src/share/vm/opto/callGenerator.hpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 3969
1d7922586cf6
child 4153
b9a9ed0f8eeb
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLGENERATOR_HPP
    26 #define SHARE_VM_OPTO_CALLGENERATOR_HPP
    28 #include "compiler/compileBroker.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    32 #include "runtime/deoptimization.hpp"
    34 //---------------------------CallGenerator-------------------------------------
    35 // The subclasses of this class handle generation of ideal nodes for
    36 // call sites and method entry points.
    38 class CallGenerator : public ResourceObj {
    39  public:
    40   enum {
    41     xxxunusedxxx
    42   };
    44  private:
    45   ciMethod*             _method;                // The method being called.
    47  protected:
    48   CallGenerator(ciMethod* method) : _method(method) {}
    50  public:
    51   // Accessors
    52   ciMethod*         method() const              { return _method; }
    54   // is_inline: At least some code implementing the method is copied here.
    55   virtual bool      is_inline() const           { return false; }
    56   // is_intrinsic: There's a method-specific way of generating the inline code.
    57   virtual bool      is_intrinsic() const        { return false; }
    58   // is_parse: Bytecodes implementing the specific method are copied here.
    59   virtual bool      is_parse() const            { return false; }
    60   // is_virtual: The call uses the receiver type to select or check the method.
    61   virtual bool      is_virtual() const          { return false; }
    62   // is_deferred: The decision whether to inline or not is deferred.
    63   virtual bool      is_deferred() const         { return false; }
    64   // is_predicted: Uses an explicit check against a predicted type.
    65   virtual bool      is_predicted() const        { return false; }
    66   // is_trap: Does not return to the caller.  (E.g., uncommon trap.)
    67   virtual bool      is_trap() const             { return false; }
    69   // is_late_inline: supports conversion of call into an inline
    70   virtual bool      is_late_inline() const      { return false; }
    71   // Replace the call with an inline version of the code
    72   virtual void do_late_inline() { ShouldNotReachHere(); }
    74   virtual CallStaticJavaNode* call_node() const { ShouldNotReachHere(); return NULL; }
    76   // Note:  It is possible for a CG to be both inline and virtual.
    77   // (The hashCode intrinsic does a vtable check and an inlined fast path.)
    79   // Utilities:
    80   const TypeFunc*   tf() const;
    82   // The given jvms has state and arguments for a call to my method.
    83   // Edges after jvms->argoff() carry all (pre-popped) argument values.
    84   //
    85   // Update the map with state and return values (if any) and return it.
    86   // The return values (0, 1, or 2) must be pushed on the map's stack,
    87   // and the sp of the jvms incremented accordingly.
    88   //
    89   // The jvms is returned on success.  Alternatively, a copy of the
    90   // given jvms, suitably updated, may be returned, in which case the
    91   // caller should discard the original jvms.
    92   //
    93   // The non-Parm edges of the returned map will contain updated global state,
    94   // and one or two edges before jvms->sp() will carry any return values.
    95   // Other map edges may contain locals or monitors, and should not
    96   // be changed in meaning.
    97   //
    98   // If the call traps, the returned map must have a control edge of top.
    99   // If the call can throw, the returned map must report has_exceptions().
   100   //
   101   // If the result is NULL, it means that this CallGenerator was unable
   102   // to handle the given call, and another CallGenerator should be consulted.
   103   virtual JVMState* generate(JVMState* jvms) = 0;
   105   // How to generate a call site that is inlined:
   106   static CallGenerator* for_inline(ciMethod* m, float expected_uses = -1);
   107   // How to generate code for an on-stack replacement handler.
   108   static CallGenerator* for_osr(ciMethod* m, int osr_bci);
   110   // How to generate vanilla out-of-line call sites:
   111   static CallGenerator* for_direct_call(ciMethod* m, bool separate_io_projs = false);   // static, special
   112   static CallGenerator* for_virtual_call(ciMethod* m, int vtable_index);  // virtual, interface
   113   static CallGenerator* for_dynamic_call(ciMethod* m);   // invokedynamic
   115   static CallGenerator* for_method_handle_call(  JVMState* jvms, ciMethod* caller, ciMethod* callee);
   116   static CallGenerator* for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee);
   118   // How to generate a replace a direct call with an inline version
   119   static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
   121   // How to make a call but defer the decision whether to inline or not.
   122   static CallGenerator* for_warm_call(WarmCallInfo* ci,
   123                                       CallGenerator* if_cold,
   124                                       CallGenerator* if_hot);
   126   // How to make a call that optimistically assumes a receiver type:
   127   static CallGenerator* for_predicted_call(ciKlass* predicted_receiver,
   128                                            CallGenerator* if_missed,
   129                                            CallGenerator* if_hit,
   130                                            float hit_prob);
   132   // How to make a call that optimistically assumes a MethodHandle target:
   133   static CallGenerator* for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
   134                                                    CallGenerator* if_missed,
   135                                                    CallGenerator* if_hit,
   136                                                    float hit_prob);
   138   // How to make a call that gives up and goes back to the interpreter:
   139   static CallGenerator* for_uncommon_trap(ciMethod* m,
   140                                           Deoptimization::DeoptReason reason,
   141                                           Deoptimization::DeoptAction action);
   143   // Registry for intrinsics:
   144   static CallGenerator* for_intrinsic(ciMethod* m);
   145   static void register_intrinsic(ciMethod* m, CallGenerator* cg);
   147   static void print_inlining(ciMethod* callee, int inline_level, int bci, const char* msg) {
   148     if (PrintInlining)
   149       CompileTask::print_inlining(callee, inline_level, bci, msg);
   150   }
   151 };
   154 //------------------------InlineCallGenerator----------------------------------
   155 class InlineCallGenerator : public CallGenerator {
   156  protected:
   157   InlineCallGenerator(ciMethod* method) : CallGenerator(method) {}
   159  public:
   160   virtual bool      is_inline() const           { return true; }
   161 };
   164 //---------------------------WarmCallInfo--------------------------------------
   165 // A struct to collect information about a given call site.
   166 // Helps sort call sites into "hot", "medium", and "cold".
   167 // Participates in the queueing of "medium" call sites for possible inlining.
   168 class WarmCallInfo : public ResourceObj {
   169  private:
   171   CallNode*     _call;   // The CallNode which may be inlined.
   172   CallGenerator* _hot_cg;// CG for expanding the call node
   174   // These are the metrics we use to evaluate call sites:
   176   float         _count;  // How often do we expect to reach this site?
   177   float         _profit; // How much time do we expect to save by inlining?
   178   float         _work;   // How long do we expect the average call to take?
   179   float         _size;   // How big do we expect the inlined code to be?
   181   float         _heat;   // Combined score inducing total order on call sites.
   182   WarmCallInfo* _next;   // Next cooler call info in pending queue.
   184   // Count is the number of times this call site is expected to be executed.
   185   // Large count is favorable for inlining, because the extra compilation
   186   // work will be amortized more completely.
   188   // Profit is a rough measure of the amount of time we expect to save
   189   // per execution of this site if we inline it.  (1.0 == call overhead)
   190   // Large profit favors inlining.  Negative profit disables inlining.
   192   // Work is a rough measure of the amount of time a typical out-of-line
   193   // call from this site is expected to take.  (1.0 == call, no-op, return)
   194   // Small work is somewhat favorable for inlining, since methods with
   195   // short "hot" traces are more likely to inline smoothly.
   197   // Size is the number of graph nodes we expect this method to produce,
   198   // not counting the inlining of any further warm calls it may include.
   199   // Small size favors inlining, since small methods are more likely to
   200   // inline smoothly.  The size is estimated by examining the native code
   201   // if available.  The method bytecodes are also examined, assuming
   202   // empirically observed node counts for each kind of bytecode.
   204   // Heat is the combined "goodness" of a site's inlining.  If we were
   205   // omniscient, it would be the difference of two sums of future execution
   206   // times of code emitted for this site (amortized across multiple sites if
   207   // sharing applies).  The two sums are for versions of this call site with
   208   // and without inlining.
   210   // We approximate this mythical quantity by playing with averages,
   211   // rough estimates, and assumptions that history repeats itself.
   212   // The basic formula count * profit is heuristically adjusted
   213   // by looking at the expected compilation and execution times of
   214   // of the inlined call.
   216   // Note:  Some of these metrics may not be present in the final product,
   217   // but exist in development builds to experiment with inline policy tuning.
   219   // This heuristic framework does not model well the very significant
   220   // effects of multiple-level inlining.  It is possible to see no immediate
   221   // profit from inlining X->Y, but to get great profit from a subsequent
   222   // inlining X->Y->Z.
   224   // This framework does not take well into account the problem of N**2 code
   225   // size in a clique of mutually inlinable methods.
   227   WarmCallInfo*  next() const          { return _next; }
   228   void       set_next(WarmCallInfo* n) { _next = n; }
   230   static WarmCallInfo _always_hot;
   231   static WarmCallInfo _always_cold;
   233   // Constructor intitialization of always_hot and always_cold
   234   WarmCallInfo(float c, float p, float w, float s) {
   235     _call = NULL;
   236     _hot_cg = NULL;
   237     _next = NULL;
   238     _count = c;
   239     _profit = p;
   240     _work = w;
   241     _size = s;
   242     _heat = 0;
   243   }
   245  public:
   246   // Because WarmInfo objects live over the entire lifetime of the
   247   // Compile object, they are allocated into the comp_arena, which
   248   // does not get resource marked or reset during the compile process
   249   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   250   void operator delete( void * ) { } // fast deallocation
   252   static WarmCallInfo* always_hot();
   253   static WarmCallInfo* always_cold();
   255   WarmCallInfo() {
   256     _call = NULL;
   257     _hot_cg = NULL;
   258     _next = NULL;
   259     _count = _profit = _work = _size = _heat = 0;
   260   }
   262   CallNode* call() const { return _call; }
   263   float count()    const { return _count; }
   264   float size()     const { return _size; }
   265   float work()     const { return _work; }
   266   float profit()   const { return _profit; }
   267   float heat()     const { return _heat; }
   269   void set_count(float x)     { _count = x; }
   270   void set_size(float x)      { _size = x; }
   271   void set_work(float x)      { _work = x; }
   272   void set_profit(float x)    { _profit = x; }
   273   void set_heat(float x)      { _heat = x; }
   275   // Load initial heuristics from profiles, etc.
   276   // The heuristics can be tweaked further by the caller.
   277   void init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor);
   279   static float MAX_VALUE() { return +1.0e10; }
   280   static float MIN_VALUE() { return -1.0e10; }
   282   float compute_heat() const;
   284   void set_call(CallNode* call)      { _call = call; }
   285   void set_hot_cg(CallGenerator* cg) { _hot_cg = cg; }
   287   // Do not queue very hot or very cold calls.
   288   // Make very cold ones out of line immediately.
   289   // Inline very hot ones immediately.
   290   // These queries apply various tunable limits
   291   // to the above metrics in a systematic way.
   292   // Test for coldness before testing for hotness.
   293   bool is_cold() const;
   294   bool is_hot() const;
   296   // Force a warm call to be hot.  This worklists the call node for inlining.
   297   void make_hot();
   299   // Force a warm call to be cold.  This worklists the call node for out-of-lining.
   300   void make_cold();
   302   // A reproducible total ordering, in which heat is the major key.
   303   bool warmer_than(WarmCallInfo* that);
   305   // List management.  These methods are called with the list head,
   306   // and return the new list head, inserting or removing the receiver.
   307   WarmCallInfo* insert_into(WarmCallInfo* head);
   308   WarmCallInfo* remove_from(WarmCallInfo* head);
   310 #ifndef PRODUCT
   311   void print() const;
   312   void print_all() const;
   313   int count_all() const;
   314 #endif
   315 };
   317 #endif // SHARE_VM_OPTO_CALLGENERATOR_HPP

mercurial