src/share/vm/opto/node.cpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 4037
da91efe96a93
child 4115
e626685e9f6c
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/node.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/type.hpp"
    36 #include "utilities/copy.hpp"
    38 class RegMask;
    39 // #include "phase.hpp"
    40 class PhaseTransform;
    41 class PhaseGVN;
    43 // Arena we are currently building Nodes in
    44 const uint Node::NotAMachineReg = 0xffff0000;
    46 #ifndef PRODUCT
    47 extern int nodes_created;
    48 #endif
    50 #ifdef ASSERT
    52 //-------------------------- construct_node------------------------------------
    53 // Set a breakpoint here to identify where a particular node index is built.
    54 void Node::verify_construction() {
    55   _debug_orig = NULL;
    56   int old_debug_idx = Compile::debug_idx();
    57   int new_debug_idx = old_debug_idx+1;
    58   if (new_debug_idx > 0) {
    59     // Arrange that the lowest five decimal digits of _debug_idx
    60     // will repeat thos of _idx.  In case this is somehow pathological,
    61     // we continue to assign negative numbers (!) consecutively.
    62     const int mod = 100000;
    63     int bump = (int)(_idx - new_debug_idx) % mod;
    64     if (bump < 0)  bump += mod;
    65     assert(bump >= 0 && bump < mod, "");
    66     new_debug_idx += bump;
    67   }
    68   Compile::set_debug_idx(new_debug_idx);
    69   set_debug_idx( new_debug_idx );
    70   assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
    71   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    72     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    73     BREAKPOINT;
    74   }
    75 #if OPTO_DU_ITERATOR_ASSERT
    76   _last_del = NULL;
    77   _del_tick = 0;
    78 #endif
    79   _hash_lock = 0;
    80 }
    83 // #ifdef ASSERT ...
    85 #if OPTO_DU_ITERATOR_ASSERT
    86 void DUIterator_Common::sample(const Node* node) {
    87   _vdui     = VerifyDUIterators;
    88   _node     = node;
    89   _outcnt   = node->_outcnt;
    90   _del_tick = node->_del_tick;
    91   _last     = NULL;
    92 }
    94 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    95   assert(_node     == node, "consistent iterator source");
    96   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    97 }
    99 void DUIterator_Common::verify_resync() {
   100   // Ensure that the loop body has just deleted the last guy produced.
   101   const Node* node = _node;
   102   // Ensure that at least one copy of the last-seen edge was deleted.
   103   // Note:  It is OK to delete multiple copies of the last-seen edge.
   104   // Unfortunately, we have no way to verify that all the deletions delete
   105   // that same edge.  On this point we must use the Honor System.
   106   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
   107   assert(node->_last_del == _last, "must have deleted the edge just produced");
   108   // We liked this deletion, so accept the resulting outcnt and tick.
   109   _outcnt   = node->_outcnt;
   110   _del_tick = node->_del_tick;
   111 }
   113 void DUIterator_Common::reset(const DUIterator_Common& that) {
   114   if (this == &that)  return;  // ignore assignment to self
   115   if (!_vdui) {
   116     // We need to initialize everything, overwriting garbage values.
   117     _last = that._last;
   118     _vdui = that._vdui;
   119   }
   120   // Note:  It is legal (though odd) for an iterator over some node x
   121   // to be reassigned to iterate over another node y.  Some doubly-nested
   122   // progress loops depend on being able to do this.
   123   const Node* node = that._node;
   124   // Re-initialize everything, except _last.
   125   _node     = node;
   126   _outcnt   = node->_outcnt;
   127   _del_tick = node->_del_tick;
   128 }
   130 void DUIterator::sample(const Node* node) {
   131   DUIterator_Common::sample(node);      // Initialize the assertion data.
   132   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   133 }
   135 void DUIterator::verify(const Node* node, bool at_end_ok) {
   136   DUIterator_Common::verify(node, at_end_ok);
   137   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   138 }
   140 void DUIterator::verify_increment() {
   141   if (_refresh_tick & 1) {
   142     // We have refreshed the index during this loop.
   143     // Fix up _idx to meet asserts.
   144     if (_idx > _outcnt)  _idx = _outcnt;
   145   }
   146   verify(_node, true);
   147 }
   149 void DUIterator::verify_resync() {
   150   // Note:  We do not assert on _outcnt, because insertions are OK here.
   151   DUIterator_Common::verify_resync();
   152   // Make sure we are still in sync, possibly with no more out-edges:
   153   verify(_node, true);
   154 }
   156 void DUIterator::reset(const DUIterator& that) {
   157   if (this == &that)  return;  // self assignment is always a no-op
   158   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   159   assert(that._idx          == 0, "assign only the result of Node::outs()");
   160   assert(_idx               == that._idx, "already assigned _idx");
   161   if (!_vdui) {
   162     // We need to initialize everything, overwriting garbage values.
   163     sample(that._node);
   164   } else {
   165     DUIterator_Common::reset(that);
   166     if (_refresh_tick & 1) {
   167       _refresh_tick++;                  // Clear the "was refreshed" flag.
   168     }
   169     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   170   }
   171 }
   173 void DUIterator::refresh() {
   174   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   175   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   176 }
   178 void DUIterator::verify_finish() {
   179   // If the loop has killed the node, do not require it to re-run.
   180   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   181   // If this assert triggers, it means that a loop used refresh_out_pos
   182   // to re-synch an iteration index, but the loop did not correctly
   183   // re-run itself, using a "while (progress)" construct.
   184   // This iterator enforces the rule that you must keep trying the loop
   185   // until it "runs clean" without any need for refreshing.
   186   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   187 }
   190 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   191   DUIterator_Common::verify(node, at_end_ok);
   192   Node** out    = node->_out;
   193   uint   cnt    = node->_outcnt;
   194   assert(cnt == _outcnt, "no insertions allowed");
   195   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   196   // This last check is carefully designed to work for NO_OUT_ARRAY.
   197 }
   199 void DUIterator_Fast::verify_limit() {
   200   const Node* node = _node;
   201   verify(node, true);
   202   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   203 }
   205 void DUIterator_Fast::verify_resync() {
   206   const Node* node = _node;
   207   if (_outp == node->_out + _outcnt) {
   208     // Note that the limit imax, not the pointer i, gets updated with the
   209     // exact count of deletions.  (For the pointer it's always "--i".)
   210     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   211     // This is a limit pointer, with a name like "imax".
   212     // Fudge the _last field so that the common assert will be happy.
   213     _last = (Node*) node->_last_del;
   214     DUIterator_Common::verify_resync();
   215   } else {
   216     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   217     // A normal internal pointer.
   218     DUIterator_Common::verify_resync();
   219     // Make sure we are still in sync, possibly with no more out-edges:
   220     verify(node, true);
   221   }
   222 }
   224 void DUIterator_Fast::verify_relimit(uint n) {
   225   const Node* node = _node;
   226   assert((int)n > 0, "use imax -= n only with a positive count");
   227   // This must be a limit pointer, with a name like "imax".
   228   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   229   // The reported number of deletions must match what the node saw.
   230   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   231   // Fudge the _last field so that the common assert will be happy.
   232   _last = (Node*) node->_last_del;
   233   DUIterator_Common::verify_resync();
   234 }
   236 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   237   assert(_outp              == that._outp, "already assigned _outp");
   238   DUIterator_Common::reset(that);
   239 }
   241 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   242   // at_end_ok means the _outp is allowed to underflow by 1
   243   _outp += at_end_ok;
   244   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   245   _outp -= at_end_ok;
   246   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   247 }
   249 void DUIterator_Last::verify_limit() {
   250   // Do not require the limit address to be resynched.
   251   //verify(node, true);
   252   assert(_outp == _node->_out, "limit still correct");
   253 }
   255 void DUIterator_Last::verify_step(uint num_edges) {
   256   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   257   _outcnt   -= num_edges;
   258   _del_tick += num_edges;
   259   // Make sure we are still in sync, possibly with no more out-edges:
   260   const Node* node = _node;
   261   verify(node, true);
   262   assert(node->_last_del == _last, "must have deleted the edge just produced");
   263 }
   265 #endif //OPTO_DU_ITERATOR_ASSERT
   268 #endif //ASSERT
   271 // This constant used to initialize _out may be any non-null value.
   272 // The value NULL is reserved for the top node only.
   273 #define NO_OUT_ARRAY ((Node**)-1)
   275 // This funny expression handshakes with Node::operator new
   276 // to pull Compile::current out of the new node's _out field,
   277 // and then calls a subroutine which manages most field
   278 // initializations.  The only one which is tricky is the
   279 // _idx field, which is const, and so must be initialized
   280 // by a return value, not an assignment.
   281 //
   282 // (Aren't you thankful that Java finals don't require so many tricks?)
   283 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   284 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   285 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   286 #endif
   288 // Out-of-line code from node constructors.
   289 // Executed only when extra debug info. is being passed around.
   290 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   291   C->set_node_notes_at(idx, nn);
   292 }
   294 // Shared initialization code.
   295 inline int Node::Init(int req, Compile* C) {
   296   assert(Compile::current() == C, "must use operator new(Compile*)");
   297   int idx = C->next_unique();
   299   // If there are default notes floating around, capture them:
   300   Node_Notes* nn = C->default_node_notes();
   301   if (nn != NULL)  init_node_notes(C, idx, nn);
   303   // Note:  At this point, C is dead,
   304   // and we begin to initialize the new Node.
   306   _cnt = _max = req;
   307   _outcnt = _outmax = 0;
   308   _class_id = Class_Node;
   309   _flags = 0;
   310   _out = NO_OUT_ARRAY;
   311   return idx;
   312 }
   314 //------------------------------Node-------------------------------------------
   315 // Create a Node, with a given number of required edges.
   316 Node::Node(uint req)
   317   : _idx(IDX_INIT(req))
   318 {
   319   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
   320   debug_only( verify_construction() );
   321   NOT_PRODUCT(nodes_created++);
   322   if (req == 0) {
   323     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   324     _in = NULL;
   325   } else {
   326     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   327     Node** to = _in;
   328     for(uint i = 0; i < req; i++) {
   329       to[i] = NULL;
   330     }
   331   }
   332 }
   334 //------------------------------Node-------------------------------------------
   335 Node::Node(Node *n0)
   336   : _idx(IDX_INIT(1))
   337 {
   338   debug_only( verify_construction() );
   339   NOT_PRODUCT(nodes_created++);
   340   // Assert we allocated space for input array already
   341   assert( _in[0] == this, "Must pass arg count to 'new'" );
   342   assert( is_not_dead(n0), "can not use dead node");
   343   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   344 }
   346 //------------------------------Node-------------------------------------------
   347 Node::Node(Node *n0, Node *n1)
   348   : _idx(IDX_INIT(2))
   349 {
   350   debug_only( verify_construction() );
   351   NOT_PRODUCT(nodes_created++);
   352   // Assert we allocated space for input array already
   353   assert( _in[1] == this, "Must pass arg count to 'new'" );
   354   assert( is_not_dead(n0), "can not use dead node");
   355   assert( is_not_dead(n1), "can not use dead node");
   356   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   357   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   358 }
   360 //------------------------------Node-------------------------------------------
   361 Node::Node(Node *n0, Node *n1, Node *n2)
   362   : _idx(IDX_INIT(3))
   363 {
   364   debug_only( verify_construction() );
   365   NOT_PRODUCT(nodes_created++);
   366   // Assert we allocated space for input array already
   367   assert( _in[2] == this, "Must pass arg count to 'new'" );
   368   assert( is_not_dead(n0), "can not use dead node");
   369   assert( is_not_dead(n1), "can not use dead node");
   370   assert( is_not_dead(n2), "can not use dead node");
   371   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   372   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   373   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   374 }
   376 //------------------------------Node-------------------------------------------
   377 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   378   : _idx(IDX_INIT(4))
   379 {
   380   debug_only( verify_construction() );
   381   NOT_PRODUCT(nodes_created++);
   382   // Assert we allocated space for input array already
   383   assert( _in[3] == this, "Must pass arg count to 'new'" );
   384   assert( is_not_dead(n0), "can not use dead node");
   385   assert( is_not_dead(n1), "can not use dead node");
   386   assert( is_not_dead(n2), "can not use dead node");
   387   assert( is_not_dead(n3), "can not use dead node");
   388   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   389   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   390   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   391   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   392 }
   394 //------------------------------Node-------------------------------------------
   395 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   396   : _idx(IDX_INIT(5))
   397 {
   398   debug_only( verify_construction() );
   399   NOT_PRODUCT(nodes_created++);
   400   // Assert we allocated space for input array already
   401   assert( _in[4] == this, "Must pass arg count to 'new'" );
   402   assert( is_not_dead(n0), "can not use dead node");
   403   assert( is_not_dead(n1), "can not use dead node");
   404   assert( is_not_dead(n2), "can not use dead node");
   405   assert( is_not_dead(n3), "can not use dead node");
   406   assert( is_not_dead(n4), "can not use dead node");
   407   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   408   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   409   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   410   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   411   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   412 }
   414 //------------------------------Node-------------------------------------------
   415 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   416                      Node *n4, Node *n5)
   417   : _idx(IDX_INIT(6))
   418 {
   419   debug_only( verify_construction() );
   420   NOT_PRODUCT(nodes_created++);
   421   // Assert we allocated space for input array already
   422   assert( _in[5] == this, "Must pass arg count to 'new'" );
   423   assert( is_not_dead(n0), "can not use dead node");
   424   assert( is_not_dead(n1), "can not use dead node");
   425   assert( is_not_dead(n2), "can not use dead node");
   426   assert( is_not_dead(n3), "can not use dead node");
   427   assert( is_not_dead(n4), "can not use dead node");
   428   assert( is_not_dead(n5), "can not use dead node");
   429   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   430   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   431   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   432   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   433   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   434   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   435 }
   437 //------------------------------Node-------------------------------------------
   438 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   439                      Node *n4, Node *n5, Node *n6)
   440   : _idx(IDX_INIT(7))
   441 {
   442   debug_only( verify_construction() );
   443   NOT_PRODUCT(nodes_created++);
   444   // Assert we allocated space for input array already
   445   assert( _in[6] == this, "Must pass arg count to 'new'" );
   446   assert( is_not_dead(n0), "can not use dead node");
   447   assert( is_not_dead(n1), "can not use dead node");
   448   assert( is_not_dead(n2), "can not use dead node");
   449   assert( is_not_dead(n3), "can not use dead node");
   450   assert( is_not_dead(n4), "can not use dead node");
   451   assert( is_not_dead(n5), "can not use dead node");
   452   assert( is_not_dead(n6), "can not use dead node");
   453   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   454   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   455   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   456   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   457   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   458   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   459   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   460 }
   463 //------------------------------clone------------------------------------------
   464 // Clone a Node.
   465 Node *Node::clone() const {
   466   Compile *compile = Compile::current();
   467   uint s = size_of();           // Size of inherited Node
   468   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   469   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   470   // Set the new input pointer array
   471   n->_in = (Node**)(((char*)n)+s);
   472   // Cannot share the old output pointer array, so kill it
   473   n->_out = NO_OUT_ARRAY;
   474   // And reset the counters to 0
   475   n->_outcnt = 0;
   476   n->_outmax = 0;
   477   // Unlock this guy, since he is not in any hash table.
   478   debug_only(n->_hash_lock = 0);
   479   // Walk the old node's input list to duplicate its edges
   480   uint i;
   481   for( i = 0; i < len(); i++ ) {
   482     Node *x = in(i);
   483     n->_in[i] = x;
   484     if (x != NULL) x->add_out(n);
   485   }
   486   if (is_macro())
   487     compile->add_macro_node(n);
   489   n->set_idx(compile->next_unique()); // Get new unique index as well
   490   debug_only( n->verify_construction() );
   491   NOT_PRODUCT(nodes_created++);
   492   // Do not patch over the debug_idx of a clone, because it makes it
   493   // impossible to break on the clone's moment of creation.
   494   //debug_only( n->set_debug_idx( debug_idx() ) );
   496   compile->copy_node_notes_to(n, (Node*) this);
   498   // MachNode clone
   499   uint nopnds;
   500   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   501     MachNode *mach  = n->as_Mach();
   502     MachNode *mthis = this->as_Mach();
   503     // Get address of _opnd_array.
   504     // It should be the same offset since it is the clone of this node.
   505     MachOper **from = mthis->_opnds;
   506     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   507                     pointer_delta((const void*)from,
   508                                   (const void*)(&mthis->_opnds), 1));
   509     mach->_opnds = to;
   510     for ( uint i = 0; i < nopnds; ++i ) {
   511       to[i] = from[i]->clone(compile);
   512     }
   513   }
   514   // cloning CallNode may need to clone JVMState
   515   if (n->is_Call()) {
   516     CallNode *call = n->as_Call();
   517     call->clone_jvms();
   518   }
   519   return n;                     // Return the clone
   520 }
   522 //---------------------------setup_is_top--------------------------------------
   523 // Call this when changing the top node, to reassert the invariants
   524 // required by Node::is_top.  See Compile::set_cached_top_node.
   525 void Node::setup_is_top() {
   526   if (this == (Node*)Compile::current()->top()) {
   527     // This node has just become top.  Kill its out array.
   528     _outcnt = _outmax = 0;
   529     _out = NULL;                           // marker value for top
   530     assert(is_top(), "must be top");
   531   } else {
   532     if (_out == NULL)  _out = NO_OUT_ARRAY;
   533     assert(!is_top(), "must not be top");
   534   }
   535 }
   538 //------------------------------~Node------------------------------------------
   539 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   540 extern int reclaim_idx ;
   541 extern int reclaim_in  ;
   542 extern int reclaim_node;
   543 void Node::destruct() {
   544   // Eagerly reclaim unique Node numberings
   545   Compile* compile = Compile::current();
   546   if ((uint)_idx+1 == compile->unique()) {
   547     compile->set_unique(compile->unique()-1);
   548 #ifdef ASSERT
   549     reclaim_idx++;
   550 #endif
   551   }
   552   // Clear debug info:
   553   Node_Notes* nn = compile->node_notes_at(_idx);
   554   if (nn != NULL)  nn->clear();
   555   // Walk the input array, freeing the corresponding output edges
   556   _cnt = _max;  // forget req/prec distinction
   557   uint i;
   558   for( i = 0; i < _max; i++ ) {
   559     set_req(i, NULL);
   560     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   561   }
   562   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   563   // See if the input array was allocated just prior to the object
   564   int edge_size = _max*sizeof(void*);
   565   int out_edge_size = _outmax*sizeof(void*);
   566   char *edge_end = ((char*)_in) + edge_size;
   567   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   568   char *out_edge_end = out_array + out_edge_size;
   569   int node_size = size_of();
   571   // Free the output edge array
   572   if (out_edge_size > 0) {
   573 #ifdef ASSERT
   574     if( out_edge_end == compile->node_arena()->hwm() )
   575       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   576 #endif
   577     compile->node_arena()->Afree(out_array, out_edge_size);
   578   }
   580   // Free the input edge array and the node itself
   581   if( edge_end == (char*)this ) {
   582 #ifdef ASSERT
   583     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   584       reclaim_in  += edge_size;
   585       reclaim_node+= node_size;
   586     }
   587 #else
   588     // It was; free the input array and object all in one hit
   589     compile->node_arena()->Afree(_in,edge_size+node_size);
   590 #endif
   591   } else {
   593     // Free just the input array
   594 #ifdef ASSERT
   595     if( edge_end == compile->node_arena()->hwm() )
   596       reclaim_in  += edge_size;
   597 #endif
   598     compile->node_arena()->Afree(_in,edge_size);
   600     // Free just the object
   601 #ifdef ASSERT
   602     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   603       reclaim_node+= node_size;
   604 #else
   605     compile->node_arena()->Afree(this,node_size);
   606 #endif
   607   }
   608   if (is_macro()) {
   609     compile->remove_macro_node(this);
   610   }
   611 #ifdef ASSERT
   612   // We will not actually delete the storage, but we'll make the node unusable.
   613   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   614   _in = _out = (Node**) badAddress;
   615   _max = _cnt = _outmax = _outcnt = 0;
   616 #endif
   617 }
   619 //------------------------------grow-------------------------------------------
   620 // Grow the input array, making space for more edges
   621 void Node::grow( uint len ) {
   622   Arena* arena = Compile::current()->node_arena();
   623   uint new_max = _max;
   624   if( new_max == 0 ) {
   625     _max = 4;
   626     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   627     Node** to = _in;
   628     to[0] = NULL;
   629     to[1] = NULL;
   630     to[2] = NULL;
   631     to[3] = NULL;
   632     return;
   633   }
   634   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   635   // Trimming to limit allows a uint8 to handle up to 255 edges.
   636   // Previously I was using only powers-of-2 which peaked at 128 edges.
   637   //if( new_max >= limit ) new_max = limit-1;
   638   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   639   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   640   _max = new_max;               // Record new max length
   641   // This assertion makes sure that Node::_max is wide enough to
   642   // represent the numerical value of new_max.
   643   assert(_max == new_max && _max > len, "int width of _max is too small");
   644 }
   646 //-----------------------------out_grow----------------------------------------
   647 // Grow the input array, making space for more edges
   648 void Node::out_grow( uint len ) {
   649   assert(!is_top(), "cannot grow a top node's out array");
   650   Arena* arena = Compile::current()->node_arena();
   651   uint new_max = _outmax;
   652   if( new_max == 0 ) {
   653     _outmax = 4;
   654     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   655     return;
   656   }
   657   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   658   // Trimming to limit allows a uint8 to handle up to 255 edges.
   659   // Previously I was using only powers-of-2 which peaked at 128 edges.
   660   //if( new_max >= limit ) new_max = limit-1;
   661   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   662   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   663   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   664   _outmax = new_max;               // Record new max length
   665   // This assertion makes sure that Node::_max is wide enough to
   666   // represent the numerical value of new_max.
   667   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   668 }
   670 #ifdef ASSERT
   671 //------------------------------is_dead----------------------------------------
   672 bool Node::is_dead() const {
   673   // Mach and pinch point nodes may look like dead.
   674   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   675     return false;
   676   for( uint i = 0; i < _max; i++ )
   677     if( _in[i] != NULL )
   678       return false;
   679   dump();
   680   return true;
   681 }
   682 #endif
   684 //------------------------------add_req----------------------------------------
   685 // Add a new required input at the end
   686 void Node::add_req( Node *n ) {
   687   assert( is_not_dead(n), "can not use dead node");
   689   // Look to see if I can move precedence down one without reallocating
   690   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   691     grow( _max+1 );
   693   // Find a precedence edge to move
   694   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   695     uint i;
   696     for( i=_cnt; i<_max; i++ )
   697       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   698         break;                  // There must be one, since we grew the array
   699     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   700   }
   701   _in[_cnt++] = n;            // Stuff over old prec edge
   702   if (n != NULL) n->add_out((Node *)this);
   703 }
   705 //---------------------------add_req_batch-------------------------------------
   706 // Add a new required input at the end
   707 void Node::add_req_batch( Node *n, uint m ) {
   708   assert( is_not_dead(n), "can not use dead node");
   709   // check various edge cases
   710   if ((int)m <= 1) {
   711     assert((int)m >= 0, "oob");
   712     if (m != 0)  add_req(n);
   713     return;
   714   }
   716   // Look to see if I can move precedence down one without reallocating
   717   if( (_cnt+m) > _max || _in[_max-m] )
   718     grow( _max+m );
   720   // Find a precedence edge to move
   721   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   722     uint i;
   723     for( i=_cnt; i<_max; i++ )
   724       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   725         break;                  // There must be one, since we grew the array
   726     // Slide all the precs over by m positions (assume #prec << m).
   727     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   728   }
   730   // Stuff over the old prec edges
   731   for(uint i=0; i<m; i++ ) {
   732     _in[_cnt++] = n;
   733   }
   735   // Insert multiple out edges on the node.
   736   if (n != NULL && !n->is_top()) {
   737     for(uint i=0; i<m; i++ ) {
   738       n->add_out((Node *)this);
   739     }
   740   }
   741 }
   743 //------------------------------del_req----------------------------------------
   744 // Delete the required edge and compact the edge array
   745 void Node::del_req( uint idx ) {
   746   assert( idx < _cnt, "oob");
   747   assert( !VerifyHashTableKeys || _hash_lock == 0,
   748           "remove node from hash table before modifying it");
   749   // First remove corresponding def-use edge
   750   Node *n = in(idx);
   751   if (n != NULL) n->del_out((Node *)this);
   752   _in[idx] = in(--_cnt);  // Compact the array
   753   _in[_cnt] = NULL;       // NULL out emptied slot
   754 }
   756 //------------------------------ins_req----------------------------------------
   757 // Insert a new required input at the end
   758 void Node::ins_req( uint idx, Node *n ) {
   759   assert( is_not_dead(n), "can not use dead node");
   760   add_req(NULL);                // Make space
   761   assert( idx < _max, "Must have allocated enough space");
   762   // Slide over
   763   if(_cnt-idx-1 > 0) {
   764     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   765   }
   766   _in[idx] = n;                            // Stuff over old required edge
   767   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   768 }
   770 //-----------------------------find_edge---------------------------------------
   771 int Node::find_edge(Node* n) {
   772   for (uint i = 0; i < len(); i++) {
   773     if (_in[i] == n)  return i;
   774   }
   775   return -1;
   776 }
   778 //----------------------------replace_edge-------------------------------------
   779 int Node::replace_edge(Node* old, Node* neww) {
   780   if (old == neww)  return 0;  // nothing to do
   781   uint nrep = 0;
   782   for (uint i = 0; i < len(); i++) {
   783     if (in(i) == old) {
   784       if (i < req())
   785         set_req(i, neww);
   786       else
   787         set_prec(i, neww);
   788       nrep++;
   789     }
   790   }
   791   return nrep;
   792 }
   794 //-------------------------disconnect_inputs-----------------------------------
   795 // NULL out all inputs to eliminate incoming Def-Use edges.
   796 // Return the number of edges between 'n' and 'this'
   797 int Node::disconnect_inputs(Node *n) {
   798   int edges_to_n = 0;
   800   uint cnt = req();
   801   for( uint i = 0; i < cnt; ++i ) {
   802     if( in(i) == 0 ) continue;
   803     if( in(i) == n ) ++edges_to_n;
   804     set_req(i, NULL);
   805   }
   806   // Remove precedence edges if any exist
   807   // Note: Safepoints may have precedence edges, even during parsing
   808   if( (req() != len()) && (in(req()) != NULL) ) {
   809     uint max = len();
   810     for( uint i = 0; i < max; ++i ) {
   811       if( in(i) == 0 ) continue;
   812       if( in(i) == n ) ++edges_to_n;
   813       set_prec(i, NULL);
   814     }
   815   }
   817   // Node::destruct requires all out edges be deleted first
   818   // debug_only(destruct();)   // no reuse benefit expected
   819   return edges_to_n;
   820 }
   822 //-----------------------------uncast---------------------------------------
   823 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   824 // Strip away casting.  (It is depth-limited.)
   825 Node* Node::uncast() const {
   826   // Should be inline:
   827   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   828   if (is_ConstraintCast() || is_CheckCastPP())
   829     return uncast_helper(this);
   830   else
   831     return (Node*) this;
   832 }
   834 //---------------------------uncast_helper-------------------------------------
   835 Node* Node::uncast_helper(const Node* p) {
   836 #ifdef ASSERT
   837   uint depth_count = 0;
   838   const Node* orig_p = p;
   839 #endif
   841   while (true) {
   842 #ifdef ASSERT
   843     if (depth_count >= K) {
   844       orig_p->dump(4);
   845       if (p != orig_p)
   846         p->dump(1);
   847     }
   848     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
   849 #endif
   850     if (p == NULL || p->req() != 2) {
   851       break;
   852     } else if (p->is_ConstraintCast()) {
   853       p = p->in(1);
   854     } else if (p->is_CheckCastPP()) {
   855       p = p->in(1);
   856     } else {
   857       break;
   858     }
   859   }
   860   return (Node*) p;
   861 }
   863 //------------------------------add_prec---------------------------------------
   864 // Add a new precedence input.  Precedence inputs are unordered, with
   865 // duplicates removed and NULLs packed down at the end.
   866 void Node::add_prec( Node *n ) {
   867   assert( is_not_dead(n), "can not use dead node");
   869   // Check for NULL at end
   870   if( _cnt >= _max || in(_max-1) )
   871     grow( _max+1 );
   873   // Find a precedence edge to move
   874   uint i = _cnt;
   875   while( in(i) != NULL ) i++;
   876   _in[i] = n;                                // Stuff prec edge over NULL
   877   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   878 }
   880 //------------------------------rm_prec----------------------------------------
   881 // Remove a precedence input.  Precedence inputs are unordered, with
   882 // duplicates removed and NULLs packed down at the end.
   883 void Node::rm_prec( uint j ) {
   885   // Find end of precedence list to pack NULLs
   886   uint i;
   887   for( i=j; i<_max; i++ )
   888     if( !_in[i] )               // Find the NULL at end of prec edge list
   889       break;
   890   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
   891   _in[j] = _in[--i];            // Move last element over removed guy
   892   _in[i] = NULL;                // NULL out last element
   893 }
   895 //------------------------------size_of----------------------------------------
   896 uint Node::size_of() const { return sizeof(*this); }
   898 //------------------------------ideal_reg--------------------------------------
   899 uint Node::ideal_reg() const { return 0; }
   901 //------------------------------jvms-------------------------------------------
   902 JVMState* Node::jvms() const { return NULL; }
   904 #ifdef ASSERT
   905 //------------------------------jvms-------------------------------------------
   906 bool Node::verify_jvms(const JVMState* using_jvms) const {
   907   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   908     if (jvms == using_jvms)  return true;
   909   }
   910   return false;
   911 }
   913 //------------------------------init_NodeProperty------------------------------
   914 void Node::init_NodeProperty() {
   915   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
   916   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
   917 }
   918 #endif
   920 //------------------------------format-----------------------------------------
   921 // Print as assembly
   922 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
   923 //------------------------------emit-------------------------------------------
   924 // Emit bytes starting at parameter 'ptr'.
   925 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
   926 //------------------------------size-------------------------------------------
   927 // Size of instruction in bytes
   928 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
   930 //------------------------------CFG Construction-------------------------------
   931 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
   932 // Goto and Return.
   933 const Node *Node::is_block_proj() const { return 0; }
   935 // Minimum guaranteed type
   936 const Type *Node::bottom_type() const { return Type::BOTTOM; }
   939 //------------------------------raise_bottom_type------------------------------
   940 // Get the worst-case Type output for this Node.
   941 void Node::raise_bottom_type(const Type* new_type) {
   942   if (is_Type()) {
   943     TypeNode *n = this->as_Type();
   944     if (VerifyAliases) {
   945       assert(new_type->higher_equal(n->type()), "new type must refine old type");
   946     }
   947     n->set_type(new_type);
   948   } else if (is_Load()) {
   949     LoadNode *n = this->as_Load();
   950     if (VerifyAliases) {
   951       assert(new_type->higher_equal(n->type()), "new type must refine old type");
   952     }
   953     n->set_type(new_type);
   954   }
   955 }
   957 //------------------------------Identity---------------------------------------
   958 // Return a node that the given node is equivalent to.
   959 Node *Node::Identity( PhaseTransform * ) {
   960   return this;                  // Default to no identities
   961 }
   963 //------------------------------Value------------------------------------------
   964 // Compute a new Type for a node using the Type of the inputs.
   965 const Type *Node::Value( PhaseTransform * ) const {
   966   return bottom_type();         // Default to worst-case Type
   967 }
   969 //------------------------------Ideal------------------------------------------
   970 //
   971 // 'Idealize' the graph rooted at this Node.
   972 //
   973 // In order to be efficient and flexible there are some subtle invariants
   974 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
   975 // these invariants, although its too slow to have on by default.  If you are
   976 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
   977 //
   978 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
   979 // pointer.  If ANY change is made, it must return the root of the reshaped
   980 // graph - even if the root is the same Node.  Example: swapping the inputs
   981 // to an AddINode gives the same answer and same root, but you still have to
   982 // return the 'this' pointer instead of NULL.
   983 //
   984 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
   985 // Identity call to return an old Node; basically if Identity can find
   986 // another Node have the Ideal call make no change and return NULL.
   987 // Example: AddINode::Ideal must check for add of zero; in this case it
   988 // returns NULL instead of doing any graph reshaping.
   989 //
   990 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
   991 // sharing there may be other users of the old Nodes relying on their current
   992 // semantics.  Modifying them will break the other users.
   993 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
   994 // "X+3" unchanged in case it is shared.
   995 //
   996 // If you modify the 'this' pointer's inputs, you should use
   997 // 'set_req'.  If you are making a new Node (either as the new root or
   998 // some new internal piece) you may use 'init_req' to set the initial
   999 // value.  You can make a new Node with either 'new' or 'clone'.  In
  1000 // either case, def-use info is correctly maintained.
  1001 //
  1002 // Example: reshape "(X+3)+4" into "X+7":
  1003 //    set_req(1, in(1)->in(1));
  1004 //    set_req(2, phase->intcon(7));
  1005 //    return this;
  1006 // Example: reshape "X*4" into "X<<2"
  1007 //    return new (C,3) LShiftINode(in(1), phase->intcon(2));
  1008 //
  1009 // You must call 'phase->transform(X)' on any new Nodes X you make, except
  1010 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
  1011 //    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
  1012 //    return new (C,3) AddINode(shift, in(1));
  1013 //
  1014 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
  1015 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
  1016 // The Right Thing with def-use info.
  1017 //
  1018 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
  1019 // graph uses the 'this' Node it must be the root.  If you want a Node with
  1020 // the same Opcode as the 'this' pointer use 'clone'.
  1021 //
  1022 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  1023   return NULL;                  // Default to being Ideal already
  1026 // Some nodes have specific Ideal subgraph transformations only if they are
  1027 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1028 // for the transformations to happen.
  1029 bool Node::has_special_unique_user() const {
  1030   assert(outcnt() == 1, "match only for unique out");
  1031   Node* n = unique_out();
  1032   int op  = Opcode();
  1033   if( this->is_Store() ) {
  1034     // Condition for back-to-back stores folding.
  1035     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1036   } else if( op == Op_AddL ) {
  1037     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1038     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1039   } else if( op == Op_SubI || op == Op_SubL ) {
  1040     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1041     return n->Opcode() == op && n->in(2) == this;
  1043   return false;
  1044 };
  1046 //--------------------------find_exact_control---------------------------------
  1047 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  1048 Node* Node::find_exact_control(Node* ctrl) {
  1049   if (ctrl == NULL && this->is_Region())
  1050     ctrl = this->as_Region()->is_copy();
  1052   if (ctrl != NULL && ctrl->is_CatchProj()) {
  1053     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
  1054       ctrl = ctrl->in(0);
  1055     if (ctrl != NULL && !ctrl->is_top())
  1056       ctrl = ctrl->in(0);
  1059   if (ctrl != NULL && ctrl->is_Proj())
  1060     ctrl = ctrl->in(0);
  1062   return ctrl;
  1065 //--------------------------dominates------------------------------------------
  1066 // Helper function for MemNode::all_controls_dominate().
  1067 // Check if 'this' control node dominates or equal to 'sub' control node.
  1068 // We already know that if any path back to Root or Start reaches 'this',
  1069 // then all paths so, so this is a simple search for one example,
  1070 // not an exhaustive search for a counterexample.
  1071 bool Node::dominates(Node* sub, Node_List &nlist) {
  1072   assert(this->is_CFG(), "expecting control");
  1073   assert(sub != NULL && sub->is_CFG(), "expecting control");
  1075   // detect dead cycle without regions
  1076   int iterations_without_region_limit = DominatorSearchLimit;
  1078   Node* orig_sub = sub;
  1079   Node* dom      = this;
  1080   bool  met_dom  = false;
  1081   nlist.clear();
  1083   // Walk 'sub' backward up the chain to 'dom', watching for regions.
  1084   // After seeing 'dom', continue up to Root or Start.
  1085   // If we hit a region (backward split point), it may be a loop head.
  1086   // Keep going through one of the region's inputs.  If we reach the
  1087   // same region again, go through a different input.  Eventually we
  1088   // will either exit through the loop head, or give up.
  1089   // (If we get confused, break out and return a conservative 'false'.)
  1090   while (sub != NULL) {
  1091     if (sub->is_top())  break; // Conservative answer for dead code.
  1092     if (sub == dom) {
  1093       if (nlist.size() == 0) {
  1094         // No Region nodes except loops were visited before and the EntryControl
  1095         // path was taken for loops: it did not walk in a cycle.
  1096         return true;
  1097       } else if (met_dom) {
  1098         break;          // already met before: walk in a cycle
  1099       } else {
  1100         // Region nodes were visited. Continue walk up to Start or Root
  1101         // to make sure that it did not walk in a cycle.
  1102         met_dom = true; // first time meet
  1103         iterations_without_region_limit = DominatorSearchLimit; // Reset
  1106     if (sub->is_Start() || sub->is_Root()) {
  1107       // Success if we met 'dom' along a path to Start or Root.
  1108       // We assume there are no alternative paths that avoid 'dom'.
  1109       // (This assumption is up to the caller to ensure!)
  1110       return met_dom;
  1112     Node* up = sub->in(0);
  1113     // Normalize simple pass-through regions and projections:
  1114     up = sub->find_exact_control(up);
  1115     // If sub == up, we found a self-loop.  Try to push past it.
  1116     if (sub == up && sub->is_Loop()) {
  1117       // Take loop entry path on the way up to 'dom'.
  1118       up = sub->in(1); // in(LoopNode::EntryControl);
  1119     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
  1120       // Always take in(1) path on the way up to 'dom' for clone regions
  1121       // (with only one input) or regions which merge > 2 paths
  1122       // (usually used to merge fast/slow paths).
  1123       up = sub->in(1);
  1124     } else if (sub == up && sub->is_Region()) {
  1125       // Try both paths for Regions with 2 input paths (it may be a loop head).
  1126       // It could give conservative 'false' answer without information
  1127       // which region's input is the entry path.
  1128       iterations_without_region_limit = DominatorSearchLimit; // Reset
  1130       bool region_was_visited_before = false;
  1131       // Was this Region node visited before?
  1132       // If so, we have reached it because we accidentally took a
  1133       // loop-back edge from 'sub' back into the body of the loop,
  1134       // and worked our way up again to the loop header 'sub'.
  1135       // So, take the first unexplored path on the way up to 'dom'.
  1136       for (int j = nlist.size() - 1; j >= 0; j--) {
  1137         intptr_t ni = (intptr_t)nlist.at(j);
  1138         Node* visited = (Node*)(ni & ~1);
  1139         bool  visited_twice_already = ((ni & 1) != 0);
  1140         if (visited == sub) {
  1141           if (visited_twice_already) {
  1142             // Visited 2 paths, but still stuck in loop body.  Give up.
  1143             return false;
  1145           // The Region node was visited before only once.
  1146           // (We will repush with the low bit set, below.)
  1147           nlist.remove(j);
  1148           // We will find a new edge and re-insert.
  1149           region_was_visited_before = true;
  1150           break;
  1154       // Find an incoming edge which has not been seen yet; walk through it.
  1155       assert(up == sub, "");
  1156       uint skip = region_was_visited_before ? 1 : 0;
  1157       for (uint i = 1; i < sub->req(); i++) {
  1158         Node* in = sub->in(i);
  1159         if (in != NULL && !in->is_top() && in != sub) {
  1160           if (skip == 0) {
  1161             up = in;
  1162             break;
  1164           --skip;               // skip this nontrivial input
  1168       // Set 0 bit to indicate that both paths were taken.
  1169       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
  1172     if (up == sub) {
  1173       break;    // some kind of tight cycle
  1175     if (up == orig_sub && met_dom) {
  1176       // returned back after visiting 'dom'
  1177       break;    // some kind of cycle
  1179     if (--iterations_without_region_limit < 0) {
  1180       break;    // dead cycle
  1182     sub = up;
  1185   // Did not meet Root or Start node in pred. chain.
  1186   // Conservative answer for dead code.
  1187   return false;
  1190 //------------------------------remove_dead_region-----------------------------
  1191 // This control node is dead.  Follow the subgraph below it making everything
  1192 // using it dead as well.  This will happen normally via the usual IterGVN
  1193 // worklist but this call is more efficient.  Do not update use-def info
  1194 // inside the dead region, just at the borders.
  1195 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1196   // Con's are a popular node to re-hit in the hash table again.
  1197   if( dead->is_Con() ) return;
  1199   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1200   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1201   Node_List  nstack(Thread::current()->resource_area());
  1203   Node *top = igvn->C->top();
  1204   nstack.push(dead);
  1206   while (nstack.size() > 0) {
  1207     dead = nstack.pop();
  1208     if (dead->outcnt() > 0) {
  1209       // Keep dead node on stack until all uses are processed.
  1210       nstack.push(dead);
  1211       // For all Users of the Dead...    ;-)
  1212       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1213         Node* use = dead->last_out(k);
  1214         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1215         if (use->in(0) == dead) {     // Found another dead node
  1216           assert (!use->is_Con(), "Control for Con node should be Root node.");
  1217           use->set_req(0, top);       // Cut dead edge to prevent processing
  1218           nstack.push(use);           // the dead node again.
  1219         } else {                      // Else found a not-dead user
  1220           for (uint j = 1; j < use->req(); j++) {
  1221             if (use->in(j) == dead) { // Turn all dead inputs into TOP
  1222               use->set_req(j, top);
  1225           igvn->_worklist.push(use);
  1227         // Refresh the iterator, since any number of kills might have happened.
  1228         k = dead->last_outs(kmin);
  1230     } else { // (dead->outcnt() == 0)
  1231       // Done with outputs.
  1232       igvn->hash_delete(dead);
  1233       igvn->_worklist.remove(dead);
  1234       igvn->set_type(dead, Type::TOP);
  1235       if (dead->is_macro()) {
  1236         igvn->C->remove_macro_node(dead);
  1238       // Kill all inputs to the dead guy
  1239       for (uint i=0; i < dead->req(); i++) {
  1240         Node *n = dead->in(i);      // Get input to dead guy
  1241         if (n != NULL && !n->is_top()) { // Input is valid?
  1242           dead->set_req(i, top);    // Smash input away
  1243           if (n->outcnt() == 0) {   // Input also goes dead?
  1244             if (!n->is_Con())
  1245               nstack.push(n);       // Clear it out as well
  1246           } else if (n->outcnt() == 1 &&
  1247                      n->has_special_unique_user()) {
  1248             igvn->add_users_to_worklist( n );
  1249           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1250             // Push store's uses on worklist to enable folding optimization for
  1251             // store/store and store/load to the same address.
  1252             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1253             // and remove_globally_dead_node().
  1254             igvn->add_users_to_worklist( n );
  1258     } // (dead->outcnt() == 0)
  1259   }   // while (nstack.size() > 0) for outputs
  1260   return;
  1263 //------------------------------remove_dead_region-----------------------------
  1264 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1265   Node *n = in(0);
  1266   if( !n ) return false;
  1267   // Lost control into this guy?  I.e., it became unreachable?
  1268   // Aggressively kill all unreachable code.
  1269   if (can_reshape && n->is_top()) {
  1270     kill_dead_code(this, phase->is_IterGVN());
  1271     return false; // Node is dead.
  1274   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1275     Node *m = n->nonnull_req();
  1276     set_req(0, m);
  1277     return true;
  1279   return false;
  1282 //------------------------------Ideal_DU_postCCP-------------------------------
  1283 // Idealize graph, using DU info.  Must clone result into new-space
  1284 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1285   return NULL;                 // Default to no change
  1288 //------------------------------hash-------------------------------------------
  1289 // Hash function over Nodes.
  1290 uint Node::hash() const {
  1291   uint sum = 0;
  1292   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1293     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1294   return (sum>>2) + _cnt + Opcode();
  1297 //------------------------------cmp--------------------------------------------
  1298 // Compare special parts of simple Nodes
  1299 uint Node::cmp( const Node &n ) const {
  1300   return 1;                     // Must be same
  1303 //------------------------------rematerialize-----------------------------------
  1304 // Should we clone rather than spill this instruction?
  1305 bool Node::rematerialize() const {
  1306   if ( is_Mach() )
  1307     return this->as_Mach()->rematerialize();
  1308   else
  1309     return (_flags & Flag_rematerialize) != 0;
  1312 //------------------------------needs_anti_dependence_check---------------------
  1313 // Nodes which use memory without consuming it, hence need antidependences.
  1314 bool Node::needs_anti_dependence_check() const {
  1315   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1316     return false;
  1317   else
  1318     return in(1)->bottom_type()->has_memory();
  1322 // Get an integer constant from a ConNode (or CastIINode).
  1323 // Return a default value if there is no apparent constant here.
  1324 const TypeInt* Node::find_int_type() const {
  1325   if (this->is_Type()) {
  1326     return this->as_Type()->type()->isa_int();
  1327   } else if (this->is_Con()) {
  1328     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1329     return this->bottom_type()->isa_int();
  1331   return NULL;
  1334 // Get a pointer constant from a ConstNode.
  1335 // Returns the constant if it is a pointer ConstNode
  1336 intptr_t Node::get_ptr() const {
  1337   assert( Opcode() == Op_ConP, "" );
  1338   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1341 // Get a narrow oop constant from a ConNNode.
  1342 intptr_t Node::get_narrowcon() const {
  1343   assert( Opcode() == Op_ConN, "" );
  1344   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
  1347 // Get a long constant from a ConNode.
  1348 // Return a default value if there is no apparent constant here.
  1349 const TypeLong* Node::find_long_type() const {
  1350   if (this->is_Type()) {
  1351     return this->as_Type()->type()->isa_long();
  1352   } else if (this->is_Con()) {
  1353     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1354     return this->bottom_type()->isa_long();
  1356   return NULL;
  1359 // Get a double constant from a ConstNode.
  1360 // Returns the constant if it is a double ConstNode
  1361 jdouble Node::getd() const {
  1362   assert( Opcode() == Op_ConD, "" );
  1363   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1366 // Get a float constant from a ConstNode.
  1367 // Returns the constant if it is a float ConstNode
  1368 jfloat Node::getf() const {
  1369   assert( Opcode() == Op_ConF, "" );
  1370   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1373 #ifndef PRODUCT
  1375 //----------------------------NotANode----------------------------------------
  1376 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1377 static inline bool NotANode(const Node* n) {
  1378   if (n == NULL)                   return true;
  1379   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1380   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1381   return false;
  1385 //------------------------------find------------------------------------------
  1386 // Find a neighbor of this Node with the given _idx
  1387 // If idx is negative, find its absolute value, following both _in and _out.
  1388 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
  1389                         VectorSet* old_space, VectorSet* new_space ) {
  1390   int node_idx = (idx >= 0) ? idx : -idx;
  1391   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1392   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
  1393   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
  1394   if( v->test(n->_idx) ) return;
  1395   if( (int)n->_idx == node_idx
  1396       debug_only(|| n->debug_idx() == node_idx) ) {
  1397     if (result != NULL)
  1398       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1399                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1400     result = n;
  1402   v->set(n->_idx);
  1403   for( uint i=0; i<n->len(); i++ ) {
  1404     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1405     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
  1407   // Search along forward edges also:
  1408   if (idx < 0 && !only_ctrl) {
  1409     for( uint j=0; j<n->outcnt(); j++ ) {
  1410       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1413 #ifdef ASSERT
  1414   // Search along debug_orig edges last, checking for cycles
  1415   Node* orig = n->debug_orig();
  1416   if (orig != NULL) {
  1417     do {
  1418       if (NotANode(orig))  break;
  1419       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
  1420       orig = orig->debug_orig();
  1421     } while (orig != NULL && orig != n->debug_orig());
  1423 #endif //ASSERT
  1426 // call this from debugger:
  1427 Node* find_node(Node* n, int idx) {
  1428   return n->find(idx);
  1431 //------------------------------find-------------------------------------------
  1432 Node* Node::find(int idx) const {
  1433   ResourceArea *area = Thread::current()->resource_area();
  1434   VectorSet old_space(area), new_space(area);
  1435   Node* result = NULL;
  1436   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
  1437   return result;
  1440 //------------------------------find_ctrl--------------------------------------
  1441 // Find an ancestor to this node in the control history with given _idx
  1442 Node* Node::find_ctrl(int idx) const {
  1443   ResourceArea *area = Thread::current()->resource_area();
  1444   VectorSet old_space(area), new_space(area);
  1445   Node* result = NULL;
  1446   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
  1447   return result;
  1449 #endif
  1453 #ifndef PRODUCT
  1454 int Node::_in_dump_cnt = 0;
  1456 // -----------------------------Name-------------------------------------------
  1457 extern const char *NodeClassNames[];
  1458 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1460 static bool is_disconnected(const Node* n) {
  1461   for (uint i = 0; i < n->req(); i++) {
  1462     if (n->in(i) != NULL)  return false;
  1464   return true;
  1467 #ifdef ASSERT
  1468 static void dump_orig(Node* orig) {
  1469   Compile* C = Compile::current();
  1470   if (NotANode(orig))  orig = NULL;
  1471   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
  1472   if (orig == NULL)  return;
  1473   tty->print(" !orig=");
  1474   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1475   if (NotANode(fast))  fast = NULL;
  1476   while (orig != NULL) {
  1477     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1478     if (discon)  tty->print("[");
  1479     if (!Compile::current()->node_arena()->contains(orig))
  1480       tty->print("o");
  1481     tty->print("%d", orig->_idx);
  1482     if (discon)  tty->print("]");
  1483     orig = orig->debug_orig();
  1484     if (NotANode(orig))  orig = NULL;
  1485     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
  1486     if (orig != NULL)  tty->print(",");
  1487     if (fast != NULL) {
  1488       // Step fast twice for each single step of orig:
  1489       fast = fast->debug_orig();
  1490       if (NotANode(fast))  fast = NULL;
  1491       if (fast != NULL && fast != orig) {
  1492         fast = fast->debug_orig();
  1493         if (NotANode(fast))  fast = NULL;
  1495       if (fast == orig) {
  1496         tty->print("...");
  1497         break;
  1503 void Node::set_debug_orig(Node* orig) {
  1504   _debug_orig = orig;
  1505   if (BreakAtNode == 0)  return;
  1506   if (NotANode(orig))  orig = NULL;
  1507   int trip = 10;
  1508   while (orig != NULL) {
  1509     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1510       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1511                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1512       BREAKPOINT;
  1514     orig = orig->debug_orig();
  1515     if (NotANode(orig))  orig = NULL;
  1516     if (trip-- <= 0)  break;
  1519 #endif //ASSERT
  1521 //------------------------------dump------------------------------------------
  1522 // Dump a Node
  1523 void Node::dump() const {
  1524   Compile* C = Compile::current();
  1525   bool is_new = C->node_arena()->contains(this);
  1526   _in_dump_cnt++;
  1527   tty->print("%c%d\t%s\t=== ",
  1528              is_new ? ' ' : 'o', _idx, Name());
  1530   // Dump the required and precedence inputs
  1531   dump_req();
  1532   dump_prec();
  1533   // Dump the outputs
  1534   dump_out();
  1536   if (is_disconnected(this)) {
  1537 #ifdef ASSERT
  1538     tty->print("  [%d]",debug_idx());
  1539     dump_orig(debug_orig());
  1540 #endif
  1541     tty->cr();
  1542     _in_dump_cnt--;
  1543     return;                     // don't process dead nodes
  1546   // Dump node-specific info
  1547   dump_spec(tty);
  1548 #ifdef ASSERT
  1549   // Dump the non-reset _debug_idx
  1550   if( Verbose && WizardMode ) {
  1551     tty->print("  [%d]",debug_idx());
  1553 #endif
  1555   const Type *t = bottom_type();
  1557   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1558     const TypeInstPtr  *toop = t->isa_instptr();
  1559     const TypeKlassPtr *tkls = t->isa_klassptr();
  1560     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1561     if( klass && klass->is_loaded() && klass->is_interface() ) {
  1562       tty->print("  Interface:");
  1563     } else if( toop ) {
  1564       tty->print("  Oop:");
  1565     } else if( tkls ) {
  1566       tty->print("  Klass:");
  1568     t->dump();
  1569   } else if( t == Type::MEMORY ) {
  1570     tty->print("  Memory:");
  1571     MemNode::dump_adr_type(this, adr_type(), tty);
  1572   } else if( Verbose || WizardMode ) {
  1573     tty->print("  Type:");
  1574     if( t ) {
  1575       t->dump();
  1576     } else {
  1577       tty->print("no type");
  1579   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
  1580     // Dump MachSpillcopy vector type.
  1581     t->dump();
  1583   if (is_new) {
  1584     debug_only(dump_orig(debug_orig()));
  1585     Node_Notes* nn = C->node_notes_at(_idx);
  1586     if (nn != NULL && !nn->is_clear()) {
  1587       if (nn->jvms() != NULL) {
  1588         tty->print(" !jvms:");
  1589         nn->jvms()->dump_spec(tty);
  1593   tty->cr();
  1594   _in_dump_cnt--;
  1597 //------------------------------dump_req--------------------------------------
  1598 void Node::dump_req() const {
  1599   // Dump the required input edges
  1600   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1601     Node* d = in(i);
  1602     if (d == NULL) {
  1603       tty->print("_ ");
  1604     } else if (NotANode(d)) {
  1605       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1606     } else {
  1607       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1613 //------------------------------dump_prec-------------------------------------
  1614 void Node::dump_prec() const {
  1615   // Dump the precedence edges
  1616   int any_prec = 0;
  1617   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1618     Node* p = in(i);
  1619     if (p != NULL) {
  1620       if( !any_prec++ ) tty->print(" |");
  1621       if (NotANode(p)) { tty->print("NotANode "); continue; }
  1622       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1627 //------------------------------dump_out--------------------------------------
  1628 void Node::dump_out() const {
  1629   // Delimit the output edges
  1630   tty->print(" [[");
  1631   // Dump the output edges
  1632   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1633     Node* u = _out[i];
  1634     if (u == NULL) {
  1635       tty->print("_ ");
  1636     } else if (NotANode(u)) {
  1637       tty->print("NotANode ");
  1638     } else {
  1639       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1642   tty->print("]] ");
  1645 //------------------------------dump_nodes-------------------------------------
  1646 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1647   Node* s = (Node*)start; // remove const
  1648   if (NotANode(s)) return;
  1650   uint depth = (uint)ABS(d);
  1651   int direction = d;
  1652   Compile* C = Compile::current();
  1653   GrowableArray <Node *> nstack(C->unique());
  1655   nstack.append(s);
  1656   int begin = 0;
  1657   int end = 0;
  1658   for(uint i = 0; i < depth; i++) {
  1659     end = nstack.length();
  1660     for(int j = begin; j < end; j++) {
  1661       Node* tp  = nstack.at(j);
  1662       uint limit = direction > 0 ? tp->len() : tp->outcnt();
  1663       for(uint k = 0; k < limit; k++) {
  1664         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
  1666         if (NotANode(n))  continue;
  1667         // do not recurse through top or the root (would reach unrelated stuff)
  1668         if (n->is_Root() || n->is_top())  continue;
  1669         if (only_ctrl && !n->is_CFG()) continue;
  1671         bool on_stack = nstack.contains(n);
  1672         if (!on_stack) {
  1673           nstack.append(n);
  1677     begin = end;
  1679   end = nstack.length();
  1680   if (direction > 0) {
  1681     for(int j = end-1; j >= 0; j--) {
  1682       nstack.at(j)->dump();
  1684   } else {
  1685     for(int j = 0; j < end; j++) {
  1686       nstack.at(j)->dump();
  1691 //------------------------------dump-------------------------------------------
  1692 void Node::dump(int d) const {
  1693   dump_nodes(this, d, false);
  1696 //------------------------------dump_ctrl--------------------------------------
  1697 // Dump a Node's control history to depth
  1698 void Node::dump_ctrl(int d) const {
  1699   dump_nodes(this, d, true);
  1702 // VERIFICATION CODE
  1703 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1704 // there is a corresponding Def-Use edge.
  1705 //------------------------------verify_edges-----------------------------------
  1706 void Node::verify_edges(Unique_Node_List &visited) {
  1707   uint i, j, idx;
  1708   int  cnt;
  1709   Node *n;
  1711   // Recursive termination test
  1712   if (visited.member(this))  return;
  1713   visited.push(this);
  1715   // Walk over all input edges, checking for correspondence
  1716   for( i = 0; i < len(); i++ ) {
  1717     n = in(i);
  1718     if (n != NULL && !n->is_top()) {
  1719       // Count instances of (Node *)this
  1720       cnt = 0;
  1721       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1722         if (n->_out[idx] == (Node *)this)  cnt++;
  1724       assert( cnt > 0,"Failed to find Def-Use edge." );
  1725       // Check for duplicate edges
  1726       // walk the input array downcounting the input edges to n
  1727       for( j = 0; j < len(); j++ ) {
  1728         if( in(j) == n ) cnt--;
  1730       assert( cnt == 0,"Mismatched edge count.");
  1731     } else if (n == NULL) {
  1732       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1733     } else {
  1734       assert(n->is_top(), "sanity");
  1735       // Nothing to check.
  1738   // Recursive walk over all input edges
  1739   for( i = 0; i < len(); i++ ) {
  1740     n = in(i);
  1741     if( n != NULL )
  1742       in(i)->verify_edges(visited);
  1746 //------------------------------verify_recur-----------------------------------
  1747 static const Node *unique_top = NULL;
  1749 void Node::verify_recur(const Node *n, int verify_depth,
  1750                         VectorSet &old_space, VectorSet &new_space) {
  1751   if ( verify_depth == 0 )  return;
  1752   if (verify_depth > 0)  --verify_depth;
  1754   Compile* C = Compile::current();
  1756   // Contained in new_space or old_space?
  1757   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1758   // Check for visited in the proper space.  Numberings are not unique
  1759   // across spaces so we need a separate VectorSet for each space.
  1760   if( v->test_set(n->_idx) ) return;
  1762   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1763     if (C->cached_top_node() == NULL)
  1764       C->set_cached_top_node((Node*)n);
  1765     assert(C->cached_top_node() == n, "TOP node must be unique");
  1768   for( uint i = 0; i < n->len(); i++ ) {
  1769     Node *x = n->in(i);
  1770     if (!x || x->is_top()) continue;
  1772     // Verify my input has a def-use edge to me
  1773     if (true /*VerifyDefUse*/) {
  1774       // Count use-def edges from n to x
  1775       int cnt = 0;
  1776       for( uint j = 0; j < n->len(); j++ )
  1777         if( n->in(j) == x )
  1778           cnt++;
  1779       // Count def-use edges from x to n
  1780       uint max = x->_outcnt;
  1781       for( uint k = 0; k < max; k++ )
  1782         if (x->_out[k] == n)
  1783           cnt--;
  1784       assert( cnt == 0, "mismatched def-use edge counts" );
  1787     verify_recur(x, verify_depth, old_space, new_space);
  1792 //------------------------------verify-----------------------------------------
  1793 // Check Def-Use info for my subgraph
  1794 void Node::verify() const {
  1795   Compile* C = Compile::current();
  1796   Node* old_top = C->cached_top_node();
  1797   ResourceMark rm;
  1798   ResourceArea *area = Thread::current()->resource_area();
  1799   VectorSet old_space(area), new_space(area);
  1800   verify_recur(this, -1, old_space, new_space);
  1801   C->set_cached_top_node(old_top);
  1803 #endif
  1806 //------------------------------walk-------------------------------------------
  1807 // Graph walk, with both pre-order and post-order functions
  1808 void Node::walk(NFunc pre, NFunc post, void *env) {
  1809   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1810   walk_(pre, post, env, visited);
  1813 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1814   if( visited.test_set(_idx) ) return;
  1815   pre(*this,env);               // Call the pre-order walk function
  1816   for( uint i=0; i<_max; i++ )
  1817     if( in(i) )                 // Input exists and is not walked?
  1818       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1819   post(*this,env);              // Call the post-order walk function
  1822 void Node::nop(Node &, void*) {}
  1824 //------------------------------Registers--------------------------------------
  1825 // Do we Match on this edge index or not?  Generally false for Control
  1826 // and true for everything else.  Weird for calls & returns.
  1827 uint Node::match_edge(uint idx) const {
  1828   return idx;                   // True for other than index 0 (control)
  1831 // Register classes are defined for specific machines
  1832 const RegMask &Node::out_RegMask() const {
  1833   ShouldNotCallThis();
  1834   return *(new RegMask());
  1837 const RegMask &Node::in_RegMask(uint) const {
  1838   ShouldNotCallThis();
  1839   return *(new RegMask());
  1842 //=============================================================================
  1843 //-----------------------------------------------------------------------------
  1844 void Node_Array::reset( Arena *new_arena ) {
  1845   _a->Afree(_nodes,_max*sizeof(Node*));
  1846   _max   = 0;
  1847   _nodes = NULL;
  1848   _a     = new_arena;
  1851 //------------------------------clear------------------------------------------
  1852 // Clear all entries in _nodes to NULL but keep storage
  1853 void Node_Array::clear() {
  1854   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  1857 //-----------------------------------------------------------------------------
  1858 void Node_Array::grow( uint i ) {
  1859   if( !_max ) {
  1860     _max = 1;
  1861     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  1862     _nodes[0] = NULL;
  1864   uint old = _max;
  1865   while( i >= _max ) _max <<= 1;        // Double to fit
  1866   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  1867   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  1870 //-----------------------------------------------------------------------------
  1871 void Node_Array::insert( uint i, Node *n ) {
  1872   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  1873   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  1874   _nodes[i] = n;
  1877 //-----------------------------------------------------------------------------
  1878 void Node_Array::remove( uint i ) {
  1879   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  1880   _nodes[_max-1] = NULL;
  1883 //-----------------------------------------------------------------------------
  1884 void Node_Array::sort( C_sort_func_t func) {
  1885   qsort( _nodes, _max, sizeof( Node* ), func );
  1888 //-----------------------------------------------------------------------------
  1889 void Node_Array::dump() const {
  1890 #ifndef PRODUCT
  1891   for( uint i = 0; i < _max; i++ ) {
  1892     Node *nn = _nodes[i];
  1893     if( nn != NULL ) {
  1894       tty->print("%5d--> ",i); nn->dump();
  1897 #endif
  1900 //--------------------------is_iteratively_computed------------------------------
  1901 // Operation appears to be iteratively computed (such as an induction variable)
  1902 // It is possible for this operation to return false for a loop-varying
  1903 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  1904 bool Node::is_iteratively_computed() {
  1905   if (ideal_reg()) { // does operation have a result register?
  1906     for (uint i = 1; i < req(); i++) {
  1907       Node* n = in(i);
  1908       if (n != NULL && n->is_Phi()) {
  1909         for (uint j = 1; j < n->req(); j++) {
  1910           if (n->in(j) == this) {
  1911             return true;
  1917   return false;
  1920 //--------------------------find_similar------------------------------
  1921 // Return a node with opcode "opc" and same inputs as "this" if one can
  1922 // be found; Otherwise return NULL;
  1923 Node* Node::find_similar(int opc) {
  1924   if (req() >= 2) {
  1925     Node* def = in(1);
  1926     if (def && def->outcnt() >= 2) {
  1927       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  1928         Node* use = def->fast_out(i);
  1929         if (use->Opcode() == opc &&
  1930             use->req() == req()) {
  1931           uint j;
  1932           for (j = 0; j < use->req(); j++) {
  1933             if (use->in(j) != in(j)) {
  1934               break;
  1937           if (j == use->req()) {
  1938             return use;
  1944   return NULL;
  1948 //--------------------------unique_ctrl_out------------------------------
  1949 // Return the unique control out if only one. Null if none or more than one.
  1950 Node* Node::unique_ctrl_out() {
  1951   Node* found = NULL;
  1952   for (uint i = 0; i < outcnt(); i++) {
  1953     Node* use = raw_out(i);
  1954     if (use->is_CFG() && use != this) {
  1955       if (found != NULL) return NULL;
  1956       found = use;
  1959   return found;
  1962 //=============================================================================
  1963 //------------------------------yank-------------------------------------------
  1964 // Find and remove
  1965 void Node_List::yank( Node *n ) {
  1966   uint i;
  1967   for( i = 0; i < _cnt; i++ )
  1968     if( _nodes[i] == n )
  1969       break;
  1971   if( i < _cnt )
  1972     _nodes[i] = _nodes[--_cnt];
  1975 //------------------------------dump-------------------------------------------
  1976 void Node_List::dump() const {
  1977 #ifndef PRODUCT
  1978   for( uint i = 0; i < _cnt; i++ )
  1979     if( _nodes[i] ) {
  1980       tty->print("%5d--> ",i);
  1981       _nodes[i]->dump();
  1983 #endif
  1986 //=============================================================================
  1987 //------------------------------remove-----------------------------------------
  1988 void Unique_Node_List::remove( Node *n ) {
  1989   if( _in_worklist[n->_idx] ) {
  1990     for( uint i = 0; i < size(); i++ )
  1991       if( _nodes[i] == n ) {
  1992         map(i,Node_List::pop());
  1993         _in_worklist >>= n->_idx;
  1994         return;
  1996     ShouldNotReachHere();
  2000 //-----------------------remove_useless_nodes----------------------------------
  2001 // Remove useless nodes from worklist
  2002 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  2004   for( uint i = 0; i < size(); ++i ) {
  2005     Node *n = at(i);
  2006     assert( n != NULL, "Did not expect null entries in worklist");
  2007     if( ! useful.test(n->_idx) ) {
  2008       _in_worklist >>= n->_idx;
  2009       map(i,Node_List::pop());
  2010       // Node *replacement = Node_List::pop();
  2011       // if( i != size() ) { // Check if removing last entry
  2012       //   _nodes[i] = replacement;
  2013       // }
  2014       --i;  // Visit popped node
  2015       // If it was last entry, loop terminates since size() was also reduced
  2020 //=============================================================================
  2021 void Node_Stack::grow() {
  2022   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  2023   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  2024   size_t max = old_max << 1;             // max * 2
  2025   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  2026   _inode_max = _inodes + max;
  2027   _inode_top = _inodes + old_top;        // restore _top
  2030 // Node_Stack is used to map nodes.
  2031 Node* Node_Stack::find(uint idx) const {
  2032   uint sz = size();
  2033   for (uint i=0; i < sz; i++) {
  2034     if (idx == index_at(i) )
  2035       return node_at(i);
  2037   return NULL;
  2040 //=============================================================================
  2041 uint TypeNode::size_of() const { return sizeof(*this); }
  2042 #ifndef PRODUCT
  2043 void TypeNode::dump_spec(outputStream *st) const {
  2044   if( !Verbose && !WizardMode ) {
  2045     // standard dump does this in Verbose and WizardMode
  2046     st->print(" #"); _type->dump_on(st);
  2049 #endif
  2050 uint TypeNode::hash() const {
  2051   return Node::hash() + _type->hash();
  2053 uint TypeNode::cmp( const Node &n ) const
  2054 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  2055 const Type *TypeNode::bottom_type() const { return _type; }
  2056 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  2058 //------------------------------ideal_reg--------------------------------------
  2059 uint TypeNode::ideal_reg() const {
  2060   return _type->ideal_reg();

mercurial