src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Sun, 03 Apr 2011 12:00:54 +0200

author
roland
date
Sun, 03 Apr 2011 12:00:54 +0200
changeset 2728
13bc79b5c9c8
parent 2697
09f96c3ff1ad
child 2761
15c9a0e16269
permissions
-rw-r--r--

7033154: Improve C1 arraycopy performance
Summary: better static analysis. Take advantage of array copy stubs.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_LIRAssembler.hpp"
    29 #include "c1/c1_MacroAssembler.hpp"
    30 #include "c1/c1_Runtime1.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "gc_interface/collectedHeap.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/cardTableModRefBS.hpp"
    37 #include "nativeInst_x86.hpp"
    38 #include "oops/objArrayKlass.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    44 // fast versions of NegF/NegD and AbsF/AbsD.
    46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    49   // of 128-bits operands for SSE instructions.
    50   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    51   // Store the value to a 128-bits operand.
    52   operand[0] = lo;
    53   operand[1] = hi;
    54   return operand;
    55 }
    57 // Buffer for 128-bits masks used by SSE instructions.
    58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    60 // Static initialization during VM startup.
    61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    68 NEEDS_CLEANUP // remove this definitions ?
    69 const Register IC_Klass    = rax;   // where the IC klass is cached
    70 const Register SYNC_header = rax;   // synchronization header
    71 const Register SHIFT_count = rcx;   // where count for shift operations must be
    73 #define __ _masm->
    76 static void select_different_registers(Register preserve,
    77                                        Register extra,
    78                                        Register &tmp1,
    79                                        Register &tmp2) {
    80   if (tmp1 == preserve) {
    81     assert_different_registers(tmp1, tmp2, extra);
    82     tmp1 = extra;
    83   } else if (tmp2 == preserve) {
    84     assert_different_registers(tmp1, tmp2, extra);
    85     tmp2 = extra;
    86   }
    87   assert_different_registers(preserve, tmp1, tmp2);
    88 }
    92 static void select_different_registers(Register preserve,
    93                                        Register extra,
    94                                        Register &tmp1,
    95                                        Register &tmp2,
    96                                        Register &tmp3) {
    97   if (tmp1 == preserve) {
    98     assert_different_registers(tmp1, tmp2, tmp3, extra);
    99     tmp1 = extra;
   100   } else if (tmp2 == preserve) {
   101     assert_different_registers(tmp1, tmp2, tmp3, extra);
   102     tmp2 = extra;
   103   } else if (tmp3 == preserve) {
   104     assert_different_registers(tmp1, tmp2, tmp3, extra);
   105     tmp3 = extra;
   106   }
   107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   108 }
   112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   113   if (opr->is_constant()) {
   114     LIR_Const* constant = opr->as_constant_ptr();
   115     switch (constant->type()) {
   116       case T_INT: {
   117         return true;
   118       }
   120       default:
   121         return false;
   122     }
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIR_Assembler::receiverOpr() {
   129   return FrameMap::receiver_opr;
   130 }
   132 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   133   return receiverOpr();
   134 }
   136 LIR_Opr LIR_Assembler::osrBufferPointer() {
   137   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   138 }
   140 //--------------fpu register translations-----------------------
   143 address LIR_Assembler::float_constant(float f) {
   144   address const_addr = __ float_constant(f);
   145   if (const_addr == NULL) {
   146     bailout("const section overflow");
   147     return __ code()->consts()->start();
   148   } else {
   149     return const_addr;
   150   }
   151 }
   154 address LIR_Assembler::double_constant(double d) {
   155   address const_addr = __ double_constant(d);
   156   if (const_addr == NULL) {
   157     bailout("const section overflow");
   158     return __ code()->consts()->start();
   159   } else {
   160     return const_addr;
   161   }
   162 }
   165 void LIR_Assembler::set_24bit_FPU() {
   166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   167 }
   169 void LIR_Assembler::reset_FPU() {
   170   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   171 }
   173 void LIR_Assembler::fpop() {
   174   __ fpop();
   175 }
   177 void LIR_Assembler::fxch(int i) {
   178   __ fxch(i);
   179 }
   181 void LIR_Assembler::fld(int i) {
   182   __ fld_s(i);
   183 }
   185 void LIR_Assembler::ffree(int i) {
   186   __ ffree(i);
   187 }
   189 void LIR_Assembler::breakpoint() {
   190   __ int3();
   191 }
   193 void LIR_Assembler::push(LIR_Opr opr) {
   194   if (opr->is_single_cpu()) {
   195     __ push_reg(opr->as_register());
   196   } else if (opr->is_double_cpu()) {
   197     NOT_LP64(__ push_reg(opr->as_register_hi()));
   198     __ push_reg(opr->as_register_lo());
   199   } else if (opr->is_stack()) {
   200     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   201   } else if (opr->is_constant()) {
   202     LIR_Const* const_opr = opr->as_constant_ptr();
   203     if (const_opr->type() == T_OBJECT) {
   204       __ push_oop(const_opr->as_jobject());
   205     } else if (const_opr->type() == T_INT) {
   206       __ push_jint(const_opr->as_jint());
   207     } else {
   208       ShouldNotReachHere();
   209     }
   211   } else {
   212     ShouldNotReachHere();
   213   }
   214 }
   216 void LIR_Assembler::pop(LIR_Opr opr) {
   217   if (opr->is_single_cpu()) {
   218     __ pop_reg(opr->as_register());
   219   } else {
   220     ShouldNotReachHere();
   221   }
   222 }
   224 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   225   return addr->base()->is_illegal() && addr->index()->is_illegal();
   226 }
   228 //-------------------------------------------
   230 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   231   return as_Address(addr, rscratch1);
   232 }
   234 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   235   if (addr->base()->is_illegal()) {
   236     assert(addr->index()->is_illegal(), "must be illegal too");
   237     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   238     if (! __ reachable(laddr)) {
   239       __ movptr(tmp, laddr.addr());
   240       Address res(tmp, 0);
   241       return res;
   242     } else {
   243       return __ as_Address(laddr);
   244     }
   245   }
   247   Register base = addr->base()->as_pointer_register();
   249   if (addr->index()->is_illegal()) {
   250     return Address( base, addr->disp());
   251   } else if (addr->index()->is_cpu_register()) {
   252     Register index = addr->index()->as_pointer_register();
   253     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   254   } else if (addr->index()->is_constant()) {
   255     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   256     assert(Assembler::is_simm32(addr_offset), "must be");
   258     return Address(base, addr_offset);
   259   } else {
   260     Unimplemented();
   261     return Address();
   262   }
   263 }
   266 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   267   Address base = as_Address(addr);
   268   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   269 }
   272 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   273   return as_Address(addr);
   274 }
   277 void LIR_Assembler::osr_entry() {
   278   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   279   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   280   ValueStack* entry_state = osr_entry->state();
   281   int number_of_locks = entry_state->locks_size();
   283   // we jump here if osr happens with the interpreter
   284   // state set up to continue at the beginning of the
   285   // loop that triggered osr - in particular, we have
   286   // the following registers setup:
   287   //
   288   // rcx: osr buffer
   289   //
   291   // build frame
   292   ciMethod* m = compilation()->method();
   293   __ build_frame(initial_frame_size_in_bytes());
   295   // OSR buffer is
   296   //
   297   // locals[nlocals-1..0]
   298   // monitors[0..number_of_locks]
   299   //
   300   // locals is a direct copy of the interpreter frame so in the osr buffer
   301   // so first slot in the local array is the last local from the interpreter
   302   // and last slot is local[0] (receiver) from the interpreter
   303   //
   304   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   305   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   306   // in the interpreter frame (the method lock if a sync method)
   308   // Initialize monitors in the compiled activation.
   309   //   rcx: pointer to osr buffer
   310   //
   311   // All other registers are dead at this point and the locals will be
   312   // copied into place by code emitted in the IR.
   314   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   315   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   316     int monitor_offset = BytesPerWord * method()->max_locals() +
   317       (2 * BytesPerWord) * (number_of_locks - 1);
   318     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   319     // the OSR buffer using 2 word entries: first the lock and then
   320     // the oop.
   321     for (int i = 0; i < number_of_locks; i++) {
   322       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   323 #ifdef ASSERT
   324       // verify the interpreter's monitor has a non-null object
   325       {
   326         Label L;
   327         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   328         __ jcc(Assembler::notZero, L);
   329         __ stop("locked object is NULL");
   330         __ bind(L);
   331       }
   332 #endif
   333       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   334       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   335       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   336       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   337     }
   338   }
   339 }
   342 // inline cache check; done before the frame is built.
   343 int LIR_Assembler::check_icache() {
   344   Register receiver = FrameMap::receiver_opr->as_register();
   345   Register ic_klass = IC_Klass;
   346   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   347   const bool do_post_padding = VerifyOops || UseCompressedOops;
   348   if (!do_post_padding) {
   349     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   350     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   351       __ nop();
   352     }
   353   }
   354   int offset = __ offset();
   355   __ inline_cache_check(receiver, IC_Klass);
   356   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   357   if (do_post_padding) {
   358     // force alignment after the cache check.
   359     // It's been verified to be aligned if !VerifyOops
   360     __ align(CodeEntryAlignment);
   361   }
   362   return offset;
   363 }
   366 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   367   jobject o = NULL;
   368   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   369   __ movoop(reg, o);
   370   patching_epilog(patch, lir_patch_normal, reg, info);
   371 }
   374 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   375   if (exception->is_valid()) {
   376     // preserve exception
   377     // note: the monitor_exit runtime call is a leaf routine
   378     //       and cannot block => no GC can happen
   379     // The slow case (MonitorAccessStub) uses the first two stack slots
   380     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   381     __ movptr (Address(rsp, 2*wordSize), exception);
   382   }
   384   Register obj_reg  = obj_opr->as_register();
   385   Register lock_reg = lock_opr->as_register();
   387   // setup registers (lock_reg must be rax, for lock_object)
   388   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   389   Register hdr = lock_reg;
   390   assert(new_hdr == SYNC_header, "wrong register");
   391   lock_reg = new_hdr;
   392   // compute pointer to BasicLock
   393   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   394   __ lea(lock_reg, lock_addr);
   395   // unlock object
   396   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   397   // _slow_case_stubs->append(slow_case);
   398   // temporary fix: must be created after exceptionhandler, therefore as call stub
   399   _slow_case_stubs->append(slow_case);
   400   if (UseFastLocking) {
   401     // try inlined fast unlocking first, revert to slow locking if it fails
   402     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   403     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   404     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   405   } else {
   406     // always do slow unlocking
   407     // note: the slow unlocking code could be inlined here, however if we use
   408     //       slow unlocking, speed doesn't matter anyway and this solution is
   409     //       simpler and requires less duplicated code - additionally, the
   410     //       slow unlocking code is the same in either case which simplifies
   411     //       debugging
   412     __ jmp(*slow_case->entry());
   413   }
   414   // done
   415   __ bind(*slow_case->continuation());
   417   if (exception->is_valid()) {
   418     // restore exception
   419     __ movptr (exception, Address(rsp, 2 * wordSize));
   420   }
   421 }
   423 // This specifies the rsp decrement needed to build the frame
   424 int LIR_Assembler::initial_frame_size_in_bytes() {
   425   // if rounding, must let FrameMap know!
   427   // The frame_map records size in slots (32bit word)
   429   // subtract two words to account for return address and link
   430   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   431 }
   434 int LIR_Assembler::emit_exception_handler() {
   435   // if the last instruction is a call (typically to do a throw which
   436   // is coming at the end after block reordering) the return address
   437   // must still point into the code area in order to avoid assertion
   438   // failures when searching for the corresponding bci => add a nop
   439   // (was bug 5/14/1999 - gri)
   440   __ nop();
   442   // generate code for exception handler
   443   address handler_base = __ start_a_stub(exception_handler_size);
   444   if (handler_base == NULL) {
   445     // not enough space left for the handler
   446     bailout("exception handler overflow");
   447     return -1;
   448   }
   450   int offset = code_offset();
   452   // the exception oop and pc are in rax, and rdx
   453   // no other registers need to be preserved, so invalidate them
   454   __ invalidate_registers(false, true, true, false, true, true);
   456   // check that there is really an exception
   457   __ verify_not_null_oop(rax);
   459   // search an exception handler (rax: exception oop, rdx: throwing pc)
   460   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   461   __ should_not_reach_here();
   462   assert(code_offset() - offset <= exception_handler_size, "overflow");
   463   __ end_a_stub();
   465   return offset;
   466 }
   469 // Emit the code to remove the frame from the stack in the exception
   470 // unwind path.
   471 int LIR_Assembler::emit_unwind_handler() {
   472 #ifndef PRODUCT
   473   if (CommentedAssembly) {
   474     _masm->block_comment("Unwind handler");
   475   }
   476 #endif
   478   int offset = code_offset();
   480   // Fetch the exception from TLS and clear out exception related thread state
   481   __ get_thread(rsi);
   482   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   483   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   484   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   486   __ bind(_unwind_handler_entry);
   487   __ verify_not_null_oop(rax);
   488   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   489     __ mov(rsi, rax);  // Preserve the exception
   490   }
   492   // Preform needed unlocking
   493   MonitorExitStub* stub = NULL;
   494   if (method()->is_synchronized()) {
   495     monitor_address(0, FrameMap::rax_opr);
   496     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   497     __ unlock_object(rdi, rbx, rax, *stub->entry());
   498     __ bind(*stub->continuation());
   499   }
   501   if (compilation()->env()->dtrace_method_probes()) {
   502     __ get_thread(rax);
   503     __ movptr(Address(rsp, 0), rax);
   504     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
   505     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   506   }
   508   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   509     __ mov(rax, rsi);  // Restore the exception
   510   }
   512   // remove the activation and dispatch to the unwind handler
   513   __ remove_frame(initial_frame_size_in_bytes());
   514   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   516   // Emit the slow path assembly
   517   if (stub != NULL) {
   518     stub->emit_code(this);
   519   }
   521   return offset;
   522 }
   525 int LIR_Assembler::emit_deopt_handler() {
   526   // if the last instruction is a call (typically to do a throw which
   527   // is coming at the end after block reordering) the return address
   528   // must still point into the code area in order to avoid assertion
   529   // failures when searching for the corresponding bci => add a nop
   530   // (was bug 5/14/1999 - gri)
   531   __ nop();
   533   // generate code for exception handler
   534   address handler_base = __ start_a_stub(deopt_handler_size);
   535   if (handler_base == NULL) {
   536     // not enough space left for the handler
   537     bailout("deopt handler overflow");
   538     return -1;
   539   }
   541   int offset = code_offset();
   542   InternalAddress here(__ pc());
   544   __ pushptr(here.addr());
   545   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   547   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   548   __ end_a_stub();
   550   return offset;
   551 }
   554 // This is the fast version of java.lang.String.compare; it has not
   555 // OSR-entry and therefore, we generate a slow version for OSR's
   556 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   557   __ movptr (rbx, rcx); // receiver is in rcx
   558   __ movptr (rax, arg1->as_register());
   560   // Get addresses of first characters from both Strings
   561   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   562   __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   563   __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   566   // rbx, may be NULL
   567   add_debug_info_for_null_check_here(info);
   568   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   569   __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   570   __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   572   // compute minimum length (in rax) and difference of lengths (on top of stack)
   573   __ movl  (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   574   __ movl  (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   575   __ mov   (rcx, rbx);
   576   __ subptr(rbx, rax); // subtract lengths
   577   __ push  (rbx);      // result
   578   __ cmov  (Assembler::lessEqual, rax, rcx);
   580   // is minimum length 0?
   581   Label noLoop, haveResult;
   582   __ testptr (rax, rax);
   583   __ jcc (Assembler::zero, noLoop);
   585   // compare first characters
   586   __ load_unsigned_short(rcx, Address(rdi, 0));
   587   __ load_unsigned_short(rbx, Address(rsi, 0));
   588   __ subl(rcx, rbx);
   589   __ jcc(Assembler::notZero, haveResult);
   590   // starting loop
   591   __ decrement(rax); // we already tested index: skip one
   592   __ jcc(Assembler::zero, noLoop);
   594   // set rsi.edi to the end of the arrays (arrays have same length)
   595   // negate the index
   597   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   598   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   599   __ negptr(rax);
   601   // compare the strings in a loop
   603   Label loop;
   604   __ align(wordSize);
   605   __ bind(loop);
   606   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   607   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   608   __ subl(rcx, rbx);
   609   __ jcc(Assembler::notZero, haveResult);
   610   __ increment(rax);
   611   __ jcc(Assembler::notZero, loop);
   613   // strings are equal up to min length
   615   __ bind(noLoop);
   616   __ pop(rax);
   617   return_op(LIR_OprFact::illegalOpr);
   619   __ bind(haveResult);
   620   // leave instruction is going to discard the TOS value
   621   __ mov (rax, rcx); // result of call is in rax,
   622 }
   625 void LIR_Assembler::return_op(LIR_Opr result) {
   626   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   627   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   628     assert(result->fpu() == 0, "result must already be on TOS");
   629   }
   631   // Pop the stack before the safepoint code
   632   __ remove_frame(initial_frame_size_in_bytes());
   634   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   636   // Note: we do not need to round double result; float result has the right precision
   637   // the poll sets the condition code, but no data registers
   638   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   639                               relocInfo::poll_return_type);
   641   if (Assembler::is_polling_page_far()) {
   642     __ lea(rscratch1, polling_page);
   643     __ relocate(relocInfo::poll_return_type);
   644     __ testl(rax, Address(rscratch1, 0));
   645   } else {
   646     __ testl(rax, polling_page);
   647   }
   648   __ ret(0);
   649 }
   652 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   653   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   654                               relocInfo::poll_type);
   655   guarantee(info != NULL, "Shouldn't be NULL");
   656   int offset = __ offset();
   657   if (Assembler::is_polling_page_far()) {
   658     __ lea(rscratch1, polling_page);
   659     offset = __ offset();
   660     add_debug_info_for_branch(info);
   661     __ testl(rax, Address(rscratch1, 0));
   662   } else {
   663     add_debug_info_for_branch(info);
   664     __ testl(rax, polling_page);
   665   }
   666   return offset;
   667 }
   670 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   671   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   672 }
   674 void LIR_Assembler::swap_reg(Register a, Register b) {
   675   __ xchgptr(a, b);
   676 }
   679 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   680   assert(src->is_constant(), "should not call otherwise");
   681   assert(dest->is_register(), "should not call otherwise");
   682   LIR_Const* c = src->as_constant_ptr();
   684   switch (c->type()) {
   685     case T_INT: {
   686       assert(patch_code == lir_patch_none, "no patching handled here");
   687       __ movl(dest->as_register(), c->as_jint());
   688       break;
   689     }
   691     case T_ADDRESS: {
   692       assert(patch_code == lir_patch_none, "no patching handled here");
   693       __ movptr(dest->as_register(), c->as_jint());
   694       break;
   695     }
   697     case T_LONG: {
   698       assert(patch_code == lir_patch_none, "no patching handled here");
   699 #ifdef _LP64
   700       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   701 #else
   702       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   703       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   704 #endif // _LP64
   705       break;
   706     }
   708     case T_OBJECT: {
   709       if (patch_code != lir_patch_none) {
   710         jobject2reg_with_patching(dest->as_register(), info);
   711       } else {
   712         __ movoop(dest->as_register(), c->as_jobject());
   713       }
   714       break;
   715     }
   717     case T_FLOAT: {
   718       if (dest->is_single_xmm()) {
   719         if (c->is_zero_float()) {
   720           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   721         } else {
   722           __ movflt(dest->as_xmm_float_reg(),
   723                    InternalAddress(float_constant(c->as_jfloat())));
   724         }
   725       } else {
   726         assert(dest->is_single_fpu(), "must be");
   727         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   728         if (c->is_zero_float()) {
   729           __ fldz();
   730         } else if (c->is_one_float()) {
   731           __ fld1();
   732         } else {
   733           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   734         }
   735       }
   736       break;
   737     }
   739     case T_DOUBLE: {
   740       if (dest->is_double_xmm()) {
   741         if (c->is_zero_double()) {
   742           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   743         } else {
   744           __ movdbl(dest->as_xmm_double_reg(),
   745                     InternalAddress(double_constant(c->as_jdouble())));
   746         }
   747       } else {
   748         assert(dest->is_double_fpu(), "must be");
   749         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   750         if (c->is_zero_double()) {
   751           __ fldz();
   752         } else if (c->is_one_double()) {
   753           __ fld1();
   754         } else {
   755           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   756         }
   757       }
   758       break;
   759     }
   761     default:
   762       ShouldNotReachHere();
   763   }
   764 }
   766 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   767   assert(src->is_constant(), "should not call otherwise");
   768   assert(dest->is_stack(), "should not call otherwise");
   769   LIR_Const* c = src->as_constant_ptr();
   771   switch (c->type()) {
   772     case T_INT:  // fall through
   773     case T_FLOAT:
   774       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   775       break;
   777     case T_ADDRESS:
   778       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   779       break;
   781     case T_OBJECT:
   782       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   783       break;
   785     case T_LONG:  // fall through
   786     case T_DOUBLE:
   787 #ifdef _LP64
   788       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   789                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   790 #else
   791       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   792                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   793       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   794                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   795 #endif // _LP64
   796       break;
   798     default:
   799       ShouldNotReachHere();
   800   }
   801 }
   803 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   804   assert(src->is_constant(), "should not call otherwise");
   805   assert(dest->is_address(), "should not call otherwise");
   806   LIR_Const* c = src->as_constant_ptr();
   807   LIR_Address* addr = dest->as_address_ptr();
   809   int null_check_here = code_offset();
   810   switch (type) {
   811     case T_INT:    // fall through
   812     case T_FLOAT:
   813       __ movl(as_Address(addr), c->as_jint_bits());
   814       break;
   816     case T_ADDRESS:
   817       __ movptr(as_Address(addr), c->as_jint_bits());
   818       break;
   820     case T_OBJECT:  // fall through
   821     case T_ARRAY:
   822       if (c->as_jobject() == NULL) {
   823         if (UseCompressedOops && !wide) {
   824           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   825         } else {
   826           __ movptr(as_Address(addr), NULL_WORD);
   827         }
   828       } else {
   829         if (is_literal_address(addr)) {
   830           ShouldNotReachHere();
   831           __ movoop(as_Address(addr, noreg), c->as_jobject());
   832         } else {
   833 #ifdef _LP64
   834           __ movoop(rscratch1, c->as_jobject());
   835           if (UseCompressedOops && !wide) {
   836             __ encode_heap_oop(rscratch1);
   837             null_check_here = code_offset();
   838             __ movl(as_Address_lo(addr), rscratch1);
   839           } else {
   840             null_check_here = code_offset();
   841             __ movptr(as_Address_lo(addr), rscratch1);
   842           }
   843 #else
   844           __ movoop(as_Address(addr), c->as_jobject());
   845 #endif
   846         }
   847       }
   848       break;
   850     case T_LONG:    // fall through
   851     case T_DOUBLE:
   852 #ifdef _LP64
   853       if (is_literal_address(addr)) {
   854         ShouldNotReachHere();
   855         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   856       } else {
   857         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   858         null_check_here = code_offset();
   859         __ movptr(as_Address_lo(addr), r10);
   860       }
   861 #else
   862       // Always reachable in 32bit so this doesn't produce useless move literal
   863       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   864       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   865 #endif // _LP64
   866       break;
   868     case T_BOOLEAN: // fall through
   869     case T_BYTE:
   870       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   871       break;
   873     case T_CHAR:    // fall through
   874     case T_SHORT:
   875       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   876       break;
   878     default:
   879       ShouldNotReachHere();
   880   };
   882   if (info != NULL) {
   883     add_debug_info_for_null_check(null_check_here, info);
   884   }
   885 }
   888 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   889   assert(src->is_register(), "should not call otherwise");
   890   assert(dest->is_register(), "should not call otherwise");
   892   // move between cpu-registers
   893   if (dest->is_single_cpu()) {
   894 #ifdef _LP64
   895     if (src->type() == T_LONG) {
   896       // Can do LONG -> OBJECT
   897       move_regs(src->as_register_lo(), dest->as_register());
   898       return;
   899     }
   900 #endif
   901     assert(src->is_single_cpu(), "must match");
   902     if (src->type() == T_OBJECT) {
   903       __ verify_oop(src->as_register());
   904     }
   905     move_regs(src->as_register(), dest->as_register());
   907   } else if (dest->is_double_cpu()) {
   908 #ifdef _LP64
   909     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   910       // Surprising to me but we can see move of a long to t_object
   911       __ verify_oop(src->as_register());
   912       move_regs(src->as_register(), dest->as_register_lo());
   913       return;
   914     }
   915 #endif
   916     assert(src->is_double_cpu(), "must match");
   917     Register f_lo = src->as_register_lo();
   918     Register f_hi = src->as_register_hi();
   919     Register t_lo = dest->as_register_lo();
   920     Register t_hi = dest->as_register_hi();
   921 #ifdef _LP64
   922     assert(f_hi == f_lo, "must be same");
   923     assert(t_hi == t_lo, "must be same");
   924     move_regs(f_lo, t_lo);
   925 #else
   926     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   929     if (f_lo == t_hi && f_hi == t_lo) {
   930       swap_reg(f_lo, f_hi);
   931     } else if (f_hi == t_lo) {
   932       assert(f_lo != t_hi, "overwriting register");
   933       move_regs(f_hi, t_hi);
   934       move_regs(f_lo, t_lo);
   935     } else {
   936       assert(f_hi != t_lo, "overwriting register");
   937       move_regs(f_lo, t_lo);
   938       move_regs(f_hi, t_hi);
   939     }
   940 #endif // LP64
   942     // special moves from fpu-register to xmm-register
   943     // necessary for method results
   944   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   945     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   946     __ fld_s(Address(rsp, 0));
   947   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   948     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   949     __ fld_d(Address(rsp, 0));
   950   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   951     __ fstp_s(Address(rsp, 0));
   952     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   953   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   954     __ fstp_d(Address(rsp, 0));
   955     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   957     // move between xmm-registers
   958   } else if (dest->is_single_xmm()) {
   959     assert(src->is_single_xmm(), "must match");
   960     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   961   } else if (dest->is_double_xmm()) {
   962     assert(src->is_double_xmm(), "must match");
   963     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   965     // move between fpu-registers (no instruction necessary because of fpu-stack)
   966   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   967     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   968     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   969   } else {
   970     ShouldNotReachHere();
   971   }
   972 }
   974 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   975   assert(src->is_register(), "should not call otherwise");
   976   assert(dest->is_stack(), "should not call otherwise");
   978   if (src->is_single_cpu()) {
   979     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   980     if (type == T_OBJECT || type == T_ARRAY) {
   981       __ verify_oop(src->as_register());
   982       __ movptr (dst, src->as_register());
   983     } else {
   984       __ movl (dst, src->as_register());
   985     }
   987   } else if (src->is_double_cpu()) {
   988     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   989     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   990     __ movptr (dstLO, src->as_register_lo());
   991     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   993   } else if (src->is_single_xmm()) {
   994     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   995     __ movflt(dst_addr, src->as_xmm_float_reg());
   997   } else if (src->is_double_xmm()) {
   998     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   999     __ movdbl(dst_addr, src->as_xmm_double_reg());
  1001   } else if (src->is_single_fpu()) {
  1002     assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1003     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1004     if (pop_fpu_stack)     __ fstp_s (dst_addr);
  1005     else                   __ fst_s  (dst_addr);
  1007   } else if (src->is_double_fpu()) {
  1008     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1009     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1010     if (pop_fpu_stack)     __ fstp_d (dst_addr);
  1011     else                   __ fst_d  (dst_addr);
  1013   } else {
  1014     ShouldNotReachHere();
  1019 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
  1020   LIR_Address* to_addr = dest->as_address_ptr();
  1021   PatchingStub* patch = NULL;
  1022   Register compressed_src = rscratch1;
  1024   if (type == T_ARRAY || type == T_OBJECT) {
  1025     __ verify_oop(src->as_register());
  1026 #ifdef _LP64
  1027     if (UseCompressedOops && !wide) {
  1028       __ movptr(compressed_src, src->as_register());
  1029       __ encode_heap_oop(compressed_src);
  1031 #endif
  1034   if (patch_code != lir_patch_none) {
  1035     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1036     Address toa = as_Address(to_addr);
  1037     assert(toa.disp() != 0, "must have");
  1040   int null_check_here = code_offset();
  1041   switch (type) {
  1042     case T_FLOAT: {
  1043       if (src->is_single_xmm()) {
  1044         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1045       } else {
  1046         assert(src->is_single_fpu(), "must be");
  1047         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1048         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1049         else                    __ fst_s (as_Address(to_addr));
  1051       break;
  1054     case T_DOUBLE: {
  1055       if (src->is_double_xmm()) {
  1056         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1057       } else {
  1058         assert(src->is_double_fpu(), "must be");
  1059         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1060         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1061         else                    __ fst_d (as_Address(to_addr));
  1063       break;
  1066     case T_ARRAY:   // fall through
  1067     case T_OBJECT:  // fall through
  1068       if (UseCompressedOops && !wide) {
  1069         __ movl(as_Address(to_addr), compressed_src);
  1070       } else {
  1071         __ movptr(as_Address(to_addr), src->as_register());
  1073       break;
  1074     case T_ADDRESS:
  1075       __ movptr(as_Address(to_addr), src->as_register());
  1076       break;
  1077     case T_INT:
  1078       __ movl(as_Address(to_addr), src->as_register());
  1079       break;
  1081     case T_LONG: {
  1082       Register from_lo = src->as_register_lo();
  1083       Register from_hi = src->as_register_hi();
  1084 #ifdef _LP64
  1085       __ movptr(as_Address_lo(to_addr), from_lo);
  1086 #else
  1087       Register base = to_addr->base()->as_register();
  1088       Register index = noreg;
  1089       if (to_addr->index()->is_register()) {
  1090         index = to_addr->index()->as_register();
  1092       if (base == from_lo || index == from_lo) {
  1093         assert(base != from_hi, "can't be");
  1094         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1095         __ movl(as_Address_hi(to_addr), from_hi);
  1096         if (patch != NULL) {
  1097           patching_epilog(patch, lir_patch_high, base, info);
  1098           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1099           patch_code = lir_patch_low;
  1101         __ movl(as_Address_lo(to_addr), from_lo);
  1102       } else {
  1103         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1104         __ movl(as_Address_lo(to_addr), from_lo);
  1105         if (patch != NULL) {
  1106           patching_epilog(patch, lir_patch_low, base, info);
  1107           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1108           patch_code = lir_patch_high;
  1110         __ movl(as_Address_hi(to_addr), from_hi);
  1112 #endif // _LP64
  1113       break;
  1116     case T_BYTE:    // fall through
  1117     case T_BOOLEAN: {
  1118       Register src_reg = src->as_register();
  1119       Address dst_addr = as_Address(to_addr);
  1120       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1121       __ movb(dst_addr, src_reg);
  1122       break;
  1125     case T_CHAR:    // fall through
  1126     case T_SHORT:
  1127       __ movw(as_Address(to_addr), src->as_register());
  1128       break;
  1130     default:
  1131       ShouldNotReachHere();
  1133   if (info != NULL) {
  1134     add_debug_info_for_null_check(null_check_here, info);
  1137   if (patch_code != lir_patch_none) {
  1138     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1143 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1144   assert(src->is_stack(), "should not call otherwise");
  1145   assert(dest->is_register(), "should not call otherwise");
  1147   if (dest->is_single_cpu()) {
  1148     if (type == T_ARRAY || type == T_OBJECT) {
  1149       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1150       __ verify_oop(dest->as_register());
  1151     } else {
  1152       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1155   } else if (dest->is_double_cpu()) {
  1156     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1157     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1158     __ movptr(dest->as_register_lo(), src_addr_LO);
  1159     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1161   } else if (dest->is_single_xmm()) {
  1162     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1163     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1165   } else if (dest->is_double_xmm()) {
  1166     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1167     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1169   } else if (dest->is_single_fpu()) {
  1170     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1171     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1172     __ fld_s(src_addr);
  1174   } else if (dest->is_double_fpu()) {
  1175     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1176     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1177     __ fld_d(src_addr);
  1179   } else {
  1180     ShouldNotReachHere();
  1185 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1186   if (src->is_single_stack()) {
  1187     if (type == T_OBJECT || type == T_ARRAY) {
  1188       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1189       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1190     } else {
  1191 #ifndef _LP64
  1192       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1193       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1194 #else
  1195       //no pushl on 64bits
  1196       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1197       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1198 #endif
  1201   } else if (src->is_double_stack()) {
  1202 #ifdef _LP64
  1203     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1204     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1205 #else
  1206     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1207     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1208     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1209     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1210     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1211 #endif // _LP64
  1213   } else {
  1214     ShouldNotReachHere();
  1219 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1220   assert(src->is_address(), "should not call otherwise");
  1221   assert(dest->is_register(), "should not call otherwise");
  1223   LIR_Address* addr = src->as_address_ptr();
  1224   Address from_addr = as_Address(addr);
  1226   switch (type) {
  1227     case T_BOOLEAN: // fall through
  1228     case T_BYTE:    // fall through
  1229     case T_CHAR:    // fall through
  1230     case T_SHORT:
  1231       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1232         // on pre P6 processors we may get partial register stalls
  1233         // so blow away the value of to_rinfo before loading a
  1234         // partial word into it.  Do it here so that it precedes
  1235         // the potential patch point below.
  1236         __ xorptr(dest->as_register(), dest->as_register());
  1238       break;
  1241   PatchingStub* patch = NULL;
  1242   if (patch_code != lir_patch_none) {
  1243     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1244     assert(from_addr.disp() != 0, "must have");
  1246   if (info != NULL) {
  1247     add_debug_info_for_null_check_here(info);
  1250   switch (type) {
  1251     case T_FLOAT: {
  1252       if (dest->is_single_xmm()) {
  1253         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1254       } else {
  1255         assert(dest->is_single_fpu(), "must be");
  1256         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1257         __ fld_s(from_addr);
  1259       break;
  1262     case T_DOUBLE: {
  1263       if (dest->is_double_xmm()) {
  1264         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1265       } else {
  1266         assert(dest->is_double_fpu(), "must be");
  1267         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1268         __ fld_d(from_addr);
  1270       break;
  1273     case T_OBJECT:  // fall through
  1274     case T_ARRAY:   // fall through
  1275       if (UseCompressedOops && !wide) {
  1276         __ movl(dest->as_register(), from_addr);
  1277       } else {
  1278         __ movptr(dest->as_register(), from_addr);
  1280       break;
  1282     case T_ADDRESS:
  1283       __ movptr(dest->as_register(), from_addr);
  1284       break;
  1285     case T_INT:
  1286       __ movl(dest->as_register(), from_addr);
  1287       break;
  1289     case T_LONG: {
  1290       Register to_lo = dest->as_register_lo();
  1291       Register to_hi = dest->as_register_hi();
  1292 #ifdef _LP64
  1293       __ movptr(to_lo, as_Address_lo(addr));
  1294 #else
  1295       Register base = addr->base()->as_register();
  1296       Register index = noreg;
  1297       if (addr->index()->is_register()) {
  1298         index = addr->index()->as_register();
  1300       if ((base == to_lo && index == to_hi) ||
  1301           (base == to_hi && index == to_lo)) {
  1302         // addresses with 2 registers are only formed as a result of
  1303         // array access so this code will never have to deal with
  1304         // patches or null checks.
  1305         assert(info == NULL && patch == NULL, "must be");
  1306         __ lea(to_hi, as_Address(addr));
  1307         __ movl(to_lo, Address(to_hi, 0));
  1308         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1309       } else if (base == to_lo || index == to_lo) {
  1310         assert(base != to_hi, "can't be");
  1311         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1312         __ movl(to_hi, as_Address_hi(addr));
  1313         if (patch != NULL) {
  1314           patching_epilog(patch, lir_patch_high, base, info);
  1315           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1316           patch_code = lir_patch_low;
  1318         __ movl(to_lo, as_Address_lo(addr));
  1319       } else {
  1320         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1321         __ movl(to_lo, as_Address_lo(addr));
  1322         if (patch != NULL) {
  1323           patching_epilog(patch, lir_patch_low, base, info);
  1324           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1325           patch_code = lir_patch_high;
  1327         __ movl(to_hi, as_Address_hi(addr));
  1329 #endif // _LP64
  1330       break;
  1333     case T_BOOLEAN: // fall through
  1334     case T_BYTE: {
  1335       Register dest_reg = dest->as_register();
  1336       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1337       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1338         __ movsbl(dest_reg, from_addr);
  1339       } else {
  1340         __ movb(dest_reg, from_addr);
  1341         __ shll(dest_reg, 24);
  1342         __ sarl(dest_reg, 24);
  1344       break;
  1347     case T_CHAR: {
  1348       Register dest_reg = dest->as_register();
  1349       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1350       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1351         __ movzwl(dest_reg, from_addr);
  1352       } else {
  1353         __ movw(dest_reg, from_addr);
  1355       break;
  1358     case T_SHORT: {
  1359       Register dest_reg = dest->as_register();
  1360       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1361         __ movswl(dest_reg, from_addr);
  1362       } else {
  1363         __ movw(dest_reg, from_addr);
  1364         __ shll(dest_reg, 16);
  1365         __ sarl(dest_reg, 16);
  1367       break;
  1370     default:
  1371       ShouldNotReachHere();
  1374   if (patch != NULL) {
  1375     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1378   if (type == T_ARRAY || type == T_OBJECT) {
  1379 #ifdef _LP64
  1380     if (UseCompressedOops && !wide) {
  1381       __ decode_heap_oop(dest->as_register());
  1383 #endif
  1384     __ verify_oop(dest->as_register());
  1389 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1390   LIR_Address* addr = src->as_address_ptr();
  1391   Address from_addr = as_Address(addr);
  1393   if (VM_Version::supports_sse()) {
  1394     switch (ReadPrefetchInstr) {
  1395       case 0:
  1396         __ prefetchnta(from_addr); break;
  1397       case 1:
  1398         __ prefetcht0(from_addr); break;
  1399       case 2:
  1400         __ prefetcht2(from_addr); break;
  1401       default:
  1402         ShouldNotReachHere(); break;
  1404   } else if (VM_Version::supports_3dnow()) {
  1405     __ prefetchr(from_addr);
  1410 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1411   LIR_Address* addr = src->as_address_ptr();
  1412   Address from_addr = as_Address(addr);
  1414   if (VM_Version::supports_sse()) {
  1415     switch (AllocatePrefetchInstr) {
  1416       case 0:
  1417         __ prefetchnta(from_addr); break;
  1418       case 1:
  1419         __ prefetcht0(from_addr); break;
  1420       case 2:
  1421         __ prefetcht2(from_addr); break;
  1422       case 3:
  1423         __ prefetchw(from_addr); break;
  1424       default:
  1425         ShouldNotReachHere(); break;
  1427   } else if (VM_Version::supports_3dnow()) {
  1428     __ prefetchw(from_addr);
  1433 NEEDS_CLEANUP; // This could be static?
  1434 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1435   int elem_size = type2aelembytes(type);
  1436   switch (elem_size) {
  1437     case 1: return Address::times_1;
  1438     case 2: return Address::times_2;
  1439     case 4: return Address::times_4;
  1440     case 8: return Address::times_8;
  1442   ShouldNotReachHere();
  1443   return Address::no_scale;
  1447 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1448   switch (op->code()) {
  1449     case lir_idiv:
  1450     case lir_irem:
  1451       arithmetic_idiv(op->code(),
  1452                       op->in_opr1(),
  1453                       op->in_opr2(),
  1454                       op->in_opr3(),
  1455                       op->result_opr(),
  1456                       op->info());
  1457       break;
  1458     default:      ShouldNotReachHere(); break;
  1462 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1463 #ifdef ASSERT
  1464   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1465   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1466   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1467 #endif
  1469   if (op->cond() == lir_cond_always) {
  1470     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1471     __ jmp (*(op->label()));
  1472   } else {
  1473     Assembler::Condition acond = Assembler::zero;
  1474     if (op->code() == lir_cond_float_branch) {
  1475       assert(op->ublock() != NULL, "must have unordered successor");
  1476       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1477       switch(op->cond()) {
  1478         case lir_cond_equal:        acond = Assembler::equal;      break;
  1479         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1480         case lir_cond_less:         acond = Assembler::below;      break;
  1481         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1482         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1483         case lir_cond_greater:      acond = Assembler::above;      break;
  1484         default:                         ShouldNotReachHere();
  1486     } else {
  1487       switch (op->cond()) {
  1488         case lir_cond_equal:        acond = Assembler::equal;       break;
  1489         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1490         case lir_cond_less:         acond = Assembler::less;        break;
  1491         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1492         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1493         case lir_cond_greater:      acond = Assembler::greater;     break;
  1494         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1495         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1496         default:                         ShouldNotReachHere();
  1499     __ jcc(acond,*(op->label()));
  1503 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1504   LIR_Opr src  = op->in_opr();
  1505   LIR_Opr dest = op->result_opr();
  1507   switch (op->bytecode()) {
  1508     case Bytecodes::_i2l:
  1509 #ifdef _LP64
  1510       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1511 #else
  1512       move_regs(src->as_register(), dest->as_register_lo());
  1513       move_regs(src->as_register(), dest->as_register_hi());
  1514       __ sarl(dest->as_register_hi(), 31);
  1515 #endif // LP64
  1516       break;
  1518     case Bytecodes::_l2i:
  1519       move_regs(src->as_register_lo(), dest->as_register());
  1520       break;
  1522     case Bytecodes::_i2b:
  1523       move_regs(src->as_register(), dest->as_register());
  1524       __ sign_extend_byte(dest->as_register());
  1525       break;
  1527     case Bytecodes::_i2c:
  1528       move_regs(src->as_register(), dest->as_register());
  1529       __ andl(dest->as_register(), 0xFFFF);
  1530       break;
  1532     case Bytecodes::_i2s:
  1533       move_regs(src->as_register(), dest->as_register());
  1534       __ sign_extend_short(dest->as_register());
  1535       break;
  1538     case Bytecodes::_f2d:
  1539     case Bytecodes::_d2f:
  1540       if (dest->is_single_xmm()) {
  1541         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1542       } else if (dest->is_double_xmm()) {
  1543         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1544       } else {
  1545         assert(src->fpu() == dest->fpu(), "register must be equal");
  1546         // do nothing (float result is rounded later through spilling)
  1548       break;
  1550     case Bytecodes::_i2f:
  1551     case Bytecodes::_i2d:
  1552       if (dest->is_single_xmm()) {
  1553         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1554       } else if (dest->is_double_xmm()) {
  1555         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1556       } else {
  1557         assert(dest->fpu() == 0, "result must be on TOS");
  1558         __ movl(Address(rsp, 0), src->as_register());
  1559         __ fild_s(Address(rsp, 0));
  1561       break;
  1563     case Bytecodes::_f2i:
  1564     case Bytecodes::_d2i:
  1565       if (src->is_single_xmm()) {
  1566         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1567       } else if (src->is_double_xmm()) {
  1568         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1569       } else {
  1570         assert(src->fpu() == 0, "input must be on TOS");
  1571         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1572         __ fist_s(Address(rsp, 0));
  1573         __ movl(dest->as_register(), Address(rsp, 0));
  1574         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1577       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1578       assert(op->stub() != NULL, "stub required");
  1579       __ cmpl(dest->as_register(), 0x80000000);
  1580       __ jcc(Assembler::equal, *op->stub()->entry());
  1581       __ bind(*op->stub()->continuation());
  1582       break;
  1584     case Bytecodes::_l2f:
  1585     case Bytecodes::_l2d:
  1586       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1587       assert(dest->fpu() == 0, "result must be on TOS");
  1589       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1590       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1591       __ fild_d(Address(rsp, 0));
  1592       // float result is rounded later through spilling
  1593       break;
  1595     case Bytecodes::_f2l:
  1596     case Bytecodes::_d2l:
  1597       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1598       assert(src->fpu() == 0, "input must be on TOS");
  1599       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1601       // instruction sequence too long to inline it here
  1603         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1605       break;
  1607     default: ShouldNotReachHere();
  1611 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1612   if (op->init_check()) {
  1613     __ cmpl(Address(op->klass()->as_register(),
  1614                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1615             instanceKlass::fully_initialized);
  1616     add_debug_info_for_null_check_here(op->stub()->info());
  1617     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1619   __ allocate_object(op->obj()->as_register(),
  1620                      op->tmp1()->as_register(),
  1621                      op->tmp2()->as_register(),
  1622                      op->header_size(),
  1623                      op->object_size(),
  1624                      op->klass()->as_register(),
  1625                      *op->stub()->entry());
  1626   __ bind(*op->stub()->continuation());
  1629 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1630   Register len =  op->len()->as_register();
  1631   LP64_ONLY( __ movslq(len, len); )
  1633   if (UseSlowPath ||
  1634       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1635       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1636     __ jmp(*op->stub()->entry());
  1637   } else {
  1638     Register tmp1 = op->tmp1()->as_register();
  1639     Register tmp2 = op->tmp2()->as_register();
  1640     Register tmp3 = op->tmp3()->as_register();
  1641     if (len == tmp1) {
  1642       tmp1 = tmp3;
  1643     } else if (len == tmp2) {
  1644       tmp2 = tmp3;
  1645     } else if (len == tmp3) {
  1646       // everything is ok
  1647     } else {
  1648       __ mov(tmp3, len);
  1650     __ allocate_array(op->obj()->as_register(),
  1651                       len,
  1652                       tmp1,
  1653                       tmp2,
  1654                       arrayOopDesc::header_size(op->type()),
  1655                       array_element_size(op->type()),
  1656                       op->klass()->as_register(),
  1657                       *op->stub()->entry());
  1659   __ bind(*op->stub()->continuation());
  1662 void LIR_Assembler::type_profile_helper(Register mdo,
  1663                                         ciMethodData *md, ciProfileData *data,
  1664                                         Register recv, Label* update_done) {
  1665   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1666     Label next_test;
  1667     // See if the receiver is receiver[n].
  1668     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1669     __ jccb(Assembler::notEqual, next_test);
  1670     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1671     __ addptr(data_addr, DataLayout::counter_increment);
  1672     __ jmp(*update_done);
  1673     __ bind(next_test);
  1676   // Didn't find receiver; find next empty slot and fill it in
  1677   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1678     Label next_test;
  1679     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1680     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1681     __ jccb(Assembler::notEqual, next_test);
  1682     __ movptr(recv_addr, recv);
  1683     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1684     __ jmp(*update_done);
  1685     __ bind(next_test);
  1689 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1690   // we always need a stub for the failure case.
  1691   CodeStub* stub = op->stub();
  1692   Register obj = op->object()->as_register();
  1693   Register k_RInfo = op->tmp1()->as_register();
  1694   Register klass_RInfo = op->tmp2()->as_register();
  1695   Register dst = op->result_opr()->as_register();
  1696   ciKlass* k = op->klass();
  1697   Register Rtmp1 = noreg;
  1699   // check if it needs to be profiled
  1700   ciMethodData* md;
  1701   ciProfileData* data;
  1703   if (op->should_profile()) {
  1704     ciMethod* method = op->profiled_method();
  1705     assert(method != NULL, "Should have method");
  1706     int bci = op->profiled_bci();
  1707     md = method->method_data_or_null();
  1708     assert(md != NULL, "Sanity");
  1709     data = md->bci_to_data(bci);
  1710     assert(data != NULL,                "need data for type check");
  1711     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1713   Label profile_cast_success, profile_cast_failure;
  1714   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1715   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1717   if (obj == k_RInfo) {
  1718     k_RInfo = dst;
  1719   } else if (obj == klass_RInfo) {
  1720     klass_RInfo = dst;
  1722   if (k->is_loaded() && !UseCompressedOops) {
  1723     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1724   } else {
  1725     Rtmp1 = op->tmp3()->as_register();
  1726     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1729   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1730   if (!k->is_loaded()) {
  1731     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1732   } else {
  1733 #ifdef _LP64
  1734     __ movoop(k_RInfo, k->constant_encoding());
  1735 #endif // _LP64
  1737   assert(obj != k_RInfo, "must be different");
  1739   __ cmpptr(obj, (int32_t)NULL_WORD);
  1740   if (op->should_profile()) {
  1741     Label not_null;
  1742     __ jccb(Assembler::notEqual, not_null);
  1743     // Object is null; update MDO and exit
  1744     Register mdo  = klass_RInfo;
  1745     __ movoop(mdo, md->constant_encoding());
  1746     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1747     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1748     __ orl(data_addr, header_bits);
  1749     __ jmp(*obj_is_null);
  1750     __ bind(not_null);
  1751   } else {
  1752     __ jcc(Assembler::equal, *obj_is_null);
  1754   __ verify_oop(obj);
  1756   if (op->fast_check()) {
  1757     // get object class
  1758     // not a safepoint as obj null check happens earlier
  1759 #ifdef _LP64
  1760     if (UseCompressedOops) {
  1761       __ load_klass(Rtmp1, obj);
  1762       __ cmpptr(k_RInfo, Rtmp1);
  1763     } else {
  1764       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1766 #else
  1767     if (k->is_loaded()) {
  1768       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1769     } else {
  1770       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1772 #endif
  1773     __ jcc(Assembler::notEqual, *failure_target);
  1774     // successful cast, fall through to profile or jump
  1775   } else {
  1776     // get object class
  1777     // not a safepoint as obj null check happens earlier
  1778     __ load_klass(klass_RInfo, obj);
  1779     if (k->is_loaded()) {
  1780       // See if we get an immediate positive hit
  1781 #ifdef _LP64
  1782       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1783 #else
  1784       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1785 #endif // _LP64
  1786       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1787         __ jcc(Assembler::notEqual, *failure_target);
  1788         // successful cast, fall through to profile or jump
  1789       } else {
  1790         // See if we get an immediate positive hit
  1791         __ jcc(Assembler::equal, *success_target);
  1792         // check for self
  1793 #ifdef _LP64
  1794         __ cmpptr(klass_RInfo, k_RInfo);
  1795 #else
  1796         __ cmpoop(klass_RInfo, k->constant_encoding());
  1797 #endif // _LP64
  1798         __ jcc(Assembler::equal, *success_target);
  1800         __ push(klass_RInfo);
  1801 #ifdef _LP64
  1802         __ push(k_RInfo);
  1803 #else
  1804         __ pushoop(k->constant_encoding());
  1805 #endif // _LP64
  1806         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1807         __ pop(klass_RInfo);
  1808         __ pop(klass_RInfo);
  1809         // result is a boolean
  1810         __ cmpl(klass_RInfo, 0);
  1811         __ jcc(Assembler::equal, *failure_target);
  1812         // successful cast, fall through to profile or jump
  1814     } else {
  1815       // perform the fast part of the checking logic
  1816       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1817       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1818       __ push(klass_RInfo);
  1819       __ push(k_RInfo);
  1820       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1821       __ pop(klass_RInfo);
  1822       __ pop(k_RInfo);
  1823       // result is a boolean
  1824       __ cmpl(k_RInfo, 0);
  1825       __ jcc(Assembler::equal, *failure_target);
  1826       // successful cast, fall through to profile or jump
  1829   if (op->should_profile()) {
  1830     Register mdo  = klass_RInfo, recv = k_RInfo;
  1831     __ bind(profile_cast_success);
  1832     __ movoop(mdo, md->constant_encoding());
  1833     __ load_klass(recv, obj);
  1834     Label update_done;
  1835     type_profile_helper(mdo, md, data, recv, success);
  1836     __ jmp(*success);
  1838     __ bind(profile_cast_failure);
  1839     __ movoop(mdo, md->constant_encoding());
  1840     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1841     __ subptr(counter_addr, DataLayout::counter_increment);
  1842     __ jmp(*failure);
  1844   __ jmp(*success);
  1848 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1849   LIR_Code code = op->code();
  1850   if (code == lir_store_check) {
  1851     Register value = op->object()->as_register();
  1852     Register array = op->array()->as_register();
  1853     Register k_RInfo = op->tmp1()->as_register();
  1854     Register klass_RInfo = op->tmp2()->as_register();
  1855     Register Rtmp1 = op->tmp3()->as_register();
  1857     CodeStub* stub = op->stub();
  1859     // check if it needs to be profiled
  1860     ciMethodData* md;
  1861     ciProfileData* data;
  1863     if (op->should_profile()) {
  1864       ciMethod* method = op->profiled_method();
  1865       assert(method != NULL, "Should have method");
  1866       int bci = op->profiled_bci();
  1867       md = method->method_data_or_null();
  1868       assert(md != NULL, "Sanity");
  1869       data = md->bci_to_data(bci);
  1870       assert(data != NULL,                "need data for type check");
  1871       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1873     Label profile_cast_success, profile_cast_failure, done;
  1874     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1875     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1877     __ cmpptr(value, (int32_t)NULL_WORD);
  1878     if (op->should_profile()) {
  1879       Label not_null;
  1880       __ jccb(Assembler::notEqual, not_null);
  1881       // Object is null; update MDO and exit
  1882       Register mdo  = klass_RInfo;
  1883       __ movoop(mdo, md->constant_encoding());
  1884       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1885       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1886       __ orl(data_addr, header_bits);
  1887       __ jmp(done);
  1888       __ bind(not_null);
  1889     } else {
  1890       __ jcc(Assembler::equal, done);
  1893     add_debug_info_for_null_check_here(op->info_for_exception());
  1894     __ load_klass(k_RInfo, array);
  1895     __ load_klass(klass_RInfo, value);
  1897     // get instance klass (it's already uncompressed)
  1898     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1899     // perform the fast part of the checking logic
  1900     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1901     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1902     __ push(klass_RInfo);
  1903     __ push(k_RInfo);
  1904     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1905     __ pop(klass_RInfo);
  1906     __ pop(k_RInfo);
  1907     // result is a boolean
  1908     __ cmpl(k_RInfo, 0);
  1909     __ jcc(Assembler::equal, *failure_target);
  1910     // fall through to the success case
  1912     if (op->should_profile()) {
  1913       Register mdo  = klass_RInfo, recv = k_RInfo;
  1914       __ bind(profile_cast_success);
  1915       __ movoop(mdo, md->constant_encoding());
  1916       __ load_klass(recv, value);
  1917       Label update_done;
  1918       type_profile_helper(mdo, md, data, recv, &done);
  1919       __ jmpb(done);
  1921       __ bind(profile_cast_failure);
  1922       __ movoop(mdo, md->constant_encoding());
  1923       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1924       __ subptr(counter_addr, DataLayout::counter_increment);
  1925       __ jmp(*stub->entry());
  1928     __ bind(done);
  1929   } else
  1930     if (code == lir_checkcast) {
  1931       Register obj = op->object()->as_register();
  1932       Register dst = op->result_opr()->as_register();
  1933       Label success;
  1934       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1935       __ bind(success);
  1936       if (dst != obj) {
  1937         __ mov(dst, obj);
  1939     } else
  1940       if (code == lir_instanceof) {
  1941         Register obj = op->object()->as_register();
  1942         Register dst = op->result_opr()->as_register();
  1943         Label success, failure, done;
  1944         emit_typecheck_helper(op, &success, &failure, &failure);
  1945         __ bind(failure);
  1946         __ xorptr(dst, dst);
  1947         __ jmpb(done);
  1948         __ bind(success);
  1949         __ movptr(dst, 1);
  1950         __ bind(done);
  1951       } else {
  1952         ShouldNotReachHere();
  1958 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1959   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1960     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1961     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1962     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1963     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1964     Register addr = op->addr()->as_register();
  1965     if (os::is_MP()) {
  1966       __ lock();
  1968     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1970   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1971     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1972     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1973     Register newval = op->new_value()->as_register();
  1974     Register cmpval = op->cmp_value()->as_register();
  1975     assert(cmpval == rax, "wrong register");
  1976     assert(newval != NULL, "new val must be register");
  1977     assert(cmpval != newval, "cmp and new values must be in different registers");
  1978     assert(cmpval != addr, "cmp and addr must be in different registers");
  1979     assert(newval != addr, "new value and addr must be in different registers");
  1981     if ( op->code() == lir_cas_obj) {
  1982 #ifdef _LP64
  1983       if (UseCompressedOops) {
  1984         __ encode_heap_oop(cmpval);
  1985         __ mov(rscratch1, newval);
  1986         __ encode_heap_oop(rscratch1);
  1987         if (os::is_MP()) {
  1988           __ lock();
  1990         // cmpval (rax) is implicitly used by this instruction
  1991         __ cmpxchgl(rscratch1, Address(addr, 0));
  1992       } else
  1993 #endif
  1995         if (os::is_MP()) {
  1996           __ lock();
  1998         __ cmpxchgptr(newval, Address(addr, 0));
  2000     } else {
  2001       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  2002       if (os::is_MP()) {
  2003         __ lock();
  2005       __ cmpxchgl(newval, Address(addr, 0));
  2007 #ifdef _LP64
  2008   } else if (op->code() == lir_cas_long) {
  2009     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2010     Register newval = op->new_value()->as_register_lo();
  2011     Register cmpval = op->cmp_value()->as_register_lo();
  2012     assert(cmpval == rax, "wrong register");
  2013     assert(newval != NULL, "new val must be register");
  2014     assert(cmpval != newval, "cmp and new values must be in different registers");
  2015     assert(cmpval != addr, "cmp and addr must be in different registers");
  2016     assert(newval != addr, "new value and addr must be in different registers");
  2017     if (os::is_MP()) {
  2018       __ lock();
  2020     __ cmpxchgq(newval, Address(addr, 0));
  2021 #endif // _LP64
  2022   } else {
  2023     Unimplemented();
  2027 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2028   Assembler::Condition acond, ncond;
  2029   switch (condition) {
  2030     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2031     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2032     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2033     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2034     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2035     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2036     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2037     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2038     default:                    ShouldNotReachHere();
  2041   if (opr1->is_cpu_register()) {
  2042     reg2reg(opr1, result);
  2043   } else if (opr1->is_stack()) {
  2044     stack2reg(opr1, result, result->type());
  2045   } else if (opr1->is_constant()) {
  2046     const2reg(opr1, result, lir_patch_none, NULL);
  2047   } else {
  2048     ShouldNotReachHere();
  2051   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2052     // optimized version that does not require a branch
  2053     if (opr2->is_single_cpu()) {
  2054       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2055       __ cmov(ncond, result->as_register(), opr2->as_register());
  2056     } else if (opr2->is_double_cpu()) {
  2057       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2058       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2059       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2060       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2061     } else if (opr2->is_single_stack()) {
  2062       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2063     } else if (opr2->is_double_stack()) {
  2064       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2065       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2066     } else {
  2067       ShouldNotReachHere();
  2070   } else {
  2071     Label skip;
  2072     __ jcc (acond, skip);
  2073     if (opr2->is_cpu_register()) {
  2074       reg2reg(opr2, result);
  2075     } else if (opr2->is_stack()) {
  2076       stack2reg(opr2, result, result->type());
  2077     } else if (opr2->is_constant()) {
  2078       const2reg(opr2, result, lir_patch_none, NULL);
  2079     } else {
  2080       ShouldNotReachHere();
  2082     __ bind(skip);
  2087 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2088   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2090   if (left->is_single_cpu()) {
  2091     assert(left == dest, "left and dest must be equal");
  2092     Register lreg = left->as_register();
  2094     if (right->is_single_cpu()) {
  2095       // cpu register - cpu register
  2096       Register rreg = right->as_register();
  2097       switch (code) {
  2098         case lir_add: __ addl (lreg, rreg); break;
  2099         case lir_sub: __ subl (lreg, rreg); break;
  2100         case lir_mul: __ imull(lreg, rreg); break;
  2101         default:      ShouldNotReachHere();
  2104     } else if (right->is_stack()) {
  2105       // cpu register - stack
  2106       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2107       switch (code) {
  2108         case lir_add: __ addl(lreg, raddr); break;
  2109         case lir_sub: __ subl(lreg, raddr); break;
  2110         default:      ShouldNotReachHere();
  2113     } else if (right->is_constant()) {
  2114       // cpu register - constant
  2115       jint c = right->as_constant_ptr()->as_jint();
  2116       switch (code) {
  2117         case lir_add: {
  2118           __ incrementl(lreg, c);
  2119           break;
  2121         case lir_sub: {
  2122           __ decrementl(lreg, c);
  2123           break;
  2125         default: ShouldNotReachHere();
  2128     } else {
  2129       ShouldNotReachHere();
  2132   } else if (left->is_double_cpu()) {
  2133     assert(left == dest, "left and dest must be equal");
  2134     Register lreg_lo = left->as_register_lo();
  2135     Register lreg_hi = left->as_register_hi();
  2137     if (right->is_double_cpu()) {
  2138       // cpu register - cpu register
  2139       Register rreg_lo = right->as_register_lo();
  2140       Register rreg_hi = right->as_register_hi();
  2141       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2142       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2143       switch (code) {
  2144         case lir_add:
  2145           __ addptr(lreg_lo, rreg_lo);
  2146           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2147           break;
  2148         case lir_sub:
  2149           __ subptr(lreg_lo, rreg_lo);
  2150           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2151           break;
  2152         case lir_mul:
  2153 #ifdef _LP64
  2154           __ imulq(lreg_lo, rreg_lo);
  2155 #else
  2156           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2157           __ imull(lreg_hi, rreg_lo);
  2158           __ imull(rreg_hi, lreg_lo);
  2159           __ addl (rreg_hi, lreg_hi);
  2160           __ mull (rreg_lo);
  2161           __ addl (lreg_hi, rreg_hi);
  2162 #endif // _LP64
  2163           break;
  2164         default:
  2165           ShouldNotReachHere();
  2168     } else if (right->is_constant()) {
  2169       // cpu register - constant
  2170 #ifdef _LP64
  2171       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2172       __ movptr(r10, (intptr_t) c);
  2173       switch (code) {
  2174         case lir_add:
  2175           __ addptr(lreg_lo, r10);
  2176           break;
  2177         case lir_sub:
  2178           __ subptr(lreg_lo, r10);
  2179           break;
  2180         default:
  2181           ShouldNotReachHere();
  2183 #else
  2184       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2185       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2186       switch (code) {
  2187         case lir_add:
  2188           __ addptr(lreg_lo, c_lo);
  2189           __ adcl(lreg_hi, c_hi);
  2190           break;
  2191         case lir_sub:
  2192           __ subptr(lreg_lo, c_lo);
  2193           __ sbbl(lreg_hi, c_hi);
  2194           break;
  2195         default:
  2196           ShouldNotReachHere();
  2198 #endif // _LP64
  2200     } else {
  2201       ShouldNotReachHere();
  2204   } else if (left->is_single_xmm()) {
  2205     assert(left == dest, "left and dest must be equal");
  2206     XMMRegister lreg = left->as_xmm_float_reg();
  2208     if (right->is_single_xmm()) {
  2209       XMMRegister rreg = right->as_xmm_float_reg();
  2210       switch (code) {
  2211         case lir_add: __ addss(lreg, rreg);  break;
  2212         case lir_sub: __ subss(lreg, rreg);  break;
  2213         case lir_mul_strictfp: // fall through
  2214         case lir_mul: __ mulss(lreg, rreg);  break;
  2215         case lir_div_strictfp: // fall through
  2216         case lir_div: __ divss(lreg, rreg);  break;
  2217         default: ShouldNotReachHere();
  2219     } else {
  2220       Address raddr;
  2221       if (right->is_single_stack()) {
  2222         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2223       } else if (right->is_constant()) {
  2224         // hack for now
  2225         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2226       } else {
  2227         ShouldNotReachHere();
  2229       switch (code) {
  2230         case lir_add: __ addss(lreg, raddr);  break;
  2231         case lir_sub: __ subss(lreg, raddr);  break;
  2232         case lir_mul_strictfp: // fall through
  2233         case lir_mul: __ mulss(lreg, raddr);  break;
  2234         case lir_div_strictfp: // fall through
  2235         case lir_div: __ divss(lreg, raddr);  break;
  2236         default: ShouldNotReachHere();
  2240   } else if (left->is_double_xmm()) {
  2241     assert(left == dest, "left and dest must be equal");
  2243     XMMRegister lreg = left->as_xmm_double_reg();
  2244     if (right->is_double_xmm()) {
  2245       XMMRegister rreg = right->as_xmm_double_reg();
  2246       switch (code) {
  2247         case lir_add: __ addsd(lreg, rreg);  break;
  2248         case lir_sub: __ subsd(lreg, rreg);  break;
  2249         case lir_mul_strictfp: // fall through
  2250         case lir_mul: __ mulsd(lreg, rreg);  break;
  2251         case lir_div_strictfp: // fall through
  2252         case lir_div: __ divsd(lreg, rreg);  break;
  2253         default: ShouldNotReachHere();
  2255     } else {
  2256       Address raddr;
  2257       if (right->is_double_stack()) {
  2258         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2259       } else if (right->is_constant()) {
  2260         // hack for now
  2261         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2262       } else {
  2263         ShouldNotReachHere();
  2265       switch (code) {
  2266         case lir_add: __ addsd(lreg, raddr);  break;
  2267         case lir_sub: __ subsd(lreg, raddr);  break;
  2268         case lir_mul_strictfp: // fall through
  2269         case lir_mul: __ mulsd(lreg, raddr);  break;
  2270         case lir_div_strictfp: // fall through
  2271         case lir_div: __ divsd(lreg, raddr);  break;
  2272         default: ShouldNotReachHere();
  2276   } else if (left->is_single_fpu()) {
  2277     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2279     if (right->is_single_fpu()) {
  2280       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2282     } else {
  2283       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2284       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2286       Address raddr;
  2287       if (right->is_single_stack()) {
  2288         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2289       } else if (right->is_constant()) {
  2290         address const_addr = float_constant(right->as_jfloat());
  2291         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2292         // hack for now
  2293         raddr = __ as_Address(InternalAddress(const_addr));
  2294       } else {
  2295         ShouldNotReachHere();
  2298       switch (code) {
  2299         case lir_add: __ fadd_s(raddr); break;
  2300         case lir_sub: __ fsub_s(raddr); break;
  2301         case lir_mul_strictfp: // fall through
  2302         case lir_mul: __ fmul_s(raddr); break;
  2303         case lir_div_strictfp: // fall through
  2304         case lir_div: __ fdiv_s(raddr); break;
  2305         default:      ShouldNotReachHere();
  2309   } else if (left->is_double_fpu()) {
  2310     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2312     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2313       // Double values require special handling for strictfp mul/div on x86
  2314       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2315       __ fmulp(left->fpu_regnrLo() + 1);
  2318     if (right->is_double_fpu()) {
  2319       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2321     } else {
  2322       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2323       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2325       Address raddr;
  2326       if (right->is_double_stack()) {
  2327         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2328       } else if (right->is_constant()) {
  2329         // hack for now
  2330         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2331       } else {
  2332         ShouldNotReachHere();
  2335       switch (code) {
  2336         case lir_add: __ fadd_d(raddr); break;
  2337         case lir_sub: __ fsub_d(raddr); break;
  2338         case lir_mul_strictfp: // fall through
  2339         case lir_mul: __ fmul_d(raddr); break;
  2340         case lir_div_strictfp: // fall through
  2341         case lir_div: __ fdiv_d(raddr); break;
  2342         default: ShouldNotReachHere();
  2346     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2347       // Double values require special handling for strictfp mul/div on x86
  2348       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2349       __ fmulp(dest->fpu_regnrLo() + 1);
  2352   } else if (left->is_single_stack() || left->is_address()) {
  2353     assert(left == dest, "left and dest must be equal");
  2355     Address laddr;
  2356     if (left->is_single_stack()) {
  2357       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2358     } else if (left->is_address()) {
  2359       laddr = as_Address(left->as_address_ptr());
  2360     } else {
  2361       ShouldNotReachHere();
  2364     if (right->is_single_cpu()) {
  2365       Register rreg = right->as_register();
  2366       switch (code) {
  2367         case lir_add: __ addl(laddr, rreg); break;
  2368         case lir_sub: __ subl(laddr, rreg); break;
  2369         default:      ShouldNotReachHere();
  2371     } else if (right->is_constant()) {
  2372       jint c = right->as_constant_ptr()->as_jint();
  2373       switch (code) {
  2374         case lir_add: {
  2375           __ incrementl(laddr, c);
  2376           break;
  2378         case lir_sub: {
  2379           __ decrementl(laddr, c);
  2380           break;
  2382         default: ShouldNotReachHere();
  2384     } else {
  2385       ShouldNotReachHere();
  2388   } else {
  2389     ShouldNotReachHere();
  2393 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2394   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2395   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2396   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2398   bool left_is_tos = (left_index == 0);
  2399   bool dest_is_tos = (dest_index == 0);
  2400   int non_tos_index = (left_is_tos ? right_index : left_index);
  2402   switch (code) {
  2403     case lir_add:
  2404       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2405       else if (dest_is_tos)    __ fadd (non_tos_index);
  2406       else                     __ fadda(non_tos_index);
  2407       break;
  2409     case lir_sub:
  2410       if (left_is_tos) {
  2411         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2412         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2413         else                   __ fsubra(non_tos_index);
  2414       } else {
  2415         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2416         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2417         else                   __ fsuba (non_tos_index);
  2419       break;
  2421     case lir_mul_strictfp: // fall through
  2422     case lir_mul:
  2423       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2424       else if (dest_is_tos)    __ fmul (non_tos_index);
  2425       else                     __ fmula(non_tos_index);
  2426       break;
  2428     case lir_div_strictfp: // fall through
  2429     case lir_div:
  2430       if (left_is_tos) {
  2431         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2432         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2433         else                   __ fdivra(non_tos_index);
  2434       } else {
  2435         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2436         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2437         else                   __ fdiva (non_tos_index);
  2439       break;
  2441     case lir_rem:
  2442       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2443       __ fremr(noreg);
  2444       break;
  2446     default:
  2447       ShouldNotReachHere();
  2452 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2453   if (value->is_double_xmm()) {
  2454     switch(code) {
  2455       case lir_abs :
  2457           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2458             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2460           __ andpd(dest->as_xmm_double_reg(),
  2461                     ExternalAddress((address)double_signmask_pool));
  2463         break;
  2465       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2466       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2467       default      : ShouldNotReachHere();
  2470   } else if (value->is_double_fpu()) {
  2471     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2472     switch(code) {
  2473       case lir_log   : __ flog() ; break;
  2474       case lir_log10 : __ flog10() ; break;
  2475       case lir_abs   : __ fabs() ; break;
  2476       case lir_sqrt  : __ fsqrt(); break;
  2477       case lir_sin   :
  2478         // Should consider not saving rbx, if not necessary
  2479         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2480         break;
  2481       case lir_cos :
  2482         // Should consider not saving rbx, if not necessary
  2483         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2484         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2485         break;
  2486       case lir_tan :
  2487         // Should consider not saving rbx, if not necessary
  2488         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2489         break;
  2490       default      : ShouldNotReachHere();
  2492   } else {
  2493     Unimplemented();
  2497 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2498   // assert(left->destroys_register(), "check");
  2499   if (left->is_single_cpu()) {
  2500     Register reg = left->as_register();
  2501     if (right->is_constant()) {
  2502       int val = right->as_constant_ptr()->as_jint();
  2503       switch (code) {
  2504         case lir_logic_and: __ andl (reg, val); break;
  2505         case lir_logic_or:  __ orl  (reg, val); break;
  2506         case lir_logic_xor: __ xorl (reg, val); break;
  2507         default: ShouldNotReachHere();
  2509     } else if (right->is_stack()) {
  2510       // added support for stack operands
  2511       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2512       switch (code) {
  2513         case lir_logic_and: __ andl (reg, raddr); break;
  2514         case lir_logic_or:  __ orl  (reg, raddr); break;
  2515         case lir_logic_xor: __ xorl (reg, raddr); break;
  2516         default: ShouldNotReachHere();
  2518     } else {
  2519       Register rright = right->as_register();
  2520       switch (code) {
  2521         case lir_logic_and: __ andptr (reg, rright); break;
  2522         case lir_logic_or : __ orptr  (reg, rright); break;
  2523         case lir_logic_xor: __ xorptr (reg, rright); break;
  2524         default: ShouldNotReachHere();
  2527     move_regs(reg, dst->as_register());
  2528   } else {
  2529     Register l_lo = left->as_register_lo();
  2530     Register l_hi = left->as_register_hi();
  2531     if (right->is_constant()) {
  2532 #ifdef _LP64
  2533       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2534       switch (code) {
  2535         case lir_logic_and:
  2536           __ andq(l_lo, rscratch1);
  2537           break;
  2538         case lir_logic_or:
  2539           __ orq(l_lo, rscratch1);
  2540           break;
  2541         case lir_logic_xor:
  2542           __ xorq(l_lo, rscratch1);
  2543           break;
  2544         default: ShouldNotReachHere();
  2546 #else
  2547       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2548       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2549       switch (code) {
  2550         case lir_logic_and:
  2551           __ andl(l_lo, r_lo);
  2552           __ andl(l_hi, r_hi);
  2553           break;
  2554         case lir_logic_or:
  2555           __ orl(l_lo, r_lo);
  2556           __ orl(l_hi, r_hi);
  2557           break;
  2558         case lir_logic_xor:
  2559           __ xorl(l_lo, r_lo);
  2560           __ xorl(l_hi, r_hi);
  2561           break;
  2562         default: ShouldNotReachHere();
  2564 #endif // _LP64
  2565     } else {
  2566 #ifdef _LP64
  2567       Register r_lo;
  2568       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2569         r_lo = right->as_register();
  2570       } else {
  2571         r_lo = right->as_register_lo();
  2573 #else
  2574       Register r_lo = right->as_register_lo();
  2575       Register r_hi = right->as_register_hi();
  2576       assert(l_lo != r_hi, "overwriting registers");
  2577 #endif
  2578       switch (code) {
  2579         case lir_logic_and:
  2580           __ andptr(l_lo, r_lo);
  2581           NOT_LP64(__ andptr(l_hi, r_hi);)
  2582           break;
  2583         case lir_logic_or:
  2584           __ orptr(l_lo, r_lo);
  2585           NOT_LP64(__ orptr(l_hi, r_hi);)
  2586           break;
  2587         case lir_logic_xor:
  2588           __ xorptr(l_lo, r_lo);
  2589           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2590           break;
  2591         default: ShouldNotReachHere();
  2595     Register dst_lo = dst->as_register_lo();
  2596     Register dst_hi = dst->as_register_hi();
  2598 #ifdef _LP64
  2599     move_regs(l_lo, dst_lo);
  2600 #else
  2601     if (dst_lo == l_hi) {
  2602       assert(dst_hi != l_lo, "overwriting registers");
  2603       move_regs(l_hi, dst_hi);
  2604       move_regs(l_lo, dst_lo);
  2605     } else {
  2606       assert(dst_lo != l_hi, "overwriting registers");
  2607       move_regs(l_lo, dst_lo);
  2608       move_regs(l_hi, dst_hi);
  2610 #endif // _LP64
  2615 // we assume that rax, and rdx can be overwritten
  2616 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2618   assert(left->is_single_cpu(),   "left must be register");
  2619   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2620   assert(result->is_single_cpu(), "result must be register");
  2622   //  assert(left->destroys_register(), "check");
  2623   //  assert(right->destroys_register(), "check");
  2625   Register lreg = left->as_register();
  2626   Register dreg = result->as_register();
  2628   if (right->is_constant()) {
  2629     int divisor = right->as_constant_ptr()->as_jint();
  2630     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2631     if (code == lir_idiv) {
  2632       assert(lreg == rax, "must be rax,");
  2633       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2634       __ cdql(); // sign extend into rdx:rax
  2635       if (divisor == 2) {
  2636         __ subl(lreg, rdx);
  2637       } else {
  2638         __ andl(rdx, divisor - 1);
  2639         __ addl(lreg, rdx);
  2641       __ sarl(lreg, log2_intptr(divisor));
  2642       move_regs(lreg, dreg);
  2643     } else if (code == lir_irem) {
  2644       Label done;
  2645       __ mov(dreg, lreg);
  2646       __ andl(dreg, 0x80000000 | (divisor - 1));
  2647       __ jcc(Assembler::positive, done);
  2648       __ decrement(dreg);
  2649       __ orl(dreg, ~(divisor - 1));
  2650       __ increment(dreg);
  2651       __ bind(done);
  2652     } else {
  2653       ShouldNotReachHere();
  2655   } else {
  2656     Register rreg = right->as_register();
  2657     assert(lreg == rax, "left register must be rax,");
  2658     assert(rreg != rdx, "right register must not be rdx");
  2659     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2661     move_regs(lreg, rax);
  2663     int idivl_offset = __ corrected_idivl(rreg);
  2664     add_debug_info_for_div0(idivl_offset, info);
  2665     if (code == lir_irem) {
  2666       move_regs(rdx, dreg); // result is in rdx
  2667     } else {
  2668       move_regs(rax, dreg);
  2674 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2675   if (opr1->is_single_cpu()) {
  2676     Register reg1 = opr1->as_register();
  2677     if (opr2->is_single_cpu()) {
  2678       // cpu register - cpu register
  2679       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2680         __ cmpptr(reg1, opr2->as_register());
  2681       } else {
  2682         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2683         __ cmpl(reg1, opr2->as_register());
  2685     } else if (opr2->is_stack()) {
  2686       // cpu register - stack
  2687       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2688         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2689       } else {
  2690         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2692     } else if (opr2->is_constant()) {
  2693       // cpu register - constant
  2694       LIR_Const* c = opr2->as_constant_ptr();
  2695       if (c->type() == T_INT) {
  2696         __ cmpl(reg1, c->as_jint());
  2697       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2698         // In 64bit oops are single register
  2699         jobject o = c->as_jobject();
  2700         if (o == NULL) {
  2701           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2702         } else {
  2703 #ifdef _LP64
  2704           __ movoop(rscratch1, o);
  2705           __ cmpptr(reg1, rscratch1);
  2706 #else
  2707           __ cmpoop(reg1, c->as_jobject());
  2708 #endif // _LP64
  2710       } else {
  2711         ShouldNotReachHere();
  2713       // cpu register - address
  2714     } else if (opr2->is_address()) {
  2715       if (op->info() != NULL) {
  2716         add_debug_info_for_null_check_here(op->info());
  2718       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2719     } else {
  2720       ShouldNotReachHere();
  2723   } else if(opr1->is_double_cpu()) {
  2724     Register xlo = opr1->as_register_lo();
  2725     Register xhi = opr1->as_register_hi();
  2726     if (opr2->is_double_cpu()) {
  2727 #ifdef _LP64
  2728       __ cmpptr(xlo, opr2->as_register_lo());
  2729 #else
  2730       // cpu register - cpu register
  2731       Register ylo = opr2->as_register_lo();
  2732       Register yhi = opr2->as_register_hi();
  2733       __ subl(xlo, ylo);
  2734       __ sbbl(xhi, yhi);
  2735       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2736         __ orl(xhi, xlo);
  2738 #endif // _LP64
  2739     } else if (opr2->is_constant()) {
  2740       // cpu register - constant 0
  2741       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2742 #ifdef _LP64
  2743       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2744 #else
  2745       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2746       __ orl(xhi, xlo);
  2747 #endif // _LP64
  2748     } else {
  2749       ShouldNotReachHere();
  2752   } else if (opr1->is_single_xmm()) {
  2753     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2754     if (opr2->is_single_xmm()) {
  2755       // xmm register - xmm register
  2756       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2757     } else if (opr2->is_stack()) {
  2758       // xmm register - stack
  2759       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2760     } else if (opr2->is_constant()) {
  2761       // xmm register - constant
  2762       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2763     } else if (opr2->is_address()) {
  2764       // xmm register - address
  2765       if (op->info() != NULL) {
  2766         add_debug_info_for_null_check_here(op->info());
  2768       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2769     } else {
  2770       ShouldNotReachHere();
  2773   } else if (opr1->is_double_xmm()) {
  2774     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2775     if (opr2->is_double_xmm()) {
  2776       // xmm register - xmm register
  2777       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2778     } else if (opr2->is_stack()) {
  2779       // xmm register - stack
  2780       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2781     } else if (opr2->is_constant()) {
  2782       // xmm register - constant
  2783       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2784     } else if (opr2->is_address()) {
  2785       // xmm register - address
  2786       if (op->info() != NULL) {
  2787         add_debug_info_for_null_check_here(op->info());
  2789       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2790     } else {
  2791       ShouldNotReachHere();
  2794   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2795     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2796     assert(opr2->is_fpu_register(), "both must be registers");
  2797     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2799   } else if (opr1->is_address() && opr2->is_constant()) {
  2800     LIR_Const* c = opr2->as_constant_ptr();
  2801 #ifdef _LP64
  2802     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2803       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2804       __ movoop(rscratch1, c->as_jobject());
  2806 #endif // LP64
  2807     if (op->info() != NULL) {
  2808       add_debug_info_for_null_check_here(op->info());
  2810     // special case: address - constant
  2811     LIR_Address* addr = opr1->as_address_ptr();
  2812     if (c->type() == T_INT) {
  2813       __ cmpl(as_Address(addr), c->as_jint());
  2814     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2815 #ifdef _LP64
  2816       // %%% Make this explode if addr isn't reachable until we figure out a
  2817       // better strategy by giving noreg as the temp for as_Address
  2818       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2819 #else
  2820       __ cmpoop(as_Address(addr), c->as_jobject());
  2821 #endif // _LP64
  2822     } else {
  2823       ShouldNotReachHere();
  2826   } else {
  2827     ShouldNotReachHere();
  2831 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2832   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2833     if (left->is_single_xmm()) {
  2834       assert(right->is_single_xmm(), "must match");
  2835       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2836     } else if (left->is_double_xmm()) {
  2837       assert(right->is_double_xmm(), "must match");
  2838       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2840     } else {
  2841       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2842       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2844       assert(left->fpu() == 0, "left must be on TOS");
  2845       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2846                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2848   } else {
  2849     assert(code == lir_cmp_l2i, "check");
  2850 #ifdef _LP64
  2851     Label done;
  2852     Register dest = dst->as_register();
  2853     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2854     __ movl(dest, -1);
  2855     __ jccb(Assembler::less, done);
  2856     __ set_byte_if_not_zero(dest);
  2857     __ movzbl(dest, dest);
  2858     __ bind(done);
  2859 #else
  2860     __ lcmp2int(left->as_register_hi(),
  2861                 left->as_register_lo(),
  2862                 right->as_register_hi(),
  2863                 right->as_register_lo());
  2864     move_regs(left->as_register_hi(), dst->as_register());
  2865 #endif // _LP64
  2870 void LIR_Assembler::align_call(LIR_Code code) {
  2871   if (os::is_MP()) {
  2872     // make sure that the displacement word of the call ends up word aligned
  2873     int offset = __ offset();
  2874     switch (code) {
  2875       case lir_static_call:
  2876       case lir_optvirtual_call:
  2877       case lir_dynamic_call:
  2878         offset += NativeCall::displacement_offset;
  2879         break;
  2880       case lir_icvirtual_call:
  2881         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2882       break;
  2883       case lir_virtual_call:  // currently, sparc-specific for niagara
  2884       default: ShouldNotReachHere();
  2886     while (offset++ % BytesPerWord != 0) {
  2887       __ nop();
  2893 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2894   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2895          "must be aligned");
  2896   __ call(AddressLiteral(op->addr(), rtype));
  2897   add_call_info(code_offset(), op->info());
  2901 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2902   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2903   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2904   assert(!os::is_MP() ||
  2905          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2906          "must be aligned");
  2907   __ call(AddressLiteral(op->addr(), rh));
  2908   add_call_info(code_offset(), op->info());
  2912 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2913 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2914   ShouldNotReachHere();
  2918 void LIR_Assembler::emit_static_call_stub() {
  2919   address call_pc = __ pc();
  2920   address stub = __ start_a_stub(call_stub_size);
  2921   if (stub == NULL) {
  2922     bailout("static call stub overflow");
  2923     return;
  2926   int start = __ offset();
  2927   if (os::is_MP()) {
  2928     // make sure that the displacement word of the call ends up word aligned
  2929     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2930     while (offset++ % BytesPerWord != 0) {
  2931       __ nop();
  2934   __ relocate(static_stub_Relocation::spec(call_pc));
  2935   __ movoop(rbx, (jobject)NULL);
  2936   // must be set to -1 at code generation time
  2937   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2938   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2939   __ jump(RuntimeAddress(__ pc()));
  2941   assert(__ offset() - start <= call_stub_size, "stub too big");
  2942   __ end_a_stub();
  2946 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2947   assert(exceptionOop->as_register() == rax, "must match");
  2948   assert(exceptionPC->as_register() == rdx, "must match");
  2950   // exception object is not added to oop map by LinearScan
  2951   // (LinearScan assumes that no oops are in fixed registers)
  2952   info->add_register_oop(exceptionOop);
  2953   Runtime1::StubID unwind_id;
  2955   // get current pc information
  2956   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2957   int pc_for_athrow_offset = __ offset();
  2958   InternalAddress pc_for_athrow(__ pc());
  2959   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2960   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2962   __ verify_not_null_oop(rax);
  2963   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2964   if (compilation()->has_fpu_code()) {
  2965     unwind_id = Runtime1::handle_exception_id;
  2966   } else {
  2967     unwind_id = Runtime1::handle_exception_nofpu_id;
  2969   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2971   // enough room for two byte trap
  2972   __ nop();
  2976 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2977   assert(exceptionOop->as_register() == rax, "must match");
  2979   __ jmp(_unwind_handler_entry);
  2983 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2985   // optimized version for linear scan:
  2986   // * count must be already in ECX (guaranteed by LinearScan)
  2987   // * left and dest must be equal
  2988   // * tmp must be unused
  2989   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2990   assert(left == dest, "left and dest must be equal");
  2991   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2993   if (left->is_single_cpu()) {
  2994     Register value = left->as_register();
  2995     assert(value != SHIFT_count, "left cannot be ECX");
  2997     switch (code) {
  2998       case lir_shl:  __ shll(value); break;
  2999       case lir_shr:  __ sarl(value); break;
  3000       case lir_ushr: __ shrl(value); break;
  3001       default: ShouldNotReachHere();
  3003   } else if (left->is_double_cpu()) {
  3004     Register lo = left->as_register_lo();
  3005     Register hi = left->as_register_hi();
  3006     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3007 #ifdef _LP64
  3008     switch (code) {
  3009       case lir_shl:  __ shlptr(lo);        break;
  3010       case lir_shr:  __ sarptr(lo);        break;
  3011       case lir_ushr: __ shrptr(lo);        break;
  3012       default: ShouldNotReachHere();
  3014 #else
  3016     switch (code) {
  3017       case lir_shl:  __ lshl(hi, lo);        break;
  3018       case lir_shr:  __ lshr(hi, lo, true);  break;
  3019       case lir_ushr: __ lshr(hi, lo, false); break;
  3020       default: ShouldNotReachHere();
  3022 #endif // LP64
  3023   } else {
  3024     ShouldNotReachHere();
  3029 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3030   if (dest->is_single_cpu()) {
  3031     // first move left into dest so that left is not destroyed by the shift
  3032     Register value = dest->as_register();
  3033     count = count & 0x1F; // Java spec
  3035     move_regs(left->as_register(), value);
  3036     switch (code) {
  3037       case lir_shl:  __ shll(value, count); break;
  3038       case lir_shr:  __ sarl(value, count); break;
  3039       case lir_ushr: __ shrl(value, count); break;
  3040       default: ShouldNotReachHere();
  3042   } else if (dest->is_double_cpu()) {
  3043 #ifndef _LP64
  3044     Unimplemented();
  3045 #else
  3046     // first move left into dest so that left is not destroyed by the shift
  3047     Register value = dest->as_register_lo();
  3048     count = count & 0x1F; // Java spec
  3050     move_regs(left->as_register_lo(), value);
  3051     switch (code) {
  3052       case lir_shl:  __ shlptr(value, count); break;
  3053       case lir_shr:  __ sarptr(value, count); break;
  3054       case lir_ushr: __ shrptr(value, count); break;
  3055       default: ShouldNotReachHere();
  3057 #endif // _LP64
  3058   } else {
  3059     ShouldNotReachHere();
  3064 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3065   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3066   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3067   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3068   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3072 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3073   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3074   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3075   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3076   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3080 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3081   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3082   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3083   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3084   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3088 // This code replaces a call to arraycopy; no exception may
  3089 // be thrown in this code, they must be thrown in the System.arraycopy
  3090 // activation frame; we could save some checks if this would not be the case
  3091 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3092   ciArrayKlass* default_type = op->expected_type();
  3093   Register src = op->src()->as_register();
  3094   Register dst = op->dst()->as_register();
  3095   Register src_pos = op->src_pos()->as_register();
  3096   Register dst_pos = op->dst_pos()->as_register();
  3097   Register length  = op->length()->as_register();
  3098   Register tmp = op->tmp()->as_register();
  3100   CodeStub* stub = op->stub();
  3101   int flags = op->flags();
  3102   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3103   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3105   // if we don't know anything, just go through the generic arraycopy
  3106   if (default_type == NULL) {
  3107     Label done;
  3108     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3109     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3110     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3111     // For the moment until C1 gets the new register allocator I just force all the
  3112     // args to the right place (except the register args) and then on the back side
  3113     // reload the register args properly if we go slow path. Yuck
  3115     // These are proper for the calling convention
  3117     store_parameter(length, 2);
  3118     store_parameter(dst_pos, 1);
  3119     store_parameter(dst, 0);
  3121     // these are just temporary placements until we need to reload
  3122     store_parameter(src_pos, 3);
  3123     store_parameter(src, 4);
  3124     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3126     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3128     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3130     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3131 #ifdef _LP64
  3132     // The arguments are in java calling convention so we can trivially shift them to C
  3133     // convention
  3134     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3135     __ mov(c_rarg0, j_rarg0);
  3136     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3137     __ mov(c_rarg1, j_rarg1);
  3138     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3139     __ mov(c_rarg2, j_rarg2);
  3140     assert_different_registers(c_rarg3, j_rarg4);
  3141     __ mov(c_rarg3, j_rarg3);
  3142 #ifdef _WIN64
  3143     // Allocate abi space for args but be sure to keep stack aligned
  3144     __ subptr(rsp, 6*wordSize);
  3145     store_parameter(j_rarg4, 4);
  3146     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3147       __ call(RuntimeAddress(C_entry));
  3148     } else {
  3149 #ifndef PRODUCT
  3150       if (PrintC1Statistics) {
  3151         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3153 #endif
  3154       __ call(RuntimeAddress(copyfunc_addr));
  3156     __ addptr(rsp, 6*wordSize);
  3157 #else
  3158     __ mov(c_rarg4, j_rarg4);
  3159     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3160       __ call(RuntimeAddress(C_entry));
  3161     } else {
  3162 #ifndef PRODUCT
  3163       if (PrintC1Statistics) {
  3164         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3166 #endif
  3167       __ call(RuntimeAddress(copyfunc_addr));
  3169 #endif // _WIN64
  3170 #else
  3171     __ push(length);
  3172     __ push(dst_pos);
  3173     __ push(dst);
  3174     __ push(src_pos);
  3175     __ push(src);
  3177     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3178       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3179     } else {
  3180 #ifndef PRODUCT
  3181       if (PrintC1Statistics) {
  3182         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3184 #endif
  3185       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3188 #endif // _LP64
  3190     __ cmpl(rax, 0);
  3191     __ jcc(Assembler::equal, *stub->continuation());
  3193     if (copyfunc_addr != NULL) {
  3194       __ mov(tmp, rax);
  3195       __ xorl(tmp, -1);
  3198     // Reload values from the stack so they are where the stub
  3199     // expects them.
  3200     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3201     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3202     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3203     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3204     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3206     if (copyfunc_addr != NULL) {
  3207       __ subl(length, tmp);
  3208       __ addl(src_pos, tmp);
  3209       __ addl(dst_pos, tmp);
  3211     __ jmp(*stub->entry());
  3213     __ bind(*stub->continuation());
  3214     return;
  3217   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3219   int elem_size = type2aelembytes(basic_type);
  3220   int shift_amount;
  3221   Address::ScaleFactor scale;
  3223   switch (elem_size) {
  3224     case 1 :
  3225       shift_amount = 0;
  3226       scale = Address::times_1;
  3227       break;
  3228     case 2 :
  3229       shift_amount = 1;
  3230       scale = Address::times_2;
  3231       break;
  3232     case 4 :
  3233       shift_amount = 2;
  3234       scale = Address::times_4;
  3235       break;
  3236     case 8 :
  3237       shift_amount = 3;
  3238       scale = Address::times_8;
  3239       break;
  3240     default:
  3241       ShouldNotReachHere();
  3244   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3245   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3246   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3247   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3249   // length and pos's are all sign extended at this point on 64bit
  3251   // test for NULL
  3252   if (flags & LIR_OpArrayCopy::src_null_check) {
  3253     __ testptr(src, src);
  3254     __ jcc(Assembler::zero, *stub->entry());
  3256   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3257     __ testptr(dst, dst);
  3258     __ jcc(Assembler::zero, *stub->entry());
  3261   // check if negative
  3262   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3263     __ testl(src_pos, src_pos);
  3264     __ jcc(Assembler::less, *stub->entry());
  3266   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3267     __ testl(dst_pos, dst_pos);
  3268     __ jcc(Assembler::less, *stub->entry());
  3271   if (flags & LIR_OpArrayCopy::src_range_check) {
  3272     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3273     __ cmpl(tmp, src_length_addr);
  3274     __ jcc(Assembler::above, *stub->entry());
  3276   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3277     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3278     __ cmpl(tmp, dst_length_addr);
  3279     __ jcc(Assembler::above, *stub->entry());
  3282   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3283     __ testl(length, length);
  3284     __ jcc(Assembler::less, *stub->entry());
  3285     __ jcc(Assembler::zero, *stub->continuation());
  3288 #ifdef _LP64
  3289   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3290   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3291 #endif
  3293   if (flags & LIR_OpArrayCopy::type_check) {
  3294     // We don't know the array types are compatible
  3295     if (basic_type != T_OBJECT) {
  3296       // Simple test for basic type arrays
  3297       if (UseCompressedOops) {
  3298         __ movl(tmp, src_klass_addr);
  3299         __ cmpl(tmp, dst_klass_addr);
  3300       } else {
  3301         __ movptr(tmp, src_klass_addr);
  3302         __ cmpptr(tmp, dst_klass_addr);
  3304       __ jcc(Assembler::notEqual, *stub->entry());
  3305     } else {
  3306       // For object arrays, if src is a sub class of dst then we can
  3307       // safely do the copy.
  3308       Label cont, slow;
  3310       __ push(src);
  3311       __ push(dst);
  3313       __ load_klass(src, src);
  3314       __ load_klass(dst, dst);
  3316       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3318       __ push(src);
  3319       __ push(dst);
  3320       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3321       __ pop(dst);
  3322       __ pop(src);
  3324       __ cmpl(src, 0);
  3325       __ jcc(Assembler::notEqual, cont);
  3327       __ bind(slow);
  3328       __ pop(dst);
  3329       __ pop(src);
  3331       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3332       if (copyfunc_addr != NULL) { // use stub if available
  3333         // src is not a sub class of dst so we have to do a
  3334         // per-element check.
  3336         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3337         if ((flags & mask) != mask) {
  3338           // Check that at least both of them object arrays.
  3339           assert(flags & mask, "one of the two should be known to be an object array");
  3341           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3342             __ load_klass(tmp, src);
  3343           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3344             __ load_klass(tmp, dst);
  3346           int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  3347             Klass::layout_helper_offset_in_bytes();
  3348           Address klass_lh_addr(tmp, lh_offset);
  3349           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3350           __ cmpl(klass_lh_addr, objArray_lh);
  3351           __ jcc(Assembler::notEqual, *stub->entry());
  3354 #ifndef _LP64
  3355         // save caller save registers
  3356         store_parameter(rax, 2);
  3357         store_parameter(rcx, 1);
  3358         store_parameter(rdx, 0);
  3360         __ movptr(tmp, dst_klass_addr);
  3361         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  3362         __ push(tmp);
  3363         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
  3364         __ push(tmp);
  3365         __ push(length);
  3366         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3367         __ push(tmp);
  3368         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3369         __ push(tmp);
  3371         __ call_VM_leaf(copyfunc_addr, 5);
  3372 #else
  3373         __ movl2ptr(length, length); //higher 32bits must be null
  3375         // save caller save registers: copy them to callee save registers
  3376         __ mov(rbx, rdx);
  3377         __ mov(r13, r8);
  3378         __ mov(r14, r9);
  3379 #ifndef _WIN64
  3380         store_parameter(rsi, 1);
  3381         store_parameter(rcx, 0);
  3382         // on WIN64 other incoming parameters are in rdi and rsi saved
  3383         // across the call
  3384 #endif
  3386         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3387         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3388         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3389         assert_different_registers(c_rarg1, dst, length);
  3391         __ mov(c_rarg2, length);
  3392         assert_different_registers(c_rarg2, dst);
  3394 #ifdef _WIN64
  3395         // Allocate abi space for args but be sure to keep stack aligned
  3396         __ subptr(rsp, 6*wordSize);
  3397         __ load_klass(c_rarg3, dst);
  3398         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  3399         store_parameter(c_rarg3, 4);
  3400         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
  3401         __ call(RuntimeAddress(copyfunc_addr));
  3402         __ addptr(rsp, 6*wordSize);
  3403 #else
  3404         __ load_klass(c_rarg4, dst);
  3405         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  3406         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
  3407         __ call(RuntimeAddress(copyfunc_addr));
  3408 #endif
  3410 #endif
  3412 #ifndef PRODUCT
  3413         if (PrintC1Statistics) {
  3414           Label failed;
  3415           __ testl(rax, rax);
  3416           __ jcc(Assembler::notZero, failed);
  3417           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3418           __ bind(failed);
  3420 #endif
  3422         __ testl(rax, rax);
  3423         __ jcc(Assembler::zero, *stub->continuation());
  3425 #ifndef PRODUCT
  3426         if (PrintC1Statistics) {
  3427           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3429 #endif
  3431         __ mov(tmp, rax);
  3433         __ xorl(tmp, -1);
  3435 #ifndef _LP64
  3436         // restore caller save registers
  3437         assert_different_registers(tmp, rdx, rcx, rax); // result of stub will be lost
  3438         __ movptr(rdx, Address(rsp, 0*BytesPerWord));
  3439         __ movptr(rcx, Address(rsp, 1*BytesPerWord));
  3440         __ movptr(rax, Address(rsp, 2*BytesPerWord));
  3441 #else
  3442         // restore caller save registers
  3443         __ mov(rdx, rbx);
  3444         __ mov(r8, r13);
  3445         __ mov(r9, r14);
  3446 #ifndef _WIN64
  3447         assert_different_registers(tmp, rdx, r8, r9, rcx, rsi); // result of stub will be lost
  3448         __ movptr(rcx, Address(rsp, 0*BytesPerWord));
  3449         __ movptr(rsi, Address(rsp, 1*BytesPerWord));
  3450 #else
  3451         assert_different_registers(tmp, rdx, r8, r9); // result of stub will be lost
  3452 #endif
  3453 #endif
  3455         __ subl(length, tmp);
  3456         __ addl(src_pos, tmp);
  3457         __ addl(dst_pos, tmp);
  3460       __ jmp(*stub->entry());
  3462       __ bind(cont);
  3463       __ pop(dst);
  3464       __ pop(src);
  3468 #ifdef ASSERT
  3469   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3470     // Sanity check the known type with the incoming class.  For the
  3471     // primitive case the types must match exactly with src.klass and
  3472     // dst.klass each exactly matching the default type.  For the
  3473     // object array case, if no type check is needed then either the
  3474     // dst type is exactly the expected type and the src type is a
  3475     // subtype which we can't check or src is the same array as dst
  3476     // but not necessarily exactly of type default_type.
  3477     Label known_ok, halt;
  3478     __ movoop(tmp, default_type->constant_encoding());
  3479 #ifdef _LP64
  3480     if (UseCompressedOops) {
  3481       __ encode_heap_oop(tmp);
  3483 #endif
  3485     if (basic_type != T_OBJECT) {
  3487       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3488       else                   __ cmpptr(tmp, dst_klass_addr);
  3489       __ jcc(Assembler::notEqual, halt);
  3490       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
  3491       else                   __ cmpptr(tmp, src_klass_addr);
  3492       __ jcc(Assembler::equal, known_ok);
  3493     } else {
  3494       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3495       else                   __ cmpptr(tmp, dst_klass_addr);
  3496       __ jcc(Assembler::equal, known_ok);
  3497       __ cmpptr(src, dst);
  3498       __ jcc(Assembler::equal, known_ok);
  3500     __ bind(halt);
  3501     __ stop("incorrect type information in arraycopy");
  3502     __ bind(known_ok);
  3504 #endif
  3506 #ifndef PRODUCT
  3507   if (PrintC1Statistics) {
  3508     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3510 #endif
  3512 #ifdef _LP64
  3513   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3514   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3515   assert_different_registers(c_rarg1, length);
  3516   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3517   __ mov(c_rarg2, length);
  3519 #else
  3520   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3521   store_parameter(tmp, 0);
  3522   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3523   store_parameter(tmp, 1);
  3524   store_parameter(length, 2);
  3525 #endif // _LP64
  3527   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3528   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3529   const char *name;
  3530   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3531   __ call_VM_leaf(entry, 0);
  3533   __ bind(*stub->continuation());
  3537 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3538   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3539   Register hdr = op->hdr_opr()->as_register();
  3540   Register lock = op->lock_opr()->as_register();
  3541   if (!UseFastLocking) {
  3542     __ jmp(*op->stub()->entry());
  3543   } else if (op->code() == lir_lock) {
  3544     Register scratch = noreg;
  3545     if (UseBiasedLocking) {
  3546       scratch = op->scratch_opr()->as_register();
  3548     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3549     // add debug info for NullPointerException only if one is possible
  3550     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3551     if (op->info() != NULL) {
  3552       add_debug_info_for_null_check(null_check_offset, op->info());
  3554     // done
  3555   } else if (op->code() == lir_unlock) {
  3556     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3557     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3558   } else {
  3559     Unimplemented();
  3561   __ bind(*op->stub()->continuation());
  3565 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3566   ciMethod* method = op->profiled_method();
  3567   int bci          = op->profiled_bci();
  3569   // Update counter for all call types
  3570   ciMethodData* md = method->method_data_or_null();
  3571   assert(md != NULL, "Sanity");
  3572   ciProfileData* data = md->bci_to_data(bci);
  3573   assert(data->is_CounterData(), "need CounterData for calls");
  3574   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3575   Register mdo  = op->mdo()->as_register();
  3576   __ movoop(mdo, md->constant_encoding());
  3577   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3578   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3579   // Perform additional virtual call profiling for invokevirtual and
  3580   // invokeinterface bytecodes
  3581   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3582       C1ProfileVirtualCalls) {
  3583     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3584     Register recv = op->recv()->as_register();
  3585     assert_different_registers(mdo, recv);
  3586     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3587     ciKlass* known_klass = op->known_holder();
  3588     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3589       // We know the type that will be seen at this call site; we can
  3590       // statically update the methodDataOop rather than needing to do
  3591       // dynamic tests on the receiver type
  3593       // NOTE: we should probably put a lock around this search to
  3594       // avoid collisions by concurrent compilations
  3595       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3596       uint i;
  3597       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3598         ciKlass* receiver = vc_data->receiver(i);
  3599         if (known_klass->equals(receiver)) {
  3600           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3601           __ addptr(data_addr, DataLayout::counter_increment);
  3602           return;
  3606       // Receiver type not found in profile data; select an empty slot
  3608       // Note that this is less efficient than it should be because it
  3609       // always does a write to the receiver part of the
  3610       // VirtualCallData rather than just the first time
  3611       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3612         ciKlass* receiver = vc_data->receiver(i);
  3613         if (receiver == NULL) {
  3614           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3615           __ movoop(recv_addr, known_klass->constant_encoding());
  3616           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3617           __ addptr(data_addr, DataLayout::counter_increment);
  3618           return;
  3621     } else {
  3622       __ load_klass(recv, recv);
  3623       Label update_done;
  3624       type_profile_helper(mdo, md, data, recv, &update_done);
  3625       // Receiver did not match any saved receiver and there is no empty row for it.
  3626       // Increment total counter to indicate polymorphic case.
  3627       __ addptr(counter_addr, DataLayout::counter_increment);
  3629       __ bind(update_done);
  3631   } else {
  3632     // Static call
  3633     __ addptr(counter_addr, DataLayout::counter_increment);
  3637 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3638   Unimplemented();
  3642 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3643   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3647 void LIR_Assembler::align_backward_branch_target() {
  3648   __ align(BytesPerWord);
  3652 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3653   if (left->is_single_cpu()) {
  3654     __ negl(left->as_register());
  3655     move_regs(left->as_register(), dest->as_register());
  3657   } else if (left->is_double_cpu()) {
  3658     Register lo = left->as_register_lo();
  3659 #ifdef _LP64
  3660     Register dst = dest->as_register_lo();
  3661     __ movptr(dst, lo);
  3662     __ negptr(dst);
  3663 #else
  3664     Register hi = left->as_register_hi();
  3665     __ lneg(hi, lo);
  3666     if (dest->as_register_lo() == hi) {
  3667       assert(dest->as_register_hi() != lo, "destroying register");
  3668       move_regs(hi, dest->as_register_hi());
  3669       move_regs(lo, dest->as_register_lo());
  3670     } else {
  3671       move_regs(lo, dest->as_register_lo());
  3672       move_regs(hi, dest->as_register_hi());
  3674 #endif // _LP64
  3676   } else if (dest->is_single_xmm()) {
  3677     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3678       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3680     __ xorps(dest->as_xmm_float_reg(),
  3681              ExternalAddress((address)float_signflip_pool));
  3683   } else if (dest->is_double_xmm()) {
  3684     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3685       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3687     __ xorpd(dest->as_xmm_double_reg(),
  3688              ExternalAddress((address)double_signflip_pool));
  3690   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3691     assert(left->fpu() == 0, "arg must be on TOS");
  3692     assert(dest->fpu() == 0, "dest must be TOS");
  3693     __ fchs();
  3695   } else {
  3696     ShouldNotReachHere();
  3701 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3702   assert(addr->is_address() && dest->is_register(), "check");
  3703   Register reg;
  3704   reg = dest->as_pointer_register();
  3705   __ lea(reg, as_Address(addr->as_address_ptr()));
  3710 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3711   assert(!tmp->is_valid(), "don't need temporary");
  3712   __ call(RuntimeAddress(dest));
  3713   if (info != NULL) {
  3714     add_call_info_here(info);
  3719 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3720   assert(type == T_LONG, "only for volatile long fields");
  3722   if (info != NULL) {
  3723     add_debug_info_for_null_check_here(info);
  3726   if (src->is_double_xmm()) {
  3727     if (dest->is_double_cpu()) {
  3728 #ifdef _LP64
  3729       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3730 #else
  3731       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3732       __ psrlq(src->as_xmm_double_reg(), 32);
  3733       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3734 #endif // _LP64
  3735     } else if (dest->is_double_stack()) {
  3736       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3737     } else if (dest->is_address()) {
  3738       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3739     } else {
  3740       ShouldNotReachHere();
  3743   } else if (dest->is_double_xmm()) {
  3744     if (src->is_double_stack()) {
  3745       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3746     } else if (src->is_address()) {
  3747       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3748     } else {
  3749       ShouldNotReachHere();
  3752   } else if (src->is_double_fpu()) {
  3753     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3754     if (dest->is_double_stack()) {
  3755       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3756     } else if (dest->is_address()) {
  3757       __ fistp_d(as_Address(dest->as_address_ptr()));
  3758     } else {
  3759       ShouldNotReachHere();
  3762   } else if (dest->is_double_fpu()) {
  3763     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3764     if (src->is_double_stack()) {
  3765       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3766     } else if (src->is_address()) {
  3767       __ fild_d(as_Address(src->as_address_ptr()));
  3768     } else {
  3769       ShouldNotReachHere();
  3771   } else {
  3772     ShouldNotReachHere();
  3777 void LIR_Assembler::membar() {
  3778   // QQQ sparc TSO uses this,
  3779   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3782 void LIR_Assembler::membar_acquire() {
  3783   // No x86 machines currently require load fences
  3784   // __ load_fence();
  3787 void LIR_Assembler::membar_release() {
  3788   // No x86 machines currently require store fences
  3789   // __ store_fence();
  3792 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3793   assert(result_reg->is_register(), "check");
  3794 #ifdef _LP64
  3795   // __ get_thread(result_reg->as_register_lo());
  3796   __ mov(result_reg->as_register(), r15_thread);
  3797 #else
  3798   __ get_thread(result_reg->as_register());
  3799 #endif // _LP64
  3803 void LIR_Assembler::peephole(LIR_List*) {
  3804   // do nothing for now
  3808 #undef __

mercurial