src/share/vm/opto/matcher.cpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 4037
da91efe96a93
child 4106
7eca5de9e0b6
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "opto/vectornode.hpp"
    39 #include "runtime/atomic.hpp"
    40 #include "runtime/os.hpp"
    41 #ifdef TARGET_ARCH_MODEL_x86_32
    42 # include "adfiles/ad_x86_32.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_MODEL_x86_64
    45 # include "adfiles/ad_x86_64.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_MODEL_sparc
    48 # include "adfiles/ad_sparc.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_MODEL_zero
    51 # include "adfiles/ad_zero.hpp"
    52 #endif
    53 #ifdef TARGET_ARCH_MODEL_arm
    54 # include "adfiles/ad_arm.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_MODEL_ppc
    57 # include "adfiles/ad_ppc.hpp"
    58 #endif
    60 OptoReg::Name OptoReg::c_frame_pointer;
    62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    63 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    64 RegMask Matcher::STACK_ONLY_mask;
    65 RegMask Matcher::c_frame_ptr_mask;
    66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    67 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    69 //---------------------------Matcher-------------------------------------------
    70 Matcher::Matcher( Node_List &proj_list ) :
    71   PhaseTransform( Phase::Ins_Select ),
    72 #ifdef ASSERT
    73   _old2new_map(C->comp_arena()),
    74   _new2old_map(C->comp_arena()),
    75 #endif
    76   _shared_nodes(C->comp_arena()),
    77   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    78   _swallowed(swallowed),
    79   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    80   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    81   _must_clone(must_clone), _proj_list(proj_list),
    82   _register_save_policy(register_save_policy),
    83   _c_reg_save_policy(c_reg_save_policy),
    84   _register_save_type(register_save_type),
    85   _ruleName(ruleName),
    86   _allocation_started(false),
    87   _states_arena(Chunk::medium_size),
    88   _visited(&_states_arena),
    89   _shared(&_states_arena),
    90   _dontcare(&_states_arena) {
    91   C->set_matcher(this);
    93   idealreg2spillmask  [Op_RegI] = NULL;
    94   idealreg2spillmask  [Op_RegN] = NULL;
    95   idealreg2spillmask  [Op_RegL] = NULL;
    96   idealreg2spillmask  [Op_RegF] = NULL;
    97   idealreg2spillmask  [Op_RegD] = NULL;
    98   idealreg2spillmask  [Op_RegP] = NULL;
    99   idealreg2spillmask  [Op_VecS] = NULL;
   100   idealreg2spillmask  [Op_VecD] = NULL;
   101   idealreg2spillmask  [Op_VecX] = NULL;
   102   idealreg2spillmask  [Op_VecY] = NULL;
   104   idealreg2debugmask  [Op_RegI] = NULL;
   105   idealreg2debugmask  [Op_RegN] = NULL;
   106   idealreg2debugmask  [Op_RegL] = NULL;
   107   idealreg2debugmask  [Op_RegF] = NULL;
   108   idealreg2debugmask  [Op_RegD] = NULL;
   109   idealreg2debugmask  [Op_RegP] = NULL;
   110   idealreg2debugmask  [Op_VecS] = NULL;
   111   idealreg2debugmask  [Op_VecD] = NULL;
   112   idealreg2debugmask  [Op_VecX] = NULL;
   113   idealreg2debugmask  [Op_VecY] = NULL;
   115   idealreg2mhdebugmask[Op_RegI] = NULL;
   116   idealreg2mhdebugmask[Op_RegN] = NULL;
   117   idealreg2mhdebugmask[Op_RegL] = NULL;
   118   idealreg2mhdebugmask[Op_RegF] = NULL;
   119   idealreg2mhdebugmask[Op_RegD] = NULL;
   120   idealreg2mhdebugmask[Op_RegP] = NULL;
   121   idealreg2mhdebugmask[Op_VecS] = NULL;
   122   idealreg2mhdebugmask[Op_VecD] = NULL;
   123   idealreg2mhdebugmask[Op_VecX] = NULL;
   124   idealreg2mhdebugmask[Op_VecY] = NULL;
   126   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   127 }
   129 //------------------------------warp_incoming_stk_arg------------------------
   130 // This warps a VMReg into an OptoReg::Name
   131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   132   OptoReg::Name warped;
   133   if( reg->is_stack() ) {  // Stack slot argument?
   134     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   135     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   136     if( warped >= _in_arg_limit )
   137       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   138     if (!RegMask::can_represent_arg(warped)) {
   139       // the compiler cannot represent this method's calling sequence
   140       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   141       return OptoReg::Bad;
   142     }
   143     return warped;
   144   }
   145   return OptoReg::as_OptoReg(reg);
   146 }
   148 //---------------------------compute_old_SP------------------------------------
   149 OptoReg::Name Compile::compute_old_SP() {
   150   int fixed    = fixed_slots();
   151   int preserve = in_preserve_stack_slots();
   152   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   153 }
   157 #ifdef ASSERT
   158 void Matcher::verify_new_nodes_only(Node* xroot) {
   159   // Make sure that the new graph only references new nodes
   160   ResourceMark rm;
   161   Unique_Node_List worklist;
   162   VectorSet visited(Thread::current()->resource_area());
   163   worklist.push(xroot);
   164   while (worklist.size() > 0) {
   165     Node* n = worklist.pop();
   166     visited <<= n->_idx;
   167     assert(C->node_arena()->contains(n), "dead node");
   168     for (uint j = 0; j < n->req(); j++) {
   169       Node* in = n->in(j);
   170       if (in != NULL) {
   171         assert(C->node_arena()->contains(in), "dead node");
   172         if (!visited.test(in->_idx)) {
   173           worklist.push(in);
   174         }
   175       }
   176     }
   177   }
   178 }
   179 #endif
   182 //---------------------------match---------------------------------------------
   183 void Matcher::match( ) {
   184   if( MaxLabelRootDepth < 100 ) { // Too small?
   185     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   186     MaxLabelRootDepth = 100;
   187   }
   188   // One-time initialization of some register masks.
   189   init_spill_mask( C->root()->in(1) );
   190   _return_addr_mask = return_addr();
   191 #ifdef _LP64
   192   // Pointers take 2 slots in 64-bit land
   193   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   194 #endif
   196   // Map a Java-signature return type into return register-value
   197   // machine registers for 0, 1 and 2 returned values.
   198   const TypeTuple *range = C->tf()->range();
   199   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   200     // Get ideal-register return type
   201     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
   202     // Get machine return register
   203     uint sop = C->start()->Opcode();
   204     OptoRegPair regs = return_value(ireg, false);
   206     // And mask for same
   207     _return_value_mask = RegMask(regs.first());
   208     if( OptoReg::is_valid(regs.second()) )
   209       _return_value_mask.Insert(regs.second());
   210   }
   212   // ---------------
   213   // Frame Layout
   215   // Need the method signature to determine the incoming argument types,
   216   // because the types determine which registers the incoming arguments are
   217   // in, and this affects the matched code.
   218   const TypeTuple *domain = C->tf()->domain();
   219   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   220   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   221   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   222   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   223   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   224   uint i;
   225   for( i = 0; i<argcnt; i++ ) {
   226     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   227   }
   229   // Pass array of ideal registers and length to USER code (from the AD file)
   230   // that will convert this to an array of register numbers.
   231   const StartNode *start = C->start();
   232   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   233 #ifdef ASSERT
   234   // Sanity check users' calling convention.  Real handy while trying to
   235   // get the initial port correct.
   236   { for (uint i = 0; i<argcnt; i++) {
   237       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   238         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   239         _parm_regs[i].set_bad();
   240         continue;
   241       }
   242       VMReg parm_reg = vm_parm_regs[i].first();
   243       assert(parm_reg->is_valid(), "invalid arg?");
   244       if (parm_reg->is_reg()) {
   245         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   246         assert(can_be_java_arg(opto_parm_reg) ||
   247                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   248                opto_parm_reg == inline_cache_reg(),
   249                "parameters in register must be preserved by runtime stubs");
   250       }
   251       for (uint j = 0; j < i; j++) {
   252         assert(parm_reg != vm_parm_regs[j].first(),
   253                "calling conv. must produce distinct regs");
   254       }
   255     }
   256   }
   257 #endif
   259   // Do some initial frame layout.
   261   // Compute the old incoming SP (may be called FP) as
   262   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   263   _old_SP = C->compute_old_SP();
   264   assert( is_even(_old_SP), "must be even" );
   266   // Compute highest incoming stack argument as
   267   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   268   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   269   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   270   for( i = 0; i < argcnt; i++ ) {
   271     // Permit args to have no register
   272     _calling_convention_mask[i].Clear();
   273     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   274       continue;
   275     }
   276     // calling_convention returns stack arguments as a count of
   277     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   278     // the allocators point of view, taking into account all the
   279     // preserve area, locks & pad2.
   281     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   282     if( OptoReg::is_valid(reg1))
   283       _calling_convention_mask[i].Insert(reg1);
   285     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   286     if( OptoReg::is_valid(reg2))
   287       _calling_convention_mask[i].Insert(reg2);
   289     // Saved biased stack-slot register number
   290     _parm_regs[i].set_pair(reg2, reg1);
   291   }
   293   // Finally, make sure the incoming arguments take up an even number of
   294   // words, in case the arguments or locals need to contain doubleword stack
   295   // slots.  The rest of the system assumes that stack slot pairs (in
   296   // particular, in the spill area) which look aligned will in fact be
   297   // aligned relative to the stack pointer in the target machine.  Double
   298   // stack slots will always be allocated aligned.
   299   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   301   // Compute highest outgoing stack argument as
   302   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   303   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   304   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   306   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
   307     // the compiler cannot represent this method's calling sequence
   308     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   309   }
   311   if (C->failing())  return;  // bailed out on incoming arg failure
   313   // ---------------
   314   // Collect roots of matcher trees.  Every node for which
   315   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   316   // can be a valid interior of some tree.
   317   find_shared( C->root() );
   318   find_shared( C->top() );
   320   C->print_method("Before Matching");
   322   // Create new ideal node ConP #NULL even if it does exist in old space
   323   // to avoid false sharing if the corresponding mach node is not used.
   324   // The corresponding mach node is only used in rare cases for derived
   325   // pointers.
   326   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   328   // Swap out to old-space; emptying new-space
   329   Arena *old = C->node_arena()->move_contents(C->old_arena());
   331   // Save debug and profile information for nodes in old space:
   332   _old_node_note_array = C->node_note_array();
   333   if (_old_node_note_array != NULL) {
   334     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   335                            (C->comp_arena(), _old_node_note_array->length(),
   336                             0, NULL));
   337   }
   339   // Pre-size the new_node table to avoid the need for range checks.
   340   grow_new_node_array(C->unique());
   342   // Reset node counter so MachNodes start with _idx at 0
   343   int nodes = C->unique(); // save value
   344   C->set_unique(0);
   346   // Recursively match trees from old space into new space.
   347   // Correct leaves of new-space Nodes; they point to old-space.
   348   _visited.Clear();             // Clear visit bits for xform call
   349   C->set_cached_top_node(xform( C->top(), nodes ));
   350   if (!C->failing()) {
   351     Node* xroot =        xform( C->root(), 1 );
   352     if (xroot == NULL) {
   353       Matcher::soft_match_failure();  // recursive matching process failed
   354       C->record_method_not_compilable("instruction match failed");
   355     } else {
   356       // During matching shared constants were attached to C->root()
   357       // because xroot wasn't available yet, so transfer the uses to
   358       // the xroot.
   359       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   360         Node* n = C->root()->fast_out(j);
   361         if (C->node_arena()->contains(n)) {
   362           assert(n->in(0) == C->root(), "should be control user");
   363           n->set_req(0, xroot);
   364           --j;
   365           --jmax;
   366         }
   367       }
   369       // Generate new mach node for ConP #NULL
   370       assert(new_ideal_null != NULL, "sanity");
   371       _mach_null = match_tree(new_ideal_null);
   372       // Don't set control, it will confuse GCM since there are no uses.
   373       // The control will be set when this node is used first time
   374       // in find_base_for_derived().
   375       assert(_mach_null != NULL, "");
   377       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   379 #ifdef ASSERT
   380       verify_new_nodes_only(xroot);
   381 #endif
   382     }
   383   }
   384   if (C->top() == NULL || C->root() == NULL) {
   385     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   386   }
   387   if (C->failing()) {
   388     // delete old;
   389     old->destruct_contents();
   390     return;
   391   }
   392   assert( C->top(), "" );
   393   assert( C->root(), "" );
   394   validate_null_checks();
   396   // Now smoke old-space
   397   NOT_DEBUG( old->destruct_contents() );
   399   // ------------------------
   400   // Set up save-on-entry registers
   401   Fixup_Save_On_Entry( );
   402 }
   405 //------------------------------Fixup_Save_On_Entry----------------------------
   406 // The stated purpose of this routine is to take care of save-on-entry
   407 // registers.  However, the overall goal of the Match phase is to convert into
   408 // machine-specific instructions which have RegMasks to guide allocation.
   409 // So what this procedure really does is put a valid RegMask on each input
   410 // to the machine-specific variations of all Return, TailCall and Halt
   411 // instructions.  It also adds edgs to define the save-on-entry values (and of
   412 // course gives them a mask).
   414 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   415   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   416   // Do all the pre-defined register masks
   417   rms[TypeFunc::Control  ] = RegMask::Empty;
   418   rms[TypeFunc::I_O      ] = RegMask::Empty;
   419   rms[TypeFunc::Memory   ] = RegMask::Empty;
   420   rms[TypeFunc::ReturnAdr] = ret_adr;
   421   rms[TypeFunc::FramePtr ] = fp;
   422   return rms;
   423 }
   425 //---------------------------init_first_stack_mask-----------------------------
   426 // Create the initial stack mask used by values spilling to the stack.
   427 // Disallow any debug info in outgoing argument areas by setting the
   428 // initial mask accordingly.
   429 void Matcher::init_first_stack_mask() {
   431   // Allocate storage for spill masks as masks for the appropriate load type.
   432   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
   434   idealreg2spillmask  [Op_RegN] = &rms[0];
   435   idealreg2spillmask  [Op_RegI] = &rms[1];
   436   idealreg2spillmask  [Op_RegL] = &rms[2];
   437   idealreg2spillmask  [Op_RegF] = &rms[3];
   438   idealreg2spillmask  [Op_RegD] = &rms[4];
   439   idealreg2spillmask  [Op_RegP] = &rms[5];
   441   idealreg2debugmask  [Op_RegN] = &rms[6];
   442   idealreg2debugmask  [Op_RegI] = &rms[7];
   443   idealreg2debugmask  [Op_RegL] = &rms[8];
   444   idealreg2debugmask  [Op_RegF] = &rms[9];
   445   idealreg2debugmask  [Op_RegD] = &rms[10];
   446   idealreg2debugmask  [Op_RegP] = &rms[11];
   448   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   449   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   450   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   451   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   452   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   453   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   455   idealreg2spillmask  [Op_VecS] = &rms[18];
   456   idealreg2spillmask  [Op_VecD] = &rms[19];
   457   idealreg2spillmask  [Op_VecX] = &rms[20];
   458   idealreg2spillmask  [Op_VecY] = &rms[21];
   460   OptoReg::Name i;
   462   // At first, start with the empty mask
   463   C->FIRST_STACK_mask().Clear();
   465   // Add in the incoming argument area
   466   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   467   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   468     C->FIRST_STACK_mask().Insert(i);
   470   // Add in all bits past the outgoing argument area
   471   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
   472             "must be able to represent all call arguments in reg mask");
   473   init = _out_arg_limit;
   474   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   475     C->FIRST_STACK_mask().Insert(i);
   477   // Finally, set the "infinite stack" bit.
   478   C->FIRST_STACK_mask().set_AllStack();
   480   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   481   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
   482   // Keep spill masks aligned.
   483   aligned_stack_mask.clear_to_pairs();
   484   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   486   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   487 #ifdef _LP64
   488   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   489    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   490    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
   491 #else
   492    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   493 #endif
   494   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   495    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   496   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   497    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
   498   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   499    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   500   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   501    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
   503   if (Matcher::vector_size_supported(T_BYTE,4)) {
   504     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
   505      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
   506   }
   507   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   508     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
   509      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
   510   }
   511   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   512      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
   513      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   514     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
   515      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
   516   }
   517   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   518      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
   519      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   520     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
   521      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
   522   }
   523    if (UseFPUForSpilling) {
   524      // This mask logic assumes that the spill operations are
   525      // symmetric and that the registers involved are the same size.
   526      // On sparc for instance we may have to use 64 bit moves will
   527      // kill 2 registers when used with F0-F31.
   528      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   529      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   530 #ifdef _LP64
   531      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   532      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   533      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   534      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   535 #else
   536      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   537 #ifdef ARM
   538      // ARM has support for moving 64bit values between a pair of
   539      // integer registers and a double register
   540      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   541      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   542 #endif
   543 #endif
   544    }
   546   // Make up debug masks.  Any spill slot plus callee-save registers.
   547   // Caller-save registers are assumed to be trashable by the various
   548   // inline-cache fixup routines.
   549   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   550   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   551   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   552   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   553   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   554   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   556   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   557   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   558   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   559   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   560   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   561   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   563   // Prevent stub compilations from attempting to reference
   564   // callee-saved registers from debug info
   565   bool exclude_soe = !Compile::current()->is_method_compilation();
   567   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   568     // registers the caller has to save do not work
   569     if( _register_save_policy[i] == 'C' ||
   570         _register_save_policy[i] == 'A' ||
   571         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   572       idealreg2debugmask  [Op_RegN]->Remove(i);
   573       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   574       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   575       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   576       idealreg2debugmask  [Op_RegD]->Remove(i);
   577       idealreg2debugmask  [Op_RegP]->Remove(i);
   579       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   580       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   581       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   582       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   583       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   584       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   585     }
   586   }
   588   // Subtract the register we use to save the SP for MethodHandle
   589   // invokes to from the debug mask.
   590   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   591   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   592   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   593   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   594   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   595   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   596   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   597 }
   599 //---------------------------is_save_on_entry----------------------------------
   600 bool Matcher::is_save_on_entry( int reg ) {
   601   return
   602     _register_save_policy[reg] == 'E' ||
   603     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   604     // Also save argument registers in the trampolining stubs
   605     (C->save_argument_registers() && is_spillable_arg(reg));
   606 }
   608 //---------------------------Fixup_Save_On_Entry-------------------------------
   609 void Matcher::Fixup_Save_On_Entry( ) {
   610   init_first_stack_mask();
   612   Node *root = C->root();       // Short name for root
   613   // Count number of save-on-entry registers.
   614   uint soe_cnt = number_of_saved_registers();
   615   uint i;
   617   // Find the procedure Start Node
   618   StartNode *start = C->start();
   619   assert( start, "Expect a start node" );
   621   // Save argument registers in the trampolining stubs
   622   if( C->save_argument_registers() )
   623     for( i = 0; i < _last_Mach_Reg; i++ )
   624       if( is_spillable_arg(i) )
   625         soe_cnt++;
   627   // Input RegMask array shared by all Returns.
   628   // The type for doubles and longs has a count of 2, but
   629   // there is only 1 returned value
   630   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   631   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   632   // Returns have 0 or 1 returned values depending on call signature.
   633   // Return register is specified by return_value in the AD file.
   634   if (ret_edge_cnt > TypeFunc::Parms)
   635     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   637   // Input RegMask array shared by all Rethrows.
   638   uint reth_edge_cnt = TypeFunc::Parms+1;
   639   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   640   // Rethrow takes exception oop only, but in the argument 0 slot.
   641   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   642 #ifdef _LP64
   643   // Need two slots for ptrs in 64-bit land
   644   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   645 #endif
   647   // Input RegMask array shared by all TailCalls
   648   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   649   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   651   // Input RegMask array shared by all TailJumps
   652   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   653   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   655   // TailCalls have 2 returned values (target & moop), whose masks come
   656   // from the usual MachNode/MachOper mechanism.  Find a sample
   657   // TailCall to extract these masks and put the correct masks into
   658   // the tail_call_rms array.
   659   for( i=1; i < root->req(); i++ ) {
   660     MachReturnNode *m = root->in(i)->as_MachReturn();
   661     if( m->ideal_Opcode() == Op_TailCall ) {
   662       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   663       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   664       break;
   665     }
   666   }
   668   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   669   // from the usual MachNode/MachOper mechanism.  Find a sample
   670   // TailJump to extract these masks and put the correct masks into
   671   // the tail_jump_rms array.
   672   for( i=1; i < root->req(); i++ ) {
   673     MachReturnNode *m = root->in(i)->as_MachReturn();
   674     if( m->ideal_Opcode() == Op_TailJump ) {
   675       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   676       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   677       break;
   678     }
   679   }
   681   // Input RegMask array shared by all Halts
   682   uint halt_edge_cnt = TypeFunc::Parms;
   683   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   685   // Capture the return input masks into each exit flavor
   686   for( i=1; i < root->req(); i++ ) {
   687     MachReturnNode *exit = root->in(i)->as_MachReturn();
   688     switch( exit->ideal_Opcode() ) {
   689       case Op_Return   : exit->_in_rms = ret_rms;  break;
   690       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   691       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   692       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   693       case Op_Halt     : exit->_in_rms = halt_rms; break;
   694       default          : ShouldNotReachHere();
   695     }
   696   }
   698   // Next unused projection number from Start.
   699   int proj_cnt = C->tf()->domain()->cnt();
   701   // Do all the save-on-entry registers.  Make projections from Start for
   702   // them, and give them a use at the exit points.  To the allocator, they
   703   // look like incoming register arguments.
   704   for( i = 0; i < _last_Mach_Reg; i++ ) {
   705     if( is_save_on_entry(i) ) {
   707       // Add the save-on-entry to the mask array
   708       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   709       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   710       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   711       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   712       // Halts need the SOE registers, but only in the stack as debug info.
   713       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   714       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   716       Node *mproj;
   718       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   719       // into a single RegD.
   720       if( (i&1) == 0 &&
   721           _register_save_type[i  ] == Op_RegF &&
   722           _register_save_type[i+1] == Op_RegF &&
   723           is_save_on_entry(i+1) ) {
   724         // Add other bit for double
   725         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   726         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   727         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   728         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   729         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   730         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   731         proj_cnt += 2;          // Skip 2 for doubles
   732       }
   733       else if( (i&1) == 1 &&    // Else check for high half of double
   734                _register_save_type[i-1] == Op_RegF &&
   735                _register_save_type[i  ] == Op_RegF &&
   736                is_save_on_entry(i-1) ) {
   737         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   738         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   739         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   740         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   741         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   742         mproj = C->top();
   743       }
   744       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   745       // into a single RegL.
   746       else if( (i&1) == 0 &&
   747           _register_save_type[i  ] == Op_RegI &&
   748           _register_save_type[i+1] == Op_RegI &&
   749         is_save_on_entry(i+1) ) {
   750         // Add other bit for long
   751         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   752         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   753         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   754         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   755         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   756         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   757         proj_cnt += 2;          // Skip 2 for longs
   758       }
   759       else if( (i&1) == 1 &&    // Else check for high half of long
   760                _register_save_type[i-1] == Op_RegI &&
   761                _register_save_type[i  ] == Op_RegI &&
   762                is_save_on_entry(i-1) ) {
   763         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   764         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   765         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   766         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   767         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   768         mproj = C->top();
   769       } else {
   770         // Make a projection for it off the Start
   771         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   772       }
   774       ret_edge_cnt ++;
   775       reth_edge_cnt ++;
   776       tail_call_edge_cnt ++;
   777       tail_jump_edge_cnt ++;
   778       halt_edge_cnt ++;
   780       // Add a use of the SOE register to all exit paths
   781       for( uint j=1; j < root->req(); j++ )
   782         root->in(j)->add_req(mproj);
   783     } // End of if a save-on-entry register
   784   } // End of for all machine registers
   785 }
   787 //------------------------------init_spill_mask--------------------------------
   788 void Matcher::init_spill_mask( Node *ret ) {
   789   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   791   OptoReg::c_frame_pointer = c_frame_pointer();
   792   c_frame_ptr_mask = c_frame_pointer();
   793 #ifdef _LP64
   794   // pointers are twice as big
   795   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   796 #endif
   798   // Start at OptoReg::stack0()
   799   STACK_ONLY_mask.Clear();
   800   OptoReg::Name init = OptoReg::stack2reg(0);
   801   // STACK_ONLY_mask is all stack bits
   802   OptoReg::Name i;
   803   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   804     STACK_ONLY_mask.Insert(i);
   805   // Also set the "infinite stack" bit.
   806   STACK_ONLY_mask.set_AllStack();
   808   // Copy the register names over into the shared world
   809   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   810     // SharedInfo::regName[i] = regName[i];
   811     // Handy RegMasks per machine register
   812     mreg2regmask[i].Insert(i);
   813   }
   815   // Grab the Frame Pointer
   816   Node *fp  = ret->in(TypeFunc::FramePtr);
   817   Node *mem = ret->in(TypeFunc::Memory);
   818   const TypePtr* atp = TypePtr::BOTTOM;
   819   // Share frame pointer while making spill ops
   820   set_shared(fp);
   822   // Compute generic short-offset Loads
   823 #ifdef _LP64
   824   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   825 #endif
   826   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   827   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   828   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   829   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   830   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   831   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   832          spillD != NULL && spillP != NULL, "");
   834   // Get the ADLC notion of the right regmask, for each basic type.
   835 #ifdef _LP64
   836   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   837 #endif
   838   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   839   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   840   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   841   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   842   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   844   // Vector regmasks.
   845   if (Matcher::vector_size_supported(T_BYTE,4)) {
   846     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
   847     MachNode *spillVectS = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
   848     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
   849   }
   850   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   851     MachNode *spillVectD = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
   852     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
   853   }
   854   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   855     MachNode *spillVectX = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
   856     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
   857   }
   858   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   859     MachNode *spillVectY = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
   860     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
   861   }
   862 }
   864 #ifdef ASSERT
   865 static void match_alias_type(Compile* C, Node* n, Node* m) {
   866   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   867   const TypePtr* nat = n->adr_type();
   868   const TypePtr* mat = m->adr_type();
   869   int nidx = C->get_alias_index(nat);
   870   int midx = C->get_alias_index(mat);
   871   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   872   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   873     for (uint i = 1; i < n->req(); i++) {
   874       Node* n1 = n->in(i);
   875       const TypePtr* n1at = n1->adr_type();
   876       if (n1at != NULL) {
   877         nat = n1at;
   878         nidx = C->get_alias_index(n1at);
   879       }
   880     }
   881   }
   882   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   883   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   884     switch (n->Opcode()) {
   885     case Op_PrefetchRead:
   886     case Op_PrefetchWrite:
   887     case Op_PrefetchAllocation:
   888       nidx = Compile::AliasIdxRaw;
   889       nat = TypeRawPtr::BOTTOM;
   890       break;
   891     }
   892   }
   893   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   894     switch (n->Opcode()) {
   895     case Op_ClearArray:
   896       midx = Compile::AliasIdxRaw;
   897       mat = TypeRawPtr::BOTTOM;
   898       break;
   899     }
   900   }
   901   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   902     switch (n->Opcode()) {
   903     case Op_Return:
   904     case Op_Rethrow:
   905     case Op_Halt:
   906     case Op_TailCall:
   907     case Op_TailJump:
   908       nidx = Compile::AliasIdxBot;
   909       nat = TypePtr::BOTTOM;
   910       break;
   911     }
   912   }
   913   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   914     switch (n->Opcode()) {
   915     case Op_StrComp:
   916     case Op_StrEquals:
   917     case Op_StrIndexOf:
   918     case Op_AryEq:
   919     case Op_MemBarVolatile:
   920     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   921       nidx = Compile::AliasIdxTop;
   922       nat = NULL;
   923       break;
   924     }
   925   }
   926   if (nidx != midx) {
   927     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   928       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   929       n->dump();
   930       m->dump();
   931     }
   932     assert(C->subsume_loads() && C->must_alias(nat, midx),
   933            "must not lose alias info when matching");
   934   }
   935 }
   936 #endif
   939 //------------------------------MStack-----------------------------------------
   940 // State and MStack class used in xform() and find_shared() iterative methods.
   941 enum Node_State { Pre_Visit,  // node has to be pre-visited
   942                       Visit,  // visit node
   943                  Post_Visit,  // post-visit node
   944              Alt_Post_Visit   // alternative post-visit path
   945                 };
   947 class MStack: public Node_Stack {
   948   public:
   949     MStack(int size) : Node_Stack(size) { }
   951     void push(Node *n, Node_State ns) {
   952       Node_Stack::push(n, (uint)ns);
   953     }
   954     void push(Node *n, Node_State ns, Node *parent, int indx) {
   955       ++_inode_top;
   956       if ((_inode_top + 1) >= _inode_max) grow();
   957       _inode_top->node = parent;
   958       _inode_top->indx = (uint)indx;
   959       ++_inode_top;
   960       _inode_top->node = n;
   961       _inode_top->indx = (uint)ns;
   962     }
   963     Node *parent() {
   964       pop();
   965       return node();
   966     }
   967     Node_State state() const {
   968       return (Node_State)index();
   969     }
   970     void set_state(Node_State ns) {
   971       set_index((uint)ns);
   972     }
   973 };
   976 //------------------------------xform------------------------------------------
   977 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   978 // Node in new-space.  Given a new-space Node, recursively walk his children.
   979 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   980 Node *Matcher::xform( Node *n, int max_stack ) {
   981   // Use one stack to keep both: child's node/state and parent's node/index
   982   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   983   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   985   while (mstack.is_nonempty()) {
   986     n = mstack.node();          // Leave node on stack
   987     Node_State nstate = mstack.state();
   988     if (nstate == Visit) {
   989       mstack.set_state(Post_Visit);
   990       Node *oldn = n;
   991       // Old-space or new-space check
   992       if (!C->node_arena()->contains(n)) {
   993         // Old space!
   994         Node* m;
   995         if (has_new_node(n)) {  // Not yet Label/Reduced
   996           m = new_node(n);
   997         } else {
   998           if (!is_dontcare(n)) { // Matcher can match this guy
   999             // Calls match special.  They match alone with no children.
  1000             // Their children, the incoming arguments, match normally.
  1001             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
  1002             if (C->failing())  return NULL;
  1003             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
  1004           } else {                  // Nothing the matcher cares about
  1005             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
  1006               // Convert to machine-dependent projection
  1007               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
  1008 #ifdef ASSERT
  1009               _new2old_map.map(m->_idx, n);
  1010 #endif
  1011               if (m->in(0) != NULL) // m might be top
  1012                 collect_null_checks(m, n);
  1013             } else {                // Else just a regular 'ol guy
  1014               m = n->clone();       // So just clone into new-space
  1015 #ifdef ASSERT
  1016               _new2old_map.map(m->_idx, n);
  1017 #endif
  1018               // Def-Use edges will be added incrementally as Uses
  1019               // of this node are matched.
  1020               assert(m->outcnt() == 0, "no Uses of this clone yet");
  1024           set_new_node(n, m);       // Map old to new
  1025           if (_old_node_note_array != NULL) {
  1026             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
  1027                                                   n->_idx);
  1028             C->set_node_notes_at(m->_idx, nn);
  1030           debug_only(match_alias_type(C, n, m));
  1032         n = m;    // n is now a new-space node
  1033         mstack.set_node(n);
  1036       // New space!
  1037       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
  1039       int i;
  1040       // Put precedence edges on stack first (match them last).
  1041       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
  1042         Node *m = oldn->in(i);
  1043         if (m == NULL) break;
  1044         // set -1 to call add_prec() instead of set_req() during Step1
  1045         mstack.push(m, Visit, n, -1);
  1048       // For constant debug info, I'd rather have unmatched constants.
  1049       int cnt = n->req();
  1050       JVMState* jvms = n->jvms();
  1051       int debug_cnt = jvms ? jvms->debug_start() : cnt;
  1053       // Now do only debug info.  Clone constants rather than matching.
  1054       // Constants are represented directly in the debug info without
  1055       // the need for executable machine instructions.
  1056       // Monitor boxes are also represented directly.
  1057       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
  1058         Node *m = n->in(i);          // Get input
  1059         int op = m->Opcode();
  1060         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
  1061         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
  1062             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1063             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1064             ) {
  1065           m = m->clone();
  1066 #ifdef ASSERT
  1067           _new2old_map.map(m->_idx, n);
  1068 #endif
  1069           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1070           mstack.push(m->in(0), Visit, m, 0);
  1071         } else {
  1072           mstack.push(m, Visit, n, i);
  1076       // And now walk his children, and convert his inputs to new-space.
  1077       for( ; i >= 0; --i ) { // For all normal inputs do
  1078         Node *m = n->in(i);  // Get input
  1079         if(m != NULL)
  1080           mstack.push(m, Visit, n, i);
  1084     else if (nstate == Post_Visit) {
  1085       // Set xformed input
  1086       Node *p = mstack.parent();
  1087       if (p != NULL) { // root doesn't have parent
  1088         int i = (int)mstack.index();
  1089         if (i >= 0)
  1090           p->set_req(i, n); // required input
  1091         else if (i == -1)
  1092           p->add_prec(n);   // precedence input
  1093         else
  1094           ShouldNotReachHere();
  1096       mstack.pop(); // remove processed node from stack
  1098     else {
  1099       ShouldNotReachHere();
  1101   } // while (mstack.is_nonempty())
  1102   return n; // Return new-space Node
  1105 //------------------------------warp_outgoing_stk_arg------------------------
  1106 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1107   // Convert outgoing argument location to a pre-biased stack offset
  1108   if (reg->is_stack()) {
  1109     OptoReg::Name warped = reg->reg2stack();
  1110     // Adjust the stack slot offset to be the register number used
  1111     // by the allocator.
  1112     warped = OptoReg::add(begin_out_arg_area, warped);
  1113     // Keep track of the largest numbered stack slot used for an arg.
  1114     // Largest used slot per call-site indicates the amount of stack
  1115     // that is killed by the call.
  1116     if( warped >= out_arg_limit_per_call )
  1117       out_arg_limit_per_call = OptoReg::add(warped,1);
  1118     if (!RegMask::can_represent_arg(warped)) {
  1119       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1120       return OptoReg::Bad;
  1122     return warped;
  1124   return OptoReg::as_OptoReg(reg);
  1128 //------------------------------match_sfpt-------------------------------------
  1129 // Helper function to match call instructions.  Calls match special.
  1130 // They match alone with no children.  Their children, the incoming
  1131 // arguments, match normally.
  1132 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1133   MachSafePointNode *msfpt = NULL;
  1134   MachCallNode      *mcall = NULL;
  1135   uint               cnt;
  1136   // Split out case for SafePoint vs Call
  1137   CallNode *call;
  1138   const TypeTuple *domain;
  1139   ciMethod*        method = NULL;
  1140   bool             is_method_handle_invoke = false;  // for special kill effects
  1141   if( sfpt->is_Call() ) {
  1142     call = sfpt->as_Call();
  1143     domain = call->tf()->domain();
  1144     cnt = domain->cnt();
  1146     // Match just the call, nothing else
  1147     MachNode *m = match_tree(call);
  1148     if (C->failing())  return NULL;
  1149     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1151     // Copy data from the Ideal SafePoint to the machine version
  1152     mcall = m->as_MachCall();
  1154     mcall->set_tf(         call->tf());
  1155     mcall->set_entry_point(call->entry_point());
  1156     mcall->set_cnt(        call->cnt());
  1158     if( mcall->is_MachCallJava() ) {
  1159       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1160       const CallJavaNode *call_java =  call->as_CallJava();
  1161       method = call_java->method();
  1162       mcall_java->_method = method;
  1163       mcall_java->_bci = call_java->_bci;
  1164       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1165       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1166       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1167       if (is_method_handle_invoke) {
  1168         C->set_has_method_handle_invokes(true);
  1170       if( mcall_java->is_MachCallStaticJava() )
  1171         mcall_java->as_MachCallStaticJava()->_name =
  1172          call_java->as_CallStaticJava()->_name;
  1173       if( mcall_java->is_MachCallDynamicJava() )
  1174         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1175          call_java->as_CallDynamicJava()->_vtable_index;
  1177     else if( mcall->is_MachCallRuntime() ) {
  1178       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1180     msfpt = mcall;
  1182   // This is a non-call safepoint
  1183   else {
  1184     call = NULL;
  1185     domain = NULL;
  1186     MachNode *mn = match_tree(sfpt);
  1187     if (C->failing())  return NULL;
  1188     msfpt = mn->as_MachSafePoint();
  1189     cnt = TypeFunc::Parms;
  1192   // Advertise the correct memory effects (for anti-dependence computation).
  1193   msfpt->set_adr_type(sfpt->adr_type());
  1195   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1196   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1197   // Empty them all.
  1198   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1200   // Do all the pre-defined non-Empty register masks
  1201   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1202   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1204   // Place first outgoing argument can possibly be put.
  1205   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1206   assert( is_even(begin_out_arg_area), "" );
  1207   // Compute max outgoing register number per call site.
  1208   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1209   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1210   // These are usually backing store for register arguments for varargs.
  1211   if( call != NULL && call->is_CallRuntime() )
  1212     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1215   // Do the normal argument list (parameters) register masks
  1216   int argcnt = cnt - TypeFunc::Parms;
  1217   if( argcnt > 0 ) {          // Skip it all if we have no args
  1218     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1219     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1220     int i;
  1221     for( i = 0; i < argcnt; i++ ) {
  1222       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1224     // V-call to pick proper calling convention
  1225     call->calling_convention( sig_bt, parm_regs, argcnt );
  1227 #ifdef ASSERT
  1228     // Sanity check users' calling convention.  Really handy during
  1229     // the initial porting effort.  Fairly expensive otherwise.
  1230     { for (int i = 0; i<argcnt; i++) {
  1231       if( !parm_regs[i].first()->is_valid() &&
  1232           !parm_regs[i].second()->is_valid() ) continue;
  1233       VMReg reg1 = parm_regs[i].first();
  1234       VMReg reg2 = parm_regs[i].second();
  1235       for (int j = 0; j < i; j++) {
  1236         if( !parm_regs[j].first()->is_valid() &&
  1237             !parm_regs[j].second()->is_valid() ) continue;
  1238         VMReg reg3 = parm_regs[j].first();
  1239         VMReg reg4 = parm_regs[j].second();
  1240         if( !reg1->is_valid() ) {
  1241           assert( !reg2->is_valid(), "valid halvsies" );
  1242         } else if( !reg3->is_valid() ) {
  1243           assert( !reg4->is_valid(), "valid halvsies" );
  1244         } else {
  1245           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1246           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1247           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1248           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1249           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1250           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1255 #endif
  1257     // Visit each argument.  Compute its outgoing register mask.
  1258     // Return results now can have 2 bits returned.
  1259     // Compute max over all outgoing arguments both per call-site
  1260     // and over the entire method.
  1261     for( i = 0; i < argcnt; i++ ) {
  1262       // Address of incoming argument mask to fill in
  1263       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1264       if( !parm_regs[i].first()->is_valid() &&
  1265           !parm_regs[i].second()->is_valid() ) {
  1266         continue;               // Avoid Halves
  1268       // Grab first register, adjust stack slots and insert in mask.
  1269       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1270       if (OptoReg::is_valid(reg1))
  1271         rm->Insert( reg1 );
  1272       // Grab second register (if any), adjust stack slots and insert in mask.
  1273       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1274       if (OptoReg::is_valid(reg2))
  1275         rm->Insert( reg2 );
  1276     } // End of for all arguments
  1278     // Compute number of stack slots needed to restore stack in case of
  1279     // Pascal-style argument popping.
  1280     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1283   if (is_method_handle_invoke) {
  1284     // Kill some extra stack space in case method handles want to do
  1285     // a little in-place argument insertion.
  1286     // FIXME: Is this still necessary?
  1287     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
  1288     out_arg_limit_per_call += Method::extra_stack_entries() * regs_per_word;
  1289     // Do not update mcall->_argsize because (a) the extra space is not
  1290     // pushed as arguments and (b) _argsize is dead (not used anywhere).
  1293   // Compute the max stack slot killed by any call.  These will not be
  1294   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1295   // after all call sites have been visited.
  1296   if( _out_arg_limit < out_arg_limit_per_call)
  1297     _out_arg_limit = out_arg_limit_per_call;
  1299   if (mcall) {
  1300     // Kill the outgoing argument area, including any non-argument holes and
  1301     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1302     // Since the max-per-method covers the max-per-call-site and debug info
  1303     // is excluded on the max-per-method basis, debug info cannot land in
  1304     // this killed area.
  1305     uint r_cnt = mcall->tf()->range()->cnt();
  1306     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1307     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
  1308       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1309     } else {
  1310       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1311         proj->_rout.Insert(OptoReg::Name(i));
  1313     if( proj->_rout.is_NotEmpty() )
  1314       _proj_list.push(proj);
  1316   // Transfer the safepoint information from the call to the mcall
  1317   // Move the JVMState list
  1318   msfpt->set_jvms(sfpt->jvms());
  1319   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1320     jvms->set_map(sfpt);
  1323   // Debug inputs begin just after the last incoming parameter
  1324   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1325           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1327   // Move the OopMap
  1328   msfpt->_oop_map = sfpt->_oop_map;
  1330   // Registers killed by the call are set in the local scheduling pass
  1331   // of Global Code Motion.
  1332   return msfpt;
  1335 //---------------------------match_tree----------------------------------------
  1336 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1337 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1338 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1339 // a Load's result RegMask for memoization in idealreg2regmask[]
  1340 MachNode *Matcher::match_tree( const Node *n ) {
  1341   assert( n->Opcode() != Op_Phi, "cannot match" );
  1342   assert( !n->is_block_start(), "cannot match" );
  1343   // Set the mark for all locally allocated State objects.
  1344   // When this call returns, the _states_arena arena will be reset
  1345   // freeing all State objects.
  1346   ResourceMark rm( &_states_arena );
  1348   LabelRootDepth = 0;
  1350   // StoreNodes require their Memory input to match any LoadNodes
  1351   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1352 #ifdef ASSERT
  1353   Node* save_mem_node = _mem_node;
  1354   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1355 #endif
  1356   // State object for root node of match tree
  1357   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1358   State *s = new (&_states_arena) State;
  1359   s->_kids[0] = NULL;
  1360   s->_kids[1] = NULL;
  1361   s->_leaf = (Node*)n;
  1362   // Label the input tree, allocating labels from top-level arena
  1363   Label_Root( n, s, n->in(0), mem );
  1364   if (C->failing())  return NULL;
  1366   // The minimum cost match for the whole tree is found at the root State
  1367   uint mincost = max_juint;
  1368   uint cost = max_juint;
  1369   uint i;
  1370   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1371     if( s->valid(i) &&                // valid entry and
  1372         s->_cost[i] < cost &&         // low cost and
  1373         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1374       cost = s->_cost[mincost=i];
  1376   if (mincost == max_juint) {
  1377 #ifndef PRODUCT
  1378     tty->print("No matching rule for:");
  1379     s->dump();
  1380 #endif
  1381     Matcher::soft_match_failure();
  1382     return NULL;
  1384   // Reduce input tree based upon the state labels to machine Nodes
  1385   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1386 #ifdef ASSERT
  1387   _old2new_map.map(n->_idx, m);
  1388   _new2old_map.map(m->_idx, (Node*)n);
  1389 #endif
  1391   // Add any Matcher-ignored edges
  1392   uint cnt = n->req();
  1393   uint start = 1;
  1394   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1395   if( n->is_AddP() ) {
  1396     assert( mem == (Node*)1, "" );
  1397     start = AddPNode::Base+1;
  1399   for( i = start; i < cnt; i++ ) {
  1400     if( !n->match_edge(i) ) {
  1401       if( i < m->req() )
  1402         m->ins_req( i, n->in(i) );
  1403       else
  1404         m->add_req( n->in(i) );
  1408   debug_only( _mem_node = save_mem_node; )
  1409   return m;
  1413 //------------------------------match_into_reg---------------------------------
  1414 // Choose to either match this Node in a register or part of the current
  1415 // match tree.  Return true for requiring a register and false for matching
  1416 // as part of the current match tree.
  1417 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1419   const Type *t = m->bottom_type();
  1421   if (t->singleton()) {
  1422     // Never force constants into registers.  Allow them to match as
  1423     // constants or registers.  Copies of the same value will share
  1424     // the same register.  See find_shared_node.
  1425     return false;
  1426   } else {                      // Not a constant
  1427     // Stop recursion if they have different Controls.
  1428     Node* m_control = m->in(0);
  1429     // Control of load's memory can post-dominates load's control.
  1430     // So use it since load can't float above its memory.
  1431     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
  1432     if (control && m_control && control != m_control && control != mem_control) {
  1434       // Actually, we can live with the most conservative control we
  1435       // find, if it post-dominates the others.  This allows us to
  1436       // pick up load/op/store trees where the load can float a little
  1437       // above the store.
  1438       Node *x = control;
  1439       const uint max_scan = 6;  // Arbitrary scan cutoff
  1440       uint j;
  1441       for (j=0; j<max_scan; j++) {
  1442         if (x->is_Region())     // Bail out at merge points
  1443           return true;
  1444         x = x->in(0);
  1445         if (x == m_control)     // Does 'control' post-dominate
  1446           break;                // m->in(0)?  If so, we can use it
  1447         if (x == mem_control)   // Does 'control' post-dominate
  1448           break;                // mem_control?  If so, we can use it
  1450       if (j == max_scan)        // No post-domination before scan end?
  1451         return true;            // Then break the match tree up
  1453     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
  1454       // These are commonly used in address expressions and can
  1455       // efficiently fold into them on X64 in some cases.
  1456       return false;
  1460   // Not forceable cloning.  If shared, put it into a register.
  1461   return shared;
  1465 //------------------------------Instruction Selection--------------------------
  1466 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1467 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1468 // things the Matcher does not match (e.g., Memory), and things with different
  1469 // Controls (hence forced into different blocks).  We pass in the Control
  1470 // selected for this entire State tree.
  1472 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1473 // Store and the Load must have identical Memories (as well as identical
  1474 // pointers).  Since the Matcher does not have anything for Memory (and
  1475 // does not handle DAGs), I have to match the Memory input myself.  If the
  1476 // Tree root is a Store, I require all Loads to have the identical memory.
  1477 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1478   // Since Label_Root is a recursive function, its possible that we might run
  1479   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1480   LabelRootDepth++;
  1481   if (LabelRootDepth > MaxLabelRootDepth) {
  1482     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1483     return NULL;
  1485   uint care = 0;                // Edges matcher cares about
  1486   uint cnt = n->req();
  1487   uint i = 0;
  1489   // Examine children for memory state
  1490   // Can only subsume a child into your match-tree if that child's memory state
  1491   // is not modified along the path to another input.
  1492   // It is unsafe even if the other inputs are separate roots.
  1493   Node *input_mem = NULL;
  1494   for( i = 1; i < cnt; i++ ) {
  1495     if( !n->match_edge(i) ) continue;
  1496     Node *m = n->in(i);         // Get ith input
  1497     assert( m, "expect non-null children" );
  1498     if( m->is_Load() ) {
  1499       if( input_mem == NULL ) {
  1500         input_mem = m->in(MemNode::Memory);
  1501       } else if( input_mem != m->in(MemNode::Memory) ) {
  1502         input_mem = NodeSentinel;
  1507   for( i = 1; i < cnt; i++ ){// For my children
  1508     if( !n->match_edge(i) ) continue;
  1509     Node *m = n->in(i);         // Get ith input
  1510     // Allocate states out of a private arena
  1511     State *s = new (&_states_arena) State;
  1512     svec->_kids[care++] = s;
  1513     assert( care <= 2, "binary only for now" );
  1515     // Recursively label the State tree.
  1516     s->_kids[0] = NULL;
  1517     s->_kids[1] = NULL;
  1518     s->_leaf = m;
  1520     // Check for leaves of the State Tree; things that cannot be a part of
  1521     // the current tree.  If it finds any, that value is matched as a
  1522     // register operand.  If not, then the normal matching is used.
  1523     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1524         //
  1525         // Stop recursion if this is LoadNode and the root of this tree is a
  1526         // StoreNode and the load & store have different memories.
  1527         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1528         // Can NOT include the match of a subtree when its memory state
  1529         // is used by any of the other subtrees
  1530         (input_mem == NodeSentinel) ) {
  1531 #ifndef PRODUCT
  1532       // Print when we exclude matching due to different memory states at input-loads
  1533       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1534         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1535         tty->print_cr("invalid input_mem");
  1537 #endif
  1538       // Switch to a register-only opcode; this value must be in a register
  1539       // and cannot be subsumed as part of a larger instruction.
  1540       s->DFA( m->ideal_reg(), m );
  1542     } else {
  1543       // If match tree has no control and we do, adopt it for entire tree
  1544       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1545         control = m->in(0);         // Pick up control
  1546       // Else match as a normal part of the match tree.
  1547       control = Label_Root(m,s,control,mem);
  1548       if (C->failing()) return NULL;
  1553   // Call DFA to match this node, and return
  1554   svec->DFA( n->Opcode(), n );
  1556 #ifdef ASSERT
  1557   uint x;
  1558   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1559     if( svec->valid(x) )
  1560       break;
  1562   if (x >= _LAST_MACH_OPER) {
  1563     n->dump();
  1564     svec->dump();
  1565     assert( false, "bad AD file" );
  1567 #endif
  1568   return control;
  1572 // Con nodes reduced using the same rule can share their MachNode
  1573 // which reduces the number of copies of a constant in the final
  1574 // program.  The register allocator is free to split uses later to
  1575 // split live ranges.
  1576 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1577   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
  1579   // See if this Con has already been reduced using this rule.
  1580   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1581   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1582   if (last != NULL && rule == last->rule()) {
  1583     // Don't expect control change for DecodeN
  1584     if (leaf->is_DecodeN())
  1585       return last;
  1586     // Get the new space root.
  1587     Node* xroot = new_node(C->root());
  1588     if (xroot == NULL) {
  1589       // This shouldn't happen give the order of matching.
  1590       return NULL;
  1593     // Shared constants need to have their control be root so they
  1594     // can be scheduled properly.
  1595     Node* control = last->in(0);
  1596     if (control != xroot) {
  1597       if (control == NULL || control == C->root()) {
  1598         last->set_req(0, xroot);
  1599       } else {
  1600         assert(false, "unexpected control");
  1601         return NULL;
  1604     return last;
  1606   return NULL;
  1610 //------------------------------ReduceInst-------------------------------------
  1611 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1612 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1613 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1614 // Each MachNode has a number of complicated MachOper operands; each
  1615 // MachOper also covers a further tree of Ideal Nodes.
  1617 // The root of the Ideal match tree is always an instruction, so we enter
  1618 // the recursion here.  After building the MachNode, we need to recurse
  1619 // the tree checking for these cases:
  1620 // (1) Child is an instruction -
  1621 //     Build the instruction (recursively), add it as an edge.
  1622 //     Build a simple operand (register) to hold the result of the instruction.
  1623 // (2) Child is an interior part of an instruction -
  1624 //     Skip over it (do nothing)
  1625 // (3) Child is the start of a operand -
  1626 //     Build the operand, place it inside the instruction
  1627 //     Call ReduceOper.
  1628 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1629   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1631   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1632   if (shared_node != NULL) {
  1633     return shared_node;
  1636   // Build the object to represent this state & prepare for recursive calls
  1637   MachNode *mach = s->MachNodeGenerator( rule, C );
  1638   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1639   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1640   Node *leaf = s->_leaf;
  1641   // Check for instruction or instruction chain rule
  1642   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1643     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1644            "duplicating node that's already been matched");
  1645     // Instruction
  1646     mach->add_req( leaf->in(0) ); // Set initial control
  1647     // Reduce interior of complex instruction
  1648     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1649   } else {
  1650     // Instruction chain rules are data-dependent on their inputs
  1651     mach->add_req(0);             // Set initial control to none
  1652     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1655   // If a Memory was used, insert a Memory edge
  1656   if( mem != (Node*)1 ) {
  1657     mach->ins_req(MemNode::Memory,mem);
  1658 #ifdef ASSERT
  1659     // Verify adr type after matching memory operation
  1660     const MachOper* oper = mach->memory_operand();
  1661     if (oper != NULL && oper != (MachOper*)-1) {
  1662       // It has a unique memory operand.  Find corresponding ideal mem node.
  1663       Node* m = NULL;
  1664       if (leaf->is_Mem()) {
  1665         m = leaf;
  1666       } else {
  1667         m = _mem_node;
  1668         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1670       const Type* mach_at = mach->adr_type();
  1671       // DecodeN node consumed by an address may have different type
  1672       // then its input. Don't compare types for such case.
  1673       if (m->adr_type() != mach_at &&
  1674           (m->in(MemNode::Address)->is_DecodeN() ||
  1675            m->in(MemNode::Address)->is_AddP() &&
  1676            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
  1677            m->in(MemNode::Address)->is_AddP() &&
  1678            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1679            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
  1680         mach_at = m->adr_type();
  1682       if (m->adr_type() != mach_at) {
  1683         m->dump();
  1684         tty->print_cr("mach:");
  1685         mach->dump(1);
  1687       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1689 #endif
  1692   // If the _leaf is an AddP, insert the base edge
  1693   if( leaf->is_AddP() )
  1694     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1696   uint num_proj = _proj_list.size();
  1698   // Perform any 1-to-many expansions required
  1699   MachNode *ex = mach->Expand(s,_proj_list, mem);
  1700   if( ex != mach ) {
  1701     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1702     if( ex->in(1)->is_Con() )
  1703       ex->in(1)->set_req(0, C->root());
  1704     // Remove old node from the graph
  1705     for( uint i=0; i<mach->req(); i++ ) {
  1706       mach->set_req(i,NULL);
  1708 #ifdef ASSERT
  1709     _new2old_map.map(ex->_idx, s->_leaf);
  1710 #endif
  1713   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1714   // via the matcher.  By the time, nodes have been wired into the CFG,
  1715   // and any further nodes generated by expand rules will be left hanging
  1716   // in space, and will not get emitted as output code.  Catch this.
  1717   // Also, catch any new register allocation constraints ("projections")
  1718   // generated belatedly during spill code generation.
  1719   if (_allocation_started) {
  1720     guarantee(ex == mach, "no expand rules during spill generation");
  1721     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1724   if (leaf->is_Con() || leaf->is_DecodeN()) {
  1725     // Record the con for sharing
  1726     _shared_nodes.map(leaf->_idx, ex);
  1729   return ex;
  1732 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1733   // 'op' is what I am expecting to receive
  1734   int op = _leftOp[rule];
  1735   // Operand type to catch childs result
  1736   // This is what my child will give me.
  1737   int opnd_class_instance = s->_rule[op];
  1738   // Choose between operand class or not.
  1739   // This is what I will receive.
  1740   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1741   // New rule for child.  Chase operand classes to get the actual rule.
  1742   int newrule = s->_rule[catch_op];
  1744   if( newrule < NUM_OPERANDS ) {
  1745     // Chain from operand or operand class, may be output of shared node
  1746     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1747             "Bad AD file: Instruction chain rule must chain from operand");
  1748     // Insert operand into array of operands for this instruction
  1749     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1751     ReduceOper( s, newrule, mem, mach );
  1752   } else {
  1753     // Chain from the result of an instruction
  1754     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1755     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1756     Node *mem1 = (Node*)1;
  1757     debug_only(Node *save_mem_node = _mem_node;)
  1758     mach->add_req( ReduceInst(s, newrule, mem1) );
  1759     debug_only(_mem_node = save_mem_node;)
  1761   return;
  1765 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1766   if( s->_leaf->is_Load() ) {
  1767     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1768     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1769     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1770     mem = mem2;
  1772   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1773     if( mach->in(0) == NULL )
  1774       mach->set_req(0, s->_leaf->in(0));
  1777   // Now recursively walk the state tree & add operand list.
  1778   for( uint i=0; i<2; i++ ) {   // binary tree
  1779     State *newstate = s->_kids[i];
  1780     if( newstate == NULL ) break;      // Might only have 1 child
  1781     // 'op' is what I am expecting to receive
  1782     int op;
  1783     if( i == 0 ) {
  1784       op = _leftOp[rule];
  1785     } else {
  1786       op = _rightOp[rule];
  1788     // Operand type to catch childs result
  1789     // This is what my child will give me.
  1790     int opnd_class_instance = newstate->_rule[op];
  1791     // Choose between operand class or not.
  1792     // This is what I will receive.
  1793     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1794     // New rule for child.  Chase operand classes to get the actual rule.
  1795     int newrule = newstate->_rule[catch_op];
  1797     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1798       // Operand/operandClass
  1799       // Insert operand into array of operands for this instruction
  1800       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1801       ReduceOper( newstate, newrule, mem, mach );
  1803     } else {                    // Child is internal operand or new instruction
  1804       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1805         // internal operand --> call ReduceInst_Interior
  1806         // Interior of complex instruction.  Do nothing but recurse.
  1807         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1808       } else {
  1809         // instruction --> call build operand(  ) to catch result
  1810         //             --> ReduceInst( newrule )
  1811         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1812         Node *mem1 = (Node*)1;
  1813         debug_only(Node *save_mem_node = _mem_node;)
  1814         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1815         debug_only(_mem_node = save_mem_node;)
  1818     assert( mach->_opnds[num_opnds-1], "" );
  1820   return num_opnds;
  1823 // This routine walks the interior of possible complex operands.
  1824 // At each point we check our children in the match tree:
  1825 // (1) No children -
  1826 //     We are a leaf; add _leaf field as an input to the MachNode
  1827 // (2) Child is an internal operand -
  1828 //     Skip over it ( do nothing )
  1829 // (3) Child is an instruction -
  1830 //     Call ReduceInst recursively and
  1831 //     and instruction as an input to the MachNode
  1832 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1833   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1834   State *kid = s->_kids[0];
  1835   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1837   // Leaf?  And not subsumed?
  1838   if( kid == NULL && !_swallowed[rule] ) {
  1839     mach->add_req( s->_leaf );  // Add leaf pointer
  1840     return;                     // Bail out
  1843   if( s->_leaf->is_Load() ) {
  1844     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1845     mem = s->_leaf->in(MemNode::Memory);
  1846     debug_only(_mem_node = s->_leaf;)
  1848   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1849     if( !mach->in(0) )
  1850       mach->set_req(0,s->_leaf->in(0));
  1851     else {
  1852       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1856   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1857     int newrule;
  1858     if( i == 0 )
  1859       newrule = kid->_rule[_leftOp[rule]];
  1860     else
  1861       newrule = kid->_rule[_rightOp[rule]];
  1863     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1864       // Internal operand; recurse but do nothing else
  1865       ReduceOper( kid, newrule, mem, mach );
  1867     } else {                    // Child is a new instruction
  1868       // Reduce the instruction, and add a direct pointer from this
  1869       // machine instruction to the newly reduced one.
  1870       Node *mem1 = (Node*)1;
  1871       debug_only(Node *save_mem_node = _mem_node;)
  1872       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1873       debug_only(_mem_node = save_mem_node;)
  1879 // -------------------------------------------------------------------------
  1880 // Java-Java calling convention
  1881 // (what you use when Java calls Java)
  1883 //------------------------------find_receiver----------------------------------
  1884 // For a given signature, return the OptoReg for parameter 0.
  1885 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1886   VMRegPair regs;
  1887   BasicType sig_bt = T_OBJECT;
  1888   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1889   // Return argument 0 register.  In the LP64 build pointers
  1890   // take 2 registers, but the VM wants only the 'main' name.
  1891   return OptoReg::as_OptoReg(regs.first());
  1894 // A method-klass-holder may be passed in the inline_cache_reg
  1895 // and then expanded into the inline_cache_reg and a method_oop register
  1896 //   defined in ad_<arch>.cpp
  1899 //------------------------------find_shared------------------------------------
  1900 // Set bits if Node is shared or otherwise a root
  1901 void Matcher::find_shared( Node *n ) {
  1902   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1903   MStack mstack(C->unique() * 2);
  1904   // Mark nodes as address_visited if they are inputs to an address expression
  1905   VectorSet address_visited(Thread::current()->resource_area());
  1906   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1907   while (mstack.is_nonempty()) {
  1908     n = mstack.node();       // Leave node on stack
  1909     Node_State nstate = mstack.state();
  1910     uint nop = n->Opcode();
  1911     if (nstate == Pre_Visit) {
  1912       if (address_visited.test(n->_idx)) { // Visited in address already?
  1913         // Flag as visited and shared now.
  1914         set_visited(n);
  1916       if (is_visited(n)) {   // Visited already?
  1917         // Node is shared and has no reason to clone.  Flag it as shared.
  1918         // This causes it to match into a register for the sharing.
  1919         set_shared(n);       // Flag as shared and
  1920         mstack.pop();        // remove node from stack
  1921         continue;
  1923       nstate = Visit; // Not already visited; so visit now
  1925     if (nstate == Visit) {
  1926       mstack.set_state(Post_Visit);
  1927       set_visited(n);   // Flag as visited now
  1928       bool mem_op = false;
  1930       switch( nop ) {  // Handle some opcodes special
  1931       case Op_Phi:             // Treat Phis as shared roots
  1932       case Op_Parm:
  1933       case Op_Proj:            // All handled specially during matching
  1934       case Op_SafePointScalarObject:
  1935         set_shared(n);
  1936         set_dontcare(n);
  1937         break;
  1938       case Op_If:
  1939       case Op_CountedLoopEnd:
  1940         mstack.set_state(Alt_Post_Visit); // Alternative way
  1941         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1942         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1943         // Bool and CmpX side-by-side, because it can only get at constants
  1944         // that are at the leaves of Match trees, and the Bool's condition acts
  1945         // as a constant here.
  1946         mstack.push(n->in(1), Visit);         // Clone the Bool
  1947         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1948         continue; // while (mstack.is_nonempty())
  1949       case Op_ConvI2D:         // These forms efficiently match with a prior
  1950       case Op_ConvI2F:         //   Load but not a following Store
  1951         if( n->in(1)->is_Load() &&        // Prior load
  1952             n->outcnt() == 1 &&           // Not already shared
  1953             n->unique_out()->is_Store() ) // Following store
  1954           set_shared(n);       // Force it to be a root
  1955         break;
  1956       case Op_ReverseBytesI:
  1957       case Op_ReverseBytesL:
  1958         if( n->in(1)->is_Load() &&        // Prior load
  1959             n->outcnt() == 1 )            // Not already shared
  1960           set_shared(n);                  // Force it to be a root
  1961         break;
  1962       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1963       case Op_IfFalse:
  1964       case Op_IfTrue:
  1965       case Op_MachProj:
  1966       case Op_MergeMem:
  1967       case Op_Catch:
  1968       case Op_CatchProj:
  1969       case Op_CProj:
  1970       case Op_JumpProj:
  1971       case Op_JProj:
  1972       case Op_NeverBranch:
  1973         set_dontcare(n);
  1974         break;
  1975       case Op_Jump:
  1976         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
  1977         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1978         continue;                             // while (mstack.is_nonempty())
  1979       case Op_StrComp:
  1980       case Op_StrEquals:
  1981       case Op_StrIndexOf:
  1982       case Op_AryEq:
  1983         set_shared(n); // Force result into register (it will be anyways)
  1984         break;
  1985       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1986         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1987         const TypePtr* tp = tn->type()->is_ptr();
  1988         if (tp->_ptr == TypePtr::AnyNull) {
  1989           tn->set_type(TypePtr::NULL_PTR);
  1991         break;
  1993       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1994         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1995         const TypePtr* tp = tn->type()->make_ptr();
  1996         if (tp && tp->_ptr == TypePtr::AnyNull) {
  1997           tn->set_type(TypeNarrowOop::NULL_PTR);
  1999         break;
  2001       case Op_Binary:         // These are introduced in the Post_Visit state.
  2002         ShouldNotReachHere();
  2003         break;
  2004       case Op_ClearArray:
  2005       case Op_SafePoint:
  2006         mem_op = true;
  2007         break;
  2008       default:
  2009         if( n->is_Store() ) {
  2010           // Do match stores, despite no ideal reg
  2011           mem_op = true;
  2012           break;
  2014         if( n->is_Mem() ) { // Loads and LoadStores
  2015           mem_op = true;
  2016           // Loads must be root of match tree due to prior load conflict
  2017           if( C->subsume_loads() == false )
  2018             set_shared(n);
  2020         // Fall into default case
  2021         if( !n->ideal_reg() )
  2022           set_dontcare(n);  // Unmatchable Nodes
  2023       } // end_switch
  2025       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  2026         Node *m = n->in(i); // Get ith input
  2027         if (m == NULL) continue;  // Ignore NULLs
  2028         uint mop = m->Opcode();
  2030         // Must clone all producers of flags, or we will not match correctly.
  2031         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  2032         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  2033         // are also there, so we may match a float-branch to int-flags and
  2034         // expect the allocator to haul the flags from the int-side to the
  2035         // fp-side.  No can do.
  2036         if( _must_clone[mop] ) {
  2037           mstack.push(m, Visit);
  2038           continue; // for(int i = ...)
  2041         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
  2042           // Bases used in addresses must be shared but since
  2043           // they are shared through a DecodeN they may appear
  2044           // to have a single use so force sharing here.
  2045           set_shared(m->in(AddPNode::Base)->in(1));
  2048         // Clone addressing expressions as they are "free" in memory access instructions
  2049         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  2050           // Some inputs for address expression are not put on stack
  2051           // to avoid marking them as shared and forcing them into register
  2052           // if they are used only in address expressions.
  2053           // But they should be marked as shared if there are other uses
  2054           // besides address expressions.
  2056           Node *off = m->in(AddPNode::Offset);
  2057           if( off->is_Con() &&
  2058               // When there are other uses besides address expressions
  2059               // put it on stack and mark as shared.
  2060               !is_visited(m) ) {
  2061             address_visited.test_set(m->_idx); // Flag as address_visited
  2062             Node *adr = m->in(AddPNode::Address);
  2064             // Intel, ARM and friends can handle 2 adds in addressing mode
  2065             if( clone_shift_expressions && adr->is_AddP() &&
  2066                 // AtomicAdd is not an addressing expression.
  2067                 // Cheap to find it by looking for screwy base.
  2068                 !adr->in(AddPNode::Base)->is_top() &&
  2069                 // Are there other uses besides address expressions?
  2070                 !is_visited(adr) ) {
  2071               address_visited.set(adr->_idx); // Flag as address_visited
  2072               Node *shift = adr->in(AddPNode::Offset);
  2073               // Check for shift by small constant as well
  2074               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2075                   shift->in(2)->get_int() <= 3 &&
  2076                   // Are there other uses besides address expressions?
  2077                   !is_visited(shift) ) {
  2078                 address_visited.set(shift->_idx); // Flag as address_visited
  2079                 mstack.push(shift->in(2), Visit);
  2080                 Node *conv = shift->in(1);
  2081 #ifdef _LP64
  2082                 // Allow Matcher to match the rule which bypass
  2083                 // ConvI2L operation for an array index on LP64
  2084                 // if the index value is positive.
  2085                 if( conv->Opcode() == Op_ConvI2L &&
  2086                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2087                     // Are there other uses besides address expressions?
  2088                     !is_visited(conv) ) {
  2089                   address_visited.set(conv->_idx); // Flag as address_visited
  2090                   mstack.push(conv->in(1), Pre_Visit);
  2091                 } else
  2092 #endif
  2093                 mstack.push(conv, Pre_Visit);
  2094               } else {
  2095                 mstack.push(shift, Pre_Visit);
  2097               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2098               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2099             } else {  // Sparc, Alpha, PPC and friends
  2100               mstack.push(adr, Pre_Visit);
  2103             // Clone X+offset as it also folds into most addressing expressions
  2104             mstack.push(off, Visit);
  2105             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2106             continue; // for(int i = ...)
  2107           } // if( off->is_Con() )
  2108         }   // if( mem_op &&
  2109         mstack.push(m, Pre_Visit);
  2110       }     // for(int i = ...)
  2112     else if (nstate == Alt_Post_Visit) {
  2113       mstack.pop(); // Remove node from stack
  2114       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2115       // shared and all users of the Bool need to move the Cmp in parallel.
  2116       // This leaves both the Bool and the If pointing at the Cmp.  To
  2117       // prevent the Matcher from trying to Match the Cmp along both paths
  2118       // BoolNode::match_edge always returns a zero.
  2120       // We reorder the Op_If in a pre-order manner, so we can visit without
  2121       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2122       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2124     else if (nstate == Post_Visit) {
  2125       mstack.pop(); // Remove node from stack
  2127       // Now hack a few special opcodes
  2128       switch( n->Opcode() ) {       // Handle some opcodes special
  2129       case Op_StorePConditional:
  2130       case Op_StoreIConditional:
  2131       case Op_StoreLConditional:
  2132       case Op_CompareAndSwapI:
  2133       case Op_CompareAndSwapL:
  2134       case Op_CompareAndSwapP:
  2135       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2136         Node *newval = n->in(MemNode::ValueIn );
  2137         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  2138         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  2139         n->set_req(MemNode::ValueIn,pair);
  2140         n->del_req(LoadStoreNode::ExpectedIn);
  2141         break;
  2143       case Op_CMoveD:              // Convert trinary to binary-tree
  2144       case Op_CMoveF:
  2145       case Op_CMoveI:
  2146       case Op_CMoveL:
  2147       case Op_CMoveN:
  2148       case Op_CMoveP: {
  2149         // Restructure into a binary tree for Matching.  It's possible that
  2150         // we could move this code up next to the graph reshaping for IfNodes
  2151         // or vice-versa, but I do not want to debug this for Ladybird.
  2152         // 10/2/2000 CNC.
  2153         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  2154         n->set_req(1,pair1);
  2155         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2156         n->set_req(2,pair2);
  2157         n->del_req(3);
  2158         break;
  2160       case Op_LoopLimit: {
  2161         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(2));
  2162         n->set_req(1,pair1);
  2163         n->set_req(2,n->in(3));
  2164         n->del_req(3);
  2165         break;
  2167       case Op_StrEquals: {
  2168         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2169         n->set_req(2,pair1);
  2170         n->set_req(3,n->in(4));
  2171         n->del_req(4);
  2172         break;
  2174       case Op_StrComp:
  2175       case Op_StrIndexOf: {
  2176         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2177         n->set_req(2,pair1);
  2178         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
  2179         n->set_req(3,pair2);
  2180         n->del_req(5);
  2181         n->del_req(4);
  2182         break;
  2184       default:
  2185         break;
  2188     else {
  2189       ShouldNotReachHere();
  2191   } // end of while (mstack.is_nonempty())
  2194 #ifdef ASSERT
  2195 // machine-independent root to machine-dependent root
  2196 void Matcher::dump_old2new_map() {
  2197   _old2new_map.dump();
  2199 #endif
  2201 //---------------------------collect_null_checks-------------------------------
  2202 // Find null checks in the ideal graph; write a machine-specific node for
  2203 // it.  Used by later implicit-null-check handling.  Actually collects
  2204 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2205 // value being tested.
  2206 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2207   Node *iff = proj->in(0);
  2208   if( iff->Opcode() == Op_If ) {
  2209     // During matching If's have Bool & Cmp side-by-side
  2210     BoolNode *b = iff->in(1)->as_Bool();
  2211     Node *cmp = iff->in(2);
  2212     int opc = cmp->Opcode();
  2213     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2215     const Type* ct = cmp->in(2)->bottom_type();
  2216     if (ct == TypePtr::NULL_PTR ||
  2217         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2219       bool push_it = false;
  2220       if( proj->Opcode() == Op_IfTrue ) {
  2221         extern int all_null_checks_found;
  2222         all_null_checks_found++;
  2223         if( b->_test._test == BoolTest::ne ) {
  2224           push_it = true;
  2226       } else {
  2227         assert( proj->Opcode() == Op_IfFalse, "" );
  2228         if( b->_test._test == BoolTest::eq ) {
  2229           push_it = true;
  2232       if( push_it ) {
  2233         _null_check_tests.push(proj);
  2234         Node* val = cmp->in(1);
  2235 #ifdef _LP64
  2236         if (val->bottom_type()->isa_narrowoop() &&
  2237             !Matcher::narrow_oop_use_complex_address()) {
  2238           //
  2239           // Look for DecodeN node which should be pinned to orig_proj.
  2240           // On platforms (Sparc) which can not handle 2 adds
  2241           // in addressing mode we have to keep a DecodeN node and
  2242           // use it to do implicit NULL check in address.
  2243           //
  2244           // DecodeN node was pinned to non-null path (orig_proj) during
  2245           // CastPP transformation in final_graph_reshaping_impl().
  2246           //
  2247           uint cnt = orig_proj->outcnt();
  2248           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2249             Node* d = orig_proj->raw_out(i);
  2250             if (d->is_DecodeN() && d->in(1) == val) {
  2251               val = d;
  2252               val->set_req(0, NULL); // Unpin now.
  2253               // Mark this as special case to distinguish from
  2254               // a regular case: CmpP(DecodeN, NULL).
  2255               val = (Node*)(((intptr_t)val) | 1);
  2256               break;
  2260 #endif
  2261         _null_check_tests.push(val);
  2267 //---------------------------validate_null_checks------------------------------
  2268 // Its possible that the value being NULL checked is not the root of a match
  2269 // tree.  If so, I cannot use the value in an implicit null check.
  2270 void Matcher::validate_null_checks( ) {
  2271   uint cnt = _null_check_tests.size();
  2272   for( uint i=0; i < cnt; i+=2 ) {
  2273     Node *test = _null_check_tests[i];
  2274     Node *val = _null_check_tests[i+1];
  2275     bool is_decoden = ((intptr_t)val) & 1;
  2276     val = (Node*)(((intptr_t)val) & ~1);
  2277     if (has_new_node(val)) {
  2278       Node* new_val = new_node(val);
  2279       if (is_decoden) {
  2280         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
  2281         // Note: new_val may have a control edge if
  2282         // the original ideal node DecodeN was matched before
  2283         // it was unpinned in Matcher::collect_null_checks().
  2284         // Unpin the mach node and mark it.
  2285         new_val->set_req(0, NULL);
  2286         new_val = (Node*)(((intptr_t)new_val) | 1);
  2288       // Is a match-tree root, so replace with the matched value
  2289       _null_check_tests.map(i+1, new_val);
  2290     } else {
  2291       // Yank from candidate list
  2292       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2293       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2294       _null_check_tests.pop();
  2295       _null_check_tests.pop();
  2296       i-=2;
  2301 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2302 // atomic instruction acting as a store_load barrier without any
  2303 // intervening volatile load, and thus we don't need a barrier here.
  2304 // We retain the Node to act as a compiler ordering barrier.
  2305 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2306   Compile *C = Compile::current();
  2307   assert( vmb->is_MemBar(), "" );
  2308   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2309   const MemBarNode *mem = (const MemBarNode*)vmb;
  2311   // Get the Proj node, ctrl, that can be used to iterate forward
  2312   Node *ctrl = NULL;
  2313   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2314   while( true ) {
  2315     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2316     assert( ctrl->is_Proj(), "only projections here" );
  2317     ProjNode *proj = (ProjNode*)ctrl;
  2318     if( proj->_con == TypeFunc::Control &&
  2319         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2320       break;
  2321     i++;
  2324   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2325     Node *x = ctrl->fast_out(j);
  2326     int xop = x->Opcode();
  2328     // We don't need current barrier if we see another or a lock
  2329     // before seeing volatile load.
  2330     //
  2331     // Op_Fastunlock previously appeared in the Op_* list below.
  2332     // With the advent of 1-0 lock operations we're no longer guaranteed
  2333     // that a monitor exit operation contains a serializing instruction.
  2335     if (xop == Op_MemBarVolatile ||
  2336         xop == Op_FastLock ||
  2337         xop == Op_CompareAndSwapL ||
  2338         xop == Op_CompareAndSwapP ||
  2339         xop == Op_CompareAndSwapN ||
  2340         xop == Op_CompareAndSwapI)
  2341       return true;
  2343     if (x->is_MemBar()) {
  2344       // We must retain this membar if there is an upcoming volatile
  2345       // load, which will be preceded by acquire membar.
  2346       if (xop == Op_MemBarAcquire)
  2347         return false;
  2348       // For other kinds of barriers, check by pretending we
  2349       // are them, and seeing if we can be removed.
  2350       else
  2351         return post_store_load_barrier((const MemBarNode*)x);
  2354     // Delicate code to detect case of an upcoming fastlock block
  2355     if( x->is_If() && x->req() > 1 &&
  2356         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2357       Node *iff = x;
  2358       Node *bol = iff->in(1);
  2359       // The iff might be some random subclass of If or bol might be Con-Top
  2360       if (!bol->is_Bool())  return false;
  2361       assert( bol->req() > 1, "" );
  2362       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2364     // probably not necessary to check for these
  2365     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2366       return false;
  2368   return false;
  2371 //=============================================================================
  2372 //---------------------------State---------------------------------------------
  2373 State::State(void) {
  2374 #ifdef ASSERT
  2375   _id = 0;
  2376   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2377   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2378   //memset(_cost, -1, sizeof(_cost));
  2379   //memset(_rule, -1, sizeof(_rule));
  2380 #endif
  2381   memset(_valid, 0, sizeof(_valid));
  2384 #ifdef ASSERT
  2385 State::~State() {
  2386   _id = 99;
  2387   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2388   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2389   memset(_cost, -3, sizeof(_cost));
  2390   memset(_rule, -3, sizeof(_rule));
  2392 #endif
  2394 #ifndef PRODUCT
  2395 //---------------------------dump----------------------------------------------
  2396 void State::dump() {
  2397   tty->print("\n");
  2398   dump(0);
  2401 void State::dump(int depth) {
  2402   for( int j = 0; j < depth; j++ )
  2403     tty->print("   ");
  2404   tty->print("--N: ");
  2405   _leaf->dump();
  2406   uint i;
  2407   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2408     // Check for valid entry
  2409     if( valid(i) ) {
  2410       for( int j = 0; j < depth; j++ )
  2411         tty->print("   ");
  2412         assert(_cost[i] != max_juint, "cost must be a valid value");
  2413         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2414         tty->print_cr("%s  %d  %s",
  2415                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2417   tty->print_cr("");
  2419   for( i=0; i<2; i++ )
  2420     if( _kids[i] )
  2421       _kids[i]->dump(depth+1);
  2423 #endif

mercurial