src/cpu/sparc/vm/sparc.ad

Wed, 09 Jun 2010 18:50:45 -0700

author
jrose
date
Wed, 09 Jun 2010 18:50:45 -0700
changeset 1957
136b78722a08
parent 1934
e9ff18c4ace7
child 2103
3e8fbc61cee8
permissions
-rw-r--r--

6939203: JSR 292 needs method handle constants
Summary: Add new CP types CONSTANT_MethodHandle, CONSTANT_MethodType; extend 'ldc' bytecode.
Reviewed-by: twisti, never

     1 //
     2 // Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   return NativeFarCall::instruction_size;  // farcall; delay slot
   579 #else
   580   return NativeCall::instruction_size;  // call; delay slot
   581 #endif
   582 }
   584 // Indicate if the safepoint node needs the polling page as an input.
   585 // Since Sparc does not have absolute addressing, it does.
   586 bool SafePointNode::needs_polling_address_input() {
   587   return true;
   588 }
   590 // emit an interrupt that is caught by the debugger (for debugging compiler)
   591 void emit_break(CodeBuffer &cbuf) {
   592   MacroAssembler _masm(&cbuf);
   593   __ breakpoint_trap();
   594 }
   596 #ifndef PRODUCT
   597 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   598   st->print("TA");
   599 }
   600 #endif
   602 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   603   emit_break(cbuf);
   604 }
   606 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   607   return MachNode::size(ra_);
   608 }
   610 // Traceable jump
   611 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   612   MacroAssembler _masm(&cbuf);
   613   Register rdest = reg_to_register_object(jump_target);
   614   __ JMP(rdest, 0);
   615   __ delayed()->nop();
   616 }
   618 // Traceable jump and set exception pc
   619 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   620   MacroAssembler _masm(&cbuf);
   621   Register rdest = reg_to_register_object(jump_target);
   622   __ JMP(rdest, 0);
   623   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   624 }
   626 void emit_nop(CodeBuffer &cbuf) {
   627   MacroAssembler _masm(&cbuf);
   628   __ nop();
   629 }
   631 void emit_illtrap(CodeBuffer &cbuf) {
   632   MacroAssembler _masm(&cbuf);
   633   __ illtrap(0);
   634 }
   637 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   638   assert(n->rule() != loadUB_rule, "");
   640   intptr_t offset = 0;
   641   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   642   const Node* addr = n->get_base_and_disp(offset, adr_type);
   643   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   644   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   645   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   646   atype = atype->add_offset(offset);
   647   assert(disp32 == offset, "wrong disp32");
   648   return atype->_offset;
   649 }
   652 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   653   assert(n->rule() != loadUB_rule, "");
   655   intptr_t offset = 0;
   656   Node* addr = n->in(2);
   657   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   658   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   659     Node* a = addr->in(2/*AddPNode::Address*/);
   660     Node* o = addr->in(3/*AddPNode::Offset*/);
   661     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   662     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   663     assert(atype->isa_oop_ptr(), "still an oop");
   664   }
   665   offset = atype->is_ptr()->_offset;
   666   if (offset != Type::OffsetBot)  offset += disp32;
   667   return offset;
   668 }
   670 // Standard Sparc opcode form2 field breakdown
   671 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   672   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   673   int op = (f30 << 30) |
   674            (f29 << 29) |
   675            (f25 << 25) |
   676            (f22 << 22) |
   677            (f20 << 20) |
   678            (f19 << 19) |
   679            (f0  <<  0);
   680   *((int*)(cbuf.code_end())) = op;
   681   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   682 }
   684 // Standard Sparc opcode form2 field breakdown
   685 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   686   f0 >>= 10;           // Drop 10 bits
   687   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   688   int op = (f30 << 30) |
   689            (f25 << 25) |
   690            (f22 << 22) |
   691            (f0  <<  0);
   692   *((int*)(cbuf.code_end())) = op;
   693   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   694 }
   696 // Standard Sparc opcode form3 field breakdown
   697 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   698   int op = (f30 << 30) |
   699            (f25 << 25) |
   700            (f19 << 19) |
   701            (f14 << 14) |
   702            (f5  <<  5) |
   703            (f0  <<  0);
   704   *((int*)(cbuf.code_end())) = op;
   705   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   706 }
   708 // Standard Sparc opcode form3 field breakdown
   709 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   710   simm13 &= (1<<13)-1; // Mask to 13 bits
   711   int op = (f30 << 30) |
   712            (f25 << 25) |
   713            (f19 << 19) |
   714            (f14 << 14) |
   715            (1   << 13) | // bit to indicate immediate-mode
   716            (simm13<<0);
   717   *((int*)(cbuf.code_end())) = op;
   718   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   719 }
   721 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   722   simm10 &= (1<<10)-1; // Mask to 10 bits
   723   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   724 }
   726 #ifdef ASSERT
   727 // Helper function for VerifyOops in emit_form3_mem_reg
   728 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   729   warning("VerifyOops encountered unexpected instruction:");
   730   n->dump(2);
   731   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   732 }
   733 #endif
   736 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   737                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   739 #ifdef ASSERT
   740   // The following code implements the +VerifyOops feature.
   741   // It verifies oop values which are loaded into or stored out of
   742   // the current method activation.  +VerifyOops complements techniques
   743   // like ScavengeALot, because it eagerly inspects oops in transit,
   744   // as they enter or leave the stack, as opposed to ScavengeALot,
   745   // which inspects oops "at rest", in the stack or heap, at safepoints.
   746   // For this reason, +VerifyOops can sometimes detect bugs very close
   747   // to their point of creation.  It can also serve as a cross-check
   748   // on the validity of oop maps, when used toegether with ScavengeALot.
   750   // It would be good to verify oops at other points, especially
   751   // when an oop is used as a base pointer for a load or store.
   752   // This is presently difficult, because it is hard to know when
   753   // a base address is biased or not.  (If we had such information,
   754   // it would be easy and useful to make a two-argument version of
   755   // verify_oop which unbiases the base, and performs verification.)
   757   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   758   bool is_verified_oop_base  = false;
   759   bool is_verified_oop_load  = false;
   760   bool is_verified_oop_store = false;
   761   int tmp_enc = -1;
   762   if (VerifyOops && src1_enc != R_SP_enc) {
   763     // classify the op, mainly for an assert check
   764     int st_op = 0, ld_op = 0;
   765     switch (primary) {
   766     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   767     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   768     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   769     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   770     case Assembler::std_op3:  st_op = Op_StoreL; break;
   771     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   772     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   774     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   775     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   776     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   777     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   778     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   779     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   780     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   781     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   782     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   783     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   784     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   786     default: ShouldNotReachHere();
   787     }
   788     if (tertiary == REGP_OP) {
   789       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   790       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   791       else                          ShouldNotReachHere();
   792       if (st_op) {
   793         // a store
   794         // inputs are (0:control, 1:memory, 2:address, 3:value)
   795         Node* n2 = n->in(3);
   796         if (n2 != NULL) {
   797           const Type* t = n2->bottom_type();
   798           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   799         }
   800       } else {
   801         // a load
   802         const Type* t = n->bottom_type();
   803         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   804       }
   805     }
   807     if (ld_op) {
   808       // a Load
   809       // inputs are (0:control, 1:memory, 2:address)
   810       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   811           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   813           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   814           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   815           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   816           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   817           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   818           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   819           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   820           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   821           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   822           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   823           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   824           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   825           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   826           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   827           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   828           !(n->rule() == loadUB_rule)) {
   829         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   830       }
   831     } else if (st_op) {
   832       // a Store
   833       // inputs are (0:control, 1:memory, 2:address, 3:value)
   834       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   835           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   836           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   837           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   838           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   839           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   840           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   841           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   842           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   843         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   844       }
   845     }
   847     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   848       Node* addr = n->in(2);
   849       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   850         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   851         if (atype != NULL) {
   852           intptr_t offset = get_offset_from_base(n, atype, disp32);
   853           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   854           if (offset != offset_2) {
   855             get_offset_from_base(n, atype, disp32);
   856             get_offset_from_base_2(n, atype, disp32);
   857           }
   858           assert(offset == offset_2, "different offsets");
   859           if (offset == disp32) {
   860             // we now know that src1 is a true oop pointer
   861             is_verified_oop_base = true;
   862             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   863               if( primary == Assembler::ldd_op3 ) {
   864                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   865               } else {
   866                 tmp_enc = dst_enc;
   867                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   868                 assert(src1_enc != dst_enc, "");
   869               }
   870             }
   871           }
   872           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   873                        || offset == oopDesc::mark_offset_in_bytes())) {
   874                       // loading the mark should not be allowed either, but
   875                       // we don't check this since it conflicts with InlineObjectHash
   876                       // usage of LoadINode to get the mark. We could keep the
   877                       // check if we create a new LoadMarkNode
   878             // but do not verify the object before its header is initialized
   879             ShouldNotReachHere();
   880           }
   881         }
   882       }
   883     }
   884   }
   885 #endif
   887   uint instr;
   888   instr = (Assembler::ldst_op << 30)
   889         | (dst_enc        << 25)
   890         | (primary        << 19)
   891         | (src1_enc       << 14);
   893   uint index = src2_enc;
   894   int disp = disp32;
   896   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   897     disp += STACK_BIAS;
   899   // We should have a compiler bailout here rather than a guarantee.
   900   // Better yet would be some mechanism to handle variable-size matches correctly.
   901   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   903   if( disp == 0 ) {
   904     // use reg-reg form
   905     // bit 13 is already zero
   906     instr |= index;
   907   } else {
   908     // use reg-imm form
   909     instr |= 0x00002000;          // set bit 13 to one
   910     instr |= disp & 0x1FFF;
   911   }
   913   uint *code = (uint*)cbuf.code_end();
   914   *code = instr;
   915   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   917 #ifdef ASSERT
   918   {
   919     MacroAssembler _masm(&cbuf);
   920     if (is_verified_oop_base) {
   921       __ verify_oop(reg_to_register_object(src1_enc));
   922     }
   923     if (is_verified_oop_store) {
   924       __ verify_oop(reg_to_register_object(dst_enc));
   925     }
   926     if (tmp_enc != -1) {
   927       __ mov(O7, reg_to_register_object(tmp_enc));
   928     }
   929     if (is_verified_oop_load) {
   930       __ verify_oop(reg_to_register_object(dst_enc));
   931     }
   932   }
   933 #endif
   934 }
   936 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   937   // The method which records debug information at every safepoint
   938   // expects the call to be the first instruction in the snippet as
   939   // it creates a PcDesc structure which tracks the offset of a call
   940   // from the start of the codeBlob. This offset is computed as
   941   // code_end() - code_begin() of the code which has been emitted
   942   // so far.
   943   // In this particular case we have skirted around the problem by
   944   // putting the "mov" instruction in the delay slot but the problem
   945   // may bite us again at some other point and a cleaner/generic
   946   // solution using relocations would be needed.
   947   MacroAssembler _masm(&cbuf);
   948   __ set_inst_mark();
   950   // We flush the current window just so that there is a valid stack copy
   951   // the fact that the current window becomes active again instantly is
   952   // not a problem there is nothing live in it.
   954 #ifdef ASSERT
   955   int startpos = __ offset();
   956 #endif /* ASSERT */
   958 #ifdef _LP64
   959   // Calls to the runtime or native may not be reachable from compiled code,
   960   // so we generate the far call sequence on 64 bit sparc.
   961   // This code sequence is relocatable to any address, even on LP64.
   962   if ( force_far_call ) {
   963     __ relocate(rtype);
   964     AddressLiteral dest(entry_point);
   965     __ jumpl_to(dest, O7, O7);
   966   }
   967   else
   968 #endif
   969   {
   970      __ call((address)entry_point, rtype);
   971   }
   973   if (preserve_g2)   __ delayed()->mov(G2, L7);
   974   else __ delayed()->nop();
   976   if (preserve_g2)   __ mov(L7, G2);
   978 #ifdef ASSERT
   979   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   980 #ifdef _LP64
   981     // Trash argument dump slots.
   982     __ set(0xb0b8ac0db0b8ac0d, G1);
   983     __ mov(G1, G5);
   984     __ stx(G1, SP, STACK_BIAS + 0x80);
   985     __ stx(G1, SP, STACK_BIAS + 0x88);
   986     __ stx(G1, SP, STACK_BIAS + 0x90);
   987     __ stx(G1, SP, STACK_BIAS + 0x98);
   988     __ stx(G1, SP, STACK_BIAS + 0xA0);
   989     __ stx(G1, SP, STACK_BIAS + 0xA8);
   990 #else // _LP64
   991     // this is also a native call, so smash the first 7 stack locations,
   992     // and the various registers
   994     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   995     // while [SP+0x44..0x58] are the argument dump slots.
   996     __ set((intptr_t)0xbaadf00d, G1);
   997     __ mov(G1, G5);
   998     __ sllx(G1, 32, G1);
   999     __ or3(G1, G5, G1);
  1000     __ mov(G1, G5);
  1001     __ stx(G1, SP, 0x40);
  1002     __ stx(G1, SP, 0x48);
  1003     __ stx(G1, SP, 0x50);
  1004     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1005 #endif // _LP64
  1007 #endif /*ASSERT*/
  1010 //=============================================================================
  1011 // REQUIRED FUNCTIONALITY for encoding
  1012 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1013 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1016 //=============================================================================
  1018 #ifndef PRODUCT
  1019 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1020   Compile* C = ra_->C;
  1022   for (int i = 0; i < OptoPrologueNops; i++) {
  1023     st->print_cr("NOP"); st->print("\t");
  1026   if( VerifyThread ) {
  1027     st->print_cr("Verify_Thread"); st->print("\t");
  1030   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1032   // Calls to C2R adapters often do not accept exceptional returns.
  1033   // We require that their callers must bang for them.  But be careful, because
  1034   // some VM calls (such as call site linkage) can use several kilobytes of
  1035   // stack.  But the stack safety zone should account for that.
  1036   // See bugs 4446381, 4468289, 4497237.
  1037   if (C->need_stack_bang(framesize)) {
  1038     st->print_cr("! stack bang"); st->print("\t");
  1041   if (Assembler::is_simm13(-framesize)) {
  1042     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1043   } else {
  1044     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1045     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1046     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1050 #endif
  1052 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1053   Compile* C = ra_->C;
  1054   MacroAssembler _masm(&cbuf);
  1056   for (int i = 0; i < OptoPrologueNops; i++) {
  1057     __ nop();
  1060   __ verify_thread();
  1062   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1063   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1064   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1066   // Calls to C2R adapters often do not accept exceptional returns.
  1067   // We require that their callers must bang for them.  But be careful, because
  1068   // some VM calls (such as call site linkage) can use several kilobytes of
  1069   // stack.  But the stack safety zone should account for that.
  1070   // See bugs 4446381, 4468289, 4497237.
  1071   if (C->need_stack_bang(framesize)) {
  1072     __ generate_stack_overflow_check(framesize);
  1075   if (Assembler::is_simm13(-framesize)) {
  1076     __ save(SP, -framesize, SP);
  1077   } else {
  1078     __ sethi(-framesize & ~0x3ff, G3);
  1079     __ add(G3, -framesize & 0x3ff, G3);
  1080     __ save(SP, G3, SP);
  1082   C->set_frame_complete( __ offset() );
  1085 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1086   return MachNode::size(ra_);
  1089 int MachPrologNode::reloc() const {
  1090   return 10; // a large enough number
  1093 //=============================================================================
  1094 #ifndef PRODUCT
  1095 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1096   Compile* C = ra_->C;
  1098   if( do_polling() && ra_->C->is_method_compilation() ) {
  1099     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1100 #ifdef _LP64
  1101     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1102 #else
  1103     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1104 #endif
  1107   if( do_polling() )
  1108     st->print("RET\n\t");
  1110   st->print("RESTORE");
  1112 #endif
  1114 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1115   MacroAssembler _masm(&cbuf);
  1116   Compile* C = ra_->C;
  1118   __ verify_thread();
  1120   // If this does safepoint polling, then do it here
  1121   if( do_polling() && ra_->C->is_method_compilation() ) {
  1122     AddressLiteral polling_page(os::get_polling_page());
  1123     __ sethi(polling_page, L0);
  1124     __ relocate(relocInfo::poll_return_type);
  1125     __ ld_ptr( L0, 0, G0 );
  1128   // If this is a return, then stuff the restore in the delay slot
  1129   if( do_polling() ) {
  1130     __ ret();
  1131     __ delayed()->restore();
  1132   } else {
  1133     __ restore();
  1137 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1138   return MachNode::size(ra_);
  1141 int MachEpilogNode::reloc() const {
  1142   return 16; // a large enough number
  1145 const Pipeline * MachEpilogNode::pipeline() const {
  1146   return MachNode::pipeline_class();
  1149 int MachEpilogNode::safepoint_offset() const {
  1150   assert( do_polling(), "no return for this epilog node");
  1151   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1154 //=============================================================================
  1156 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1157 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1158 static enum RC rc_class( OptoReg::Name reg ) {
  1159   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1160   if (OptoReg::is_stack(reg)) return rc_stack;
  1161   VMReg r = OptoReg::as_VMReg(reg);
  1162   if (r->is_Register()) return rc_int;
  1163   assert(r->is_FloatRegister(), "must be");
  1164   return rc_float;
  1167 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1168   if( cbuf ) {
  1169     // Better yet would be some mechanism to handle variable-size matches correctly
  1170     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1171       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1172     } else {
  1173       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1176 #ifndef PRODUCT
  1177   else if( !do_size ) {
  1178     if( size != 0 ) st->print("\n\t");
  1179     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1180     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1182 #endif
  1183   return size+4;
  1186 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1187   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1188 #ifndef PRODUCT
  1189   else if( !do_size ) {
  1190     if( size != 0 ) st->print("\n\t");
  1191     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1193 #endif
  1194   return size+4;
  1197 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1198                                         PhaseRegAlloc *ra_,
  1199                                         bool do_size,
  1200                                         outputStream* st ) const {
  1201   // Get registers to move
  1202   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1203   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1204   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1205   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1207   enum RC src_second_rc = rc_class(src_second);
  1208   enum RC src_first_rc = rc_class(src_first);
  1209   enum RC dst_second_rc = rc_class(dst_second);
  1210   enum RC dst_first_rc = rc_class(dst_first);
  1212   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1214   // Generate spill code!
  1215   int size = 0;
  1217   if( src_first == dst_first && src_second == dst_second )
  1218     return size;            // Self copy, no move
  1220   // --------------------------------------
  1221   // Check for mem-mem move.  Load into unused float registers and fall into
  1222   // the float-store case.
  1223   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1224     int offset = ra_->reg2offset(src_first);
  1225     // Further check for aligned-adjacent pair, so we can use a double load
  1226     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1227       src_second    = OptoReg::Name(R_F31_num);
  1228       src_second_rc = rc_float;
  1229       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1230     } else {
  1231       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1233     src_first    = OptoReg::Name(R_F30_num);
  1234     src_first_rc = rc_float;
  1237   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1238     int offset = ra_->reg2offset(src_second);
  1239     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1240     src_second    = OptoReg::Name(R_F31_num);
  1241     src_second_rc = rc_float;
  1244   // --------------------------------------
  1245   // Check for float->int copy; requires a trip through memory
  1246   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1247     int offset = frame::register_save_words*wordSize;
  1248     if( cbuf ) {
  1249       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1250       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1251       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1252       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1254 #ifndef PRODUCT
  1255     else if( !do_size ) {
  1256       if( size != 0 ) st->print("\n\t");
  1257       st->print(  "SUB    R_SP,16,R_SP\n");
  1258       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1259       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1260       st->print("\tADD    R_SP,16,R_SP\n");
  1262 #endif
  1263     size += 16;
  1266   // --------------------------------------
  1267   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1268   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1269   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1270   // there.  Misaligned sources only come from native-long-returns (handled
  1271   // special below).
  1272 #ifndef _LP64
  1273   if( src_first_rc == rc_int &&     // source is already big-endian
  1274       src_second_rc != rc_bad &&    // 64-bit move
  1275       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1276     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1277     // Do the big-endian flop.
  1278     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1279     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1281 #endif
  1283   // --------------------------------------
  1284   // Check for integer reg-reg copy
  1285   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1286 #ifndef _LP64
  1287     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1288       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1289       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1290       //       operand contains the least significant word of the 64-bit value and vice versa.
  1291       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1292       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1293       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1294       if( cbuf ) {
  1295         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1296         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1297         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1298 #ifndef PRODUCT
  1299       } else if( !do_size ) {
  1300         if( size != 0 ) st->print("\n\t");
  1301         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1302         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1303         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1304 #endif
  1306       return size+12;
  1308     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1309       // returning a long value in I0/I1
  1310       // a SpillCopy must be able to target a return instruction's reg_class
  1311       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1312       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1313       //       operand contains the least significant word of the 64-bit value and vice versa.
  1314       OptoReg::Name tdest = dst_first;
  1316       if (src_first == dst_first) {
  1317         tdest = OptoReg::Name(R_O7_num);
  1318         size += 4;
  1321       if( cbuf ) {
  1322         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1323         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1324         // ShrL_reg_imm6
  1325         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1326         // ShrR_reg_imm6  src, 0, dst
  1327         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1328         if (tdest != dst_first) {
  1329           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1332 #ifndef PRODUCT
  1333       else if( !do_size ) {
  1334         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1335         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1336         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1337         if (tdest != dst_first) {
  1338           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1341 #endif // PRODUCT
  1342       return size+8;
  1344 #endif // !_LP64
  1345     // Else normal reg-reg copy
  1346     assert( src_second != dst_first, "smashed second before evacuating it" );
  1347     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1348     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1349     // This moves an aligned adjacent pair.
  1350     // See if we are done.
  1351     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1352       return size;
  1355   // Check for integer store
  1356   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1357     int offset = ra_->reg2offset(dst_first);
  1358     // Further check for aligned-adjacent pair, so we can use a double store
  1359     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1360       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1361     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1364   // Check for integer load
  1365   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1366     int offset = ra_->reg2offset(src_first);
  1367     // Further check for aligned-adjacent pair, so we can use a double load
  1368     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1369       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1370     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1373   // Check for float reg-reg copy
  1374   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1375     // Further check for aligned-adjacent pair, so we can use a double move
  1376     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1377       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1378     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1381   // Check for float store
  1382   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1383     int offset = ra_->reg2offset(dst_first);
  1384     // Further check for aligned-adjacent pair, so we can use a double store
  1385     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1386       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1387     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1390   // Check for float load
  1391   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1392     int offset = ra_->reg2offset(src_first);
  1393     // Further check for aligned-adjacent pair, so we can use a double load
  1394     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1395       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1396     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1399   // --------------------------------------------------------------------
  1400   // Check for hi bits still needing moving.  Only happens for misaligned
  1401   // arguments to native calls.
  1402   if( src_second == dst_second )
  1403     return size;               // Self copy; no move
  1404   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1406 #ifndef _LP64
  1407   // In the LP64 build, all registers can be moved as aligned/adjacent
  1408   // pairs, so there's never any need to move the high bits separately.
  1409   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1410   // all sorts of silly alignment problems.
  1412   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1413   // 32-bits of a 64-bit register, but are needed in low bits of another
  1414   // register (else it's a hi-bits-to-hi-bits copy which should have
  1415   // happened already as part of a 64-bit move)
  1416   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1417     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1418     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1419     // Shift src_second down to dst_second's low bits.
  1420     if( cbuf ) {
  1421       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1422 #ifndef PRODUCT
  1423     } else if( !do_size ) {
  1424       if( size != 0 ) st->print("\n\t");
  1425       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1426 #endif
  1428     return size+4;
  1431   // Check for high word integer store.  Must down-shift the hi bits
  1432   // into a temp register, then fall into the case of storing int bits.
  1433   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1434     // Shift src_second down to dst_second's low bits.
  1435     if( cbuf ) {
  1436       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1437 #ifndef PRODUCT
  1438     } else if( !do_size ) {
  1439       if( size != 0 ) st->print("\n\t");
  1440       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1441 #endif
  1443     size+=4;
  1444     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1447   // Check for high word integer load
  1448   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1449     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1451   // Check for high word integer store
  1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1453     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1455   // Check for high word float store
  1456   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1457     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1459 #endif // !_LP64
  1461   Unimplemented();
  1464 #ifndef PRODUCT
  1465 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1466   implementation( NULL, ra_, false, st );
  1468 #endif
  1470 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1471   implementation( &cbuf, ra_, false, NULL );
  1474 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1475   return implementation( NULL, ra_, true, NULL );
  1478 //=============================================================================
  1479 #ifndef PRODUCT
  1480 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1481   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1483 #endif
  1485 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1486   MacroAssembler _masm(&cbuf);
  1487   for(int i = 0; i < _count; i += 1) {
  1488     __ nop();
  1492 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1493   return 4 * _count;
  1497 //=============================================================================
  1498 #ifndef PRODUCT
  1499 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1500   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1501   int reg = ra_->get_reg_first(this);
  1502   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1504 #endif
  1506 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1507   MacroAssembler _masm(&cbuf);
  1508   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1509   int reg = ra_->get_encode(this);
  1511   if (Assembler::is_simm13(offset)) {
  1512      __ add(SP, offset, reg_to_register_object(reg));
  1513   } else {
  1514      __ set(offset, O7);
  1515      __ add(SP, O7, reg_to_register_object(reg));
  1519 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1520   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1521   assert(ra_ == ra_->C->regalloc(), "sanity");
  1522   return ra_->C->scratch_emit_size(this);
  1525 //=============================================================================
  1527 // emit call stub, compiled java to interpretor
  1528 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1530   // Stub is fixed up when the corresponding call is converted from calling
  1531   // compiled code to calling interpreted code.
  1532   // set (empty), G5
  1533   // jmp -1
  1535   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1537   MacroAssembler _masm(&cbuf);
  1539   address base =
  1540   __ start_a_stub(Compile::MAX_stubs_size);
  1541   if (base == NULL)  return;  // CodeBuffer::expand failed
  1543   // static stub relocation stores the instruction address of the call
  1544   __ relocate(static_stub_Relocation::spec(mark));
  1546   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1548   __ set_inst_mark();
  1549   AddressLiteral addrlit(-1);
  1550   __ JUMP(addrlit, G3, 0);
  1552   __ delayed()->nop();
  1554   // Update current stubs pointer and restore code_end.
  1555   __ end_a_stub();
  1558 // size of call stub, compiled java to interpretor
  1559 uint size_java_to_interp() {
  1560   // This doesn't need to be accurate but it must be larger or equal to
  1561   // the real size of the stub.
  1562   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1563           NativeJump::instruction_size + // sethi; jmp; nop
  1564           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1566 // relocation entries for call stub, compiled java to interpretor
  1567 uint reloc_java_to_interp() {
  1568   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1572 //=============================================================================
  1573 #ifndef PRODUCT
  1574 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1575   st->print_cr("\nUEP:");
  1576 #ifdef    _LP64
  1577   if (UseCompressedOops) {
  1578     assert(Universe::heap() != NULL, "java heap should be initialized");
  1579     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1580     st->print_cr("\tSLL    R_G5,3,R_G5");
  1581     if (Universe::narrow_oop_base() != NULL)
  1582       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1583   } else {
  1584     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1586   st->print_cr("\tCMP    R_G5,R_G3" );
  1587   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1588 #else  // _LP64
  1589   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1590   st->print_cr("\tCMP    R_G5,R_G3" );
  1591   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1592 #endif // _LP64
  1594 #endif
  1596 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1597   MacroAssembler _masm(&cbuf);
  1598   Label L;
  1599   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1600   Register temp_reg   = G3;
  1601   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1603   // Load klass from receiver
  1604   __ load_klass(O0, temp_reg);
  1605   // Compare against expected klass
  1606   __ cmp(temp_reg, G5_ic_reg);
  1607   // Branch to miss code, checks xcc or icc depending
  1608   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1611 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1612   return MachNode::size(ra_);
  1616 //=============================================================================
  1618 uint size_exception_handler() {
  1619   if (TraceJumps) {
  1620     return (400); // just a guess
  1622   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1625 uint size_deopt_handler() {
  1626   if (TraceJumps) {
  1627     return (400); // just a guess
  1629   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1632 // Emit exception handler code.
  1633 int emit_exception_handler(CodeBuffer& cbuf) {
  1634   Register temp_reg = G3;
  1635   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
  1636   MacroAssembler _masm(&cbuf);
  1638   address base =
  1639   __ start_a_stub(size_exception_handler());
  1640   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1642   int offset = __ offset();
  1644   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1645   __ delayed()->nop();
  1647   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1649   __ end_a_stub();
  1651   return offset;
  1654 int emit_deopt_handler(CodeBuffer& cbuf) {
  1655   // Can't use any of the current frame's registers as we may have deopted
  1656   // at a poll and everything (including G3) can be live.
  1657   Register temp_reg = L0;
  1658   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1659   MacroAssembler _masm(&cbuf);
  1661   address base =
  1662   __ start_a_stub(size_deopt_handler());
  1663   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1665   int offset = __ offset();
  1666   __ save_frame(0);
  1667   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1668   __ delayed()->restore();
  1670   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1672   __ end_a_stub();
  1673   return offset;
  1677 // Given a register encoding, produce a Integer Register object
  1678 static Register reg_to_register_object(int register_encoding) {
  1679   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1680   return as_Register(register_encoding);
  1683 // Given a register encoding, produce a single-precision Float Register object
  1684 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1685   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1686   return as_SingleFloatRegister(register_encoding);
  1689 // Given a register encoding, produce a double-precision Float Register object
  1690 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1691   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1692   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1693   return as_DoubleFloatRegister(register_encoding);
  1696 const bool Matcher::match_rule_supported(int opcode) {
  1697   if (!has_match_rule(opcode))
  1698     return false;
  1700   switch (opcode) {
  1701   case Op_CountLeadingZerosI:
  1702   case Op_CountLeadingZerosL:
  1703   case Op_CountTrailingZerosI:
  1704   case Op_CountTrailingZerosL:
  1705     if (!UsePopCountInstruction)
  1706       return false;
  1707     break;
  1710   return true;  // Per default match rules are supported.
  1713 int Matcher::regnum_to_fpu_offset(int regnum) {
  1714   return regnum - 32; // The FP registers are in the second chunk
  1717 #ifdef ASSERT
  1718 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1719 #endif
  1721 // Vector width in bytes
  1722 const uint Matcher::vector_width_in_bytes(void) {
  1723   return 8;
  1726 // Vector ideal reg
  1727 const uint Matcher::vector_ideal_reg(void) {
  1728   return Op_RegD;
  1731 // USII supports fxtof through the whole range of number, USIII doesn't
  1732 const bool Matcher::convL2FSupported(void) {
  1733   return VM_Version::has_fast_fxtof();
  1736 // Is this branch offset short enough that a short branch can be used?
  1737 //
  1738 // NOTE: If the platform does not provide any short branch variants, then
  1739 //       this method should return false for offset 0.
  1740 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1741   return false;
  1744 const bool Matcher::isSimpleConstant64(jlong value) {
  1745   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1746   // Depends on optimizations in MacroAssembler::setx.
  1747   int hi = (int)(value >> 32);
  1748   int lo = (int)(value & ~0);
  1749   return (hi == 0) || (hi == -1) || (lo == 0);
  1752 // No scaling for the parameter the ClearArray node.
  1753 const bool Matcher::init_array_count_is_in_bytes = true;
  1755 // Threshold size for cleararray.
  1756 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1758 // Should the Matcher clone shifts on addressing modes, expecting them to
  1759 // be subsumed into complex addressing expressions or compute them into
  1760 // registers?  True for Intel but false for most RISCs
  1761 const bool Matcher::clone_shift_expressions = false;
  1763 bool Matcher::narrow_oop_use_complex_address() {
  1764   NOT_LP64(ShouldNotCallThis());
  1765   assert(UseCompressedOops, "only for compressed oops code");
  1766   return false;
  1769 // Is it better to copy float constants, or load them directly from memory?
  1770 // Intel can load a float constant from a direct address, requiring no
  1771 // extra registers.  Most RISCs will have to materialize an address into a
  1772 // register first, so they would do better to copy the constant from stack.
  1773 const bool Matcher::rematerialize_float_constants = false;
  1775 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1776 // needed.  Else we split the double into 2 integer pieces and move it
  1777 // piece-by-piece.  Only happens when passing doubles into C code as the
  1778 // Java calling convention forces doubles to be aligned.
  1779 #ifdef _LP64
  1780 const bool Matcher::misaligned_doubles_ok = true;
  1781 #else
  1782 const bool Matcher::misaligned_doubles_ok = false;
  1783 #endif
  1785 // No-op on SPARC.
  1786 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1789 // Advertise here if the CPU requires explicit rounding operations
  1790 // to implement the UseStrictFP mode.
  1791 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1793 // Are floats conerted to double when stored to stack during deoptimization?
  1794 // Sparc does not handle callee-save floats.
  1795 bool Matcher::float_in_double() { return false; }
  1797 // Do ints take an entire long register or just half?
  1798 // Note that we if-def off of _LP64.
  1799 // The relevant question is how the int is callee-saved.  In _LP64
  1800 // the whole long is written but de-opt'ing will have to extract
  1801 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1802 #ifdef _LP64
  1803 const bool Matcher::int_in_long = true;
  1804 #else
  1805 const bool Matcher::int_in_long = false;
  1806 #endif
  1808 // Return whether or not this register is ever used as an argument.  This
  1809 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1810 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1811 // arguments in those registers not be available to the callee.
  1812 bool Matcher::can_be_java_arg( int reg ) {
  1813   // Standard sparc 6 args in registers
  1814   if( reg == R_I0_num ||
  1815       reg == R_I1_num ||
  1816       reg == R_I2_num ||
  1817       reg == R_I3_num ||
  1818       reg == R_I4_num ||
  1819       reg == R_I5_num ) return true;
  1820 #ifdef _LP64
  1821   // 64-bit builds can pass 64-bit pointers and longs in
  1822   // the high I registers
  1823   if( reg == R_I0H_num ||
  1824       reg == R_I1H_num ||
  1825       reg == R_I2H_num ||
  1826       reg == R_I3H_num ||
  1827       reg == R_I4H_num ||
  1828       reg == R_I5H_num ) return true;
  1830   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1831     return true;
  1834 #else
  1835   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1836   // Longs cannot be passed in O regs, because O regs become I regs
  1837   // after a 'save' and I regs get their high bits chopped off on
  1838   // interrupt.
  1839   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1840   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1841 #endif
  1842   // A few float args in registers
  1843   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1845   return false;
  1848 bool Matcher::is_spillable_arg( int reg ) {
  1849   return can_be_java_arg(reg);
  1852 // Register for DIVI projection of divmodI
  1853 RegMask Matcher::divI_proj_mask() {
  1854   ShouldNotReachHere();
  1855   return RegMask();
  1858 // Register for MODI projection of divmodI
  1859 RegMask Matcher::modI_proj_mask() {
  1860   ShouldNotReachHere();
  1861   return RegMask();
  1864 // Register for DIVL projection of divmodL
  1865 RegMask Matcher::divL_proj_mask() {
  1866   ShouldNotReachHere();
  1867   return RegMask();
  1870 // Register for MODL projection of divmodL
  1871 RegMask Matcher::modL_proj_mask() {
  1872   ShouldNotReachHere();
  1873   return RegMask();
  1876 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1877   return L7_REGP_mask;
  1880 %}
  1883 // The intptr_t operand types, defined by textual substitution.
  1884 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1885 #ifdef _LP64
  1886 #define immX      immL
  1887 #define immX13    immL13
  1888 #define immX13m7  immL13m7
  1889 #define iRegX     iRegL
  1890 #define g1RegX    g1RegL
  1891 #else
  1892 #define immX      immI
  1893 #define immX13    immI13
  1894 #define immX13m7  immI13m7
  1895 #define iRegX     iRegI
  1896 #define g1RegX    g1RegI
  1897 #endif
  1899 //----------ENCODING BLOCK-----------------------------------------------------
  1900 // This block specifies the encoding classes used by the compiler to output
  1901 // byte streams.  Encoding classes are parameterized macros used by
  1902 // Machine Instruction Nodes in order to generate the bit encoding of the
  1903 // instruction.  Operands specify their base encoding interface with the
  1904 // interface keyword.  There are currently supported four interfaces,
  1905 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1906 // operand to generate a function which returns its register number when
  1907 // queried.   CONST_INTER causes an operand to generate a function which
  1908 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1909 // operand to generate four functions which return the Base Register, the
  1910 // Index Register, the Scale Value, and the Offset Value of the operand when
  1911 // queried.  COND_INTER causes an operand to generate six functions which
  1912 // return the encoding code (ie - encoding bits for the instruction)
  1913 // associated with each basic boolean condition for a conditional instruction.
  1914 //
  1915 // Instructions specify two basic values for encoding.  Again, a function
  1916 // is available to check if the constant displacement is an oop. They use the
  1917 // ins_encode keyword to specify their encoding classes (which must be
  1918 // a sequence of enc_class names, and their parameters, specified in
  1919 // the encoding block), and they use the
  1920 // opcode keyword to specify, in order, their primary, secondary, and
  1921 // tertiary opcode.  Only the opcode sections which a particular instruction
  1922 // needs for encoding need to be specified.
  1923 encode %{
  1924   enc_class enc_untested %{
  1925 #ifdef ASSERT
  1926     MacroAssembler _masm(&cbuf);
  1927     __ untested("encoding");
  1928 #endif
  1929   %}
  1931   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1932     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1933                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1934   %}
  1936   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1937     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1938                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1939   %}
  1941   enc_class form3_mem_prefetch_read( memory mem ) %{
  1942     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1943                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1944   %}
  1946   enc_class form3_mem_prefetch_write( memory mem ) %{
  1947     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1948                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1949   %}
  1951   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1952     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1953     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1954     guarantee($mem$$index == R_G0_enc, "double index?");
  1955     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1956     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1957     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1958     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1959   %}
  1961   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1962     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1963     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1964     guarantee($mem$$index == R_G0_enc, "double index?");
  1965     // Load long with 2 instructions
  1966     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1968   %}
  1970   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1971   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1972     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1973     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1974   %}
  1976   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1977     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1978     if( $rs2$$reg != $rd$$reg )
  1979       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1980   %}
  1982   // Target lo half of long
  1983   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1984     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1985     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1986       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1987   %}
  1989   // Source lo half of long
  1990   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1991     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1992     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1993       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1994   %}
  1996   // Target hi half of long
  1997   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1998     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1999   %}
  2001   // Source lo half of long, and leave it sign extended.
  2002   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2003     // Sign extend low half
  2004     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2005   %}
  2007   // Source hi half of long, and leave it sign extended.
  2008   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2009     // Shift high half to low half
  2010     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2011   %}
  2013   // Source hi half of long
  2014   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2015     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2016     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2017       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2018   %}
  2020   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2021     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2022   %}
  2024   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2025     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2026     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2027   %}
  2029   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2030     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2031     // clear if nothing else is happening
  2032     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2033     // blt,a,pn done
  2034     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2035     // mov dst,-1 in delay slot
  2036     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2037   %}
  2039   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2040     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2041   %}
  2043   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2044     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2045   %}
  2047   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2048     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2049   %}
  2051   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2052     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2053   %}
  2055   enc_class move_return_pc_to_o1() %{
  2056     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2057   %}
  2059 #ifdef _LP64
  2060   /* %%% merge with enc_to_bool */
  2061   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2062     MacroAssembler _masm(&cbuf);
  2064     Register   src_reg = reg_to_register_object($src$$reg);
  2065     Register   dst_reg = reg_to_register_object($dst$$reg);
  2066     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2067   %}
  2068 #endif
  2070   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2071     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2072     MacroAssembler _masm(&cbuf);
  2074     Register   p_reg = reg_to_register_object($p$$reg);
  2075     Register   q_reg = reg_to_register_object($q$$reg);
  2076     Register   y_reg = reg_to_register_object($y$$reg);
  2077     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2079     __ subcc( p_reg, q_reg,   p_reg );
  2080     __ add  ( p_reg, y_reg, tmp_reg );
  2081     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2082   %}
  2084   enc_class form_d2i_helper(regD src, regF dst) %{
  2085     // fcmp %fcc0,$src,$src
  2086     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2087     // branch %fcc0 not-nan, predict taken
  2088     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2089     // fdtoi $src,$dst
  2090     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2091     // fitos $dst,$dst (if nan)
  2092     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2093     // clear $dst (if nan)
  2094     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2095     // carry on here...
  2096   %}
  2098   enc_class form_d2l_helper(regD src, regD dst) %{
  2099     // fcmp %fcc0,$src,$src  check for NAN
  2100     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2101     // branch %fcc0 not-nan, predict taken
  2102     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2103     // fdtox $src,$dst   convert in delay slot
  2104     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2105     // fxtod $dst,$dst  (if nan)
  2106     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2107     // clear $dst (if nan)
  2108     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2109     // carry on here...
  2110   %}
  2112   enc_class form_f2i_helper(regF src, regF dst) %{
  2113     // fcmps %fcc0,$src,$src
  2114     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2115     // branch %fcc0 not-nan, predict taken
  2116     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2117     // fstoi $src,$dst
  2118     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2119     // fitos $dst,$dst (if nan)
  2120     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2121     // clear $dst (if nan)
  2122     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2123     // carry on here...
  2124   %}
  2126   enc_class form_f2l_helper(regF src, regD dst) %{
  2127     // fcmps %fcc0,$src,$src
  2128     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2129     // branch %fcc0 not-nan, predict taken
  2130     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2131     // fstox $src,$dst
  2132     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2133     // fxtod $dst,$dst (if nan)
  2134     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2135     // clear $dst (if nan)
  2136     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2137     // carry on here...
  2138   %}
  2140   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2141   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2142   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2143   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2145   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2147   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2148   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2150   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2151     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2152   %}
  2154   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2155     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2156   %}
  2158   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2159     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2160   %}
  2162   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2163     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2164   %}
  2166   enc_class form3_convI2F(regF rs2, regF rd) %{
  2167     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2168   %}
  2170   // Encloding class for traceable jumps
  2171   enc_class form_jmpl(g3RegP dest) %{
  2172     emit_jmpl(cbuf, $dest$$reg);
  2173   %}
  2175   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2176     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2177   %}
  2179   enc_class form2_nop() %{
  2180     emit_nop(cbuf);
  2181   %}
  2183   enc_class form2_illtrap() %{
  2184     emit_illtrap(cbuf);
  2185   %}
  2188   // Compare longs and convert into -1, 0, 1.
  2189   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2190     // CMP $src1,$src2
  2191     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2192     // blt,a,pn done
  2193     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2194     // mov dst,-1 in delay slot
  2195     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2196     // bgt,a,pn done
  2197     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2198     // mov dst,1 in delay slot
  2199     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2200     // CLR    $dst
  2201     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2202   %}
  2204   enc_class enc_PartialSubtypeCheck() %{
  2205     MacroAssembler _masm(&cbuf);
  2206     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2207     __ delayed()->nop();
  2208   %}
  2210   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2211     MacroAssembler _masm(&cbuf);
  2212     Label &L = *($labl$$label);
  2213     Assembler::Predict predict_taken =
  2214       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2216     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2217     __ delayed()->nop();
  2218   %}
  2220   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2221     MacroAssembler _masm(&cbuf);
  2222     Label &L = *($labl$$label);
  2223     Assembler::Predict predict_taken =
  2224       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2226     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2227     __ delayed()->nop();
  2228   %}
  2230   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2231     MacroAssembler _masm(&cbuf);
  2232     Label &L = *($labl$$label);
  2233     Assembler::Predict predict_taken =
  2234       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2236     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2237     __ delayed()->nop();
  2238   %}
  2240   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2241     MacroAssembler _masm(&cbuf);
  2242     Label &L = *($labl$$label);
  2243     Assembler::Predict predict_taken =
  2244       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2246     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2247     __ delayed()->nop();
  2248   %}
  2250   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2251     MacroAssembler _masm(&cbuf);
  2253     Register switch_reg       = as_Register($switch_val$$reg);
  2254     Register table_reg        = O7;
  2256     address table_base = __ address_table_constant(_index2label);
  2257     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2259     // Move table address into a register.
  2260     __ set(table_base, table_reg, rspec);
  2262     // Jump to base address + switch value
  2263     __ ld_ptr(table_reg, switch_reg, table_reg);
  2264     __ jmp(table_reg, G0);
  2265     __ delayed()->nop();
  2267   %}
  2269   enc_class enc_ba( Label labl ) %{
  2270     MacroAssembler _masm(&cbuf);
  2271     Label &L = *($labl$$label);
  2272     __ ba(false, L);
  2273     __ delayed()->nop();
  2274   %}
  2276   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2277     MacroAssembler _masm(&cbuf);
  2278     Label &L = *$labl$$label;
  2279     Assembler::Predict predict_taken =
  2280       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2282     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2283     __ delayed()->nop();
  2284   %}
  2286   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2287     int op = (Assembler::arith_op << 30) |
  2288              ($dst$$reg << 25) |
  2289              (Assembler::movcc_op3 << 19) |
  2290              (1 << 18) |                    // cc2 bit for 'icc'
  2291              ($cmp$$cmpcode << 14) |
  2292              (0 << 13) |                    // select register move
  2293              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2294              ($src$$reg << 0);
  2295     *((int*)(cbuf.code_end())) = op;
  2296     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2297   %}
  2299   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2300     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2301     int op = (Assembler::arith_op << 30) |
  2302              ($dst$$reg << 25) |
  2303              (Assembler::movcc_op3 << 19) |
  2304              (1 << 18) |                    // cc2 bit for 'icc'
  2305              ($cmp$$cmpcode << 14) |
  2306              (1 << 13) |                    // select immediate move
  2307              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2308              (simm11 << 0);
  2309     *((int*)(cbuf.code_end())) = op;
  2310     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2311   %}
  2313   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2314     int op = (Assembler::arith_op << 30) |
  2315              ($dst$$reg << 25) |
  2316              (Assembler::movcc_op3 << 19) |
  2317              (0 << 18) |                    // cc2 bit for 'fccX'
  2318              ($cmp$$cmpcode << 14) |
  2319              (0 << 13) |                    // select register move
  2320              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2321              ($src$$reg << 0);
  2322     *((int*)(cbuf.code_end())) = op;
  2323     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2324   %}
  2326   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2327     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2328     int op = (Assembler::arith_op << 30) |
  2329              ($dst$$reg << 25) |
  2330              (Assembler::movcc_op3 << 19) |
  2331              (0 << 18) |                    // cc2 bit for 'fccX'
  2332              ($cmp$$cmpcode << 14) |
  2333              (1 << 13) |                    // select immediate move
  2334              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2335              (simm11 << 0);
  2336     *((int*)(cbuf.code_end())) = op;
  2337     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2338   %}
  2340   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2341     int op = (Assembler::arith_op << 30) |
  2342              ($dst$$reg << 25) |
  2343              (Assembler::fpop2_op3 << 19) |
  2344              (0 << 18) |
  2345              ($cmp$$cmpcode << 14) |
  2346              (1 << 13) |                    // select register move
  2347              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2348              ($primary << 5) |              // select single, double or quad
  2349              ($src$$reg << 0);
  2350     *((int*)(cbuf.code_end())) = op;
  2351     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2352   %}
  2354   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2355     int op = (Assembler::arith_op << 30) |
  2356              ($dst$$reg << 25) |
  2357              (Assembler::fpop2_op3 << 19) |
  2358              (0 << 18) |
  2359              ($cmp$$cmpcode << 14) |
  2360              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2361              ($primary << 5) |              // select single, double or quad
  2362              ($src$$reg << 0);
  2363     *((int*)(cbuf.code_end())) = op;
  2364     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2365   %}
  2367   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2368   // the condition comes from opcode-field instead of an argument.
  2369   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2370     int op = (Assembler::arith_op << 30) |
  2371              ($dst$$reg << 25) |
  2372              (Assembler::movcc_op3 << 19) |
  2373              (1 << 18) |                    // cc2 bit for 'icc'
  2374              ($primary << 14) |
  2375              (0 << 13) |                    // select register move
  2376              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2377              ($src$$reg << 0);
  2378     *((int*)(cbuf.code_end())) = op;
  2379     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2380   %}
  2382   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2383     int op = (Assembler::arith_op << 30) |
  2384              ($dst$$reg << 25) |
  2385              (Assembler::movcc_op3 << 19) |
  2386              (6 << 16) |                    // cc2 bit for 'xcc'
  2387              ($primary << 14) |
  2388              (0 << 13) |                    // select register move
  2389              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2390              ($src$$reg << 0);
  2391     *((int*)(cbuf.code_end())) = op;
  2392     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2393   %}
  2395   // Utility encoding for loading a 64 bit Pointer into a register
  2396   // The 64 bit pointer is stored in the generated code stream
  2397   enc_class SetPtr( immP src, iRegP rd ) %{
  2398     Register dest = reg_to_register_object($rd$$reg);
  2399     MacroAssembler _masm(&cbuf);
  2400     // [RGV] This next line should be generated from ADLC
  2401     if ( _opnds[1]->constant_is_oop() ) {
  2402       intptr_t val = $src$$constant;
  2403       __ set_oop_constant((jobject)val, dest);
  2404     } else {          // non-oop pointers, e.g. card mark base, heap top
  2405       __ set($src$$constant, dest);
  2407   %}
  2409   enc_class Set13( immI13 src, iRegI rd ) %{
  2410     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2411   %}
  2413   enc_class SetHi22( immI src, iRegI rd ) %{
  2414     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2415   %}
  2417   enc_class Set32( immI src, iRegI rd ) %{
  2418     MacroAssembler _masm(&cbuf);
  2419     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2420   %}
  2422   enc_class SetNull( iRegI rd ) %{
  2423     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2424   %}
  2426   enc_class call_epilog %{
  2427     if( VerifyStackAtCalls ) {
  2428       MacroAssembler _masm(&cbuf);
  2429       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2430       Register temp_reg = G3;
  2431       __ add(SP, framesize, temp_reg);
  2432       __ cmp(temp_reg, FP);
  2433       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2435   %}
  2437   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2438   // to G1 so the register allocator will not have to deal with the misaligned register
  2439   // pair.
  2440   enc_class adjust_long_from_native_call %{
  2441 #ifndef _LP64
  2442     if (returns_long()) {
  2443       //    sllx  O0,32,O0
  2444       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2445       //    srl   O1,0,O1
  2446       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2447       //    or    O0,O1,G1
  2448       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2450 #endif
  2451   %}
  2453   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2454     // CALL directly to the runtime
  2455     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2456     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2457                     /*preserve_g2=*/true, /*force far call*/true);
  2458   %}
  2460   enc_class preserve_SP %{
  2461     MacroAssembler _masm(&cbuf);
  2462     __ mov(SP, L7_mh_SP_save);
  2463   %}
  2465   enc_class restore_SP %{
  2466     MacroAssembler _masm(&cbuf);
  2467     __ mov(L7_mh_SP_save, SP);
  2468   %}
  2470   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2471     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2472     // who we intended to call.
  2473     if ( !_method ) {
  2474       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2475     } else if (_optimized_virtual) {
  2476       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2477     } else {
  2478       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2480     if( _method ) {  // Emit stub for static call
  2481       emit_java_to_interp(cbuf);
  2483   %}
  2485   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2486     MacroAssembler _masm(&cbuf);
  2487     __ set_inst_mark();
  2488     int vtable_index = this->_vtable_index;
  2489     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2490     if (vtable_index < 0) {
  2491       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2492       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2493       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2494       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2495       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2496       // !!!!!
  2497       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2498       // emit_call_dynamic_prologue( cbuf );
  2499       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2501       address  virtual_call_oop_addr = __ inst_mark();
  2502       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2503       // who we intended to call.
  2504       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2505       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2506     } else {
  2507       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2508       // Just go thru the vtable
  2509       // get receiver klass (receiver already checked for non-null)
  2510       // If we end up going thru a c2i adapter interpreter expects method in G5
  2511       int off = __ offset();
  2512       __ load_klass(O0, G3_scratch);
  2513       int klass_load_size;
  2514       if (UseCompressedOops) {
  2515         assert(Universe::heap() != NULL, "java heap should be initialized");
  2516         if (Universe::narrow_oop_base() == NULL)
  2517           klass_load_size = 2*BytesPerInstWord;
  2518         else
  2519           klass_load_size = 3*BytesPerInstWord;
  2520       } else {
  2521         klass_load_size = 1*BytesPerInstWord;
  2523       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2524       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2525       if( __ is_simm13(v_off) ) {
  2526         __ ld_ptr(G3, v_off, G5_method);
  2527       } else {
  2528         // Generate 2 instructions
  2529         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2530         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2531         // ld_ptr, set_hi, set
  2532         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2533                "Unexpected instruction size(s)");
  2534         __ ld_ptr(G3, G5_method, G5_method);
  2536       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2537       // However it may very well end up in handle_wrong_method if the
  2538       // method is abstract for the particular class.
  2539       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2540       // jump to target (either compiled code or c2iadapter)
  2541       __ jmpl(G3_scratch, G0, O7);
  2542       __ delayed()->nop();
  2544   %}
  2546   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2547     MacroAssembler _masm(&cbuf);
  2549     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2550     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2551                               // we might be calling a C2I adapter which needs it.
  2553     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2554     // Load nmethod
  2555     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2557     // CALL to compiled java, indirect the contents of G3
  2558     __ set_inst_mark();
  2559     __ callr(temp_reg, G0);
  2560     __ delayed()->nop();
  2561   %}
  2563 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2564     MacroAssembler _masm(&cbuf);
  2565     Register Rdividend = reg_to_register_object($src1$$reg);
  2566     Register Rdivisor = reg_to_register_object($src2$$reg);
  2567     Register Rresult = reg_to_register_object($dst$$reg);
  2569     __ sra(Rdivisor, 0, Rdivisor);
  2570     __ sra(Rdividend, 0, Rdividend);
  2571     __ sdivx(Rdividend, Rdivisor, Rresult);
  2572 %}
  2574 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2575     MacroAssembler _masm(&cbuf);
  2577     Register Rdividend = reg_to_register_object($src1$$reg);
  2578     int divisor = $imm$$constant;
  2579     Register Rresult = reg_to_register_object($dst$$reg);
  2581     __ sra(Rdividend, 0, Rdividend);
  2582     __ sdivx(Rdividend, divisor, Rresult);
  2583 %}
  2585 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2586     MacroAssembler _masm(&cbuf);
  2587     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2588     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2589     Register Rdst  = reg_to_register_object($dst$$reg);
  2591     __ sra( Rsrc1, 0, Rsrc1 );
  2592     __ sra( Rsrc2, 0, Rsrc2 );
  2593     __ mulx( Rsrc1, Rsrc2, Rdst );
  2594     __ srlx( Rdst, 32, Rdst );
  2595 %}
  2597 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2598     MacroAssembler _masm(&cbuf);
  2599     Register Rdividend = reg_to_register_object($src1$$reg);
  2600     Register Rdivisor = reg_to_register_object($src2$$reg);
  2601     Register Rresult = reg_to_register_object($dst$$reg);
  2602     Register Rscratch = reg_to_register_object($scratch$$reg);
  2604     assert(Rdividend != Rscratch, "");
  2605     assert(Rdivisor  != Rscratch, "");
  2607     __ sra(Rdividend, 0, Rdividend);
  2608     __ sra(Rdivisor, 0, Rdivisor);
  2609     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2610     __ mulx(Rscratch, Rdivisor, Rscratch);
  2611     __ sub(Rdividend, Rscratch, Rresult);
  2612 %}
  2614 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2615     MacroAssembler _masm(&cbuf);
  2617     Register Rdividend = reg_to_register_object($src1$$reg);
  2618     int divisor = $imm$$constant;
  2619     Register Rresult = reg_to_register_object($dst$$reg);
  2620     Register Rscratch = reg_to_register_object($scratch$$reg);
  2622     assert(Rdividend != Rscratch, "");
  2624     __ sra(Rdividend, 0, Rdividend);
  2625     __ sdivx(Rdividend, divisor, Rscratch);
  2626     __ mulx(Rscratch, divisor, Rscratch);
  2627     __ sub(Rdividend, Rscratch, Rresult);
  2628 %}
  2630 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2631     MacroAssembler _masm(&cbuf);
  2633     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2634     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2636     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2637 %}
  2639 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2640     MacroAssembler _masm(&cbuf);
  2642     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2643     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2645     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2646 %}
  2648 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2649     MacroAssembler _masm(&cbuf);
  2651     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2652     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2654     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2655 %}
  2657 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2658     MacroAssembler _masm(&cbuf);
  2660     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2661     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2663     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2664 %}
  2666 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2667     MacroAssembler _masm(&cbuf);
  2669     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2670     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2672     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2673 %}
  2675 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2676     MacroAssembler _masm(&cbuf);
  2678     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2679     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2681     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2682 %}
  2684 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2685     MacroAssembler _masm(&cbuf);
  2687     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2688     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2690     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2691 %}
  2693 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2694     MacroAssembler _masm(&cbuf);
  2696     Register Roop  = reg_to_register_object($oop$$reg);
  2697     Register Rbox  = reg_to_register_object($box$$reg);
  2698     Register Rscratch = reg_to_register_object($scratch$$reg);
  2699     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2701     assert(Roop  != Rscratch, "");
  2702     assert(Roop  != Rmark, "");
  2703     assert(Rbox  != Rscratch, "");
  2704     assert(Rbox  != Rmark, "");
  2706     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2707 %}
  2709 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2710     MacroAssembler _masm(&cbuf);
  2712     Register Roop  = reg_to_register_object($oop$$reg);
  2713     Register Rbox  = reg_to_register_object($box$$reg);
  2714     Register Rscratch = reg_to_register_object($scratch$$reg);
  2715     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2717     assert(Roop  != Rscratch, "");
  2718     assert(Roop  != Rmark, "");
  2719     assert(Rbox  != Rscratch, "");
  2720     assert(Rbox  != Rmark, "");
  2722     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2723   %}
  2725   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2726     MacroAssembler _masm(&cbuf);
  2727     Register Rmem = reg_to_register_object($mem$$reg);
  2728     Register Rold = reg_to_register_object($old$$reg);
  2729     Register Rnew = reg_to_register_object($new$$reg);
  2731     // casx_under_lock picks 1 of 3 encodings:
  2732     // For 32-bit pointers you get a 32-bit CAS
  2733     // For 64-bit pointers you get a 64-bit CASX
  2734     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2735     __ cmp( Rold, Rnew );
  2736   %}
  2738   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2739     Register Rmem = reg_to_register_object($mem$$reg);
  2740     Register Rold = reg_to_register_object($old$$reg);
  2741     Register Rnew = reg_to_register_object($new$$reg);
  2743     MacroAssembler _masm(&cbuf);
  2744     __ mov(Rnew, O7);
  2745     __ casx(Rmem, Rold, O7);
  2746     __ cmp( Rold, O7 );
  2747   %}
  2749   // raw int cas, used for compareAndSwap
  2750   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2751     Register Rmem = reg_to_register_object($mem$$reg);
  2752     Register Rold = reg_to_register_object($old$$reg);
  2753     Register Rnew = reg_to_register_object($new$$reg);
  2755     MacroAssembler _masm(&cbuf);
  2756     __ mov(Rnew, O7);
  2757     __ cas(Rmem, Rold, O7);
  2758     __ cmp( Rold, O7 );
  2759   %}
  2761   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2762     Register Rres = reg_to_register_object($res$$reg);
  2764     MacroAssembler _masm(&cbuf);
  2765     __ mov(1, Rres);
  2766     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2767   %}
  2769   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2770     Register Rres = reg_to_register_object($res$$reg);
  2772     MacroAssembler _masm(&cbuf);
  2773     __ mov(1, Rres);
  2774     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2775   %}
  2777   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2778     MacroAssembler _masm(&cbuf);
  2779     Register Rdst = reg_to_register_object($dst$$reg);
  2780     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2781                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2782     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2783                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2785     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2786     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2787   %}
  2789   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2790     MacroAssembler _masm(&cbuf);
  2791     Register dest = reg_to_register_object($dst$$reg);
  2792     Register temp = reg_to_register_object($tmp$$reg);
  2793     __ set64( $src$$constant, dest, temp );
  2794   %}
  2796   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2797     // Load a constant replicated "count" times with width "width"
  2798     int bit_width = $width$$constant * 8;
  2799     jlong elt_val = $src$$constant;
  2800     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2801     jlong val = elt_val;
  2802     for (int i = 0; i < $count$$constant - 1; i++) {
  2803         val <<= bit_width;
  2804         val |= elt_val;
  2806     jdouble dval = *(jdouble*)&val; // coerce to double type
  2807     MacroAssembler _masm(&cbuf);
  2808     address double_address = __ double_constant(dval);
  2809     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2810     AddressLiteral addrlit(double_address, rspec);
  2812     __ sethi(addrlit, $tmp$$Register);
  2813     // XXX This is a quick fix for 6833573.
  2814     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  2815     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  2816   %}
  2818   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2819   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2820     MacroAssembler _masm(&cbuf);
  2821     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2822     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2823     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2825     Label loop;
  2826     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2828     // Loop and clear, walking backwards through the array.
  2829     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2830     __ bind(loop);
  2831     __ deccc(nof_bytes_tmp, 8);
  2832     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2833     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2834     // %%%% this mini-loop must not cross a cache boundary!
  2835   %}
  2838   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2839     Label Ldone, Lloop;
  2840     MacroAssembler _masm(&cbuf);
  2842     Register   str1_reg = reg_to_register_object($str1$$reg);
  2843     Register   str2_reg = reg_to_register_object($str2$$reg);
  2844     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2845     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2846     Register result_reg = reg_to_register_object($result$$reg);
  2848     assert(result_reg != str1_reg &&
  2849            result_reg != str2_reg &&
  2850            result_reg != cnt1_reg &&
  2851            result_reg != cnt2_reg ,
  2852            "need different registers");
  2854     // Compute the minimum of the string lengths(str1_reg) and the
  2855     // difference of the string lengths (stack)
  2857     // See if the lengths are different, and calculate min in str1_reg.
  2858     // Stash diff in O7 in case we need it for a tie-breaker.
  2859     Label Lskip;
  2860     __ subcc(cnt1_reg, cnt2_reg, O7);
  2861     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2862     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2863     // cnt2 is shorter, so use its count:
  2864     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2865     __ bind(Lskip);
  2867     // reallocate cnt1_reg, cnt2_reg, result_reg
  2868     // Note:  limit_reg holds the string length pre-scaled by 2
  2869     Register limit_reg =   cnt1_reg;
  2870     Register  chr2_reg =   cnt2_reg;
  2871     Register  chr1_reg = result_reg;
  2872     // str{12} are the base pointers
  2874     // Is the minimum length zero?
  2875     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2876     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2877     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2879     // Load first characters
  2880     __ lduh(str1_reg, 0, chr1_reg);
  2881     __ lduh(str2_reg, 0, chr2_reg);
  2883     // Compare first characters
  2884     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2885     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2886     assert(chr1_reg == result_reg, "result must be pre-placed");
  2887     __ delayed()->nop();
  2890       // Check after comparing first character to see if strings are equivalent
  2891       Label LSkip2;
  2892       // Check if the strings start at same location
  2893       __ cmp(str1_reg, str2_reg);
  2894       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2895       __ delayed()->nop();
  2897       // Check if the length difference is zero (in O7)
  2898       __ cmp(G0, O7);
  2899       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2900       __ delayed()->mov(G0, result_reg);  // result is zero
  2902       // Strings might not be equal
  2903       __ bind(LSkip2);
  2906     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2907     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2908     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2910     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2911     __ add(str1_reg, limit_reg, str1_reg);
  2912     __ add(str2_reg, limit_reg, str2_reg);
  2913     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2915     // Compare the rest of the characters
  2916     __ lduh(str1_reg, limit_reg, chr1_reg);
  2917     __ bind(Lloop);
  2918     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2919     __ lduh(str2_reg, limit_reg, chr2_reg);
  2920     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2921     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2922     assert(chr1_reg == result_reg, "result must be pre-placed");
  2923     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2924     // annul LDUH if branch is not taken to prevent access past end of string
  2925     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2926     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2928     // If strings are equal up to min length, return the length difference.
  2929     __ mov(O7, result_reg);
  2931     // Otherwise, return the difference between the first mismatched chars.
  2932     __ bind(Ldone);
  2933   %}
  2935 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2936     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2937     MacroAssembler _masm(&cbuf);
  2939     Register   str1_reg = reg_to_register_object($str1$$reg);
  2940     Register   str2_reg = reg_to_register_object($str2$$reg);
  2941     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2942     Register   tmp1_reg = O7;
  2943     Register result_reg = reg_to_register_object($result$$reg);
  2945     assert(result_reg != str1_reg &&
  2946            result_reg != str2_reg &&
  2947            result_reg !=  cnt_reg &&
  2948            result_reg != tmp1_reg ,
  2949            "need different registers");
  2951     __ cmp(str1_reg, str2_reg); //same char[] ?
  2952     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2953     __ delayed()->add(G0, 1, result_reg);
  2955     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2956     __ delayed()->add(G0, 1, result_reg); // count == 0
  2958     //rename registers
  2959     Register limit_reg =    cnt_reg;
  2960     Register  chr1_reg = result_reg;
  2961     Register  chr2_reg =   tmp1_reg;
  2963     //check for alignment and position the pointers to the ends
  2964     __ or3(str1_reg, str2_reg, chr1_reg);
  2965     __ andcc(chr1_reg, 0x3, chr1_reg);
  2966     // notZero means at least one not 4-byte aligned.
  2967     // We could optimize the case when both arrays are not aligned
  2968     // but it is not frequent case and it requires additional checks.
  2969     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2970     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2972     // Compare char[] arrays aligned to 4 bytes.
  2973     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2974                           chr1_reg, chr2_reg, Ldone);
  2975     __ ba(false,Ldone);
  2976     __ delayed()->add(G0, 1, result_reg);
  2978     // char by char compare
  2979     __ bind(Lchar);
  2980     __ add(str1_reg, limit_reg, str1_reg);
  2981     __ add(str2_reg, limit_reg, str2_reg);
  2982     __ neg(limit_reg); //negate count
  2984     __ lduh(str1_reg, limit_reg, chr1_reg);
  2985     // Lchar_loop
  2986     __ bind(Lchar_loop);
  2987     __ lduh(str2_reg, limit_reg, chr2_reg);
  2988     __ cmp(chr1_reg, chr2_reg);
  2989     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2990     __ delayed()->mov(G0, result_reg); //not equal
  2991     __ inccc(limit_reg, sizeof(jchar));
  2992     // annul LDUH if branch is not taken to prevent access past end of string
  2993     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2994     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2996     __ add(G0, 1, result_reg);  //equal
  2998     __ bind(Ldone);
  2999   %}
  3001 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3002     Label Lvector, Ldone, Lloop;
  3003     MacroAssembler _masm(&cbuf);
  3005     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3006     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3007     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3008     Register   tmp2_reg = O7;
  3009     Register result_reg = reg_to_register_object($result$$reg);
  3011     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3012     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3014     // return true if the same array
  3015     __ cmp(ary1_reg, ary2_reg);
  3016     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3017     __ delayed()->add(G0, 1, result_reg); // equal
  3019     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3020     __ delayed()->mov(G0, result_reg);    // not equal
  3022     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3023     __ delayed()->mov(G0, result_reg);    // not equal
  3025     //load the lengths of arrays
  3026     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3027     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3029     // return false if the two arrays are not equal length
  3030     __ cmp(tmp1_reg, tmp2_reg);
  3031     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3032     __ delayed()->mov(G0, result_reg);     // not equal
  3034     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3035     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3037     // load array addresses
  3038     __ add(ary1_reg, base_offset, ary1_reg);
  3039     __ add(ary2_reg, base_offset, ary2_reg);
  3041     // renaming registers
  3042     Register chr1_reg  =  result_reg; // for characters in ary1
  3043     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3044     Register limit_reg =  tmp1_reg;   // length
  3046     // set byte count
  3047     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3049     // Compare char[] arrays aligned to 4 bytes.
  3050     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3051                           chr1_reg, chr2_reg, Ldone);
  3052     __ add(G0, 1, result_reg); // equals
  3054     __ bind(Ldone);
  3055   %}
  3057   enc_class enc_rethrow() %{
  3058     cbuf.set_inst_mark();
  3059     Register temp_reg = G3;
  3060     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3061     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3062     MacroAssembler _masm(&cbuf);
  3063 #ifdef ASSERT
  3064     __ save_frame(0);
  3065     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3066     __ sethi(last_rethrow_addrlit, L1);
  3067     Address addr(L1, last_rethrow_addrlit.low10());
  3068     __ get_pc(L2);
  3069     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3070     __ st_ptr(L2, addr);
  3071     __ restore();
  3072 #endif
  3073     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3074     __ delayed()->nop();
  3075   %}
  3077   enc_class emit_mem_nop() %{
  3078     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3079     unsigned int *code = (unsigned int*)cbuf.code_end();
  3080     *code = (unsigned int)0xc0839040;
  3081     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3082   %}
  3084   enc_class emit_fadd_nop() %{
  3085     // Generates the instruction FMOVS f31,f31
  3086     unsigned int *code = (unsigned int*)cbuf.code_end();
  3087     *code = (unsigned int)0xbfa0003f;
  3088     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3089   %}
  3091   enc_class emit_br_nop() %{
  3092     // Generates the instruction BPN,PN .
  3093     unsigned int *code = (unsigned int*)cbuf.code_end();
  3094     *code = (unsigned int)0x00400000;
  3095     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3096   %}
  3098   enc_class enc_membar_acquire %{
  3099     MacroAssembler _masm(&cbuf);
  3100     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3101   %}
  3103   enc_class enc_membar_release %{
  3104     MacroAssembler _masm(&cbuf);
  3105     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3106   %}
  3108   enc_class enc_membar_volatile %{
  3109     MacroAssembler _masm(&cbuf);
  3110     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3111   %}
  3113   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3114     MacroAssembler _masm(&cbuf);
  3115     Register src_reg = reg_to_register_object($src$$reg);
  3116     Register dst_reg = reg_to_register_object($dst$$reg);
  3117     __ sllx(src_reg, 56, dst_reg);
  3118     __ srlx(dst_reg,  8, O7);
  3119     __ or3 (dst_reg, O7, dst_reg);
  3120     __ srlx(dst_reg, 16, O7);
  3121     __ or3 (dst_reg, O7, dst_reg);
  3122     __ srlx(dst_reg, 32, O7);
  3123     __ or3 (dst_reg, O7, dst_reg);
  3124   %}
  3126   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3127     MacroAssembler _masm(&cbuf);
  3128     Register src_reg = reg_to_register_object($src$$reg);
  3129     Register dst_reg = reg_to_register_object($dst$$reg);
  3130     __ sll(src_reg, 24, dst_reg);
  3131     __ srl(dst_reg,  8, O7);
  3132     __ or3(dst_reg, O7, dst_reg);
  3133     __ srl(dst_reg, 16, O7);
  3134     __ or3(dst_reg, O7, dst_reg);
  3135   %}
  3137   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3138     MacroAssembler _masm(&cbuf);
  3139     Register src_reg = reg_to_register_object($src$$reg);
  3140     Register dst_reg = reg_to_register_object($dst$$reg);
  3141     __ sllx(src_reg, 48, dst_reg);
  3142     __ srlx(dst_reg, 16, O7);
  3143     __ or3 (dst_reg, O7, dst_reg);
  3144     __ srlx(dst_reg, 32, O7);
  3145     __ or3 (dst_reg, O7, dst_reg);
  3146   %}
  3148   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3149     MacroAssembler _masm(&cbuf);
  3150     Register src_reg = reg_to_register_object($src$$reg);
  3151     Register dst_reg = reg_to_register_object($dst$$reg);
  3152     __ sllx(src_reg, 32, dst_reg);
  3153     __ srlx(dst_reg, 32, O7);
  3154     __ or3 (dst_reg, O7, dst_reg);
  3155   %}
  3157 %}
  3159 //----------FRAME--------------------------------------------------------------
  3160 // Definition of frame structure and management information.
  3161 //
  3162 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3163 //                             |   (to get allocators register number
  3164 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3165 //  r   CALLER     |        |
  3166 //  o     |        +--------+      pad to even-align allocators stack-slot
  3167 //  w     V        |  pad0  |        numbers; owned by CALLER
  3168 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3169 //  h     ^        |   in   |  5
  3170 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3171 //  |     |        |        |  3
  3172 //  |     |        +--------+
  3173 //  V     |        | old out|      Empty on Intel, window on Sparc
  3174 //        |    old |preserve|      Must be even aligned.
  3175 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3176 //        |        |   in   |  3   area for Intel ret address
  3177 //     Owned by    |preserve|      Empty on Sparc.
  3178 //       SELF      +--------+
  3179 //        |        |  pad2  |  2   pad to align old SP
  3180 //        |        +--------+  1
  3181 //        |        | locks  |  0
  3182 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3183 //        |        |  pad1  | 11   pad to align new SP
  3184 //        |        +--------+
  3185 //        |        |        | 10
  3186 //        |        | spills |  9   spills
  3187 //        V        |        |  8   (pad0 slot for callee)
  3188 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3189 //        ^        |  out   |  7
  3190 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3191 //     Owned by    +--------+
  3192 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3193 //        |    new |preserve|      Must be even-aligned.
  3194 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3195 //        |        |        |
  3196 //
  3197 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3198 //         known from SELF's arguments and the Java calling convention.
  3199 //         Region 6-7 is determined per call site.
  3200 // Note 2: If the calling convention leaves holes in the incoming argument
  3201 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3202 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3203 //         incoming area, as the Java calling convention is completely under
  3204 //         the control of the AD file.  Doubles can be sorted and packed to
  3205 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3206 //         varargs C calling conventions.
  3207 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3208 //         even aligned with pad0 as needed.
  3209 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3210 //         region 6-11 is even aligned; it may be padded out more so that
  3211 //         the region from SP to FP meets the minimum stack alignment.
  3213 frame %{
  3214   // What direction does stack grow in (assumed to be same for native & Java)
  3215   stack_direction(TOWARDS_LOW);
  3217   // These two registers define part of the calling convention
  3218   // between compiled code and the interpreter.
  3219   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3220   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3222   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3223   cisc_spilling_operand_name(indOffset);
  3225   // Number of stack slots consumed by a Monitor enter
  3226 #ifdef _LP64
  3227   sync_stack_slots(2);
  3228 #else
  3229   sync_stack_slots(1);
  3230 #endif
  3232   // Compiled code's Frame Pointer
  3233   frame_pointer(R_SP);
  3235   // Stack alignment requirement
  3236   stack_alignment(StackAlignmentInBytes);
  3237   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3238   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3240   // Number of stack slots between incoming argument block and the start of
  3241   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3242   // EPILOG must remove this many slots.
  3243   in_preserve_stack_slots(0);
  3245   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3246   // for calls to C.  Supports the var-args backing area for register parms.
  3247   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3248 #ifdef _LP64
  3249   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3250   varargs_C_out_slots_killed(12);
  3251 #else
  3252   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3253   varargs_C_out_slots_killed( 7);
  3254 #endif
  3256   // The after-PROLOG location of the return address.  Location of
  3257   // return address specifies a type (REG or STACK) and a number
  3258   // representing the register number (i.e. - use a register name) or
  3259   // stack slot.
  3260   return_addr(REG R_I7);          // Ret Addr is in register I7
  3262   // Body of function which returns an OptoRegs array locating
  3263   // arguments either in registers or in stack slots for calling
  3264   // java
  3265   calling_convention %{
  3266     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3268   %}
  3270   // Body of function which returns an OptoRegs array locating
  3271   // arguments either in registers or in stack slots for callin
  3272   // C.
  3273   c_calling_convention %{
  3274     // This is obviously always outgoing
  3275     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3276   %}
  3278   // Location of native (C/C++) and interpreter return values.  This is specified to
  3279   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3280   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3281   // to and from the register pairs is done by the appropriate call and epilog
  3282   // opcodes.  This simplifies the register allocator.
  3283   c_return_value %{
  3284     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3285 #ifdef     _LP64
  3286     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3287     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3288     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3289     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3290 #else  // !_LP64
  3291     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3292     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3293     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3294     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3295 #endif
  3296     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3297                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3298   %}
  3300   // Location of compiled Java return values.  Same as C
  3301   return_value %{
  3302     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3303 #ifdef     _LP64
  3304     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3305     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3306     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3307     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3308 #else  // !_LP64
  3309     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3310     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3311     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3312     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3313 #endif
  3314     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3315                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3316   %}
  3318 %}
  3321 //----------ATTRIBUTES---------------------------------------------------------
  3322 //----------Operand Attributes-------------------------------------------------
  3323 op_attrib op_cost(1);          // Required cost attribute
  3325 //----------Instruction Attributes---------------------------------------------
  3326 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3327 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3328 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3329 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3330                                 // non-matching short branch variant of some
  3331                                                             // long branch?
  3333 //----------OPERANDS-----------------------------------------------------------
  3334 // Operand definitions must precede instruction definitions for correct parsing
  3335 // in the ADLC because operands constitute user defined types which are used in
  3336 // instruction definitions.
  3338 //----------Simple Operands----------------------------------------------------
  3339 // Immediate Operands
  3340 // Integer Immediate: 32-bit
  3341 operand immI() %{
  3342   match(ConI);
  3344   op_cost(0);
  3345   // formats are generated automatically for constants and base registers
  3346   format %{ %}
  3347   interface(CONST_INTER);
  3348 %}
  3350 // Integer Immediate: 8-bit
  3351 operand immI8() %{
  3352   predicate(Assembler::is_simm(n->get_int(), 8));
  3353   match(ConI);
  3354   op_cost(0);
  3355   format %{ %}
  3356   interface(CONST_INTER);
  3357 %}
  3359 // Integer Immediate: 13-bit
  3360 operand immI13() %{
  3361   predicate(Assembler::is_simm13(n->get_int()));
  3362   match(ConI);
  3363   op_cost(0);
  3365   format %{ %}
  3366   interface(CONST_INTER);
  3367 %}
  3369 // Integer Immediate: 13-bit minus 7
  3370 operand immI13m7() %{
  3371   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3372   match(ConI);
  3373   op_cost(0);
  3375   format %{ %}
  3376   interface(CONST_INTER);
  3377 %}
  3379 // Integer Immediate: 16-bit
  3380 operand immI16() %{
  3381   predicate(Assembler::is_simm(n->get_int(), 16));
  3382   match(ConI);
  3383   op_cost(0);
  3384   format %{ %}
  3385   interface(CONST_INTER);
  3386 %}
  3388 // Unsigned (positive) Integer Immediate: 13-bit
  3389 operand immU13() %{
  3390   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3391   match(ConI);
  3392   op_cost(0);
  3394   format %{ %}
  3395   interface(CONST_INTER);
  3396 %}
  3398 // Integer Immediate: 6-bit
  3399 operand immU6() %{
  3400   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3401   match(ConI);
  3402   op_cost(0);
  3403   format %{ %}
  3404   interface(CONST_INTER);
  3405 %}
  3407 // Integer Immediate: 11-bit
  3408 operand immI11() %{
  3409   predicate(Assembler::is_simm(n->get_int(),11));
  3410   match(ConI);
  3411   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Integer Immediate: 0-bit
  3417 operand immI0() %{
  3418   predicate(n->get_int() == 0);
  3419   match(ConI);
  3420   op_cost(0);
  3422   format %{ %}
  3423   interface(CONST_INTER);
  3424 %}
  3426 // Integer Immediate: the value 10
  3427 operand immI10() %{
  3428   predicate(n->get_int() == 10);
  3429   match(ConI);
  3430   op_cost(0);
  3432   format %{ %}
  3433   interface(CONST_INTER);
  3434 %}
  3436 // Integer Immediate: the values 0-31
  3437 operand immU5() %{
  3438   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3439   match(ConI);
  3440   op_cost(0);
  3442   format %{ %}
  3443   interface(CONST_INTER);
  3444 %}
  3446 // Integer Immediate: the values 1-31
  3447 operand immI_1_31() %{
  3448   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3449   match(ConI);
  3450   op_cost(0);
  3452   format %{ %}
  3453   interface(CONST_INTER);
  3454 %}
  3456 // Integer Immediate: the values 32-63
  3457 operand immI_32_63() %{
  3458   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3459   match(ConI);
  3460   op_cost(0);
  3462   format %{ %}
  3463   interface(CONST_INTER);
  3464 %}
  3466 // Immediates for special shifts (sign extend)
  3468 // Integer Immediate: the value 16
  3469 operand immI_16() %{
  3470   predicate(n->get_int() == 16);
  3471   match(ConI);
  3472   op_cost(0);
  3474   format %{ %}
  3475   interface(CONST_INTER);
  3476 %}
  3478 // Integer Immediate: the value 24
  3479 operand immI_24() %{
  3480   predicate(n->get_int() == 24);
  3481   match(ConI);
  3482   op_cost(0);
  3484   format %{ %}
  3485   interface(CONST_INTER);
  3486 %}
  3488 // Integer Immediate: the value 255
  3489 operand immI_255() %{
  3490   predicate( n->get_int() == 255 );
  3491   match(ConI);
  3492   op_cost(0);
  3494   format %{ %}
  3495   interface(CONST_INTER);
  3496 %}
  3498 // Integer Immediate: the value 65535
  3499 operand immI_65535() %{
  3500   predicate(n->get_int() == 65535);
  3501   match(ConI);
  3502   op_cost(0);
  3504   format %{ %}
  3505   interface(CONST_INTER);
  3506 %}
  3508 // Long Immediate: the value FF
  3509 operand immL_FF() %{
  3510   predicate( n->get_long() == 0xFFL );
  3511   match(ConL);
  3512   op_cost(0);
  3514   format %{ %}
  3515   interface(CONST_INTER);
  3516 %}
  3518 // Long Immediate: the value FFFF
  3519 operand immL_FFFF() %{
  3520   predicate( n->get_long() == 0xFFFFL );
  3521   match(ConL);
  3522   op_cost(0);
  3524   format %{ %}
  3525   interface(CONST_INTER);
  3526 %}
  3528 // Pointer Immediate: 32 or 64-bit
  3529 operand immP() %{
  3530   match(ConP);
  3532   op_cost(5);
  3533   // formats are generated automatically for constants and base registers
  3534   format %{ %}
  3535   interface(CONST_INTER);
  3536 %}
  3538 operand immP13() %{
  3539   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3540   match(ConP);
  3541   op_cost(0);
  3543   format %{ %}
  3544   interface(CONST_INTER);
  3545 %}
  3547 operand immP0() %{
  3548   predicate(n->get_ptr() == 0);
  3549   match(ConP);
  3550   op_cost(0);
  3552   format %{ %}
  3553   interface(CONST_INTER);
  3554 %}
  3556 operand immP_poll() %{
  3557   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3558   match(ConP);
  3560   // formats are generated automatically for constants and base registers
  3561   format %{ %}
  3562   interface(CONST_INTER);
  3563 %}
  3565 // Pointer Immediate
  3566 operand immN()
  3567 %{
  3568   match(ConN);
  3570   op_cost(10);
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // NULL Pointer Immediate
  3576 operand immN0()
  3577 %{
  3578   predicate(n->get_narrowcon() == 0);
  3579   match(ConN);
  3581   op_cost(0);
  3582   format %{ %}
  3583   interface(CONST_INTER);
  3584 %}
  3586 operand immL() %{
  3587   match(ConL);
  3588   op_cost(40);
  3589   // formats are generated automatically for constants and base registers
  3590   format %{ %}
  3591   interface(CONST_INTER);
  3592 %}
  3594 operand immL0() %{
  3595   predicate(n->get_long() == 0L);
  3596   match(ConL);
  3597   op_cost(0);
  3598   // formats are generated automatically for constants and base registers
  3599   format %{ %}
  3600   interface(CONST_INTER);
  3601 %}
  3603 // Long Immediate: 13-bit
  3604 operand immL13() %{
  3605   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3606   match(ConL);
  3607   op_cost(0);
  3609   format %{ %}
  3610   interface(CONST_INTER);
  3611 %}
  3613 // Long Immediate: 13-bit minus 7
  3614 operand immL13m7() %{
  3615   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3616   match(ConL);
  3617   op_cost(0);
  3619   format %{ %}
  3620   interface(CONST_INTER);
  3621 %}
  3623 // Long Immediate: low 32-bit mask
  3624 operand immL_32bits() %{
  3625   predicate(n->get_long() == 0xFFFFFFFFL);
  3626   match(ConL);
  3627   op_cost(0);
  3629   format %{ %}
  3630   interface(CONST_INTER);
  3631 %}
  3633 // Double Immediate
  3634 operand immD() %{
  3635   match(ConD);
  3637   op_cost(40);
  3638   format %{ %}
  3639   interface(CONST_INTER);
  3640 %}
  3642 operand immD0() %{
  3643 #ifdef _LP64
  3644   // on 64-bit architectures this comparision is faster
  3645   predicate(jlong_cast(n->getd()) == 0);
  3646 #else
  3647   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3648 #endif
  3649   match(ConD);
  3651   op_cost(0);
  3652   format %{ %}
  3653   interface(CONST_INTER);
  3654 %}
  3656 // Float Immediate
  3657 operand immF() %{
  3658   match(ConF);
  3660   op_cost(20);
  3661   format %{ %}
  3662   interface(CONST_INTER);
  3663 %}
  3665 // Float Immediate: 0
  3666 operand immF0() %{
  3667   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3668   match(ConF);
  3670   op_cost(0);
  3671   format %{ %}
  3672   interface(CONST_INTER);
  3673 %}
  3675 // Integer Register Operands
  3676 // Integer Register
  3677 operand iRegI() %{
  3678   constraint(ALLOC_IN_RC(int_reg));
  3679   match(RegI);
  3681   match(notemp_iRegI);
  3682   match(g1RegI);
  3683   match(o0RegI);
  3684   match(iRegIsafe);
  3686   format %{ %}
  3687   interface(REG_INTER);
  3688 %}
  3690 operand notemp_iRegI() %{
  3691   constraint(ALLOC_IN_RC(notemp_int_reg));
  3692   match(RegI);
  3694   match(o0RegI);
  3696   format %{ %}
  3697   interface(REG_INTER);
  3698 %}
  3700 operand o0RegI() %{
  3701   constraint(ALLOC_IN_RC(o0_regI));
  3702   match(iRegI);
  3704   format %{ %}
  3705   interface(REG_INTER);
  3706 %}
  3708 // Pointer Register
  3709 operand iRegP() %{
  3710   constraint(ALLOC_IN_RC(ptr_reg));
  3711   match(RegP);
  3713   match(lock_ptr_RegP);
  3714   match(g1RegP);
  3715   match(g2RegP);
  3716   match(g3RegP);
  3717   match(g4RegP);
  3718   match(i0RegP);
  3719   match(o0RegP);
  3720   match(o1RegP);
  3721   match(l7RegP);
  3723   format %{ %}
  3724   interface(REG_INTER);
  3725 %}
  3727 operand sp_ptr_RegP() %{
  3728   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3729   match(RegP);
  3730   match(iRegP);
  3732   format %{ %}
  3733   interface(REG_INTER);
  3734 %}
  3736 operand lock_ptr_RegP() %{
  3737   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3738   match(RegP);
  3739   match(i0RegP);
  3740   match(o0RegP);
  3741   match(o1RegP);
  3742   match(l7RegP);
  3744   format %{ %}
  3745   interface(REG_INTER);
  3746 %}
  3748 operand g1RegP() %{
  3749   constraint(ALLOC_IN_RC(g1_regP));
  3750   match(iRegP);
  3752   format %{ %}
  3753   interface(REG_INTER);
  3754 %}
  3756 operand g2RegP() %{
  3757   constraint(ALLOC_IN_RC(g2_regP));
  3758   match(iRegP);
  3760   format %{ %}
  3761   interface(REG_INTER);
  3762 %}
  3764 operand g3RegP() %{
  3765   constraint(ALLOC_IN_RC(g3_regP));
  3766   match(iRegP);
  3768   format %{ %}
  3769   interface(REG_INTER);
  3770 %}
  3772 operand g1RegI() %{
  3773   constraint(ALLOC_IN_RC(g1_regI));
  3774   match(iRegI);
  3776   format %{ %}
  3777   interface(REG_INTER);
  3778 %}
  3780 operand g3RegI() %{
  3781   constraint(ALLOC_IN_RC(g3_regI));
  3782   match(iRegI);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 operand g4RegI() %{
  3789   constraint(ALLOC_IN_RC(g4_regI));
  3790   match(iRegI);
  3792   format %{ %}
  3793   interface(REG_INTER);
  3794 %}
  3796 operand g4RegP() %{
  3797   constraint(ALLOC_IN_RC(g4_regP));
  3798   match(iRegP);
  3800   format %{ %}
  3801   interface(REG_INTER);
  3802 %}
  3804 operand i0RegP() %{
  3805   constraint(ALLOC_IN_RC(i0_regP));
  3806   match(iRegP);
  3808   format %{ %}
  3809   interface(REG_INTER);
  3810 %}
  3812 operand o0RegP() %{
  3813   constraint(ALLOC_IN_RC(o0_regP));
  3814   match(iRegP);
  3816   format %{ %}
  3817   interface(REG_INTER);
  3818 %}
  3820 operand o1RegP() %{
  3821   constraint(ALLOC_IN_RC(o1_regP));
  3822   match(iRegP);
  3824   format %{ %}
  3825   interface(REG_INTER);
  3826 %}
  3828 operand o2RegP() %{
  3829   constraint(ALLOC_IN_RC(o2_regP));
  3830   match(iRegP);
  3832   format %{ %}
  3833   interface(REG_INTER);
  3834 %}
  3836 operand o7RegP() %{
  3837   constraint(ALLOC_IN_RC(o7_regP));
  3838   match(iRegP);
  3840   format %{ %}
  3841   interface(REG_INTER);
  3842 %}
  3844 operand l7RegP() %{
  3845   constraint(ALLOC_IN_RC(l7_regP));
  3846   match(iRegP);
  3848   format %{ %}
  3849   interface(REG_INTER);
  3850 %}
  3852 operand o7RegI() %{
  3853   constraint(ALLOC_IN_RC(o7_regI));
  3854   match(iRegI);
  3856   format %{ %}
  3857   interface(REG_INTER);
  3858 %}
  3860 operand iRegN() %{
  3861   constraint(ALLOC_IN_RC(int_reg));
  3862   match(RegN);
  3864   format %{ %}
  3865   interface(REG_INTER);
  3866 %}
  3868 // Long Register
  3869 operand iRegL() %{
  3870   constraint(ALLOC_IN_RC(long_reg));
  3871   match(RegL);
  3873   format %{ %}
  3874   interface(REG_INTER);
  3875 %}
  3877 operand o2RegL() %{
  3878   constraint(ALLOC_IN_RC(o2_regL));
  3879   match(iRegL);
  3881   format %{ %}
  3882   interface(REG_INTER);
  3883 %}
  3885 operand o7RegL() %{
  3886   constraint(ALLOC_IN_RC(o7_regL));
  3887   match(iRegL);
  3889   format %{ %}
  3890   interface(REG_INTER);
  3891 %}
  3893 operand g1RegL() %{
  3894   constraint(ALLOC_IN_RC(g1_regL));
  3895   match(iRegL);
  3897   format %{ %}
  3898   interface(REG_INTER);
  3899 %}
  3901 operand g3RegL() %{
  3902   constraint(ALLOC_IN_RC(g3_regL));
  3903   match(iRegL);
  3905   format %{ %}
  3906   interface(REG_INTER);
  3907 %}
  3909 // Int Register safe
  3910 // This is 64bit safe
  3911 operand iRegIsafe() %{
  3912   constraint(ALLOC_IN_RC(long_reg));
  3914   match(iRegI);
  3916   format %{ %}
  3917   interface(REG_INTER);
  3918 %}
  3920 // Condition Code Flag Register
  3921 operand flagsReg() %{
  3922   constraint(ALLOC_IN_RC(int_flags));
  3923   match(RegFlags);
  3925   format %{ "ccr" %} // both ICC and XCC
  3926   interface(REG_INTER);
  3927 %}
  3929 // Condition Code Register, unsigned comparisons.
  3930 operand flagsRegU() %{
  3931   constraint(ALLOC_IN_RC(int_flags));
  3932   match(RegFlags);
  3934   format %{ "icc_U" %}
  3935   interface(REG_INTER);
  3936 %}
  3938 // Condition Code Register, pointer comparisons.
  3939 operand flagsRegP() %{
  3940   constraint(ALLOC_IN_RC(int_flags));
  3941   match(RegFlags);
  3943 #ifdef _LP64
  3944   format %{ "xcc_P" %}
  3945 #else
  3946   format %{ "icc_P" %}
  3947 #endif
  3948   interface(REG_INTER);
  3949 %}
  3951 // Condition Code Register, long comparisons.
  3952 operand flagsRegL() %{
  3953   constraint(ALLOC_IN_RC(int_flags));
  3954   match(RegFlags);
  3956   format %{ "xcc_L" %}
  3957   interface(REG_INTER);
  3958 %}
  3960 // Condition Code Register, floating comparisons, unordered same as "less".
  3961 operand flagsRegF() %{
  3962   constraint(ALLOC_IN_RC(float_flags));
  3963   match(RegFlags);
  3964   match(flagsRegF0);
  3966   format %{ %}
  3967   interface(REG_INTER);
  3968 %}
  3970 operand flagsRegF0() %{
  3971   constraint(ALLOC_IN_RC(float_flag0));
  3972   match(RegFlags);
  3974   format %{ %}
  3975   interface(REG_INTER);
  3976 %}
  3979 // Condition Code Flag Register used by long compare
  3980 operand flagsReg_long_LTGE() %{
  3981   constraint(ALLOC_IN_RC(int_flags));
  3982   match(RegFlags);
  3983   format %{ "icc_LTGE" %}
  3984   interface(REG_INTER);
  3985 %}
  3986 operand flagsReg_long_EQNE() %{
  3987   constraint(ALLOC_IN_RC(int_flags));
  3988   match(RegFlags);
  3989   format %{ "icc_EQNE" %}
  3990   interface(REG_INTER);
  3991 %}
  3992 operand flagsReg_long_LEGT() %{
  3993   constraint(ALLOC_IN_RC(int_flags));
  3994   match(RegFlags);
  3995   format %{ "icc_LEGT" %}
  3996   interface(REG_INTER);
  3997 %}
  4000 operand regD() %{
  4001   constraint(ALLOC_IN_RC(dflt_reg));
  4002   match(RegD);
  4004   match(regD_low);
  4006   format %{ %}
  4007   interface(REG_INTER);
  4008 %}
  4010 operand regF() %{
  4011   constraint(ALLOC_IN_RC(sflt_reg));
  4012   match(RegF);
  4014   format %{ %}
  4015   interface(REG_INTER);
  4016 %}
  4018 operand regD_low() %{
  4019   constraint(ALLOC_IN_RC(dflt_low_reg));
  4020   match(regD);
  4022   format %{ %}
  4023   interface(REG_INTER);
  4024 %}
  4026 // Special Registers
  4028 // Method Register
  4029 operand inline_cache_regP(iRegP reg) %{
  4030   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4031   match(reg);
  4032   format %{ %}
  4033   interface(REG_INTER);
  4034 %}
  4036 operand interpreter_method_oop_regP(iRegP reg) %{
  4037   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4038   match(reg);
  4039   format %{ %}
  4040   interface(REG_INTER);
  4041 %}
  4044 //----------Complex Operands---------------------------------------------------
  4045 // Indirect Memory Reference
  4046 operand indirect(sp_ptr_RegP reg) %{
  4047   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4048   match(reg);
  4050   op_cost(100);
  4051   format %{ "[$reg]" %}
  4052   interface(MEMORY_INTER) %{
  4053     base($reg);
  4054     index(0x0);
  4055     scale(0x0);
  4056     disp(0x0);
  4057   %}
  4058 %}
  4060 // Indirect with simm13 Offset
  4061 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4062   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4063   match(AddP reg offset);
  4065   op_cost(100);
  4066   format %{ "[$reg + $offset]" %}
  4067   interface(MEMORY_INTER) %{
  4068     base($reg);
  4069     index(0x0);
  4070     scale(0x0);
  4071     disp($offset);
  4072   %}
  4073 %}
  4075 // Indirect with simm13 Offset minus 7
  4076 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4077   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4078   match(AddP reg offset);
  4080   op_cost(100);
  4081   format %{ "[$reg + $offset]" %}
  4082   interface(MEMORY_INTER) %{
  4083     base($reg);
  4084     index(0x0);
  4085     scale(0x0);
  4086     disp($offset);
  4087   %}
  4088 %}
  4090 // Note:  Intel has a swapped version also, like this:
  4091 //operand indOffsetX(iRegI reg, immP offset) %{
  4092 //  constraint(ALLOC_IN_RC(int_reg));
  4093 //  match(AddP offset reg);
  4094 //
  4095 //  op_cost(100);
  4096 //  format %{ "[$reg + $offset]" %}
  4097 //  interface(MEMORY_INTER) %{
  4098 //    base($reg);
  4099 //    index(0x0);
  4100 //    scale(0x0);
  4101 //    disp($offset);
  4102 //  %}
  4103 //%}
  4104 //// However, it doesn't make sense for SPARC, since
  4105 // we have no particularly good way to embed oops in
  4106 // single instructions.
  4108 // Indirect with Register Index
  4109 operand indIndex(iRegP addr, iRegX index) %{
  4110   constraint(ALLOC_IN_RC(ptr_reg));
  4111   match(AddP addr index);
  4113   op_cost(100);
  4114   format %{ "[$addr + $index]" %}
  4115   interface(MEMORY_INTER) %{
  4116     base($addr);
  4117     index($index);
  4118     scale(0x0);
  4119     disp(0x0);
  4120   %}
  4121 %}
  4123 //----------Special Memory Operands--------------------------------------------
  4124 // Stack Slot Operand - This operand is used for loading and storing temporary
  4125 //                      values on the stack where a match requires a value to
  4126 //                      flow through memory.
  4127 operand stackSlotI(sRegI reg) %{
  4128   constraint(ALLOC_IN_RC(stack_slots));
  4129   op_cost(100);
  4130   //match(RegI);
  4131   format %{ "[$reg]" %}
  4132   interface(MEMORY_INTER) %{
  4133     base(0xE);   // R_SP
  4134     index(0x0);
  4135     scale(0x0);
  4136     disp($reg);  // Stack Offset
  4137   %}
  4138 %}
  4140 operand stackSlotP(sRegP reg) %{
  4141   constraint(ALLOC_IN_RC(stack_slots));
  4142   op_cost(100);
  4143   //match(RegP);
  4144   format %{ "[$reg]" %}
  4145   interface(MEMORY_INTER) %{
  4146     base(0xE);   // R_SP
  4147     index(0x0);
  4148     scale(0x0);
  4149     disp($reg);  // Stack Offset
  4150   %}
  4151 %}
  4153 operand stackSlotF(sRegF reg) %{
  4154   constraint(ALLOC_IN_RC(stack_slots));
  4155   op_cost(100);
  4156   //match(RegF);
  4157   format %{ "[$reg]" %}
  4158   interface(MEMORY_INTER) %{
  4159     base(0xE);   // R_SP
  4160     index(0x0);
  4161     scale(0x0);
  4162     disp($reg);  // Stack Offset
  4163   %}
  4164 %}
  4165 operand stackSlotD(sRegD reg) %{
  4166   constraint(ALLOC_IN_RC(stack_slots));
  4167   op_cost(100);
  4168   //match(RegD);
  4169   format %{ "[$reg]" %}
  4170   interface(MEMORY_INTER) %{
  4171     base(0xE);   // R_SP
  4172     index(0x0);
  4173     scale(0x0);
  4174     disp($reg);  // Stack Offset
  4175   %}
  4176 %}
  4177 operand stackSlotL(sRegL reg) %{
  4178   constraint(ALLOC_IN_RC(stack_slots));
  4179   op_cost(100);
  4180   //match(RegL);
  4181   format %{ "[$reg]" %}
  4182   interface(MEMORY_INTER) %{
  4183     base(0xE);   // R_SP
  4184     index(0x0);
  4185     scale(0x0);
  4186     disp($reg);  // Stack Offset
  4187   %}
  4188 %}
  4190 // Operands for expressing Control Flow
  4191 // NOTE:  Label is a predefined operand which should not be redefined in
  4192 //        the AD file.  It is generically handled within the ADLC.
  4194 //----------Conditional Branch Operands----------------------------------------
  4195 // Comparison Op  - This is the operation of the comparison, and is limited to
  4196 //                  the following set of codes:
  4197 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4198 //
  4199 // Other attributes of the comparison, such as unsignedness, are specified
  4200 // by the comparison instruction that sets a condition code flags register.
  4201 // That result is represented by a flags operand whose subtype is appropriate
  4202 // to the unsignedness (etc.) of the comparison.
  4203 //
  4204 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4205 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4206 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4208 operand cmpOp() %{
  4209   match(Bool);
  4211   format %{ "" %}
  4212   interface(COND_INTER) %{
  4213     equal(0x1);
  4214     not_equal(0x9);
  4215     less(0x3);
  4216     greater_equal(0xB);
  4217     less_equal(0x2);
  4218     greater(0xA);
  4219   %}
  4220 %}
  4222 // Comparison Op, unsigned
  4223 operand cmpOpU() %{
  4224   match(Bool);
  4226   format %{ "u" %}
  4227   interface(COND_INTER) %{
  4228     equal(0x1);
  4229     not_equal(0x9);
  4230     less(0x5);
  4231     greater_equal(0xD);
  4232     less_equal(0x4);
  4233     greater(0xC);
  4234   %}
  4235 %}
  4237 // Comparison Op, pointer (same as unsigned)
  4238 operand cmpOpP() %{
  4239   match(Bool);
  4241   format %{ "p" %}
  4242   interface(COND_INTER) %{
  4243     equal(0x1);
  4244     not_equal(0x9);
  4245     less(0x5);
  4246     greater_equal(0xD);
  4247     less_equal(0x4);
  4248     greater(0xC);
  4249   %}
  4250 %}
  4252 // Comparison Op, branch-register encoding
  4253 operand cmpOp_reg() %{
  4254   match(Bool);
  4256   format %{ "" %}
  4257   interface(COND_INTER) %{
  4258     equal        (0x1);
  4259     not_equal    (0x5);
  4260     less         (0x3);
  4261     greater_equal(0x7);
  4262     less_equal   (0x2);
  4263     greater      (0x6);
  4264   %}
  4265 %}
  4267 // Comparison Code, floating, unordered same as less
  4268 operand cmpOpF() %{
  4269   match(Bool);
  4271   format %{ "fl" %}
  4272   interface(COND_INTER) %{
  4273     equal(0x9);
  4274     not_equal(0x1);
  4275     less(0x3);
  4276     greater_equal(0xB);
  4277     less_equal(0xE);
  4278     greater(0x6);
  4279   %}
  4280 %}
  4282 // Used by long compare
  4283 operand cmpOp_commute() %{
  4284   match(Bool);
  4286   format %{ "" %}
  4287   interface(COND_INTER) %{
  4288     equal(0x1);
  4289     not_equal(0x9);
  4290     less(0xA);
  4291     greater_equal(0x2);
  4292     less_equal(0xB);
  4293     greater(0x3);
  4294   %}
  4295 %}
  4297 //----------OPERAND CLASSES----------------------------------------------------
  4298 // Operand Classes are groups of operands that are used to simplify
  4299 // instruction definitions by not requiring the AD writer to specify separate
  4300 // instructions for every form of operand when the instruction accepts
  4301 // multiple operand types with the same basic encoding and format.  The classic
  4302 // case of this is memory operands.
  4303 opclass memory( indirect, indOffset13, indIndex );
  4304 opclass indIndexMemory( indIndex );
  4306 //----------PIPELINE-----------------------------------------------------------
  4307 pipeline %{
  4309 //----------ATTRIBUTES---------------------------------------------------------
  4310 attributes %{
  4311   fixed_size_instructions;           // Fixed size instructions
  4312   branch_has_delay_slot;             // Branch has delay slot following
  4313   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4314   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4315   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4316   instruction_fetch_units = 1;       // of 16 bytes
  4318   // List of nop instructions
  4319   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4320 %}
  4322 //----------RESOURCES----------------------------------------------------------
  4323 // Resources are the functional units available to the machine
  4324 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4326 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4327 // Pipeline Description specifies the stages in the machine's pipeline
  4329 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4331 //----------PIPELINE CLASSES---------------------------------------------------
  4332 // Pipeline Classes describe the stages in which input and output are
  4333 // referenced by the hardware pipeline.
  4335 // Integer ALU reg-reg operation
  4336 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4337     single_instruction;
  4338     dst   : E(write);
  4339     src1  : R(read);
  4340     src2  : R(read);
  4341     IALU  : R;
  4342 %}
  4344 // Integer ALU reg-reg long operation
  4345 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4346     instruction_count(2);
  4347     dst   : E(write);
  4348     src1  : R(read);
  4349     src2  : R(read);
  4350     IALU  : R;
  4351     IALU  : R;
  4352 %}
  4354 // Integer ALU reg-reg long dependent operation
  4355 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4356     instruction_count(1); multiple_bundles;
  4357     dst   : E(write);
  4358     src1  : R(read);
  4359     src2  : R(read);
  4360     cr    : E(write);
  4361     IALU  : R(2);
  4362 %}
  4364 // Integer ALU reg-imm operaion
  4365 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4366     single_instruction;
  4367     dst   : E(write);
  4368     src1  : R(read);
  4369     IALU  : R;
  4370 %}
  4372 // Integer ALU reg-reg operation with condition code
  4373 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4374     single_instruction;
  4375     dst   : E(write);
  4376     cr    : E(write);
  4377     src1  : R(read);
  4378     src2  : R(read);
  4379     IALU  : R;
  4380 %}
  4382 // Integer ALU reg-imm operation with condition code
  4383 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4384     single_instruction;
  4385     dst   : E(write);
  4386     cr    : E(write);
  4387     src1  : R(read);
  4388     IALU  : R;
  4389 %}
  4391 // Integer ALU zero-reg operation
  4392 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4393     single_instruction;
  4394     dst   : E(write);
  4395     src2  : R(read);
  4396     IALU  : R;
  4397 %}
  4399 // Integer ALU zero-reg operation with condition code only
  4400 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4401     single_instruction;
  4402     cr    : E(write);
  4403     src   : R(read);
  4404     IALU  : R;
  4405 %}
  4407 // Integer ALU reg-reg operation with condition code only
  4408 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4409     single_instruction;
  4410     cr    : E(write);
  4411     src1  : R(read);
  4412     src2  : R(read);
  4413     IALU  : R;
  4414 %}
  4416 // Integer ALU reg-imm operation with condition code only
  4417 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4418     single_instruction;
  4419     cr    : E(write);
  4420     src1  : R(read);
  4421     IALU  : R;
  4422 %}
  4424 // Integer ALU reg-reg-zero operation with condition code only
  4425 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4426     single_instruction;
  4427     cr    : E(write);
  4428     src1  : R(read);
  4429     src2  : R(read);
  4430     IALU  : R;
  4431 %}
  4433 // Integer ALU reg-imm-zero operation with condition code only
  4434 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4435     single_instruction;
  4436     cr    : E(write);
  4437     src1  : R(read);
  4438     IALU  : R;
  4439 %}
  4441 // Integer ALU reg-reg operation with condition code, src1 modified
  4442 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4443     single_instruction;
  4444     cr    : E(write);
  4445     src1  : E(write);
  4446     src1  : R(read);
  4447     src2  : R(read);
  4448     IALU  : R;
  4449 %}
  4451 // Integer ALU reg-imm operation with condition code, src1 modified
  4452 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4453     single_instruction;
  4454     cr    : E(write);
  4455     src1  : E(write);
  4456     src1  : R(read);
  4457     IALU  : R;
  4458 %}
  4460 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4461     multiple_bundles;
  4462     dst   : E(write)+4;
  4463     cr    : E(write);
  4464     src1  : R(read);
  4465     src2  : R(read);
  4466     IALU  : R(3);
  4467     BR    : R(2);
  4468 %}
  4470 // Integer ALU operation
  4471 pipe_class ialu_none(iRegI dst) %{
  4472     single_instruction;
  4473     dst   : E(write);
  4474     IALU  : R;
  4475 %}
  4477 // Integer ALU reg operation
  4478 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4479     single_instruction; may_have_no_code;
  4480     dst   : E(write);
  4481     src   : R(read);
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU reg conditional operation
  4486 // This instruction has a 1 cycle stall, and cannot execute
  4487 // in the same cycle as the instruction setting the condition
  4488 // code. We kludge this by pretending to read the condition code
  4489 // 1 cycle earlier, and by marking the functional units as busy
  4490 // for 2 cycles with the result available 1 cycle later than
  4491 // is really the case.
  4492 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4493     single_instruction;
  4494     op2_out : C(write);
  4495     op1     : R(read);
  4496     cr      : R(read);       // This is really E, with a 1 cycle stall
  4497     BR      : R(2);
  4498     MS      : R(2);
  4499 %}
  4501 #ifdef _LP64
  4502 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4503     instruction_count(1); multiple_bundles;
  4504     dst     : C(write)+1;
  4505     src     : R(read)+1;
  4506     IALU    : R(1);
  4507     BR      : E(2);
  4508     MS      : E(2);
  4509 %}
  4510 #endif
  4512 // Integer ALU reg operation
  4513 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4514     single_instruction; may_have_no_code;
  4515     dst   : E(write);
  4516     src   : R(read);
  4517     IALU  : R;
  4518 %}
  4519 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4520     single_instruction; may_have_no_code;
  4521     dst   : E(write);
  4522     src   : R(read);
  4523     IALU  : R;
  4524 %}
  4526 // Two integer ALU reg operations
  4527 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4528     instruction_count(2);
  4529     dst   : E(write);
  4530     src   : R(read);
  4531     A0    : R;
  4532     A1    : R;
  4533 %}
  4535 // Two integer ALU reg operations
  4536 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4537     instruction_count(2); may_have_no_code;
  4538     dst   : E(write);
  4539     src   : R(read);
  4540     A0    : R;
  4541     A1    : R;
  4542 %}
  4544 // Integer ALU imm operation
  4545 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4546     single_instruction;
  4547     dst   : E(write);
  4548     IALU  : R;
  4549 %}
  4551 // Integer ALU reg-reg with carry operation
  4552 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4553     single_instruction;
  4554     dst   : E(write);
  4555     src1  : R(read);
  4556     src2  : R(read);
  4557     IALU  : R;
  4558 %}
  4560 // Integer ALU cc operation
  4561 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4562     single_instruction;
  4563     dst   : E(write);
  4564     cc    : R(read);
  4565     IALU  : R;
  4566 %}
  4568 // Integer ALU cc / second IALU operation
  4569 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4570     instruction_count(1); multiple_bundles;
  4571     dst   : E(write)+1;
  4572     src   : R(read);
  4573     IALU  : R;
  4574 %}
  4576 // Integer ALU cc / second IALU operation
  4577 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4578     instruction_count(1); multiple_bundles;
  4579     dst   : E(write)+1;
  4580     p     : R(read);
  4581     q     : R(read);
  4582     IALU  : R;
  4583 %}
  4585 // Integer ALU hi-lo-reg operation
  4586 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4587     instruction_count(1); multiple_bundles;
  4588     dst   : E(write)+1;
  4589     IALU  : R(2);
  4590 %}
  4592 // Float ALU hi-lo-reg operation (with temp)
  4593 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4594     instruction_count(1); multiple_bundles;
  4595     dst   : E(write)+1;
  4596     IALU  : R(2);
  4597 %}
  4599 // Long Constant
  4600 pipe_class loadConL( iRegL dst, immL src ) %{
  4601     instruction_count(2); multiple_bundles;
  4602     dst   : E(write)+1;
  4603     IALU  : R(2);
  4604     IALU  : R(2);
  4605 %}
  4607 // Pointer Constant
  4608 pipe_class loadConP( iRegP dst, immP src ) %{
  4609     instruction_count(0); multiple_bundles;
  4610     fixed_latency(6);
  4611 %}
  4613 // Polling Address
  4614 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4615 #ifdef _LP64
  4616     instruction_count(0); multiple_bundles;
  4617     fixed_latency(6);
  4618 #else
  4619     dst   : E(write);
  4620     IALU  : R;
  4621 #endif
  4622 %}
  4624 // Long Constant small
  4625 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4626     instruction_count(2);
  4627     dst   : E(write);
  4628     IALU  : R;
  4629     IALU  : R;
  4630 %}
  4632 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4633 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4634     instruction_count(1); multiple_bundles;
  4635     src   : R(read);
  4636     dst   : M(write)+1;
  4637     IALU  : R;
  4638     MS    : E;
  4639 %}
  4641 // Integer ALU nop operation
  4642 pipe_class ialu_nop() %{
  4643     single_instruction;
  4644     IALU  : R;
  4645 %}
  4647 // Integer ALU nop operation
  4648 pipe_class ialu_nop_A0() %{
  4649     single_instruction;
  4650     A0    : R;
  4651 %}
  4653 // Integer ALU nop operation
  4654 pipe_class ialu_nop_A1() %{
  4655     single_instruction;
  4656     A1    : R;
  4657 %}
  4659 // Integer Multiply reg-reg operation
  4660 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4661     single_instruction;
  4662     dst   : E(write);
  4663     src1  : R(read);
  4664     src2  : R(read);
  4665     MS    : R(5);
  4666 %}
  4668 // Integer Multiply reg-imm operation
  4669 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4670     single_instruction;
  4671     dst   : E(write);
  4672     src1  : R(read);
  4673     MS    : R(5);
  4674 %}
  4676 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4677     single_instruction;
  4678     dst   : E(write)+4;
  4679     src1  : R(read);
  4680     src2  : R(read);
  4681     MS    : R(6);
  4682 %}
  4684 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4685     single_instruction;
  4686     dst   : E(write)+4;
  4687     src1  : R(read);
  4688     MS    : R(6);
  4689 %}
  4691 // Integer Divide reg-reg
  4692 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4693     instruction_count(1); multiple_bundles;
  4694     dst   : E(write);
  4695     temp  : E(write);
  4696     src1  : R(read);
  4697     src2  : R(read);
  4698     temp  : R(read);
  4699     MS    : R(38);
  4700 %}
  4702 // Integer Divide reg-imm
  4703 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4704     instruction_count(1); multiple_bundles;
  4705     dst   : E(write);
  4706     temp  : E(write);
  4707     src1  : R(read);
  4708     temp  : R(read);
  4709     MS    : R(38);
  4710 %}
  4712 // Long Divide
  4713 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4714     dst  : E(write)+71;
  4715     src1 : R(read);
  4716     src2 : R(read)+1;
  4717     MS   : R(70);
  4718 %}
  4720 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4721     dst  : E(write)+71;
  4722     src1 : R(read);
  4723     MS   : R(70);
  4724 %}
  4726 // Floating Point Add Float
  4727 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4728     single_instruction;
  4729     dst   : X(write);
  4730     src1  : E(read);
  4731     src2  : E(read);
  4732     FA    : R;
  4733 %}
  4735 // Floating Point Add Double
  4736 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4737     single_instruction;
  4738     dst   : X(write);
  4739     src1  : E(read);
  4740     src2  : E(read);
  4741     FA    : R;
  4742 %}
  4744 // Floating Point Conditional Move based on integer flags
  4745 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4746     single_instruction;
  4747     dst   : X(write);
  4748     src   : E(read);
  4749     cr    : R(read);
  4750     FA    : R(2);
  4751     BR    : R(2);
  4752 %}
  4754 // Floating Point Conditional Move based on integer flags
  4755 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4756     single_instruction;
  4757     dst   : X(write);
  4758     src   : E(read);
  4759     cr    : R(read);
  4760     FA    : R(2);
  4761     BR    : R(2);
  4762 %}
  4764 // Floating Point Multiply Float
  4765 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4766     single_instruction;
  4767     dst   : X(write);
  4768     src1  : E(read);
  4769     src2  : E(read);
  4770     FM    : R;
  4771 %}
  4773 // Floating Point Multiply Double
  4774 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4775     single_instruction;
  4776     dst   : X(write);
  4777     src1  : E(read);
  4778     src2  : E(read);
  4779     FM    : R;
  4780 %}
  4782 // Floating Point Divide Float
  4783 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4784     single_instruction;
  4785     dst   : X(write);
  4786     src1  : E(read);
  4787     src2  : E(read);
  4788     FM    : R;
  4789     FDIV  : C(14);
  4790 %}
  4792 // Floating Point Divide Double
  4793 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4794     single_instruction;
  4795     dst   : X(write);
  4796     src1  : E(read);
  4797     src2  : E(read);
  4798     FM    : R;
  4799     FDIV  : C(17);
  4800 %}
  4802 // Floating Point Move/Negate/Abs Float
  4803 pipe_class faddF_reg(regF dst, regF src) %{
  4804     single_instruction;
  4805     dst   : W(write);
  4806     src   : E(read);
  4807     FA    : R(1);
  4808 %}
  4810 // Floating Point Move/Negate/Abs Double
  4811 pipe_class faddD_reg(regD dst, regD src) %{
  4812     single_instruction;
  4813     dst   : W(write);
  4814     src   : E(read);
  4815     FA    : R;
  4816 %}
  4818 // Floating Point Convert F->D
  4819 pipe_class fcvtF2D(regD dst, regF src) %{
  4820     single_instruction;
  4821     dst   : X(write);
  4822     src   : E(read);
  4823     FA    : R;
  4824 %}
  4826 // Floating Point Convert I->D
  4827 pipe_class fcvtI2D(regD dst, regF src) %{
  4828     single_instruction;
  4829     dst   : X(write);
  4830     src   : E(read);
  4831     FA    : R;
  4832 %}
  4834 // Floating Point Convert LHi->D
  4835 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4836     single_instruction;
  4837     dst   : X(write);
  4838     src   : E(read);
  4839     FA    : R;
  4840 %}
  4842 // Floating Point Convert L->D
  4843 pipe_class fcvtL2D(regD dst, regF src) %{
  4844     single_instruction;
  4845     dst   : X(write);
  4846     src   : E(read);
  4847     FA    : R;
  4848 %}
  4850 // Floating Point Convert L->F
  4851 pipe_class fcvtL2F(regD dst, regF src) %{
  4852     single_instruction;
  4853     dst   : X(write);
  4854     src   : E(read);
  4855     FA    : R;
  4856 %}
  4858 // Floating Point Convert D->F
  4859 pipe_class fcvtD2F(regD dst, regF src) %{
  4860     single_instruction;
  4861     dst   : X(write);
  4862     src   : E(read);
  4863     FA    : R;
  4864 %}
  4866 // Floating Point Convert I->L
  4867 pipe_class fcvtI2L(regD dst, regF src) %{
  4868     single_instruction;
  4869     dst   : X(write);
  4870     src   : E(read);
  4871     FA    : R;
  4872 %}
  4874 // Floating Point Convert D->F
  4875 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4876     instruction_count(1); multiple_bundles;
  4877     dst   : X(write)+6;
  4878     src   : E(read);
  4879     FA    : R;
  4880 %}
  4882 // Floating Point Convert D->L
  4883 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4884     instruction_count(1); multiple_bundles;
  4885     dst   : X(write)+6;
  4886     src   : E(read);
  4887     FA    : R;
  4888 %}
  4890 // Floating Point Convert F->I
  4891 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4892     instruction_count(1); multiple_bundles;
  4893     dst   : X(write)+6;
  4894     src   : E(read);
  4895     FA    : R;
  4896 %}
  4898 // Floating Point Convert F->L
  4899 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4900     instruction_count(1); multiple_bundles;
  4901     dst   : X(write)+6;
  4902     src   : E(read);
  4903     FA    : R;
  4904 %}
  4906 // Floating Point Convert I->F
  4907 pipe_class fcvtI2F(regF dst, regF src) %{
  4908     single_instruction;
  4909     dst   : X(write);
  4910     src   : E(read);
  4911     FA    : R;
  4912 %}
  4914 // Floating Point Compare
  4915 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4916     single_instruction;
  4917     cr    : X(write);
  4918     src1  : E(read);
  4919     src2  : E(read);
  4920     FA    : R;
  4921 %}
  4923 // Floating Point Compare
  4924 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4925     single_instruction;
  4926     cr    : X(write);
  4927     src1  : E(read);
  4928     src2  : E(read);
  4929     FA    : R;
  4930 %}
  4932 // Floating Add Nop
  4933 pipe_class fadd_nop() %{
  4934     single_instruction;
  4935     FA  : R;
  4936 %}
  4938 // Integer Store to Memory
  4939 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4940     single_instruction;
  4941     mem   : R(read);
  4942     src   : C(read);
  4943     MS    : R;
  4944 %}
  4946 // Integer Store to Memory
  4947 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4948     single_instruction;
  4949     mem   : R(read);
  4950     src   : C(read);
  4951     MS    : R;
  4952 %}
  4954 // Integer Store Zero to Memory
  4955 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4956     single_instruction;
  4957     mem   : R(read);
  4958     MS    : R;
  4959 %}
  4961 // Special Stack Slot Store
  4962 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4963     single_instruction;
  4964     stkSlot : R(read);
  4965     src     : C(read);
  4966     MS      : R;
  4967 %}
  4969 // Special Stack Slot Store
  4970 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4971     instruction_count(2); multiple_bundles;
  4972     stkSlot : R(read);
  4973     src     : C(read);
  4974     MS      : R(2);
  4975 %}
  4977 // Float Store
  4978 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4979     single_instruction;
  4980     mem : R(read);
  4981     src : C(read);
  4982     MS  : R;
  4983 %}
  4985 // Float Store
  4986 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4987     single_instruction;
  4988     mem : R(read);
  4989     MS  : R;
  4990 %}
  4992 // Double Store
  4993 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4994     instruction_count(1);
  4995     mem : R(read);
  4996     src : C(read);
  4997     MS  : R;
  4998 %}
  5000 // Double Store
  5001 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5002     single_instruction;
  5003     mem : R(read);
  5004     MS  : R;
  5005 %}
  5007 // Special Stack Slot Float Store
  5008 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5009     single_instruction;
  5010     stkSlot : R(read);
  5011     src     : C(read);
  5012     MS      : R;
  5013 %}
  5015 // Special Stack Slot Double Store
  5016 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5017     single_instruction;
  5018     stkSlot : R(read);
  5019     src     : C(read);
  5020     MS      : R;
  5021 %}
  5023 // Integer Load (when sign bit propagation not needed)
  5024 pipe_class iload_mem(iRegI dst, memory mem) %{
  5025     single_instruction;
  5026     mem : R(read);
  5027     dst : C(write);
  5028     MS  : R;
  5029 %}
  5031 // Integer Load from stack operand
  5032 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5033     single_instruction;
  5034     mem : R(read);
  5035     dst : C(write);
  5036     MS  : R;
  5037 %}
  5039 // Integer Load (when sign bit propagation or masking is needed)
  5040 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5041     single_instruction;
  5042     mem : R(read);
  5043     dst : M(write);
  5044     MS  : R;
  5045 %}
  5047 // Float Load
  5048 pipe_class floadF_mem(regF dst, memory mem) %{
  5049     single_instruction;
  5050     mem : R(read);
  5051     dst : M(write);
  5052     MS  : R;
  5053 %}
  5055 // Float Load
  5056 pipe_class floadD_mem(regD dst, memory mem) %{
  5057     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5058     mem : R(read);
  5059     dst : M(write);
  5060     MS  : R;
  5061 %}
  5063 // Float Load
  5064 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5065     single_instruction;
  5066     stkSlot : R(read);
  5067     dst : M(write);
  5068     MS  : R;
  5069 %}
  5071 // Float Load
  5072 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5073     single_instruction;
  5074     stkSlot : R(read);
  5075     dst : M(write);
  5076     MS  : R;
  5077 %}
  5079 // Memory Nop
  5080 pipe_class mem_nop() %{
  5081     single_instruction;
  5082     MS  : R;
  5083 %}
  5085 pipe_class sethi(iRegP dst, immI src) %{
  5086     single_instruction;
  5087     dst  : E(write);
  5088     IALU : R;
  5089 %}
  5091 pipe_class loadPollP(iRegP poll) %{
  5092     single_instruction;
  5093     poll : R(read);
  5094     MS   : R;
  5095 %}
  5097 pipe_class br(Universe br, label labl) %{
  5098     single_instruction_with_delay_slot;
  5099     BR  : R;
  5100 %}
  5102 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5103     single_instruction_with_delay_slot;
  5104     cr    : E(read);
  5105     BR    : R;
  5106 %}
  5108 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5109     single_instruction_with_delay_slot;
  5110     op1 : E(read);
  5111     BR  : R;
  5112     MS  : R;
  5113 %}
  5115 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5116     single_instruction_with_delay_slot;
  5117     cr    : E(read);
  5118     BR    : R;
  5119 %}
  5121 pipe_class br_nop() %{
  5122     single_instruction;
  5123     BR  : R;
  5124 %}
  5126 pipe_class simple_call(method meth) %{
  5127     instruction_count(2); multiple_bundles; force_serialization;
  5128     fixed_latency(100);
  5129     BR  : R(1);
  5130     MS  : R(1);
  5131     A0  : R(1);
  5132 %}
  5134 pipe_class compiled_call(method meth) %{
  5135     instruction_count(1); multiple_bundles; force_serialization;
  5136     fixed_latency(100);
  5137     MS  : R(1);
  5138 %}
  5140 pipe_class call(method meth) %{
  5141     instruction_count(0); multiple_bundles; force_serialization;
  5142     fixed_latency(100);
  5143 %}
  5145 pipe_class tail_call(Universe ignore, label labl) %{
  5146     single_instruction; has_delay_slot;
  5147     fixed_latency(100);
  5148     BR  : R(1);
  5149     MS  : R(1);
  5150 %}
  5152 pipe_class ret(Universe ignore) %{
  5153     single_instruction; has_delay_slot;
  5154     BR  : R(1);
  5155     MS  : R(1);
  5156 %}
  5158 pipe_class ret_poll(g3RegP poll) %{
  5159     instruction_count(3); has_delay_slot;
  5160     poll : E(read);
  5161     MS   : R;
  5162 %}
  5164 // The real do-nothing guy
  5165 pipe_class empty( ) %{
  5166     instruction_count(0);
  5167 %}
  5169 pipe_class long_memory_op() %{
  5170     instruction_count(0); multiple_bundles; force_serialization;
  5171     fixed_latency(25);
  5172     MS  : R(1);
  5173 %}
  5175 // Check-cast
  5176 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5177     array : R(read);
  5178     match  : R(read);
  5179     IALU   : R(2);
  5180     BR     : R(2);
  5181     MS     : R;
  5182 %}
  5184 // Convert FPU flags into +1,0,-1
  5185 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5186     src1  : E(read);
  5187     src2  : E(read);
  5188     dst   : E(write);
  5189     FA    : R;
  5190     MS    : R(2);
  5191     BR    : R(2);
  5192 %}
  5194 // Compare for p < q, and conditionally add y
  5195 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5196     p     : E(read);
  5197     q     : E(read);
  5198     y     : E(read);
  5199     IALU  : R(3)
  5200 %}
  5202 // Perform a compare, then move conditionally in a branch delay slot.
  5203 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5204     src2   : E(read);
  5205     srcdst : E(read);
  5206     IALU   : R;
  5207     BR     : R;
  5208 %}
  5210 // Define the class for the Nop node
  5211 define %{
  5212    MachNop = ialu_nop;
  5213 %}
  5215 %}
  5217 //----------INSTRUCTIONS-------------------------------------------------------
  5219 //------------Special Stack Slot instructions - no match rules-----------------
  5220 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5221   // No match rule to avoid chain rule match.
  5222   effect(DEF dst, USE src);
  5223   ins_cost(MEMORY_REF_COST);
  5224   size(4);
  5225   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5226   opcode(Assembler::ldf_op3);
  5227   ins_encode(simple_form3_mem_reg(src, dst));
  5228   ins_pipe(floadF_stk);
  5229 %}
  5231 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5232   // No match rule to avoid chain rule match.
  5233   effect(DEF dst, USE src);
  5234   ins_cost(MEMORY_REF_COST);
  5235   size(4);
  5236   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5237   opcode(Assembler::lddf_op3);
  5238   ins_encode(simple_form3_mem_reg(src, dst));
  5239   ins_pipe(floadD_stk);
  5240 %}
  5242 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5243   // No match rule to avoid chain rule match.
  5244   effect(DEF dst, USE src);
  5245   ins_cost(MEMORY_REF_COST);
  5246   size(4);
  5247   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5248   opcode(Assembler::stf_op3);
  5249   ins_encode(simple_form3_mem_reg(dst, src));
  5250   ins_pipe(fstoreF_stk_reg);
  5251 %}
  5253 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5254   // No match rule to avoid chain rule match.
  5255   effect(DEF dst, USE src);
  5256   ins_cost(MEMORY_REF_COST);
  5257   size(4);
  5258   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5259   opcode(Assembler::stdf_op3);
  5260   ins_encode(simple_form3_mem_reg(dst, src));
  5261   ins_pipe(fstoreD_stk_reg);
  5262 %}
  5264 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5265   effect(DEF dst, USE src);
  5266   ins_cost(MEMORY_REF_COST*2);
  5267   size(8);
  5268   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5269             "STW    R_G0,$dst.lo" %}
  5270   opcode(Assembler::stw_op3);
  5271   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5272   ins_pipe(lstoreI_stk_reg);
  5273 %}
  5275 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5276   // No match rule to avoid chain rule match.
  5277   effect(DEF dst, USE src);
  5278   ins_cost(MEMORY_REF_COST);
  5279   size(4);
  5280   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5281   opcode(Assembler::stx_op3);
  5282   ins_encode(simple_form3_mem_reg( dst, src ) );
  5283   ins_pipe(istore_stk_reg);
  5284 %}
  5286 //---------- Chain stack slots between similar types --------
  5288 // Load integer from stack slot
  5289 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5290   match(Set dst src);
  5291   ins_cost(MEMORY_REF_COST);
  5293   size(4);
  5294   format %{ "LDUW   $src,$dst\t!stk" %}
  5295   opcode(Assembler::lduw_op3);
  5296   ins_encode(simple_form3_mem_reg( src, dst ) );
  5297   ins_pipe(iload_mem);
  5298 %}
  5300 // Store integer to stack slot
  5301 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5302   match(Set dst src);
  5303   ins_cost(MEMORY_REF_COST);
  5305   size(4);
  5306   format %{ "STW    $src,$dst\t!stk" %}
  5307   opcode(Assembler::stw_op3);
  5308   ins_encode(simple_form3_mem_reg( dst, src ) );
  5309   ins_pipe(istore_mem_reg);
  5310 %}
  5312 // Load long from stack slot
  5313 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5314   match(Set dst src);
  5316   ins_cost(MEMORY_REF_COST);
  5317   size(4);
  5318   format %{ "LDX    $src,$dst\t! long" %}
  5319   opcode(Assembler::ldx_op3);
  5320   ins_encode(simple_form3_mem_reg( src, dst ) );
  5321   ins_pipe(iload_mem);
  5322 %}
  5324 // Store long to stack slot
  5325 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5326   match(Set dst src);
  5328   ins_cost(MEMORY_REF_COST);
  5329   size(4);
  5330   format %{ "STX    $src,$dst\t! long" %}
  5331   opcode(Assembler::stx_op3);
  5332   ins_encode(simple_form3_mem_reg( dst, src ) );
  5333   ins_pipe(istore_mem_reg);
  5334 %}
  5336 #ifdef _LP64
  5337 // Load pointer from stack slot, 64-bit encoding
  5338 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5339   match(Set dst src);
  5340   ins_cost(MEMORY_REF_COST);
  5341   size(4);
  5342   format %{ "LDX    $src,$dst\t!ptr" %}
  5343   opcode(Assembler::ldx_op3);
  5344   ins_encode(simple_form3_mem_reg( src, dst ) );
  5345   ins_pipe(iload_mem);
  5346 %}
  5348 // Store pointer to stack slot
  5349 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5350   match(Set dst src);
  5351   ins_cost(MEMORY_REF_COST);
  5352   size(4);
  5353   format %{ "STX    $src,$dst\t!ptr" %}
  5354   opcode(Assembler::stx_op3);
  5355   ins_encode(simple_form3_mem_reg( dst, src ) );
  5356   ins_pipe(istore_mem_reg);
  5357 %}
  5358 #else // _LP64
  5359 // Load pointer from stack slot, 32-bit encoding
  5360 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5361   match(Set dst src);
  5362   ins_cost(MEMORY_REF_COST);
  5363   format %{ "LDUW   $src,$dst\t!ptr" %}
  5364   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5365   ins_encode(simple_form3_mem_reg( src, dst ) );
  5366   ins_pipe(iload_mem);
  5367 %}
  5369 // Store pointer to stack slot
  5370 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5371   match(Set dst src);
  5372   ins_cost(MEMORY_REF_COST);
  5373   format %{ "STW    $src,$dst\t!ptr" %}
  5374   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5375   ins_encode(simple_form3_mem_reg( dst, src ) );
  5376   ins_pipe(istore_mem_reg);
  5377 %}
  5378 #endif // _LP64
  5380 //------------Special Nop instructions for bundling - no match rules-----------
  5381 // Nop using the A0 functional unit
  5382 instruct Nop_A0() %{
  5383   ins_cost(0);
  5385   format %{ "NOP    ! Alu Pipeline" %}
  5386   opcode(Assembler::or_op3, Assembler::arith_op);
  5387   ins_encode( form2_nop() );
  5388   ins_pipe(ialu_nop_A0);
  5389 %}
  5391 // Nop using the A1 functional unit
  5392 instruct Nop_A1( ) %{
  5393   ins_cost(0);
  5395   format %{ "NOP    ! Alu Pipeline" %}
  5396   opcode(Assembler::or_op3, Assembler::arith_op);
  5397   ins_encode( form2_nop() );
  5398   ins_pipe(ialu_nop_A1);
  5399 %}
  5401 // Nop using the memory functional unit
  5402 instruct Nop_MS( ) %{
  5403   ins_cost(0);
  5405   format %{ "NOP    ! Memory Pipeline" %}
  5406   ins_encode( emit_mem_nop );
  5407   ins_pipe(mem_nop);
  5408 %}
  5410 // Nop using the floating add functional unit
  5411 instruct Nop_FA( ) %{
  5412   ins_cost(0);
  5414   format %{ "NOP    ! Floating Add Pipeline" %}
  5415   ins_encode( emit_fadd_nop );
  5416   ins_pipe(fadd_nop);
  5417 %}
  5419 // Nop using the branch functional unit
  5420 instruct Nop_BR( ) %{
  5421   ins_cost(0);
  5423   format %{ "NOP    ! Branch Pipeline" %}
  5424   ins_encode( emit_br_nop );
  5425   ins_pipe(br_nop);
  5426 %}
  5428 //----------Load/Store/Move Instructions---------------------------------------
  5429 //----------Load Instructions--------------------------------------------------
  5430 // Load Byte (8bit signed)
  5431 instruct loadB(iRegI dst, memory mem) %{
  5432   match(Set dst (LoadB mem));
  5433   ins_cost(MEMORY_REF_COST);
  5435   size(4);
  5436   format %{ "LDSB   $mem,$dst\t! byte" %}
  5437   ins_encode %{
  5438     __ ldsb($mem$$Address, $dst$$Register);
  5439   %}
  5440   ins_pipe(iload_mask_mem);
  5441 %}
  5443 // Load Byte (8bit signed) into a Long Register
  5444 instruct loadB2L(iRegL dst, memory mem) %{
  5445   match(Set dst (ConvI2L (LoadB mem)));
  5446   ins_cost(MEMORY_REF_COST);
  5448   size(4);
  5449   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5450   ins_encode %{
  5451     __ ldsb($mem$$Address, $dst$$Register);
  5452   %}
  5453   ins_pipe(iload_mask_mem);
  5454 %}
  5456 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5457 instruct loadUB(iRegI dst, memory mem) %{
  5458   match(Set dst (LoadUB mem));
  5459   ins_cost(MEMORY_REF_COST);
  5461   size(4);
  5462   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5463   ins_encode %{
  5464     __ ldub($mem$$Address, $dst$$Register);
  5465   %}
  5466   ins_pipe(iload_mem);
  5467 %}
  5469 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5470 instruct loadUB2L(iRegL dst, memory mem) %{
  5471   match(Set dst (ConvI2L (LoadUB mem)));
  5472   ins_cost(MEMORY_REF_COST);
  5474   size(4);
  5475   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5476   ins_encode %{
  5477     __ ldub($mem$$Address, $dst$$Register);
  5478   %}
  5479   ins_pipe(iload_mem);
  5480 %}
  5482 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5483 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5484   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5485   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5487   size(2*4);
  5488   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5489             "AND    $dst,$mask,$dst" %}
  5490   ins_encode %{
  5491     __ ldub($mem$$Address, $dst$$Register);
  5492     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5493   %}
  5494   ins_pipe(iload_mem);
  5495 %}
  5497 // Load Short (16bit signed)
  5498 instruct loadS(iRegI dst, memory mem) %{
  5499   match(Set dst (LoadS mem));
  5500   ins_cost(MEMORY_REF_COST);
  5502   size(4);
  5503   format %{ "LDSH   $mem,$dst\t! short" %}
  5504   ins_encode %{
  5505     __ ldsh($mem$$Address, $dst$$Register);
  5506   %}
  5507   ins_pipe(iload_mask_mem);
  5508 %}
  5510 // Load Short (16 bit signed) to Byte (8 bit signed)
  5511 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5512   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5513   ins_cost(MEMORY_REF_COST);
  5515   size(4);
  5517   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5518   ins_encode %{
  5519     __ ldsb($mem$$Address, $dst$$Register, 1);
  5520   %}
  5521   ins_pipe(iload_mask_mem);
  5522 %}
  5524 // Load Short (16bit signed) into a Long Register
  5525 instruct loadS2L(iRegL dst, memory mem) %{
  5526   match(Set dst (ConvI2L (LoadS mem)));
  5527   ins_cost(MEMORY_REF_COST);
  5529   size(4);
  5530   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5531   ins_encode %{
  5532     __ ldsh($mem$$Address, $dst$$Register);
  5533   %}
  5534   ins_pipe(iload_mask_mem);
  5535 %}
  5537 // Load Unsigned Short/Char (16bit UNsigned)
  5538 instruct loadUS(iRegI dst, memory mem) %{
  5539   match(Set dst (LoadUS mem));
  5540   ins_cost(MEMORY_REF_COST);
  5542   size(4);
  5543   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5544   ins_encode %{
  5545     __ lduh($mem$$Address, $dst$$Register);
  5546   %}
  5547   ins_pipe(iload_mem);
  5548 %}
  5550 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5551 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5552   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5553   ins_cost(MEMORY_REF_COST);
  5555   size(4);
  5556   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5557   ins_encode %{
  5558     __ ldsb($mem$$Address, $dst$$Register, 1);
  5559   %}
  5560   ins_pipe(iload_mask_mem);
  5561 %}
  5563 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5564 instruct loadUS2L(iRegL dst, memory mem) %{
  5565   match(Set dst (ConvI2L (LoadUS mem)));
  5566   ins_cost(MEMORY_REF_COST);
  5568   size(4);
  5569   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5570   ins_encode %{
  5571     __ lduh($mem$$Address, $dst$$Register);
  5572   %}
  5573   ins_pipe(iload_mem);
  5574 %}
  5576 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5577 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5578   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5579   ins_cost(MEMORY_REF_COST);
  5581   size(4);
  5582   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5583   ins_encode %{
  5584     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5585   %}
  5586   ins_pipe(iload_mem);
  5587 %}
  5589 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5590 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5591   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5592   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5594   size(2*4);
  5595   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5596             "AND    $dst,$mask,$dst" %}
  5597   ins_encode %{
  5598     Register Rdst = $dst$$Register;
  5599     __ lduh($mem$$Address, Rdst);
  5600     __ and3(Rdst, $mask$$constant, Rdst);
  5601   %}
  5602   ins_pipe(iload_mem);
  5603 %}
  5605 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5606 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5607   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5608   effect(TEMP dst, TEMP tmp);
  5609   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5611   size((3+1)*4);  // set may use two instructions.
  5612   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5613             "SET    $mask,$tmp\n\t"
  5614             "AND    $dst,$tmp,$dst" %}
  5615   ins_encode %{
  5616     Register Rdst = $dst$$Register;
  5617     Register Rtmp = $tmp$$Register;
  5618     __ lduh($mem$$Address, Rdst);
  5619     __ set($mask$$constant, Rtmp);
  5620     __ and3(Rdst, Rtmp, Rdst);
  5621   %}
  5622   ins_pipe(iload_mem);
  5623 %}
  5625 // Load Integer
  5626 instruct loadI(iRegI dst, memory mem) %{
  5627   match(Set dst (LoadI mem));
  5628   ins_cost(MEMORY_REF_COST);
  5630   size(4);
  5631   format %{ "LDUW   $mem,$dst\t! int" %}
  5632   ins_encode %{
  5633     __ lduw($mem$$Address, $dst$$Register);
  5634   %}
  5635   ins_pipe(iload_mem);
  5636 %}
  5638 // Load Integer to Byte (8 bit signed)
  5639 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5640   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5641   ins_cost(MEMORY_REF_COST);
  5643   size(4);
  5645   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5646   ins_encode %{
  5647     __ ldsb($mem$$Address, $dst$$Register, 3);
  5648   %}
  5649   ins_pipe(iload_mask_mem);
  5650 %}
  5652 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5653 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5654   match(Set dst (AndI (LoadI mem) mask));
  5655   ins_cost(MEMORY_REF_COST);
  5657   size(4);
  5659   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5660   ins_encode %{
  5661     __ ldub($mem$$Address, $dst$$Register, 3);
  5662   %}
  5663   ins_pipe(iload_mask_mem);
  5664 %}
  5666 // Load Integer to Short (16 bit signed)
  5667 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5668   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5669   ins_cost(MEMORY_REF_COST);
  5671   size(4);
  5673   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5674   ins_encode %{
  5675     __ ldsh($mem$$Address, $dst$$Register, 2);
  5676   %}
  5677   ins_pipe(iload_mask_mem);
  5678 %}
  5680 // Load Integer to Unsigned Short (16 bit UNsigned)
  5681 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5682   match(Set dst (AndI (LoadI mem) mask));
  5683   ins_cost(MEMORY_REF_COST);
  5685   size(4);
  5687   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5688   ins_encode %{
  5689     __ lduh($mem$$Address, $dst$$Register, 2);
  5690   %}
  5691   ins_pipe(iload_mask_mem);
  5692 %}
  5694 // Load Integer into a Long Register
  5695 instruct loadI2L(iRegL dst, memory mem) %{
  5696   match(Set dst (ConvI2L (LoadI mem)));
  5697   ins_cost(MEMORY_REF_COST);
  5699   size(4);
  5700   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5701   ins_encode %{
  5702     __ ldsw($mem$$Address, $dst$$Register);
  5703   %}
  5704   ins_pipe(iload_mask_mem);
  5705 %}
  5707 // Load Integer with mask 0xFF into a Long Register
  5708 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5709   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5710   ins_cost(MEMORY_REF_COST);
  5712   size(4);
  5713   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5714   ins_encode %{
  5715     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5716   %}
  5717   ins_pipe(iload_mem);
  5718 %}
  5720 // Load Integer with mask 0xFFFF into a Long Register
  5721 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5722   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5723   ins_cost(MEMORY_REF_COST);
  5725   size(4);
  5726   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5727   ins_encode %{
  5728     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5729   %}
  5730   ins_pipe(iload_mem);
  5731 %}
  5733 // Load Integer with a 13-bit mask into a Long Register
  5734 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5735   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5736   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5738   size(2*4);
  5739   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5740             "AND    $dst,$mask,$dst" %}
  5741   ins_encode %{
  5742     Register Rdst = $dst$$Register;
  5743     __ lduw($mem$$Address, Rdst);
  5744     __ and3(Rdst, $mask$$constant, Rdst);
  5745   %}
  5746   ins_pipe(iload_mem);
  5747 %}
  5749 // Load Integer with a 32-bit mask into a Long Register
  5750 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5751   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5752   effect(TEMP dst, TEMP tmp);
  5753   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5755   size((3+1)*4);  // set may use two instructions.
  5756   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5757             "SET    $mask,$tmp\n\t"
  5758             "AND    $dst,$tmp,$dst" %}
  5759   ins_encode %{
  5760     Register Rdst = $dst$$Register;
  5761     Register Rtmp = $tmp$$Register;
  5762     __ lduw($mem$$Address, Rdst);
  5763     __ set($mask$$constant, Rtmp);
  5764     __ and3(Rdst, Rtmp, Rdst);
  5765   %}
  5766   ins_pipe(iload_mem);
  5767 %}
  5769 // Load Unsigned Integer into a Long Register
  5770 instruct loadUI2L(iRegL dst, memory mem) %{
  5771   match(Set dst (LoadUI2L mem));
  5772   ins_cost(MEMORY_REF_COST);
  5774   size(4);
  5775   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5776   ins_encode %{
  5777     __ lduw($mem$$Address, $dst$$Register);
  5778   %}
  5779   ins_pipe(iload_mem);
  5780 %}
  5782 // Load Long - aligned
  5783 instruct loadL(iRegL dst, memory mem ) %{
  5784   match(Set dst (LoadL mem));
  5785   ins_cost(MEMORY_REF_COST);
  5787   size(4);
  5788   format %{ "LDX    $mem,$dst\t! long" %}
  5789   ins_encode %{
  5790     __ ldx($mem$$Address, $dst$$Register);
  5791   %}
  5792   ins_pipe(iload_mem);
  5793 %}
  5795 // Load Long - UNaligned
  5796 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5797   match(Set dst (LoadL_unaligned mem));
  5798   effect(KILL tmp);
  5799   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5800   size(16);
  5801   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5802           "\tLDUW   $mem  ,$dst\n"
  5803           "\tSLLX   #32, $dst, $dst\n"
  5804           "\tOR     $dst, R_O7, $dst" %}
  5805   opcode(Assembler::lduw_op3);
  5806   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5807   ins_pipe(iload_mem);
  5808 %}
  5810 // Load Aligned Packed Byte into a Double Register
  5811 instruct loadA8B(regD dst, memory mem) %{
  5812   match(Set dst (Load8B mem));
  5813   ins_cost(MEMORY_REF_COST);
  5814   size(4);
  5815   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5816   opcode(Assembler::lddf_op3);
  5817   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5818   ins_pipe(floadD_mem);
  5819 %}
  5821 // Load Aligned Packed Char into a Double Register
  5822 instruct loadA4C(regD dst, memory mem) %{
  5823   match(Set dst (Load4C mem));
  5824   ins_cost(MEMORY_REF_COST);
  5825   size(4);
  5826   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5827   opcode(Assembler::lddf_op3);
  5828   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5829   ins_pipe(floadD_mem);
  5830 %}
  5832 // Load Aligned Packed Short into a Double Register
  5833 instruct loadA4S(regD dst, memory mem) %{
  5834   match(Set dst (Load4S mem));
  5835   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5837   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5838   opcode(Assembler::lddf_op3);
  5839   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5840   ins_pipe(floadD_mem);
  5841 %}
  5843 // Load Aligned Packed Int into a Double Register
  5844 instruct loadA2I(regD dst, memory mem) %{
  5845   match(Set dst (Load2I mem));
  5846   ins_cost(MEMORY_REF_COST);
  5847   size(4);
  5848   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5849   opcode(Assembler::lddf_op3);
  5850   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5851   ins_pipe(floadD_mem);
  5852 %}
  5854 // Load Range
  5855 instruct loadRange(iRegI dst, memory mem) %{
  5856   match(Set dst (LoadRange mem));
  5857   ins_cost(MEMORY_REF_COST);
  5859   size(4);
  5860   format %{ "LDUW   $mem,$dst\t! range" %}
  5861   opcode(Assembler::lduw_op3);
  5862   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5863   ins_pipe(iload_mem);
  5864 %}
  5866 // Load Integer into %f register (for fitos/fitod)
  5867 instruct loadI_freg(regF dst, memory mem) %{
  5868   match(Set dst (LoadI mem));
  5869   ins_cost(MEMORY_REF_COST);
  5870   size(4);
  5872   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5873   opcode(Assembler::ldf_op3);
  5874   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5875   ins_pipe(floadF_mem);
  5876 %}
  5878 // Load Pointer
  5879 instruct loadP(iRegP dst, memory mem) %{
  5880   match(Set dst (LoadP mem));
  5881   ins_cost(MEMORY_REF_COST);
  5882   size(4);
  5884 #ifndef _LP64
  5885   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5886   ins_encode %{
  5887     __ lduw($mem$$Address, $dst$$Register);
  5888   %}
  5889 #else
  5890   format %{ "LDX    $mem,$dst\t! ptr" %}
  5891   ins_encode %{
  5892     __ ldx($mem$$Address, $dst$$Register);
  5893   %}
  5894 #endif
  5895   ins_pipe(iload_mem);
  5896 %}
  5898 // Load Compressed Pointer
  5899 instruct loadN(iRegN dst, memory mem) %{
  5900   match(Set dst (LoadN mem));
  5901   ins_cost(MEMORY_REF_COST);
  5902   size(4);
  5904   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5905   ins_encode %{
  5906     __ lduw($mem$$Address, $dst$$Register);
  5907   %}
  5908   ins_pipe(iload_mem);
  5909 %}
  5911 // Load Klass Pointer
  5912 instruct loadKlass(iRegP dst, memory mem) %{
  5913   match(Set dst (LoadKlass mem));
  5914   ins_cost(MEMORY_REF_COST);
  5915   size(4);
  5917 #ifndef _LP64
  5918   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5919   ins_encode %{
  5920     __ lduw($mem$$Address, $dst$$Register);
  5921   %}
  5922 #else
  5923   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5924   ins_encode %{
  5925     __ ldx($mem$$Address, $dst$$Register);
  5926   %}
  5927 #endif
  5928   ins_pipe(iload_mem);
  5929 %}
  5931 // Load narrow Klass Pointer
  5932 instruct loadNKlass(iRegN dst, memory mem) %{
  5933   match(Set dst (LoadNKlass mem));
  5934   ins_cost(MEMORY_REF_COST);
  5935   size(4);
  5937   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5938   ins_encode %{
  5939     __ lduw($mem$$Address, $dst$$Register);
  5940   %}
  5941   ins_pipe(iload_mem);
  5942 %}
  5944 // Load Double
  5945 instruct loadD(regD dst, memory mem) %{
  5946   match(Set dst (LoadD mem));
  5947   ins_cost(MEMORY_REF_COST);
  5949   size(4);
  5950   format %{ "LDDF   $mem,$dst" %}
  5951   opcode(Assembler::lddf_op3);
  5952   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5953   ins_pipe(floadD_mem);
  5954 %}
  5956 // Load Double - UNaligned
  5957 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5958   match(Set dst (LoadD_unaligned mem));
  5959   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5960   size(8);
  5961   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5962           "\tLDF    $mem+4,$dst.lo\t!" %}
  5963   opcode(Assembler::ldf_op3);
  5964   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5965   ins_pipe(iload_mem);
  5966 %}
  5968 // Load Float
  5969 instruct loadF(regF dst, memory mem) %{
  5970   match(Set dst (LoadF mem));
  5971   ins_cost(MEMORY_REF_COST);
  5973   size(4);
  5974   format %{ "LDF    $mem,$dst" %}
  5975   opcode(Assembler::ldf_op3);
  5976   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5977   ins_pipe(floadF_mem);
  5978 %}
  5980 // Load Constant
  5981 instruct loadConI( iRegI dst, immI src ) %{
  5982   match(Set dst src);
  5983   ins_cost(DEFAULT_COST * 3/2);
  5984   format %{ "SET    $src,$dst" %}
  5985   ins_encode( Set32(src, dst) );
  5986   ins_pipe(ialu_hi_lo_reg);
  5987 %}
  5989 instruct loadConI13( iRegI dst, immI13 src ) %{
  5990   match(Set dst src);
  5992   size(4);
  5993   format %{ "MOV    $src,$dst" %}
  5994   ins_encode( Set13( src, dst ) );
  5995   ins_pipe(ialu_imm);
  5996 %}
  5998 instruct loadConP(iRegP dst, immP src) %{
  5999   match(Set dst src);
  6000   ins_cost(DEFAULT_COST * 3/2);
  6001   format %{ "SET    $src,$dst\t!ptr" %}
  6002   // This rule does not use "expand" unlike loadConI because then
  6003   // the result type is not known to be an Oop.  An ADLC
  6004   // enhancement will be needed to make that work - not worth it!
  6006   ins_encode( SetPtr( src, dst ) );
  6007   ins_pipe(loadConP);
  6009 %}
  6011 instruct loadConP0(iRegP dst, immP0 src) %{
  6012   match(Set dst src);
  6014   size(4);
  6015   format %{ "CLR    $dst\t!ptr" %}
  6016   ins_encode( SetNull( dst ) );
  6017   ins_pipe(ialu_imm);
  6018 %}
  6020 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6021   match(Set dst src);
  6022   ins_cost(DEFAULT_COST);
  6023   format %{ "SET    $src,$dst\t!ptr" %}
  6024   ins_encode %{
  6025     AddressLiteral polling_page(os::get_polling_page());
  6026     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6027   %}
  6028   ins_pipe(loadConP_poll);
  6029 %}
  6031 instruct loadConN0(iRegN dst, immN0 src) %{
  6032   match(Set dst src);
  6034   size(4);
  6035   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6036   ins_encode( SetNull( dst ) );
  6037   ins_pipe(ialu_imm);
  6038 %}
  6040 instruct loadConN(iRegN dst, immN src) %{
  6041   match(Set dst src);
  6042   ins_cost(DEFAULT_COST * 3/2);
  6043   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6044   ins_encode %{
  6045     Register dst = $dst$$Register;
  6046     __ set_narrow_oop((jobject)$src$$constant, dst);
  6047   %}
  6048   ins_pipe(ialu_hi_lo_reg);
  6049 %}
  6051 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  6052   // %%% maybe this should work like loadConD
  6053   match(Set dst src);
  6054   effect(KILL tmp);
  6055   ins_cost(DEFAULT_COST * 4);
  6056   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  6057   ins_encode( LdImmL(src, dst, tmp) );
  6058   ins_pipe(loadConL);
  6059 %}
  6061 instruct loadConL0( iRegL dst, immL0 src ) %{
  6062   match(Set dst src);
  6063   ins_cost(DEFAULT_COST);
  6064   size(4);
  6065   format %{ "CLR    $dst\t! long" %}
  6066   ins_encode( Set13( src, dst ) );
  6067   ins_pipe(ialu_imm);
  6068 %}
  6070 instruct loadConL13( iRegL dst, immL13 src ) %{
  6071   match(Set dst src);
  6072   ins_cost(DEFAULT_COST * 2);
  6074   size(4);
  6075   format %{ "MOV    $src,$dst\t! long" %}
  6076   ins_encode( Set13( src, dst ) );
  6077   ins_pipe(ialu_imm);
  6078 %}
  6080 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  6081   match(Set dst src);
  6082   effect(KILL tmp);
  6084 #ifdef _LP64
  6085   size(8*4);
  6086 #else
  6087   size(2*4);
  6088 #endif
  6090   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  6091             "LDF    [$tmp+lo(&$src)],$dst" %}
  6092   ins_encode %{
  6093     address float_address = __ float_constant($src$$constant);
  6094     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  6095     AddressLiteral addrlit(float_address, rspec);
  6097     __ sethi(addrlit, $tmp$$Register);
  6098     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6099   %}
  6100   ins_pipe(loadConFD);
  6101 %}
  6103 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  6104   match(Set dst src);
  6105   effect(KILL tmp);
  6107 #ifdef _LP64
  6108   size(8*4);
  6109 #else
  6110   size(2*4);
  6111 #endif
  6113   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  6114             "LDDF   [$tmp+lo(&$src)],$dst" %}
  6115   ins_encode %{
  6116     address double_address = __ double_constant($src$$constant);
  6117     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  6118     AddressLiteral addrlit(double_address, rspec);
  6120     __ sethi(addrlit, $tmp$$Register);
  6121     // XXX This is a quick fix for 6833573.
  6122     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6123     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  6124   %}
  6125   ins_pipe(loadConFD);
  6126 %}
  6128 // Prefetch instructions.
  6129 // Must be safe to execute with invalid address (cannot fault).
  6131 instruct prefetchr( memory mem ) %{
  6132   match( PrefetchRead mem );
  6133   ins_cost(MEMORY_REF_COST);
  6135   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6136   opcode(Assembler::prefetch_op3);
  6137   ins_encode( form3_mem_prefetch_read( mem ) );
  6138   ins_pipe(iload_mem);
  6139 %}
  6141 instruct prefetchw( memory mem ) %{
  6142   predicate(AllocatePrefetchStyle != 3 );
  6143   match( PrefetchWrite mem );
  6144   ins_cost(MEMORY_REF_COST);
  6146   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6147   opcode(Assembler::prefetch_op3);
  6148   ins_encode( form3_mem_prefetch_write( mem ) );
  6149   ins_pipe(iload_mem);
  6150 %}
  6152 // Use BIS instruction to prefetch.
  6153 instruct prefetchw_bis( memory mem ) %{
  6154   predicate(AllocatePrefetchStyle == 3);
  6155   match( PrefetchWrite mem );
  6156   ins_cost(MEMORY_REF_COST);
  6158   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6159   ins_encode %{
  6160      Register base = as_Register($mem$$base);
  6161      int disp = $mem$$disp;
  6162      if (disp != 0) {
  6163        __ add(base, AllocatePrefetchStepSize, base);
  6165      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6166   %}
  6167   ins_pipe(istore_mem_reg);
  6168 %}
  6170 //----------Store Instructions-------------------------------------------------
  6171 // Store Byte
  6172 instruct storeB(memory mem, iRegI src) %{
  6173   match(Set mem (StoreB mem src));
  6174   ins_cost(MEMORY_REF_COST);
  6176   size(4);
  6177   format %{ "STB    $src,$mem\t! byte" %}
  6178   opcode(Assembler::stb_op3);
  6179   ins_encode(simple_form3_mem_reg( mem, src ) );
  6180   ins_pipe(istore_mem_reg);
  6181 %}
  6183 instruct storeB0(memory mem, immI0 src) %{
  6184   match(Set mem (StoreB mem src));
  6185   ins_cost(MEMORY_REF_COST);
  6187   size(4);
  6188   format %{ "STB    $src,$mem\t! byte" %}
  6189   opcode(Assembler::stb_op3);
  6190   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6191   ins_pipe(istore_mem_zero);
  6192 %}
  6194 instruct storeCM0(memory mem, immI0 src) %{
  6195   match(Set mem (StoreCM mem src));
  6196   ins_cost(MEMORY_REF_COST);
  6198   size(4);
  6199   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6200   opcode(Assembler::stb_op3);
  6201   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6202   ins_pipe(istore_mem_zero);
  6203 %}
  6205 // Store Char/Short
  6206 instruct storeC(memory mem, iRegI src) %{
  6207   match(Set mem (StoreC mem src));
  6208   ins_cost(MEMORY_REF_COST);
  6210   size(4);
  6211   format %{ "STH    $src,$mem\t! short" %}
  6212   opcode(Assembler::sth_op3);
  6213   ins_encode(simple_form3_mem_reg( mem, src ) );
  6214   ins_pipe(istore_mem_reg);
  6215 %}
  6217 instruct storeC0(memory mem, immI0 src) %{
  6218   match(Set mem (StoreC mem src));
  6219   ins_cost(MEMORY_REF_COST);
  6221   size(4);
  6222   format %{ "STH    $src,$mem\t! short" %}
  6223   opcode(Assembler::sth_op3);
  6224   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6225   ins_pipe(istore_mem_zero);
  6226 %}
  6228 // Store Integer
  6229 instruct storeI(memory mem, iRegI src) %{
  6230   match(Set mem (StoreI mem src));
  6231   ins_cost(MEMORY_REF_COST);
  6233   size(4);
  6234   format %{ "STW    $src,$mem" %}
  6235   opcode(Assembler::stw_op3);
  6236   ins_encode(simple_form3_mem_reg( mem, src ) );
  6237   ins_pipe(istore_mem_reg);
  6238 %}
  6240 // Store Long
  6241 instruct storeL(memory mem, iRegL src) %{
  6242   match(Set mem (StoreL mem src));
  6243   ins_cost(MEMORY_REF_COST);
  6244   size(4);
  6245   format %{ "STX    $src,$mem\t! long" %}
  6246   opcode(Assembler::stx_op3);
  6247   ins_encode(simple_form3_mem_reg( mem, src ) );
  6248   ins_pipe(istore_mem_reg);
  6249 %}
  6251 instruct storeI0(memory mem, immI0 src) %{
  6252   match(Set mem (StoreI mem src));
  6253   ins_cost(MEMORY_REF_COST);
  6255   size(4);
  6256   format %{ "STW    $src,$mem" %}
  6257   opcode(Assembler::stw_op3);
  6258   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6259   ins_pipe(istore_mem_zero);
  6260 %}
  6262 instruct storeL0(memory mem, immL0 src) %{
  6263   match(Set mem (StoreL mem src));
  6264   ins_cost(MEMORY_REF_COST);
  6266   size(4);
  6267   format %{ "STX    $src,$mem" %}
  6268   opcode(Assembler::stx_op3);
  6269   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6270   ins_pipe(istore_mem_zero);
  6271 %}
  6273 // Store Integer from float register (used after fstoi)
  6274 instruct storeI_Freg(memory mem, regF src) %{
  6275   match(Set mem (StoreI mem src));
  6276   ins_cost(MEMORY_REF_COST);
  6278   size(4);
  6279   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6280   opcode(Assembler::stf_op3);
  6281   ins_encode(simple_form3_mem_reg( mem, src ) );
  6282   ins_pipe(fstoreF_mem_reg);
  6283 %}
  6285 // Store Pointer
  6286 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6287   match(Set dst (StoreP dst src));
  6288   ins_cost(MEMORY_REF_COST);
  6289   size(4);
  6291 #ifndef _LP64
  6292   format %{ "STW    $src,$dst\t! ptr" %}
  6293   opcode(Assembler::stw_op3, 0, REGP_OP);
  6294 #else
  6295   format %{ "STX    $src,$dst\t! ptr" %}
  6296   opcode(Assembler::stx_op3, 0, REGP_OP);
  6297 #endif
  6298   ins_encode( form3_mem_reg( dst, src ) );
  6299   ins_pipe(istore_mem_spORreg);
  6300 %}
  6302 instruct storeP0(memory dst, immP0 src) %{
  6303   match(Set dst (StoreP dst src));
  6304   ins_cost(MEMORY_REF_COST);
  6305   size(4);
  6307 #ifndef _LP64
  6308   format %{ "STW    $src,$dst\t! ptr" %}
  6309   opcode(Assembler::stw_op3, 0, REGP_OP);
  6310 #else
  6311   format %{ "STX    $src,$dst\t! ptr" %}
  6312   opcode(Assembler::stx_op3, 0, REGP_OP);
  6313 #endif
  6314   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6315   ins_pipe(istore_mem_zero);
  6316 %}
  6318 // Store Compressed Pointer
  6319 instruct storeN(memory dst, iRegN src) %{
  6320    match(Set dst (StoreN dst src));
  6321    ins_cost(MEMORY_REF_COST);
  6322    size(4);
  6324    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6325    ins_encode %{
  6326      Register base = as_Register($dst$$base);
  6327      Register index = as_Register($dst$$index);
  6328      Register src = $src$$Register;
  6329      if (index != G0) {
  6330        __ stw(src, base, index);
  6331      } else {
  6332        __ stw(src, base, $dst$$disp);
  6334    %}
  6335    ins_pipe(istore_mem_spORreg);
  6336 %}
  6338 instruct storeN0(memory dst, immN0 src) %{
  6339    match(Set dst (StoreN dst src));
  6340    ins_cost(MEMORY_REF_COST);
  6341    size(4);
  6343    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6344    ins_encode %{
  6345      Register base = as_Register($dst$$base);
  6346      Register index = as_Register($dst$$index);
  6347      if (index != G0) {
  6348        __ stw(0, base, index);
  6349      } else {
  6350        __ stw(0, base, $dst$$disp);
  6352    %}
  6353    ins_pipe(istore_mem_zero);
  6354 %}
  6356 // Store Double
  6357 instruct storeD( memory mem, regD src) %{
  6358   match(Set mem (StoreD mem src));
  6359   ins_cost(MEMORY_REF_COST);
  6361   size(4);
  6362   format %{ "STDF   $src,$mem" %}
  6363   opcode(Assembler::stdf_op3);
  6364   ins_encode(simple_form3_mem_reg( mem, src ) );
  6365   ins_pipe(fstoreD_mem_reg);
  6366 %}
  6368 instruct storeD0( memory mem, immD0 src) %{
  6369   match(Set mem (StoreD mem src));
  6370   ins_cost(MEMORY_REF_COST);
  6372   size(4);
  6373   format %{ "STX    $src,$mem" %}
  6374   opcode(Assembler::stx_op3);
  6375   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6376   ins_pipe(fstoreD_mem_zero);
  6377 %}
  6379 // Store Float
  6380 instruct storeF( memory mem, regF src) %{
  6381   match(Set mem (StoreF mem src));
  6382   ins_cost(MEMORY_REF_COST);
  6384   size(4);
  6385   format %{ "STF    $src,$mem" %}
  6386   opcode(Assembler::stf_op3);
  6387   ins_encode(simple_form3_mem_reg( mem, src ) );
  6388   ins_pipe(fstoreF_mem_reg);
  6389 %}
  6391 instruct storeF0( memory mem, immF0 src) %{
  6392   match(Set mem (StoreF mem src));
  6393   ins_cost(MEMORY_REF_COST);
  6395   size(4);
  6396   format %{ "STW    $src,$mem\t! storeF0" %}
  6397   opcode(Assembler::stw_op3);
  6398   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6399   ins_pipe(fstoreF_mem_zero);
  6400 %}
  6402 // Store Aligned Packed Bytes in Double register to memory
  6403 instruct storeA8B(memory mem, regD src) %{
  6404   match(Set mem (Store8B mem src));
  6405   ins_cost(MEMORY_REF_COST);
  6406   size(4);
  6407   format %{ "STDF   $src,$mem\t! packed8B" %}
  6408   opcode(Assembler::stdf_op3);
  6409   ins_encode(simple_form3_mem_reg( mem, src ) );
  6410   ins_pipe(fstoreD_mem_reg);
  6411 %}
  6413 // Convert oop pointer into compressed form
  6414 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6415   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6416   match(Set dst (EncodeP src));
  6417   format %{ "encode_heap_oop $src, $dst" %}
  6418   ins_encode %{
  6419     __ encode_heap_oop($src$$Register, $dst$$Register);
  6420   %}
  6421   ins_pipe(ialu_reg);
  6422 %}
  6424 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6425   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6426   match(Set dst (EncodeP src));
  6427   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6428   ins_encode %{
  6429     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6430   %}
  6431   ins_pipe(ialu_reg);
  6432 %}
  6434 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6435   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6436             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6437   match(Set dst (DecodeN src));
  6438   format %{ "decode_heap_oop $src, $dst" %}
  6439   ins_encode %{
  6440     __ decode_heap_oop($src$$Register, $dst$$Register);
  6441   %}
  6442   ins_pipe(ialu_reg);
  6443 %}
  6445 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6446   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6447             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6448   match(Set dst (DecodeN src));
  6449   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6450   ins_encode %{
  6451     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6452   %}
  6453   ins_pipe(ialu_reg);
  6454 %}
  6457 // Store Zero into Aligned Packed Bytes
  6458 instruct storeA8B0(memory mem, immI0 zero) %{
  6459   match(Set mem (Store8B mem zero));
  6460   ins_cost(MEMORY_REF_COST);
  6461   size(4);
  6462   format %{ "STX    $zero,$mem\t! packed8B" %}
  6463   opcode(Assembler::stx_op3);
  6464   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6465   ins_pipe(fstoreD_mem_zero);
  6466 %}
  6468 // Store Aligned Packed Chars/Shorts in Double register to memory
  6469 instruct storeA4C(memory mem, regD src) %{
  6470   match(Set mem (Store4C mem src));
  6471   ins_cost(MEMORY_REF_COST);
  6472   size(4);
  6473   format %{ "STDF   $src,$mem\t! packed4C" %}
  6474   opcode(Assembler::stdf_op3);
  6475   ins_encode(simple_form3_mem_reg( mem, src ) );
  6476   ins_pipe(fstoreD_mem_reg);
  6477 %}
  6479 // Store Zero into Aligned Packed Chars/Shorts
  6480 instruct storeA4C0(memory mem, immI0 zero) %{
  6481   match(Set mem (Store4C mem (Replicate4C zero)));
  6482   ins_cost(MEMORY_REF_COST);
  6483   size(4);
  6484   format %{ "STX    $zero,$mem\t! packed4C" %}
  6485   opcode(Assembler::stx_op3);
  6486   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6487   ins_pipe(fstoreD_mem_zero);
  6488 %}
  6490 // Store Aligned Packed Ints in Double register to memory
  6491 instruct storeA2I(memory mem, regD src) %{
  6492   match(Set mem (Store2I mem src));
  6493   ins_cost(MEMORY_REF_COST);
  6494   size(4);
  6495   format %{ "STDF   $src,$mem\t! packed2I" %}
  6496   opcode(Assembler::stdf_op3);
  6497   ins_encode(simple_form3_mem_reg( mem, src ) );
  6498   ins_pipe(fstoreD_mem_reg);
  6499 %}
  6501 // Store Zero into Aligned Packed Ints
  6502 instruct storeA2I0(memory mem, immI0 zero) %{
  6503   match(Set mem (Store2I mem zero));
  6504   ins_cost(MEMORY_REF_COST);
  6505   size(4);
  6506   format %{ "STX    $zero,$mem\t! packed2I" %}
  6507   opcode(Assembler::stx_op3);
  6508   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6509   ins_pipe(fstoreD_mem_zero);
  6510 %}
  6513 //----------MemBar Instructions-----------------------------------------------
  6514 // Memory barrier flavors
  6516 instruct membar_acquire() %{
  6517   match(MemBarAcquire);
  6518   ins_cost(4*MEMORY_REF_COST);
  6520   size(0);
  6521   format %{ "MEMBAR-acquire" %}
  6522   ins_encode( enc_membar_acquire );
  6523   ins_pipe(long_memory_op);
  6524 %}
  6526 instruct membar_acquire_lock() %{
  6527   match(MemBarAcquire);
  6528   predicate(Matcher::prior_fast_lock(n));
  6529   ins_cost(0);
  6531   size(0);
  6532   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6533   ins_encode( );
  6534   ins_pipe(empty);
  6535 %}
  6537 instruct membar_release() %{
  6538   match(MemBarRelease);
  6539   ins_cost(4*MEMORY_REF_COST);
  6541   size(0);
  6542   format %{ "MEMBAR-release" %}
  6543   ins_encode( enc_membar_release );
  6544   ins_pipe(long_memory_op);
  6545 %}
  6547 instruct membar_release_lock() %{
  6548   match(MemBarRelease);
  6549   predicate(Matcher::post_fast_unlock(n));
  6550   ins_cost(0);
  6552   size(0);
  6553   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6554   ins_encode( );
  6555   ins_pipe(empty);
  6556 %}
  6558 instruct membar_volatile() %{
  6559   match(MemBarVolatile);
  6560   ins_cost(4*MEMORY_REF_COST);
  6562   size(4);
  6563   format %{ "MEMBAR-volatile" %}
  6564   ins_encode( enc_membar_volatile );
  6565   ins_pipe(long_memory_op);
  6566 %}
  6568 instruct unnecessary_membar_volatile() %{
  6569   match(MemBarVolatile);
  6570   predicate(Matcher::post_store_load_barrier(n));
  6571   ins_cost(0);
  6573   size(0);
  6574   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6575   ins_encode( );
  6576   ins_pipe(empty);
  6577 %}
  6579 //----------Register Move Instructions-----------------------------------------
  6580 instruct roundDouble_nop(regD dst) %{
  6581   match(Set dst (RoundDouble dst));
  6582   ins_cost(0);
  6583   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6584   ins_encode( );
  6585   ins_pipe(empty);
  6586 %}
  6589 instruct roundFloat_nop(regF dst) %{
  6590   match(Set dst (RoundFloat dst));
  6591   ins_cost(0);
  6592   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6593   ins_encode( );
  6594   ins_pipe(empty);
  6595 %}
  6598 // Cast Index to Pointer for unsafe natives
  6599 instruct castX2P(iRegX src, iRegP dst) %{
  6600   match(Set dst (CastX2P src));
  6602   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6603   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6604   ins_pipe(ialu_reg);
  6605 %}
  6607 // Cast Pointer to Index for unsafe natives
  6608 instruct castP2X(iRegP src, iRegX dst) %{
  6609   match(Set dst (CastP2X src));
  6611   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6612   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6613   ins_pipe(ialu_reg);
  6614 %}
  6616 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6617   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6618   match(Set stkSlot src);   // chain rule
  6619   ins_cost(MEMORY_REF_COST);
  6620   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6621   opcode(Assembler::stdf_op3);
  6622   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6623   ins_pipe(fstoreD_stk_reg);
  6624 %}
  6626 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6627   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6628   match(Set dst stkSlot);   // chain rule
  6629   ins_cost(MEMORY_REF_COST);
  6630   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6631   opcode(Assembler::lddf_op3);
  6632   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6633   ins_pipe(floadD_stk);
  6634 %}
  6636 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6637   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6638   match(Set stkSlot src);   // chain rule
  6639   ins_cost(MEMORY_REF_COST);
  6640   format %{ "STF   $src,$stkSlot\t!stk" %}
  6641   opcode(Assembler::stf_op3);
  6642   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6643   ins_pipe(fstoreF_stk_reg);
  6644 %}
  6646 //----------Conditional Move---------------------------------------------------
  6647 // Conditional move
  6648 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6649   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6650   ins_cost(150);
  6651   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6652   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6653   ins_pipe(ialu_reg);
  6654 %}
  6656 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6657   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6658   ins_cost(140);
  6659   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6660   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6661   ins_pipe(ialu_imm);
  6662 %}
  6664 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6665   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6666   ins_cost(150);
  6667   size(4);
  6668   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6669   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6670   ins_pipe(ialu_reg);
  6671 %}
  6673 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6674   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6675   ins_cost(140);
  6676   size(4);
  6677   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6678   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6679   ins_pipe(ialu_imm);
  6680 %}
  6682 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6683   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6684   ins_cost(150);
  6685   size(4);
  6686   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6687   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6688   ins_pipe(ialu_reg);
  6689 %}
  6691 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6692   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6693   ins_cost(140);
  6694   size(4);
  6695   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6696   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6697   ins_pipe(ialu_imm);
  6698 %}
  6700 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6701   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6702   ins_cost(150);
  6703   size(4);
  6704   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6705   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6706   ins_pipe(ialu_reg);
  6707 %}
  6709 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6710   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6711   ins_cost(140);
  6712   size(4);
  6713   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6714   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6715   ins_pipe(ialu_imm);
  6716 %}
  6718 // Conditional move for RegN. Only cmov(reg,reg).
  6719 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6720   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6721   ins_cost(150);
  6722   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6723   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6724   ins_pipe(ialu_reg);
  6725 %}
  6727 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6728 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6729   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6730   ins_cost(150);
  6731   size(4);
  6732   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6733   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6734   ins_pipe(ialu_reg);
  6735 %}
  6737 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6738 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6739   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6740   ins_cost(150);
  6741   size(4);
  6742   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6743   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6744   ins_pipe(ialu_reg);
  6745 %}
  6747 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6748   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6749   ins_cost(150);
  6750   size(4);
  6751   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6752   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6753   ins_pipe(ialu_reg);
  6754 %}
  6756 // Conditional move
  6757 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6758   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6759   ins_cost(150);
  6760   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6761   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6762   ins_pipe(ialu_reg);
  6763 %}
  6765 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6766   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6767   ins_cost(140);
  6768   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6769   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6770   ins_pipe(ialu_imm);
  6771 %}
  6773 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6774 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6775   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6776   ins_cost(150);
  6778   size(4);
  6779   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6780   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6781   ins_pipe(ialu_reg);
  6782 %}
  6784 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6785   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6786   ins_cost(150);
  6788   size(4);
  6789   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6790   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6791   ins_pipe(ialu_reg);
  6792 %}
  6794 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6795   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6796   ins_cost(140);
  6798   size(4);
  6799   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6800   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6801   ins_pipe(ialu_imm);
  6802 %}
  6804 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6805   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6806   ins_cost(140);
  6808   size(4);
  6809   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6810   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6811   ins_pipe(ialu_imm);
  6812 %}
  6814 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6815   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6816   ins_cost(150);
  6817   size(4);
  6818   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6819   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6820   ins_pipe(ialu_imm);
  6821 %}
  6823 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6824   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6825   ins_cost(140);
  6826   size(4);
  6827   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6828   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6829   ins_pipe(ialu_imm);
  6830 %}
  6832 // Conditional move
  6833 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6834   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6835   ins_cost(150);
  6836   opcode(0x101);
  6837   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6838   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6839   ins_pipe(int_conditional_float_move);
  6840 %}
  6842 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6843   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6844   ins_cost(150);
  6846   size(4);
  6847   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6848   opcode(0x101);
  6849   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6850   ins_pipe(int_conditional_float_move);
  6851 %}
  6853 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6854   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6855   ins_cost(150);
  6857   size(4);
  6858   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6859   opcode(0x101);
  6860   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6861   ins_pipe(int_conditional_float_move);
  6862 %}
  6864 // Conditional move,
  6865 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6866   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6867   ins_cost(150);
  6868   size(4);
  6869   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6870   opcode(0x1);
  6871   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6872   ins_pipe(int_conditional_double_move);
  6873 %}
  6875 // Conditional move
  6876 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6877   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6878   ins_cost(150);
  6879   size(4);
  6880   opcode(0x102);
  6881   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6882   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6883   ins_pipe(int_conditional_double_move);
  6884 %}
  6886 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6887   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6888   ins_cost(150);
  6890   size(4);
  6891   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6892   opcode(0x102);
  6893   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6894   ins_pipe(int_conditional_double_move);
  6895 %}
  6897 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6898   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6899   ins_cost(150);
  6901   size(4);
  6902   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6903   opcode(0x102);
  6904   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6905   ins_pipe(int_conditional_double_move);
  6906 %}
  6908 // Conditional move,
  6909 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6910   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6911   ins_cost(150);
  6912   size(4);
  6913   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6914   opcode(0x2);
  6915   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6916   ins_pipe(int_conditional_double_move);
  6917 %}
  6919 // Conditional move
  6920 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6921   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6922   ins_cost(150);
  6923   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6924   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6925   ins_pipe(ialu_reg);
  6926 %}
  6928 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6929   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6930   ins_cost(140);
  6931   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6932   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6933   ins_pipe(ialu_imm);
  6934 %}
  6936 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6937   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6938   ins_cost(150);
  6940   size(4);
  6941   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6942   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6943   ins_pipe(ialu_reg);
  6944 %}
  6947 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  6948   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6949   ins_cost(150);
  6951   size(4);
  6952   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6953   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6954   ins_pipe(ialu_reg);
  6955 %}
  6958 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6959   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6960   ins_cost(150);
  6962   size(4);
  6963   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6964   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6965   ins_pipe(ialu_reg);
  6966 %}
  6970 //----------OS and Locking Instructions----------------------------------------
  6972 // This name is KNOWN by the ADLC and cannot be changed.
  6973 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6974 // for this guy.
  6975 instruct tlsLoadP(g2RegP dst) %{
  6976   match(Set dst (ThreadLocal));
  6978   size(0);
  6979   ins_cost(0);
  6980   format %{ "# TLS is in G2" %}
  6981   ins_encode( /*empty encoding*/ );
  6982   ins_pipe(ialu_none);
  6983 %}
  6985 instruct checkCastPP( iRegP dst ) %{
  6986   match(Set dst (CheckCastPP dst));
  6988   size(0);
  6989   format %{ "# checkcastPP of $dst" %}
  6990   ins_encode( /*empty encoding*/ );
  6991   ins_pipe(empty);
  6992 %}
  6995 instruct castPP( iRegP dst ) %{
  6996   match(Set dst (CastPP dst));
  6997   format %{ "# castPP of $dst" %}
  6998   ins_encode( /*empty encoding*/ );
  6999   ins_pipe(empty);
  7000 %}
  7002 instruct castII( iRegI dst ) %{
  7003   match(Set dst (CastII dst));
  7004   format %{ "# castII of $dst" %}
  7005   ins_encode( /*empty encoding*/ );
  7006   ins_cost(0);
  7007   ins_pipe(empty);
  7008 %}
  7010 //----------Arithmetic Instructions--------------------------------------------
  7011 // Addition Instructions
  7012 // Register Addition
  7013 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7014   match(Set dst (AddI src1 src2));
  7016   size(4);
  7017   format %{ "ADD    $src1,$src2,$dst" %}
  7018   ins_encode %{
  7019     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7020   %}
  7021   ins_pipe(ialu_reg_reg);
  7022 %}
  7024 // Immediate Addition
  7025 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7026   match(Set dst (AddI src1 src2));
  7028   size(4);
  7029   format %{ "ADD    $src1,$src2,$dst" %}
  7030   opcode(Assembler::add_op3, Assembler::arith_op);
  7031   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7032   ins_pipe(ialu_reg_imm);
  7033 %}
  7035 // Pointer Register Addition
  7036 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7037   match(Set dst (AddP src1 src2));
  7039   size(4);
  7040   format %{ "ADD    $src1,$src2,$dst" %}
  7041   opcode(Assembler::add_op3, Assembler::arith_op);
  7042   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7043   ins_pipe(ialu_reg_reg);
  7044 %}
  7046 // Pointer Immediate Addition
  7047 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7048   match(Set dst (AddP src1 src2));
  7050   size(4);
  7051   format %{ "ADD    $src1,$src2,$dst" %}
  7052   opcode(Assembler::add_op3, Assembler::arith_op);
  7053   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7054   ins_pipe(ialu_reg_imm);
  7055 %}
  7057 // Long Addition
  7058 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7059   match(Set dst (AddL src1 src2));
  7061   size(4);
  7062   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7063   opcode(Assembler::add_op3, Assembler::arith_op);
  7064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7065   ins_pipe(ialu_reg_reg);
  7066 %}
  7068 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7069   match(Set dst (AddL src1 con));
  7071   size(4);
  7072   format %{ "ADD    $src1,$con,$dst" %}
  7073   opcode(Assembler::add_op3, Assembler::arith_op);
  7074   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7075   ins_pipe(ialu_reg_imm);
  7076 %}
  7078 //----------Conditional_store--------------------------------------------------
  7079 // Conditional-store of the updated heap-top.
  7080 // Used during allocation of the shared heap.
  7081 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7083 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7084 instruct loadPLocked(iRegP dst, memory mem) %{
  7085   match(Set dst (LoadPLocked mem));
  7086   ins_cost(MEMORY_REF_COST);
  7088 #ifndef _LP64
  7089   size(4);
  7090   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7091   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7092 #else
  7093   format %{ "LDX    $mem,$dst\t! ptr" %}
  7094   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7095 #endif
  7096   ins_encode( form3_mem_reg( mem, dst ) );
  7097   ins_pipe(iload_mem);
  7098 %}
  7100 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7101 instruct loadLLocked(iRegL dst, memory mem) %{
  7102   match(Set dst (LoadLLocked mem));
  7103   ins_cost(MEMORY_REF_COST);
  7104   size(4);
  7105   format %{ "LDX    $mem,$dst\t! long" %}
  7106   opcode(Assembler::ldx_op3);
  7107   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7108   ins_pipe(iload_mem);
  7109 %}
  7111 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7112   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7113   effect( KILL newval );
  7114   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7115             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7116   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7117   ins_pipe( long_memory_op );
  7118 %}
  7120 // Conditional-store of an int value.
  7121 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7122   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7123   effect( KILL newval );
  7124   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7125             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7126   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7127   ins_pipe( long_memory_op );
  7128 %}
  7130 // Conditional-store of a long value.
  7131 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7132   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7133   effect( KILL newval );
  7134   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7135             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7136   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7137   ins_pipe( long_memory_op );
  7138 %}
  7140 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7142 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7143   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7144   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7145   format %{
  7146             "MOV    $newval,O7\n\t"
  7147             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7148             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7149             "MOV    1,$res\n\t"
  7150             "MOVne  xcc,R_G0,$res"
  7151   %}
  7152   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7153               enc_lflags_ne_to_boolean(res) );
  7154   ins_pipe( long_memory_op );
  7155 %}
  7158 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7159   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7160   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7161   format %{
  7162             "MOV    $newval,O7\n\t"
  7163             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7164             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7165             "MOV    1,$res\n\t"
  7166             "MOVne  icc,R_G0,$res"
  7167   %}
  7168   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7169               enc_iflags_ne_to_boolean(res) );
  7170   ins_pipe( long_memory_op );
  7171 %}
  7173 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7174   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7175   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7176   format %{
  7177             "MOV    $newval,O7\n\t"
  7178             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7179             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7180             "MOV    1,$res\n\t"
  7181             "MOVne  xcc,R_G0,$res"
  7182   %}
  7183 #ifdef _LP64
  7184   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7185               enc_lflags_ne_to_boolean(res) );
  7186 #else
  7187   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7188               enc_iflags_ne_to_boolean(res) );
  7189 #endif
  7190   ins_pipe( long_memory_op );
  7191 %}
  7193 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7194   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7195   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7196   format %{
  7197             "MOV    $newval,O7\n\t"
  7198             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7199             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7200             "MOV    1,$res\n\t"
  7201             "MOVne  icc,R_G0,$res"
  7202   %}
  7203   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7204               enc_iflags_ne_to_boolean(res) );
  7205   ins_pipe( long_memory_op );
  7206 %}
  7208 //---------------------
  7209 // Subtraction Instructions
  7210 // Register Subtraction
  7211 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7212   match(Set dst (SubI src1 src2));
  7214   size(4);
  7215   format %{ "SUB    $src1,$src2,$dst" %}
  7216   opcode(Assembler::sub_op3, Assembler::arith_op);
  7217   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7218   ins_pipe(ialu_reg_reg);
  7219 %}
  7221 // Immediate Subtraction
  7222 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7223   match(Set dst (SubI src1 src2));
  7225   size(4);
  7226   format %{ "SUB    $src1,$src2,$dst" %}
  7227   opcode(Assembler::sub_op3, Assembler::arith_op);
  7228   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7229   ins_pipe(ialu_reg_imm);
  7230 %}
  7232 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7233   match(Set dst (SubI zero src2));
  7235   size(4);
  7236   format %{ "NEG    $src2,$dst" %}
  7237   opcode(Assembler::sub_op3, Assembler::arith_op);
  7238   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7239   ins_pipe(ialu_zero_reg);
  7240 %}
  7242 // Long subtraction
  7243 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7244   match(Set dst (SubL src1 src2));
  7246   size(4);
  7247   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7248   opcode(Assembler::sub_op3, Assembler::arith_op);
  7249   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7250   ins_pipe(ialu_reg_reg);
  7251 %}
  7253 // Immediate Subtraction
  7254 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7255   match(Set dst (SubL src1 con));
  7257   size(4);
  7258   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7259   opcode(Assembler::sub_op3, Assembler::arith_op);
  7260   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7261   ins_pipe(ialu_reg_imm);
  7262 %}
  7264 // Long negation
  7265 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7266   match(Set dst (SubL zero src2));
  7268   size(4);
  7269   format %{ "NEG    $src2,$dst\t! long" %}
  7270   opcode(Assembler::sub_op3, Assembler::arith_op);
  7271   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7272   ins_pipe(ialu_zero_reg);
  7273 %}
  7275 // Multiplication Instructions
  7276 // Integer Multiplication
  7277 // Register Multiplication
  7278 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7279   match(Set dst (MulI src1 src2));
  7281   size(4);
  7282   format %{ "MULX   $src1,$src2,$dst" %}
  7283   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7284   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7285   ins_pipe(imul_reg_reg);
  7286 %}
  7288 // Immediate Multiplication
  7289 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7290   match(Set dst (MulI src1 src2));
  7292   size(4);
  7293   format %{ "MULX   $src1,$src2,$dst" %}
  7294   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7295   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7296   ins_pipe(imul_reg_imm);
  7297 %}
  7299 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7300   match(Set dst (MulL src1 src2));
  7301   ins_cost(DEFAULT_COST * 5);
  7302   size(4);
  7303   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7304   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7305   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7306   ins_pipe(mulL_reg_reg);
  7307 %}
  7309 // Immediate Multiplication
  7310 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7311   match(Set dst (MulL src1 src2));
  7312   ins_cost(DEFAULT_COST * 5);
  7313   size(4);
  7314   format %{ "MULX   $src1,$src2,$dst" %}
  7315   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7316   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7317   ins_pipe(mulL_reg_imm);
  7318 %}
  7320 // Integer Division
  7321 // Register Division
  7322 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7323   match(Set dst (DivI src1 src2));
  7324   ins_cost((2+71)*DEFAULT_COST);
  7326   format %{ "SRA     $src2,0,$src2\n\t"
  7327             "SRA     $src1,0,$src1\n\t"
  7328             "SDIVX   $src1,$src2,$dst" %}
  7329   ins_encode( idiv_reg( src1, src2, dst ) );
  7330   ins_pipe(sdiv_reg_reg);
  7331 %}
  7333 // Immediate Division
  7334 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7335   match(Set dst (DivI src1 src2));
  7336   ins_cost((2+71)*DEFAULT_COST);
  7338   format %{ "SRA     $src1,0,$src1\n\t"
  7339             "SDIVX   $src1,$src2,$dst" %}
  7340   ins_encode( idiv_imm( src1, src2, dst ) );
  7341   ins_pipe(sdiv_reg_imm);
  7342 %}
  7344 //----------Div-By-10-Expansion------------------------------------------------
  7345 // Extract hi bits of a 32x32->64 bit multiply.
  7346 // Expand rule only, not matched
  7347 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7348   effect( DEF dst, USE src1, USE src2 );
  7349   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7350             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7351   ins_encode( enc_mul_hi(dst,src1,src2));
  7352   ins_pipe(sdiv_reg_reg);
  7353 %}
  7355 // Magic constant, reciprocal of 10
  7356 instruct loadConI_x66666667(iRegIsafe dst) %{
  7357   effect( DEF dst );
  7359   size(8);
  7360   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7361   ins_encode( Set32(0x66666667, dst) );
  7362   ins_pipe(ialu_hi_lo_reg);
  7363 %}
  7365 // Register Shift Right Arithmetic Long by 32-63
  7366 instruct sra_31( iRegI dst, iRegI src ) %{
  7367   effect( DEF dst, USE src );
  7368   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7369   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7370   ins_pipe(ialu_reg_reg);
  7371 %}
  7373 // Arithmetic Shift Right by 8-bit immediate
  7374 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7375   effect( DEF dst, USE src );
  7376   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7377   opcode(Assembler::sra_op3, Assembler::arith_op);
  7378   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7379   ins_pipe(ialu_reg_imm);
  7380 %}
  7382 // Integer DIV with 10
  7383 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7384   match(Set dst (DivI src div));
  7385   ins_cost((6+6)*DEFAULT_COST);
  7386   expand %{
  7387     iRegIsafe tmp1;               // Killed temps;
  7388     iRegIsafe tmp2;               // Killed temps;
  7389     iRegI tmp3;                   // Killed temps;
  7390     iRegI tmp4;                   // Killed temps;
  7391     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7392     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7393     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7394     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7395     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7396   %}
  7397 %}
  7399 // Register Long Division
  7400 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7401   match(Set dst (DivL src1 src2));
  7402   ins_cost(DEFAULT_COST*71);
  7403   size(4);
  7404   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7405   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7406   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7407   ins_pipe(divL_reg_reg);
  7408 %}
  7410 // Register Long Division
  7411 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7412   match(Set dst (DivL src1 src2));
  7413   ins_cost(DEFAULT_COST*71);
  7414   size(4);
  7415   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7416   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7417   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7418   ins_pipe(divL_reg_imm);
  7419 %}
  7421 // Integer Remainder
  7422 // Register Remainder
  7423 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7424   match(Set dst (ModI src1 src2));
  7425   effect( KILL ccr, KILL temp);
  7427   format %{ "SREM   $src1,$src2,$dst" %}
  7428   ins_encode( irem_reg(src1, src2, dst, temp) );
  7429   ins_pipe(sdiv_reg_reg);
  7430 %}
  7432 // Immediate Remainder
  7433 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7434   match(Set dst (ModI src1 src2));
  7435   effect( KILL ccr, KILL temp);
  7437   format %{ "SREM   $src1,$src2,$dst" %}
  7438   ins_encode( irem_imm(src1, src2, dst, temp) );
  7439   ins_pipe(sdiv_reg_imm);
  7440 %}
  7442 // Register Long Remainder
  7443 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7444   effect(DEF dst, USE src1, USE src2);
  7445   size(4);
  7446   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7447   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7448   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7449   ins_pipe(divL_reg_reg);
  7450 %}
  7452 // Register Long Division
  7453 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7454   effect(DEF dst, USE src1, USE src2);
  7455   size(4);
  7456   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7457   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7458   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7459   ins_pipe(divL_reg_imm);
  7460 %}
  7462 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7463   effect(DEF dst, USE src1, USE src2);
  7464   size(4);
  7465   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7466   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7467   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7468   ins_pipe(mulL_reg_reg);
  7469 %}
  7471 // Immediate Multiplication
  7472 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7473   effect(DEF dst, USE src1, USE src2);
  7474   size(4);
  7475   format %{ "MULX   $src1,$src2,$dst" %}
  7476   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7477   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7478   ins_pipe(mulL_reg_imm);
  7479 %}
  7481 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7482   effect(DEF dst, USE src1, USE src2);
  7483   size(4);
  7484   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7485   opcode(Assembler::sub_op3, Assembler::arith_op);
  7486   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7487   ins_pipe(ialu_reg_reg);
  7488 %}
  7490 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7491   effect(DEF dst, USE src1, USE src2);
  7492   size(4);
  7493   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7494   opcode(Assembler::sub_op3, Assembler::arith_op);
  7495   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7496   ins_pipe(ialu_reg_reg);
  7497 %}
  7499 // Register Long Remainder
  7500 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7501   match(Set dst (ModL src1 src2));
  7502   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7503   expand %{
  7504     iRegL tmp1;
  7505     iRegL tmp2;
  7506     divL_reg_reg_1(tmp1, src1, src2);
  7507     mulL_reg_reg_1(tmp2, tmp1, src2);
  7508     subL_reg_reg_1(dst,  src1, tmp2);
  7509   %}
  7510 %}
  7512 // Register Long Remainder
  7513 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7514   match(Set dst (ModL src1 src2));
  7515   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7516   expand %{
  7517     iRegL tmp1;
  7518     iRegL tmp2;
  7519     divL_reg_imm13_1(tmp1, src1, src2);
  7520     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7521     subL_reg_reg_2  (dst,  src1, tmp2);
  7522   %}
  7523 %}
  7525 // Integer Shift Instructions
  7526 // Register Shift Left
  7527 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7528   match(Set dst (LShiftI src1 src2));
  7530   size(4);
  7531   format %{ "SLL    $src1,$src2,$dst" %}
  7532   opcode(Assembler::sll_op3, Assembler::arith_op);
  7533   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7534   ins_pipe(ialu_reg_reg);
  7535 %}
  7537 // Register Shift Left Immediate
  7538 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7539   match(Set dst (LShiftI src1 src2));
  7541   size(4);
  7542   format %{ "SLL    $src1,$src2,$dst" %}
  7543   opcode(Assembler::sll_op3, Assembler::arith_op);
  7544   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7545   ins_pipe(ialu_reg_imm);
  7546 %}
  7548 // Register Shift Left
  7549 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7550   match(Set dst (LShiftL src1 src2));
  7552   size(4);
  7553   format %{ "SLLX   $src1,$src2,$dst" %}
  7554   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7555   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7556   ins_pipe(ialu_reg_reg);
  7557 %}
  7559 // Register Shift Left Immediate
  7560 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7561   match(Set dst (LShiftL src1 src2));
  7563   size(4);
  7564   format %{ "SLLX   $src1,$src2,$dst" %}
  7565   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7566   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7567   ins_pipe(ialu_reg_imm);
  7568 %}
  7570 // Register Arithmetic Shift Right
  7571 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7572   match(Set dst (RShiftI src1 src2));
  7573   size(4);
  7574   format %{ "SRA    $src1,$src2,$dst" %}
  7575   opcode(Assembler::sra_op3, Assembler::arith_op);
  7576   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7577   ins_pipe(ialu_reg_reg);
  7578 %}
  7580 // Register Arithmetic Shift Right Immediate
  7581 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7582   match(Set dst (RShiftI src1 src2));
  7584   size(4);
  7585   format %{ "SRA    $src1,$src2,$dst" %}
  7586   opcode(Assembler::sra_op3, Assembler::arith_op);
  7587   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7588   ins_pipe(ialu_reg_imm);
  7589 %}
  7591 // Register Shift Right Arithmatic Long
  7592 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7593   match(Set dst (RShiftL src1 src2));
  7595   size(4);
  7596   format %{ "SRAX   $src1,$src2,$dst" %}
  7597   opcode(Assembler::srax_op3, Assembler::arith_op);
  7598   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7599   ins_pipe(ialu_reg_reg);
  7600 %}
  7602 // Register Shift Left Immediate
  7603 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7604   match(Set dst (RShiftL src1 src2));
  7606   size(4);
  7607   format %{ "SRAX   $src1,$src2,$dst" %}
  7608   opcode(Assembler::srax_op3, Assembler::arith_op);
  7609   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7610   ins_pipe(ialu_reg_imm);
  7611 %}
  7613 // Register Shift Right
  7614 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7615   match(Set dst (URShiftI src1 src2));
  7617   size(4);
  7618   format %{ "SRL    $src1,$src2,$dst" %}
  7619   opcode(Assembler::srl_op3, Assembler::arith_op);
  7620   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7621   ins_pipe(ialu_reg_reg);
  7622 %}
  7624 // Register Shift Right Immediate
  7625 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7626   match(Set dst (URShiftI src1 src2));
  7628   size(4);
  7629   format %{ "SRL    $src1,$src2,$dst" %}
  7630   opcode(Assembler::srl_op3, Assembler::arith_op);
  7631   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7632   ins_pipe(ialu_reg_imm);
  7633 %}
  7635 // Register Shift Right
  7636 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7637   match(Set dst (URShiftL src1 src2));
  7639   size(4);
  7640   format %{ "SRLX   $src1,$src2,$dst" %}
  7641   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7642   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7643   ins_pipe(ialu_reg_reg);
  7644 %}
  7646 // Register Shift Right Immediate
  7647 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7648   match(Set dst (URShiftL src1 src2));
  7650   size(4);
  7651   format %{ "SRLX   $src1,$src2,$dst" %}
  7652   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7653   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7654   ins_pipe(ialu_reg_imm);
  7655 %}
  7657 // Register Shift Right Immediate with a CastP2X
  7658 #ifdef _LP64
  7659 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7660   match(Set dst (URShiftL (CastP2X src1) src2));
  7661   size(4);
  7662   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7663   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7664   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7665   ins_pipe(ialu_reg_imm);
  7666 %}
  7667 #else
  7668 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7669   match(Set dst (URShiftI (CastP2X src1) src2));
  7670   size(4);
  7671   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7672   opcode(Assembler::srl_op3, Assembler::arith_op);
  7673   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7674   ins_pipe(ialu_reg_imm);
  7675 %}
  7676 #endif
  7679 //----------Floating Point Arithmetic Instructions-----------------------------
  7681 //  Add float single precision
  7682 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7683   match(Set dst (AddF src1 src2));
  7685   size(4);
  7686   format %{ "FADDS  $src1,$src2,$dst" %}
  7687   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7688   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7689   ins_pipe(faddF_reg_reg);
  7690 %}
  7692 //  Add float double precision
  7693 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7694   match(Set dst (AddD src1 src2));
  7696   size(4);
  7697   format %{ "FADDD  $src1,$src2,$dst" %}
  7698   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7699   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7700   ins_pipe(faddD_reg_reg);
  7701 %}
  7703 //  Sub float single precision
  7704 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7705   match(Set dst (SubF src1 src2));
  7707   size(4);
  7708   format %{ "FSUBS  $src1,$src2,$dst" %}
  7709   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7710   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7711   ins_pipe(faddF_reg_reg);
  7712 %}
  7714 //  Sub float double precision
  7715 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7716   match(Set dst (SubD src1 src2));
  7718   size(4);
  7719   format %{ "FSUBD  $src1,$src2,$dst" %}
  7720   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7721   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7722   ins_pipe(faddD_reg_reg);
  7723 %}
  7725 //  Mul float single precision
  7726 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7727   match(Set dst (MulF src1 src2));
  7729   size(4);
  7730   format %{ "FMULS  $src1,$src2,$dst" %}
  7731   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7732   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7733   ins_pipe(fmulF_reg_reg);
  7734 %}
  7736 //  Mul float double precision
  7737 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7738   match(Set dst (MulD src1 src2));
  7740   size(4);
  7741   format %{ "FMULD  $src1,$src2,$dst" %}
  7742   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7743   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7744   ins_pipe(fmulD_reg_reg);
  7745 %}
  7747 //  Div float single precision
  7748 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7749   match(Set dst (DivF src1 src2));
  7751   size(4);
  7752   format %{ "FDIVS  $src1,$src2,$dst" %}
  7753   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7754   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7755   ins_pipe(fdivF_reg_reg);
  7756 %}
  7758 //  Div float double precision
  7759 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7760   match(Set dst (DivD src1 src2));
  7762   size(4);
  7763   format %{ "FDIVD  $src1,$src2,$dst" %}
  7764   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7765   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7766   ins_pipe(fdivD_reg_reg);
  7767 %}
  7769 //  Absolute float double precision
  7770 instruct absD_reg(regD dst, regD src) %{
  7771   match(Set dst (AbsD src));
  7773   format %{ "FABSd  $src,$dst" %}
  7774   ins_encode(fabsd(dst, src));
  7775   ins_pipe(faddD_reg);
  7776 %}
  7778 //  Absolute float single precision
  7779 instruct absF_reg(regF dst, regF src) %{
  7780   match(Set dst (AbsF src));
  7782   format %{ "FABSs  $src,$dst" %}
  7783   ins_encode(fabss(dst, src));
  7784   ins_pipe(faddF_reg);
  7785 %}
  7787 instruct negF_reg(regF dst, regF src) %{
  7788   match(Set dst (NegF src));
  7790   size(4);
  7791   format %{ "FNEGs  $src,$dst" %}
  7792   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7793   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7794   ins_pipe(faddF_reg);
  7795 %}
  7797 instruct negD_reg(regD dst, regD src) %{
  7798   match(Set dst (NegD src));
  7800   format %{ "FNEGd  $src,$dst" %}
  7801   ins_encode(fnegd(dst, src));
  7802   ins_pipe(faddD_reg);
  7803 %}
  7805 //  Sqrt float double precision
  7806 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7807   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7809   size(4);
  7810   format %{ "FSQRTS $src,$dst" %}
  7811   ins_encode(fsqrts(dst, src));
  7812   ins_pipe(fdivF_reg_reg);
  7813 %}
  7815 //  Sqrt float double precision
  7816 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7817   match(Set dst (SqrtD src));
  7819   size(4);
  7820   format %{ "FSQRTD $src,$dst" %}
  7821   ins_encode(fsqrtd(dst, src));
  7822   ins_pipe(fdivD_reg_reg);
  7823 %}
  7825 //----------Logical Instructions-----------------------------------------------
  7826 // And Instructions
  7827 // Register And
  7828 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7829   match(Set dst (AndI src1 src2));
  7831   size(4);
  7832   format %{ "AND    $src1,$src2,$dst" %}
  7833   opcode(Assembler::and_op3, Assembler::arith_op);
  7834   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7835   ins_pipe(ialu_reg_reg);
  7836 %}
  7838 // Immediate And
  7839 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7840   match(Set dst (AndI src1 src2));
  7842   size(4);
  7843   format %{ "AND    $src1,$src2,$dst" %}
  7844   opcode(Assembler::and_op3, Assembler::arith_op);
  7845   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7846   ins_pipe(ialu_reg_imm);
  7847 %}
  7849 // Register And Long
  7850 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7851   match(Set dst (AndL src1 src2));
  7853   ins_cost(DEFAULT_COST);
  7854   size(4);
  7855   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7856   opcode(Assembler::and_op3, Assembler::arith_op);
  7857   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7858   ins_pipe(ialu_reg_reg);
  7859 %}
  7861 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7862   match(Set dst (AndL src1 con));
  7864   ins_cost(DEFAULT_COST);
  7865   size(4);
  7866   format %{ "AND    $src1,$con,$dst\t! long" %}
  7867   opcode(Assembler::and_op3, Assembler::arith_op);
  7868   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7869   ins_pipe(ialu_reg_imm);
  7870 %}
  7872 // Or Instructions
  7873 // Register Or
  7874 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7875   match(Set dst (OrI src1 src2));
  7877   size(4);
  7878   format %{ "OR     $src1,$src2,$dst" %}
  7879   opcode(Assembler::or_op3, Assembler::arith_op);
  7880   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7881   ins_pipe(ialu_reg_reg);
  7882 %}
  7884 // Immediate Or
  7885 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7886   match(Set dst (OrI src1 src2));
  7888   size(4);
  7889   format %{ "OR     $src1,$src2,$dst" %}
  7890   opcode(Assembler::or_op3, Assembler::arith_op);
  7891   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7892   ins_pipe(ialu_reg_imm);
  7893 %}
  7895 // Register Or Long
  7896 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7897   match(Set dst (OrL src1 src2));
  7899   ins_cost(DEFAULT_COST);
  7900   size(4);
  7901   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7902   opcode(Assembler::or_op3, Assembler::arith_op);
  7903   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7904   ins_pipe(ialu_reg_reg);
  7905 %}
  7907 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7908   match(Set dst (OrL src1 con));
  7909   ins_cost(DEFAULT_COST*2);
  7911   ins_cost(DEFAULT_COST);
  7912   size(4);
  7913   format %{ "OR     $src1,$con,$dst\t! long" %}
  7914   opcode(Assembler::or_op3, Assembler::arith_op);
  7915   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7916   ins_pipe(ialu_reg_imm);
  7917 %}
  7919 #ifndef _LP64
  7921 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7922 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7923   match(Set dst (OrI src1 (CastP2X src2)));
  7925   size(4);
  7926   format %{ "OR     $src1,$src2,$dst" %}
  7927   opcode(Assembler::or_op3, Assembler::arith_op);
  7928   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7929   ins_pipe(ialu_reg_reg);
  7930 %}
  7932 #else
  7934 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7935   match(Set dst (OrL src1 (CastP2X src2)));
  7937   ins_cost(DEFAULT_COST);
  7938   size(4);
  7939   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7940   opcode(Assembler::or_op3, Assembler::arith_op);
  7941   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7942   ins_pipe(ialu_reg_reg);
  7943 %}
  7945 #endif
  7947 // Xor Instructions
  7948 // Register Xor
  7949 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7950   match(Set dst (XorI src1 src2));
  7952   size(4);
  7953   format %{ "XOR    $src1,$src2,$dst" %}
  7954   opcode(Assembler::xor_op3, Assembler::arith_op);
  7955   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7956   ins_pipe(ialu_reg_reg);
  7957 %}
  7959 // Immediate Xor
  7960 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7961   match(Set dst (XorI src1 src2));
  7963   size(4);
  7964   format %{ "XOR    $src1,$src2,$dst" %}
  7965   opcode(Assembler::xor_op3, Assembler::arith_op);
  7966   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7967   ins_pipe(ialu_reg_imm);
  7968 %}
  7970 // Register Xor Long
  7971 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7972   match(Set dst (XorL src1 src2));
  7974   ins_cost(DEFAULT_COST);
  7975   size(4);
  7976   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7977   opcode(Assembler::xor_op3, Assembler::arith_op);
  7978   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7979   ins_pipe(ialu_reg_reg);
  7980 %}
  7982 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7983   match(Set dst (XorL src1 con));
  7985   ins_cost(DEFAULT_COST);
  7986   size(4);
  7987   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7988   opcode(Assembler::xor_op3, Assembler::arith_op);
  7989   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7990   ins_pipe(ialu_reg_imm);
  7991 %}
  7993 //----------Convert to Boolean-------------------------------------------------
  7994 // Nice hack for 32-bit tests but doesn't work for
  7995 // 64-bit pointers.
  7996 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7997   match(Set dst (Conv2B src));
  7998   effect( KILL ccr );
  7999   ins_cost(DEFAULT_COST*2);
  8000   format %{ "CMP    R_G0,$src\n\t"
  8001             "ADDX   R_G0,0,$dst" %}
  8002   ins_encode( enc_to_bool( src, dst ) );
  8003   ins_pipe(ialu_reg_ialu);
  8004 %}
  8006 #ifndef _LP64
  8007 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8008   match(Set dst (Conv2B src));
  8009   effect( KILL ccr );
  8010   ins_cost(DEFAULT_COST*2);
  8011   format %{ "CMP    R_G0,$src\n\t"
  8012             "ADDX   R_G0,0,$dst" %}
  8013   ins_encode( enc_to_bool( src, dst ) );
  8014   ins_pipe(ialu_reg_ialu);
  8015 %}
  8016 #else
  8017 instruct convP2B( iRegI dst, iRegP src ) %{
  8018   match(Set dst (Conv2B src));
  8019   ins_cost(DEFAULT_COST*2);
  8020   format %{ "MOV    $src,$dst\n\t"
  8021             "MOVRNZ $src,1,$dst" %}
  8022   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8023   ins_pipe(ialu_clr_and_mover);
  8024 %}
  8025 #endif
  8027 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8028   match(Set dst (CmpLTMask p q));
  8029   effect( KILL ccr );
  8030   ins_cost(DEFAULT_COST*4);
  8031   format %{ "CMP    $p,$q\n\t"
  8032             "MOV    #0,$dst\n\t"
  8033             "BLT,a  .+8\n\t"
  8034             "MOV    #-1,$dst" %}
  8035   ins_encode( enc_ltmask(p,q,dst) );
  8036   ins_pipe(ialu_reg_reg_ialu);
  8037 %}
  8039 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8040   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8041   effect(KILL ccr, TEMP tmp);
  8042   ins_cost(DEFAULT_COST*3);
  8044   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8045             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8046             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8047   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8048   ins_pipe( cadd_cmpltmask );
  8049 %}
  8051 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8052   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  8053   effect( KILL ccr, TEMP tmp);
  8054   ins_cost(DEFAULT_COST*3);
  8056   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8057             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8058             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8059   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8060   ins_pipe( cadd_cmpltmask );
  8061 %}
  8063 //----------Arithmetic Conversion Instructions---------------------------------
  8064 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8066 instruct convD2F_reg(regF dst, regD src) %{
  8067   match(Set dst (ConvD2F src));
  8068   size(4);
  8069   format %{ "FDTOS  $src,$dst" %}
  8070   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8071   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8072   ins_pipe(fcvtD2F);
  8073 %}
  8076 // Convert a double to an int in a float register.
  8077 // If the double is a NAN, stuff a zero in instead.
  8078 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8079   effect(DEF dst, USE src, KILL fcc0);
  8080   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8081             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8082             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8083             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8084             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8085       "skip:" %}
  8086   ins_encode(form_d2i_helper(src,dst));
  8087   ins_pipe(fcvtD2I);
  8088 %}
  8090 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8091   match(Set dst (ConvD2I src));
  8092   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8093   expand %{
  8094     regF tmp;
  8095     convD2I_helper(tmp, src);
  8096     regF_to_stkI(dst, tmp);
  8097   %}
  8098 %}
  8100 // Convert a double to a long in a double register.
  8101 // If the double is a NAN, stuff a zero in instead.
  8102 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8103   effect(DEF dst, USE src, KILL fcc0);
  8104   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8105             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8106             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8107             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8108             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8109       "skip:" %}
  8110   ins_encode(form_d2l_helper(src,dst));
  8111   ins_pipe(fcvtD2L);
  8112 %}
  8115 // Double to Long conversion
  8116 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8117   match(Set dst (ConvD2L src));
  8118   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8119   expand %{
  8120     regD tmp;
  8121     convD2L_helper(tmp, src);
  8122     regD_to_stkL(dst, tmp);
  8123   %}
  8124 %}
  8127 instruct convF2D_reg(regD dst, regF src) %{
  8128   match(Set dst (ConvF2D src));
  8129   format %{ "FSTOD  $src,$dst" %}
  8130   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8131   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8132   ins_pipe(fcvtF2D);
  8133 %}
  8136 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8137   effect(DEF dst, USE src, KILL fcc0);
  8138   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8139             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8140             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8141             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8142             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8143       "skip:" %}
  8144   ins_encode(form_f2i_helper(src,dst));
  8145   ins_pipe(fcvtF2I);
  8146 %}
  8148 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8149   match(Set dst (ConvF2I src));
  8150   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8151   expand %{
  8152     regF tmp;
  8153     convF2I_helper(tmp, src);
  8154     regF_to_stkI(dst, tmp);
  8155   %}
  8156 %}
  8159 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8160   effect(DEF dst, USE src, KILL fcc0);
  8161   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8162             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8163             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8164             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8165             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8166       "skip:" %}
  8167   ins_encode(form_f2l_helper(src,dst));
  8168   ins_pipe(fcvtF2L);
  8169 %}
  8171 // Float to Long conversion
  8172 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8173   match(Set dst (ConvF2L src));
  8174   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8175   expand %{
  8176     regD tmp;
  8177     convF2L_helper(tmp, src);
  8178     regD_to_stkL(dst, tmp);
  8179   %}
  8180 %}
  8183 instruct convI2D_helper(regD dst, regF tmp) %{
  8184   effect(USE tmp, DEF dst);
  8185   format %{ "FITOD  $tmp,$dst" %}
  8186   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8187   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8188   ins_pipe(fcvtI2D);
  8189 %}
  8191 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8192   match(Set dst (ConvI2D src));
  8193   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8194   expand %{
  8195     regF tmp;
  8196     stkI_to_regF( tmp, src);
  8197     convI2D_helper( dst, tmp);
  8198   %}
  8199 %}
  8201 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8202   match(Set dst (ConvI2D (LoadI mem)));
  8203   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8204   size(8);
  8205   format %{ "LDF    $mem,$dst\n\t"
  8206             "FITOD  $dst,$dst" %}
  8207   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8208   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8209   ins_pipe(floadF_mem);
  8210 %}
  8213 instruct convI2F_helper(regF dst, regF tmp) %{
  8214   effect(DEF dst, USE tmp);
  8215   format %{ "FITOS  $tmp,$dst" %}
  8216   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8217   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8218   ins_pipe(fcvtI2F);
  8219 %}
  8221 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8222   match(Set dst (ConvI2F src));
  8223   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8224   expand %{
  8225     regF tmp;
  8226     stkI_to_regF(tmp,src);
  8227     convI2F_helper(dst, tmp);
  8228   %}
  8229 %}
  8231 instruct convI2F_mem( regF dst, memory mem ) %{
  8232   match(Set dst (ConvI2F (LoadI mem)));
  8233   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8234   size(8);
  8235   format %{ "LDF    $mem,$dst\n\t"
  8236             "FITOS  $dst,$dst" %}
  8237   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8238   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8239   ins_pipe(floadF_mem);
  8240 %}
  8243 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8244   match(Set dst (ConvI2L src));
  8245   size(4);
  8246   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8247   opcode(Assembler::sra_op3, Assembler::arith_op);
  8248   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8249   ins_pipe(ialu_reg_reg);
  8250 %}
  8252 // Zero-extend convert int to long
  8253 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8254   match(Set dst (AndL (ConvI2L src) mask) );
  8255   size(4);
  8256   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8257   opcode(Assembler::srl_op3, Assembler::arith_op);
  8258   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8259   ins_pipe(ialu_reg_reg);
  8260 %}
  8262 // Zero-extend long
  8263 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8264   match(Set dst (AndL src mask) );
  8265   size(4);
  8266   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8267   opcode(Assembler::srl_op3, Assembler::arith_op);
  8268   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8269   ins_pipe(ialu_reg_reg);
  8270 %}
  8272 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8273   match(Set dst (MoveF2I src));
  8274   effect(DEF dst, USE src);
  8275   ins_cost(MEMORY_REF_COST);
  8277   size(4);
  8278   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8279   opcode(Assembler::lduw_op3);
  8280   ins_encode(simple_form3_mem_reg( src, dst ) );
  8281   ins_pipe(iload_mem);
  8282 %}
  8284 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8285   match(Set dst (MoveI2F src));
  8286   effect(DEF dst, USE src);
  8287   ins_cost(MEMORY_REF_COST);
  8289   size(4);
  8290   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8291   opcode(Assembler::ldf_op3);
  8292   ins_encode(simple_form3_mem_reg(src, dst));
  8293   ins_pipe(floadF_stk);
  8294 %}
  8296 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8297   match(Set dst (MoveD2L src));
  8298   effect(DEF dst, USE src);
  8299   ins_cost(MEMORY_REF_COST);
  8301   size(4);
  8302   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8303   opcode(Assembler::ldx_op3);
  8304   ins_encode(simple_form3_mem_reg( src, dst ) );
  8305   ins_pipe(iload_mem);
  8306 %}
  8308 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8309   match(Set dst (MoveL2D src));
  8310   effect(DEF dst, USE src);
  8311   ins_cost(MEMORY_REF_COST);
  8313   size(4);
  8314   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8315   opcode(Assembler::lddf_op3);
  8316   ins_encode(simple_form3_mem_reg(src, dst));
  8317   ins_pipe(floadD_stk);
  8318 %}
  8320 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8321   match(Set dst (MoveF2I src));
  8322   effect(DEF dst, USE src);
  8323   ins_cost(MEMORY_REF_COST);
  8325   size(4);
  8326   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8327   opcode(Assembler::stf_op3);
  8328   ins_encode(simple_form3_mem_reg(dst, src));
  8329   ins_pipe(fstoreF_stk_reg);
  8330 %}
  8332 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8333   match(Set dst (MoveI2F src));
  8334   effect(DEF dst, USE src);
  8335   ins_cost(MEMORY_REF_COST);
  8337   size(4);
  8338   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8339   opcode(Assembler::stw_op3);
  8340   ins_encode(simple_form3_mem_reg( dst, src ) );
  8341   ins_pipe(istore_mem_reg);
  8342 %}
  8344 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8345   match(Set dst (MoveD2L src));
  8346   effect(DEF dst, USE src);
  8347   ins_cost(MEMORY_REF_COST);
  8349   size(4);
  8350   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8351   opcode(Assembler::stdf_op3);
  8352   ins_encode(simple_form3_mem_reg(dst, src));
  8353   ins_pipe(fstoreD_stk_reg);
  8354 %}
  8356 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8357   match(Set dst (MoveL2D src));
  8358   effect(DEF dst, USE src);
  8359   ins_cost(MEMORY_REF_COST);
  8361   size(4);
  8362   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8363   opcode(Assembler::stx_op3);
  8364   ins_encode(simple_form3_mem_reg( dst, src ) );
  8365   ins_pipe(istore_mem_reg);
  8366 %}
  8369 //-----------
  8370 // Long to Double conversion using V8 opcodes.
  8371 // Still useful because cheetah traps and becomes
  8372 // amazingly slow for some common numbers.
  8374 // Magic constant, 0x43300000
  8375 instruct loadConI_x43300000(iRegI dst) %{
  8376   effect(DEF dst);
  8377   size(4);
  8378   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8379   ins_encode(SetHi22(0x43300000, dst));
  8380   ins_pipe(ialu_none);
  8381 %}
  8383 // Magic constant, 0x41f00000
  8384 instruct loadConI_x41f00000(iRegI dst) %{
  8385   effect(DEF dst);
  8386   size(4);
  8387   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8388   ins_encode(SetHi22(0x41f00000, dst));
  8389   ins_pipe(ialu_none);
  8390 %}
  8392 // Construct a double from two float halves
  8393 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8394   effect(DEF dst, USE src1, USE src2);
  8395   size(8);
  8396   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8397             "FMOVS  $src2.lo,$dst.lo" %}
  8398   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8399   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8400   ins_pipe(faddD_reg_reg);
  8401 %}
  8403 // Convert integer in high half of a double register (in the lower half of
  8404 // the double register file) to double
  8405 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8406   effect(DEF dst, USE src);
  8407   size(4);
  8408   format %{ "FITOD  $src,$dst" %}
  8409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8410   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8411   ins_pipe(fcvtLHi2D);
  8412 %}
  8414 // Add float double precision
  8415 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8416   effect(DEF dst, USE src1, USE src2);
  8417   size(4);
  8418   format %{ "FADDD  $src1,$src2,$dst" %}
  8419   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8420   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8421   ins_pipe(faddD_reg_reg);
  8422 %}
  8424 // Sub float double precision
  8425 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8426   effect(DEF dst, USE src1, USE src2);
  8427   size(4);
  8428   format %{ "FSUBD  $src1,$src2,$dst" %}
  8429   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8430   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8431   ins_pipe(faddD_reg_reg);
  8432 %}
  8434 // Mul float double precision
  8435 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8436   effect(DEF dst, USE src1, USE src2);
  8437   size(4);
  8438   format %{ "FMULD  $src1,$src2,$dst" %}
  8439   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8440   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8441   ins_pipe(fmulD_reg_reg);
  8442 %}
  8444 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8445   match(Set dst (ConvL2D src));
  8446   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8448   expand %{
  8449     regD_low   tmpsrc;
  8450     iRegI      ix43300000;
  8451     iRegI      ix41f00000;
  8452     stackSlotL lx43300000;
  8453     stackSlotL lx41f00000;
  8454     regD_low   dx43300000;
  8455     regD       dx41f00000;
  8456     regD       tmp1;
  8457     regD_low   tmp2;
  8458     regD       tmp3;
  8459     regD       tmp4;
  8461     stkL_to_regD(tmpsrc, src);
  8463     loadConI_x43300000(ix43300000);
  8464     loadConI_x41f00000(ix41f00000);
  8465     regI_to_stkLHi(lx43300000, ix43300000);
  8466     regI_to_stkLHi(lx41f00000, ix41f00000);
  8467     stkL_to_regD(dx43300000, lx43300000);
  8468     stkL_to_regD(dx41f00000, lx41f00000);
  8470     convI2D_regDHi_regD(tmp1, tmpsrc);
  8471     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8472     subD_regD_regD(tmp3, tmp2, dx43300000);
  8473     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8474     addD_regD_regD(dst, tmp3, tmp4);
  8475   %}
  8476 %}
  8478 // Long to Double conversion using fast fxtof
  8479 instruct convL2D_helper(regD dst, regD tmp) %{
  8480   effect(DEF dst, USE tmp);
  8481   size(4);
  8482   format %{ "FXTOD  $tmp,$dst" %}
  8483   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8484   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8485   ins_pipe(fcvtL2D);
  8486 %}
  8488 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8489   predicate(VM_Version::has_fast_fxtof());
  8490   match(Set dst (ConvL2D src));
  8491   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8492   expand %{
  8493     regD tmp;
  8494     stkL_to_regD(tmp, src);
  8495     convL2D_helper(dst, tmp);
  8496   %}
  8497 %}
  8499 //-----------
  8500 // Long to Float conversion using V8 opcodes.
  8501 // Still useful because cheetah traps and becomes
  8502 // amazingly slow for some common numbers.
  8504 // Long to Float conversion using fast fxtof
  8505 instruct convL2F_helper(regF dst, regD tmp) %{
  8506   effect(DEF dst, USE tmp);
  8507   size(4);
  8508   format %{ "FXTOS  $tmp,$dst" %}
  8509   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8510   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8511   ins_pipe(fcvtL2F);
  8512 %}
  8514 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8515   match(Set dst (ConvL2F src));
  8516   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8517   expand %{
  8518     regD tmp;
  8519     stkL_to_regD(tmp, src);
  8520     convL2F_helper(dst, tmp);
  8521   %}
  8522 %}
  8523 //-----------
  8525 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8526   match(Set dst (ConvL2I src));
  8527 #ifndef _LP64
  8528   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8529   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8530   ins_pipe(ialu_move_reg_I_to_L);
  8531 #else
  8532   size(4);
  8533   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8534   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8535   ins_pipe(ialu_reg);
  8536 #endif
  8537 %}
  8539 // Register Shift Right Immediate
  8540 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8541   match(Set dst (ConvL2I (RShiftL src cnt)));
  8543   size(4);
  8544   format %{ "SRAX   $src,$cnt,$dst" %}
  8545   opcode(Assembler::srax_op3, Assembler::arith_op);
  8546   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8547   ins_pipe(ialu_reg_imm);
  8548 %}
  8550 // Replicate scalar to packed byte values in Double register
  8551 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8552   effect(DEF dst, USE src);
  8553   format %{ "SLLX  $src,56,$dst\n\t"
  8554             "SRLX  $dst, 8,O7\n\t"
  8555             "OR    $dst,O7,$dst\n\t"
  8556             "SRLX  $dst,16,O7\n\t"
  8557             "OR    $dst,O7,$dst\n\t"
  8558             "SRLX  $dst,32,O7\n\t"
  8559             "OR    $dst,O7,$dst\t! replicate8B" %}
  8560   ins_encode( enc_repl8b(src, dst));
  8561   ins_pipe(ialu_reg);
  8562 %}
  8564 // Replicate scalar to packed byte values in Double register
  8565 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8566   match(Set dst (Replicate8B src));
  8567   expand %{
  8568     iRegL tmp;
  8569     Repl8B_reg_helper(tmp, src);
  8570     regL_to_stkD(dst, tmp);
  8571   %}
  8572 %}
  8574 // Replicate scalar constant to packed byte values in Double register
  8575 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8576   match(Set dst (Replicate8B src));
  8577 #ifdef _LP64
  8578   size(36);
  8579 #else
  8580   size(8);
  8581 #endif
  8582   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8583             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8584   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8585   ins_pipe(loadConFD);
  8586 %}
  8588 // Replicate scalar to packed char values into stack slot
  8589 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8590   effect(DEF dst, USE src);
  8591   format %{ "SLLX  $src,48,$dst\n\t"
  8592             "SRLX  $dst,16,O7\n\t"
  8593             "OR    $dst,O7,$dst\n\t"
  8594             "SRLX  $dst,32,O7\n\t"
  8595             "OR    $dst,O7,$dst\t! replicate4C" %}
  8596   ins_encode( enc_repl4s(src, dst) );
  8597   ins_pipe(ialu_reg);
  8598 %}
  8600 // Replicate scalar to packed char values into stack slot
  8601 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8602   match(Set dst (Replicate4C src));
  8603   expand %{
  8604     iRegL tmp;
  8605     Repl4C_reg_helper(tmp, src);
  8606     regL_to_stkD(dst, tmp);
  8607   %}
  8608 %}
  8610 // Replicate scalar constant to packed char values in Double register
  8611 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8612   match(Set dst (Replicate4C src));
  8613 #ifdef _LP64
  8614   size(36);
  8615 #else
  8616   size(8);
  8617 #endif
  8618   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8619             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8620   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8621   ins_pipe(loadConFD);
  8622 %}
  8624 // Replicate scalar to packed short values into stack slot
  8625 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8626   effect(DEF dst, USE src);
  8627   format %{ "SLLX  $src,48,$dst\n\t"
  8628             "SRLX  $dst,16,O7\n\t"
  8629             "OR    $dst,O7,$dst\n\t"
  8630             "SRLX  $dst,32,O7\n\t"
  8631             "OR    $dst,O7,$dst\t! replicate4S" %}
  8632   ins_encode( enc_repl4s(src, dst) );
  8633   ins_pipe(ialu_reg);
  8634 %}
  8636 // Replicate scalar to packed short values into stack slot
  8637 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8638   match(Set dst (Replicate4S src));
  8639   expand %{
  8640     iRegL tmp;
  8641     Repl4S_reg_helper(tmp, src);
  8642     regL_to_stkD(dst, tmp);
  8643   %}
  8644 %}
  8646 // Replicate scalar constant to packed short values in Double register
  8647 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8648   match(Set dst (Replicate4S src));
  8649 #ifdef _LP64
  8650   size(36);
  8651 #else
  8652   size(8);
  8653 #endif
  8654   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8655             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8656   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8657   ins_pipe(loadConFD);
  8658 %}
  8660 // Replicate scalar to packed int values in Double register
  8661 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8662   effect(DEF dst, USE src);
  8663   format %{ "SLLX  $src,32,$dst\n\t"
  8664             "SRLX  $dst,32,O7\n\t"
  8665             "OR    $dst,O7,$dst\t! replicate2I" %}
  8666   ins_encode( enc_repl2i(src, dst));
  8667   ins_pipe(ialu_reg);
  8668 %}
  8670 // Replicate scalar to packed int values in Double register
  8671 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8672   match(Set dst (Replicate2I src));
  8673   expand %{
  8674     iRegL tmp;
  8675     Repl2I_reg_helper(tmp, src);
  8676     regL_to_stkD(dst, tmp);
  8677   %}
  8678 %}
  8680 // Replicate scalar zero constant to packed int values in Double register
  8681 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8682   match(Set dst (Replicate2I src));
  8683 #ifdef _LP64
  8684   size(36);
  8685 #else
  8686   size(8);
  8687 #endif
  8688   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8689             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8690   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8691   ins_pipe(loadConFD);
  8692 %}
  8694 //----------Control Flow Instructions------------------------------------------
  8695 // Compare Instructions
  8696 // Compare Integers
  8697 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8698   match(Set icc (CmpI op1 op2));
  8699   effect( DEF icc, USE op1, USE op2 );
  8701   size(4);
  8702   format %{ "CMP    $op1,$op2" %}
  8703   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8704   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8705   ins_pipe(ialu_cconly_reg_reg);
  8706 %}
  8708 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8709   match(Set icc (CmpU op1 op2));
  8711   size(4);
  8712   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8713   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8714   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8715   ins_pipe(ialu_cconly_reg_reg);
  8716 %}
  8718 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8719   match(Set icc (CmpI op1 op2));
  8720   effect( DEF icc, USE op1 );
  8722   size(4);
  8723   format %{ "CMP    $op1,$op2" %}
  8724   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8725   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8726   ins_pipe(ialu_cconly_reg_imm);
  8727 %}
  8729 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8730   match(Set icc (CmpI (AndI op1 op2) zero));
  8732   size(4);
  8733   format %{ "BTST   $op2,$op1" %}
  8734   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8735   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8736   ins_pipe(ialu_cconly_reg_reg_zero);
  8737 %}
  8739 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8740   match(Set icc (CmpI (AndI op1 op2) zero));
  8742   size(4);
  8743   format %{ "BTST   $op2,$op1" %}
  8744   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8745   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8746   ins_pipe(ialu_cconly_reg_imm_zero);
  8747 %}
  8749 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8750   match(Set xcc (CmpL op1 op2));
  8751   effect( DEF xcc, USE op1, USE op2 );
  8753   size(4);
  8754   format %{ "CMP    $op1,$op2\t\t! long" %}
  8755   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8756   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8757   ins_pipe(ialu_cconly_reg_reg);
  8758 %}
  8760 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8761   match(Set xcc (CmpL op1 con));
  8762   effect( DEF xcc, USE op1, USE con );
  8764   size(4);
  8765   format %{ "CMP    $op1,$con\t\t! long" %}
  8766   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8767   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8768   ins_pipe(ialu_cconly_reg_reg);
  8769 %}
  8771 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8772   match(Set xcc (CmpL (AndL op1 op2) zero));
  8773   effect( DEF xcc, USE op1, USE op2 );
  8775   size(4);
  8776   format %{ "BTST   $op1,$op2\t\t! long" %}
  8777   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8778   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8779   ins_pipe(ialu_cconly_reg_reg);
  8780 %}
  8782 // useful for checking the alignment of a pointer:
  8783 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8784   match(Set xcc (CmpL (AndL op1 con) zero));
  8785   effect( DEF xcc, USE op1, USE con );
  8787   size(4);
  8788   format %{ "BTST   $op1,$con\t\t! long" %}
  8789   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8790   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8791   ins_pipe(ialu_cconly_reg_reg);
  8792 %}
  8794 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8795   match(Set icc (CmpU op1 op2));
  8797   size(4);
  8798   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8799   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8800   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8801   ins_pipe(ialu_cconly_reg_imm);
  8802 %}
  8804 // Compare Pointers
  8805 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8806   match(Set pcc (CmpP op1 op2));
  8808   size(4);
  8809   format %{ "CMP    $op1,$op2\t! ptr" %}
  8810   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8811   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8812   ins_pipe(ialu_cconly_reg_reg);
  8813 %}
  8815 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8816   match(Set pcc (CmpP op1 op2));
  8818   size(4);
  8819   format %{ "CMP    $op1,$op2\t! ptr" %}
  8820   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8821   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8822   ins_pipe(ialu_cconly_reg_imm);
  8823 %}
  8825 // Compare Narrow oops
  8826 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8827   match(Set icc (CmpN op1 op2));
  8829   size(4);
  8830   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8831   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8832   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8833   ins_pipe(ialu_cconly_reg_reg);
  8834 %}
  8836 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8837   match(Set icc (CmpN op1 op2));
  8839   size(4);
  8840   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8841   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8842   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8843   ins_pipe(ialu_cconly_reg_imm);
  8844 %}
  8846 //----------Max and Min--------------------------------------------------------
  8847 // Min Instructions
  8848 // Conditional move for min
  8849 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8850   effect( USE_DEF op2, USE op1, USE icc );
  8852   size(4);
  8853   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8854   opcode(Assembler::less);
  8855   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8856   ins_pipe(ialu_reg_flags);
  8857 %}
  8859 // Min Register with Register.
  8860 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8861   match(Set op2 (MinI op1 op2));
  8862   ins_cost(DEFAULT_COST*2);
  8863   expand %{
  8864     flagsReg icc;
  8865     compI_iReg(icc,op1,op2);
  8866     cmovI_reg_lt(op2,op1,icc);
  8867   %}
  8868 %}
  8870 // Max Instructions
  8871 // Conditional move for max
  8872 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8873   effect( USE_DEF op2, USE op1, USE icc );
  8874   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8875   opcode(Assembler::greater);
  8876   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8877   ins_pipe(ialu_reg_flags);
  8878 %}
  8880 // Max Register with Register
  8881 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8882   match(Set op2 (MaxI op1 op2));
  8883   ins_cost(DEFAULT_COST*2);
  8884   expand %{
  8885     flagsReg icc;
  8886     compI_iReg(icc,op1,op2);
  8887     cmovI_reg_gt(op2,op1,icc);
  8888   %}
  8889 %}
  8892 //----------Float Compares----------------------------------------------------
  8893 // Compare floating, generate condition code
  8894 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8895   match(Set fcc (CmpF src1 src2));
  8897   size(4);
  8898   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8899   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8900   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8901   ins_pipe(faddF_fcc_reg_reg_zero);
  8902 %}
  8904 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8905   match(Set fcc (CmpD src1 src2));
  8907   size(4);
  8908   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8909   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8910   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8911   ins_pipe(faddD_fcc_reg_reg_zero);
  8912 %}
  8915 // Compare floating, generate -1,0,1
  8916 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8917   match(Set dst (CmpF3 src1 src2));
  8918   effect(KILL fcc0);
  8919   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8920   format %{ "fcmpl  $dst,$src1,$src2" %}
  8921   // Primary = float
  8922   opcode( true );
  8923   ins_encode( floating_cmp( dst, src1, src2 ) );
  8924   ins_pipe( floating_cmp );
  8925 %}
  8927 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8928   match(Set dst (CmpD3 src1 src2));
  8929   effect(KILL fcc0);
  8930   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8931   format %{ "dcmpl  $dst,$src1,$src2" %}
  8932   // Primary = double (not float)
  8933   opcode( false );
  8934   ins_encode( floating_cmp( dst, src1, src2 ) );
  8935   ins_pipe( floating_cmp );
  8936 %}
  8938 //----------Branches---------------------------------------------------------
  8939 // Jump
  8940 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8941 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8942   match(Jump switch_val);
  8944   ins_cost(350);
  8946   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8947              "ADD    O7, lo(table_base), O7\n\t"
  8948              "LD     [O7+$switch_val], O7\n\t"
  8949              "JUMP   O7"
  8950          %}
  8951   ins_encode( jump_enc( switch_val, table) );
  8952   ins_pc_relative(1);
  8953   ins_pipe(ialu_reg_reg);
  8954 %}
  8956 // Direct Branch.  Use V8 version with longer range.
  8957 instruct branch(label labl) %{
  8958   match(Goto);
  8959   effect(USE labl);
  8961   size(8);
  8962   ins_cost(BRANCH_COST);
  8963   format %{ "BA     $labl" %}
  8964   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8965   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8966   ins_encode( enc_ba( labl ) );
  8967   ins_pc_relative(1);
  8968   ins_pipe(br);
  8969 %}
  8971 // Conditional Direct Branch
  8972 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8973   match(If cmp icc);
  8974   effect(USE labl);
  8976   size(8);
  8977   ins_cost(BRANCH_COST);
  8978   format %{ "BP$cmp   $icc,$labl" %}
  8979   // Prim = bits 24-22, Secnd = bits 31-30
  8980   ins_encode( enc_bp( labl, cmp, icc ) );
  8981   ins_pc_relative(1);
  8982   ins_pipe(br_cc);
  8983 %}
  8985 // Branch-on-register tests all 64 bits.  We assume that values
  8986 // in 64-bit registers always remains zero or sign extended
  8987 // unless our code munges the high bits.  Interrupts can chop
  8988 // the high order bits to zero or sign at any time.
  8989 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8990   match(If cmp (CmpI op1 zero));
  8991   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8992   effect(USE labl);
  8994   size(8);
  8995   ins_cost(BRANCH_COST);
  8996   format %{ "BR$cmp   $op1,$labl" %}
  8997   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8998   ins_pc_relative(1);
  8999   ins_pipe(br_reg);
  9000 %}
  9002 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9003   match(If cmp (CmpP op1 null));
  9004   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9005   effect(USE labl);
  9007   size(8);
  9008   ins_cost(BRANCH_COST);
  9009   format %{ "BR$cmp   $op1,$labl" %}
  9010   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9011   ins_pc_relative(1);
  9012   ins_pipe(br_reg);
  9013 %}
  9015 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9016   match(If cmp (CmpL op1 zero));
  9017   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9018   effect(USE labl);
  9020   size(8);
  9021   ins_cost(BRANCH_COST);
  9022   format %{ "BR$cmp   $op1,$labl" %}
  9023   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9024   ins_pc_relative(1);
  9025   ins_pipe(br_reg);
  9026 %}
  9028 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9029   match(If cmp icc);
  9030   effect(USE labl);
  9032   format %{ "BP$cmp  $icc,$labl" %}
  9033   // Prim = bits 24-22, Secnd = bits 31-30
  9034   ins_encode( enc_bp( labl, cmp, icc ) );
  9035   ins_pc_relative(1);
  9036   ins_pipe(br_cc);
  9037 %}
  9039 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9040   match(If cmp pcc);
  9041   effect(USE labl);
  9043   size(8);
  9044   ins_cost(BRANCH_COST);
  9045   format %{ "BP$cmp  $pcc,$labl" %}
  9046   // Prim = bits 24-22, Secnd = bits 31-30
  9047   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9048   ins_pc_relative(1);
  9049   ins_pipe(br_cc);
  9050 %}
  9052 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9053   match(If cmp fcc);
  9054   effect(USE labl);
  9056   size(8);
  9057   ins_cost(BRANCH_COST);
  9058   format %{ "FBP$cmp $fcc,$labl" %}
  9059   // Prim = bits 24-22, Secnd = bits 31-30
  9060   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9061   ins_pc_relative(1);
  9062   ins_pipe(br_fcc);
  9063 %}
  9065 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9066   match(CountedLoopEnd cmp icc);
  9067   effect(USE labl);
  9069   size(8);
  9070   ins_cost(BRANCH_COST);
  9071   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9072   // Prim = bits 24-22, Secnd = bits 31-30
  9073   ins_encode( enc_bp( labl, cmp, icc ) );
  9074   ins_pc_relative(1);
  9075   ins_pipe(br_cc);
  9076 %}
  9078 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9079   match(CountedLoopEnd cmp icc);
  9080   effect(USE labl);
  9082   size(8);
  9083   ins_cost(BRANCH_COST);
  9084   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9085   // Prim = bits 24-22, Secnd = bits 31-30
  9086   ins_encode( enc_bp( labl, cmp, icc ) );
  9087   ins_pc_relative(1);
  9088   ins_pipe(br_cc);
  9089 %}
  9091 // ============================================================================
  9092 // Long Compare
  9093 //
  9094 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9095 // is tricky.  The flavor of compare used depends on whether we are testing
  9096 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9097 // The GE test is the negated LT test.  The LE test can be had by commuting
  9098 // the operands (yielding a GE test) and then negating; negate again for the
  9099 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9100 // NE test is negated from that.
  9102 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9103 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9104 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9105 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9106 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9107 // foo match ends up with the wrong leaf.  One fix is to not match both
  9108 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9109 // both forms beat the trinary form of long-compare and both are very useful
  9110 // on Intel which has so few registers.
  9112 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9113   match(If cmp xcc);
  9114   effect(USE labl);
  9116   size(8);
  9117   ins_cost(BRANCH_COST);
  9118   format %{ "BP$cmp   $xcc,$labl" %}
  9119   // Prim = bits 24-22, Secnd = bits 31-30
  9120   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9121   ins_pc_relative(1);
  9122   ins_pipe(br_cc);
  9123 %}
  9125 // Manifest a CmpL3 result in an integer register.  Very painful.
  9126 // This is the test to avoid.
  9127 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9128   match(Set dst (CmpL3 src1 src2) );
  9129   effect( KILL ccr );
  9130   ins_cost(6*DEFAULT_COST);
  9131   size(24);
  9132   format %{ "CMP    $src1,$src2\t\t! long\n"
  9133           "\tBLT,a,pn done\n"
  9134           "\tMOV    -1,$dst\t! delay slot\n"
  9135           "\tBGT,a,pn done\n"
  9136           "\tMOV    1,$dst\t! delay slot\n"
  9137           "\tCLR    $dst\n"
  9138     "done:"     %}
  9139   ins_encode( cmpl_flag(src1,src2,dst) );
  9140   ins_pipe(cmpL_reg);
  9141 %}
  9143 // Conditional move
  9144 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9145   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9146   ins_cost(150);
  9147   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9148   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9149   ins_pipe(ialu_reg);
  9150 %}
  9152 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9153   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9154   ins_cost(140);
  9155   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9156   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9157   ins_pipe(ialu_imm);
  9158 %}
  9160 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9161   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9162   ins_cost(150);
  9163   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9164   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9165   ins_pipe(ialu_reg);
  9166 %}
  9168 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9169   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9170   ins_cost(140);
  9171   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9172   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9173   ins_pipe(ialu_imm);
  9174 %}
  9176 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9177   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9178   ins_cost(150);
  9179   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9180   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9181   ins_pipe(ialu_reg);
  9182 %}
  9184 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9185   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9186   ins_cost(150);
  9187   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9188   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9189   ins_pipe(ialu_reg);
  9190 %}
  9192 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9193   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9194   ins_cost(140);
  9195   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9196   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9197   ins_pipe(ialu_imm);
  9198 %}
  9200 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9201   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9202   ins_cost(150);
  9203   opcode(0x101);
  9204   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9205   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9206   ins_pipe(int_conditional_float_move);
  9207 %}
  9209 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9210   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9211   ins_cost(150);
  9212   opcode(0x102);
  9213   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9214   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9215   ins_pipe(int_conditional_float_move);
  9216 %}
  9218 // ============================================================================
  9219 // Safepoint Instruction
  9220 instruct safePoint_poll(iRegP poll) %{
  9221   match(SafePoint poll);
  9222   effect(USE poll);
  9224   size(4);
  9225 #ifdef _LP64
  9226   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9227 #else
  9228   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9229 #endif
  9230   ins_encode %{
  9231     __ relocate(relocInfo::poll_type);
  9232     __ ld_ptr($poll$$Register, 0, G0);
  9233   %}
  9234   ins_pipe(loadPollP);
  9235 %}
  9237 // ============================================================================
  9238 // Call Instructions
  9239 // Call Java Static Instruction
  9240 instruct CallStaticJavaDirect( method meth ) %{
  9241   match(CallStaticJava);
  9242   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9243   effect(USE meth);
  9245   size(8);
  9246   ins_cost(CALL_COST);
  9247   format %{ "CALL,static  ; NOP ==> " %}
  9248   ins_encode( Java_Static_Call( meth ), call_epilog );
  9249   ins_pc_relative(1);
  9250   ins_pipe(simple_call);
  9251 %}
  9253 // Call Java Static Instruction (method handle version)
  9254 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9255   match(CallStaticJava);
  9256   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9257   effect(USE meth, KILL l7_mh_SP_save);
  9259   size(8);
  9260   ins_cost(CALL_COST);
  9261   format %{ "CALL,static/MethodHandle" %}
  9262   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9263   ins_pc_relative(1);
  9264   ins_pipe(simple_call);
  9265 %}
  9267 // Call Java Dynamic Instruction
  9268 instruct CallDynamicJavaDirect( method meth ) %{
  9269   match(CallDynamicJava);
  9270   effect(USE meth);
  9272   ins_cost(CALL_COST);
  9273   format %{ "SET    (empty),R_G5\n\t"
  9274             "CALL,dynamic  ; NOP ==> " %}
  9275   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9276   ins_pc_relative(1);
  9277   ins_pipe(call);
  9278 %}
  9280 // Call Runtime Instruction
  9281 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9282   match(CallRuntime);
  9283   effect(USE meth, KILL l7);
  9284   ins_cost(CALL_COST);
  9285   format %{ "CALL,runtime" %}
  9286   ins_encode( Java_To_Runtime( meth ),
  9287               call_epilog, adjust_long_from_native_call );
  9288   ins_pc_relative(1);
  9289   ins_pipe(simple_call);
  9290 %}
  9292 // Call runtime without safepoint - same as CallRuntime
  9293 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9294   match(CallLeaf);
  9295   effect(USE meth, KILL l7);
  9296   ins_cost(CALL_COST);
  9297   format %{ "CALL,runtime leaf" %}
  9298   ins_encode( Java_To_Runtime( meth ),
  9299               call_epilog,
  9300               adjust_long_from_native_call );
  9301   ins_pc_relative(1);
  9302   ins_pipe(simple_call);
  9303 %}
  9305 // Call runtime without safepoint - same as CallLeaf
  9306 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9307   match(CallLeafNoFP);
  9308   effect(USE meth, KILL l7);
  9309   ins_cost(CALL_COST);
  9310   format %{ "CALL,runtime leaf nofp" %}
  9311   ins_encode( Java_To_Runtime( meth ),
  9312               call_epilog,
  9313               adjust_long_from_native_call );
  9314   ins_pc_relative(1);
  9315   ins_pipe(simple_call);
  9316 %}
  9318 // Tail Call; Jump from runtime stub to Java code.
  9319 // Also known as an 'interprocedural jump'.
  9320 // Target of jump will eventually return to caller.
  9321 // TailJump below removes the return address.
  9322 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9323   match(TailCall jump_target method_oop );
  9325   ins_cost(CALL_COST);
  9326   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9327   ins_encode(form_jmpl(jump_target));
  9328   ins_pipe(tail_call);
  9329 %}
  9332 // Return Instruction
  9333 instruct Ret() %{
  9334   match(Return);
  9336   // The epilogue node did the ret already.
  9337   size(0);
  9338   format %{ "! return" %}
  9339   ins_encode();
  9340   ins_pipe(empty);
  9341 %}
  9344 // Tail Jump; remove the return address; jump to target.
  9345 // TailCall above leaves the return address around.
  9346 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9347 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9348 // "restore" before this instruction (in Epilogue), we need to materialize it
  9349 // in %i0.
  9350 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9351   match( TailJump jump_target ex_oop );
  9352   ins_cost(CALL_COST);
  9353   format %{ "! discard R_O7\n\t"
  9354             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9355   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9356   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9357   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9358   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9359   ins_pipe(tail_call);
  9360 %}
  9362 // Create exception oop: created by stack-crawling runtime code.
  9363 // Created exception is now available to this handler, and is setup
  9364 // just prior to jumping to this handler.  No code emitted.
  9365 instruct CreateException( o0RegP ex_oop )
  9366 %{
  9367   match(Set ex_oop (CreateEx));
  9368   ins_cost(0);
  9370   size(0);
  9371   // use the following format syntax
  9372   format %{ "! exception oop is in R_O0; no code emitted" %}
  9373   ins_encode();
  9374   ins_pipe(empty);
  9375 %}
  9378 // Rethrow exception:
  9379 // The exception oop will come in the first argument position.
  9380 // Then JUMP (not call) to the rethrow stub code.
  9381 instruct RethrowException()
  9382 %{
  9383   match(Rethrow);
  9384   ins_cost(CALL_COST);
  9386   // use the following format syntax
  9387   format %{ "Jmp    rethrow_stub" %}
  9388   ins_encode(enc_rethrow);
  9389   ins_pipe(tail_call);
  9390 %}
  9393 // Die now
  9394 instruct ShouldNotReachHere( )
  9395 %{
  9396   match(Halt);
  9397   ins_cost(CALL_COST);
  9399   size(4);
  9400   // Use the following format syntax
  9401   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9402   ins_encode( form2_illtrap() );
  9403   ins_pipe(tail_call);
  9404 %}
  9406 // ============================================================================
  9407 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9408 // array for an instance of the superklass.  Set a hidden internal cache on a
  9409 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9410 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9411 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9412   match(Set index (PartialSubtypeCheck sub super));
  9413   effect( KILL pcc, KILL o7 );
  9414   ins_cost(DEFAULT_COST*10);
  9415   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9416   ins_encode( enc_PartialSubtypeCheck() );
  9417   ins_pipe(partial_subtype_check_pipe);
  9418 %}
  9420 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9421   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9422   effect( KILL idx, KILL o7 );
  9423   ins_cost(DEFAULT_COST*10);
  9424   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9425   ins_encode( enc_PartialSubtypeCheck() );
  9426   ins_pipe(partial_subtype_check_pipe);
  9427 %}
  9430 // ============================================================================
  9431 // inlined locking and unlocking
  9433 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9434   match(Set pcc (FastLock object box));
  9436   effect(KILL scratch, TEMP scratch2);
  9437   ins_cost(100);
  9439   size(4*112);       // conservative overestimation ...
  9440   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9441   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9442   ins_pipe(long_memory_op);
  9443 %}
  9446 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9447   match(Set pcc (FastUnlock object box));
  9448   effect(KILL scratch, TEMP scratch2);
  9449   ins_cost(100);
  9451   size(4*120);       // conservative overestimation ...
  9452   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9453   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9454   ins_pipe(long_memory_op);
  9455 %}
  9457 // Count and Base registers are fixed because the allocator cannot
  9458 // kill unknown registers.  The encodings are generic.
  9459 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9460   match(Set dummy (ClearArray cnt base));
  9461   effect(TEMP temp, KILL ccr);
  9462   ins_cost(300);
  9463   format %{ "MOV    $cnt,$temp\n"
  9464     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9465     "        BRge   loop\t\t! Clearing loop\n"
  9466     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9467   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9468   ins_pipe(long_memory_op);
  9469 %}
  9471 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9472                         o7RegI tmp, flagsReg ccr) %{
  9473   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9474   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9475   ins_cost(300);
  9476   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9477   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9478   ins_pipe(long_memory_op);
  9479 %}
  9481 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9482                        o7RegI tmp, flagsReg ccr) %{
  9483   match(Set result (StrEquals (Binary str1 str2) cnt));
  9484   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9485   ins_cost(300);
  9486   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9487   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9488   ins_pipe(long_memory_op);
  9489 %}
  9491 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9492                       o7RegI tmp2, flagsReg ccr) %{
  9493   match(Set result (AryEq ary1 ary2));
  9494   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9495   ins_cost(300);
  9496   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9497   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9498   ins_pipe(long_memory_op);
  9499 %}
  9502 //---------- Zeros Count Instructions ------------------------------------------
  9504 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9505   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9506   match(Set dst (CountLeadingZerosI src));
  9507   effect(TEMP dst, TEMP tmp, KILL cr);
  9509   // x |= (x >> 1);
  9510   // x |= (x >> 2);
  9511   // x |= (x >> 4);
  9512   // x |= (x >> 8);
  9513   // x |= (x >> 16);
  9514   // return (WORDBITS - popc(x));
  9515   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9516             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9517             "OR      $dst,$tmp,$dst\n\t"
  9518             "SRL     $dst,2,$tmp\n\t"
  9519             "OR      $dst,$tmp,$dst\n\t"
  9520             "SRL     $dst,4,$tmp\n\t"
  9521             "OR      $dst,$tmp,$dst\n\t"
  9522             "SRL     $dst,8,$tmp\n\t"
  9523             "OR      $dst,$tmp,$dst\n\t"
  9524             "SRL     $dst,16,$tmp\n\t"
  9525             "OR      $dst,$tmp,$dst\n\t"
  9526             "POPC    $dst,$dst\n\t"
  9527             "MOV     32,$tmp\n\t"
  9528             "SUB     $tmp,$dst,$dst" %}
  9529   ins_encode %{
  9530     Register Rdst = $dst$$Register;
  9531     Register Rsrc = $src$$Register;
  9532     Register Rtmp = $tmp$$Register;
  9533     __ srl(Rsrc, 1, Rtmp);
  9534     __ srl(Rsrc, 0, Rdst);
  9535     __ or3(Rdst, Rtmp, Rdst);
  9536     __ srl(Rdst, 2, Rtmp);
  9537     __ or3(Rdst, Rtmp, Rdst);
  9538     __ srl(Rdst, 4, Rtmp);
  9539     __ or3(Rdst, Rtmp, Rdst);
  9540     __ srl(Rdst, 8, Rtmp);
  9541     __ or3(Rdst, Rtmp, Rdst);
  9542     __ srl(Rdst, 16, Rtmp);
  9543     __ or3(Rdst, Rtmp, Rdst);
  9544     __ popc(Rdst, Rdst);
  9545     __ mov(BitsPerInt, Rtmp);
  9546     __ sub(Rtmp, Rdst, Rdst);
  9547   %}
  9548   ins_pipe(ialu_reg);
  9549 %}
  9551 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9552   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9553   match(Set dst (CountLeadingZerosL src));
  9554   effect(TEMP dst, TEMP tmp, KILL cr);
  9556   // x |= (x >> 1);
  9557   // x |= (x >> 2);
  9558   // x |= (x >> 4);
  9559   // x |= (x >> 8);
  9560   // x |= (x >> 16);
  9561   // x |= (x >> 32);
  9562   // return (WORDBITS - popc(x));
  9563   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9564             "OR      $src,$tmp,$dst\n\t"
  9565             "SRLX    $dst,2,$tmp\n\t"
  9566             "OR      $dst,$tmp,$dst\n\t"
  9567             "SRLX    $dst,4,$tmp\n\t"
  9568             "OR      $dst,$tmp,$dst\n\t"
  9569             "SRLX    $dst,8,$tmp\n\t"
  9570             "OR      $dst,$tmp,$dst\n\t"
  9571             "SRLX    $dst,16,$tmp\n\t"
  9572             "OR      $dst,$tmp,$dst\n\t"
  9573             "SRLX    $dst,32,$tmp\n\t"
  9574             "OR      $dst,$tmp,$dst\n\t"
  9575             "POPC    $dst,$dst\n\t"
  9576             "MOV     64,$tmp\n\t"
  9577             "SUB     $tmp,$dst,$dst" %}
  9578   ins_encode %{
  9579     Register Rdst = $dst$$Register;
  9580     Register Rsrc = $src$$Register;
  9581     Register Rtmp = $tmp$$Register;
  9582     __ srlx(Rsrc, 1, Rtmp);
  9583     __ or3(Rsrc, Rtmp, Rdst);
  9584     __ srlx(Rdst, 2, Rtmp);
  9585     __ or3(Rdst, Rtmp, Rdst);
  9586     __ srlx(Rdst, 4, Rtmp);
  9587     __ or3(Rdst, Rtmp, Rdst);
  9588     __ srlx(Rdst, 8, Rtmp);
  9589     __ or3(Rdst, Rtmp, Rdst);
  9590     __ srlx(Rdst, 16, Rtmp);
  9591     __ or3(Rdst, Rtmp, Rdst);
  9592     __ srlx(Rdst, 32, Rtmp);
  9593     __ or3(Rdst, Rtmp, Rdst);
  9594     __ popc(Rdst, Rdst);
  9595     __ mov(BitsPerLong, Rtmp);
  9596     __ sub(Rtmp, Rdst, Rdst);
  9597   %}
  9598   ins_pipe(ialu_reg);
  9599 %}
  9601 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9602   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9603   match(Set dst (CountTrailingZerosI src));
  9604   effect(TEMP dst, KILL cr);
  9606   // return popc(~x & (x - 1));
  9607   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9608             "ANDN    $dst,$src,$dst\n\t"
  9609             "SRL     $dst,R_G0,$dst\n\t"
  9610             "POPC    $dst,$dst" %}
  9611   ins_encode %{
  9612     Register Rdst = $dst$$Register;
  9613     Register Rsrc = $src$$Register;
  9614     __ sub(Rsrc, 1, Rdst);
  9615     __ andn(Rdst, Rsrc, Rdst);
  9616     __ srl(Rdst, G0, Rdst);
  9617     __ popc(Rdst, Rdst);
  9618   %}
  9619   ins_pipe(ialu_reg);
  9620 %}
  9622 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9623   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9624   match(Set dst (CountTrailingZerosL src));
  9625   effect(TEMP dst, KILL cr);
  9627   // return popc(~x & (x - 1));
  9628   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9629             "ANDN    $dst,$src,$dst\n\t"
  9630             "POPC    $dst,$dst" %}
  9631   ins_encode %{
  9632     Register Rdst = $dst$$Register;
  9633     Register Rsrc = $src$$Register;
  9634     __ sub(Rsrc, 1, Rdst);
  9635     __ andn(Rdst, Rsrc, Rdst);
  9636     __ popc(Rdst, Rdst);
  9637   %}
  9638   ins_pipe(ialu_reg);
  9639 %}
  9642 //---------- Population Count Instructions -------------------------------------
  9644 instruct popCountI(iRegI dst, iRegI src) %{
  9645   predicate(UsePopCountInstruction);
  9646   match(Set dst (PopCountI src));
  9648   format %{ "POPC   $src, $dst" %}
  9649   ins_encode %{
  9650     __ popc($src$$Register, $dst$$Register);
  9651   %}
  9652   ins_pipe(ialu_reg);
  9653 %}
  9655 // Note: Long.bitCount(long) returns an int.
  9656 instruct popCountL(iRegI dst, iRegL src) %{
  9657   predicate(UsePopCountInstruction);
  9658   match(Set dst (PopCountL src));
  9660   format %{ "POPC   $src, $dst" %}
  9661   ins_encode %{
  9662     __ popc($src$$Register, $dst$$Register);
  9663   %}
  9664   ins_pipe(ialu_reg);
  9665 %}
  9668 // ============================================================================
  9669 //------------Bytes reverse--------------------------------------------------
  9671 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9672   match(Set dst (ReverseBytesI src));
  9674   // Op cost is artificially doubled to make sure that load or store
  9675   // instructions are preferred over this one which requires a spill
  9676   // onto a stack slot.
  9677   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9678   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9680   ins_encode %{
  9681     __ set($src$$disp + STACK_BIAS, O7);
  9682     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9683   %}
  9684   ins_pipe( iload_mem );
  9685 %}
  9687 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9688   match(Set dst (ReverseBytesL src));
  9690   // Op cost is artificially doubled to make sure that load or store
  9691   // instructions are preferred over this one which requires a spill
  9692   // onto a stack slot.
  9693   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9694   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9696   ins_encode %{
  9697     __ set($src$$disp + STACK_BIAS, O7);
  9698     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9699   %}
  9700   ins_pipe( iload_mem );
  9701 %}
  9703 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9704   match(Set dst (ReverseBytesUS src));
  9706   // Op cost is artificially doubled to make sure that load or store
  9707   // instructions are preferred over this one which requires a spill
  9708   // onto a stack slot.
  9709   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9710   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9712   ins_encode %{
  9713     // the value was spilled as an int so bias the load
  9714     __ set($src$$disp + STACK_BIAS + 2, O7);
  9715     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9716   %}
  9717   ins_pipe( iload_mem );
  9718 %}
  9720 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9721   match(Set dst (ReverseBytesS src));
  9723   // Op cost is artificially doubled to make sure that load or store
  9724   // instructions are preferred over this one which requires a spill
  9725   // onto a stack slot.
  9726   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9727   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9729   ins_encode %{
  9730     // the value was spilled as an int so bias the load
  9731     __ set($src$$disp + STACK_BIAS + 2, O7);
  9732     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9733   %}
  9734   ins_pipe( iload_mem );
  9735 %}
  9737 // Load Integer reversed byte order
  9738 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9739   match(Set dst (ReverseBytesI (LoadI src)));
  9741   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9742   size(4);
  9743   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9745   ins_encode %{
  9746     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9747   %}
  9748   ins_pipe(iload_mem);
  9749 %}
  9751 // Load Long - aligned and reversed
  9752 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9753   match(Set dst (ReverseBytesL (LoadL src)));
  9755   ins_cost(MEMORY_REF_COST);
  9756   size(4);
  9757   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9759   ins_encode %{
  9760     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9761   %}
  9762   ins_pipe(iload_mem);
  9763 %}
  9765 // Load unsigned short / char reversed byte order
  9766 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9767   match(Set dst (ReverseBytesUS (LoadUS src)));
  9769   ins_cost(MEMORY_REF_COST);
  9770   size(4);
  9771   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9773   ins_encode %{
  9774     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9775   %}
  9776   ins_pipe(iload_mem);
  9777 %}
  9779 // Load short reversed byte order
  9780 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9781   match(Set dst (ReverseBytesS (LoadS src)));
  9783   ins_cost(MEMORY_REF_COST);
  9784   size(4);
  9785   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9787   ins_encode %{
  9788     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9789   %}
  9790   ins_pipe(iload_mem);
  9791 %}
  9793 // Store Integer reversed byte order
  9794 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9795   match(Set dst (StoreI dst (ReverseBytesI src)));
  9797   ins_cost(MEMORY_REF_COST);
  9798   size(4);
  9799   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9801   ins_encode %{
  9802     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9803   %}
  9804   ins_pipe(istore_mem_reg);
  9805 %}
  9807 // Store Long reversed byte order
  9808 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9809   match(Set dst (StoreL dst (ReverseBytesL src)));
  9811   ins_cost(MEMORY_REF_COST);
  9812   size(4);
  9813   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9815   ins_encode %{
  9816     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9817   %}
  9818   ins_pipe(istore_mem_reg);
  9819 %}
  9821 // Store unsighed short/char reversed byte order
  9822 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9823   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9825   ins_cost(MEMORY_REF_COST);
  9826   size(4);
  9827   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9829   ins_encode %{
  9830     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9831   %}
  9832   ins_pipe(istore_mem_reg);
  9833 %}
  9835 // Store short reversed byte order
  9836 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9837   match(Set dst (StoreC dst (ReverseBytesS src)));
  9839   ins_cost(MEMORY_REF_COST);
  9840   size(4);
  9841   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9843   ins_encode %{
  9844     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9845   %}
  9846   ins_pipe(istore_mem_reg);
  9847 %}
  9849 //----------PEEPHOLE RULES-----------------------------------------------------
  9850 // These must follow all instruction definitions as they use the names
  9851 // defined in the instructions definitions.
  9852 //
  9853 // peepmatch ( root_instr_name [preceding_instruction]* );
  9854 //
  9855 // peepconstraint %{
  9856 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9857 //  [, ...] );
  9858 // // instruction numbers are zero-based using left to right order in peepmatch
  9859 //
  9860 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9861 // // provide an instruction_number.operand_name for each operand that appears
  9862 // // in the replacement instruction's match rule
  9863 //
  9864 // ---------VM FLAGS---------------------------------------------------------
  9865 //
  9866 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9867 //
  9868 // Each peephole rule is given an identifying number starting with zero and
  9869 // increasing by one in the order seen by the parser.  An individual peephole
  9870 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9871 // on the command-line.
  9872 //
  9873 // ---------CURRENT LIMITATIONS----------------------------------------------
  9874 //
  9875 // Only match adjacent instructions in same basic block
  9876 // Only equality constraints
  9877 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9878 // Only one replacement instruction
  9879 //
  9880 // ---------EXAMPLE----------------------------------------------------------
  9881 //
  9882 // // pertinent parts of existing instructions in architecture description
  9883 // instruct movI(eRegI dst, eRegI src) %{
  9884 //   match(Set dst (CopyI src));
  9885 // %}
  9886 //
  9887 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9888 //   match(Set dst (AddI dst src));
  9889 //   effect(KILL cr);
  9890 // %}
  9891 //
  9892 // // Change (inc mov) to lea
  9893 // peephole %{
  9894 //   // increment preceeded by register-register move
  9895 //   peepmatch ( incI_eReg movI );
  9896 //   // require that the destination register of the increment
  9897 //   // match the destination register of the move
  9898 //   peepconstraint ( 0.dst == 1.dst );
  9899 //   // construct a replacement instruction that sets
  9900 //   // the destination to ( move's source register + one )
  9901 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9902 // %}
  9903 //
  9905 // // Change load of spilled value to only a spill
  9906 // instruct storeI(memory mem, eRegI src) %{
  9907 //   match(Set mem (StoreI mem src));
  9908 // %}
  9909 //
  9910 // instruct loadI(eRegI dst, memory mem) %{
  9911 //   match(Set dst (LoadI mem));
  9912 // %}
  9913 //
  9914 // peephole %{
  9915 //   peepmatch ( loadI storeI );
  9916 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9917 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9918 // %}
  9920 //----------SMARTSPILL RULES---------------------------------------------------
  9921 // These must follow all instruction definitions as they use the names
  9922 // defined in the instructions definitions.
  9923 //
  9924 // SPARC will probably not have any of these rules due to RISC instruction set.
  9926 //----------PIPELINE-----------------------------------------------------------
  9927 // Rules which define the behavior of the target architectures pipeline.

mercurial