src/share/vm/opto/parse2.cpp

Wed, 09 Jun 2010 18:50:45 -0700

author
jrose
date
Wed, 09 Jun 2010 18:50:45 -0700
changeset 1957
136b78722a08
parent 1934
e9ff18c4ace7
child 2101
4b29a725c43c
permissions
-rw-r--r--

6939203: JSR 292 needs method handle constants
Summary: Add new CP types CONSTANT_MethodHandle, CONSTANT_MethodType; extend 'ldc' bytecode.
Reviewed-by: twisti, never

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse2.cpp.incl"
    28 extern int explicit_null_checks_inserted,
    29            explicit_null_checks_elided;
    31 //---------------------------------array_load----------------------------------
    32 void Parse::array_load(BasicType elem_type) {
    33   const Type* elem = Type::TOP;
    34   Node* adr = array_addressing(elem_type, 0, &elem);
    35   if (stopped())  return;     // guaranteed null or range check
    36   _sp -= 2;                   // Pop array and index
    37   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    38   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    39   push(ld);
    40 }
    43 //--------------------------------array_store----------------------------------
    44 void Parse::array_store(BasicType elem_type) {
    45   Node* adr = array_addressing(elem_type, 1);
    46   if (stopped())  return;     // guaranteed null or range check
    47   Node* val = pop();
    48   _sp -= 2;                   // Pop array and index
    49   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    50   store_to_memory(control(), adr, val, elem_type, adr_type);
    51 }
    54 //------------------------------array_addressing-------------------------------
    55 // Pull array and index from the stack.  Compute pointer-to-element.
    56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    57   Node *idx   = peek(0+vals);   // Get from stack without popping
    58   Node *ary   = peek(1+vals);   // in case of exception
    60   // Null check the array base, with correct stack contents
    61   ary = do_null_check(ary, T_ARRAY);
    62   // Compile-time detect of null-exception?
    63   if (stopped())  return top();
    65   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    66   const TypeInt*    sizetype = arytype->size();
    67   const Type*       elemtype = arytype->elem();
    69   if (UseUniqueSubclasses && result2 != NULL) {
    70     const Type* el = elemtype->make_ptr();
    71     if (el && el->isa_instptr()) {
    72       const TypeInstPtr* toop = el->is_instptr();
    73       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    74         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    75         const Type* subklass = Type::get_const_type(toop->klass());
    76         elemtype = subklass->join(el);
    77       }
    78     }
    79   }
    81   // Check for big class initializers with all constant offsets
    82   // feeding into a known-size array.
    83   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    84   // See if the highest idx value is less than the lowest array bound,
    85   // and if the idx value cannot be negative:
    86   bool need_range_check = true;
    87   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    88     need_range_check = false;
    89     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
    90   }
    92   if (!arytype->klass()->is_loaded()) {
    93     // Only fails for some -Xcomp runs
    94     // The class is unloaded.  We have to run this bytecode in the interpreter.
    95     uncommon_trap(Deoptimization::Reason_unloaded,
    96                   Deoptimization::Action_reinterpret,
    97                   arytype->klass(), "!loaded array");
    98     return top();
    99   }
   101   // Do the range check
   102   if (GenerateRangeChecks && need_range_check) {
   103     Node* tst;
   104     if (sizetype->_hi <= 0) {
   105       // The greatest array bound is negative, so we can conclude that we're
   106       // compiling unreachable code, but the unsigned compare trick used below
   107       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
   108       // the uncommon_trap path will always be taken.
   109       tst = _gvn.intcon(0);
   110     } else {
   111       // Range is constant in array-oop, so we can use the original state of mem
   112       Node* len = load_array_length(ary);
   114       // Test length vs index (standard trick using unsigned compare)
   115       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   116       BoolTest::mask btest = BoolTest::lt;
   117       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   118     }
   119     // Branch to failure if out of bounds
   120     { BuildCutout unless(this, tst, PROB_MAX);
   121       if (C->allow_range_check_smearing()) {
   122         // Do not use builtin_throw, since range checks are sometimes
   123         // made more stringent by an optimistic transformation.
   124         // This creates "tentative" range checks at this point,
   125         // which are not guaranteed to throw exceptions.
   126         // See IfNode::Ideal, is_range_check, adjust_check.
   127         uncommon_trap(Deoptimization::Reason_range_check,
   128                       Deoptimization::Action_make_not_entrant,
   129                       NULL, "range_check");
   130       } else {
   131         // If we have already recompiled with the range-check-widening
   132         // heroic optimization turned off, then we must really be throwing
   133         // range check exceptions.
   134         builtin_throw(Deoptimization::Reason_range_check, idx);
   135       }
   136     }
   137   }
   138   // Check for always knowing you are throwing a range-check exception
   139   if (stopped())  return top();
   141   Node* ptr = array_element_address(ary, idx, type, sizetype);
   143   if (result2 != NULL)  *result2 = elemtype;
   145   assert(ptr != top(), "top should go hand-in-hand with stopped");
   147   return ptr;
   148 }
   151 // returns IfNode
   152 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   153   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   154   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   155   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   156   return iff;
   157 }
   159 // return Region node
   160 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   161   Node *region  = new (C, 3) RegionNode(3); // 2 results
   162   record_for_igvn(region);
   163   region->init_req(1, iffalse);
   164   region->init_req(2, iftrue );
   165   _gvn.set_type(region, Type::CONTROL);
   166   region = _gvn.transform(region);
   167   set_control (region);
   168   return region;
   169 }
   172 //------------------------------helper for tableswitch-------------------------
   173 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   174   // True branch, use existing map info
   175   { PreserveJVMState pjvms(this);
   176     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   177     set_control( iftrue );
   178     profile_switch_case(prof_table_index);
   179     merge_new_path(dest_bci_if_true);
   180   }
   182   // False branch
   183   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   184   set_control( iffalse );
   185 }
   187 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   188   // True branch, use existing map info
   189   { PreserveJVMState pjvms(this);
   190     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   191     set_control( iffalse );
   192     profile_switch_case(prof_table_index);
   193     merge_new_path(dest_bci_if_true);
   194   }
   196   // False branch
   197   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   198   set_control( iftrue );
   199 }
   201 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   202   // False branch, use existing map and control()
   203   profile_switch_case(prof_table_index);
   204   merge_new_path(dest_bci);
   205 }
   208 extern "C" {
   209   static int jint_cmp(const void *i, const void *j) {
   210     int a = *(jint *)i;
   211     int b = *(jint *)j;
   212     return a > b ? 1 : a < b ? -1 : 0;
   213   }
   214 }
   217 // Default value for methodData switch indexing. Must be a negative value to avoid
   218 // conflict with any legal switch index.
   219 #define NullTableIndex -1
   221 class SwitchRange : public StackObj {
   222   // a range of integers coupled with a bci destination
   223   jint _lo;                     // inclusive lower limit
   224   jint _hi;                     // inclusive upper limit
   225   int _dest;
   226   int _table_index;             // index into method data table
   228 public:
   229   jint lo() const              { return _lo;   }
   230   jint hi() const              { return _hi;   }
   231   int  dest() const            { return _dest; }
   232   int  table_index() const     { return _table_index; }
   233   bool is_singleton() const    { return _lo == _hi; }
   235   void setRange(jint lo, jint hi, int dest, int table_index) {
   236     assert(lo <= hi, "must be a non-empty range");
   237     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   238   }
   239   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   240     assert(lo <= hi, "must be a non-empty range");
   241     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   242       _hi = hi;
   243       return true;
   244     }
   245     return false;
   246   }
   248   void set (jint value, int dest, int table_index) {
   249     setRange(value, value, dest, table_index);
   250   }
   251   bool adjoin(jint value, int dest, int table_index) {
   252     return adjoinRange(value, value, dest, table_index);
   253   }
   255   void print(ciEnv* env) {
   256     if (is_singleton())
   257       tty->print(" {%d}=>%d", lo(), dest());
   258     else if (lo() == min_jint)
   259       tty->print(" {..%d}=>%d", hi(), dest());
   260     else if (hi() == max_jint)
   261       tty->print(" {%d..}=>%d", lo(), dest());
   262     else
   263       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   264   }
   265 };
   268 //-------------------------------do_tableswitch--------------------------------
   269 void Parse::do_tableswitch() {
   270   Node* lookup = pop();
   272   // Get information about tableswitch
   273   int default_dest = iter().get_dest_table(0);
   274   int lo_index     = iter().get_int_table(1);
   275   int hi_index     = iter().get_int_table(2);
   276   int len          = hi_index - lo_index + 1;
   278   if (len < 1) {
   279     // If this is a backward branch, add safepoint
   280     maybe_add_safepoint(default_dest);
   281     if (should_add_predicate(default_dest)){
   282       _sp += 1; // set original stack for use by uncommon_trap
   283       add_predicate();
   284       _sp -= 1;
   285     }
   286     merge(default_dest);
   287     return;
   288   }
   290   // generate decision tree, using trichotomy when possible
   291   int rnum = len+2;
   292   bool makes_backward_branch = false;
   293   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   294   int rp = -1;
   295   if (lo_index != min_jint) {
   296     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   297   }
   298   for (int j = 0; j < len; j++) {
   299     jint match_int = lo_index+j;
   300     int  dest      = iter().get_dest_table(j+3);
   301     makes_backward_branch |= (dest <= bci());
   302     int  table_index = method_data_update() ? j : NullTableIndex;
   303     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   304       ranges[++rp].set(match_int, dest, table_index);
   305     }
   306   }
   307   jint highest = lo_index+(len-1);
   308   assert(ranges[rp].hi() == highest, "");
   309   if (highest != max_jint
   310       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   311     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   312   }
   313   assert(rp < len+2, "not too many ranges");
   315   // Safepoint in case if backward branch observed
   316   if( makes_backward_branch && UseLoopSafepoints )
   317     add_safepoint();
   319   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   320 }
   323 //------------------------------do_lookupswitch--------------------------------
   324 void Parse::do_lookupswitch() {
   325   Node *lookup = pop();         // lookup value
   326   // Get information about lookupswitch
   327   int default_dest = iter().get_dest_table(0);
   328   int len          = iter().get_int_table(1);
   330   if (len < 1) {    // If this is a backward branch, add safepoint
   331     maybe_add_safepoint(default_dest);
   332     if (should_add_predicate(default_dest)){
   333       _sp += 1; // set original stack for use by uncommon_trap
   334       add_predicate();
   335       _sp -= 1;
   336     }
   337     merge(default_dest);
   338     return;
   339   }
   341   // generate decision tree, using trichotomy when possible
   342   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   343   {
   344     for( int j = 0; j < len; j++ ) {
   345       table[j+j+0] = iter().get_int_table(2+j+j);
   346       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   347     }
   348     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   349   }
   351   int rnum = len*2+1;
   352   bool makes_backward_branch = false;
   353   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   354   int rp = -1;
   355   for( int j = 0; j < len; j++ ) {
   356     jint match_int   = table[j+j+0];
   357     int  dest        = table[j+j+1];
   358     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   359     int  table_index = method_data_update() ? j : NullTableIndex;
   360     makes_backward_branch |= (dest <= bci());
   361     if( match_int != next_lo ) {
   362       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   363     }
   364     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   365       ranges[++rp].set(match_int, dest, table_index);
   366     }
   367   }
   368   jint highest = table[2*(len-1)];
   369   assert(ranges[rp].hi() == highest, "");
   370   if( highest != max_jint
   371       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   372     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   373   }
   374   assert(rp < rnum, "not too many ranges");
   376   // Safepoint in case backward branch observed
   377   if( makes_backward_branch && UseLoopSafepoints )
   378     add_safepoint();
   380   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   381 }
   383 //----------------------------create_jump_tables-------------------------------
   384 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   385   // Are jumptables enabled
   386   if (!UseJumpTables)  return false;
   388   // Are jumptables supported
   389   if (!Matcher::has_match_rule(Op_Jump))  return false;
   391   // Don't make jump table if profiling
   392   if (method_data_update())  return false;
   394   // Decide if a guard is needed to lop off big ranges at either (or
   395   // both) end(s) of the input set. We'll call this the default target
   396   // even though we can't be sure that it is the true "default".
   398   bool needs_guard = false;
   399   int default_dest;
   400   int64 total_outlier_size = 0;
   401   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   402   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   404   if (lo->dest() == hi->dest()) {
   405     total_outlier_size = hi_size + lo_size;
   406     default_dest = lo->dest();
   407   } else if (lo_size > hi_size) {
   408     total_outlier_size = lo_size;
   409     default_dest = lo->dest();
   410   } else {
   411     total_outlier_size = hi_size;
   412     default_dest = hi->dest();
   413   }
   415   // If a guard test will eliminate very sparse end ranges, then
   416   // it is worth the cost of an extra jump.
   417   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   418     needs_guard = true;
   419     if (default_dest == lo->dest()) lo++;
   420     if (default_dest == hi->dest()) hi--;
   421   }
   423   // Find the total number of cases and ranges
   424   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   425   int num_range = hi - lo + 1;
   427   // Don't create table if: too large, too small, or too sparse.
   428   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   429     return false;
   430   if (num_cases > (MaxJumpTableSparseness * num_range))
   431     return false;
   433   // Normalize table lookups to zero
   434   int lowval = lo->lo();
   435   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   437   // Generate a guard to protect against input keyvals that aren't
   438   // in the switch domain.
   439   if (needs_guard) {
   440     Node*   size = _gvn.intcon(num_cases);
   441     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   442     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   443     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   444     jump_if_true_fork(iff, default_dest, NullTableIndex);
   445   }
   447   // Create an ideal node JumpTable that has projections
   448   // of all possible ranges for a switch statement
   449   // The key_val input must be converted to a pointer offset and scaled.
   450   // Compare Parse::array_addressing above.
   451 #ifdef _LP64
   452   // Clean the 32-bit int into a real 64-bit offset.
   453   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   454   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   455   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   456 #endif
   457   // Shift the value by wordsize so we have an index into the table, rather
   458   // than a switch value
   459   Node *shiftWord = _gvn.MakeConX(wordSize);
   460   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   462   // Create the JumpNode
   463   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   465   // These are the switch destinations hanging off the jumpnode
   466   int i = 0;
   467   for (SwitchRange* r = lo; r <= hi; r++) {
   468     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   469       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   470       {
   471         PreserveJVMState pjvms(this);
   472         set_control(input);
   473         jump_if_always_fork(r->dest(), r->table_index());
   474       }
   475     }
   476   }
   477   assert(i == num_cases, "miscount of cases");
   478   stop_and_kill_map();  // no more uses for this JVMS
   479   return true;
   480 }
   482 //----------------------------jump_switch_ranges-------------------------------
   483 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   484   Block* switch_block = block();
   486   if (switch_depth == 0) {
   487     // Do special processing for the top-level call.
   488     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   489     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   491     // Decrement pred-numbers for the unique set of nodes.
   492 #ifdef ASSERT
   493     // Ensure that the block's successors are a (duplicate-free) set.
   494     int successors_counted = 0;  // block occurrences in [hi..lo]
   495     int unique_successors = switch_block->num_successors();
   496     for (int i = 0; i < unique_successors; i++) {
   497       Block* target = switch_block->successor_at(i);
   499       // Check that the set of successors is the same in both places.
   500       int successors_found = 0;
   501       for (SwitchRange* p = lo; p <= hi; p++) {
   502         if (p->dest() == target->start())  successors_found++;
   503       }
   504       assert(successors_found > 0, "successor must be known");
   505       successors_counted += successors_found;
   506     }
   507     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   508 #endif
   510     // Maybe prune the inputs, based on the type of key_val.
   511     jint min_val = min_jint;
   512     jint max_val = max_jint;
   513     const TypeInt* ti = key_val->bottom_type()->isa_int();
   514     if (ti != NULL) {
   515       min_val = ti->_lo;
   516       max_val = ti->_hi;
   517       assert(min_val <= max_val, "invalid int type");
   518     }
   519     while (lo->hi() < min_val)  lo++;
   520     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   521     while (hi->lo() > max_val)  hi--;
   522     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   523   }
   525 #ifndef PRODUCT
   526   if (switch_depth == 0) {
   527     _max_switch_depth = 0;
   528     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   529   }
   530 #endif
   532   assert(lo <= hi, "must be a non-empty set of ranges");
   533   if (lo == hi) {
   534     jump_if_always_fork(lo->dest(), lo->table_index());
   535   } else {
   536     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   537     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   539     if (create_jump_tables(key_val, lo, hi)) return;
   541     int nr = hi - lo + 1;
   543     SwitchRange* mid = lo + nr/2;
   544     // if there is an easy choice, pivot at a singleton:
   545     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   547     assert(lo < mid && mid <= hi, "good pivot choice");
   548     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   549     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   551     Node *test_val = _gvn.intcon(mid->lo());
   553     if (mid->is_singleton()) {
   554       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   555       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   557       // Special Case:  If there are exactly three ranges, and the high
   558       // and low range each go to the same place, omit the "gt" test,
   559       // since it will not discriminate anything.
   560       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   561       if (eq_test_only) {
   562         assert(mid == hi-1, "");
   563       }
   565       // if there is a higher range, test for it and process it:
   566       if (mid < hi && !eq_test_only) {
   567         // two comparisons of same values--should enable 1 test for 2 branches
   568         // Use BoolTest::le instead of BoolTest::gt
   569         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   570         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   571         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   572         { PreserveJVMState pjvms(this);
   573           set_control(iffalse);
   574           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   575         }
   576         set_control(iftrue);
   577       }
   579     } else {
   580       // mid is a range, not a singleton, so treat mid..hi as a unit
   581       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   583       // if there is a higher range, test for it and process it:
   584       if (mid == hi) {
   585         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   586       } else {
   587         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   588         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   589         { PreserveJVMState pjvms(this);
   590           set_control(iftrue);
   591           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   592         }
   593         set_control(iffalse);
   594       }
   595     }
   597     // in any case, process the lower range
   598     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   599   }
   601   // Decrease pred_count for each successor after all is done.
   602   if (switch_depth == 0) {
   603     int unique_successors = switch_block->num_successors();
   604     for (int i = 0; i < unique_successors; i++) {
   605       Block* target = switch_block->successor_at(i);
   606       // Throw away the pre-allocated path for each unique successor.
   607       target->next_path_num();
   608     }
   609   }
   611 #ifndef PRODUCT
   612   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   613   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   614     SwitchRange* r;
   615     int nsing = 0;
   616     for( r = lo; r <= hi; r++ ) {
   617       if( r->is_singleton() )  nsing++;
   618     }
   619     tty->print(">>> ");
   620     _method->print_short_name();
   621     tty->print_cr(" switch decision tree");
   622     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   623                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   624     if (_max_switch_depth > _est_switch_depth) {
   625       tty->print_cr("******** BAD SWITCH DEPTH ********");
   626     }
   627     tty->print("   ");
   628     for( r = lo; r <= hi; r++ ) {
   629       r->print(env());
   630     }
   631     tty->print_cr("");
   632   }
   633 #endif
   634 }
   636 void Parse::modf() {
   637   Node *f2 = pop();
   638   Node *f1 = pop();
   639   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   640                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   641                               "frem", NULL, //no memory effects
   642                               f1, f2);
   643   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   645   push(res);
   646 }
   648 void Parse::modd() {
   649   Node *d2 = pop_pair();
   650   Node *d1 = pop_pair();
   651   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   652                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   653                               "drem", NULL, //no memory effects
   654                               d1, top(), d2, top());
   655   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   657 #ifdef ASSERT
   658   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   659   assert(res_top == top(), "second value must be top");
   660 #endif
   662   push_pair(res_d);
   663 }
   665 void Parse::l2f() {
   666   Node* f2 = pop();
   667   Node* f1 = pop();
   668   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   669                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   670                               "l2f", NULL, //no memory effects
   671                               f1, f2);
   672   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   674   push(res);
   675 }
   677 void Parse::do_irem() {
   678   // Must keep both values on the expression-stack during null-check
   679   do_null_check(peek(), T_INT);
   680   // Compile-time detect of null-exception?
   681   if (stopped())  return;
   683   Node* b = pop();
   684   Node* a = pop();
   686   const Type *t = _gvn.type(b);
   687   if (t != Type::TOP) {
   688     const TypeInt *ti = t->is_int();
   689     if (ti->is_con()) {
   690       int divisor = ti->get_con();
   691       // check for positive power of 2
   692       if (divisor > 0 &&
   693           (divisor & ~(divisor-1)) == divisor) {
   694         // yes !
   695         Node *mask = _gvn.intcon((divisor - 1));
   696         // Sigh, must handle negative dividends
   697         Node *zero = _gvn.intcon(0);
   698         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   699         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   700         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   701         Node *reg = jump_if_join(ift, iff);
   702         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   703         // Negative path; negate/and/negate
   704         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   705         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   706         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   707         phi->init_req(1, negn);
   708         // Fast positive case
   709         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   710         phi->init_req(2, andx);
   711         // Push the merge
   712         push( _gvn.transform(phi) );
   713         return;
   714       }
   715     }
   716   }
   717   // Default case
   718   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   719 }
   721 // Handle jsr and jsr_w bytecode
   722 void Parse::do_jsr() {
   723   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   725   // Store information about current state, tagged with new _jsr_bci
   726   int return_bci = iter().next_bci();
   727   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   729   // Update method data
   730   profile_taken_branch(jsr_bci);
   732   // The way we do things now, there is only one successor block
   733   // for the jsr, because the target code is cloned by ciTypeFlow.
   734   Block* target = successor_for_bci(jsr_bci);
   736   // What got pushed?
   737   const Type* ret_addr = target->peek();
   738   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   740   // Effect on jsr on stack
   741   push(_gvn.makecon(ret_addr));
   743   // Flow to the jsr.
   744   if (should_add_predicate(jsr_bci)){
   745     add_predicate();
   746   }
   747   merge(jsr_bci);
   748 }
   750 // Handle ret bytecode
   751 void Parse::do_ret() {
   752   // Find to whom we return.
   753 #if 0 // %%%% MAKE THIS WORK
   754   Node* con = local();
   755   const TypePtr* tp = con->bottom_type()->isa_ptr();
   756   assert(tp && tp->singleton(), "");
   757   int return_bci = (int) tp->get_con();
   758   merge(return_bci);
   759 #else
   760   assert(block()->num_successors() == 1, "a ret can only go one place now");
   761   Block* target = block()->successor_at(0);
   762   assert(!target->is_ready(), "our arrival must be expected");
   763   profile_ret(target->flow()->start());
   764   int pnum = target->next_path_num();
   765   merge_common(target, pnum);
   766 #endif
   767 }
   769 //--------------------------dynamic_branch_prediction--------------------------
   770 // Try to gather dynamic branch prediction behavior.  Return a probability
   771 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   772 // if we need to use static prediction for some reason.
   773 float Parse::dynamic_branch_prediction(float &cnt) {
   774   ResourceMark rm;
   776   cnt  = COUNT_UNKNOWN;
   778   // Use MethodData information if it is available
   779   // FIXME: free the ProfileData structure
   780   ciMethodData* methodData = method()->method_data();
   781   if (!methodData->is_mature())  return PROB_UNKNOWN;
   782   ciProfileData* data = methodData->bci_to_data(bci());
   783   if (!data->is_JumpData())  return PROB_UNKNOWN;
   785   // get taken and not taken values
   786   int     taken = data->as_JumpData()->taken();
   787   int not_taken = 0;
   788   if (data->is_BranchData()) {
   789     not_taken = data->as_BranchData()->not_taken();
   790   }
   792   // scale the counts to be commensurate with invocation counts:
   793   taken = method()->scale_count(taken);
   794   not_taken = method()->scale_count(not_taken);
   796   // Give up if too few counts to be meaningful
   797   if (taken + not_taken < 40) {
   798     if (C->log() != NULL) {
   799       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   800     }
   801     return PROB_UNKNOWN;
   802   }
   804   // Compute frequency that we arrive here
   805   int sum = taken + not_taken;
   806   // Adjust, if this block is a cloned private block but the
   807   // Jump counts are shared.  Taken the private counts for
   808   // just this path instead of the shared counts.
   809   if( block()->count() > 0 )
   810     sum = block()->count();
   811   cnt = (float)sum / (float)FreqCountInvocations;
   813   // Pin probability to sane limits
   814   float prob;
   815   if( !taken )
   816     prob = (0+PROB_MIN) / 2;
   817   else if( !not_taken )
   818     prob = (1+PROB_MAX) / 2;
   819   else {                         // Compute probability of true path
   820     prob = (float)taken / (float)(taken + not_taken);
   821     if (prob > PROB_MAX)  prob = PROB_MAX;
   822     if (prob < PROB_MIN)   prob = PROB_MIN;
   823   }
   825   assert((cnt > 0.0f) && (prob > 0.0f),
   826          "Bad frequency assignment in if");
   828   if (C->log() != NULL) {
   829     const char* prob_str = NULL;
   830     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   831     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   832     char prob_str_buf[30];
   833     if (prob_str == NULL) {
   834       sprintf(prob_str_buf, "%g", prob);
   835       prob_str = prob_str_buf;
   836     }
   837     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   838                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   839   }
   840   return prob;
   841 }
   843 //-----------------------------branch_prediction-------------------------------
   844 float Parse::branch_prediction(float& cnt,
   845                                BoolTest::mask btest,
   846                                int target_bci) {
   847   float prob = dynamic_branch_prediction(cnt);
   848   // If prob is unknown, switch to static prediction
   849   if (prob != PROB_UNKNOWN)  return prob;
   851   prob = PROB_FAIR;                   // Set default value
   852   if (btest == BoolTest::eq)          // Exactly equal test?
   853     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   854   else if (btest == BoolTest::ne)
   855     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   857   // If this is a conditional test guarding a backwards branch,
   858   // assume its a loop-back edge.  Make it a likely taken branch.
   859   if (target_bci < bci()) {
   860     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   861       // Since it's an OSR, we probably have profile data, but since
   862       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   863       // Let's make a special check here for completely zero counts.
   864       ciMethodData* methodData = method()->method_data();
   865       if (!methodData->is_empty()) {
   866         ciProfileData* data = methodData->bci_to_data(bci());
   867         // Only stop for truly zero counts, which mean an unknown part
   868         // of the OSR-ed method, and we want to deopt to gather more stats.
   869         // If you have ANY counts, then this loop is simply 'cold' relative
   870         // to the OSR loop.
   871         if (data->as_BranchData()->taken() +
   872             data->as_BranchData()->not_taken() == 0 ) {
   873           // This is the only way to return PROB_UNKNOWN:
   874           return PROB_UNKNOWN;
   875         }
   876       }
   877     }
   878     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   879   }
   881   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   882   return prob;
   883 }
   885 // The magic constants are chosen so as to match the output of
   886 // branch_prediction() when the profile reports a zero taken count.
   887 // It is important to distinguish zero counts unambiguously, because
   888 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   889 // very small but nonzero probabilities, which if confused with zero
   890 // counts would keep the program recompiling indefinitely.
   891 bool Parse::seems_never_taken(float prob) {
   892   return prob < PROB_MIN;
   893 }
   895 //-------------------------------repush_if_args--------------------------------
   896 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
   897 inline int Parse::repush_if_args() {
   898 #ifndef PRODUCT
   899   if (PrintOpto && WizardMode) {
   900     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   901                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   902     method()->print_name(); tty->cr();
   903   }
   904 #endif
   905   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   906   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   907   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   908   assert(argument(0) != NULL, "must exist");
   909   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   910   _sp += bc_depth;
   911   return bc_depth;
   912 }
   914 //----------------------------------do_ifnull----------------------------------
   915 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
   916   int target_bci = iter().get_dest();
   918   Block* branch_block = successor_for_bci(target_bci);
   919   Block* next_block   = successor_for_bci(iter().next_bci());
   921   float cnt;
   922   float prob = branch_prediction(cnt, btest, target_bci);
   923   if (prob == PROB_UNKNOWN) {
   924     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   925 #ifndef PRODUCT
   926     if (PrintOpto && Verbose)
   927       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
   928 #endif
   929     repush_if_args(); // to gather stats on loop
   930     // We need to mark this branch as taken so that if we recompile we will
   931     // see that it is possible. In the tiered system the interpreter doesn't
   932     // do profiling and by the time we get to the lower tier from the interpreter
   933     // the path may be cold again. Make sure it doesn't look untaken
   934     profile_taken_branch(target_bci, !ProfileInterpreter);
   935     uncommon_trap(Deoptimization::Reason_unreached,
   936                   Deoptimization::Action_reinterpret,
   937                   NULL, "cold");
   938     if (EliminateAutoBox) {
   939       // Mark the successor blocks as parsed
   940       branch_block->next_path_num();
   941       next_block->next_path_num();
   942     }
   943     return;
   944   }
   946   explicit_null_checks_inserted++;
   948   // Generate real control flow
   949   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
   951   // Sanity check the probability value
   952   assert(prob > 0.0f,"Bad probability in Parser");
   953  // Need xform to put node in hash table
   954   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   955   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   956   // True branch
   957   { PreserveJVMState pjvms(this);
   958     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   959     set_control(iftrue);
   961     if (stopped()) {            // Path is dead?
   962       explicit_null_checks_elided++;
   963       if (EliminateAutoBox) {
   964         // Mark the successor block as parsed
   965         branch_block->next_path_num();
   966       }
   967     } else {                    // Path is live.
   968       // Update method data
   969       profile_taken_branch(target_bci);
   970       adjust_map_after_if(btest, c, prob, branch_block, next_block);
   971       if (!stopped()) {
   972         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
   973           int nargs = repush_if_args(); // set original stack for uncommon_trap
   974           add_predicate();
   975           _sp -= nargs;
   976         }
   977         merge(target_bci);
   978       }
   979     }
   980   }
   982   // False branch
   983   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   984   set_control(iffalse);
   986   if (stopped()) {              // Path is dead?
   987     explicit_null_checks_elided++;
   988     if (EliminateAutoBox) {
   989       // Mark the successor block as parsed
   990       next_block->next_path_num();
   991     }
   992   } else  {                     // Path is live.
   993     // Update method data
   994     profile_not_taken_branch();
   995     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
   996                         next_block, branch_block);
   997   }
   998 }
  1000 //------------------------------------do_if------------------------------------
  1001 void Parse::do_if(BoolTest::mask btest, Node* c) {
  1002   int target_bci = iter().get_dest();
  1004   Block* branch_block = successor_for_bci(target_bci);
  1005   Block* next_block   = successor_for_bci(iter().next_bci());
  1007   float cnt;
  1008   float prob = branch_prediction(cnt, btest, target_bci);
  1009   float untaken_prob = 1.0 - prob;
  1011   if (prob == PROB_UNKNOWN) {
  1012 #ifndef PRODUCT
  1013     if (PrintOpto && Verbose)
  1014       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
  1015 #endif
  1016     repush_if_args(); // to gather stats on loop
  1017     // We need to mark this branch as taken so that if we recompile we will
  1018     // see that it is possible. In the tiered system the interpreter doesn't
  1019     // do profiling and by the time we get to the lower tier from the interpreter
  1020     // the path may be cold again. Make sure it doesn't look untaken
  1021     profile_taken_branch(target_bci, !ProfileInterpreter);
  1022     uncommon_trap(Deoptimization::Reason_unreached,
  1023                   Deoptimization::Action_reinterpret,
  1024                   NULL, "cold");
  1025     if (EliminateAutoBox) {
  1026       // Mark the successor blocks as parsed
  1027       branch_block->next_path_num();
  1028       next_block->next_path_num();
  1030     return;
  1033   // Sanity check the probability value
  1034   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1036   bool taken_if_true = true;
  1037   // Convert BoolTest to canonical form:
  1038   if (!BoolTest(btest).is_canonical()) {
  1039     btest         = BoolTest(btest).negate();
  1040     taken_if_true = false;
  1041     // prob is NOT updated here; it remains the probability of the taken
  1042     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1044   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1046   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1047   Node* tst = _gvn.transform(tst0);
  1048   BoolTest::mask taken_btest   = BoolTest::illegal;
  1049   BoolTest::mask untaken_btest = BoolTest::illegal;
  1051   if (tst->is_Bool()) {
  1052     // Refresh c from the transformed bool node, since it may be
  1053     // simpler than the original c.  Also re-canonicalize btest.
  1054     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1055     // That can arise from statements like: if (x instanceof C) ...
  1056     if (tst != tst0) {
  1057       // Canonicalize one more time since transform can change it.
  1058       btest = tst->as_Bool()->_test._test;
  1059       if (!BoolTest(btest).is_canonical()) {
  1060         // Reverse edges one more time...
  1061         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1062         btest = tst->as_Bool()->_test._test;
  1063         assert(BoolTest(btest).is_canonical(), "sanity");
  1064         taken_if_true = !taken_if_true;
  1066       c = tst->in(1);
  1068     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1069     taken_btest   = taken_if_true ?     btest : neg_btest;
  1070     untaken_btest = taken_if_true ? neg_btest :     btest;
  1073   // Generate real control flow
  1074   float true_prob = (taken_if_true ? prob : untaken_prob);
  1075   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1076   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1077   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1078   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1079   if (!taken_if_true) {  // Finish conversion to canonical form
  1080     Node* tmp      = taken_branch;
  1081     taken_branch   = untaken_branch;
  1082     untaken_branch = tmp;
  1085   // Branch is taken:
  1086   { PreserveJVMState pjvms(this);
  1087     taken_branch = _gvn.transform(taken_branch);
  1088     set_control(taken_branch);
  1090     if (stopped()) {
  1091       if (EliminateAutoBox) {
  1092         // Mark the successor block as parsed
  1093         branch_block->next_path_num();
  1095     } else {
  1096       // Update method data
  1097       profile_taken_branch(target_bci);
  1098       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1099       if (!stopped()) {
  1100         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
  1101           int nargs = repush_if_args(); // set original stack for the uncommon_trap
  1102           add_predicate();
  1103           _sp -= nargs;
  1105         merge(target_bci);
  1110   untaken_branch = _gvn.transform(untaken_branch);
  1111   set_control(untaken_branch);
  1113   // Branch not taken.
  1114   if (stopped()) {
  1115     if (EliminateAutoBox) {
  1116       // Mark the successor block as parsed
  1117       next_block->next_path_num();
  1119   } else {
  1120     // Update method data
  1121     profile_not_taken_branch();
  1122     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1123                         next_block, branch_block);
  1127 //----------------------------adjust_map_after_if------------------------------
  1128 // Adjust the JVM state to reflect the result of taking this path.
  1129 // Basically, it means inspecting the CmpNode controlling this
  1130 // branch, seeing how it constrains a tested value, and then
  1131 // deciding if it's worth our while to encode this constraint
  1132 // as graph nodes in the current abstract interpretation map.
  1133 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1134                                 Block* path, Block* other_path) {
  1135   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1136     return;                             // nothing to do
  1138   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1140   int cop = c->Opcode();
  1141   if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
  1142     // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
  1143     //
  1144     // If this might possibly turn into an implicit null check,
  1145     // and the null has never yet been seen, we need to generate
  1146     // an uncommon trap, so as to recompile instead of suffering
  1147     // with very slow branches.  (We'll get the slow branches if
  1148     // the program ever changes phase and starts seeing nulls here.)
  1149     //
  1150     // The tests we worry about are of the form (p == null).
  1151     // We do not simply inspect for a null constant, since a node may
  1152     // optimize to 'null' later on.
  1153     repush_if_args();
  1154     // We need to mark this branch as taken so that if we recompile we will
  1155     // see that it is possible. In the tiered system the interpreter doesn't
  1156     // do profiling and by the time we get to the lower tier from the interpreter
  1157     // the path may be cold again. Make sure it doesn't look untaken
  1158     if (is_fallthrough) {
  1159       profile_not_taken_branch(!ProfileInterpreter);
  1160     } else {
  1161       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1163     uncommon_trap(Deoptimization::Reason_unreached,
  1164                   Deoptimization::Action_reinterpret,
  1165                   NULL,
  1166                   (is_fallthrough ? "taken always" : "taken never"));
  1167     return;
  1170   Node* val = c->in(1);
  1171   Node* con = c->in(2);
  1172   const Type* tcon = _gvn.type(con);
  1173   const Type* tval = _gvn.type(val);
  1174   bool have_con = tcon->singleton();
  1175   if (tval->singleton()) {
  1176     if (!have_con) {
  1177       // Swap, so constant is in con.
  1178       con  = val;
  1179       tcon = tval;
  1180       val  = c->in(2);
  1181       tval = _gvn.type(val);
  1182       btest = BoolTest(btest).commute();
  1183       have_con = true;
  1184     } else {
  1185       // Do we have two constants?  Then leave well enough alone.
  1186       have_con = false;
  1189   if (!have_con)                        // remaining adjustments need a con
  1190     return;
  1193   int val_in_map = map()->find_edge(val);
  1194   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1196     JVMState* jvms = this->jvms();
  1197     if (!(jvms->is_loc(val_in_map) ||
  1198           jvms->is_stk(val_in_map)))
  1199       return;                           // again, it would be useless
  1202   // Check for a comparison to a constant, and "know" that the compared
  1203   // value is constrained on this path.
  1204   assert(tcon->singleton(), "");
  1205   ConstraintCastNode* ccast = NULL;
  1206   Node* cast = NULL;
  1208   switch (btest) {
  1209   case BoolTest::eq:                    // Constant test?
  1211       const Type* tboth = tcon->join(tval);
  1212       if (tboth == tval)  break;        // Nothing to gain.
  1213       if (tcon->isa_int()) {
  1214         ccast = new (C, 2) CastIINode(val, tboth);
  1215       } else if (tcon == TypePtr::NULL_PTR) {
  1216         // Cast to null, but keep the pointer identity temporarily live.
  1217         ccast = new (C, 2) CastPPNode(val, tboth);
  1218       } else {
  1219         const TypeF* tf = tcon->isa_float_constant();
  1220         const TypeD* td = tcon->isa_double_constant();
  1221         // Exclude tests vs float/double 0 as these could be
  1222         // either +0 or -0.  Just because you are equal to +0
  1223         // doesn't mean you ARE +0!
  1224         if ((!tf || tf->_f != 0.0) &&
  1225             (!td || td->_d != 0.0))
  1226           cast = con;                   // Replace non-constant val by con.
  1229     break;
  1231   case BoolTest::ne:
  1232     if (tcon == TypePtr::NULL_PTR) {
  1233       cast = cast_not_null(val, false);
  1235     break;
  1237   default:
  1238     // (At this point we could record int range types with CastII.)
  1239     break;
  1242   if (ccast != NULL) {
  1243     const Type* tcc = ccast->as_Type()->type();
  1244     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1245     // Delay transform() call to allow recovery of pre-cast value
  1246     // at the control merge.
  1247     ccast->set_req(0, control());
  1248     _gvn.set_type_bottom(ccast);
  1249     record_for_igvn(ccast);
  1250     cast = ccast;
  1253   if (cast != NULL) {                   // Here's the payoff.
  1254     replace_in_map(val, cast);
  1259 //------------------------------do_one_bytecode--------------------------------
  1260 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1261 void Parse::do_one_bytecode() {
  1262   Node *a, *b, *c, *d;          // Handy temps
  1263   BoolTest::mask btest;
  1264   int i;
  1266   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1268   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1269                           "out of nodes parsing method")) {
  1270     return;
  1273 #ifdef ASSERT
  1274   // for setting breakpoints
  1275   if (TraceOptoParse) {
  1276     tty->print(" @");
  1277     dump_bci(bci());
  1279 #endif
  1281   switch (bc()) {
  1282   case Bytecodes::_nop:
  1283     // do nothing
  1284     break;
  1285   case Bytecodes::_lconst_0:
  1286     push_pair(longcon(0));
  1287     break;
  1289   case Bytecodes::_lconst_1:
  1290     push_pair(longcon(1));
  1291     break;
  1293   case Bytecodes::_fconst_0:
  1294     push(zerocon(T_FLOAT));
  1295     break;
  1297   case Bytecodes::_fconst_1:
  1298     push(makecon(TypeF::ONE));
  1299     break;
  1301   case Bytecodes::_fconst_2:
  1302     push(makecon(TypeF::make(2.0f)));
  1303     break;
  1305   case Bytecodes::_dconst_0:
  1306     push_pair(zerocon(T_DOUBLE));
  1307     break;
  1309   case Bytecodes::_dconst_1:
  1310     push_pair(makecon(TypeD::ONE));
  1311     break;
  1313   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1314   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1315   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1316   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1317   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1318   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1319   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1320   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
  1321   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
  1322   case Bytecodes::_aconst_null: push(null());  break;
  1323   case Bytecodes::_ldc:
  1324   case Bytecodes::_ldc_w:
  1325   case Bytecodes::_ldc2_w:
  1326     // If the constant is unresolved, run this BC once in the interpreter.
  1328       ciConstant constant = iter().get_constant();
  1329       if (constant.basic_type() == T_OBJECT &&
  1330           !constant.as_object()->is_loaded()) {
  1331         int index = iter().get_constant_pool_index();
  1332         constantTag tag = iter().get_constant_pool_tag(index);
  1333         uncommon_trap(Deoptimization::make_trap_request
  1334                       (Deoptimization::Reason_unloaded,
  1335                        Deoptimization::Action_reinterpret,
  1336                        index),
  1337                       NULL, tag.internal_name());
  1338         break;
  1340       assert(constant.basic_type() != T_OBJECT || !constant.as_object()->is_klass(),
  1341              "must be java_mirror of klass");
  1342       bool pushed = push_constant(constant, true);
  1343       guarantee(pushed, "must be possible to push this constant");
  1346     break;
  1348   case Bytecodes::_aload_0:
  1349     push( local(0) );
  1350     break;
  1351   case Bytecodes::_aload_1:
  1352     push( local(1) );
  1353     break;
  1354   case Bytecodes::_aload_2:
  1355     push( local(2) );
  1356     break;
  1357   case Bytecodes::_aload_3:
  1358     push( local(3) );
  1359     break;
  1360   case Bytecodes::_aload:
  1361     push( local(iter().get_index()) );
  1362     break;
  1364   case Bytecodes::_fload_0:
  1365   case Bytecodes::_iload_0:
  1366     push( local(0) );
  1367     break;
  1368   case Bytecodes::_fload_1:
  1369   case Bytecodes::_iload_1:
  1370     push( local(1) );
  1371     break;
  1372   case Bytecodes::_fload_2:
  1373   case Bytecodes::_iload_2:
  1374     push( local(2) );
  1375     break;
  1376   case Bytecodes::_fload_3:
  1377   case Bytecodes::_iload_3:
  1378     push( local(3) );
  1379     break;
  1380   case Bytecodes::_fload:
  1381   case Bytecodes::_iload:
  1382     push( local(iter().get_index()) );
  1383     break;
  1384   case Bytecodes::_lload_0:
  1385     push_pair_local( 0 );
  1386     break;
  1387   case Bytecodes::_lload_1:
  1388     push_pair_local( 1 );
  1389     break;
  1390   case Bytecodes::_lload_2:
  1391     push_pair_local( 2 );
  1392     break;
  1393   case Bytecodes::_lload_3:
  1394     push_pair_local( 3 );
  1395     break;
  1396   case Bytecodes::_lload:
  1397     push_pair_local( iter().get_index() );
  1398     break;
  1400   case Bytecodes::_dload_0:
  1401     push_pair_local(0);
  1402     break;
  1403   case Bytecodes::_dload_1:
  1404     push_pair_local(1);
  1405     break;
  1406   case Bytecodes::_dload_2:
  1407     push_pair_local(2);
  1408     break;
  1409   case Bytecodes::_dload_3:
  1410     push_pair_local(3);
  1411     break;
  1412   case Bytecodes::_dload:
  1413     push_pair_local(iter().get_index());
  1414     break;
  1415   case Bytecodes::_fstore_0:
  1416   case Bytecodes::_istore_0:
  1417   case Bytecodes::_astore_0:
  1418     set_local( 0, pop() );
  1419     break;
  1420   case Bytecodes::_fstore_1:
  1421   case Bytecodes::_istore_1:
  1422   case Bytecodes::_astore_1:
  1423     set_local( 1, pop() );
  1424     break;
  1425   case Bytecodes::_fstore_2:
  1426   case Bytecodes::_istore_2:
  1427   case Bytecodes::_astore_2:
  1428     set_local( 2, pop() );
  1429     break;
  1430   case Bytecodes::_fstore_3:
  1431   case Bytecodes::_istore_3:
  1432   case Bytecodes::_astore_3:
  1433     set_local( 3, pop() );
  1434     break;
  1435   case Bytecodes::_fstore:
  1436   case Bytecodes::_istore:
  1437   case Bytecodes::_astore:
  1438     set_local( iter().get_index(), pop() );
  1439     break;
  1440   // long stores
  1441   case Bytecodes::_lstore_0:
  1442     set_pair_local( 0, pop_pair() );
  1443     break;
  1444   case Bytecodes::_lstore_1:
  1445     set_pair_local( 1, pop_pair() );
  1446     break;
  1447   case Bytecodes::_lstore_2:
  1448     set_pair_local( 2, pop_pair() );
  1449     break;
  1450   case Bytecodes::_lstore_3:
  1451     set_pair_local( 3, pop_pair() );
  1452     break;
  1453   case Bytecodes::_lstore:
  1454     set_pair_local( iter().get_index(), pop_pair() );
  1455     break;
  1457   // double stores
  1458   case Bytecodes::_dstore_0:
  1459     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1460     break;
  1461   case Bytecodes::_dstore_1:
  1462     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1463     break;
  1464   case Bytecodes::_dstore_2:
  1465     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1466     break;
  1467   case Bytecodes::_dstore_3:
  1468     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1469     break;
  1470   case Bytecodes::_dstore:
  1471     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1472     break;
  1474   case Bytecodes::_pop:  _sp -= 1;   break;
  1475   case Bytecodes::_pop2: _sp -= 2;   break;
  1476   case Bytecodes::_swap:
  1477     a = pop();
  1478     b = pop();
  1479     push(a);
  1480     push(b);
  1481     break;
  1482   case Bytecodes::_dup:
  1483     a = pop();
  1484     push(a);
  1485     push(a);
  1486     break;
  1487   case Bytecodes::_dup_x1:
  1488     a = pop();
  1489     b = pop();
  1490     push( a );
  1491     push( b );
  1492     push( a );
  1493     break;
  1494   case Bytecodes::_dup_x2:
  1495     a = pop();
  1496     b = pop();
  1497     c = pop();
  1498     push( a );
  1499     push( c );
  1500     push( b );
  1501     push( a );
  1502     break;
  1503   case Bytecodes::_dup2:
  1504     a = pop();
  1505     b = pop();
  1506     push( b );
  1507     push( a );
  1508     push( b );
  1509     push( a );
  1510     break;
  1512   case Bytecodes::_dup2_x1:
  1513     // before: .. c, b, a
  1514     // after:  .. b, a, c, b, a
  1515     // not tested
  1516     a = pop();
  1517     b = pop();
  1518     c = pop();
  1519     push( b );
  1520     push( a );
  1521     push( c );
  1522     push( b );
  1523     push( a );
  1524     break;
  1525   case Bytecodes::_dup2_x2:
  1526     // before: .. d, c, b, a
  1527     // after:  .. b, a, d, c, b, a
  1528     // not tested
  1529     a = pop();
  1530     b = pop();
  1531     c = pop();
  1532     d = pop();
  1533     push( b );
  1534     push( a );
  1535     push( d );
  1536     push( c );
  1537     push( b );
  1538     push( a );
  1539     break;
  1541   case Bytecodes::_arraylength: {
  1542     // Must do null-check with value on expression stack
  1543     Node *ary = do_null_check(peek(), T_ARRAY);
  1544     // Compile-time detect of null-exception?
  1545     if (stopped())  return;
  1546     a = pop();
  1547     push(load_array_length(a));
  1548     break;
  1551   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1552   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1553   case Bytecodes::_iaload: array_load(T_INT);    break;
  1554   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1555   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1556   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1557   case Bytecodes::_laload: {
  1558     a = array_addressing(T_LONG, 0);
  1559     if (stopped())  return;     // guaranteed null or range check
  1560     _sp -= 2;                   // Pop array and index
  1561     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1562     break;
  1564   case Bytecodes::_daload: {
  1565     a = array_addressing(T_DOUBLE, 0);
  1566     if (stopped())  return;     // guaranteed null or range check
  1567     _sp -= 2;                   // Pop array and index
  1568     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1569     break;
  1571   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1572   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1573   case Bytecodes::_iastore: array_store(T_INT);   break;
  1574   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1575   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1576   case Bytecodes::_aastore: {
  1577     d = array_addressing(T_OBJECT, 1);
  1578     if (stopped())  return;     // guaranteed null or range check
  1579     array_store_check();
  1580     c = pop();                  // Oop to store
  1581     b = pop();                  // index (already used)
  1582     a = pop();                  // the array itself
  1583     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
  1584     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1585     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1586     break;
  1588   case Bytecodes::_lastore: {
  1589     a = array_addressing(T_LONG, 2);
  1590     if (stopped())  return;     // guaranteed null or range check
  1591     c = pop_pair();
  1592     _sp -= 2;                   // Pop array and index
  1593     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1594     break;
  1596   case Bytecodes::_dastore: {
  1597     a = array_addressing(T_DOUBLE, 2);
  1598     if (stopped())  return;     // guaranteed null or range check
  1599     c = pop_pair();
  1600     _sp -= 2;                   // Pop array and index
  1601     c = dstore_rounding(c);
  1602     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1603     break;
  1605   case Bytecodes::_getfield:
  1606     do_getfield();
  1607     break;
  1609   case Bytecodes::_getstatic:
  1610     do_getstatic();
  1611     break;
  1613   case Bytecodes::_putfield:
  1614     do_putfield();
  1615     break;
  1617   case Bytecodes::_putstatic:
  1618     do_putstatic();
  1619     break;
  1621   case Bytecodes::_irem:
  1622     do_irem();
  1623     break;
  1624   case Bytecodes::_idiv:
  1625     // Must keep both values on the expression-stack during null-check
  1626     do_null_check(peek(), T_INT);
  1627     // Compile-time detect of null-exception?
  1628     if (stopped())  return;
  1629     b = pop();
  1630     a = pop();
  1631     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1632     break;
  1633   case Bytecodes::_imul:
  1634     b = pop(); a = pop();
  1635     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1636     break;
  1637   case Bytecodes::_iadd:
  1638     b = pop(); a = pop();
  1639     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1640     break;
  1641   case Bytecodes::_ineg:
  1642     a = pop();
  1643     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1644     break;
  1645   case Bytecodes::_isub:
  1646     b = pop(); a = pop();
  1647     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1648     break;
  1649   case Bytecodes::_iand:
  1650     b = pop(); a = pop();
  1651     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1652     break;
  1653   case Bytecodes::_ior:
  1654     b = pop(); a = pop();
  1655     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1656     break;
  1657   case Bytecodes::_ixor:
  1658     b = pop(); a = pop();
  1659     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1660     break;
  1661   case Bytecodes::_ishl:
  1662     b = pop(); a = pop();
  1663     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1664     break;
  1665   case Bytecodes::_ishr:
  1666     b = pop(); a = pop();
  1667     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1668     break;
  1669   case Bytecodes::_iushr:
  1670     b = pop(); a = pop();
  1671     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1672     break;
  1674   case Bytecodes::_fneg:
  1675     a = pop();
  1676     b = _gvn.transform(new (C, 2) NegFNode (a));
  1677     push(b);
  1678     break;
  1680   case Bytecodes::_fsub:
  1681     b = pop();
  1682     a = pop();
  1683     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1684     d = precision_rounding(c);
  1685     push( d );
  1686     break;
  1688   case Bytecodes::_fadd:
  1689     b = pop();
  1690     a = pop();
  1691     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1692     d = precision_rounding(c);
  1693     push( d );
  1694     break;
  1696   case Bytecodes::_fmul:
  1697     b = pop();
  1698     a = pop();
  1699     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1700     d = precision_rounding(c);
  1701     push( d );
  1702     break;
  1704   case Bytecodes::_fdiv:
  1705     b = pop();
  1706     a = pop();
  1707     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1708     d = precision_rounding(c);
  1709     push( d );
  1710     break;
  1712   case Bytecodes::_frem:
  1713     if (Matcher::has_match_rule(Op_ModF)) {
  1714       // Generate a ModF node.
  1715       b = pop();
  1716       a = pop();
  1717       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1718       d = precision_rounding(c);
  1719       push( d );
  1721     else {
  1722       // Generate a call.
  1723       modf();
  1725     break;
  1727   case Bytecodes::_fcmpl:
  1728     b = pop();
  1729     a = pop();
  1730     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1731     push(c);
  1732     break;
  1733   case Bytecodes::_fcmpg:
  1734     b = pop();
  1735     a = pop();
  1737     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1738     // which negates the result sign except for unordered.  Flip the unordered
  1739     // as well by using CmpF3 which implements unordered-lesser instead of
  1740     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1741     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1742     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1743     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1744     push(c);
  1745     break;
  1747   case Bytecodes::_f2i:
  1748     a = pop();
  1749     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1750     break;
  1752   case Bytecodes::_d2i:
  1753     a = pop_pair();
  1754     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1755     push( b );
  1756     break;
  1758   case Bytecodes::_f2d:
  1759     a = pop();
  1760     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1761     push_pair( b );
  1762     break;
  1764   case Bytecodes::_d2f:
  1765     a = pop_pair();
  1766     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1767     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1768     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1769     push( b );
  1770     break;
  1772   case Bytecodes::_l2f:
  1773     if (Matcher::convL2FSupported()) {
  1774       a = pop_pair();
  1775       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1776       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1777       // Rather than storing the result into an FP register then pushing
  1778       // out to memory to round, the machine instruction that implements
  1779       // ConvL2D is responsible for rounding.
  1780       // c = precision_rounding(b);
  1781       c = _gvn.transform(b);
  1782       push(c);
  1783     } else {
  1784       l2f();
  1786     break;
  1788   case Bytecodes::_l2d:
  1789     a = pop_pair();
  1790     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1791     // For i486.ad, rounding is always necessary (see _l2f above).
  1792     // c = dprecision_rounding(b);
  1793     c = _gvn.transform(b);
  1794     push_pair(c);
  1795     break;
  1797   case Bytecodes::_f2l:
  1798     a = pop();
  1799     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1800     push_pair(b);
  1801     break;
  1803   case Bytecodes::_d2l:
  1804     a = pop_pair();
  1805     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1806     push_pair(b);
  1807     break;
  1809   case Bytecodes::_dsub:
  1810     b = pop_pair();
  1811     a = pop_pair();
  1812     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1813     d = dprecision_rounding(c);
  1814     push_pair( d );
  1815     break;
  1817   case Bytecodes::_dadd:
  1818     b = pop_pair();
  1819     a = pop_pair();
  1820     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1821     d = dprecision_rounding(c);
  1822     push_pair( d );
  1823     break;
  1825   case Bytecodes::_dmul:
  1826     b = pop_pair();
  1827     a = pop_pair();
  1828     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1829     d = dprecision_rounding(c);
  1830     push_pair( d );
  1831     break;
  1833   case Bytecodes::_ddiv:
  1834     b = pop_pair();
  1835     a = pop_pair();
  1836     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1837     d = dprecision_rounding(c);
  1838     push_pair( d );
  1839     break;
  1841   case Bytecodes::_dneg:
  1842     a = pop_pair();
  1843     b = _gvn.transform(new (C, 2) NegDNode (a));
  1844     push_pair(b);
  1845     break;
  1847   case Bytecodes::_drem:
  1848     if (Matcher::has_match_rule(Op_ModD)) {
  1849       // Generate a ModD node.
  1850       b = pop_pair();
  1851       a = pop_pair();
  1852       // a % b
  1854       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1855       d = dprecision_rounding(c);
  1856       push_pair( d );
  1858     else {
  1859       // Generate a call.
  1860       modd();
  1862     break;
  1864   case Bytecodes::_dcmpl:
  1865     b = pop_pair();
  1866     a = pop_pair();
  1867     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1868     push(c);
  1869     break;
  1871   case Bytecodes::_dcmpg:
  1872     b = pop_pair();
  1873     a = pop_pair();
  1874     // Same as dcmpl but need to flip the unordered case.
  1875     // Commute the inputs, which negates the result sign except for unordered.
  1876     // Flip the unordered as well by using CmpD3 which implements
  1877     // unordered-lesser instead of unordered-greater semantics.
  1878     // Finally, negate the result bits.  Result is same as using a
  1879     // CmpD3Greater except we did it with CmpD3 alone.
  1880     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1881     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1882     push(c);
  1883     break;
  1886     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1887   case Bytecodes::_land:
  1888     b = pop_pair();
  1889     a = pop_pair();
  1890     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1891     push_pair(c);
  1892     break;
  1893   case Bytecodes::_lor:
  1894     b = pop_pair();
  1895     a = pop_pair();
  1896     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1897     push_pair(c);
  1898     break;
  1899   case Bytecodes::_lxor:
  1900     b = pop_pair();
  1901     a = pop_pair();
  1902     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1903     push_pair(c);
  1904     break;
  1906   case Bytecodes::_lshl:
  1907     b = pop();                  // the shift count
  1908     a = pop_pair();             // value to be shifted
  1909     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1910     push_pair(c);
  1911     break;
  1912   case Bytecodes::_lshr:
  1913     b = pop();                  // the shift count
  1914     a = pop_pair();             // value to be shifted
  1915     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1916     push_pair(c);
  1917     break;
  1918   case Bytecodes::_lushr:
  1919     b = pop();                  // the shift count
  1920     a = pop_pair();             // value to be shifted
  1921     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1922     push_pair(c);
  1923     break;
  1924   case Bytecodes::_lmul:
  1925     b = pop_pair();
  1926     a = pop_pair();
  1927     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1928     push_pair(c);
  1929     break;
  1931   case Bytecodes::_lrem:
  1932     // Must keep both values on the expression-stack during null-check
  1933     assert(peek(0) == top(), "long word order");
  1934     do_null_check(peek(1), T_LONG);
  1935     // Compile-time detect of null-exception?
  1936     if (stopped())  return;
  1937     b = pop_pair();
  1938     a = pop_pair();
  1939     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1940     push_pair(c);
  1941     break;
  1943   case Bytecodes::_ldiv:
  1944     // Must keep both values on the expression-stack during null-check
  1945     assert(peek(0) == top(), "long word order");
  1946     do_null_check(peek(1), T_LONG);
  1947     // Compile-time detect of null-exception?
  1948     if (stopped())  return;
  1949     b = pop_pair();
  1950     a = pop_pair();
  1951     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1952     push_pair(c);
  1953     break;
  1955   case Bytecodes::_ladd:
  1956     b = pop_pair();
  1957     a = pop_pair();
  1958     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  1959     push_pair(c);
  1960     break;
  1961   case Bytecodes::_lsub:
  1962     b = pop_pair();
  1963     a = pop_pair();
  1964     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  1965     push_pair(c);
  1966     break;
  1967   case Bytecodes::_lcmp:
  1968     // Safepoints are now inserted _before_ branches.  The long-compare
  1969     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  1970     // slew of control flow.  These are usually followed by a CmpI vs zero and
  1971     // a branch; this pattern then optimizes to the obvious long-compare and
  1972     // branch.  However, if the branch is backwards there's a Safepoint
  1973     // inserted.  The inserted Safepoint captures the JVM state at the
  1974     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  1975     // long-compare is used to control a loop the debug info will force
  1976     // computation of the 3-way value, even though the generated code uses a
  1977     // long-compare and branch.  We try to rectify the situation by inserting
  1978     // a SafePoint here and have it dominate and kill the safepoint added at a
  1979     // following backwards branch.  At this point the JVM state merely holds 2
  1980     // longs but not the 3-way value.
  1981     if( UseLoopSafepoints ) {
  1982       switch( iter().next_bc() ) {
  1983       case Bytecodes::_ifgt:
  1984       case Bytecodes::_iflt:
  1985       case Bytecodes::_ifge:
  1986       case Bytecodes::_ifle:
  1987       case Bytecodes::_ifne:
  1988       case Bytecodes::_ifeq:
  1989         // If this is a backwards branch in the bytecodes, add Safepoint
  1990         maybe_add_safepoint(iter().next_get_dest());
  1993     b = pop_pair();
  1994     a = pop_pair();
  1995     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  1996     push(c);
  1997     break;
  1999   case Bytecodes::_lneg:
  2000     a = pop_pair();
  2001     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  2002     push_pair(b);
  2003     break;
  2004   case Bytecodes::_l2i:
  2005     a = pop_pair();
  2006     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  2007     break;
  2008   case Bytecodes::_i2l:
  2009     a = pop();
  2010     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  2011     push_pair(b);
  2012     break;
  2013   case Bytecodes::_i2b:
  2014     // Sign extend
  2015     a = pop();
  2016     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  2017     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  2018     push( a );
  2019     break;
  2020   case Bytecodes::_i2s:
  2021     a = pop();
  2022     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2023     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2024     push( a );
  2025     break;
  2026   case Bytecodes::_i2c:
  2027     a = pop();
  2028     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2029     break;
  2031   case Bytecodes::_i2f:
  2032     a = pop();
  2033     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2034     c = precision_rounding(b);
  2035     push (b);
  2036     break;
  2038   case Bytecodes::_i2d:
  2039     a = pop();
  2040     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2041     push_pair(b);
  2042     break;
  2044   case Bytecodes::_iinc:        // Increment local
  2045     i = iter().get_index();     // Get local index
  2046     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2047     break;
  2049   // Exit points of synchronized methods must have an unlock node
  2050   case Bytecodes::_return:
  2051     return_current(NULL);
  2052     break;
  2054   case Bytecodes::_ireturn:
  2055   case Bytecodes::_areturn:
  2056   case Bytecodes::_freturn:
  2057     return_current(pop());
  2058     break;
  2059   case Bytecodes::_lreturn:
  2060     return_current(pop_pair());
  2061     break;
  2062   case Bytecodes::_dreturn:
  2063     return_current(pop_pair());
  2064     break;
  2066   case Bytecodes::_athrow:
  2067     // null exception oop throws NULL pointer exception
  2068     do_null_check(peek(), T_OBJECT);
  2069     if (stopped())  return;
  2070     // Hook the thrown exception directly to subsequent handlers.
  2071     if (BailoutToInterpreterForThrows) {
  2072       // Keep method interpreted from now on.
  2073       uncommon_trap(Deoptimization::Reason_unhandled,
  2074                     Deoptimization::Action_make_not_compilable);
  2075       return;
  2077     if (env()->jvmti_can_post_on_exceptions()) {
  2078       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
  2079       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
  2081     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
  2082     add_exception_state(make_exception_state(peek()));
  2083     break;
  2085   case Bytecodes::_goto:   // fall through
  2086   case Bytecodes::_goto_w: {
  2087     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2089     // If this is a backwards branch in the bytecodes, add Safepoint
  2090     maybe_add_safepoint(target_bci);
  2092     // Update method data
  2093     profile_taken_branch(target_bci);
  2095     // Add loop predicate if it goes to a loop
  2096     if (should_add_predicate(target_bci)){
  2097       add_predicate();
  2099     // Merge the current control into the target basic block
  2100     merge(target_bci);
  2102     // See if we can get some profile data and hand it off to the next block
  2103     Block *target_block = block()->successor_for_bci(target_bci);
  2104     if (target_block->pred_count() != 1)  break;
  2105     ciMethodData* methodData = method()->method_data();
  2106     if (!methodData->is_mature())  break;
  2107     ciProfileData* data = methodData->bci_to_data(bci());
  2108     assert( data->is_JumpData(), "" );
  2109     int taken = ((ciJumpData*)data)->taken();
  2110     taken = method()->scale_count(taken);
  2111     target_block->set_count(taken);
  2112     break;
  2115   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
  2116   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
  2117   handle_if_null:
  2118     // If this is a backwards branch in the bytecodes, add Safepoint
  2119     maybe_add_safepoint(iter().get_dest());
  2120     a = null();
  2121     b = pop();
  2122     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2123     do_ifnull(btest, c);
  2124     break;
  2126   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2127   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2128   handle_if_acmp:
  2129     // If this is a backwards branch in the bytecodes, add Safepoint
  2130     maybe_add_safepoint(iter().get_dest());
  2131     a = pop();
  2132     b = pop();
  2133     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2134     do_if(btest, c);
  2135     break;
  2137   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2138   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2139   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2140   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2141   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2142   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2143   handle_ifxx:
  2144     // If this is a backwards branch in the bytecodes, add Safepoint
  2145     maybe_add_safepoint(iter().get_dest());
  2146     a = _gvn.intcon(0);
  2147     b = pop();
  2148     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2149     do_if(btest, c);
  2150     break;
  2152   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2153   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2154   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2155   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2156   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2157   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2158   handle_if_icmp:
  2159     // If this is a backwards branch in the bytecodes, add Safepoint
  2160     maybe_add_safepoint(iter().get_dest());
  2161     a = pop();
  2162     b = pop();
  2163     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2164     do_if(btest, c);
  2165     break;
  2167   case Bytecodes::_tableswitch:
  2168     do_tableswitch();
  2169     break;
  2171   case Bytecodes::_lookupswitch:
  2172     do_lookupswitch();
  2173     break;
  2175   case Bytecodes::_invokestatic:
  2176   case Bytecodes::_invokedynamic:
  2177   case Bytecodes::_invokespecial:
  2178   case Bytecodes::_invokevirtual:
  2179   case Bytecodes::_invokeinterface:
  2180     do_call();
  2181     break;
  2182   case Bytecodes::_checkcast:
  2183     do_checkcast();
  2184     break;
  2185   case Bytecodes::_instanceof:
  2186     do_instanceof();
  2187     break;
  2188   case Bytecodes::_anewarray:
  2189     do_anewarray();
  2190     break;
  2191   case Bytecodes::_newarray:
  2192     do_newarray((BasicType)iter().get_index());
  2193     break;
  2194   case Bytecodes::_multianewarray:
  2195     do_multianewarray();
  2196     break;
  2197   case Bytecodes::_new:
  2198     do_new();
  2199     break;
  2201   case Bytecodes::_jsr:
  2202   case Bytecodes::_jsr_w:
  2203     do_jsr();
  2204     break;
  2206   case Bytecodes::_ret:
  2207     do_ret();
  2208     break;
  2211   case Bytecodes::_monitorenter:
  2212     do_monitor_enter();
  2213     break;
  2215   case Bytecodes::_monitorexit:
  2216     do_monitor_exit();
  2217     break;
  2219   case Bytecodes::_breakpoint:
  2220     // Breakpoint set concurrently to compile
  2221     // %%% use an uncommon trap?
  2222     C->record_failure("breakpoint in method");
  2223     return;
  2225   default:
  2226 #ifndef PRODUCT
  2227     map()->dump(99);
  2228 #endif
  2229     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2230     ShouldNotReachHere();
  2233 #ifndef PRODUCT
  2234   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2235   if(printer) {
  2236     char buffer[256];
  2237     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2238     bool old = printer->traverse_outs();
  2239     printer->set_traverse_outs(true);
  2240     printer->print_method(C, buffer, 4);
  2241     printer->set_traverse_outs(old);
  2243 #endif

mercurial