bool  dest_uninitialized = false;
  4499   // See if this is the initialization of a newly-allocated array.
  4500   // If so, we will take responsibility here for initializing it to zero.
  4501   // (Note:  Because tightly_coupled_allocation performs checks on the
  4502   // out-edges of the dest, we need to avoid making derived pointers
  4503   // from it until we have checked its uses.)
  4504   if (ReduceBulkZeroing
  4505       && !ZeroTLAB              // pointless if already zeroed
  4506       && basic_elem_type != T_CONFLICT // avoid corner case
  4507       && !_gvn.eqv_uncast(src, dest)
  4508       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4509           != NULL)
  4510       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4511       && alloc->maybe_set_complete(&_gvn)) {
  4512     // "You break it, you buy it."
  4513     InitializeNode* init = alloc->initialization();
  4514     assert(init->is_complete(), "we just did this");
  4515     assert(dest->is_CheckCastPP(), "sanity");
  4516     assert(dest->in(0)->in(0) == init, "dest pinned");
  4517     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4518     // From this point on, every exit path is responsible for
  4519     // initializing any non-copied parts of the object to zero.
  4520     // Also, if this flag is set we make sure that arraycopy interacts properly
  4521     // with G1, eliding pre-barriers. See CR 6627983.
  4522     dest_uninitialized = true;
  4523   } else {
  4524     // No zeroing elimination here.
  4525     alloc             = NULL;
  4526     //original_dest   = dest;
  4527     //dest_uninitialized = false;
  4530   // Results are placed here:
  4531   enum { fast_path        = 1,  // normal void-returning assembly stub
  4532          checked_path     = 2,  // special assembly stub with cleanup
  4533          slow_call_path   = 3,  // something went wrong; call the VM
  4534          zero_path        = 4,  // bypass when length of copy is zero
  4535          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4536          PATH_LIMIT       = 6
  4537   };
  4538   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4539   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4540   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4541   record_for_igvn(result_region);
  4542   _gvn.set_type_bottom(result_i_o);
  4543   _gvn.set_type_bottom(result_memory);
  4544   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4546   // The slow_control path:
  4547   Node* slow_control;
  4548   Node* slow_i_o = i_o();
  4549   Node* slow_mem = memory(adr_type);
  4550   debug_only(slow_control = (Node*) badAddress);
  4552   // Checked control path:
  4553   Node* checked_control = top();
  4554   Node* checked_mem     = NULL;
  4555   Node* checked_i_o     = NULL;
  4556   Node* checked_value   = NULL;
  4558   if (basic_elem_type == T_CONFLICT) {
  4559     assert(!dest_uninitialized, "");
  4560     Node* cv = generate_generic_arraycopy(adr_type,
  4561                                           src, src_offset, dest, dest_offset,
  4562                                           copy_length, dest_uninitialized);
  4563     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4564     checked_control = control();
  4565     checked_i_o     = i_o();
  4566     checked_mem     = memory(adr_type);
  4567     checked_value   = cv;
  4568     set_control(top());         // no fast path
  4571   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4572   if (not_pos != NULL) {
  4573     PreserveJVMState pjvms(this);
  4574     set_control(not_pos);
  4576     // (6) length must not be negative.
  4577     if (!length_never_negative) {
  4578       generate_negative_guard(copy_length, slow_region);
  4581     // copy_length is 0.
  4582     if (!stopped() && dest_uninitialized) {
  4583       Node* dest_length = alloc->in(AllocateNode::ALength);
  4584       if (_gvn.eqv_uncast(copy_length, dest_length)
  4585           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4586         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4587       } else {
  4588         // Clear the whole thing since there are no source elements to copy.
  4589         generate_clear_array(adr_type, dest, basic_elem_type,
  4590                              intcon(0), NULL,
  4591                              alloc->in(AllocateNode::AllocSize));
  4592         // Use a secondary InitializeNode as raw memory barrier.
  4593         // Currently it is needed only on this path since other
  4594         // paths have stub or runtime calls as raw memory barriers.
  4595         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4596                                                        Compile::AliasIdxRaw,
  4597                                                        top())->as_Initialize();
  4598         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4602     // Present the results of the fast call.
  4603     result_region->init_req(zero_path, control());
  4604     result_i_o   ->init_req(zero_path, i_o());
  4605     result_memory->init_req(zero_path, memory(adr_type));
  4608   if (!stopped() && dest_uninitialized) {
  4609     // We have to initialize the *uncopied* part of the array to zero.
  4610     // The copy destination is the slice dest[off..off+len].  The other slices
  4611     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4612     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4613     Node* dest_length = alloc->in(AllocateNode::ALength);
  4614     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4615                                                           copy_length) );
  4617     // If there is a head section that needs zeroing, do it now.
  4618     if (find_int_con(dest_offset, -1) != 0) {
  4619       generate_clear_array(adr_type, dest, basic_elem_type,
  4620                            intcon(0), dest_offset,
  4621                            NULL);
  4624     // Next, perform a dynamic check on the tail length.
  4625     // It is often zero, and we can win big if we prove this.
  4626     // There are two wins:  Avoid generating the ClearArray
  4627     // with its attendant messy index arithmetic, and upgrade
  4628     // the copy to a more hardware-friendly word size of 64 bits.
  4629     Node* tail_ctl = NULL;
  4630     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4631       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4632       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4633       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4634       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4637     // At this point, let's assume there is no tail.
  4638     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4639       // There is no tail.  Try an upgrade to a 64-bit copy.
  4640       bool didit = false;
  4641       { PreserveJVMState pjvms(this);
  4642         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4643                                          src, src_offset, dest, dest_offset,
  4644                                          dest_size, dest_uninitialized);
  4645         if (didit) {
  4646           // Present the results of the block-copying fast call.
  4647           result_region->init_req(bcopy_path, control());
  4648           result_i_o   ->init_req(bcopy_path, i_o());
  4649           result_memory->init_req(bcopy_path, memory(adr_type));
  4652       if (didit)
  4653         set_control(top());     // no regular fast path
  4656     // Clear the tail, if any.
  4657     if (tail_ctl != NULL) {
  4658       Node* notail_ctl = stopped() ? NULL : control();
  4659       set_control(tail_ctl);
  4660       if (notail_ctl == NULL) {
  4661         generate_clear_array(adr_type, dest, basic_elem_type,
  4662                              dest_tail, NULL,
  4663                              dest_size);
  4664       } else {
  4665         // Make a local merge.
  4666         Node* done_ctl = new(C,3) RegionNode(3);
  4667         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4668         done_ctl->init_req(1, notail_ctl);
  4669         done_mem->init_req(1, memory(adr_type));
  4670         generate_clear_array(adr_type, dest, basic_elem_type,
  4671                              dest_tail, NULL,
  4672                              dest_size);
  4673         done_ctl->init_req(2, control());
  4674         done_mem->init_req(2, memory(adr_type));
  4675         set_control( _gvn.transform(done_ctl) );
  4676         set_memory(  _gvn.transform(done_mem), adr_type );
  4681   BasicType copy_type = basic_elem_type;
  4682   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4683   if (!stopped() && copy_type == T_OBJECT) {
  4684     // If src and dest have compatible element types, we can copy bits.
  4685     // Types S[] and D[] are compatible if D is a supertype of S.
  4686     //
  4687     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4688     // which performs a fast optimistic per-oop check, and backs off
  4689     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4690     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4692     // Get the klassOop for both src and dest
  4693     Node* src_klass  = load_object_klass(src);
  4694     Node* dest_klass = load_object_klass(dest);
  4696     // Generate the subtype check.
  4697     // This might fold up statically, or then again it might not.
  4698     //
  4699     // Non-static example:  Copying List<String>.elements to a new String[].
  4700     // The backing store for a List<String> is always an Object[],
  4701     // but its elements are always type String, if the generic types
  4702     // are correct at the source level.
  4703     //
  4704     // Test S[] against D[], not S against D, because (probably)
  4705     // the secondary supertype cache is less busy for S[] than S.
  4706     // This usually only matters when D is an interface.
  4707     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4708     // Plug failing path into checked_oop_disjoint_arraycopy
  4709     if (not_subtype_ctrl != top()) {
  4710       PreserveJVMState pjvms(this);
  4711       set_control(not_subtype_ctrl);
  4712       // (At this point we can assume disjoint_bases, since types differ.)
  4713       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4714       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4715       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4716       Node* dest_elem_klass = _gvn.transform(n1);
  4717       Node* cv = generate_checkcast_arraycopy(adr_type,
  4718                                               dest_elem_klass,
  4719                                               src, src_offset, dest, dest_offset,
  4720                                               ConvI2X(copy_length), dest_uninitialized);
  4721       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4722       checked_control = control();
  4723       checked_i_o     = i_o();
  4724       checked_mem     = memory(adr_type);
  4725       checked_value   = cv;
  4727     // At this point we know we do not need type checks on oop stores.
  4729     // Let's see if we need card marks:
  4730     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4731       // If we do not need card marks, copy using the jint or jlong stub.
  4732       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4733       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4734              "sizes agree");
  4738   if (!stopped()) {
  4739     // Generate the fast path, if possible.
  4740     PreserveJVMState pjvms(this);
  4741     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4742                                  src, src_offset, dest, dest_offset,
  4743                                  ConvI2X(copy_length), dest_uninitialized);
  4745     // Present the results of the fast call.
  4746     result_region->init_req(fast_path, control());
  4747     result_i_o   ->init_req(fast_path, i_o());
  4748     result_memory->init_req(fast_path, memory(adr_type));
  4751   // Here are all the slow paths up to this point, in one bundle:
  4752   slow_control = top();
  4753   if (slow_region != NULL)
  4754     slow_control = _gvn.transform(slow_region);
  4755   debug_only(slow_region = (RegionNode*)badAddress);
  4757   set_control(checked_control);
  4758   if (!stopped()) {
  4759     // Clean up after the checked call.
  4760     // The returned value is either 0 or -1^K,
  4761     // where K = number of partially transferred array elements.
  4762     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4763     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4764     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4766     // If it is 0, we are done, so transfer to the end.
  4767     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4768     result_region->init_req(checked_path, checks_done);
  4769     result_i_o   ->init_req(checked_path, checked_i_o);
  4770     result_memory->init_req(checked_path, checked_mem);
  4772     // If it is not zero, merge into the slow call.
  4773     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4774     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4775     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4776     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4777     record_for_igvn(slow_reg2);
  4778     slow_reg2  ->init_req(1, slow_control);
  4779     slow_i_o2  ->init_req(1, slow_i_o);
  4780     slow_mem2  ->init_req(1, slow_mem);
  4781     slow_reg2  ->init_req(2, control());
  4782     slow_i_o2  ->init_req(2, checked_i_o);
  4783     slow_mem2  ->init_req(2, checked_mem);
  4785     slow_control = _gvn.transform(slow_reg2);
  4786     slow_i_o     = _gvn.transform(slow_i_o2);
  4787     slow_mem     = _gvn.transform(slow_mem2);
  4789     if (alloc != NULL) {
  4790       // We'll restart from the very beginning, after zeroing the whole thing.
  4791       // This can cause double writes, but that's OK since dest is brand new.
  4792       // So we ignore the low 31 bits of the value returned from the stub.
  4793     } else {
  4794       // We must continue the copy exactly where it failed, or else
  4795       // another thread might see the wrong number of writes to dest.
  4796       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4797       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4798       slow_offset->init_req(1, intcon(0));
  4799       slow_offset->init_req(2, checked_offset);
  4800       slow_offset  = _gvn.transform(slow_offset);
  4802       // Adjust the arguments by the conditionally incoming offset.
  4803       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4804       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4805       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4807       // Tweak the node variables to adjust the code produced below:
  4808       src_offset  = src_off_plus;
  4809       dest_offset = dest_off_plus;
  4810       copy_length = length_minus;
  4814   set_control(slow_control);
  4815   if (!stopped()) {
  4816     // Generate the slow path, if needed.
  4817     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4819     set_memory(slow_mem, adr_type);
  4820     set_i_o(slow_i_o);
  4822     if (dest_uninitialized) {
  4823       generate_clear_array(adr_type, dest, basic_elem_type,
  4824                            intcon(0), NULL,
  4825                            alloc->in(AllocateNode::AllocSize));
  4828     generate_slow_arraycopy(adr_type,
  4829                             src, src_offset, dest, dest_offset,
  4830                             copy_length, /*dest_uninitialized*/false);
  4832     result_region->init_req(slow_call_path, control());
  4833     result_i_o   ->init_req(slow_call_path, i_o());
  4834     result_memory->init_req(slow_call_path, memory(adr_type));
  4837   // Remove unused edges.
  4838   for (uint i = 1; i < result_region->req(); i++) {
  4839     if (result_region->in(i) == NULL)
  4840       result_region->init_req(i, top());
  4843   // Finished; return the combined state.
  4844   set_control( _gvn.transform(result_region) );
  4845   set_i_o(     _gvn.transform(result_i_o)    );
  4846   set_memory(  _gvn.transform(result_memory), adr_type );
  4848   // The memory edges above are precise in order to model effects around
  4849   // array copies accurately to allow value numbering of field loads around
  4850   // arraycopy.  Such field loads, both before and after, are common in Java
  4851   // collections and similar classes involving header/array data structures.
  4852   //
  4853   // But with low number of register or when some registers are used or killed
  4854   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4855   // The next memory barrier is added to avoid it. If the arraycopy can be
  4856   // optimized away (which it can, sometimes) then we can manually remove
  4857   // the membar also.
  4858   //
  4859   // Do not let reads from the cloned object float above the arraycopy.
  4860   if (InsertMemBarAfterArraycopy || alloc != NULL)
  4861     insert_mem_bar(Op_MemBarCPUOrder);
  4865 // Helper function which determines if an arraycopy immediately follows
  4866 // an allocation, with no intervening tests or other escapes for the object.
  4867 AllocateArrayNode*
  4868 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4869                                            RegionNode* slow_region) {
  4870   if (stopped())             return NULL;  // no fast path
  4871   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4873   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4874   if (alloc == NULL)  return NULL;
  4876   Node* rawmem = memory(Compile::AliasIdxRaw);
  4877   // Is the allocation's memory state untouched?
  4878   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4879     // Bail out if there have been raw-memory effects since the allocation.
  4880     // (Example:  There might have been a call or safepoint.)
  4881     return NULL;
  4883   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4884   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4885     return NULL;
  4888   // There must be no unexpected observers of this allocation.
  4889   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4890     Node* obs = ptr->fast_out(i);
  4891     if (obs != this->map()) {
  4892       return NULL;
  4896   // This arraycopy must unconditionally follow the allocation of the ptr.
  4897   Node* alloc_ctl = ptr->in(0);
  4898   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4900   Node* ctl = control();
  4901   while (ctl != alloc_ctl) {
  4902     // There may be guards which feed into the slow_region.
  4903     // Any other control flow means that we might not get a chance
  4904     // to finish initializing the allocated object.
  4905     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4906       IfNode* iff = ctl->in(0)->as_If();
  4907       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4908       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4909       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4910         ctl = iff->in(0);       // This test feeds the known slow_region.
  4911         continue;
  4913       // One more try:  Various low-level checks bottom out in
  4914       // uncommon traps.  If the debug-info of the trap omits
  4915       // any reference to the allocation, as we've already
  4916       // observed, then there can be no objection to the trap.
  4917       bool found_trap = false;
  4918       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4919         Node* obs = not_ctl->fast_out(j);
  4920         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4921             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  4922           found_trap = true; break;
  4925       if (found_trap) {
  4926         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4927         continue;
  4930     return NULL;
  4933   // If we get this far, we have an allocation which immediately
  4934   // precedes the arraycopy, and we can take over zeroing the new object.
  4935   // The arraycopy will finish the initialization, and provide
  4936   // a new control state to which we will anchor the destination pointer.
  4938   return alloc;
  4941 // Helper for initialization of arrays, creating a ClearArray.
  4942 // It writes zero bits in [start..end), within the body of an array object.
  4943 // The memory effects are all chained onto the 'adr_type' alias category.
  4944 //
  4945 // Since the object is otherwise uninitialized, we are free
  4946 // to put a little "slop" around the edges of the cleared area,
  4947 // as long as it does not go back into the array's header,
  4948 // or beyond the array end within the heap.
  4949 //
  4950 // The lower edge can be rounded down to the nearest jint and the
  4951 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4952 //
  4953 // Arguments:
  4954 //   adr_type           memory slice where writes are generated
  4955 //   dest               oop of the destination array
  4956 //   basic_elem_type    element type of the destination
  4957 //   slice_idx          array index of first element to store
  4958 //   slice_len          number of elements to store (or NULL)
  4959 //   dest_size          total size in bytes of the array object
  4960 //
  4961 // Exactly one of slice_len or dest_size must be non-NULL.
  4962 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4963 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4964 void
  4965 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4966                                      Node* dest,
  4967                                      BasicType basic_elem_type,
  4968                                      Node* slice_idx,
  4969                                      Node* slice_len,
  4970                                      Node* dest_size) {
  4971   // one or the other but not both of slice_len and dest_size:
  4972   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4973   if (slice_len == NULL)  slice_len = top();
  4974   if (dest_size == NULL)  dest_size = top();
  4976   // operate on this memory slice:
  4977   Node* mem = memory(adr_type); // memory slice to operate on
  4979   // scaling and rounding of indexes:
  4980   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4981   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4982   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  4983   int bump_bit  = (-1 << scale) & BytesPerInt;
  4985   // determine constant starts and ends
  4986   const intptr_t BIG_NEG = -128;
  4987   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4988   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  4989   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  4990   if (slice_len_con == 0) {
  4991     return;                     // nothing to do here
  4993   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  4994   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  4995   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  4996     assert(end_con < 0, "not two cons");
  4997     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  4998                        BytesPerLong);
  5001   if (start_con >= 0 && end_con >= 0) {
  5002     // Constant start and end.  Simple.
  5003     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5004                                        start_con, end_con, &_gvn);
  5005   } else if (start_con >= 0 && dest_size != top()) {
  5006     // Constant start, pre-rounded end after the tail of the array.
  5007     Node* end = dest_size;
  5008     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5009                                        start_con, end, &_gvn);
  5010   } else if (start_con >= 0 && slice_len != top()) {
  5011     // Constant start, non-constant end.  End needs rounding up.
  5012     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5013     intptr_t end_base  = abase + (slice_idx_con << scale);
  5014     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5015     Node*    end       = ConvI2X(slice_len);
  5016     if (scale != 0)
  5017       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5018     end_base += end_round;
  5019     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5020     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5021     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5022                                        start_con, end, &_gvn);
  5023   } else if (start_con < 0 && dest_size != top()) {
  5024     // Non-constant start, pre-rounded end after the tail of the array.
  5025     // This is almost certainly a "round-to-end" operation.
  5026     Node* start = slice_idx;
  5027     start = ConvI2X(start);
  5028     if (scale != 0)
  5029       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5030     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5031     if ((bump_bit | clear_low) != 0) {
  5032       int to_clear = (bump_bit | clear_low);
  5033       // Align up mod 8, then store a jint zero unconditionally
  5034       // just before the mod-8 boundary.
  5035       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5036           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5037         bump_bit = 0;
  5038         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5039       } else {
  5040         // Bump 'start' up to (or past) the next jint boundary:
  5041         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5042         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5044       // Round bumped 'start' down to jlong boundary in body of array.
  5045       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5046       if (bump_bit != 0) {
  5047         // Store a zero to the immediately preceding jint:
  5048         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5049         Node* p1 = basic_plus_adr(dest, x1);
  5050         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5051         mem = _gvn.transform(mem);
  5054     Node* end = dest_size; // pre-rounded
  5055     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5056                                        start, end, &_gvn);
  5057   } else {
  5058     // Non-constant start, unrounded non-constant end.
  5059     // (Nobody zeroes a random midsection of an array using this routine.)
  5060     ShouldNotReachHere();       // fix caller
  5063   // Done.
  5064   set_memory(mem, adr_type);
  5068 bool
  5069 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5070                                          BasicType basic_elem_type,
  5071                                          AllocateNode* alloc,
  5072                                          Node* src,  Node* src_offset,
  5073                                          Node* dest, Node* dest_offset,
  5074                                          Node* dest_size, bool dest_uninitialized) {
  5075   // See if there is an advantage from block transfer.
  5076   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5077   if (scale >= LogBytesPerLong)
  5078     return false;               // it is already a block transfer
  5080   // Look at the alignment of the starting offsets.
  5081   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5082   const intptr_t BIG_NEG = -128;
  5083   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5085   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5086   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5087   if (src_off < 0 || dest_off < 0)
  5088     // At present, we can only understand constants.
  5089     return false;
  5091   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5092     // Non-aligned; too bad.
  5093     // One more chance:  Pick off an initial 32-bit word.
  5094     // This is a common case, since abase can be odd mod 8.
  5095     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5096         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5097       Node* sptr = basic_plus_adr(src,  src_off);
  5098       Node* dptr = basic_plus_adr(dest, dest_off);
  5099       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5100       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5101       src_off += BytesPerInt;
  5102       dest_off += BytesPerInt;
  5103     } else {
  5104       return false;
  5107   assert(src_off % BytesPerLong == 0, "");
  5108   assert(dest_off % BytesPerLong == 0, "");
  5110   // Do this copy by giant steps.
  5111   Node* sptr  = basic_plus_adr(src,  src_off);
  5112   Node* dptr  = basic_plus_adr(dest, dest_off);
  5113   Node* countx = dest_size;
  5114   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5115   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5117   bool disjoint_bases = true;   // since alloc != NULL
  5118   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5119                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5121   return true;
  5125 // Helper function; generates code for the slow case.
  5126 // We make a call to a runtime method which emulates the native method,
  5127 // but without the native wrapper overhead.
  5128 void
  5129 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5130                                         Node* src,  Node* src_offset,
  5131                                         Node* dest, Node* dest_offset,
  5132                                         Node* copy_length, bool dest_uninitialized) {
  5133   assert(!dest_uninitialized, "Invariant");
  5134   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5135                                  OptoRuntime::slow_arraycopy_Type(),
  5136                                  OptoRuntime::slow_arraycopy_Java(),
  5137                                  "slow_arraycopy", adr_type,
  5138                                  src, src_offset, dest, dest_offset,
  5139                                  copy_length);
  5141   // Handle exceptions thrown by this fellow:
  5142   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5145 // Helper function; generates code for cases requiring runtime checks.
  5146 Node*
  5147 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5148                                              Node* dest_elem_klass,
  5149                                              Node* src,  Node* src_offset,
  5150                                              Node* dest, Node* dest_offset,
  5151                                              Node* copy_length, bool dest_uninitialized) {
  5152   if (stopped())  return NULL;
  5154   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5155   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5156     return NULL;
  5159   // Pick out the parameters required to perform a store-check
  5160   // for the target array.  This is an optimistic check.  It will
  5161   // look in each non-null element's class, at the desired klass's
  5162   // super_check_offset, for the desired klass.
  5163   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5164   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5165   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5166   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5167   Node* check_value  = dest_elem_klass;
  5169   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5170   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5172   // (We know the arrays are never conjoint, because their types differ.)
  5173   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5174                                  OptoRuntime::checkcast_arraycopy_Type(),
  5175                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5176                                  // five arguments, of which two are
  5177                                  // intptr_t (jlong in LP64)
  5178                                  src_start, dest_start,
  5179                                  copy_length XTOP,
  5180                                  check_offset XTOP,
  5181                                  check_value);
  5183   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5187 // Helper function; generates code for cases requiring runtime checks.
  5188 Node*
  5189 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5190                                            Node* src,  Node* src_offset,
  5191                                            Node* dest, Node* dest_offset,
  5192                                            Node* copy_length, bool dest_uninitialized) {
  5193   assert(!dest_uninitialized, "Invariant");
  5194   if (stopped())  return NULL;
  5195   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5196   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5197     return NULL;
  5200   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5201                     OptoRuntime::generic_arraycopy_Type(),
  5202                     copyfunc_addr, "generic_arraycopy", adr_type,
  5203                     src, src_offset, dest, dest_offset, copy_length);
  5205   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5208 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5209 void
  5210 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5211                                              BasicType basic_elem_type,
  5212                                              bool disjoint_bases,
  5213                                              Node* src,  Node* src_offset,
  5214                                              Node* dest, Node* dest_offset,
  5215                                              Node* copy_length, bool dest_uninitialized) {
  5216   if (stopped())  return;               // nothing to do
  5218   Node* src_start  = src;
  5219   Node* dest_start = dest;
  5220   if (src_offset != NULL || dest_offset != NULL) {
  5221     assert(src_offset != NULL && dest_offset != NULL, "");
  5222     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5223     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5226   // Figure out which arraycopy runtime method to call.
  5227   const char* copyfunc_name = "arraycopy";
  5228   address     copyfunc_addr =
  5229       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5230                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5232   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5233   make_runtime_call(RC_LEAF|RC_NO_FP,
  5234                     OptoRuntime::fast_arraycopy_Type(),
  5235                     copyfunc_addr, copyfunc_name, adr_type,
  5236                     src_start, dest_start, copy_length XTOP);

mercurial