src/cpu/sparc/vm/templateTable_sparc.cpp

Wed, 09 Jun 2010 18:50:45 -0700

author
jrose
date
Wed, 09 Jun 2010 18:50:45 -0700
changeset 1957
136b78722a08
parent 1934
e9ff18c4ace7
child 2036
126ea7725993
permissions
-rw-r--r--

6939203: JSR 292 needs method handle constants
Summary: Add new CP types CONSTANT_MethodHandle, CONSTANT_MethodType; extend 'ldc' bytecode.
Reviewed-by: twisti, never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 // Misc helpers
    33 // Do an oop store like *(base + index + offset) = val
    34 // index can be noreg,
    35 static void do_oop_store(InterpreterMacroAssembler* _masm,
    36                          Register base,
    37                          Register index,
    38                          int offset,
    39                          Register val,
    40                          Register tmp,
    41                          BarrierSet::Name barrier,
    42                          bool precise) {
    43   assert(tmp != val && tmp != base && tmp != index, "register collision");
    44   assert(index == noreg || offset == 0, "only one offset");
    45   switch (barrier) {
    46 #ifndef SERIALGC
    47     case BarrierSet::G1SATBCT:
    48     case BarrierSet::G1SATBCTLogging:
    49       {
    50         __ g1_write_barrier_pre( base, index, offset, tmp, /*preserve_o_regs*/true);
    51         if (index == noreg ) {
    52           assert(Assembler::is_simm13(offset), "fix this code");
    53           __ store_heap_oop(val, base, offset);
    54         } else {
    55           __ store_heap_oop(val, base, index);
    56         }
    58         // No need for post barrier if storing NULL
    59         if (val != G0) {
    60           if (precise) {
    61             if (index == noreg) {
    62               __ add(base, offset, base);
    63             } else {
    64               __ add(base, index, base);
    65             }
    66           }
    67           __ g1_write_barrier_post(base, val, tmp);
    68         }
    69       }
    70       break;
    71 #endif // SERIALGC
    72     case BarrierSet::CardTableModRef:
    73     case BarrierSet::CardTableExtension:
    74       {
    75         if (index == noreg ) {
    76           assert(Assembler::is_simm13(offset), "fix this code");
    77           __ store_heap_oop(val, base, offset);
    78         } else {
    79           __ store_heap_oop(val, base, index);
    80         }
    81         // No need for post barrier if storing NULL
    82         if (val != G0) {
    83           if (precise) {
    84             if (index == noreg) {
    85               __ add(base, offset, base);
    86             } else {
    87               __ add(base, index, base);
    88             }
    89           }
    90           __ card_write_barrier_post(base, val, tmp);
    91         }
    92       }
    93       break;
    94     case BarrierSet::ModRef:
    95     case BarrierSet::Other:
    96       ShouldNotReachHere();
    97       break;
    98     default      :
    99       ShouldNotReachHere();
   101   }
   102 }
   105 //----------------------------------------------------------------------------------------------------
   106 // Platform-dependent initialization
   108 void TemplateTable::pd_initialize() {
   109   // (none)
   110 }
   113 //----------------------------------------------------------------------------------------------------
   114 // Condition conversion
   115 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   116   switch (cc) {
   117     case TemplateTable::equal        : return Assembler::notEqual;
   118     case TemplateTable::not_equal    : return Assembler::equal;
   119     case TemplateTable::less         : return Assembler::greaterEqual;
   120     case TemplateTable::less_equal   : return Assembler::greater;
   121     case TemplateTable::greater      : return Assembler::lessEqual;
   122     case TemplateTable::greater_equal: return Assembler::less;
   123   }
   124   ShouldNotReachHere();
   125   return Assembler::zero;
   126 }
   128 //----------------------------------------------------------------------------------------------------
   129 // Miscelaneous helper routines
   132 Address TemplateTable::at_bcp(int offset) {
   133   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   134   return Address(Lbcp, offset);
   135 }
   138 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
   139                                    Register Rscratch,
   140                                    bool load_bc_into_scratch /*=true*/) {
   141   // With sharing on, may need to test methodOop flag.
   142   if (!RewriteBytecodes) return;
   143   if (load_bc_into_scratch) __ set(bc, Rbyte_code);
   144   Label patch_done;
   145   if (JvmtiExport::can_post_breakpoint()) {
   146     Label fast_patch;
   147     __ ldub(at_bcp(0), Rscratch);
   148     __ cmp(Rscratch, Bytecodes::_breakpoint);
   149     __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
   150     __ delayed()->nop();  // don't bother to hoist the stb here
   151     // perform the quickening, slowly, in the bowels of the breakpoint table
   152     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
   153     __ ba(false, patch_done);
   154     __ delayed()->nop();
   155     __ bind(fast_patch);
   156   }
   157 #ifdef ASSERT
   158   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   159   Label okay;
   160   __ ldub(at_bcp(0), Rscratch);
   161   __ cmp(Rscratch, orig_bytecode);
   162   __ br(Assembler::equal, false, Assembler::pt, okay);
   163   __ delayed() ->cmp(Rscratch, Rbyte_code);
   164   __ br(Assembler::equal, false, Assembler::pt, okay);
   165   __ delayed()->nop();
   166   __ stop("Rewriting wrong bytecode location");
   167   __ bind(okay);
   168 #endif
   169   __ stb(Rbyte_code, at_bcp(0));
   170   __ bind(patch_done);
   171 }
   173 //----------------------------------------------------------------------------------------------------
   174 // Individual instructions
   176 void TemplateTable::nop() {
   177   transition(vtos, vtos);
   178   // nothing to do
   179 }
   181 void TemplateTable::shouldnotreachhere() {
   182   transition(vtos, vtos);
   183   __ stop("shouldnotreachhere bytecode");
   184 }
   186 void TemplateTable::aconst_null() {
   187   transition(vtos, atos);
   188   __ clr(Otos_i);
   189 }
   192 void TemplateTable::iconst(int value) {
   193   transition(vtos, itos);
   194   __ set(value, Otos_i);
   195 }
   198 void TemplateTable::lconst(int value) {
   199   transition(vtos, ltos);
   200   assert(value >= 0, "check this code");
   201 #ifdef _LP64
   202   __ set(value, Otos_l);
   203 #else
   204   __ set(value, Otos_l2);
   205   __ clr( Otos_l1);
   206 #endif
   207 }
   210 void TemplateTable::fconst(int value) {
   211   transition(vtos, ftos);
   212   static float zero = 0.0, one = 1.0, two = 2.0;
   213   float* p;
   214   switch( value ) {
   215    default: ShouldNotReachHere();
   216    case 0:  p = &zero;  break;
   217    case 1:  p = &one;   break;
   218    case 2:  p = &two;   break;
   219   }
   220   AddressLiteral a(p);
   221   __ sethi(a, G3_scratch);
   222   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   223 }
   226 void TemplateTable::dconst(int value) {
   227   transition(vtos, dtos);
   228   static double zero = 0.0, one = 1.0;
   229   double* p;
   230   switch( value ) {
   231    default: ShouldNotReachHere();
   232    case 0:  p = &zero;  break;
   233    case 1:  p = &one;   break;
   234   }
   235   AddressLiteral a(p);
   236   __ sethi(a, G3_scratch);
   237   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   238 }
   241 // %%%%% Should factore most snippet templates across platforms
   243 void TemplateTable::bipush() {
   244   transition(vtos, itos);
   245   __ ldsb( at_bcp(1), Otos_i );
   246 }
   248 void TemplateTable::sipush() {
   249   transition(vtos, itos);
   250   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   251 }
   253 void TemplateTable::ldc(bool wide) {
   254   transition(vtos, vtos);
   255   Label call_ldc, notInt, notString, notClass, exit;
   257   if (wide) {
   258     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   259   } else {
   260     __ ldub(Lbcp, 1, O1);
   261   }
   262   __ get_cpool_and_tags(O0, O2);
   264   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   265   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   267   // get type from tags
   268   __ add(O2, tags_offset, O2);
   269   __ ldub(O2, O1, O2);
   270   __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
   271   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
   272   __ delayed()->nop();
   274   __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
   275   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
   276   __ delayed()->nop();
   278   __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
   279   __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
   280   __ delayed()->nop();
   282   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   283   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   284   __ delayed()->add(O0, base_offset, O0);
   286   __ bind(call_ldc);
   287   __ set(wide, O1);
   288   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   289   __ push(atos);
   290   __ ba(false, exit);
   291   __ delayed()->nop();
   293   __ bind(notClass);
   294  // __ add(O0, base_offset, O0);
   295   __ sll(O1, LogBytesPerWord, O1);
   296   __ cmp(O2, JVM_CONSTANT_Integer);
   297   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   298   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   299   __ ld(O0, O1, Otos_i);
   300   __ push(itos);
   301   __ ba(false, exit);
   302   __ delayed()->nop();
   304   __ bind(notInt);
   305  // __ cmp(O2, JVM_CONSTANT_String);
   306   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   307   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   308   __ ld_ptr(O0, O1, Otos_i);
   309   __ verify_oop(Otos_i);
   310   __ push(atos);
   311   __ ba(false, exit);
   312   __ delayed()->nop();
   314   __ bind(notString);
   315  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   316   __ push(ftos);
   318   __ bind(exit);
   319 }
   321 // Fast path for caching oop constants.
   322 // %%% We should use this to handle Class and String constants also.
   323 // %%% It will simplify the ldc/primitive path considerably.
   324 void TemplateTable::fast_aldc(bool wide) {
   325   transition(vtos, atos);
   327   if (!EnableMethodHandles) {
   328     // We should not encounter this bytecode if !EnableMethodHandles.
   329     // The verifier will stop it.  However, if we get past the verifier,
   330     // this will stop the thread in a reasonable way, without crashing the JVM.
   331     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   332                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   333     // the call_VM checks for exception, so we should never return here.
   334     __ should_not_reach_here();
   335     return;
   336   }
   338   Register Rcache = G3_scratch;
   339   Register Rscratch = G4_scratch;
   341   resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));
   343   __ verify_oop(Otos_i);
   344 }
   346 void TemplateTable::ldc2_w() {
   347   transition(vtos, vtos);
   348   Label retry, resolved, Long, exit;
   350   __ bind(retry);
   351   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   352   __ get_cpool_and_tags(O0, O2);
   354   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   355   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   356   // get type from tags
   357   __ add(O2, tags_offset, O2);
   358   __ ldub(O2, O1, O2);
   360   __ sll(O1, LogBytesPerWord, O1);
   361   __ add(O0, O1, G3_scratch);
   363   __ cmp(O2, JVM_CONSTANT_Double);
   364   __ brx(Assembler::notEqual, false, Assembler::pt, Long);
   365   __ delayed()->nop();
   366   // A double can be placed at word-aligned locations in the constant pool.
   367   // Check out Conversions.java for an example.
   368   // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
   369   // to double-align double on the constant pool.  SG, 11/7/97
   370 #ifdef _LP64
   371   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   372 #else
   373   FloatRegister f = Ftos_d;
   374   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   375   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   376          f->successor());
   377 #endif
   378   __ push(dtos);
   379   __ ba(false, exit);
   380   __ delayed()->nop();
   382   __ bind(Long);
   383 #ifdef _LP64
   384   __ ldx(G3_scratch, base_offset, Otos_l);
   385 #else
   386   __ ld(G3_scratch, base_offset, Otos_l);
   387   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   388 #endif
   389   __ push(ltos);
   391   __ bind(exit);
   392 }
   395 void TemplateTable::locals_index(Register reg, int offset) {
   396   __ ldub( at_bcp(offset), reg );
   397 }
   400 void TemplateTable::locals_index_wide(Register reg) {
   401   // offset is 2, not 1, because Lbcp points to wide prefix code
   402   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   403 }
   405 void TemplateTable::iload() {
   406   transition(vtos, itos);
   407   // Rewrite iload,iload  pair into fast_iload2
   408   //         iload,caload pair into fast_icaload
   409   if (RewriteFrequentPairs) {
   410     Label rewrite, done;
   412     // get next byte
   413     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   415     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   416     // last two iloads in a pair.  Comparing against fast_iload means that
   417     // the next bytecode is neither an iload or a caload, and therefore
   418     // an iload pair.
   419     __ cmp(G3_scratch, (int)Bytecodes::_iload);
   420     __ br(Assembler::equal, false, Assembler::pn, done);
   421     __ delayed()->nop();
   423     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   424     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   425     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   427     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   428     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   429     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   431     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   432     // rewrite
   433     // G4_scratch: fast bytecode
   434     __ bind(rewrite);
   435     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   436     __ bind(done);
   437   }
   439   // Get the local value into tos
   440   locals_index(G3_scratch);
   441   __ access_local_int( G3_scratch, Otos_i );
   442 }
   444 void TemplateTable::fast_iload2() {
   445   transition(vtos, itos);
   446   locals_index(G3_scratch);
   447   __ access_local_int( G3_scratch, Otos_i );
   448   __ push_i();
   449   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   450   __ access_local_int( G3_scratch, Otos_i );
   451 }
   453 void TemplateTable::fast_iload() {
   454   transition(vtos, itos);
   455   locals_index(G3_scratch);
   456   __ access_local_int( G3_scratch, Otos_i );
   457 }
   459 void TemplateTable::lload() {
   460   transition(vtos, ltos);
   461   locals_index(G3_scratch);
   462   __ access_local_long( G3_scratch, Otos_l );
   463 }
   466 void TemplateTable::fload() {
   467   transition(vtos, ftos);
   468   locals_index(G3_scratch);
   469   __ access_local_float( G3_scratch, Ftos_f );
   470 }
   473 void TemplateTable::dload() {
   474   transition(vtos, dtos);
   475   locals_index(G3_scratch);
   476   __ access_local_double( G3_scratch, Ftos_d );
   477 }
   480 void TemplateTable::aload() {
   481   transition(vtos, atos);
   482   locals_index(G3_scratch);
   483   __ access_local_ptr( G3_scratch, Otos_i);
   484 }
   487 void TemplateTable::wide_iload() {
   488   transition(vtos, itos);
   489   locals_index_wide(G3_scratch);
   490   __ access_local_int( G3_scratch, Otos_i );
   491 }
   494 void TemplateTable::wide_lload() {
   495   transition(vtos, ltos);
   496   locals_index_wide(G3_scratch);
   497   __ access_local_long( G3_scratch, Otos_l );
   498 }
   501 void TemplateTable::wide_fload() {
   502   transition(vtos, ftos);
   503   locals_index_wide(G3_scratch);
   504   __ access_local_float( G3_scratch, Ftos_f );
   505 }
   508 void TemplateTable::wide_dload() {
   509   transition(vtos, dtos);
   510   locals_index_wide(G3_scratch);
   511   __ access_local_double( G3_scratch, Ftos_d );
   512 }
   515 void TemplateTable::wide_aload() {
   516   transition(vtos, atos);
   517   locals_index_wide(G3_scratch);
   518   __ access_local_ptr( G3_scratch, Otos_i );
   519   __ verify_oop(Otos_i);
   520 }
   523 void TemplateTable::iaload() {
   524   transition(itos, itos);
   525   // Otos_i: index
   526   // tos: array
   527   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   528   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   529 }
   532 void TemplateTable::laload() {
   533   transition(itos, ltos);
   534   // Otos_i: index
   535   // O2: array
   536   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   537   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   538 }
   541 void TemplateTable::faload() {
   542   transition(itos, ftos);
   543   // Otos_i: index
   544   // O2: array
   545   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   546   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   547 }
   550 void TemplateTable::daload() {
   551   transition(itos, dtos);
   552   // Otos_i: index
   553   // O2: array
   554   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   555   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   556 }
   559 void TemplateTable::aaload() {
   560   transition(itos, atos);
   561   // Otos_i: index
   562   // tos: array
   563   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   564   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   565   __ verify_oop(Otos_i);
   566 }
   569 void TemplateTable::baload() {
   570   transition(itos, itos);
   571   // Otos_i: index
   572   // tos: array
   573   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   574   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   575 }
   578 void TemplateTable::caload() {
   579   transition(itos, itos);
   580   // Otos_i: index
   581   // tos: array
   582   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   583   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   584 }
   586 void TemplateTable::fast_icaload() {
   587   transition(vtos, itos);
   588   // Otos_i: index
   589   // tos: array
   590   locals_index(G3_scratch);
   591   __ access_local_int( G3_scratch, Otos_i );
   592   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   593   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   594 }
   597 void TemplateTable::saload() {
   598   transition(itos, itos);
   599   // Otos_i: index
   600   // tos: array
   601   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   602   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   603 }
   606 void TemplateTable::iload(int n) {
   607   transition(vtos, itos);
   608   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   609 }
   612 void TemplateTable::lload(int n) {
   613   transition(vtos, ltos);
   614   assert(n+1 < Argument::n_register_parameters, "would need more code");
   615   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   616 }
   619 void TemplateTable::fload(int n) {
   620   transition(vtos, ftos);
   621   assert(n < Argument::n_register_parameters, "would need more code");
   622   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   623 }
   626 void TemplateTable::dload(int n) {
   627   transition(vtos, dtos);
   628   FloatRegister dst = Ftos_d;
   629   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   630 }
   633 void TemplateTable::aload(int n) {
   634   transition(vtos, atos);
   635   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   636 }
   639 void TemplateTable::aload_0() {
   640   transition(vtos, atos);
   642   // According to bytecode histograms, the pairs:
   643   //
   644   // _aload_0, _fast_igetfield (itos)
   645   // _aload_0, _fast_agetfield (atos)
   646   // _aload_0, _fast_fgetfield (ftos)
   647   //
   648   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   649   // bytecode checks the next bytecode and then rewrites the current
   650   // bytecode into a pair bytecode; otherwise it rewrites the current
   651   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   652   //
   653   if (RewriteFrequentPairs) {
   654     Label rewrite, done;
   656     // get next byte
   657     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   659     // do actual aload_0
   660     aload(0);
   662     // if _getfield then wait with rewrite
   663     __ cmp(G3_scratch, (int)Bytecodes::_getfield);
   664     __ br(Assembler::equal, false, Assembler::pn, done);
   665     __ delayed()->nop();
   667     // if _igetfield then rewrite to _fast_iaccess_0
   668     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   669     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   670     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   671     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   673     // if _agetfield then rewrite to _fast_aaccess_0
   674     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   675     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   676     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   677     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   679     // if _fgetfield then rewrite to _fast_faccess_0
   680     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   681     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   682     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   683     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   685     // else rewrite to _fast_aload0
   686     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   687     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   689     // rewrite
   690     // G4_scratch: fast bytecode
   691     __ bind(rewrite);
   692     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   693     __ bind(done);
   694   } else {
   695     aload(0);
   696   }
   697 }
   700 void TemplateTable::istore() {
   701   transition(itos, vtos);
   702   locals_index(G3_scratch);
   703   __ store_local_int( G3_scratch, Otos_i );
   704 }
   707 void TemplateTable::lstore() {
   708   transition(ltos, vtos);
   709   locals_index(G3_scratch);
   710   __ store_local_long( G3_scratch, Otos_l );
   711 }
   714 void TemplateTable::fstore() {
   715   transition(ftos, vtos);
   716   locals_index(G3_scratch);
   717   __ store_local_float( G3_scratch, Ftos_f );
   718 }
   721 void TemplateTable::dstore() {
   722   transition(dtos, vtos);
   723   locals_index(G3_scratch);
   724   __ store_local_double( G3_scratch, Ftos_d );
   725 }
   728 void TemplateTable::astore() {
   729   transition(vtos, vtos);
   730   __ load_ptr(0, Otos_i);
   731   __ inc(Lesp, Interpreter::stackElementSize);
   732   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   733   locals_index(G3_scratch);
   734   __ store_local_ptr(G3_scratch, Otos_i);
   735 }
   738 void TemplateTable::wide_istore() {
   739   transition(vtos, vtos);
   740   __ pop_i();
   741   locals_index_wide(G3_scratch);
   742   __ store_local_int( G3_scratch, Otos_i );
   743 }
   746 void TemplateTable::wide_lstore() {
   747   transition(vtos, vtos);
   748   __ pop_l();
   749   locals_index_wide(G3_scratch);
   750   __ store_local_long( G3_scratch, Otos_l );
   751 }
   754 void TemplateTable::wide_fstore() {
   755   transition(vtos, vtos);
   756   __ pop_f();
   757   locals_index_wide(G3_scratch);
   758   __ store_local_float( G3_scratch, Ftos_f );
   759 }
   762 void TemplateTable::wide_dstore() {
   763   transition(vtos, vtos);
   764   __ pop_d();
   765   locals_index_wide(G3_scratch);
   766   __ store_local_double( G3_scratch, Ftos_d );
   767 }
   770 void TemplateTable::wide_astore() {
   771   transition(vtos, vtos);
   772   __ load_ptr(0, Otos_i);
   773   __ inc(Lesp, Interpreter::stackElementSize);
   774   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   775   locals_index_wide(G3_scratch);
   776   __ store_local_ptr(G3_scratch, Otos_i);
   777 }
   780 void TemplateTable::iastore() {
   781   transition(itos, vtos);
   782   __ pop_i(O2); // index
   783   // Otos_i: val
   784   // O3: array
   785   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   786   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   787 }
   790 void TemplateTable::lastore() {
   791   transition(ltos, vtos);
   792   __ pop_i(O2); // index
   793   // Otos_l: val
   794   // O3: array
   795   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   796   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   797 }
   800 void TemplateTable::fastore() {
   801   transition(ftos, vtos);
   802   __ pop_i(O2); // index
   803   // Ftos_f: val
   804   // O3: array
   805   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   806   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   807 }
   810 void TemplateTable::dastore() {
   811   transition(dtos, vtos);
   812   __ pop_i(O2); // index
   813   // Fos_d: val
   814   // O3: array
   815   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   816   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   817 }
   820 void TemplateTable::aastore() {
   821   Label store_ok, is_null, done;
   822   transition(vtos, vtos);
   823   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   824   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   825   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   826   // Otos_i: val
   827   // O2: index
   828   // O3: array
   829   __ verify_oop(Otos_i);
   830   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   832   // do array store check - check for NULL value first
   833   __ br_null( Otos_i, false, Assembler::pn, is_null );
   834   __ delayed()->nop();
   836   __ load_klass(O3, O4); // get array klass
   837   __ load_klass(Otos_i, O5); // get value klass
   839   // do fast instanceof cache test
   841   __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
   843   assert(Otos_i == O0, "just checking");
   845   // Otos_i:    value
   846   // O1:        addr - offset
   847   // O2:        index
   848   // O3:        array
   849   // O4:        array element klass
   850   // O5:        value klass
   852   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   854   // Generate a fast subtype check.  Branch to store_ok if no
   855   // failure.  Throw if failure.
   856   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   858   // Not a subtype; so must throw exception
   859   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   861   // Store is OK.
   862   __ bind(store_ok);
   863   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   865   __ ba(false,done);
   866   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   868   __ bind(is_null);
   869   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   871   __ profile_null_seen(G3_scratch);
   872   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   873   __ bind(done);
   874 }
   877 void TemplateTable::bastore() {
   878   transition(itos, vtos);
   879   __ pop_i(O2); // index
   880   // Otos_i: val
   881   // O3: array
   882   __ index_check(O3, O2, 0, G3_scratch, O2);
   883   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   884 }
   887 void TemplateTable::castore() {
   888   transition(itos, vtos);
   889   __ pop_i(O2); // index
   890   // Otos_i: val
   891   // O3: array
   892   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   893   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   894 }
   897 void TemplateTable::sastore() {
   898   // %%%%% Factor across platform
   899   castore();
   900 }
   903 void TemplateTable::istore(int n) {
   904   transition(itos, vtos);
   905   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   906 }
   909 void TemplateTable::lstore(int n) {
   910   transition(ltos, vtos);
   911   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   912   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   914 }
   917 void TemplateTable::fstore(int n) {
   918   transition(ftos, vtos);
   919   assert(n < Argument::n_register_parameters, "only handle register cases");
   920   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   921 }
   924 void TemplateTable::dstore(int n) {
   925   transition(dtos, vtos);
   926   FloatRegister src = Ftos_d;
   927   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   928 }
   931 void TemplateTable::astore(int n) {
   932   transition(vtos, vtos);
   933   __ load_ptr(0, Otos_i);
   934   __ inc(Lesp, Interpreter::stackElementSize);
   935   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   936   __ store_local_ptr(n, Otos_i);
   937 }
   940 void TemplateTable::pop() {
   941   transition(vtos, vtos);
   942   __ inc(Lesp, Interpreter::stackElementSize);
   943 }
   946 void TemplateTable::pop2() {
   947   transition(vtos, vtos);
   948   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   949 }
   952 void TemplateTable::dup() {
   953   transition(vtos, vtos);
   954   // stack: ..., a
   955   // load a and tag
   956   __ load_ptr(0, Otos_i);
   957   __ push_ptr(Otos_i);
   958   // stack: ..., a, a
   959 }
   962 void TemplateTable::dup_x1() {
   963   transition(vtos, vtos);
   964   // stack: ..., a, b
   965   __ load_ptr( 1, G3_scratch);  // get a
   966   __ load_ptr( 0, Otos_l1);     // get b
   967   __ store_ptr(1, Otos_l1);     // put b
   968   __ store_ptr(0, G3_scratch);  // put a - like swap
   969   __ push_ptr(Otos_l1);         // push b
   970   // stack: ..., b, a, b
   971 }
   974 void TemplateTable::dup_x2() {
   975   transition(vtos, vtos);
   976   // stack: ..., a, b, c
   977   // get c and push on stack, reuse registers
   978   __ load_ptr( 0, G3_scratch);  // get c
   979   __ push_ptr(G3_scratch);      // push c with tag
   980   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
   981   // (stack offsets n+1 now)
   982   __ load_ptr( 3, Otos_l1);     // get a
   983   __ store_ptr(3, G3_scratch);  // put c at 3
   984   // stack: ..., c, b, c, c  (a in reg)
   985   __ load_ptr( 2, G3_scratch);  // get b
   986   __ store_ptr(2, Otos_l1);     // put a at 2
   987   // stack: ..., c, a, c, c  (b in reg)
   988   __ store_ptr(1, G3_scratch);  // put b at 1
   989   // stack: ..., c, a, b, c
   990 }
   993 void TemplateTable::dup2() {
   994   transition(vtos, vtos);
   995   __ load_ptr(1, G3_scratch);  // get a
   996   __ load_ptr(0, Otos_l1);     // get b
   997   __ push_ptr(G3_scratch);     // push a
   998   __ push_ptr(Otos_l1);        // push b
   999   // stack: ..., a, b, a, b
  1003 void TemplateTable::dup2_x1() {
  1004   transition(vtos, vtos);
  1005   // stack: ..., a, b, c
  1006   __ load_ptr( 1, Lscratch);    // get b
  1007   __ load_ptr( 2, Otos_l1);     // get a
  1008   __ store_ptr(2, Lscratch);    // put b at a
  1009   // stack: ..., b, b, c
  1010   __ load_ptr( 0, G3_scratch);  // get c
  1011   __ store_ptr(1, G3_scratch);  // put c at b
  1012   // stack: ..., b, c, c
  1013   __ store_ptr(0, Otos_l1);     // put a at c
  1014   // stack: ..., b, c, a
  1015   __ push_ptr(Lscratch);        // push b
  1016   __ push_ptr(G3_scratch);      // push c
  1017   // stack: ..., b, c, a, b, c
  1021 // The spec says that these types can be a mixture of category 1 (1 word)
  1022 // types and/or category 2 types (long and doubles)
  1023 void TemplateTable::dup2_x2() {
  1024   transition(vtos, vtos);
  1025   // stack: ..., a, b, c, d
  1026   __ load_ptr( 1, Lscratch);    // get c
  1027   __ load_ptr( 3, Otos_l1);     // get a
  1028   __ store_ptr(3, Lscratch);    // put c at 3
  1029   __ store_ptr(1, Otos_l1);     // put a at 1
  1030   // stack: ..., c, b, a, d
  1031   __ load_ptr( 2, G3_scratch);  // get b
  1032   __ load_ptr( 0, Otos_l1);     // get d
  1033   __ store_ptr(0, G3_scratch);  // put b at 0
  1034   __ store_ptr(2, Otos_l1);     // put d at 2
  1035   // stack: ..., c, d, a, b
  1036   __ push_ptr(Lscratch);        // push c
  1037   __ push_ptr(Otos_l1);         // push d
  1038   // stack: ..., c, d, a, b, c, d
  1042 void TemplateTable::swap() {
  1043   transition(vtos, vtos);
  1044   // stack: ..., a, b
  1045   __ load_ptr( 1, G3_scratch);  // get a
  1046   __ load_ptr( 0, Otos_l1);     // get b
  1047   __ store_ptr(0, G3_scratch);  // put b
  1048   __ store_ptr(1, Otos_l1);     // put a
  1049   // stack: ..., b, a
  1053 void TemplateTable::iop2(Operation op) {
  1054   transition(itos, itos);
  1055   __ pop_i(O1);
  1056   switch (op) {
  1057    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1058    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1059      // %%%%% Mul may not exist: better to call .mul?
  1060    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1061    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1062    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1063    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1064    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1065    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1066    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1067    default: ShouldNotReachHere();
  1072 void TemplateTable::lop2(Operation op) {
  1073   transition(ltos, ltos);
  1074   __ pop_l(O2);
  1075   switch (op) {
  1076 #ifdef _LP64
  1077    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1078    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1079    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1080    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1081    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1082 #else
  1083    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1084    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1085    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1086    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1087    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1088 #endif
  1089    default: ShouldNotReachHere();
  1094 void TemplateTable::idiv() {
  1095   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1096   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1098   transition(itos, itos);
  1099   __ pop_i(O1); // get 1st op
  1101   // Y contains upper 32 bits of result, set it to 0 or all ones
  1102   __ wry(G0);
  1103   __ mov(~0, G3_scratch);
  1105   __ tst(O1);
  1106      Label neg;
  1107   __ br(Assembler::negative, true, Assembler::pn, neg);
  1108   __ delayed()->wry(G3_scratch);
  1109   __ bind(neg);
  1111      Label ok;
  1112   __ tst(Otos_i);
  1113   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1115   const int min_int = 0x80000000;
  1116   Label regular;
  1117   __ cmp(Otos_i, -1);
  1118   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1119 #ifdef _LP64
  1120   // Don't put set in delay slot
  1121   // Set will turn into multiple instructions in 64 bit mode
  1122   __ delayed()->nop();
  1123   __ set(min_int, G4_scratch);
  1124 #else
  1125   __ delayed()->set(min_int, G4_scratch);
  1126 #endif
  1127   Label done;
  1128   __ cmp(O1, G4_scratch);
  1129   __ br(Assembler::equal, true, Assembler::pt, done);
  1130   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1132   __ bind(regular);
  1133   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1134   __ bind(done);
  1138 void TemplateTable::irem() {
  1139   transition(itos, itos);
  1140   __ mov(Otos_i, O2); // save divisor
  1141   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1142   __ smul(Otos_i, O2, Otos_i);
  1143   __ sub(O1, Otos_i, Otos_i);
  1147 void TemplateTable::lmul() {
  1148   transition(ltos, ltos);
  1149   __ pop_l(O2);
  1150 #ifdef _LP64
  1151   __ mulx(Otos_l, O2, Otos_l);
  1152 #else
  1153   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1154 #endif
  1159 void TemplateTable::ldiv() {
  1160   transition(ltos, ltos);
  1162   // check for zero
  1163   __ pop_l(O2);
  1164 #ifdef _LP64
  1165   __ tst(Otos_l);
  1166   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1167   __ sdivx(O2, Otos_l, Otos_l);
  1168 #else
  1169   __ orcc(Otos_l1, Otos_l2, G0);
  1170   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1171   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1172 #endif
  1176 void TemplateTable::lrem() {
  1177   transition(ltos, ltos);
  1179   // check for zero
  1180   __ pop_l(O2);
  1181 #ifdef _LP64
  1182   __ tst(Otos_l);
  1183   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1184   __ sdivx(O2, Otos_l, Otos_l2);
  1185   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1186   __ sub  (O2, Otos_l2, Otos_l);
  1187 #else
  1188   __ orcc(Otos_l1, Otos_l2, G0);
  1189   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1190   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1191 #endif
  1195 void TemplateTable::lshl() {
  1196   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1198   __ pop_l(O2);                          // shift value in O2, O3
  1199 #ifdef _LP64
  1200   __ sllx(O2, Otos_i, Otos_l);
  1201 #else
  1202   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1203 #endif
  1207 void TemplateTable::lshr() {
  1208   transition(itos, ltos); // %%%% see lshl comment
  1210   __ pop_l(O2);                          // shift value in O2, O3
  1211 #ifdef _LP64
  1212   __ srax(O2, Otos_i, Otos_l);
  1213 #else
  1214   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1215 #endif
  1220 void TemplateTable::lushr() {
  1221   transition(itos, ltos); // %%%% see lshl comment
  1223   __ pop_l(O2);                          // shift value in O2, O3
  1224 #ifdef _LP64
  1225   __ srlx(O2, Otos_i, Otos_l);
  1226 #else
  1227   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1228 #endif
  1232 void TemplateTable::fop2(Operation op) {
  1233   transition(ftos, ftos);
  1234   switch (op) {
  1235    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1236    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1237    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1238    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1239    case  rem:
  1240      assert(Ftos_f == F0, "just checking");
  1241 #ifdef _LP64
  1242      // LP64 calling conventions use F1, F3 for passing 2 floats
  1243      __ pop_f(F1);
  1244      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1245 #else
  1246      __ pop_i(O0);
  1247      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1248      __ ld( __ d_tmp, O1 );
  1249 #endif
  1250      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1251      assert( Ftos_f == F0, "fix this code" );
  1252      break;
  1254    default: ShouldNotReachHere();
  1259 void TemplateTable::dop2(Operation op) {
  1260   transition(dtos, dtos);
  1261   switch (op) {
  1262    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1263    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1264    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1265    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1266    case  rem:
  1267 #ifdef _LP64
  1268      // Pass arguments in D0, D2
  1269      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1270      __ pop_d( F0 );
  1271 #else
  1272      // Pass arguments in O0O1, O2O3
  1273      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1274      __ ldd( __ d_tmp, O2 );
  1275      __ pop_d(Ftos_f);
  1276      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1277      __ ldd( __ d_tmp, O0 );
  1278 #endif
  1279      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1280      assert( Ftos_d == F0, "fix this code" );
  1281      break;
  1283    default: ShouldNotReachHere();
  1288 void TemplateTable::ineg() {
  1289   transition(itos, itos);
  1290   __ neg(Otos_i);
  1294 void TemplateTable::lneg() {
  1295   transition(ltos, ltos);
  1296 #ifdef _LP64
  1297   __ sub(G0, Otos_l, Otos_l);
  1298 #else
  1299   __ lneg(Otos_l1, Otos_l2);
  1300 #endif
  1304 void TemplateTable::fneg() {
  1305   transition(ftos, ftos);
  1306   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1310 void TemplateTable::dneg() {
  1311   transition(dtos, dtos);
  1312   // v8 has fnegd if source and dest are the same
  1313   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1317 void TemplateTable::iinc() {
  1318   transition(vtos, vtos);
  1319   locals_index(G3_scratch);
  1320   __ ldsb(Lbcp, 2, O2);  // load constant
  1321   __ access_local_int(G3_scratch, Otos_i);
  1322   __ add(Otos_i, O2, Otos_i);
  1323   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1327 void TemplateTable::wide_iinc() {
  1328   transition(vtos, vtos);
  1329   locals_index_wide(G3_scratch);
  1330   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1331   __ access_local_int(G3_scratch, Otos_i);
  1332   __ add(Otos_i, O3, Otos_i);
  1333   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1337 void TemplateTable::convert() {
  1338 // %%%%% Factor this first part accross platforms
  1339   #ifdef ASSERT
  1340     TosState tos_in  = ilgl;
  1341     TosState tos_out = ilgl;
  1342     switch (bytecode()) {
  1343       case Bytecodes::_i2l: // fall through
  1344       case Bytecodes::_i2f: // fall through
  1345       case Bytecodes::_i2d: // fall through
  1346       case Bytecodes::_i2b: // fall through
  1347       case Bytecodes::_i2c: // fall through
  1348       case Bytecodes::_i2s: tos_in = itos; break;
  1349       case Bytecodes::_l2i: // fall through
  1350       case Bytecodes::_l2f: // fall through
  1351       case Bytecodes::_l2d: tos_in = ltos; break;
  1352       case Bytecodes::_f2i: // fall through
  1353       case Bytecodes::_f2l: // fall through
  1354       case Bytecodes::_f2d: tos_in = ftos; break;
  1355       case Bytecodes::_d2i: // fall through
  1356       case Bytecodes::_d2l: // fall through
  1357       case Bytecodes::_d2f: tos_in = dtos; break;
  1358       default             : ShouldNotReachHere();
  1360     switch (bytecode()) {
  1361       case Bytecodes::_l2i: // fall through
  1362       case Bytecodes::_f2i: // fall through
  1363       case Bytecodes::_d2i: // fall through
  1364       case Bytecodes::_i2b: // fall through
  1365       case Bytecodes::_i2c: // fall through
  1366       case Bytecodes::_i2s: tos_out = itos; break;
  1367       case Bytecodes::_i2l: // fall through
  1368       case Bytecodes::_f2l: // fall through
  1369       case Bytecodes::_d2l: tos_out = ltos; break;
  1370       case Bytecodes::_i2f: // fall through
  1371       case Bytecodes::_l2f: // fall through
  1372       case Bytecodes::_d2f: tos_out = ftos; break;
  1373       case Bytecodes::_i2d: // fall through
  1374       case Bytecodes::_l2d: // fall through
  1375       case Bytecodes::_f2d: tos_out = dtos; break;
  1376       default             : ShouldNotReachHere();
  1378     transition(tos_in, tos_out);
  1379   #endif
  1382   // Conversion
  1383   Label done;
  1384   switch (bytecode()) {
  1385    case Bytecodes::_i2l:
  1386 #ifdef _LP64
  1387     // Sign extend the 32 bits
  1388     __ sra ( Otos_i, 0, Otos_l );
  1389 #else
  1390     __ addcc(Otos_i, 0, Otos_l2);
  1391     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1392     __ delayed()->clr(Otos_l1);
  1393     __ set(~0, Otos_l1);
  1394 #endif
  1395     break;
  1397    case Bytecodes::_i2f:
  1398     __ st(Otos_i, __ d_tmp );
  1399     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1400     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1401     break;
  1403    case Bytecodes::_i2d:
  1404     __ st(Otos_i, __ d_tmp);
  1405     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1406     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1407     break;
  1409    case Bytecodes::_i2b:
  1410     __ sll(Otos_i, 24, Otos_i);
  1411     __ sra(Otos_i, 24, Otos_i);
  1412     break;
  1414    case Bytecodes::_i2c:
  1415     __ sll(Otos_i, 16, Otos_i);
  1416     __ srl(Otos_i, 16, Otos_i);
  1417     break;
  1419    case Bytecodes::_i2s:
  1420     __ sll(Otos_i, 16, Otos_i);
  1421     __ sra(Otos_i, 16, Otos_i);
  1422     break;
  1424    case Bytecodes::_l2i:
  1425 #ifndef _LP64
  1426     __ mov(Otos_l2, Otos_i);
  1427 #else
  1428     // Sign-extend into the high 32 bits
  1429     __ sra(Otos_l, 0, Otos_i);
  1430 #endif
  1431     break;
  1433    case Bytecodes::_l2f:
  1434    case Bytecodes::_l2d:
  1435     __ st_long(Otos_l, __ d_tmp);
  1436     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1438     if (VM_Version::v9_instructions_work()) {
  1439       if (bytecode() == Bytecodes::_l2f) {
  1440         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1441       } else {
  1442         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1444     } else {
  1445       __ call_VM_leaf(
  1446         Lscratch,
  1447         bytecode() == Bytecodes::_l2f
  1448           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1449           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1450       );
  1452     break;
  1454   case Bytecodes::_f2i:  {
  1455       Label isNaN;
  1456       // result must be 0 if value is NaN; test by comparing value to itself
  1457       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1458       // According to the v8 manual, you have to have a non-fp instruction
  1459       // between fcmp and fb.
  1460       if (!VM_Version::v9_instructions_work()) {
  1461         __ nop();
  1463       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1464       __ delayed()->clr(Otos_i);                                     // NaN
  1465       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1466       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1467       __ ld(__ d_tmp, Otos_i);
  1468       __ bind(isNaN);
  1470     break;
  1472    case Bytecodes::_f2l:
  1473     // must uncache tos
  1474     __ push_f();
  1475 #ifdef _LP64
  1476     __ pop_f(F1);
  1477 #else
  1478     __ pop_i(O0);
  1479 #endif
  1480     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1481     break;
  1483    case Bytecodes::_f2d:
  1484     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1485     break;
  1487    case Bytecodes::_d2i:
  1488    case Bytecodes::_d2l:
  1489     // must uncache tos
  1490     __ push_d();
  1491 #ifdef _LP64
  1492     // LP64 calling conventions pass first double arg in D0
  1493     __ pop_d( Ftos_d );
  1494 #else
  1495     __ pop_i( O0 );
  1496     __ pop_i( O1 );
  1497 #endif
  1498     __ call_VM_leaf(Lscratch,
  1499         bytecode() == Bytecodes::_d2i
  1500           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1501           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1502     break;
  1504     case Bytecodes::_d2f:
  1505     if (VM_Version::v9_instructions_work()) {
  1506       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1508     else {
  1509       // must uncache tos
  1510       __ push_d();
  1511       __ pop_i(O0);
  1512       __ pop_i(O1);
  1513       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1515     break;
  1517     default: ShouldNotReachHere();
  1519   __ bind(done);
  1523 void TemplateTable::lcmp() {
  1524   transition(ltos, itos);
  1526 #ifdef _LP64
  1527   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1528   __ lcmp( O1, Otos_l, Otos_i );
  1529 #else
  1530   __ pop_l(O2); // cmp O2,3 to O0,1
  1531   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1532 #endif
  1536 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1538   if (is_float) __ pop_f(F2);
  1539   else          __ pop_d(F2);
  1541   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1543   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1546 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1547   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1548   __ verify_oop(Lmethod);
  1549   __ verify_thread();
  1551   const Register O2_bumped_count = O2;
  1552   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1554   // get (wide) offset to O1_disp
  1555   const Register O1_disp = O1;
  1556   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1557   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1559   // Handle all the JSR stuff here, then exit.
  1560   // It's much shorter and cleaner than intermingling with the
  1561   // non-JSR normal-branch stuff occurring below.
  1562   if( is_jsr ) {
  1563     // compute return address as bci in Otos_i
  1564     __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1565     __ sub(Lbcp, G3_scratch, G3_scratch);
  1566     __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1568     // Bump Lbcp to target of JSR
  1569     __ add(Lbcp, O1_disp, Lbcp);
  1570     // Push returnAddress for "ret" on stack
  1571     __ push_ptr(Otos_i);
  1572     // And away we go!
  1573     __ dispatch_next(vtos);
  1574     return;
  1577   // Normal (non-jsr) branch handling
  1579   // Save the current Lbcp
  1580   const Register O0_cur_bcp = O0;
  1581   __ mov( Lbcp, O0_cur_bcp );
  1583   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1584   if ( increment_invocation_counter_for_backward_branches ) {
  1585     Label Lforward;
  1586     // check branch direction
  1587     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1588     // Bump bytecode pointer by displacement (take the branch)
  1589     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1591     // Update Backedge branch separately from invocations
  1592     const Register G4_invoke_ctr = G4;
  1593     __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
  1594     if (ProfileInterpreter) {
  1595       __ test_invocation_counter_for_mdp(G4_invoke_ctr, Lbcp, G3_scratch, Lforward);
  1596       if (UseOnStackReplacement) {
  1597         __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
  1599     } else {
  1600       if (UseOnStackReplacement) {
  1601         __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
  1605     __ bind(Lforward);
  1606   } else
  1607     // Bump bytecode pointer by displacement (take the branch)
  1608     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1610   // continue with bytecode @ target
  1611   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1612   // %%%%% and changing dispatch_next to dispatch_only
  1613   __ dispatch_next(vtos);
  1617 // Note Condition in argument is TemplateTable::Condition
  1618 // arg scope is within class scope
  1620 void TemplateTable::if_0cmp(Condition cc) {
  1621   // no pointers, integer only!
  1622   transition(itos, vtos);
  1623   // assume branch is more often taken than not (loops use backward branches)
  1624   __ cmp( Otos_i, 0);
  1625   __ if_cmp(ccNot(cc), false);
  1629 void TemplateTable::if_icmp(Condition cc) {
  1630   transition(itos, vtos);
  1631   __ pop_i(O1);
  1632   __ cmp(O1, Otos_i);
  1633   __ if_cmp(ccNot(cc), false);
  1637 void TemplateTable::if_nullcmp(Condition cc) {
  1638   transition(atos, vtos);
  1639   __ tst(Otos_i);
  1640   __ if_cmp(ccNot(cc), true);
  1644 void TemplateTable::if_acmp(Condition cc) {
  1645   transition(atos, vtos);
  1646   __ pop_ptr(O1);
  1647   __ verify_oop(O1);
  1648   __ verify_oop(Otos_i);
  1649   __ cmp(O1, Otos_i);
  1650   __ if_cmp(ccNot(cc), true);
  1655 void TemplateTable::ret() {
  1656   transition(vtos, vtos);
  1657   locals_index(G3_scratch);
  1658   __ access_local_returnAddress(G3_scratch, Otos_i);
  1659   // Otos_i contains the bci, compute the bcp from that
  1661 #ifdef _LP64
  1662 #ifdef ASSERT
  1663   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1664   // the result.  The return address (really a BCI) was stored with an
  1665   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1666   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1667   // loaded value.
  1668   { Label zzz ;
  1669      __ set (65536, G3_scratch) ;
  1670      __ cmp (Otos_i, G3_scratch) ;
  1671      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1672      __ delayed()->nop();
  1673      __ stop("BCI is in the wrong register half?");
  1674      __ bind (zzz) ;
  1676 #endif
  1677 #endif
  1679   __ profile_ret(vtos, Otos_i, G4_scratch);
  1681   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1682   __ add(G3_scratch, Otos_i, G3_scratch);
  1683   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1684   __ dispatch_next(vtos);
  1688 void TemplateTable::wide_ret() {
  1689   transition(vtos, vtos);
  1690   locals_index_wide(G3_scratch);
  1691   __ access_local_returnAddress(G3_scratch, Otos_i);
  1692   // Otos_i contains the bci, compute the bcp from that
  1694   __ profile_ret(vtos, Otos_i, G4_scratch);
  1696   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1697   __ add(G3_scratch, Otos_i, G3_scratch);
  1698   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1699   __ dispatch_next(vtos);
  1703 void TemplateTable::tableswitch() {
  1704   transition(itos, vtos);
  1705   Label default_case, continue_execution;
  1707   // align bcp
  1708   __ add(Lbcp, BytesPerInt, O1);
  1709   __ and3(O1, -BytesPerInt, O1);
  1710   // load lo, hi
  1711   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1712   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1713 #ifdef _LP64
  1714   // Sign extend the 32 bits
  1715   __ sra ( Otos_i, 0, Otos_i );
  1716 #endif /* _LP64 */
  1718   // check against lo & hi
  1719   __ cmp( Otos_i, O2);
  1720   __ br( Assembler::less, false, Assembler::pn, default_case);
  1721   __ delayed()->cmp( Otos_i, O3 );
  1722   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1723   // lookup dispatch offset
  1724   __ delayed()->sub(Otos_i, O2, O2);
  1725   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1726   __ sll(O2, LogBytesPerInt, O2);
  1727   __ add(O2, 3 * BytesPerInt, O2);
  1728   __ ba(false, continue_execution);
  1729   __ delayed()->ld(O1, O2, O2);
  1730   // handle default
  1731   __ bind(default_case);
  1732   __ profile_switch_default(O3);
  1733   __ ld(O1, 0, O2); // get default offset
  1734   // continue execution
  1735   __ bind(continue_execution);
  1736   __ add(Lbcp, O2, Lbcp);
  1737   __ dispatch_next(vtos);
  1741 void TemplateTable::lookupswitch() {
  1742   transition(itos, itos);
  1743   __ stop("lookupswitch bytecode should have been rewritten");
  1746 void TemplateTable::fast_linearswitch() {
  1747   transition(itos, vtos);
  1748     Label loop_entry, loop, found, continue_execution;
  1749   // align bcp
  1750   __ add(Lbcp, BytesPerInt, O1);
  1751   __ and3(O1, -BytesPerInt, O1);
  1752  // set counter
  1753   __ ld(O1, BytesPerInt, O2);
  1754   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1755   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1756   __ ba(false, loop_entry);
  1757   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1759   // table search
  1760   __ bind(loop);
  1761   __ cmp(O4, Otos_i);
  1762   __ br(Assembler::equal, true, Assembler::pn, found);
  1763   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1764   __ inc(O3, 2 * BytesPerInt);
  1766   __ bind(loop_entry);
  1767   __ cmp(O2, O3);
  1768   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1769   __ delayed()->ld(O3, 0, O4);
  1771   // default case
  1772   __ ld(O1, 0, O4); // get default offset
  1773   if (ProfileInterpreter) {
  1774     __ profile_switch_default(O3);
  1775     __ ba(false, continue_execution);
  1776     __ delayed()->nop();
  1779   // entry found -> get offset
  1780   __ bind(found);
  1781   if (ProfileInterpreter) {
  1782     __ sub(O3, O1, O3);
  1783     __ sub(O3, 2*BytesPerInt, O3);
  1784     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1785     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1787     __ bind(continue_execution);
  1789   __ add(Lbcp, O4, Lbcp);
  1790   __ dispatch_next(vtos);
  1794 void TemplateTable::fast_binaryswitch() {
  1795   transition(itos, vtos);
  1796   // Implementation using the following core algorithm: (copied from Intel)
  1797   //
  1798   // int binary_search(int key, LookupswitchPair* array, int n) {
  1799   //   // Binary search according to "Methodik des Programmierens" by
  1800   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1801   //   int i = 0;
  1802   //   int j = n;
  1803   //   while (i+1 < j) {
  1804   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1805   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1806   //     // where a stands for the array and assuming that the (inexisting)
  1807   //     // element a[n] is infinitely big.
  1808   //     int h = (i + j) >> 1;
  1809   //     // i < h < j
  1810   //     if (key < array[h].fast_match()) {
  1811   //       j = h;
  1812   //     } else {
  1813   //       i = h;
  1814   //     }
  1815   //   }
  1816   //   // R: a[i] <= key < a[i+1] or Q
  1817   //   // (i.e., if key is within array, i is the correct index)
  1818   //   return i;
  1819   // }
  1821   // register allocation
  1822   assert(Otos_i == O0, "alias checking");
  1823   const Register Rkey     = Otos_i;                    // already set (tosca)
  1824   const Register Rarray   = O1;
  1825   const Register Ri       = O2;
  1826   const Register Rj       = O3;
  1827   const Register Rh       = O4;
  1828   const Register Rscratch = O5;
  1830   const int log_entry_size = 3;
  1831   const int entry_size = 1 << log_entry_size;
  1833   Label found;
  1834   // Find Array start
  1835   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1836   __ and3(Rarray, -BytesPerInt, Rarray);
  1837   // initialize i & j (in delay slot)
  1838   __ clr( Ri );
  1840   // and start
  1841   Label entry;
  1842   __ ba(false, entry);
  1843   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1844   // (Rj is already in the native byte-ordering.)
  1846   // binary search loop
  1847   { Label loop;
  1848     __ bind( loop );
  1849     // int h = (i + j) >> 1;
  1850     __ sra( Rh, 1, Rh );
  1851     // if (key < array[h].fast_match()) {
  1852     //   j = h;
  1853     // } else {
  1854     //   i = h;
  1855     // }
  1856     __ sll( Rh, log_entry_size, Rscratch );
  1857     __ ld( Rarray, Rscratch, Rscratch );
  1858     // (Rscratch is already in the native byte-ordering.)
  1859     __ cmp( Rkey, Rscratch );
  1860     if ( VM_Version::v9_instructions_work() ) {
  1861       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1862       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1864     else {
  1865       Label end_of_if;
  1866       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1867       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1868       __ mov( Rh, Ri );            // else i = h
  1869       __ bind(end_of_if);          // }
  1872     // while (i+1 < j)
  1873     __ bind( entry );
  1874     __ add( Ri, 1, Rscratch );
  1875     __ cmp(Rscratch, Rj);
  1876     __ br( Assembler::less, true, Assembler::pt, loop );
  1877     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1880   // end of binary search, result index is i (must check again!)
  1881   Label default_case;
  1882   Label continue_execution;
  1883   if (ProfileInterpreter) {
  1884     __ mov( Ri, Rh );              // Save index in i for profiling
  1886   __ sll( Ri, log_entry_size, Ri );
  1887   __ ld( Rarray, Ri, Rscratch );
  1888   // (Rscratch is already in the native byte-ordering.)
  1889   __ cmp( Rkey, Rscratch );
  1890   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1891   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1893   // entry found -> j = offset
  1894   __ inc( Ri, BytesPerInt );
  1895   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1896   __ ld( Rarray, Ri, Rj );
  1897   // (Rj is already in the native byte-ordering.)
  1899   if (ProfileInterpreter) {
  1900     __ ba(false, continue_execution);
  1901     __ delayed()->nop();
  1904   __ bind(default_case); // fall through (if not profiling)
  1905   __ profile_switch_default(Ri);
  1907   __ bind(continue_execution);
  1908   __ add( Lbcp, Rj, Lbcp );
  1909   __ dispatch_next( vtos );
  1913 void TemplateTable::_return(TosState state) {
  1914   transition(state, state);
  1915   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  1917   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1918     assert(state == vtos, "only valid state");
  1919     __ mov(G0, G3_scratch);
  1920     __ access_local_ptr(G3_scratch, Otos_i);
  1921     __ load_klass(Otos_i, O2);
  1922     __ set(JVM_ACC_HAS_FINALIZER, G3);
  1923     __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
  1924     __ andcc(G3, O2, G0);
  1925     Label skip_register_finalizer;
  1926     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  1927     __ delayed()->nop();
  1929     // Call out to do finalizer registration
  1930     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  1932     __ bind(skip_register_finalizer);
  1935   __ remove_activation(state, /* throw_monitor_exception */ true);
  1937   // The caller's SP was adjusted upon method entry to accomodate
  1938   // the callee's non-argument locals. Undo that adjustment.
  1939   __ ret();                             // return to caller
  1940   __ delayed()->restore(I5_savedSP, G0, SP);
  1944 // ----------------------------------------------------------------------------
  1945 // Volatile variables demand their effects be made known to all CPU's in
  1946 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1947 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1948 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1949 // reorder volatile references, the hardware also must not reorder them).
  1950 //
  1951 // According to the new Java Memory Model (JMM):
  1952 // (1) All volatiles are serialized wrt to each other.
  1953 // ALSO reads & writes act as aquire & release, so:
  1954 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1955 // the read float up to before the read.  It's OK for non-volatile memory refs
  1956 // that happen before the volatile read to float down below it.
  1957 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1958 // that happen BEFORE the write float down to after the write.  It's OK for
  1959 // non-volatile memory refs that happen after the volatile write to float up
  1960 // before it.
  1961 //
  1962 // We only put in barriers around volatile refs (they are expensive), not
  1963 // _between_ memory refs (that would require us to track the flavor of the
  1964 // previous memory refs).  Requirements (2) and (3) require some barriers
  1965 // before volatile stores and after volatile loads.  These nearly cover
  1966 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1967 // case is placed after volatile-stores although it could just as well go
  1968 // before volatile-loads.
  1969 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  1970   // Helper function to insert a is-volatile test and memory barrier
  1971   // All current sparc implementations run in TSO, needing only StoreLoad
  1972   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  1973   __ membar( order_constraint );
  1976 // ----------------------------------------------------------------------------
  1977 void TemplateTable::resolve_cache_and_index(int byte_no,
  1978                                             Register result,
  1979                                             Register Rcache,
  1980                                             Register index,
  1981                                             size_t index_size) {
  1982   // Depends on cpCacheOop layout!
  1983   Label resolved;
  1985   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  1986   if (byte_no == f1_oop) {
  1987     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  1988     // This kind of CP cache entry does not need to match the flags byte, because
  1989     // there is a 1-1 relation between bytecode type and CP entry type.
  1990     assert_different_registers(result, Rcache);
  1991     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  1992               ConstantPoolCacheEntry::f1_offset(), result);
  1993     __ tst(result);
  1994     __ br(Assembler::notEqual, false, Assembler::pt, resolved);
  1995     __ delayed()->set((int)bytecode(), O1);
  1996   } else {
  1997     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  1998     assert(result == noreg, "");  //else change code for setting result
  1999     const int shift_count = (1 + byte_no)*BitsPerByte;
  2001     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2002               ConstantPoolCacheEntry::indices_offset(), Lbyte_code);
  2004     __ srl(  Lbyte_code, shift_count, Lbyte_code );
  2005     __ and3( Lbyte_code,        0xFF, Lbyte_code );
  2006     __ cmp(  Lbyte_code, (int)bytecode());
  2007     __ br(   Assembler::equal, false, Assembler::pt, resolved);
  2008     __ delayed()->set((int)bytecode(), O1);
  2011   address entry;
  2012   switch (bytecode()) {
  2013     case Bytecodes::_getstatic      : // fall through
  2014     case Bytecodes::_putstatic      : // fall through
  2015     case Bytecodes::_getfield       : // fall through
  2016     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2017     case Bytecodes::_invokevirtual  : // fall through
  2018     case Bytecodes::_invokespecial  : // fall through
  2019     case Bytecodes::_invokestatic   : // fall through
  2020     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2021     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2022     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2023     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2024     default                         : ShouldNotReachHere();                                 break;
  2026   // first time invocation - must resolve first
  2027   __ call_VM(noreg, entry, O1);
  2028   // Update registers with resolved info
  2029   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2030   if (result != noreg)
  2031     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2032               ConstantPoolCacheEntry::f1_offset(), result);
  2033   __ bind(resolved);
  2036 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2037                                                Register Rmethod,
  2038                                                Register Ritable_index,
  2039                                                Register Rflags,
  2040                                                bool is_invokevirtual,
  2041                                                bool is_invokevfinal,
  2042                                                bool is_invokedynamic) {
  2043   // Uses both G3_scratch and G4_scratch
  2044   Register Rcache = G3_scratch;
  2045   Register Rscratch = G4_scratch;
  2046   assert_different_registers(Rcache, Rmethod, Ritable_index);
  2048   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2050   // determine constant pool cache field offsets
  2051   const int method_offset = in_bytes(
  2052     cp_base_offset +
  2053       (is_invokevirtual
  2054        ? ConstantPoolCacheEntry::f2_offset()
  2055        : ConstantPoolCacheEntry::f1_offset()
  2057     );
  2058   const int flags_offset = in_bytes(cp_base_offset +
  2059                                     ConstantPoolCacheEntry::flags_offset());
  2060   // access constant pool cache fields
  2061   const int index_offset = in_bytes(cp_base_offset +
  2062                                     ConstantPoolCacheEntry::f2_offset());
  2064   if (is_invokevfinal) {
  2065     __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
  2066     __ ld_ptr(Rcache, method_offset, Rmethod);
  2067   } else if (byte_no == f1_oop) {
  2068     // Resolved f1_oop goes directly into 'method' register.
  2069     resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4));
  2070   } else {
  2071     resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2));
  2072     __ ld_ptr(Rcache, method_offset, Rmethod);
  2075   if (Ritable_index != noreg) {
  2076     __ ld_ptr(Rcache, index_offset, Ritable_index);
  2078   __ ld_ptr(Rcache, flags_offset, Rflags);
  2081 // The Rcache register must be set before call
  2082 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2083                                               Register Rcache,
  2084                                               Register index,
  2085                                               Register Roffset,
  2086                                               Register Rflags,
  2087                                               bool is_static) {
  2088   assert_different_registers(Rcache, Rflags, Roffset);
  2090   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2092   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2093   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2094   if (is_static) {
  2095     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2099 // The registers Rcache and index expected to be set before call.
  2100 // Correct values of the Rcache and index registers are preserved.
  2101 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2102                                             Register index,
  2103                                             bool is_static,
  2104                                             bool has_tos) {
  2105   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2107   if (JvmtiExport::can_post_field_access()) {
  2108     // Check to see if a field access watch has been set before we take
  2109     // the time to call into the VM.
  2110     Label Label1;
  2111     assert_different_registers(Rcache, index, G1_scratch);
  2112     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2113     __ load_contents(get_field_access_count_addr, G1_scratch);
  2114     __ tst(G1_scratch);
  2115     __ br(Assembler::zero, false, Assembler::pt, Label1);
  2116     __ delayed()->nop();
  2118     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2120     if (is_static) {
  2121       __ clr(Otos_i);
  2122     } else {
  2123       if (has_tos) {
  2124       // save object pointer before call_VM() clobbers it
  2125         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2126       } else {
  2127         // Load top of stack (do not pop the value off the stack);
  2128         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2130       __ verify_oop(Otos_i);
  2132     // Otos_i: object pointer or NULL if static
  2133     // Rcache: cache entry pointer
  2134     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2135                Otos_i, Rcache);
  2136     if (!is_static && has_tos) {
  2137       __ pop_ptr(Otos_i);  // restore object pointer
  2138       __ verify_oop(Otos_i);
  2140     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2141     __ bind(Label1);
  2145 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2146   transition(vtos, vtos);
  2148   Register Rcache = G3_scratch;
  2149   Register index  = G4_scratch;
  2150   Register Rclass = Rcache;
  2151   Register Roffset= G4_scratch;
  2152   Register Rflags = G1_scratch;
  2153   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2155   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  2156   jvmti_post_field_access(Rcache, index, is_static, false);
  2157   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2159   if (!is_static) {
  2160     pop_and_check_object(Rclass);
  2161   } else {
  2162     __ verify_oop(Rclass);
  2165   Label exit;
  2167   Assembler::Membar_mask_bits membar_bits =
  2168     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2170   if (__ membar_has_effect(membar_bits)) {
  2171     // Get volatile flag
  2172     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2173     __ and3(Rflags, Lscratch, Lscratch);
  2176   Label checkVolatile;
  2178   // compute field type
  2179   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2180   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2181   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2182   ConstantPoolCacheEntry::verify_tosBits();
  2184   // Check atos before itos for getstatic, more likely (in Queens at least)
  2185   __ cmp(Rflags, atos);
  2186   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2187   __ delayed() ->cmp(Rflags, itos);
  2189   // atos
  2190   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2191   __ verify_oop(Otos_i);
  2192   __ push(atos);
  2193   if (!is_static) {
  2194     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2196   __ ba(false, checkVolatile);
  2197   __ delayed()->tst(Lscratch);
  2199   __ bind(notObj);
  2201   // cmp(Rflags, itos);
  2202   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2203   __ delayed() ->cmp(Rflags, ltos);
  2205   // itos
  2206   __ ld(Rclass, Roffset, Otos_i);
  2207   __ push(itos);
  2208   if (!is_static) {
  2209     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2211   __ ba(false, checkVolatile);
  2212   __ delayed()->tst(Lscratch);
  2214   __ bind(notInt);
  2216   // cmp(Rflags, ltos);
  2217   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2218   __ delayed() ->cmp(Rflags, btos);
  2220   // ltos
  2221   // load must be atomic
  2222   __ ld_long(Rclass, Roffset, Otos_l);
  2223   __ push(ltos);
  2224   if (!is_static) {
  2225     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2227   __ ba(false, checkVolatile);
  2228   __ delayed()->tst(Lscratch);
  2230   __ bind(notLong);
  2232   // cmp(Rflags, btos);
  2233   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2234   __ delayed() ->cmp(Rflags, ctos);
  2236   // btos
  2237   __ ldsb(Rclass, Roffset, Otos_i);
  2238   __ push(itos);
  2239   if (!is_static) {
  2240     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2242   __ ba(false, checkVolatile);
  2243   __ delayed()->tst(Lscratch);
  2245   __ bind(notByte);
  2247   // cmp(Rflags, ctos);
  2248   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2249   __ delayed() ->cmp(Rflags, stos);
  2251   // ctos
  2252   __ lduh(Rclass, Roffset, Otos_i);
  2253   __ push(itos);
  2254   if (!is_static) {
  2255     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2257   __ ba(false, checkVolatile);
  2258   __ delayed()->tst(Lscratch);
  2260   __ bind(notChar);
  2262   // cmp(Rflags, stos);
  2263   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2264   __ delayed() ->cmp(Rflags, ftos);
  2266   // stos
  2267   __ ldsh(Rclass, Roffset, Otos_i);
  2268   __ push(itos);
  2269   if (!is_static) {
  2270     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2272   __ ba(false, checkVolatile);
  2273   __ delayed()->tst(Lscratch);
  2275   __ bind(notShort);
  2278   // cmp(Rflags, ftos);
  2279   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2280   __ delayed() ->tst(Lscratch);
  2282   // ftos
  2283   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2284   __ push(ftos);
  2285   if (!is_static) {
  2286     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2288   __ ba(false, checkVolatile);
  2289   __ delayed()->tst(Lscratch);
  2291   __ bind(notFloat);
  2294   // dtos
  2295   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2296   __ push(dtos);
  2297   if (!is_static) {
  2298     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2301   __ bind(checkVolatile);
  2302   if (__ membar_has_effect(membar_bits)) {
  2303     // __ tst(Lscratch); executed in delay slot
  2304     __ br(Assembler::zero, false, Assembler::pt, exit);
  2305     __ delayed()->nop();
  2306     volatile_barrier(membar_bits);
  2309   __ bind(exit);
  2313 void TemplateTable::getfield(int byte_no) {
  2314   getfield_or_static(byte_no, false);
  2317 void TemplateTable::getstatic(int byte_no) {
  2318   getfield_or_static(byte_no, true);
  2322 void TemplateTable::fast_accessfield(TosState state) {
  2323   transition(atos, state);
  2324   Register Rcache  = G3_scratch;
  2325   Register index   = G4_scratch;
  2326   Register Roffset = G4_scratch;
  2327   Register Rflags  = Rcache;
  2328   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2330   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2331   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2333   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2335   __ null_check(Otos_i);
  2336   __ verify_oop(Otos_i);
  2338   Label exit;
  2340   Assembler::Membar_mask_bits membar_bits =
  2341     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2342   if (__ membar_has_effect(membar_bits)) {
  2343     // Get volatile flag
  2344     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2345     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2348   switch (bytecode()) {
  2349     case Bytecodes::_fast_bgetfield:
  2350       __ ldsb(Otos_i, Roffset, Otos_i);
  2351       break;
  2352     case Bytecodes::_fast_cgetfield:
  2353       __ lduh(Otos_i, Roffset, Otos_i);
  2354       break;
  2355     case Bytecodes::_fast_sgetfield:
  2356       __ ldsh(Otos_i, Roffset, Otos_i);
  2357       break;
  2358     case Bytecodes::_fast_igetfield:
  2359       __ ld(Otos_i, Roffset, Otos_i);
  2360       break;
  2361     case Bytecodes::_fast_lgetfield:
  2362       __ ld_long(Otos_i, Roffset, Otos_l);
  2363       break;
  2364     case Bytecodes::_fast_fgetfield:
  2365       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2366       break;
  2367     case Bytecodes::_fast_dgetfield:
  2368       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2369       break;
  2370     case Bytecodes::_fast_agetfield:
  2371       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2372       break;
  2373     default:
  2374       ShouldNotReachHere();
  2377   if (__ membar_has_effect(membar_bits)) {
  2378     __ btst(Lscratch, Rflags);
  2379     __ br(Assembler::zero, false, Assembler::pt, exit);
  2380     __ delayed()->nop();
  2381     volatile_barrier(membar_bits);
  2382     __ bind(exit);
  2385   if (state == atos) {
  2386     __ verify_oop(Otos_i);    // does not blow flags!
  2390 void TemplateTable::jvmti_post_fast_field_mod() {
  2391   if (JvmtiExport::can_post_field_modification()) {
  2392     // Check to see if a field modification watch has been set before we take
  2393     // the time to call into the VM.
  2394     Label done;
  2395     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2396     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2397     __ tst(G4_scratch);
  2398     __ br(Assembler::zero, false, Assembler::pt, done);
  2399     __ delayed()->nop();
  2400     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2401     __ verify_oop(G4_scratch);
  2402     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2403     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2404     // Save tos values before call_VM() clobbers them. Since we have
  2405     // to do it for every data type, we use the saved values as the
  2406     // jvalue object.
  2407     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2408     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2409     case Bytecodes::_fast_bputfield: // fall through
  2410     case Bytecodes::_fast_sputfield: // fall through
  2411     case Bytecodes::_fast_cputfield: // fall through
  2412     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2413     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2414     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2415     // get words in right order for use as jvalue object
  2416     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2418     // setup pointer to jvalue object
  2419     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2420     // G4_scratch:  object pointer
  2421     // G1_scratch: cache entry pointer
  2422     // G3_scratch: jvalue object on the stack
  2423     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2424     switch (bytecode()) {             // restore tos values
  2425     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2426     case Bytecodes::_fast_bputfield: // fall through
  2427     case Bytecodes::_fast_sputfield: // fall through
  2428     case Bytecodes::_fast_cputfield: // fall through
  2429     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2430     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2431     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2432     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2434     __ bind(done);
  2438 // The registers Rcache and index expected to be set before call.
  2439 // The function may destroy various registers, just not the Rcache and index registers.
  2440 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2441   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2443   if (JvmtiExport::can_post_field_modification()) {
  2444     // Check to see if a field modification watch has been set before we take
  2445     // the time to call into the VM.
  2446     Label Label1;
  2447     assert_different_registers(Rcache, index, G1_scratch);
  2448     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2449     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2450     __ tst(G1_scratch);
  2451     __ br(Assembler::zero, false, Assembler::pt, Label1);
  2452     __ delayed()->nop();
  2454     // The Rcache and index registers have been already set.
  2455     // This allows to eliminate this call but the Rcache and index
  2456     // registers must be correspondingly used after this line.
  2457     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2459     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2460     if (is_static) {
  2461       // Life is simple.  Null out the object pointer.
  2462       __ clr(G4_scratch);
  2463     } else {
  2464       Register Rflags = G1_scratch;
  2465       // Life is harder. The stack holds the value on top, followed by the
  2466       // object.  We don't know the size of the value, though; it could be
  2467       // one or two words depending on its type. As a result, we must find
  2468       // the type to determine where the object is.
  2470       Label two_word, valsizeknown;
  2471       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2472       __ mov(Lesp, G4_scratch);
  2473       __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2474       // Make sure we don't need to mask Rflags for tosBits after the above shift
  2475       ConstantPoolCacheEntry::verify_tosBits();
  2476       __ cmp(Rflags, ltos);
  2477       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2478       __ delayed()->cmp(Rflags, dtos);
  2479       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2480       __ delayed()->nop();
  2481       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2482       __ br(Assembler::always, false, Assembler::pt, valsizeknown);
  2483       __ delayed()->nop();
  2484       __ bind(two_word);
  2486       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2488       __ bind(valsizeknown);
  2489       // setup object pointer
  2490       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2491       __ verify_oop(G4_scratch);
  2493     // setup pointer to jvalue object
  2494     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2495     // G4_scratch:  object pointer or NULL if static
  2496     // G3_scratch: cache entry pointer
  2497     // G1_scratch: jvalue object on the stack
  2498     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2499                G4_scratch, G3_scratch, G1_scratch);
  2500     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2501     __ bind(Label1);
  2505 void TemplateTable::pop_and_check_object(Register r) {
  2506   __ pop_ptr(r);
  2507   __ null_check(r);  // for field access must check obj.
  2508   __ verify_oop(r);
  2511 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2512   transition(vtos, vtos);
  2513   Register Rcache = G3_scratch;
  2514   Register index  = G4_scratch;
  2515   Register Rclass = Rcache;
  2516   Register Roffset= G4_scratch;
  2517   Register Rflags = G1_scratch;
  2518   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2520   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  2521   jvmti_post_field_mod(Rcache, index, is_static);
  2522   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2524   Assembler::Membar_mask_bits read_bits =
  2525     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2526   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2528   Label notVolatile, checkVolatile, exit;
  2529   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2530     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2531     __ and3(Rflags, Lscratch, Lscratch);
  2533     if (__ membar_has_effect(read_bits)) {
  2534       __ tst(Lscratch);
  2535       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2536       __ delayed()->nop();
  2537       volatile_barrier(read_bits);
  2538       __ bind(notVolatile);
  2542   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2543   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2544   ConstantPoolCacheEntry::verify_tosBits();
  2546   // compute field type
  2547   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2549   if (is_static) {
  2550     // putstatic with object type most likely, check that first
  2551     __ cmp(Rflags, atos );
  2552     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2553     __ delayed() ->cmp(Rflags, itos );
  2555     // atos
  2556     __ pop_ptr();
  2557     __ verify_oop(Otos_i);
  2559     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2561     __ ba(false, checkVolatile);
  2562     __ delayed()->tst(Lscratch);
  2564     __ bind(notObj);
  2566     // cmp(Rflags, itos );
  2567     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2568     __ delayed() ->cmp(Rflags, btos );
  2570     // itos
  2571     __ pop_i();
  2572     __ st(Otos_i, Rclass, Roffset);
  2573     __ ba(false, checkVolatile);
  2574     __ delayed()->tst(Lscratch);
  2576     __ bind(notInt);
  2578   } else {
  2579     // putfield with int type most likely, check that first
  2580     __ cmp(Rflags, itos );
  2581     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2582     __ delayed() ->cmp(Rflags, atos );
  2584     // itos
  2585     __ pop_i();
  2586     pop_and_check_object(Rclass);
  2587     __ st(Otos_i, Rclass, Roffset);
  2588     patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
  2589     __ ba(false, checkVolatile);
  2590     __ delayed()->tst(Lscratch);
  2592     __ bind(notInt);
  2593     // cmp(Rflags, atos );
  2594     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2595     __ delayed() ->cmp(Rflags, btos );
  2597     // atos
  2598     __ pop_ptr();
  2599     pop_and_check_object(Rclass);
  2600     __ verify_oop(Otos_i);
  2602     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2604     patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
  2605     __ ba(false, checkVolatile);
  2606     __ delayed()->tst(Lscratch);
  2608     __ bind(notObj);
  2611   // cmp(Rflags, btos );
  2612   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2613   __ delayed() ->cmp(Rflags, ltos );
  2615   // btos
  2616   __ pop_i();
  2617   if (!is_static) pop_and_check_object(Rclass);
  2618   __ stb(Otos_i, Rclass, Roffset);
  2619   if (!is_static) {
  2620     patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
  2622   __ ba(false, checkVolatile);
  2623   __ delayed()->tst(Lscratch);
  2625   __ bind(notByte);
  2627   // cmp(Rflags, ltos );
  2628   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2629   __ delayed() ->cmp(Rflags, ctos );
  2631   // ltos
  2632   __ pop_l();
  2633   if (!is_static) pop_and_check_object(Rclass);
  2634   __ st_long(Otos_l, Rclass, Roffset);
  2635   if (!is_static) {
  2636     patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
  2638   __ ba(false, checkVolatile);
  2639   __ delayed()->tst(Lscratch);
  2641   __ bind(notLong);
  2643   // cmp(Rflags, ctos );
  2644   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2645   __ delayed() ->cmp(Rflags, stos );
  2647   // ctos (char)
  2648   __ pop_i();
  2649   if (!is_static) pop_and_check_object(Rclass);
  2650   __ sth(Otos_i, Rclass, Roffset);
  2651   if (!is_static) {
  2652     patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
  2654   __ ba(false, checkVolatile);
  2655   __ delayed()->tst(Lscratch);
  2657   __ bind(notChar);
  2658   // cmp(Rflags, stos );
  2659   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2660   __ delayed() ->cmp(Rflags, ftos );
  2662   // stos (char)
  2663   __ pop_i();
  2664   if (!is_static) pop_and_check_object(Rclass);
  2665   __ sth(Otos_i, Rclass, Roffset);
  2666   if (!is_static) {
  2667     patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
  2669   __ ba(false, checkVolatile);
  2670   __ delayed()->tst(Lscratch);
  2672   __ bind(notShort);
  2673   // cmp(Rflags, ftos );
  2674   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2675   __ delayed()->nop();
  2677   // ftos
  2678   __ pop_f();
  2679   if (!is_static) pop_and_check_object(Rclass);
  2680   __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2681   if (!is_static) {
  2682     patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
  2684   __ ba(false, checkVolatile);
  2685   __ delayed()->tst(Lscratch);
  2687   __ bind(notFloat);
  2689   // dtos
  2690   __ pop_d();
  2691   if (!is_static) pop_and_check_object(Rclass);
  2692   __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2693   if (!is_static) {
  2694     patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
  2697   __ bind(checkVolatile);
  2698   __ tst(Lscratch);
  2700   if (__ membar_has_effect(write_bits)) {
  2701     // __ tst(Lscratch); in delay slot
  2702     __ br(Assembler::zero, false, Assembler::pt, exit);
  2703     __ delayed()->nop();
  2704     volatile_barrier(Assembler::StoreLoad);
  2705     __ bind(exit);
  2709 void TemplateTable::fast_storefield(TosState state) {
  2710   transition(state, vtos);
  2711   Register Rcache = G3_scratch;
  2712   Register Rclass = Rcache;
  2713   Register Roffset= G4_scratch;
  2714   Register Rflags = G1_scratch;
  2715   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2717   jvmti_post_fast_field_mod();
  2719   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2721   Assembler::Membar_mask_bits read_bits =
  2722     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2723   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2725   Label notVolatile, checkVolatile, exit;
  2726   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2727     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2728     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2729     __ and3(Rflags, Lscratch, Lscratch);
  2730     if (__ membar_has_effect(read_bits)) {
  2731       __ tst(Lscratch);
  2732       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2733       __ delayed()->nop();
  2734       volatile_barrier(read_bits);
  2735       __ bind(notVolatile);
  2739   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2740   pop_and_check_object(Rclass);
  2742   switch (bytecode()) {
  2743     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2744     case Bytecodes::_fast_cputfield: /* fall through */
  2745     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2746     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2747     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2748     case Bytecodes::_fast_fputfield:
  2749       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2750       break;
  2751     case Bytecodes::_fast_dputfield:
  2752       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2753       break;
  2754     case Bytecodes::_fast_aputfield:
  2755       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2756       break;
  2757     default:
  2758       ShouldNotReachHere();
  2761   if (__ membar_has_effect(write_bits)) {
  2762     __ tst(Lscratch);
  2763     __ br(Assembler::zero, false, Assembler::pt, exit);
  2764     __ delayed()->nop();
  2765     volatile_barrier(Assembler::StoreLoad);
  2766     __ bind(exit);
  2771 void TemplateTable::putfield(int byte_no) {
  2772   putfield_or_static(byte_no, false);
  2775 void TemplateTable::putstatic(int byte_no) {
  2776   putfield_or_static(byte_no, true);
  2780 void TemplateTable::fast_xaccess(TosState state) {
  2781   transition(vtos, state);
  2782   Register Rcache = G3_scratch;
  2783   Register Roffset = G4_scratch;
  2784   Register Rflags  = G4_scratch;
  2785   Register Rreceiver = Lscratch;
  2787   __ ld_ptr(Llocals, 0, Rreceiver);
  2789   // access constant pool cache  (is resolved)
  2790   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2791   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2792   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2794   __ verify_oop(Rreceiver);
  2795   __ null_check(Rreceiver);
  2796   if (state == atos) {
  2797     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2798   } else if (state == itos) {
  2799     __ ld (Rreceiver, Roffset, Otos_i) ;
  2800   } else if (state == ftos) {
  2801     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2802   } else {
  2803     ShouldNotReachHere();
  2806   Assembler::Membar_mask_bits membar_bits =
  2807     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2808   if (__ membar_has_effect(membar_bits)) {
  2810     // Get is_volatile value in Rflags and check if membar is needed
  2811     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2813     // Test volatile
  2814     Label notVolatile;
  2815     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2816     __ btst(Rflags, Lscratch);
  2817     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2818     __ delayed()->nop();
  2819     volatile_barrier(membar_bits);
  2820     __ bind(notVolatile);
  2823   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2824   __ sub(Lbcp, 1, Lbcp);
  2827 //----------------------------------------------------------------------------------------------------
  2828 // Calls
  2830 void TemplateTable::count_calls(Register method, Register temp) {
  2831   // implemented elsewhere
  2832   ShouldNotReachHere();
  2835 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2836   Register Rtemp = G4_scratch;
  2837   Register Rcall = Rindex;
  2838   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2840   // get target methodOop & entry point
  2841   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2842   if (vtableEntry::size() % 3 == 0) {
  2843     // scale the vtable index by 12:
  2844     int one_third = vtableEntry::size() / 3;
  2845     __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
  2846     __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
  2847     __ add(Rindex, Rtemp, Rindex);
  2848   } else {
  2849     // scale the vtable index by 8:
  2850     __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
  2853   __ add(Rrecv, Rindex, Rrecv);
  2854   __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
  2856   __ call_from_interpreter(Rcall, Gargs, Rret);
  2859 void TemplateTable::invokevirtual(int byte_no) {
  2860   transition(vtos, vtos);
  2861   assert(byte_no == f2_byte, "use this argument");
  2863   Register Rscratch = G3_scratch;
  2864   Register Rtemp = G4_scratch;
  2865   Register Rret = Lscratch;
  2866   Register Rrecv = G5_method;
  2867   Label notFinal;
  2869   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  2870   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2872   // Check for vfinal
  2873   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
  2874   __ btst(Rret, G4_scratch);
  2875   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2876   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  2878   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  2880   invokevfinal_helper(Rscratch, Rret);
  2882   __ bind(notFinal);
  2884   __ mov(G5_method, Rscratch);  // better scratch register
  2885   __ load_receiver(G4_scratch, O0);  // gets receiverOop
  2886   // receiver is in O0
  2887   __ verify_oop(O0);
  2889   // get return address
  2890   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2891   __ set(table, Rtemp);
  2892   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2893   // Make sure we don't need to mask Rret for tosBits after the above shift
  2894   ConstantPoolCacheEntry::verify_tosBits();
  2895   __ sll(Rret,  LogBytesPerWord, Rret);
  2896   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2898   // get receiver klass
  2899   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  2900   __ load_klass(O0, Rrecv);
  2901   __ verify_oop(Rrecv);
  2903   __ profile_virtual_call(Rrecv, O4);
  2905   generate_vtable_call(Rrecv, Rscratch, Rret);
  2908 void TemplateTable::fast_invokevfinal(int byte_no) {
  2909   transition(vtos, vtos);
  2910   assert(byte_no == f2_byte, "use this argument");
  2912   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  2913                              /*is_invokevfinal*/true, false);
  2914   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2915   invokevfinal_helper(G3_scratch, Lscratch);
  2918 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  2919   Register Rtemp = G4_scratch;
  2921   __ verify_oop(G5_method);
  2923   // Load receiver from stack slot
  2924   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  2925   __ load_receiver(G4_scratch, O0);
  2927   // receiver NULL check
  2928   __ null_check(O0);
  2930   __ profile_final_call(O4);
  2932   // get return address
  2933   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2934   __ set(table, Rtemp);
  2935   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2936   // Make sure we don't need to mask Rret for tosBits after the above shift
  2937   ConstantPoolCacheEntry::verify_tosBits();
  2938   __ sll(Rret,  LogBytesPerWord, Rret);
  2939   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2942   // do the call
  2943   __ call_from_interpreter(Rscratch, Gargs, Rret);
  2946 void TemplateTable::invokespecial(int byte_no) {
  2947   transition(vtos, vtos);
  2948   assert(byte_no == f1_byte, "use this argument");
  2950   Register Rscratch = G3_scratch;
  2951   Register Rtemp = G4_scratch;
  2952   Register Rret = Lscratch;
  2954   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  2955   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2957   __ verify_oop(G5_method);
  2959   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  2960   __ load_receiver(G4_scratch, O0);
  2962   // receiver NULL check
  2963   __ null_check(O0);
  2965   __ profile_call(O4);
  2967   // get return address
  2968   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2969   __ set(table, Rtemp);
  2970   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2971   // Make sure we don't need to mask Rret for tosBits after the above shift
  2972   ConstantPoolCacheEntry::verify_tosBits();
  2973   __ sll(Rret,  LogBytesPerWord, Rret);
  2974   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2976   // do the call
  2977   __ call_from_interpreter(Rscratch, Gargs, Rret);
  2980 void TemplateTable::invokestatic(int byte_no) {
  2981   transition(vtos, vtos);
  2982   assert(byte_no == f1_byte, "use this argument");
  2984   Register Rscratch = G3_scratch;
  2985   Register Rtemp = G4_scratch;
  2986   Register Rret = Lscratch;
  2988   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  2989   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2991   __ verify_oop(G5_method);
  2993   __ profile_call(O4);
  2995   // get return address
  2996   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2997   __ set(table, Rtemp);
  2998   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2999   // Make sure we don't need to mask Rret for tosBits after the above shift
  3000   ConstantPoolCacheEntry::verify_tosBits();
  3001   __ sll(Rret,  LogBytesPerWord, Rret);
  3002   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3004   // do the call
  3005   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3009 void TemplateTable::invokeinterface_object_method(Register RklassOop,
  3010                                                   Register Rcall,
  3011                                                   Register Rret,
  3012                                                   Register Rflags) {
  3013   Register Rscratch = G4_scratch;
  3014   Register Rindex = Lscratch;
  3016   assert_different_registers(Rscratch, Rindex, Rret);
  3018   Label notFinal;
  3020   // Check for vfinal
  3021   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
  3022   __ btst(Rflags, Rscratch);
  3023   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3024   __ delayed()->nop();
  3026   __ profile_final_call(O4);
  3028   // do the call - the index (f2) contains the methodOop
  3029   assert_different_registers(G5_method, Gargs, Rcall);
  3030   __ mov(Rindex, G5_method);
  3031   __ call_from_interpreter(Rcall, Gargs, Rret);
  3032   __ bind(notFinal);
  3034   __ profile_virtual_call(RklassOop, O4);
  3035   generate_vtable_call(RklassOop, Rindex, Rret);
  3039 void TemplateTable::invokeinterface(int byte_no) {
  3040   transition(vtos, vtos);
  3041   assert(byte_no == f1_byte, "use this argument");
  3043   Register Rscratch = G4_scratch;
  3044   Register Rret = G3_scratch;
  3045   Register Rindex = Lscratch;
  3046   Register Rinterface = G1_scratch;
  3047   Register RklassOop = G5_method;
  3048   Register Rflags = O1;
  3049   assert_different_registers(Rscratch, G5_method);
  3051   load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false);
  3052   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3054   // get receiver
  3055   __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
  3056   __ load_receiver(Rscratch, O0);
  3057   __ verify_oop(O0);
  3059   __ mov(Rflags, Rret);
  3061   // get return address
  3062   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3063   __ set(table, Rscratch);
  3064   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3065   // Make sure we don't need to mask Rret for tosBits after the above shift
  3066   ConstantPoolCacheEntry::verify_tosBits();
  3067   __ sll(Rret,  LogBytesPerWord, Rret);
  3068   __ ld_ptr(Rscratch, Rret, Rret);      // get return address
  3070   // get receiver klass
  3071   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  3072   __ load_klass(O0, RklassOop);
  3073   __ verify_oop(RklassOop);
  3075   // Special case of invokeinterface called for virtual method of
  3076   // java.lang.Object.  See cpCacheOop.cpp for details.
  3077   // This code isn't produced by javac, but could be produced by
  3078   // another compliant java compiler.
  3079   Label notMethod;
  3080   __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
  3081   __ btst(Rflags, Rscratch);
  3082   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3083   __ delayed()->nop();
  3085   invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
  3087   __ bind(notMethod);
  3089   __ profile_virtual_call(RklassOop, O4);
  3091   //
  3092   // find entry point to call
  3093   //
  3095   // compute start of first itableOffsetEntry (which is at end of vtable)
  3096   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3097   Label search;
  3098   Register Rtemp = Rflags;
  3100   __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3101   if (align_object_offset(1) > 1) {
  3102     __ round_to(Rtemp, align_object_offset(1));
  3104   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3105   if (Assembler::is_simm13(base)) {
  3106     __ add(Rtemp, base, Rtemp);
  3107   } else {
  3108     __ set(base, Rscratch);
  3109     __ add(Rscratch, Rtemp, Rtemp);
  3111   __ add(RklassOop, Rtemp, Rscratch);
  3113   __ bind(search);
  3115   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3117     Label ok;
  3119     // Check that entry is non-null.  Null entries are probably a bytecode
  3120     // problem.  If the interface isn't implemented by the receiver class,
  3121     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3122     // this too but that's only if the entry isn't already resolved, so we
  3123     // need to check again.
  3124     __ br_notnull( Rtemp, false, Assembler::pt, ok);
  3125     __ delayed()->nop();
  3126     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3127     __ should_not_reach_here();
  3128     __ bind(ok);
  3129     __ verify_oop(Rtemp);
  3132   __ verify_oop(Rinterface);
  3134   __ cmp(Rinterface, Rtemp);
  3135   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3136   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3138   // entry found and Rscratch points to it
  3139   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3141   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3142   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3143   __ add(Rscratch, Rindex, Rscratch);
  3144   __ ld_ptr(RklassOop, Rscratch, G5_method);
  3146   // Check for abstract method error.
  3148     Label ok;
  3149     __ tst(G5_method);
  3150     __ brx(Assembler::notZero, false, Assembler::pt, ok);
  3151     __ delayed()->nop();
  3152     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3153     __ should_not_reach_here();
  3154     __ bind(ok);
  3157   Register Rcall = Rinterface;
  3158   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3160   __ verify_oop(G5_method);
  3161   __ call_from_interpreter(Rcall, Gargs, Rret);
  3166 void TemplateTable::invokedynamic(int byte_no) {
  3167   transition(vtos, vtos);
  3168   assert(byte_no == f1_oop, "use this argument");
  3170   if (!EnableInvokeDynamic) {
  3171     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3172     // The verifier will stop it.  However, if we get past the verifier,
  3173     // this will stop the thread in a reasonable way, without crashing the JVM.
  3174     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3175                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3176     // the call_VM checks for exception, so we should never return here.
  3177     __ should_not_reach_here();
  3178     return;
  3181   // G5: CallSite object (f1)
  3182   // XX: unused (f2)
  3183   // XX: flags (unused)
  3185   Register G5_callsite = G5_method;
  3186   Register Rscratch    = G3_scratch;
  3187   Register Rtemp       = G1_scratch;
  3188   Register Rret        = Lscratch;
  3190   load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret,
  3191                              /*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
  3192   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  3194   __ verify_oop(G5_callsite);
  3196   // profile this call
  3197   __ profile_call(O4);
  3199   // get return address
  3200   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3201   __ set(table, Rtemp);
  3202   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
  3203   // Make sure we don't need to mask Rret for tosBits after the above shift
  3204   ConstantPoolCacheEntry::verify_tosBits();
  3205   __ sll(Rret, LogBytesPerWord, Rret);
  3206   __ ld_ptr(Rtemp, Rret, Rret);  // get return address
  3208   __ ld_ptr(G5_callsite, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
  3209   __ null_check(G3_method_handle);
  3211   // Adjust Rret first so Llast_SP can be same as Rret
  3212   __ add(Rret, -frame::pc_return_offset, O7);
  3213   __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
  3214   __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
  3215   // Record SP so we can remove any stack space allocated by adapter transition
  3216   __ delayed()->mov(SP, Llast_SP);
  3220 //----------------------------------------------------------------------------------------------------
  3221 // Allocation
  3223 void TemplateTable::_new() {
  3224   transition(vtos, atos);
  3226   Label slow_case;
  3227   Label done;
  3228   Label initialize_header;
  3229   Label initialize_object;  // including clearing the fields
  3231   Register RallocatedObject = Otos_i;
  3232   Register RinstanceKlass = O1;
  3233   Register Roffset = O3;
  3234   Register Rscratch = O4;
  3236   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3237   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3238   // make sure the class we're about to instantiate has been resolved
  3239   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3240   __ ldub(G3_scratch, Roffset, G3_scratch);
  3241   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3242   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3243   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3245   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3246   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3247   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3249   // make sure klass is fully initialized:
  3250   __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
  3251   __ cmp(G3_scratch, instanceKlass::fully_initialized);
  3252   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3253   __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3255   // get instance_size in instanceKlass (already aligned)
  3256   //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3258   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3259   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3260   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3261   __ delayed()->nop();
  3263   // allocate the instance
  3264   // 1) Try to allocate in the TLAB
  3265   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3266   // 3) if the above fails (or is not applicable), go to a slow case
  3267   // (creates a new TLAB, etc.)
  3269   const bool allow_shared_alloc =
  3270     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3272   if(UseTLAB) {
  3273     Register RoldTopValue = RallocatedObject;
  3274     Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
  3275     Register RnewTopValue = G1_scratch;
  3276     Register RendValue = Rscratch;
  3277     Register RfreeValue = RnewTopValue;
  3279     // check if we can allocate in the TLAB
  3280     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3281     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3282     __ add(RoldTopValue, Roffset, RnewTopValue);
  3284     // if there is enough space, we do not CAS and do not clear
  3285     __ cmp(RnewTopValue, RendValue);
  3286     if(ZeroTLAB) {
  3287       // the fields have already been cleared
  3288       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3289     } else {
  3290       // initialize both the header and fields
  3291       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3293     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3295     if (allow_shared_alloc) {
  3296     // Check if tlab should be discarded (refill_waste_limit >= free)
  3297     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3298     __ sub(RendValue, RoldTopValue, RfreeValue);
  3299 #ifdef _LP64
  3300     __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3301 #else
  3302     __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3303 #endif
  3304     __ cmp(RtlabWasteLimitValue, RfreeValue);
  3305     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
  3306     __ delayed()->nop();
  3308     // increment waste limit to prevent getting stuck on this slow path
  3309     __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3310     __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3311     } else {
  3312       // No allocation in the shared eden.
  3313       __ br(Assembler::always, false, Assembler::pt, slow_case);
  3314       __ delayed()->nop();
  3318   // Allocation in the shared Eden
  3319   if (allow_shared_alloc) {
  3320     Register RoldTopValue = G1_scratch;
  3321     Register RtopAddr = G3_scratch;
  3322     Register RnewTopValue = RallocatedObject;
  3323     Register RendValue = Rscratch;
  3325     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3327     Label retry;
  3328     __ bind(retry);
  3329     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3330     __ ld_ptr(RendValue, 0, RendValue);
  3331     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3332     __ add(RoldTopValue, Roffset, RnewTopValue);
  3334     // RnewTopValue contains the top address after the new object
  3335     // has been allocated.
  3336     __ cmp(RnewTopValue, RendValue);
  3337     __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
  3338     __ delayed()->nop();
  3340     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3341       VM_Version::v9_instructions_work() ? NULL :
  3342       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3344     // if someone beat us on the allocation, try again, otherwise continue
  3345     __ cmp(RoldTopValue, RnewTopValue);
  3346     __ brx(Assembler::notEqual, false, Assembler::pn, retry);
  3347     __ delayed()->nop();
  3350   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3351     // clear object fields
  3352     __ bind(initialize_object);
  3353     __ deccc(Roffset, sizeof(oopDesc));
  3354     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3355     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3357     // initialize remaining object fields
  3358     { Label loop;
  3359       __ subcc(Roffset, wordSize, Roffset);
  3360       __ bind(loop);
  3361       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3362       __ st_ptr(G0, G3_scratch, Roffset);
  3363       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3364       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3366     __ br(Assembler::always, false, Assembler::pt, initialize_header);
  3367     __ delayed()->nop();
  3370   // slow case
  3371   __ bind(slow_case);
  3372   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3373   __ get_constant_pool(O1);
  3375   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3377   __ ba(false, done);
  3378   __ delayed()->nop();
  3380   // Initialize the header: mark, klass
  3381   __ bind(initialize_header);
  3383   if (UseBiasedLocking) {
  3384     __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
  3385   } else {
  3386     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3388   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3389   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3390   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3393     SkipIfEqual skip_if(
  3394       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3395     // Trigger dtrace event
  3396     __ push(atos);
  3397     __ call_VM_leaf(noreg,
  3398        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3399     __ pop(atos);
  3402   // continue
  3403   __ bind(done);
  3408 void TemplateTable::newarray() {
  3409   transition(itos, atos);
  3410   __ ldub(Lbcp, 1, O1);
  3411      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3415 void TemplateTable::anewarray() {
  3416   transition(itos, atos);
  3417   __ get_constant_pool(O1);
  3418   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3419      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3423 void TemplateTable::arraylength() {
  3424   transition(atos, itos);
  3425   Label ok;
  3426   __ verify_oop(Otos_i);
  3427   __ tst(Otos_i);
  3428   __ throw_if_not_1_x( Assembler::notZero, ok );
  3429   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3430   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3434 void TemplateTable::checkcast() {
  3435   transition(atos, atos);
  3436   Label done, is_null, quicked, cast_ok, resolved;
  3437   Register Roffset = G1_scratch;
  3438   Register RobjKlass = O5;
  3439   Register RspecifiedKlass = O4;
  3441   // Check for casting a NULL
  3442   __ br_null(Otos_i, false, Assembler::pn, is_null);
  3443   __ delayed()->nop();
  3445   // Get value klass in RobjKlass
  3446   __ load_klass(Otos_i, RobjKlass); // get value klass
  3448   // Get constant pool tag
  3449   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3451   // See if the checkcast has been quickened
  3452   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3453   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3454   __ ldub(G3_scratch, Roffset, G3_scratch);
  3455   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3456   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3457   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3459   __ push_ptr(); // save receiver for result, and for GC
  3460   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3461   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3463   __ br(Assembler::always, false, Assembler::pt, resolved);
  3464   __ delayed()->nop();
  3466   // Extract target class from constant pool
  3467   __ bind(quicked);
  3468   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3469   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3470   __ bind(resolved);
  3471   __ load_klass(Otos_i, RobjKlass); // get value klass
  3473   // Generate a fast subtype check.  Branch to cast_ok if no
  3474   // failure.  Throw exception if failure.
  3475   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3477   // Not a subtype; so must throw exception
  3478   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3480   __ bind(cast_ok);
  3482   if (ProfileInterpreter) {
  3483     __ ba(false, done);
  3484     __ delayed()->nop();
  3486   __ bind(is_null);
  3487   __ profile_null_seen(G3_scratch);
  3488   __ bind(done);
  3492 void TemplateTable::instanceof() {
  3493   Label done, is_null, quicked, resolved;
  3494   transition(atos, itos);
  3495   Register Roffset = G1_scratch;
  3496   Register RobjKlass = O5;
  3497   Register RspecifiedKlass = O4;
  3499   // Check for casting a NULL
  3500   __ br_null(Otos_i, false, Assembler::pt, is_null);
  3501   __ delayed()->nop();
  3503   // Get value klass in RobjKlass
  3504   __ load_klass(Otos_i, RobjKlass); // get value klass
  3506   // Get constant pool tag
  3507   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3509   // See if the checkcast has been quickened
  3510   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3511   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3512   __ ldub(G3_scratch, Roffset, G3_scratch);
  3513   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3514   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3515   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3517   __ push_ptr(); // save receiver for result, and for GC
  3518   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3519   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3521   __ br(Assembler::always, false, Assembler::pt, resolved);
  3522   __ delayed()->nop();
  3525   // Extract target class from constant pool
  3526   __ bind(quicked);
  3527   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3528   __ get_constant_pool(Lscratch);
  3529   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3530   __ bind(resolved);
  3531   __ load_klass(Otos_i, RobjKlass); // get value klass
  3533   // Generate a fast subtype check.  Branch to cast_ok if no
  3534   // failure.  Return 0 if failure.
  3535   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3536   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3537   // Not a subtype; return 0;
  3538   __ clr( Otos_i );
  3540   if (ProfileInterpreter) {
  3541     __ ba(false, done);
  3542     __ delayed()->nop();
  3544   __ bind(is_null);
  3545   __ profile_null_seen(G3_scratch);
  3546   __ bind(done);
  3549 void TemplateTable::_breakpoint() {
  3551    // Note: We get here even if we are single stepping..
  3552    // jbug inists on setting breakpoints at every bytecode
  3553    // even if we are in single step mode.
  3555    transition(vtos, vtos);
  3556    // get the unpatched byte code
  3557    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3558    __ mov(O0, Lbyte_code);
  3560    // post the breakpoint event
  3561    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3563    // complete the execution of original bytecode
  3564    __ dispatch_normal(vtos);
  3568 //----------------------------------------------------------------------------------------------------
  3569 // Exceptions
  3571 void TemplateTable::athrow() {
  3572   transition(atos, vtos);
  3574   // This works because exception is cached in Otos_i which is same as O0,
  3575   // which is same as what throw_exception_entry_expects
  3576   assert(Otos_i == Oexception, "see explanation above");
  3578   __ verify_oop(Otos_i);
  3579   __ null_check(Otos_i);
  3580   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3584 //----------------------------------------------------------------------------------------------------
  3585 // Synchronization
  3588 // See frame_sparc.hpp for monitor block layout.
  3589 // Monitor elements are dynamically allocated by growing stack as needed.
  3591 void TemplateTable::monitorenter() {
  3592   transition(atos, vtos);
  3593   __ verify_oop(Otos_i);
  3594   // Try to acquire a lock on the object
  3595   // Repeat until succeeded (i.e., until
  3596   // monitorenter returns true).
  3598   {   Label ok;
  3599     __ tst(Otos_i);
  3600     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3601     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3602     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3605   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3607   // find a free slot in the monitor block
  3610   // initialize entry pointer
  3611   __ clr(O1); // points to free slot or NULL
  3614     Label entry, loop, exit;
  3615     __ add( __ top_most_monitor(), O2 ); // last one to check
  3616     __ ba( false, entry );
  3617     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3620     __ bind( loop );
  3622     __ verify_oop(O4);          // verify each monitor's oop
  3623     __ tst(O4); // is this entry unused?
  3624     if (VM_Version::v9_instructions_work())
  3625       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3626     else {
  3627       Label L;
  3628       __ br( Assembler::zero, true, Assembler::pn, L );
  3629       __ delayed()->mov(O3, O1); // rememeber this one if match
  3630       __ bind(L);
  3633     __ cmp(O4, O0); // check if current entry is for same object
  3634     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3635     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3637     __ bind( entry );
  3639     __ cmp( O3, O2 );
  3640     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3641     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3643     __ bind( exit );
  3646   { Label allocated;
  3648     // found free slot?
  3649     __ br_notnull(O1, false, Assembler::pn, allocated);
  3650     __ delayed()->nop();
  3652     __ add_monitor_to_stack( false, O2, O3 );
  3653     __ mov(Lmonitors, O1);
  3655     __ bind(allocated);
  3658   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3659   // The object has already been poped from the stack, so the expression stack looks correct.
  3660   __ inc(Lbcp);
  3662   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3663   __ lock_object(O1, O0);
  3665   // check if there's enough space on the stack for the monitors after locking
  3666   __ generate_stack_overflow_check(0);
  3668   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3669   __ dispatch_next(vtos);
  3673 void TemplateTable::monitorexit() {
  3674   transition(atos, vtos);
  3675   __ verify_oop(Otos_i);
  3676   __ tst(Otos_i);
  3677   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3679   assert(O0 == Otos_i, "just checking");
  3681   { Label entry, loop, found;
  3682     __ add( __ top_most_monitor(), O2 ); // last one to check
  3683     __ ba(false, entry );
  3684     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3685     // By using a local it survives the call to the C routine.
  3686     __ delayed()->mov( Lmonitors, Lscratch );
  3688     __ bind( loop );
  3690     __ verify_oop(O4);          // verify each monitor's oop
  3691     __ cmp(O4, O0); // check if current entry is for desired object
  3692     __ brx( Assembler::equal, true, Assembler::pt, found );
  3693     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3695     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3697     __ bind( entry );
  3699     __ cmp( Lscratch, O2 );
  3700     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3701     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3703     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3704     __ should_not_reach_here();
  3706     __ bind(found);
  3708   __ unlock_object(O1);
  3712 //----------------------------------------------------------------------------------------------------
  3713 // Wide instructions
  3715 void TemplateTable::wide() {
  3716   transition(vtos, vtos);
  3717   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3718   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3719   AddressLiteral ep(Interpreter::_wentry_point);
  3720   __ set(ep, G4_scratch);
  3721   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3722   __ jmp(G3_scratch, G0);
  3723   __ delayed()->nop();
  3724   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3728 //----------------------------------------------------------------------------------------------------
  3729 // Multi arrays
  3731 void TemplateTable::multianewarray() {
  3732   transition(vtos, atos);
  3733      // put ndims * wordSize into Lscratch
  3734   __ ldub( Lbcp,     3,               Lscratch);
  3735   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3736      // Lesp points past last_dim, so set to O1 to first_dim address
  3737   __ add(  Lesp,     Lscratch,        O1);
  3738      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3739   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3741 #endif /* !CC_INTERP */

mercurial