src/share/vm/opto/vectornode.cpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 4006
5af51c882207
child 4115
e626685e9f6c
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "memory/allocation.inline.hpp"
    26 #include "opto/connode.hpp"
    27 #include "opto/vectornode.hpp"
    29 //------------------------------VectorNode--------------------------------------
    31 // Return the vector operator for the specified scalar operation
    32 // and vector length.  Also used to check if the code generator
    33 // supports the vector operation.
    34 int VectorNode::opcode(int sopc, BasicType bt) {
    35   switch (sopc) {
    36   case Op_AddI:
    37     switch (bt) {
    38     case T_BOOLEAN:
    39     case T_BYTE:      return Op_AddVB;
    40     case T_CHAR:
    41     case T_SHORT:     return Op_AddVS;
    42     case T_INT:       return Op_AddVI;
    43     }
    44     ShouldNotReachHere();
    45   case Op_AddL:
    46     assert(bt == T_LONG, "must be");
    47     return Op_AddVL;
    48   case Op_AddF:
    49     assert(bt == T_FLOAT, "must be");
    50     return Op_AddVF;
    51   case Op_AddD:
    52     assert(bt == T_DOUBLE, "must be");
    53     return Op_AddVD;
    54   case Op_SubI:
    55     switch (bt) {
    56     case T_BOOLEAN:
    57     case T_BYTE:   return Op_SubVB;
    58     case T_CHAR:
    59     case T_SHORT:  return Op_SubVS;
    60     case T_INT:    return Op_SubVI;
    61     }
    62     ShouldNotReachHere();
    63   case Op_SubL:
    64     assert(bt == T_LONG, "must be");
    65     return Op_SubVL;
    66   case Op_SubF:
    67     assert(bt == T_FLOAT, "must be");
    68     return Op_SubVF;
    69   case Op_SubD:
    70     assert(bt == T_DOUBLE, "must be");
    71     return Op_SubVD;
    72   case Op_MulI:
    73     switch (bt) {
    74     case T_BOOLEAN:
    75     case T_BYTE:   return 0;   // Unimplemented
    76     case T_CHAR:
    77     case T_SHORT:  return Op_MulVS;
    78     case T_INT:    return Matcher::match_rule_supported(Op_MulVI) ? Op_MulVI : 0; // SSE4_1
    79     }
    80     ShouldNotReachHere();
    81   case Op_MulF:
    82     assert(bt == T_FLOAT, "must be");
    83     return Op_MulVF;
    84   case Op_MulD:
    85     assert(bt == T_DOUBLE, "must be");
    86     return Op_MulVD;
    87   case Op_DivF:
    88     assert(bt == T_FLOAT, "must be");
    89     return Op_DivVF;
    90   case Op_DivD:
    91     assert(bt == T_DOUBLE, "must be");
    92     return Op_DivVD;
    93   case Op_LShiftI:
    94     switch (bt) {
    95     case T_BOOLEAN:
    96     case T_BYTE:   return Op_LShiftVB;
    97     case T_CHAR:
    98     case T_SHORT:  return Op_LShiftVS;
    99     case T_INT:    return Op_LShiftVI;
   100     }
   101     ShouldNotReachHere();
   102   case Op_LShiftL:
   103     assert(bt == T_LONG, "must be");
   104     return Op_LShiftVL;
   105   case Op_RShiftI:
   106     switch (bt) {
   107     case T_BOOLEAN:
   108     case T_BYTE:   return Op_RShiftVB;
   109     case T_CHAR:
   110     case T_SHORT:  return Op_RShiftVS;
   111     case T_INT:    return Op_RShiftVI;
   112     }
   113     ShouldNotReachHere();
   114   case Op_RShiftL:
   115     assert(bt == T_LONG, "must be");
   116     return Op_RShiftVL;
   117   case Op_URShiftI:
   118     switch (bt) {
   119     case T_BOOLEAN:
   120     case T_BYTE:   return Op_URShiftVB;
   121     case T_CHAR:
   122     case T_SHORT:  return Op_URShiftVS;
   123     case T_INT:    return Op_URShiftVI;
   124     }
   125     ShouldNotReachHere();
   126   case Op_URShiftL:
   127     assert(bt == T_LONG, "must be");
   128     return Op_URShiftVL;
   129   case Op_AndI:
   130   case Op_AndL:
   131     return Op_AndV;
   132   case Op_OrI:
   133   case Op_OrL:
   134     return Op_OrV;
   135   case Op_XorI:
   136   case Op_XorL:
   137     return Op_XorV;
   139   case Op_LoadB:
   140   case Op_LoadUB:
   141   case Op_LoadUS:
   142   case Op_LoadS:
   143   case Op_LoadI:
   144   case Op_LoadL:
   145   case Op_LoadF:
   146   case Op_LoadD:
   147     return Op_LoadVector;
   149   case Op_StoreB:
   150   case Op_StoreC:
   151   case Op_StoreI:
   152   case Op_StoreL:
   153   case Op_StoreF:
   154   case Op_StoreD:
   155     return Op_StoreVector;
   156   }
   157   return 0; // Unimplemented
   158 }
   160 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
   161   if (is_java_primitive(bt) &&
   162       (vlen > 1) && is_power_of_2(vlen) &&
   163       Matcher::vector_size_supported(bt, vlen)) {
   164     int vopc = VectorNode::opcode(opc, bt);
   165     return vopc > 0 && Matcher::has_match_rule(vopc);
   166   }
   167   return false;
   168 }
   170 bool VectorNode::is_shift(Node* n) {
   171   switch (n->Opcode()) {
   172   case Op_LShiftI:
   173   case Op_LShiftL:
   174   case Op_RShiftI:
   175   case Op_RShiftL:
   176   case Op_URShiftI:
   177   case Op_URShiftL:
   178     return true;
   179   }
   180   return false;
   181 }
   183 // Check if input is loop invariant vector.
   184 bool VectorNode::is_invariant_vector(Node* n) {
   185   // Only Replicate vector nodes are loop invariant for now.
   186   switch (n->Opcode()) {
   187   case Op_ReplicateB:
   188   case Op_ReplicateS:
   189   case Op_ReplicateI:
   190   case Op_ReplicateL:
   191   case Op_ReplicateF:
   192   case Op_ReplicateD:
   193     return true;
   194   }
   195   return false;
   196 }
   198 // [Start, end) half-open range defining which operands are vectors
   199 void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
   200   switch (n->Opcode()) {
   201   case Op_LoadB:   case Op_LoadUB:
   202   case Op_LoadS:   case Op_LoadUS:
   203   case Op_LoadI:   case Op_LoadL:
   204   case Op_LoadF:   case Op_LoadD:
   205   case Op_LoadP:   case Op_LoadN:
   206     *start = 0;
   207     *end   = 0; // no vector operands
   208     break;
   209   case Op_StoreB:  case Op_StoreC:
   210   case Op_StoreI:  case Op_StoreL:
   211   case Op_StoreF:  case Op_StoreD:
   212   case Op_StoreP:  case Op_StoreN:
   213     *start = MemNode::ValueIn;
   214     *end   = MemNode::ValueIn + 1; // 1 vector operand
   215     break;
   216   case Op_LShiftI:  case Op_LShiftL:
   217   case Op_RShiftI:  case Op_RShiftL:
   218   case Op_URShiftI: case Op_URShiftL:
   219     *start = 1;
   220     *end   = 2; // 1 vector operand
   221     break;
   222   case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
   223   case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
   224   case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
   225   case Op_DivF: case Op_DivD:
   226   case Op_AndI: case Op_AndL:
   227   case Op_OrI:  case Op_OrL:
   228   case Op_XorI: case Op_XorL:
   229     *start = 1;
   230     *end   = 3; // 2 vector operands
   231     break;
   232   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
   233     *start = 2;
   234     *end   = n->req();
   235     break;
   236   default:
   237     *start = 1;
   238     *end   = n->req(); // default is all operands
   239   }
   240 }
   242 // Return the vector version of a scalar operation node.
   243 VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
   244   const TypeVect* vt = TypeVect::make(bt, vlen);
   245   int vopc = VectorNode::opcode(opc, bt);
   247   switch (vopc) {
   248   case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt);
   249   case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt);
   250   case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt);
   251   case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt);
   252   case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt);
   253   case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt);
   255   case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt);
   256   case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt);
   257   case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt);
   258   case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt);
   259   case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt);
   260   case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt);
   262   case Op_MulVS: return new (C, 3) MulVSNode(n1, n2, vt);
   263   case Op_MulVI: return new (C, 3) MulVINode(n1, n2, vt);
   264   case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt);
   265   case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt);
   267   case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt);
   268   case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt);
   270   case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt);
   271   case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt);
   272   case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt);
   273   case Op_LShiftVL: return new (C, 3) LShiftVLNode(n1, n2, vt);
   275   case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt);
   276   case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt);
   277   case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt);
   278   case Op_RShiftVL: return new (C, 3) RShiftVLNode(n1, n2, vt);
   280   case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vt);
   281   case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vt);
   282   case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vt);
   283   case Op_URShiftVL: return new (C, 3) URShiftVLNode(n1, n2, vt);
   285   case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt);
   286   case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vt);
   287   case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt);
   288   }
   289   ShouldNotReachHere();
   290   return NULL;
   292 }
   294 // Scalar promotion
   295 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
   296   BasicType bt = opd_t->array_element_basic_type();
   297   const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
   298                                           : TypeVect::make(bt, vlen);
   299   switch (bt) {
   300   case T_BOOLEAN:
   301   case T_BYTE:
   302     return new (C, 2) ReplicateBNode(s, vt);
   303   case T_CHAR:
   304   case T_SHORT:
   305     return new (C, 2) ReplicateSNode(s, vt);
   306   case T_INT:
   307     return new (C, 2) ReplicateINode(s, vt);
   308   case T_LONG:
   309     return new (C, 2) ReplicateLNode(s, vt);
   310   case T_FLOAT:
   311     return new (C, 2) ReplicateFNode(s, vt);
   312   case T_DOUBLE:
   313     return new (C, 2) ReplicateDNode(s, vt);
   314   }
   315   ShouldNotReachHere();
   316   return NULL;
   317 }
   319 // Return initial Pack node. Additional operands added with add_opd() calls.
   320 PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) {
   321   const TypeVect* vt = TypeVect::make(bt, vlen);
   322   switch (bt) {
   323   case T_BOOLEAN:
   324   case T_BYTE:
   325     return new (C, 2) PackBNode(s, vt);
   326   case T_CHAR:
   327   case T_SHORT:
   328     return new (C, 2) PackSNode(s, vt);
   329   case T_INT:
   330     return new (C, 2) PackINode(s, vt);
   331   case T_LONG:
   332     return new (C, 2) PackLNode(s, vt);
   333   case T_FLOAT:
   334     return new (C, 2) PackFNode(s, vt);
   335   case T_DOUBLE:
   336     return new (C, 2) PackDNode(s, vt);
   337   }
   338   ShouldNotReachHere();
   339   return NULL;
   340 }
   342 // Create a binary tree form for Packs. [lo, hi) (half-open) range
   343 PackNode* PackNode::binary_tree_pack(Compile* C, int lo, int hi) {
   344   int ct = hi - lo;
   345   assert(is_power_of_2(ct), "power of 2");
   346   if (ct == 2) {
   347     PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type());
   348     pk->add_opd(in(lo+1));
   349     return pk;
   351   } else {
   352     int mid = lo + ct/2;
   353     PackNode* n1 = binary_tree_pack(C, lo,  mid);
   354     PackNode* n2 = binary_tree_pack(C, mid, hi );
   356     BasicType bt = n1->vect_type()->element_basic_type();
   357     assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
   358     switch (bt) {
   359     case T_BOOLEAN:
   360     case T_BYTE:
   361       return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
   362     case T_CHAR:
   363     case T_SHORT:
   364       return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2));
   365     case T_INT:
   366       return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
   367     case T_LONG:
   368       return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
   369     case T_FLOAT:
   370       return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
   371     case T_DOUBLE:
   372       return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
   373     }
   374     ShouldNotReachHere();
   375   }
   376   return NULL;
   377 }
   379 // Return the vector version of a scalar load node.
   380 LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   381                                      Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) {
   382   const TypeVect* vt = TypeVect::make(bt, vlen);
   383   return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt);
   384   return NULL;
   385 }
   387 // Return the vector version of a scalar store node.
   388 StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   389                                        Node* adr, const TypePtr* atyp, Node* val,
   390                                        uint vlen) {
   391   return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val);
   392 }
   394 // Extract a scalar element of vector.
   395 Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) {
   396   assert((int)position < Matcher::max_vector_size(bt), "pos in range");
   397   ConINode* pos = ConINode::make(C, (int)position);
   398   switch (bt) {
   399   case T_BOOLEAN:
   400     return new (C, 3) ExtractUBNode(v, pos);
   401   case T_BYTE:
   402     return new (C, 3) ExtractBNode(v, pos);
   403   case T_CHAR:
   404     return new (C, 3) ExtractCNode(v, pos);
   405   case T_SHORT:
   406     return new (C, 3) ExtractSNode(v, pos);
   407   case T_INT:
   408     return new (C, 3) ExtractINode(v, pos);
   409   case T_LONG:
   410     return new (C, 3) ExtractLNode(v, pos);
   411   case T_FLOAT:
   412     return new (C, 3) ExtractFNode(v, pos);
   413   case T_DOUBLE:
   414     return new (C, 3) ExtractDNode(v, pos);
   415   }
   416   ShouldNotReachHere();
   417   return NULL;
   418 }

mercurial