src/cpu/sparc/vm/stubGenerator_sparc.cpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4325
d2f8c38e543d
child 5283
46c544b8fbfc
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.inline.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "nativeInst_sparc.hpp"
    29 #include "oops/instanceOop.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/frame.inline.hpp"
    35 #include "runtime/handles.inline.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubCodeGenerator.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "runtime/thread.inline.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef COMPILER2
    42 #include "opto/runtime.hpp"
    43 #endif
    45 // Declaration and definition of StubGenerator (no .hpp file).
    46 // For a more detailed description of the stub routine structure
    47 // see the comment in stubRoutines.hpp.
    49 #define __ _masm->
    51 #ifdef PRODUCT
    52 #define BLOCK_COMMENT(str) /* nothing */
    53 #else
    54 #define BLOCK_COMMENT(str) __ block_comment(str)
    55 #endif
    57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    59 // Note:  The register L7 is used as L7_thread_cache, and may not be used
    60 //        any other way within this module.
    63 static const Register& Lstub_temp = L2;
    65 // -------------------------------------------------------------------------------------------------------------------------
    66 // Stub Code definitions
    68 static address handle_unsafe_access() {
    69   JavaThread* thread = JavaThread::current();
    70   address pc  = thread->saved_exception_pc();
    71   address npc = thread->saved_exception_npc();
    72   // pc is the instruction which we must emulate
    73   // doing a no-op is fine:  return garbage from the load
    75   // request an async exception
    76   thread->set_pending_unsafe_access_error();
    78   // return address of next instruction to execute
    79   return npc;
    80 }
    82 class StubGenerator: public StubCodeGenerator {
    83  private:
    85 #ifdef PRODUCT
    86 #define inc_counter_np(a,b,c) (0)
    87 #else
    88 #define inc_counter_np(counter, t1, t2) \
    89   BLOCK_COMMENT("inc_counter " #counter); \
    90   __ inc_counter(&counter, t1, t2);
    91 #endif
    93   //----------------------------------------------------------------------------------------------------
    94   // Call stubs are used to call Java from C
    96   address generate_call_stub(address& return_pc) {
    97     StubCodeMark mark(this, "StubRoutines", "call_stub");
    98     address start = __ pc();
   100     // Incoming arguments:
   101     //
   102     // o0         : call wrapper address
   103     // o1         : result (address)
   104     // o2         : result type
   105     // o3         : method
   106     // o4         : (interpreter) entry point
   107     // o5         : parameters (address)
   108     // [sp + 0x5c]: parameter size (in words)
   109     // [sp + 0x60]: thread
   110     //
   111     // +---------------+ <--- sp + 0
   112     // |               |
   113     // . reg save area .
   114     // |               |
   115     // +---------------+ <--- sp + 0x40
   116     // |               |
   117     // . extra 7 slots .
   118     // |               |
   119     // +---------------+ <--- sp + 0x5c
   120     // |  param. size  |
   121     // +---------------+ <--- sp + 0x60
   122     // |    thread     |
   123     // +---------------+
   124     // |               |
   126     // note: if the link argument position changes, adjust
   127     //       the code in frame::entry_frame_call_wrapper()
   129     const Argument link           = Argument(0, false); // used only for GC
   130     const Argument result         = Argument(1, false);
   131     const Argument result_type    = Argument(2, false);
   132     const Argument method         = Argument(3, false);
   133     const Argument entry_point    = Argument(4, false);
   134     const Argument parameters     = Argument(5, false);
   135     const Argument parameter_size = Argument(6, false);
   136     const Argument thread         = Argument(7, false);
   138     // setup thread register
   139     __ ld_ptr(thread.as_address(), G2_thread);
   140     __ reinit_heapbase();
   142 #ifdef ASSERT
   143     // make sure we have no pending exceptions
   144     { const Register t = G3_scratch;
   145       Label L;
   146       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
   147       __ br_null_short(t, Assembler::pt, L);
   148       __ stop("StubRoutines::call_stub: entered with pending exception");
   149       __ bind(L);
   150     }
   151 #endif
   153     // create activation frame & allocate space for parameters
   154     { const Register t = G3_scratch;
   155       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
   156       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
   157       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
   158       __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
   159       __ neg(t);                                                // negate so it can be used with save
   160       __ save(SP, t, SP);                                       // setup new frame
   161     }
   163     // +---------------+ <--- sp + 0
   164     // |               |
   165     // . reg save area .
   166     // |               |
   167     // +---------------+ <--- sp + 0x40
   168     // |               |
   169     // . extra 7 slots .
   170     // |               |
   171     // +---------------+ <--- sp + 0x5c
   172     // |  empty slot   |      (only if parameter size is even)
   173     // +---------------+
   174     // |               |
   175     // .  parameters   .
   176     // |               |
   177     // +---------------+ <--- fp + 0
   178     // |               |
   179     // . reg save area .
   180     // |               |
   181     // +---------------+ <--- fp + 0x40
   182     // |               |
   183     // . extra 7 slots .
   184     // |               |
   185     // +---------------+ <--- fp + 0x5c
   186     // |  param. size  |
   187     // +---------------+ <--- fp + 0x60
   188     // |    thread     |
   189     // +---------------+
   190     // |               |
   192     // pass parameters if any
   193     BLOCK_COMMENT("pass parameters if any");
   194     { const Register src = parameters.as_in().as_register();
   195       const Register dst = Lentry_args;
   196       const Register tmp = G3_scratch;
   197       const Register cnt = G4_scratch;
   199       // test if any parameters & setup of Lentry_args
   200       Label exit;
   201       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
   202       __ add( FP, STACK_BIAS, dst );
   203       __ cmp_zero_and_br(Assembler::zero, cnt, exit);
   204       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
   206       // copy parameters if any
   207       Label loop;
   208       __ BIND(loop);
   209       // Store parameter value
   210       __ ld_ptr(src, 0, tmp);
   211       __ add(src, BytesPerWord, src);
   212       __ st_ptr(tmp, dst, 0);
   213       __ deccc(cnt);
   214       __ br(Assembler::greater, false, Assembler::pt, loop);
   215       __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
   217       // done
   218       __ BIND(exit);
   219     }
   221     // setup parameters, method & call Java function
   222 #ifdef ASSERT
   223     // layout_activation_impl checks it's notion of saved SP against
   224     // this register, so if this changes update it as well.
   225     const Register saved_SP = Lscratch;
   226     __ mov(SP, saved_SP);                               // keep track of SP before call
   227 #endif
   229     // setup parameters
   230     const Register t = G3_scratch;
   231     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
   232     __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
   233     __ sub(FP, t, Gargs);                              // setup parameter pointer
   234 #ifdef _LP64
   235     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
   236 #endif
   237     __ mov(SP, O5_savedSP);
   240     // do the call
   241     //
   242     // the following register must be setup:
   243     //
   244     // G2_thread
   245     // G5_method
   246     // Gargs
   247     BLOCK_COMMENT("call Java function");
   248     __ jmpl(entry_point.as_in().as_register(), G0, O7);
   249     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
   251     BLOCK_COMMENT("call_stub_return_address:");
   252     return_pc = __ pc();
   254     // The callee, if it wasn't interpreted, can return with SP changed so
   255     // we can no longer assert of change of SP.
   257     // store result depending on type
   258     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
   259     //  is treated as T_INT)
   260     { const Register addr = result     .as_in().as_register();
   261       const Register type = result_type.as_in().as_register();
   262       Label is_long, is_float, is_double, is_object, exit;
   263       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
   264       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
   265       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
   266       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
   267       __ delayed()->nop();
   269       // store int result
   270       __ st(O0, addr, G0);
   272       __ BIND(exit);
   273       __ ret();
   274       __ delayed()->restore();
   276       __ BIND(is_object);
   277       __ ba(exit);
   278       __ delayed()->st_ptr(O0, addr, G0);
   280       __ BIND(is_float);
   281       __ ba(exit);
   282       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
   284       __ BIND(is_double);
   285       __ ba(exit);
   286       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
   288       __ BIND(is_long);
   289 #ifdef _LP64
   290       __ ba(exit);
   291       __ delayed()->st_long(O0, addr, G0);      // store entire long
   292 #else
   293 #if defined(COMPILER2)
   294   // All return values are where we want them, except for Longs.  C2 returns
   295   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   296   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   297   // build we simply always use G1.
   298   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   299   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   300   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   302       __ ba(exit);
   303       __ delayed()->stx(G1, addr, G0);  // store entire long
   304 #else
   305       __ st(O1, addr, BytesPerInt);
   306       __ ba(exit);
   307       __ delayed()->st(O0, addr, G0);
   308 #endif /* COMPILER2 */
   309 #endif /* _LP64 */
   310      }
   311      return start;
   312   }
   315   //----------------------------------------------------------------------------------------------------
   316   // Return point for a Java call if there's an exception thrown in Java code.
   317   // The exception is caught and transformed into a pending exception stored in
   318   // JavaThread that can be tested from within the VM.
   319   //
   320   // Oexception: exception oop
   322   address generate_catch_exception() {
   323     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   325     address start = __ pc();
   326     // verify that thread corresponds
   327     __ verify_thread();
   329     const Register& temp_reg = Gtemp;
   330     Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
   331     Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
   332     Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
   334     // set pending exception
   335     __ verify_oop(Oexception);
   336     __ st_ptr(Oexception, pending_exception_addr);
   337     __ set((intptr_t)__FILE__, temp_reg);
   338     __ st_ptr(temp_reg, exception_file_offset_addr);
   339     __ set((intptr_t)__LINE__, temp_reg);
   340     __ st(temp_reg, exception_line_offset_addr);
   342     // complete return to VM
   343     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
   345     AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
   346     __ jump_to(stub_ret, temp_reg);
   347     __ delayed()->nop();
   349     return start;
   350   }
   353   //----------------------------------------------------------------------------------------------------
   354   // Continuation point for runtime calls returning with a pending exception
   355   // The pending exception check happened in the runtime or native call stub
   356   // The pending exception in Thread is converted into a Java-level exception
   357   //
   358   // Contract with Java-level exception handler: O0 = exception
   359   //                                             O1 = throwing pc
   361   address generate_forward_exception() {
   362     StubCodeMark mark(this, "StubRoutines", "forward_exception");
   363     address start = __ pc();
   365     // Upon entry, O7 has the return address returning into Java
   366     // (interpreted or compiled) code; i.e. the return address
   367     // becomes the throwing pc.
   369     const Register& handler_reg = Gtemp;
   371     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   373 #ifdef ASSERT
   374     // make sure that this code is only executed if there is a pending exception
   375     { Label L;
   376       __ ld_ptr(exception_addr, Gtemp);
   377       __ br_notnull_short(Gtemp, Assembler::pt, L);
   378       __ stop("StubRoutines::forward exception: no pending exception (1)");
   379       __ bind(L);
   380     }
   381 #endif
   383     // compute exception handler into handler_reg
   384     __ get_thread();
   385     __ ld_ptr(exception_addr, Oexception);
   386     __ verify_oop(Oexception);
   387     __ save_frame(0);             // compensates for compiler weakness
   388     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
   389     BLOCK_COMMENT("call exception_handler_for_return_address");
   390     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
   391     __ mov(O0, handler_reg);
   392     __ restore();                 // compensates for compiler weakness
   394     __ ld_ptr(exception_addr, Oexception);
   395     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
   397 #ifdef ASSERT
   398     // make sure exception is set
   399     { Label L;
   400       __ br_notnull_short(Oexception, Assembler::pt, L);
   401       __ stop("StubRoutines::forward exception: no pending exception (2)");
   402       __ bind(L);
   403     }
   404 #endif
   405     // jump to exception handler
   406     __ jmp(handler_reg, 0);
   407     // clear pending exception
   408     __ delayed()->st_ptr(G0, exception_addr);
   410     return start;
   411   }
   414   //------------------------------------------------------------------------------------------------------------------------
   415   // Continuation point for throwing of implicit exceptions that are not handled in
   416   // the current activation. Fabricates an exception oop and initiates normal
   417   // exception dispatching in this frame. Only callee-saved registers are preserved
   418   // (through the normal register window / RegisterMap handling).
   419   // If the compiler needs all registers to be preserved between the fault
   420   // point and the exception handler then it must assume responsibility for that in
   421   // AbstractCompiler::continuation_for_implicit_null_exception or
   422   // continuation_for_implicit_division_by_zero_exception. All other implicit
   423   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
   424   // either at call sites or otherwise assume that stack unwinding will be initiated,
   425   // so caller saved registers were assumed volatile in the compiler.
   427   // Note that we generate only this stub into a RuntimeStub, because it needs to be
   428   // properly traversed and ignored during GC, so we change the meaning of the "__"
   429   // macro within this method.
   430 #undef __
   431 #define __ masm->
   433   address generate_throw_exception(const char* name, address runtime_entry,
   434                                    Register arg1 = noreg, Register arg2 = noreg) {
   435 #ifdef ASSERT
   436     int insts_size = VerifyThread ? 1 * K : 600;
   437 #else
   438     int insts_size = VerifyThread ? 1 * K : 256;
   439 #endif /* ASSERT */
   440     int locs_size  = 32;
   442     CodeBuffer      code(name, insts_size, locs_size);
   443     MacroAssembler* masm = new MacroAssembler(&code);
   445     __ verify_thread();
   447     // This is an inlined and slightly modified version of call_VM
   448     // which has the ability to fetch the return PC out of thread-local storage
   449     __ assert_not_delayed();
   451     // Note that we always push a frame because on the SPARC
   452     // architecture, for all of our implicit exception kinds at call
   453     // sites, the implicit exception is taken before the callee frame
   454     // is pushed.
   455     __ save_frame(0);
   457     int frame_complete = __ offset();
   459     // Note that we always have a runtime stub frame on the top of stack by this point
   460     Register last_java_sp = SP;
   461     // 64-bit last_java_sp is biased!
   462     __ set_last_Java_frame(last_java_sp, G0);
   463     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
   464     __ save_thread(noreg);
   465     if (arg1 != noreg) {
   466       assert(arg2 != O1, "clobbered");
   467       __ mov(arg1, O1);
   468     }
   469     if (arg2 != noreg) {
   470       __ mov(arg2, O2);
   471     }
   472     // do the call
   473     BLOCK_COMMENT("call runtime_entry");
   474     __ call(runtime_entry, relocInfo::runtime_call_type);
   475     if (!VerifyThread)
   476       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
   477     else
   478       __ delayed()->nop();             // (thread already passed)
   479     __ restore_thread(noreg);
   480     __ reset_last_Java_frame();
   482     // check for pending exceptions. use Gtemp as scratch register.
   483 #ifdef ASSERT
   484     Label L;
   486     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   487     Register scratch_reg = Gtemp;
   488     __ ld_ptr(exception_addr, scratch_reg);
   489     __ br_notnull_short(scratch_reg, Assembler::pt, L);
   490     __ should_not_reach_here();
   491     __ bind(L);
   492 #endif // ASSERT
   493     BLOCK_COMMENT("call forward_exception_entry");
   494     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   495     // we use O7 linkage so that forward_exception_entry has the issuing PC
   496     __ delayed()->restore();
   498     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
   499     return stub->entry_point();
   500   }
   502 #undef __
   503 #define __ _masm->
   506   // Generate a routine that sets all the registers so we
   507   // can tell if the stop routine prints them correctly.
   508   address generate_test_stop() {
   509     StubCodeMark mark(this, "StubRoutines", "test_stop");
   510     address start = __ pc();
   512     int i;
   514     __ save_frame(0);
   516     static jfloat zero = 0.0, one = 1.0;
   518     // put addr in L0, then load through L0 to F0
   519     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
   520     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
   522     // use add to put 2..18 in F2..F18
   523     for ( i = 2;  i <= 18;  ++i ) {
   524       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
   525     }
   527     // Now put double 2 in F16, double 18 in F18
   528     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
   529     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
   531     // use add to put 20..32 in F20..F32
   532     for (i = 20; i < 32; i += 2) {
   533       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
   534     }
   536     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
   537     for ( i = 0; i < 8; ++i ) {
   538       if (i < 6) {
   539         __ set(     i, as_iRegister(i));
   540         __ set(16 + i, as_oRegister(i));
   541         __ set(24 + i, as_gRegister(i));
   542       }
   543       __ set( 8 + i, as_lRegister(i));
   544     }
   546     __ stop("testing stop");
   549     __ ret();
   550     __ delayed()->restore();
   552     return start;
   553   }
   556   address generate_stop_subroutine() {
   557     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
   558     address start = __ pc();
   560     __ stop_subroutine();
   562     return start;
   563   }
   565   address generate_flush_callers_register_windows() {
   566     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
   567     address start = __ pc();
   569     __ flush_windows();
   570     __ retl(false);
   571     __ delayed()->add( FP, STACK_BIAS, O0 );
   572     // The returned value must be a stack pointer whose register save area
   573     // is flushed, and will stay flushed while the caller executes.
   575     return start;
   576   }
   578   // Helper functions for v8 atomic operations.
   579   //
   580   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
   581     if (mark_oop_reg == noreg) {
   582       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
   583       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   584     } else {
   585       assert(scratch_reg != noreg, "just checking");
   586       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
   587       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   588       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
   589       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
   590     }
   591   }
   593   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   595     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
   596     __ set(StubRoutines::Sparc::locked, lock_reg);
   597     // Initialize yield counter
   598     __ mov(G0,yield_reg);
   600     __ BIND(retry);
   601     __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
   603     // This code can only be called from inside the VM, this
   604     // stub is only invoked from Atomic::add().  We do not
   605     // want to use call_VM, because _last_java_sp and such
   606     // must already be set.
   607     //
   608     // Save the regs and make space for a C call
   609     __ save(SP, -96, SP);
   610     __ save_all_globals_into_locals();
   611     BLOCK_COMMENT("call os::naked_sleep");
   612     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
   613     __ delayed()->nop();
   614     __ restore_globals_from_locals();
   615     __ restore();
   616     // reset the counter
   617     __ mov(G0,yield_reg);
   619     __ BIND(dontyield);
   621     // try to get lock
   622     __ swap(lock_ptr_reg, 0, lock_reg);
   624     // did we get the lock?
   625     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
   626     __ br(Assembler::notEqual, true, Assembler::pn, retry);
   627     __ delayed()->add(yield_reg,1,yield_reg);
   629     // yes, got lock. do the operation here.
   630   }
   632   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   633     __ st(lock_reg, lock_ptr_reg, 0); // unlock
   634   }
   636   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
   637   //
   638   // Arguments :
   639   //
   640   //      exchange_value: O0
   641   //      dest:           O1
   642   //
   643   // Results:
   644   //
   645   //     O0: the value previously stored in dest
   646   //
   647   address generate_atomic_xchg() {
   648     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   649     address start = __ pc();
   651     if (UseCASForSwap) {
   652       // Use CAS instead of swap, just in case the MP hardware
   653       // prefers to work with just one kind of synch. instruction.
   654       Label retry;
   655       __ BIND(retry);
   656       __ mov(O0, O3);       // scratch copy of exchange value
   657       __ ld(O1, 0, O2);     // observe the previous value
   658       // try to replace O2 with O3
   659       __ cas_under_lock(O1, O2, O3,
   660       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   661       __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
   663       __ retl(false);
   664       __ delayed()->mov(O2, O0);  // report previous value to caller
   666     } else {
   667       if (VM_Version::v9_instructions_work()) {
   668         __ retl(false);
   669         __ delayed()->swap(O1, 0, O0);
   670       } else {
   671         const Register& lock_reg = O2;
   672         const Register& lock_ptr_reg = O3;
   673         const Register& yield_reg = O4;
   675         Label retry;
   676         Label dontyield;
   678         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   679         // got the lock, do the swap
   680         __ swap(O1, 0, O0);
   682         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   683         __ retl(false);
   684         __ delayed()->nop();
   685       }
   686     }
   688     return start;
   689   }
   692   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
   693   //
   694   // Arguments :
   695   //
   696   //      exchange_value: O0
   697   //      dest:           O1
   698   //      compare_value:  O2
   699   //
   700   // Results:
   701   //
   702   //     O0: the value previously stored in dest
   703   //
   704   // Overwrites (v8): O3,O4,O5
   705   //
   706   address generate_atomic_cmpxchg() {
   707     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   708     address start = __ pc();
   710     // cmpxchg(dest, compare_value, exchange_value)
   711     __ cas_under_lock(O1, O2, O0,
   712       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   713     __ retl(false);
   714     __ delayed()->nop();
   716     return start;
   717   }
   719   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
   720   //
   721   // Arguments :
   722   //
   723   //      exchange_value: O1:O0
   724   //      dest:           O2
   725   //      compare_value:  O4:O3
   726   //
   727   // Results:
   728   //
   729   //     O1:O0: the value previously stored in dest
   730   //
   731   // This only works on V9, on V8 we don't generate any
   732   // code and just return NULL.
   733   //
   734   // Overwrites: G1,G2,G3
   735   //
   736   address generate_atomic_cmpxchg_long() {
   737     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   738     address start = __ pc();
   740     if (!VM_Version::supports_cx8())
   741         return NULL;;
   742     __ sllx(O0, 32, O0);
   743     __ srl(O1, 0, O1);
   744     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
   745     __ sllx(O3, 32, O3);
   746     __ srl(O4, 0, O4);
   747     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
   748     __ casx(O2, O3, O0);
   749     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
   750     __ retl(false);
   751     __ delayed()->srlx(O0, 32, O0);
   753     return start;
   754   }
   757   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
   758   //
   759   // Arguments :
   760   //
   761   //      add_value: O0   (e.g., +1 or -1)
   762   //      dest:      O1
   763   //
   764   // Results:
   765   //
   766   //     O0: the new value stored in dest
   767   //
   768   // Overwrites (v9): O3
   769   // Overwrites (v8): O3,O4,O5
   770   //
   771   address generate_atomic_add() {
   772     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   773     address start = __ pc();
   774     __ BIND(_atomic_add_stub);
   776     if (VM_Version::v9_instructions_work()) {
   777       Label(retry);
   778       __ BIND(retry);
   780       __ lduw(O1, 0, O2);
   781       __ add(O0, O2, O3);
   782       __ cas(O1, O2, O3);
   783       __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
   784       __ retl(false);
   785       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
   786     } else {
   787       const Register& lock_reg = O2;
   788       const Register& lock_ptr_reg = O3;
   789       const Register& value_reg = O4;
   790       const Register& yield_reg = O5;
   792       Label(retry);
   793       Label(dontyield);
   795       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   796       // got lock, do the increment
   797       __ ld(O1, 0, value_reg);
   798       __ add(O0, value_reg, value_reg);
   799       __ st(value_reg, O1, 0);
   801       // %%% only for RMO and PSO
   802       __ membar(Assembler::StoreStore);
   804       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   806       __ retl(false);
   807       __ delayed()->mov(value_reg, O0);
   808     }
   810     return start;
   811   }
   812   Label _atomic_add_stub;  // called from other stubs
   815   //------------------------------------------------------------------------------------------------------------------------
   816   // The following routine generates a subroutine to throw an asynchronous
   817   // UnknownError when an unsafe access gets a fault that could not be
   818   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   819   //
   820   // Arguments :
   821   //
   822   //      trapping PC:    O7
   823   //
   824   // Results:
   825   //     posts an asynchronous exception, skips the trapping instruction
   826   //
   828   address generate_handler_for_unsafe_access() {
   829     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   830     address start = __ pc();
   832     const int preserve_register_words = (64 * 2);
   833     Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
   835     Register Lthread = L7_thread_cache;
   836     int i;
   838     __ save_frame(0);
   839     __ mov(G1, L1);
   840     __ mov(G2, L2);
   841     __ mov(G3, L3);
   842     __ mov(G4, L4);
   843     __ mov(G5, L5);
   844     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   845       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
   846     }
   848     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
   849     BLOCK_COMMENT("call handle_unsafe_access");
   850     __ call(entry_point, relocInfo::runtime_call_type);
   851     __ delayed()->nop();
   853     __ mov(L1, G1);
   854     __ mov(L2, G2);
   855     __ mov(L3, G3);
   856     __ mov(L4, G4);
   857     __ mov(L5, G5);
   858     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   859       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
   860     }
   862     __ verify_thread();
   864     __ jmp(O0, 0);
   865     __ delayed()->restore();
   867     return start;
   868   }
   871   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
   872   // Arguments :
   873   //
   874   //      ret  : O0, returned
   875   //      icc/xcc: set as O0 (depending on wordSize)
   876   //      sub  : O1, argument, not changed
   877   //      super: O2, argument, not changed
   878   //      raddr: O7, blown by call
   879   address generate_partial_subtype_check() {
   880     __ align(CodeEntryAlignment);
   881     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
   882     address start = __ pc();
   883     Label miss;
   885 #if defined(COMPILER2) && !defined(_LP64)
   886     // Do not use a 'save' because it blows the 64-bit O registers.
   887     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
   888     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
   889     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
   890     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
   891     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
   892     Register Rret   = O0;
   893     Register Rsub   = O1;
   894     Register Rsuper = O2;
   895 #else
   896     __ save_frame(0);
   897     Register Rret   = I0;
   898     Register Rsub   = I1;
   899     Register Rsuper = I2;
   900 #endif
   902     Register L0_ary_len = L0;
   903     Register L1_ary_ptr = L1;
   904     Register L2_super   = L2;
   905     Register L3_index   = L3;
   907     __ check_klass_subtype_slow_path(Rsub, Rsuper,
   908                                      L0, L1, L2, L3,
   909                                      NULL, &miss);
   911     // Match falls through here.
   912     __ addcc(G0,0,Rret);        // set Z flags, Z result
   914 #if defined(COMPILER2) && !defined(_LP64)
   915     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   916     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   917     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   918     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   919     __ retl();                  // Result in Rret is zero; flags set to Z
   920     __ delayed()->add(SP,4*wordSize,SP);
   921 #else
   922     __ ret();                   // Result in Rret is zero; flags set to Z
   923     __ delayed()->restore();
   924 #endif
   926     __ BIND(miss);
   927     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
   929 #if defined(COMPILER2) && !defined(_LP64)
   930     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   931     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   932     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   933     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   934     __ retl();                  // Result in Rret is != 0; flags set to NZ
   935     __ delayed()->add(SP,4*wordSize,SP);
   936 #else
   937     __ ret();                   // Result in Rret is != 0; flags set to NZ
   938     __ delayed()->restore();
   939 #endif
   941     return start;
   942   }
   945   // Called from MacroAssembler::verify_oop
   946   //
   947   address generate_verify_oop_subroutine() {
   948     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
   950     address start = __ pc();
   952     __ verify_oop_subroutine();
   954     return start;
   955   }
   958   //
   959   // Verify that a register contains clean 32-bits positive value
   960   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
   961   //
   962   //  Input:
   963   //    Rint  -  32-bits value
   964   //    Rtmp  -  scratch
   965   //
   966   void assert_clean_int(Register Rint, Register Rtmp) {
   967 #if defined(ASSERT) && defined(_LP64)
   968     __ signx(Rint, Rtmp);
   969     __ cmp(Rint, Rtmp);
   970     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
   971 #endif
   972   }
   974   //
   975   //  Generate overlap test for array copy stubs
   976   //
   977   //  Input:
   978   //    O0    -  array1
   979   //    O1    -  array2
   980   //    O2    -  element count
   981   //
   982   //  Kills temps:  O3, O4
   983   //
   984   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
   985     assert(no_overlap_target != NULL, "must be generated");
   986     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
   987   }
   988   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
   989     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
   990   }
   991   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
   992     const Register from       = O0;
   993     const Register to         = O1;
   994     const Register count      = O2;
   995     const Register to_from    = O3; // to - from
   996     const Register byte_count = O4; // count << log2_elem_size
   998       __ subcc(to, from, to_from);
   999       __ sll_ptr(count, log2_elem_size, byte_count);
  1000       if (NOLp == NULL)
  1001         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1002       else
  1003         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
  1004       __ delayed()->cmp(to_from, byte_count);
  1005       if (NOLp == NULL)
  1006         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1007       else
  1008         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
  1009       __ delayed()->nop();
  1012   //
  1013   //  Generate pre-write barrier for array.
  1014   //
  1015   //  Input:
  1016   //     addr     - register containing starting address
  1017   //     count    - register containing element count
  1018   //     tmp      - scratch register
  1019   //
  1020   //  The input registers are overwritten.
  1021   //
  1022   void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
  1023     BarrierSet* bs = Universe::heap()->barrier_set();
  1024     switch (bs->kind()) {
  1025       case BarrierSet::G1SATBCT:
  1026       case BarrierSet::G1SATBCTLogging:
  1027         // With G1, don't generate the call if we statically know that the target in uninitialized
  1028         if (!dest_uninitialized) {
  1029           __ save_frame(0);
  1030           // Save the necessary global regs... will be used after.
  1031           if (addr->is_global()) {
  1032             __ mov(addr, L0);
  1034           if (count->is_global()) {
  1035             __ mov(count, L1);
  1037           __ mov(addr->after_save(), O0);
  1038           // Get the count into O1
  1039           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
  1040           __ delayed()->mov(count->after_save(), O1);
  1041           if (addr->is_global()) {
  1042             __ mov(L0, addr);
  1044           if (count->is_global()) {
  1045             __ mov(L1, count);
  1047           __ restore();
  1049         break;
  1050       case BarrierSet::CardTableModRef:
  1051       case BarrierSet::CardTableExtension:
  1052       case BarrierSet::ModRef:
  1053         break;
  1054       default:
  1055         ShouldNotReachHere();
  1058   //
  1059   //  Generate post-write barrier for array.
  1060   //
  1061   //  Input:
  1062   //     addr     - register containing starting address
  1063   //     count    - register containing element count
  1064   //     tmp      - scratch register
  1065   //
  1066   //  The input registers are overwritten.
  1067   //
  1068   void gen_write_ref_array_post_barrier(Register addr, Register count,
  1069                                         Register tmp) {
  1070     BarrierSet* bs = Universe::heap()->barrier_set();
  1072     switch (bs->kind()) {
  1073       case BarrierSet::G1SATBCT:
  1074       case BarrierSet::G1SATBCTLogging:
  1076           // Get some new fresh output registers.
  1077           __ save_frame(0);
  1078           __ mov(addr->after_save(), O0);
  1079           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1080           __ delayed()->mov(count->after_save(), O1);
  1081           __ restore();
  1083         break;
  1084       case BarrierSet::CardTableModRef:
  1085       case BarrierSet::CardTableExtension:
  1087           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1088           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1089           assert_different_registers(addr, count, tmp);
  1091           Label L_loop;
  1093           __ sll_ptr(count, LogBytesPerHeapOop, count);
  1094           __ sub(count, BytesPerHeapOop, count);
  1095           __ add(count, addr, count);
  1096           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1097           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
  1098           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
  1099           __ sub(count, addr, count);
  1100           AddressLiteral rs(ct->byte_map_base);
  1101           __ set(rs, tmp);
  1102         __ BIND(L_loop);
  1103           __ stb(G0, tmp, addr);
  1104           __ subcc(count, 1, count);
  1105           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1106           __ delayed()->add(addr, 1, addr);
  1108         break;
  1109       case BarrierSet::ModRef:
  1110         break;
  1111       default:
  1112         ShouldNotReachHere();
  1116   //
  1117   // Generate main code for disjoint arraycopy
  1118   //
  1119   typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
  1120                                               Label& L_loop, bool use_prefetch, bool use_bis);
  1122   void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
  1123                           int iter_size, CopyLoopFunc copy_loop_func) {
  1124     Label L_copy;
  1126     assert(log2_elem_size <= 3, "the following code should be changed");
  1127     int count_dec = 16>>log2_elem_size;
  1129     int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
  1130     assert(prefetch_dist < 4096, "invalid value");
  1131     prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
  1132     int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
  1134     if (UseBlockCopy) {
  1135       Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
  1137       // 64 bytes tail + bytes copied in one loop iteration
  1138       int tail_size = 64 + iter_size;
  1139       int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
  1140       // Use BIS copy only for big arrays since it requires membar.
  1141       __ set(block_copy_count, O4);
  1142       __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
  1143       // This code is for disjoint source and destination:
  1144       //   to <= from || to >= from+count
  1145       // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
  1146       __ sub(from, to, O4);
  1147       __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
  1148       __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
  1150       __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  1151       // BIS should not be used to copy tail (64 bytes+iter_size)
  1152       // to avoid zeroing of following values.
  1153       __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
  1155       if (prefetch_count > 0) { // rounded up to one iteration count
  1156         // Do prefetching only if copy size is bigger
  1157         // than prefetch distance.
  1158         __ set(prefetch_count, O4);
  1159         __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
  1160         __ sub(count, prefetch_count, count);
  1162         (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
  1163         __ add(count, prefetch_count, count); // restore count
  1165       } // prefetch_count > 0
  1167       (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
  1168       __ add(count, (tail_size>>log2_elem_size), count); // restore count
  1170       __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
  1171       // BIS needs membar.
  1172       __ membar(Assembler::StoreLoad);
  1173       // Copy tail
  1174       __ ba_short(L_copy);
  1176       __ BIND(L_skip_block_copy);
  1177     } // UseBlockCopy
  1179     if (prefetch_count > 0) { // rounded up to one iteration count
  1180       // Do prefetching only if copy size is bigger
  1181       // than prefetch distance.
  1182       __ set(prefetch_count, O4);
  1183       __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
  1184       __ sub(count, prefetch_count, count);
  1186       Label L_copy_prefetch;
  1187       (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
  1188       __ add(count, prefetch_count, count); // restore count
  1190     } // prefetch_count > 0
  1192     (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
  1197   //
  1198   // Helper methods for copy_16_bytes_forward_with_shift()
  1199   //
  1200   void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
  1201                                 Label& L_loop, bool use_prefetch, bool use_bis) {
  1203     const Register left_shift  = G1; // left  shift bit counter
  1204     const Register right_shift = G5; // right shift bit counter
  1206     __ align(OptoLoopAlignment);
  1207     __ BIND(L_loop);
  1208     if (use_prefetch) {
  1209       if (ArraycopySrcPrefetchDistance > 0) {
  1210         __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
  1212       if (ArraycopyDstPrefetchDistance > 0) {
  1213         __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
  1216     __ ldx(from, 0, O4);
  1217     __ ldx(from, 8, G4);
  1218     __ inc(to, 16);
  1219     __ inc(from, 16);
  1220     __ deccc(count, count_dec); // Can we do next iteration after this one?
  1221     __ srlx(O4, right_shift, G3);
  1222     __ bset(G3, O3);
  1223     __ sllx(O4, left_shift,  O4);
  1224     __ srlx(G4, right_shift, G3);
  1225     __ bset(G3, O4);
  1226     if (use_bis) {
  1227       __ stxa(O3, to, -16);
  1228       __ stxa(O4, to, -8);
  1229     } else {
  1230       __ stx(O3, to, -16);
  1231       __ stx(O4, to, -8);
  1233     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1234     __ delayed()->sllx(G4, left_shift,  O3);
  1237   // Copy big chunks forward with shift
  1238   //
  1239   // Inputs:
  1240   //   from      - source arrays
  1241   //   to        - destination array aligned to 8-bytes
  1242   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1243   //   count_dec - elements count's decrement equivalent to 16 bytes
  1244   //   L_copy_bytes - copy exit label
  1245   //
  1246   void copy_16_bytes_forward_with_shift(Register from, Register to,
  1247                      Register count, int log2_elem_size, Label& L_copy_bytes) {
  1248     Label L_aligned_copy, L_copy_last_bytes;
  1249     assert(log2_elem_size <= 3, "the following code should be changed");
  1250     int count_dec = 16>>log2_elem_size;
  1252     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1253     __ andcc(from, 7, G1); // misaligned bytes
  1254     __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1255     __ delayed()->nop();
  1257     const Register left_shift  = G1; // left  shift bit counter
  1258     const Register right_shift = G5; // right shift bit counter
  1260     __ sll(G1, LogBitsPerByte, left_shift);
  1261     __ mov(64, right_shift);
  1262     __ sub(right_shift, left_shift, right_shift);
  1264     //
  1265     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1266     // to form 2 aligned 8-bytes chunks to store.
  1267     //
  1268     __ dec(count, count_dec);   // Pre-decrement 'count'
  1269     __ andn(from, 7, from);     // Align address
  1270     __ ldx(from, 0, O3);
  1271     __ inc(from, 8);
  1272     __ sllx(O3, left_shift,  O3);
  1274     disjoint_copy_core(from, to, count, log2_elem_size, 16, copy_16_bytes_shift_loop);
  1276     __ inccc(count, count_dec>>1 ); // + 8 bytes
  1277     __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1278     __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1280     // copy 8 bytes, part of them already loaded in O3
  1281     __ ldx(from, 0, O4);
  1282     __ inc(to, 8);
  1283     __ inc(from, 8);
  1284     __ srlx(O4, right_shift, G3);
  1285     __ bset(O3, G3);
  1286     __ stx(G3, to, -8);
  1288     __ BIND(L_copy_last_bytes);
  1289     __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
  1290     __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1291     __ delayed()->sub(from, right_shift, from);       // restore address
  1293     __ BIND(L_aligned_copy);
  1296   // Copy big chunks backward with shift
  1297   //
  1298   // Inputs:
  1299   //   end_from  - source arrays end address
  1300   //   end_to    - destination array end address aligned to 8-bytes
  1301   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1302   //   count_dec - elements count's decrement equivalent to 16 bytes
  1303   //   L_aligned_copy - aligned copy exit label
  1304   //   L_copy_bytes   - copy exit label
  1305   //
  1306   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
  1307                      Register count, int count_dec,
  1308                      Label& L_aligned_copy, Label& L_copy_bytes) {
  1309     Label L_loop, L_copy_last_bytes;
  1311     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1312       __ andcc(end_from, 7, G1); // misaligned bytes
  1313       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1314       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
  1316     const Register left_shift  = G1; // left  shift bit counter
  1317     const Register right_shift = G5; // right shift bit counter
  1319       __ sll(G1, LogBitsPerByte, left_shift);
  1320       __ mov(64, right_shift);
  1321       __ sub(right_shift, left_shift, right_shift);
  1323     //
  1324     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1325     // to form 2 aligned 8-bytes chunks to store.
  1326     //
  1327       __ andn(end_from, 7, end_from);     // Align address
  1328       __ ldx(end_from, 0, O3);
  1329       __ align(OptoLoopAlignment);
  1330     __ BIND(L_loop);
  1331       __ ldx(end_from, -8, O4);
  1332       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1333       __ ldx(end_from, -16, G4);
  1334       __ dec(end_to, 16);
  1335       __ dec(end_from, 16);
  1336       __ srlx(O3, right_shift, O3);
  1337       __ sllx(O4, left_shift,  G3);
  1338       __ bset(G3, O3);
  1339       __ stx(O3, end_to, 8);
  1340       __ srlx(O4, right_shift, O4);
  1341       __ sllx(G4, left_shift,  G3);
  1342       __ bset(G3, O4);
  1343       __ stx(O4, end_to, 0);
  1344       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1345       __ delayed()->mov(G4, O3);
  1347       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1348       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1349       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1351       // copy 8 bytes, part of them already loaded in O3
  1352       __ ldx(end_from, -8, O4);
  1353       __ dec(end_to, 8);
  1354       __ dec(end_from, 8);
  1355       __ srlx(O3, right_shift, O3);
  1356       __ sllx(O4, left_shift,  G3);
  1357       __ bset(O3, G3);
  1358       __ stx(G3, end_to, 0);
  1360     __ BIND(L_copy_last_bytes);
  1361       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
  1362       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1363       __ delayed()->add(end_from, left_shift, end_from); // restore address
  1366   //
  1367   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  1368   //  "from" and "to" addresses are assumed to be heapword aligned.
  1369   //
  1370   // Arguments for generated stub:
  1371   //      from:  O0
  1372   //      to:    O1
  1373   //      count: O2 treated as signed
  1374   //
  1375   address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
  1376     __ align(CodeEntryAlignment);
  1377     StubCodeMark mark(this, "StubRoutines", name);
  1378     address start = __ pc();
  1380     Label L_skip_alignment, L_align;
  1381     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1383     const Register from      = O0;   // source array address
  1384     const Register to        = O1;   // destination array address
  1385     const Register count     = O2;   // elements count
  1386     const Register offset    = O5;   // offset from start of arrays
  1387     // O3, O4, G3, G4 are used as temp registers
  1389     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1391     if (entry != NULL) {
  1392       *entry = __ pc();
  1393       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1394       BLOCK_COMMENT("Entry:");
  1397     // for short arrays, just do single element copy
  1398     __ cmp(count, 23); // 16 + 7
  1399     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1400     __ delayed()->mov(G0, offset);
  1402     if (aligned) {
  1403       // 'aligned' == true when it is known statically during compilation
  1404       // of this arraycopy call site that both 'from' and 'to' addresses
  1405       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1406       //
  1407       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1408       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
  1409       //
  1410 #ifndef _LP64
  1411       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
  1412       __ andcc(to, 7, G0);
  1413       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
  1414       __ delayed()->ld(from, 0, O3);
  1415       __ inc(from, 4);
  1416       __ inc(to, 4);
  1417       __ dec(count, 4);
  1418       __ st(O3, to, -4);
  1419     __ BIND(L_skip_alignment);
  1420 #endif
  1421     } else {
  1422       // copy bytes to align 'to' on 8 byte boundary
  1423       __ andcc(to, 7, G1); // misaligned bytes
  1424       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1425       __ delayed()->neg(G1);
  1426       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
  1427       __ sub(count, G1, count);
  1428     __ BIND(L_align);
  1429       __ ldub(from, 0, O3);
  1430       __ deccc(G1);
  1431       __ inc(from);
  1432       __ stb(O3, to, 0);
  1433       __ br(Assembler::notZero, false, Assembler::pt, L_align);
  1434       __ delayed()->inc(to);
  1435     __ BIND(L_skip_alignment);
  1437 #ifdef _LP64
  1438     if (!aligned)
  1439 #endif
  1441       // Copy with shift 16 bytes per iteration if arrays do not have
  1442       // the same alignment mod 8, otherwise fall through to the next
  1443       // code for aligned copy.
  1444       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
  1445       // Also jump over aligned copy after the copy with shift completed.
  1447       copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
  1450     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1451       __ and3(count, 7, G4); // Save count
  1452       __ srl(count, 3, count);
  1453      generate_disjoint_long_copy_core(aligned);
  1454       __ mov(G4, count);     // Restore count
  1456     // copy tailing bytes
  1457     __ BIND(L_copy_byte);
  1458       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1459       __ align(OptoLoopAlignment);
  1460     __ BIND(L_copy_byte_loop);
  1461       __ ldub(from, offset, O3);
  1462       __ deccc(count);
  1463       __ stb(O3, to, offset);
  1464       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
  1465       __ delayed()->inc(offset);
  1467     __ BIND(L_exit);
  1468       // O3, O4 are used as temp registers
  1469       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1470       __ retl();
  1471       __ delayed()->mov(G0, O0); // return 0
  1472     return start;
  1475   //
  1476   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  1477   //  "from" and "to" addresses are assumed to be heapword aligned.
  1478   //
  1479   // Arguments for generated stub:
  1480   //      from:  O0
  1481   //      to:    O1
  1482   //      count: O2 treated as signed
  1483   //
  1484   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
  1485                                       address *entry, const char *name) {
  1486     // Do reverse copy.
  1488     __ align(CodeEntryAlignment);
  1489     StubCodeMark mark(this, "StubRoutines", name);
  1490     address start = __ pc();
  1492     Label L_skip_alignment, L_align, L_aligned_copy;
  1493     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1495     const Register from      = O0;   // source array address
  1496     const Register to        = O1;   // destination array address
  1497     const Register count     = O2;   // elements count
  1498     const Register end_from  = from; // source array end address
  1499     const Register end_to    = to;   // destination array end address
  1501     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1503     if (entry != NULL) {
  1504       *entry = __ pc();
  1505       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1506       BLOCK_COMMENT("Entry:");
  1509     array_overlap_test(nooverlap_target, 0);
  1511     __ add(to, count, end_to);       // offset after last copied element
  1513     // for short arrays, just do single element copy
  1514     __ cmp(count, 23); // 16 + 7
  1515     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1516     __ delayed()->add(from, count, end_from);
  1519       // Align end of arrays since they could be not aligned even
  1520       // when arrays itself are aligned.
  1522       // copy bytes to align 'end_to' on 8 byte boundary
  1523       __ andcc(end_to, 7, G1); // misaligned bytes
  1524       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1525       __ delayed()->nop();
  1526       __ sub(count, G1, count);
  1527     __ BIND(L_align);
  1528       __ dec(end_from);
  1529       __ dec(end_to);
  1530       __ ldub(end_from, 0, O3);
  1531       __ deccc(G1);
  1532       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
  1533       __ delayed()->stb(O3, end_to, 0);
  1534     __ BIND(L_skip_alignment);
  1536 #ifdef _LP64
  1537     if (aligned) {
  1538       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1539       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1540       // in unaligned case.
  1541       __ dec(count, 16);
  1542     } else
  1543 #endif
  1545       // Copy with shift 16 bytes per iteration if arrays do not have
  1546       // the same alignment mod 8, otherwise jump to the next
  1547       // code for aligned copy (and substracting 16 from 'count' before jump).
  1548       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1549       // Also jump over aligned copy after the copy with shift completed.
  1551       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
  1552                                         L_aligned_copy, L_copy_byte);
  1554     // copy 4 elements (16 bytes) at a time
  1555       __ align(OptoLoopAlignment);
  1556     __ BIND(L_aligned_copy);
  1557       __ dec(end_from, 16);
  1558       __ ldx(end_from, 8, O3);
  1559       __ ldx(end_from, 0, O4);
  1560       __ dec(end_to, 16);
  1561       __ deccc(count, 16);
  1562       __ stx(O3, end_to, 8);
  1563       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1564       __ delayed()->stx(O4, end_to, 0);
  1565       __ inc(count, 16);
  1567     // copy 1 element (2 bytes) at a time
  1568     __ BIND(L_copy_byte);
  1569       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1570       __ align(OptoLoopAlignment);
  1571     __ BIND(L_copy_byte_loop);
  1572       __ dec(end_from);
  1573       __ dec(end_to);
  1574       __ ldub(end_from, 0, O4);
  1575       __ deccc(count);
  1576       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
  1577       __ delayed()->stb(O4, end_to, 0);
  1579     __ BIND(L_exit);
  1580     // O3, O4 are used as temp registers
  1581     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1582     __ retl();
  1583     __ delayed()->mov(G0, O0); // return 0
  1584     return start;
  1587   //
  1588   //  Generate stub for disjoint short copy.  If "aligned" is true, the
  1589   //  "from" and "to" addresses are assumed to be heapword aligned.
  1590   //
  1591   // Arguments for generated stub:
  1592   //      from:  O0
  1593   //      to:    O1
  1594   //      count: O2 treated as signed
  1595   //
  1596   address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
  1597     __ align(CodeEntryAlignment);
  1598     StubCodeMark mark(this, "StubRoutines", name);
  1599     address start = __ pc();
  1601     Label L_skip_alignment, L_skip_alignment2;
  1602     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1604     const Register from      = O0;   // source array address
  1605     const Register to        = O1;   // destination array address
  1606     const Register count     = O2;   // elements count
  1607     const Register offset    = O5;   // offset from start of arrays
  1608     // O3, O4, G3, G4 are used as temp registers
  1610     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1612     if (entry != NULL) {
  1613       *entry = __ pc();
  1614       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1615       BLOCK_COMMENT("Entry:");
  1618     // for short arrays, just do single element copy
  1619     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1620     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1621     __ delayed()->mov(G0, offset);
  1623     if (aligned) {
  1624       // 'aligned' == true when it is known statically during compilation
  1625       // of this arraycopy call site that both 'from' and 'to' addresses
  1626       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1627       //
  1628       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1629       // and 8 bytes - in 64-bits VM.
  1630       //
  1631 #ifndef _LP64
  1632       // copy a 2-elements word if necessary to align 'to' to 8 bytes
  1633       __ andcc(to, 7, G0);
  1634       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1635       __ delayed()->ld(from, 0, O3);
  1636       __ inc(from, 4);
  1637       __ inc(to, 4);
  1638       __ dec(count, 2);
  1639       __ st(O3, to, -4);
  1640     __ BIND(L_skip_alignment);
  1641 #endif
  1642     } else {
  1643       // copy 1 element if necessary to align 'to' on an 4 bytes
  1644       __ andcc(to, 3, G0);
  1645       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1646       __ delayed()->lduh(from, 0, O3);
  1647       __ inc(from, 2);
  1648       __ inc(to, 2);
  1649       __ dec(count);
  1650       __ sth(O3, to, -2);
  1651     __ BIND(L_skip_alignment);
  1653       // copy 2 elements to align 'to' on an 8 byte boundary
  1654       __ andcc(to, 7, G0);
  1655       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1656       __ delayed()->lduh(from, 0, O3);
  1657       __ dec(count, 2);
  1658       __ lduh(from, 2, O4);
  1659       __ inc(from, 4);
  1660       __ inc(to, 4);
  1661       __ sth(O3, to, -4);
  1662       __ sth(O4, to, -2);
  1663     __ BIND(L_skip_alignment2);
  1665 #ifdef _LP64
  1666     if (!aligned)
  1667 #endif
  1669       // Copy with shift 16 bytes per iteration if arrays do not have
  1670       // the same alignment mod 8, otherwise fall through to the next
  1671       // code for aligned copy.
  1672       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1673       // Also jump over aligned copy after the copy with shift completed.
  1675       copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
  1678     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1679       __ and3(count, 3, G4); // Save
  1680       __ srl(count, 2, count);
  1681      generate_disjoint_long_copy_core(aligned);
  1682       __ mov(G4, count); // restore
  1684     // copy 1 element at a time
  1685     __ BIND(L_copy_2_bytes);
  1686       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1687       __ align(OptoLoopAlignment);
  1688     __ BIND(L_copy_2_bytes_loop);
  1689       __ lduh(from, offset, O3);
  1690       __ deccc(count);
  1691       __ sth(O3, to, offset);
  1692       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
  1693       __ delayed()->inc(offset, 2);
  1695     __ BIND(L_exit);
  1696       // O3, O4 are used as temp registers
  1697       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1698       __ retl();
  1699       __ delayed()->mov(G0, O0); // return 0
  1700     return start;
  1703   //
  1704   //  Generate stub for disjoint short fill.  If "aligned" is true, the
  1705   //  "to" address is assumed to be heapword aligned.
  1706   //
  1707   // Arguments for generated stub:
  1708   //      to:    O0
  1709   //      value: O1
  1710   //      count: O2 treated as signed
  1711   //
  1712   address generate_fill(BasicType t, bool aligned, const char* name) {
  1713     __ align(CodeEntryAlignment);
  1714     StubCodeMark mark(this, "StubRoutines", name);
  1715     address start = __ pc();
  1717     const Register to        = O0;   // source array address
  1718     const Register value     = O1;   // fill value
  1719     const Register count     = O2;   // elements count
  1720     // O3 is used as a temp register
  1722     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1724     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  1725     Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
  1727     int shift = -1;
  1728     switch (t) {
  1729        case T_BYTE:
  1730         shift = 2;
  1731         break;
  1732        case T_SHORT:
  1733         shift = 1;
  1734         break;
  1735       case T_INT:
  1736          shift = 0;
  1737         break;
  1738       default: ShouldNotReachHere();
  1741     BLOCK_COMMENT("Entry:");
  1743     if (t == T_BYTE) {
  1744       // Zero extend value
  1745       __ and3(value, 0xff, value);
  1746       __ sllx(value, 8, O3);
  1747       __ or3(value, O3, value);
  1749     if (t == T_SHORT) {
  1750       // Zero extend value
  1751       __ sllx(value, 48, value);
  1752       __ srlx(value, 48, value);
  1754     if (t == T_BYTE || t == T_SHORT) {
  1755       __ sllx(value, 16, O3);
  1756       __ or3(value, O3, value);
  1759     __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  1760     __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
  1761     __ delayed()->andcc(count, 1, G0);
  1763     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
  1764       // align source address at 4 bytes address boundary
  1765       if (t == T_BYTE) {
  1766         // One byte misalignment happens only for byte arrays
  1767         __ andcc(to, 1, G0);
  1768         __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
  1769         __ delayed()->nop();
  1770         __ stb(value, to, 0);
  1771         __ inc(to, 1);
  1772         __ dec(count, 1);
  1773         __ BIND(L_skip_align1);
  1775       // Two bytes misalignment happens only for byte and short (char) arrays
  1776       __ andcc(to, 2, G0);
  1777       __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
  1778       __ delayed()->nop();
  1779       __ sth(value, to, 0);
  1780       __ inc(to, 2);
  1781       __ dec(count, 1 << (shift - 1));
  1782       __ BIND(L_skip_align2);
  1784 #ifdef _LP64
  1785     if (!aligned) {
  1786 #endif
  1787     // align to 8 bytes, we know we are 4 byte aligned to start
  1788     __ andcc(to, 7, G0);
  1789     __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
  1790     __ delayed()->nop();
  1791     __ stw(value, to, 0);
  1792     __ inc(to, 4);
  1793     __ dec(count, 1 << shift);
  1794     __ BIND(L_fill_32_bytes);
  1795 #ifdef _LP64
  1797 #endif
  1799     if (t == T_INT) {
  1800       // Zero extend value
  1801       __ srl(value, 0, value);
  1803     if (t == T_BYTE || t == T_SHORT || t == T_INT) {
  1804       __ sllx(value, 32, O3);
  1805       __ or3(value, O3, value);
  1808     Label L_check_fill_8_bytes;
  1809     // Fill 32-byte chunks
  1810     __ subcc(count, 8 << shift, count);
  1811     __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
  1812     __ delayed()->nop();
  1814     Label L_fill_32_bytes_loop, L_fill_4_bytes;
  1815     __ align(16);
  1816     __ BIND(L_fill_32_bytes_loop);
  1818     __ stx(value, to, 0);
  1819     __ stx(value, to, 8);
  1820     __ stx(value, to, 16);
  1821     __ stx(value, to, 24);
  1823     __ subcc(count, 8 << shift, count);
  1824     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
  1825     __ delayed()->add(to, 32, to);
  1827     __ BIND(L_check_fill_8_bytes);
  1828     __ addcc(count, 8 << shift, count);
  1829     __ brx(Assembler::zero, false, Assembler::pn, L_exit);
  1830     __ delayed()->subcc(count, 1 << (shift + 1), count);
  1831     __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
  1832     __ delayed()->andcc(count, 1<<shift, G0);
  1834     //
  1835     // length is too short, just fill 8 bytes at a time
  1836     //
  1837     Label L_fill_8_bytes_loop;
  1838     __ BIND(L_fill_8_bytes_loop);
  1839     __ stx(value, to, 0);
  1840     __ subcc(count, 1 << (shift + 1), count);
  1841     __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
  1842     __ delayed()->add(to, 8, to);
  1844     // fill trailing 4 bytes
  1845     __ andcc(count, 1<<shift, G0);  // in delay slot of branches
  1846     if (t == T_INT) {
  1847       __ BIND(L_fill_elements);
  1849     __ BIND(L_fill_4_bytes);
  1850     __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
  1851     if (t == T_BYTE || t == T_SHORT) {
  1852       __ delayed()->andcc(count, 1<<(shift-1), G0);
  1853     } else {
  1854       __ delayed()->nop();
  1856     __ stw(value, to, 0);
  1857     if (t == T_BYTE || t == T_SHORT) {
  1858       __ inc(to, 4);
  1859       // fill trailing 2 bytes
  1860       __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
  1861       __ BIND(L_fill_2_bytes);
  1862       __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
  1863       __ delayed()->andcc(count, 1, count);
  1864       __ sth(value, to, 0);
  1865       if (t == T_BYTE) {
  1866         __ inc(to, 2);
  1867         // fill trailing byte
  1868         __ andcc(count, 1, count);  // in delay slot of branches
  1869         __ BIND(L_fill_byte);
  1870         __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1871         __ delayed()->nop();
  1872         __ stb(value, to, 0);
  1873       } else {
  1874         __ BIND(L_fill_byte);
  1876     } else {
  1877       __ BIND(L_fill_2_bytes);
  1879     __ BIND(L_exit);
  1880     __ retl();
  1881     __ delayed()->nop();
  1883     // Handle copies less than 8 bytes.  Int is handled elsewhere.
  1884     if (t == T_BYTE) {
  1885       __ BIND(L_fill_elements);
  1886       Label L_fill_2, L_fill_4;
  1887       // in delay slot __ andcc(count, 1, G0);
  1888       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
  1889       __ delayed()->andcc(count, 2, G0);
  1890       __ stb(value, to, 0);
  1891       __ inc(to, 1);
  1892       __ BIND(L_fill_2);
  1893       __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
  1894       __ delayed()->andcc(count, 4, G0);
  1895       __ stb(value, to, 0);
  1896       __ stb(value, to, 1);
  1897       __ inc(to, 2);
  1898       __ BIND(L_fill_4);
  1899       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1900       __ delayed()->nop();
  1901       __ stb(value, to, 0);
  1902       __ stb(value, to, 1);
  1903       __ stb(value, to, 2);
  1904       __ retl();
  1905       __ delayed()->stb(value, to, 3);
  1908     if (t == T_SHORT) {
  1909       Label L_fill_2;
  1910       __ BIND(L_fill_elements);
  1911       // in delay slot __ andcc(count, 1, G0);
  1912       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
  1913       __ delayed()->andcc(count, 2, G0);
  1914       __ sth(value, to, 0);
  1915       __ inc(to, 2);
  1916       __ BIND(L_fill_2);
  1917       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1918       __ delayed()->nop();
  1919       __ sth(value, to, 0);
  1920       __ retl();
  1921       __ delayed()->sth(value, to, 2);
  1923     return start;
  1926   //
  1927   //  Generate stub for conjoint short copy.  If "aligned" is true, the
  1928   //  "from" and "to" addresses are assumed to be heapword aligned.
  1929   //
  1930   // Arguments for generated stub:
  1931   //      from:  O0
  1932   //      to:    O1
  1933   //      count: O2 treated as signed
  1934   //
  1935   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
  1936                                        address *entry, const char *name) {
  1937     // Do reverse copy.
  1939     __ align(CodeEntryAlignment);
  1940     StubCodeMark mark(this, "StubRoutines", name);
  1941     address start = __ pc();
  1943     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
  1944     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1946     const Register from      = O0;   // source array address
  1947     const Register to        = O1;   // destination array address
  1948     const Register count     = O2;   // elements count
  1949     const Register end_from  = from; // source array end address
  1950     const Register end_to    = to;   // destination array end address
  1952     const Register byte_count = O3;  // bytes count to copy
  1954     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1956     if (entry != NULL) {
  1957       *entry = __ pc();
  1958       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1959       BLOCK_COMMENT("Entry:");
  1962     array_overlap_test(nooverlap_target, 1);
  1964     __ sllx(count, LogBytesPerShort, byte_count);
  1965     __ add(to, byte_count, end_to);  // offset after last copied element
  1967     // for short arrays, just do single element copy
  1968     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1969     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1970     __ delayed()->add(from, byte_count, end_from);
  1973       // Align end of arrays since they could be not aligned even
  1974       // when arrays itself are aligned.
  1976       // copy 1 element if necessary to align 'end_to' on an 4 bytes
  1977       __ andcc(end_to, 3, G0);
  1978       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1979       __ delayed()->lduh(end_from, -2, O3);
  1980       __ dec(end_from, 2);
  1981       __ dec(end_to, 2);
  1982       __ dec(count);
  1983       __ sth(O3, end_to, 0);
  1984     __ BIND(L_skip_alignment);
  1986       // copy 2 elements to align 'end_to' on an 8 byte boundary
  1987       __ andcc(end_to, 7, G0);
  1988       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1989       __ delayed()->lduh(end_from, -2, O3);
  1990       __ dec(count, 2);
  1991       __ lduh(end_from, -4, O4);
  1992       __ dec(end_from, 4);
  1993       __ dec(end_to, 4);
  1994       __ sth(O3, end_to, 2);
  1995       __ sth(O4, end_to, 0);
  1996     __ BIND(L_skip_alignment2);
  1998 #ifdef _LP64
  1999     if (aligned) {
  2000       // Both arrays are aligned to 8-bytes in 64-bits VM.
  2001       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  2002       // in unaligned case.
  2003       __ dec(count, 8);
  2004     } else
  2005 #endif
  2007       // Copy with shift 16 bytes per iteration if arrays do not have
  2008       // the same alignment mod 8, otherwise jump to the next
  2009       // code for aligned copy (and substracting 8 from 'count' before jump).
  2010       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  2011       // Also jump over aligned copy after the copy with shift completed.
  2013       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
  2014                                         L_aligned_copy, L_copy_2_bytes);
  2016     // copy 4 elements (16 bytes) at a time
  2017       __ align(OptoLoopAlignment);
  2018     __ BIND(L_aligned_copy);
  2019       __ dec(end_from, 16);
  2020       __ ldx(end_from, 8, O3);
  2021       __ ldx(end_from, 0, O4);
  2022       __ dec(end_to, 16);
  2023       __ deccc(count, 8);
  2024       __ stx(O3, end_to, 8);
  2025       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  2026       __ delayed()->stx(O4, end_to, 0);
  2027       __ inc(count, 8);
  2029     // copy 1 element (2 bytes) at a time
  2030     __ BIND(L_copy_2_bytes);
  2031       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  2032     __ BIND(L_copy_2_bytes_loop);
  2033       __ dec(end_from, 2);
  2034       __ dec(end_to, 2);
  2035       __ lduh(end_from, 0, O4);
  2036       __ deccc(count);
  2037       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
  2038       __ delayed()->sth(O4, end_to, 0);
  2040     __ BIND(L_exit);
  2041     // O3, O4 are used as temp registers
  2042     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  2043     __ retl();
  2044     __ delayed()->mov(G0, O0); // return 0
  2045     return start;
  2048   //
  2049   // Helper methods for generate_disjoint_int_copy_core()
  2050   //
  2051   void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
  2052                           Label& L_loop, bool use_prefetch, bool use_bis) {
  2054     __ align(OptoLoopAlignment);
  2055     __ BIND(L_loop);
  2056     if (use_prefetch) {
  2057       if (ArraycopySrcPrefetchDistance > 0) {
  2058         __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
  2060       if (ArraycopyDstPrefetchDistance > 0) {
  2061         __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
  2064     __ ldx(from, 4, O4);
  2065     __ ldx(from, 12, G4);
  2066     __ inc(to, 16);
  2067     __ inc(from, 16);
  2068     __ deccc(count, 4); // Can we do next iteration after this one?
  2070     __ srlx(O4, 32, G3);
  2071     __ bset(G3, O3);
  2072     __ sllx(O4, 32, O4);
  2073     __ srlx(G4, 32, G3);
  2074     __ bset(G3, O4);
  2075     if (use_bis) {
  2076       __ stxa(O3, to, -16);
  2077       __ stxa(O4, to, -8);
  2078     } else {
  2079       __ stx(O3, to, -16);
  2080       __ stx(O4, to, -8);
  2082     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  2083     __ delayed()->sllx(G4, 32,  O3);
  2087   //
  2088   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  2089   //  If "aligned" is true, the "from" and "to" addresses are assumed
  2090   //  to be heapword aligned.
  2091   //
  2092   // Arguments:
  2093   //      from:  O0
  2094   //      to:    O1
  2095   //      count: O2 treated as signed
  2096   //
  2097   void generate_disjoint_int_copy_core(bool aligned) {
  2099     Label L_skip_alignment, L_aligned_copy;
  2100     Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  2102     const Register from      = O0;   // source array address
  2103     const Register to        = O1;   // destination array address
  2104     const Register count     = O2;   // elements count
  2105     const Register offset    = O5;   // offset from start of arrays
  2106     // O3, O4, G3, G4 are used as temp registers
  2108     // 'aligned' == true when it is known statically during compilation
  2109     // of this arraycopy call site that both 'from' and 'to' addresses
  2110     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  2111     //
  2112     // Aligned arrays have 4 bytes alignment in 32-bits VM
  2113     // and 8 bytes - in 64-bits VM.
  2114     //
  2115 #ifdef _LP64
  2116     if (!aligned)
  2117 #endif
  2119       // The next check could be put under 'ifndef' since the code in
  2120       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
  2122       // for short arrays, just do single element copy
  2123       __ cmp(count, 5); // 4 + 1 (20 bytes)
  2124       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  2125       __ delayed()->mov(G0, offset);
  2127       // copy 1 element to align 'to' on an 8 byte boundary
  2128       __ andcc(to, 7, G0);
  2129       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  2130       __ delayed()->ld(from, 0, O3);
  2131       __ inc(from, 4);
  2132       __ inc(to, 4);
  2133       __ dec(count);
  2134       __ st(O3, to, -4);
  2135     __ BIND(L_skip_alignment);
  2137     // if arrays have same alignment mod 8, do 4 elements copy
  2138       __ andcc(from, 7, G0);
  2139       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  2140       __ delayed()->ld(from, 0, O3);
  2142     //
  2143     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  2144     // to form 2 aligned 8-bytes chunks to store.
  2145     //
  2146     // copy_16_bytes_forward_with_shift() is not used here since this
  2147     // code is more optimal.
  2149     // copy with shift 4 elements (16 bytes) at a time
  2150       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
  2151       __ sllx(O3, 32,  O3);
  2153       disjoint_copy_core(from, to, count, 2, 16, copy_16_bytes_loop);
  2155       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2156       __ delayed()->inc(count, 4); // restore 'count'
  2158     __ BIND(L_aligned_copy);
  2159     } // !aligned
  2161     // copy 4 elements (16 bytes) at a time
  2162       __ and3(count, 1, G4); // Save
  2163       __ srl(count, 1, count);
  2164      generate_disjoint_long_copy_core(aligned);
  2165       __ mov(G4, count);     // Restore
  2167     // copy 1 element at a time
  2168     __ BIND(L_copy_4_bytes);
  2169       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  2170     __ BIND(L_copy_4_bytes_loop);
  2171       __ ld(from, offset, O3);
  2172       __ deccc(count);
  2173       __ st(O3, to, offset);
  2174       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
  2175       __ delayed()->inc(offset, 4);
  2176     __ BIND(L_exit);
  2179   //
  2180   //  Generate stub for disjoint int copy.  If "aligned" is true, the
  2181   //  "from" and "to" addresses are assumed to be heapword aligned.
  2182   //
  2183   // Arguments for generated stub:
  2184   //      from:  O0
  2185   //      to:    O1
  2186   //      count: O2 treated as signed
  2187   //
  2188   address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
  2189     __ align(CodeEntryAlignment);
  2190     StubCodeMark mark(this, "StubRoutines", name);
  2191     address start = __ pc();
  2193     const Register count = O2;
  2194     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2196     if (entry != NULL) {
  2197       *entry = __ pc();
  2198       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2199       BLOCK_COMMENT("Entry:");
  2202     generate_disjoint_int_copy_core(aligned);
  2204     // O3, O4 are used as temp registers
  2205     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2206     __ retl();
  2207     __ delayed()->mov(G0, O0); // return 0
  2208     return start;
  2211   //
  2212   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  2213   //  If "aligned" is true, the "from" and "to" addresses are assumed
  2214   //  to be heapword aligned.
  2215   //
  2216   // Arguments:
  2217   //      from:  O0
  2218   //      to:    O1
  2219   //      count: O2 treated as signed
  2220   //
  2221   void generate_conjoint_int_copy_core(bool aligned) {
  2222     // Do reverse copy.
  2224     Label L_skip_alignment, L_aligned_copy;
  2225     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  2227     const Register from      = O0;   // source array address
  2228     const Register to        = O1;   // destination array address
  2229     const Register count     = O2;   // elements count
  2230     const Register end_from  = from; // source array end address
  2231     const Register end_to    = to;   // destination array end address
  2232     // O3, O4, O5, G3 are used as temp registers
  2234     const Register byte_count = O3;  // bytes count to copy
  2236       __ sllx(count, LogBytesPerInt, byte_count);
  2237       __ add(to, byte_count, end_to); // offset after last copied element
  2239       __ cmp(count, 5); // for short arrays, just do single element copy
  2240       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  2241       __ delayed()->add(from, byte_count, end_from);
  2243     // copy 1 element to align 'to' on an 8 byte boundary
  2244       __ andcc(end_to, 7, G0);
  2245       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  2246       __ delayed()->nop();
  2247       __ dec(count);
  2248       __ dec(end_from, 4);
  2249       __ dec(end_to,   4);
  2250       __ ld(end_from, 0, O4);
  2251       __ st(O4, end_to, 0);
  2252     __ BIND(L_skip_alignment);
  2254     // Check if 'end_from' and 'end_to' has the same alignment.
  2255       __ andcc(end_from, 7, G0);
  2256       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  2257       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
  2259     // copy with shift 4 elements (16 bytes) at a time
  2260     //
  2261     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  2262     // to form 2 aligned 8-bytes chunks to store.
  2263     //
  2264       __ ldx(end_from, -4, O3);
  2265       __ align(OptoLoopAlignment);
  2266     __ BIND(L_copy_16_bytes);
  2267       __ ldx(end_from, -12, O4);
  2268       __ deccc(count, 4);
  2269       __ ldx(end_from, -20, O5);
  2270       __ dec(end_to, 16);
  2271       __ dec(end_from, 16);
  2272       __ srlx(O3, 32, O3);
  2273       __ sllx(O4, 32, G3);
  2274       __ bset(G3, O3);
  2275       __ stx(O3, end_to, 8);
  2276       __ srlx(O4, 32, O4);
  2277       __ sllx(O5, 32, G3);
  2278       __ bset(O4, G3);
  2279       __ stx(G3, end_to, 0);
  2280       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2281       __ delayed()->mov(O5, O3);
  2283       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2284       __ delayed()->inc(count, 4);
  2286     // copy 4 elements (16 bytes) at a time
  2287       __ align(OptoLoopAlignment);
  2288     __ BIND(L_aligned_copy);
  2289       __ dec(end_from, 16);
  2290       __ ldx(end_from, 8, O3);
  2291       __ ldx(end_from, 0, O4);
  2292       __ dec(end_to, 16);
  2293       __ deccc(count, 4);
  2294       __ stx(O3, end_to, 8);
  2295       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  2296       __ delayed()->stx(O4, end_to, 0);
  2297       __ inc(count, 4);
  2299     // copy 1 element (4 bytes) at a time
  2300     __ BIND(L_copy_4_bytes);
  2301       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  2302     __ BIND(L_copy_4_bytes_loop);
  2303       __ dec(end_from, 4);
  2304       __ dec(end_to, 4);
  2305       __ ld(end_from, 0, O4);
  2306       __ deccc(count);
  2307       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
  2308       __ delayed()->st(O4, end_to, 0);
  2309     __ BIND(L_exit);
  2312   //
  2313   //  Generate stub for conjoint int copy.  If "aligned" is true, the
  2314   //  "from" and "to" addresses are assumed to be heapword aligned.
  2315   //
  2316   // Arguments for generated stub:
  2317   //      from:  O0
  2318   //      to:    O1
  2319   //      count: O2 treated as signed
  2320   //
  2321   address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
  2322                                      address *entry, const char *name) {
  2323     __ align(CodeEntryAlignment);
  2324     StubCodeMark mark(this, "StubRoutines", name);
  2325     address start = __ pc();
  2327     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2329     if (entry != NULL) {
  2330       *entry = __ pc();
  2331       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2332       BLOCK_COMMENT("Entry:");
  2335     array_overlap_test(nooverlap_target, 2);
  2337     generate_conjoint_int_copy_core(aligned);
  2339     // O3, O4 are used as temp registers
  2340     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2341     __ retl();
  2342     __ delayed()->mov(G0, O0); // return 0
  2343     return start;
  2346   //
  2347   // Helper methods for generate_disjoint_long_copy_core()
  2348   //
  2349   void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
  2350                           Label& L_loop, bool use_prefetch, bool use_bis) {
  2351     __ align(OptoLoopAlignment);
  2352     __ BIND(L_loop);
  2353     for (int off = 0; off < 64; off += 16) {
  2354       if (use_prefetch && (off & 31) == 0) {
  2355         if (ArraycopySrcPrefetchDistance > 0) {
  2356           __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
  2358         if (ArraycopyDstPrefetchDistance > 0) {
  2359           __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
  2362       __ ldx(from,  off+0, O4);
  2363       __ ldx(from,  off+8, O5);
  2364       if (use_bis) {
  2365         __ stxa(O4, to,  off+0);
  2366         __ stxa(O5, to,  off+8);
  2367       } else {
  2368         __ stx(O4, to,  off+0);
  2369         __ stx(O5, to,  off+8);
  2372     __ deccc(count, 8);
  2373     __ inc(from, 64);
  2374     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  2375     __ delayed()->inc(to, 64);
  2378   //
  2379   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  2380   //  "aligned" is ignored, because we must make the stronger
  2381   //  assumption that both addresses are always 64-bit aligned.
  2382   //
  2383   // Arguments:
  2384   //      from:  O0
  2385   //      to:    O1
  2386   //      count: O2 treated as signed
  2387   //
  2388   // count -= 2;
  2389   // if ( count >= 0 ) { // >= 2 elements
  2390   //   if ( count > 6) { // >= 8 elements
  2391   //     count -= 6; // original count - 8
  2392   //     do {
  2393   //       copy_8_elements;
  2394   //       count -= 8;
  2395   //     } while ( count >= 0 );
  2396   //     count += 6;
  2397   //   }
  2398   //   if ( count >= 0 ) { // >= 2 elements
  2399   //     do {
  2400   //       copy_2_elements;
  2401   //     } while ( (count=count-2) >= 0 );
  2402   //   }
  2403   // }
  2404   // count += 2;
  2405   // if ( count != 0 ) { // 1 element left
  2406   //   copy_1_element;
  2407   // }
  2408   //
  2409   void generate_disjoint_long_copy_core(bool aligned) {
  2410     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2411     const Register from    = O0;  // source array address
  2412     const Register to      = O1;  // destination array address
  2413     const Register count   = O2;  // elements count
  2414     const Register offset0 = O4;  // element offset
  2415     const Register offset8 = O5;  // next element offset
  2417     __ deccc(count, 2);
  2418     __ mov(G0, offset0);   // offset from start of arrays (0)
  2419     __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2420     __ delayed()->add(offset0, 8, offset8);
  2422     // Copy by 64 bytes chunks
  2424     const Register from64 = O3;  // source address
  2425     const Register to64   = G3;  // destination address
  2426     __ subcc(count, 6, O3);
  2427     __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
  2428     __ delayed()->mov(to,   to64);
  2429     // Now we can use O4(offset0), O5(offset8) as temps
  2430     __ mov(O3, count);
  2431     // count >= 0 (original count - 8)
  2432     __ mov(from, from64);
  2434     disjoint_copy_core(from64, to64, count, 3, 64, copy_64_bytes_loop);
  2436       // Restore O4(offset0), O5(offset8)
  2437       __ sub(from64, from, offset0);
  2438       __ inccc(count, 6); // restore count
  2439       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2440       __ delayed()->add(offset0, 8, offset8);
  2442       // Copy by 16 bytes chunks
  2443       __ align(OptoLoopAlignment);
  2444     __ BIND(L_copy_16_bytes);
  2445       __ ldx(from, offset0, O3);
  2446       __ ldx(from, offset8, G3);
  2447       __ deccc(count, 2);
  2448       __ stx(O3, to, offset0);
  2449       __ inc(offset0, 16);
  2450       __ stx(G3, to, offset8);
  2451       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2452       __ delayed()->inc(offset8, 16);
  2454       // Copy last 8 bytes
  2455     __ BIND(L_copy_8_bytes);
  2456       __ inccc(count, 2);
  2457       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
  2458       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
  2459       __ ldx(from, offset0, O3);
  2460       __ stx(O3, to, offset0);
  2461     __ BIND(L_exit);
  2464   //
  2465   //  Generate stub for disjoint long copy.
  2466   //  "aligned" is ignored, because we must make the stronger
  2467   //  assumption that both addresses are always 64-bit aligned.
  2468   //
  2469   // Arguments for generated stub:
  2470   //      from:  O0
  2471   //      to:    O1
  2472   //      count: O2 treated as signed
  2473   //
  2474   address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
  2475     __ align(CodeEntryAlignment);
  2476     StubCodeMark mark(this, "StubRoutines", name);
  2477     address start = __ pc();
  2479     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2481     if (entry != NULL) {
  2482       *entry = __ pc();
  2483       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2484       BLOCK_COMMENT("Entry:");
  2487     generate_disjoint_long_copy_core(aligned);
  2489     // O3, O4 are used as temp registers
  2490     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2491     __ retl();
  2492     __ delayed()->mov(G0, O0); // return 0
  2493     return start;
  2496   //
  2497   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  2498   //  "aligned" is ignored, because we must make the stronger
  2499   //  assumption that both addresses are always 64-bit aligned.
  2500   //
  2501   // Arguments:
  2502   //      from:  O0
  2503   //      to:    O1
  2504   //      count: O2 treated as signed
  2505   //
  2506   void generate_conjoint_long_copy_core(bool aligned) {
  2507     // Do reverse copy.
  2508     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2509     const Register from    = O0;  // source array address
  2510     const Register to      = O1;  // destination array address
  2511     const Register count   = O2;  // elements count
  2512     const Register offset8 = O4;  // element offset
  2513     const Register offset0 = O5;  // previous element offset
  2515       __ subcc(count, 1, count);
  2516       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
  2517       __ delayed()->sllx(count, LogBytesPerLong, offset8);
  2518       __ sub(offset8, 8, offset0);
  2519       __ align(OptoLoopAlignment);
  2520     __ BIND(L_copy_16_bytes);
  2521       __ ldx(from, offset8, O2);
  2522       __ ldx(from, offset0, O3);
  2523       __ stx(O2, to, offset8);
  2524       __ deccc(offset8, 16);      // use offset8 as counter
  2525       __ stx(O3, to, offset0);
  2526       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
  2527       __ delayed()->dec(offset0, 16);
  2529     __ BIND(L_copy_8_bytes);
  2530       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
  2531       __ delayed()->nop();
  2532       __ ldx(from, 0, O3);
  2533       __ stx(O3, to, 0);
  2534     __ BIND(L_exit);
  2537   //  Generate stub for conjoint long copy.
  2538   //  "aligned" is ignored, because we must make the stronger
  2539   //  assumption that both addresses are always 64-bit aligned.
  2540   //
  2541   // Arguments for generated stub:
  2542   //      from:  O0
  2543   //      to:    O1
  2544   //      count: O2 treated as signed
  2545   //
  2546   address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
  2547                                       address *entry, const char *name) {
  2548     __ align(CodeEntryAlignment);
  2549     StubCodeMark mark(this, "StubRoutines", name);
  2550     address start = __ pc();
  2552     assert(aligned, "Should always be aligned");
  2554     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2556     if (entry != NULL) {
  2557       *entry = __ pc();
  2558       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2559       BLOCK_COMMENT("Entry:");
  2562     array_overlap_test(nooverlap_target, 3);
  2564     generate_conjoint_long_copy_core(aligned);
  2566     // O3, O4 are used as temp registers
  2567     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2568     __ retl();
  2569     __ delayed()->mov(G0, O0); // return 0
  2570     return start;
  2573   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  2574   //  "from" and "to" addresses are assumed to be heapword aligned.
  2575   //
  2576   // Arguments for generated stub:
  2577   //      from:  O0
  2578   //      to:    O1
  2579   //      count: O2 treated as signed
  2580   //
  2581   address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
  2582                                      bool dest_uninitialized = false) {
  2584     const Register from  = O0;  // source array address
  2585     const Register to    = O1;  // destination array address
  2586     const Register count = O2;  // elements count
  2588     __ align(CodeEntryAlignment);
  2589     StubCodeMark mark(this, "StubRoutines", name);
  2590     address start = __ pc();
  2592     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2594     if (entry != NULL) {
  2595       *entry = __ pc();
  2596       // caller can pass a 64-bit byte count here
  2597       BLOCK_COMMENT("Entry:");
  2600     // save arguments for barrier generation
  2601     __ mov(to, G1);
  2602     __ mov(count, G5);
  2603     gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
  2604   #ifdef _LP64
  2605     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2606     if (UseCompressedOops) {
  2607       generate_disjoint_int_copy_core(aligned);
  2608     } else {
  2609       generate_disjoint_long_copy_core(aligned);
  2611   #else
  2612     generate_disjoint_int_copy_core(aligned);
  2613   #endif
  2614     // O0 is used as temp register
  2615     gen_write_ref_array_post_barrier(G1, G5, O0);
  2617     // O3, O4 are used as temp registers
  2618     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2619     __ retl();
  2620     __ delayed()->mov(G0, O0); // return 0
  2621     return start;
  2624   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  2625   //  "from" and "to" addresses are assumed to be heapword aligned.
  2626   //
  2627   // Arguments for generated stub:
  2628   //      from:  O0
  2629   //      to:    O1
  2630   //      count: O2 treated as signed
  2631   //
  2632   address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
  2633                                      address *entry, const char *name,
  2634                                      bool dest_uninitialized = false) {
  2636     const Register from  = O0;  // source array address
  2637     const Register to    = O1;  // destination array address
  2638     const Register count = O2;  // elements count
  2640     __ align(CodeEntryAlignment);
  2641     StubCodeMark mark(this, "StubRoutines", name);
  2642     address start = __ pc();
  2644     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2646     if (entry != NULL) {
  2647       *entry = __ pc();
  2648       // caller can pass a 64-bit byte count here
  2649       BLOCK_COMMENT("Entry:");
  2652     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
  2654     // save arguments for barrier generation
  2655     __ mov(to, G1);
  2656     __ mov(count, G5);
  2657     gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
  2659   #ifdef _LP64
  2660     if (UseCompressedOops) {
  2661       generate_conjoint_int_copy_core(aligned);
  2662     } else {
  2663       generate_conjoint_long_copy_core(aligned);
  2665   #else
  2666     generate_conjoint_int_copy_core(aligned);
  2667   #endif
  2669     // O0 is used as temp register
  2670     gen_write_ref_array_post_barrier(G1, G5, O0);
  2672     // O3, O4 are used as temp registers
  2673     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2674     __ retl();
  2675     __ delayed()->mov(G0, O0); // return 0
  2676     return start;
  2680   // Helper for generating a dynamic type check.
  2681   // Smashes only the given temp registers.
  2682   void generate_type_check(Register sub_klass,
  2683                            Register super_check_offset,
  2684                            Register super_klass,
  2685                            Register temp,
  2686                            Label& L_success) {
  2687     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
  2689     BLOCK_COMMENT("type_check:");
  2691     Label L_miss, L_pop_to_miss;
  2693     assert_clean_int(super_check_offset, temp);
  2695     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
  2696                                      &L_success, &L_miss, NULL,
  2697                                      super_check_offset);
  2699     BLOCK_COMMENT("type_check_slow_path:");
  2700     __ save_frame(0);
  2701     __ check_klass_subtype_slow_path(sub_klass->after_save(),
  2702                                      super_klass->after_save(),
  2703                                      L0, L1, L2, L4,
  2704                                      NULL, &L_pop_to_miss);
  2705     __ ba(L_success);
  2706     __ delayed()->restore();
  2708     __ bind(L_pop_to_miss);
  2709     __ restore();
  2711     // Fall through on failure!
  2712     __ BIND(L_miss);
  2716   //  Generate stub for checked oop copy.
  2717   //
  2718   // Arguments for generated stub:
  2719   //      from:  O0
  2720   //      to:    O1
  2721   //      count: O2 treated as signed
  2722   //      ckoff: O3 (super_check_offset)
  2723   //      ckval: O4 (super_klass)
  2724   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  2725   //
  2726   address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
  2728     const Register O0_from   = O0;      // source array address
  2729     const Register O1_to     = O1;      // destination array address
  2730     const Register O2_count  = O2;      // elements count
  2731     const Register O3_ckoff  = O3;      // super_check_offset
  2732     const Register O4_ckval  = O4;      // super_klass
  2734     const Register O5_offset = O5;      // loop var, with stride wordSize
  2735     const Register G1_remain = G1;      // loop var, with stride -1
  2736     const Register G3_oop    = G3;      // actual oop copied
  2737     const Register G4_klass  = G4;      // oop._klass
  2738     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
  2740     __ align(CodeEntryAlignment);
  2741     StubCodeMark mark(this, "StubRoutines", name);
  2742     address start = __ pc();
  2744 #ifdef ASSERT
  2745     // We sometimes save a frame (see generate_type_check below).
  2746     // If this will cause trouble, let's fail now instead of later.
  2747     __ save_frame(0);
  2748     __ restore();
  2749 #endif
  2751     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
  2753 #ifdef ASSERT
  2754     // caller guarantees that the arrays really are different
  2755     // otherwise, we would have to make conjoint checks
  2756     { Label L;
  2757       __ mov(O3, G1);           // spill: overlap test smashes O3
  2758       __ mov(O4, G4);           // spill: overlap test smashes O4
  2759       array_overlap_test(L, LogBytesPerHeapOop);
  2760       __ stop("checkcast_copy within a single array");
  2761       __ bind(L);
  2762       __ mov(G1, O3);
  2763       __ mov(G4, O4);
  2765 #endif //ASSERT
  2767     if (entry != NULL) {
  2768       *entry = __ pc();
  2769       // caller can pass a 64-bit byte count here (from generic stub)
  2770       BLOCK_COMMENT("Entry:");
  2772     gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
  2774     Label load_element, store_element, do_card_marks, fail, done;
  2775     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
  2776     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
  2777     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
  2779     // Empty array:  Nothing to do.
  2780     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2781     __ retl();
  2782     __ delayed()->set(0, O0);           // return 0 on (trivial) success
  2784     // ======== begin loop ========
  2785     // (Loop is rotated; its entry is load_element.)
  2786     // Loop variables:
  2787     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
  2788     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
  2789     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
  2790     __ align(OptoLoopAlignment);
  2792     __ BIND(store_element);
  2793     __ deccc(G1_remain);                // decrement the count
  2794     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
  2795     __ inc(O5_offset, heapOopSize);     // step to next offset
  2796     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
  2797     __ delayed()->set(0, O0);           // return -1 on success
  2799     // ======== loop entry is here ========
  2800     __ BIND(load_element);
  2801     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
  2802     __ br_null_short(G3_oop, Assembler::pt, store_element);
  2804     __ load_klass(G3_oop, G4_klass); // query the object klass
  2806     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
  2807                         // branch to this on success:
  2808                         store_element);
  2809     // ======== end loop ========
  2811     // It was a real error; we must depend on the caller to finish the job.
  2812     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
  2813     // Emit GC store barriers for the oops we have copied (O2 minus G1),
  2814     // and report their number to the caller.
  2815     __ BIND(fail);
  2816     __ subcc(O2_count, G1_remain, O2_count);
  2817     __ brx(Assembler::zero, false, Assembler::pt, done);
  2818     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
  2820     __ BIND(do_card_marks);
  2821     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
  2823     __ BIND(done);
  2824     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2825     __ retl();
  2826     __ delayed()->nop();             // return value in 00
  2828     return start;
  2832   //  Generate 'unsafe' array copy stub
  2833   //  Though just as safe as the other stubs, it takes an unscaled
  2834   //  size_t argument instead of an element count.
  2835   //
  2836   // Arguments for generated stub:
  2837   //      from:  O0
  2838   //      to:    O1
  2839   //      count: O2 byte count, treated as ssize_t, can be zero
  2840   //
  2841   // Examines the alignment of the operands and dispatches
  2842   // to a long, int, short, or byte copy loop.
  2843   //
  2844   address generate_unsafe_copy(const char* name,
  2845                                address byte_copy_entry,
  2846                                address short_copy_entry,
  2847                                address int_copy_entry,
  2848                                address long_copy_entry) {
  2850     const Register O0_from   = O0;      // source array address
  2851     const Register O1_to     = O1;      // destination array address
  2852     const Register O2_count  = O2;      // elements count
  2854     const Register G1_bits   = G1;      // test copy of low bits
  2856     __ align(CodeEntryAlignment);
  2857     StubCodeMark mark(this, "StubRoutines", name);
  2858     address start = __ pc();
  2860     // bump this on entry, not on exit:
  2861     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
  2863     __ or3(O0_from, O1_to, G1_bits);
  2864     __ or3(O2_count,       G1_bits, G1_bits);
  2866     __ btst(BytesPerLong-1, G1_bits);
  2867     __ br(Assembler::zero, true, Assembler::pt,
  2868           long_copy_entry, relocInfo::runtime_call_type);
  2869     // scale the count on the way out:
  2870     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
  2872     __ btst(BytesPerInt-1, G1_bits);
  2873     __ br(Assembler::zero, true, Assembler::pt,
  2874           int_copy_entry, relocInfo::runtime_call_type);
  2875     // scale the count on the way out:
  2876     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
  2878     __ btst(BytesPerShort-1, G1_bits);
  2879     __ br(Assembler::zero, true, Assembler::pt,
  2880           short_copy_entry, relocInfo::runtime_call_type);
  2881     // scale the count on the way out:
  2882     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
  2884     __ br(Assembler::always, false, Assembler::pt,
  2885           byte_copy_entry, relocInfo::runtime_call_type);
  2886     __ delayed()->nop();
  2888     return start;
  2892   // Perform range checks on the proposed arraycopy.
  2893   // Kills the two temps, but nothing else.
  2894   // Also, clean the sign bits of src_pos and dst_pos.
  2895   void arraycopy_range_checks(Register src,     // source array oop (O0)
  2896                               Register src_pos, // source position (O1)
  2897                               Register dst,     // destination array oo (O2)
  2898                               Register dst_pos, // destination position (O3)
  2899                               Register length,  // length of copy (O4)
  2900                               Register temp1, Register temp2,
  2901                               Label& L_failed) {
  2902     BLOCK_COMMENT("arraycopy_range_checks:");
  2904     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  2906     const Register array_length = temp1;  // scratch
  2907     const Register end_pos      = temp2;  // scratch
  2909     // Note:  This next instruction may be in the delay slot of a branch:
  2910     __ add(length, src_pos, end_pos);  // src_pos + length
  2911     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
  2912     __ cmp(end_pos, array_length);
  2913     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2915     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  2916     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
  2917     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
  2918     __ cmp(end_pos, array_length);
  2919     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2921     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2922     // Move with sign extension can be used since they are positive.
  2923     __ delayed()->signx(src_pos, src_pos);
  2924     __ signx(dst_pos, dst_pos);
  2926     BLOCK_COMMENT("arraycopy_range_checks done");
  2930   //
  2931   //  Generate generic array copy stubs
  2932   //
  2933   //  Input:
  2934   //    O0    -  src oop
  2935   //    O1    -  src_pos
  2936   //    O2    -  dst oop
  2937   //    O3    -  dst_pos
  2938   //    O4    -  element count
  2939   //
  2940   //  Output:
  2941   //    O0 ==  0  -  success
  2942   //    O0 == -1  -  need to call System.arraycopy
  2943   //
  2944   address generate_generic_copy(const char *name,
  2945                                 address entry_jbyte_arraycopy,
  2946                                 address entry_jshort_arraycopy,
  2947                                 address entry_jint_arraycopy,
  2948                                 address entry_oop_arraycopy,
  2949                                 address entry_jlong_arraycopy,
  2950                                 address entry_checkcast_arraycopy) {
  2951     Label L_failed, L_objArray;
  2953     // Input registers
  2954     const Register src      = O0;  // source array oop
  2955     const Register src_pos  = O1;  // source position
  2956     const Register dst      = O2;  // destination array oop
  2957     const Register dst_pos  = O3;  // destination position
  2958     const Register length   = O4;  // elements count
  2960     // registers used as temp
  2961     const Register G3_src_klass = G3; // source array klass
  2962     const Register G4_dst_klass = G4; // destination array klass
  2963     const Register G5_lh        = G5; // layout handler
  2964     const Register O5_temp      = O5;
  2966     __ align(CodeEntryAlignment);
  2967     StubCodeMark mark(this, "StubRoutines", name);
  2968     address start = __ pc();
  2970     // bump this on entry, not on exit:
  2971     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
  2973     // In principle, the int arguments could be dirty.
  2974     //assert_clean_int(src_pos, G1);
  2975     //assert_clean_int(dst_pos, G1);
  2976     //assert_clean_int(length, G1);
  2978     //-----------------------------------------------------------------------
  2979     // Assembler stubs will be used for this call to arraycopy
  2980     // if the following conditions are met:
  2981     //
  2982     // (1) src and dst must not be null.
  2983     // (2) src_pos must not be negative.
  2984     // (3) dst_pos must not be negative.
  2985     // (4) length  must not be negative.
  2986     // (5) src klass and dst klass should be the same and not NULL.
  2987     // (6) src and dst should be arrays.
  2988     // (7) src_pos + length must not exceed length of src.
  2989     // (8) dst_pos + length must not exceed length of dst.
  2990     BLOCK_COMMENT("arraycopy initial argument checks");
  2992     //  if (src == NULL) return -1;
  2993     __ br_null(src, false, Assembler::pn, L_failed);
  2995     //  if (src_pos < 0) return -1;
  2996     __ delayed()->tst(src_pos);
  2997     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2998     __ delayed()->nop();
  3000     //  if (dst == NULL) return -1;
  3001     __ br_null(dst, false, Assembler::pn, L_failed);
  3003     //  if (dst_pos < 0) return -1;
  3004     __ delayed()->tst(dst_pos);
  3005     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  3007     //  if (length < 0) return -1;
  3008     __ delayed()->tst(length);
  3009     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  3011     BLOCK_COMMENT("arraycopy argument klass checks");
  3012     //  get src->klass()
  3013     if (UseCompressedKlassPointers) {
  3014       __ delayed()->nop(); // ??? not good
  3015       __ load_klass(src, G3_src_klass);
  3016     } else {
  3017       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
  3020 #ifdef ASSERT
  3021     //  assert(src->klass() != NULL);
  3022     BLOCK_COMMENT("assert klasses not null");
  3023     { Label L_a, L_b;
  3024       __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
  3025       __ bind(L_a);
  3026       __ stop("broken null klass");
  3027       __ bind(L_b);
  3028       __ load_klass(dst, G4_dst_klass);
  3029       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
  3030       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
  3031       BLOCK_COMMENT("assert done");
  3033 #endif
  3035     // Load layout helper
  3036     //
  3037     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  3038     // 32        30    24            16              8     2                 0
  3039     //
  3040     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  3041     //
  3043     int lh_offset = in_bytes(Klass::layout_helper_offset());
  3045     // Load 32-bits signed value. Use br() instruction with it to check icc.
  3046     __ lduw(G3_src_klass, lh_offset, G5_lh);
  3048     if (UseCompressedKlassPointers) {
  3049       __ load_klass(dst, G4_dst_klass);
  3051     // Handle objArrays completely differently...
  3052     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3053     __ set(objArray_lh, O5_temp);
  3054     __ cmp(G5_lh,       O5_temp);
  3055     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
  3056     if (UseCompressedKlassPointers) {
  3057       __ delayed()->nop();
  3058     } else {
  3059       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
  3062     //  if (src->klass() != dst->klass()) return -1;
  3063     __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
  3065     //  if (!src->is_Array()) return -1;
  3066     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
  3067     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
  3069     // At this point, it is known to be a typeArray (array_tag 0x3).
  3070 #ifdef ASSERT
  3071     __ delayed()->nop();
  3072     { Label L;
  3073       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
  3074       __ set(lh_prim_tag_in_place, O5_temp);
  3075       __ cmp(G5_lh,                O5_temp);
  3076       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
  3077       __ delayed()->nop();
  3078       __ stop("must be a primitive array");
  3079       __ bind(L);
  3081 #else
  3082     __ delayed();                               // match next insn to prev branch
  3083 #endif
  3085     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3086                            O5_temp, G4_dst_klass, L_failed);
  3088     // TypeArrayKlass
  3089     //
  3090     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  3091     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  3092     //
  3094     const Register G4_offset = G4_dst_klass;    // array offset
  3095     const Register G3_elsize = G3_src_klass;    // log2 element size
  3097     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
  3098     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
  3099     __ add(src, G4_offset, src);       // src array offset
  3100     __ add(dst, G4_offset, dst);       // dst array offset
  3101     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
  3103     // next registers should be set before the jump to corresponding stub
  3104     const Register from     = O0;  // source array address
  3105     const Register to       = O1;  // destination array address
  3106     const Register count    = O2;  // elements count
  3108     // 'from', 'to', 'count' registers should be set in this order
  3109     // since they are the same as 'src', 'src_pos', 'dst'.
  3111     BLOCK_COMMENT("scale indexes to element size");
  3112     __ sll_ptr(src_pos, G3_elsize, src_pos);
  3113     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
  3114     __ add(src, src_pos, from);       // src_addr
  3115     __ add(dst, dst_pos, to);         // dst_addr
  3117     BLOCK_COMMENT("choose copy loop based on element size");
  3118     __ cmp(G3_elsize, 0);
  3119     __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
  3120     __ delayed()->signx(length, count); // length
  3122     __ cmp(G3_elsize, LogBytesPerShort);
  3123     __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
  3124     __ delayed()->signx(length, count); // length
  3126     __ cmp(G3_elsize, LogBytesPerInt);
  3127     __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
  3128     __ delayed()->signx(length, count); // length
  3129 #ifdef ASSERT
  3130     { Label L;
  3131       __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
  3132       __ stop("must be long copy, but elsize is wrong");
  3133       __ bind(L);
  3135 #endif
  3136     __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
  3137     __ delayed()->signx(length, count); // length
  3139     // ObjArrayKlass
  3140   __ BIND(L_objArray);
  3141     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
  3143     Label L_plain_copy, L_checkcast_copy;
  3144     //  test array classes for subtyping
  3145     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
  3146     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
  3147     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
  3149     // Identically typed arrays can be copied without element-wise checks.
  3150     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3151                            O5_temp, G5_lh, L_failed);
  3153     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  3154     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  3155     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  3156     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  3157     __ add(src, src_pos, from);       // src_addr
  3158     __ add(dst, dst_pos, to);         // dst_addr
  3159   __ BIND(L_plain_copy);
  3160     __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
  3161     __ delayed()->signx(length, count); // length
  3163   __ BIND(L_checkcast_copy);
  3164     // live at this point:  G3_src_klass, G4_dst_klass
  3166       // Before looking at dst.length, make sure dst is also an objArray.
  3167       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
  3168       __ cmp(G5_lh,                    O5_temp);
  3169       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
  3171       // It is safe to examine both src.length and dst.length.
  3172       __ delayed();                             // match next insn to prev branch
  3173       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3174                              O5_temp, G5_lh, L_failed);
  3176       // Marshal the base address arguments now, freeing registers.
  3177       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  3178       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  3179       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  3180       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  3181       __ add(src, src_pos, from);               // src_addr
  3182       __ add(dst, dst_pos, to);                 // dst_addr
  3183       __ signx(length, count);                  // length (reloaded)
  3185       Register sco_temp = O3;                   // this register is free now
  3186       assert_different_registers(from, to, count, sco_temp,
  3187                                  G4_dst_klass, G3_src_klass);
  3189       // Generate the type check.
  3190       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3191       __ lduw(G4_dst_klass, sco_offset, sco_temp);
  3192       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
  3193                           O5_temp, L_plain_copy);
  3195       // Fetch destination element klass from the ObjArrayKlass header.
  3196       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  3198       // the checkcast_copy loop needs two extra arguments:
  3199       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
  3200       // lduw(O4, sco_offset, O3);              // sco of elem klass
  3202       __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
  3203       __ delayed()->lduw(O4, sco_offset, O3);
  3206   __ BIND(L_failed);
  3207     __ retl();
  3208     __ delayed()->sub(G0, 1, O0); // return -1
  3209     return start;
  3212   //
  3213   //  Generate stub for heap zeroing.
  3214   //  "to" address is aligned to jlong (8 bytes).
  3215   //
  3216   // Arguments for generated stub:
  3217   //      to:    O0
  3218   //      count: O1 treated as signed (count of HeapWord)
  3219   //             count could be 0
  3220   //
  3221   address generate_zero_aligned_words(const char* name) {
  3222     __ align(CodeEntryAlignment);
  3223     StubCodeMark mark(this, "StubRoutines", name);
  3224     address start = __ pc();
  3226     const Register to    = O0;   // source array address
  3227     const Register count = O1;   // HeapWords count
  3228     const Register temp  = O2;   // scratch
  3230     Label Ldone;
  3231     __ sllx(count, LogHeapWordSize, count); // to bytes count
  3232     // Use BIS for zeroing
  3233     __ bis_zeroing(to, count, temp, Ldone);
  3234     __ bind(Ldone);
  3235     __ retl();
  3236     __ delayed()->nop();
  3237     return start;
  3240   void generate_arraycopy_stubs() {
  3241     address entry;
  3242     address entry_jbyte_arraycopy;
  3243     address entry_jshort_arraycopy;
  3244     address entry_jint_arraycopy;
  3245     address entry_oop_arraycopy;
  3246     address entry_jlong_arraycopy;
  3247     address entry_checkcast_arraycopy;
  3249     //*** jbyte
  3250     // Always need aligned and unaligned versions
  3251     StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
  3252                                                                                   "jbyte_disjoint_arraycopy");
  3253     StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
  3254                                                                                   &entry_jbyte_arraycopy,
  3255                                                                                   "jbyte_arraycopy");
  3256     StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
  3257                                                                                   "arrayof_jbyte_disjoint_arraycopy");
  3258     StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
  3259                                                                                   "arrayof_jbyte_arraycopy");
  3261     //*** jshort
  3262     // Always need aligned and unaligned versions
  3263     StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
  3264                                                                                     "jshort_disjoint_arraycopy");
  3265     StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
  3266                                                                                     &entry_jshort_arraycopy,
  3267                                                                                     "jshort_arraycopy");
  3268     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
  3269                                                                                     "arrayof_jshort_disjoint_arraycopy");
  3270     StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
  3271                                                                                     "arrayof_jshort_arraycopy");
  3273     //*** jint
  3274     // Aligned versions
  3275     StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
  3276                                                                                 "arrayof_jint_disjoint_arraycopy");
  3277     StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
  3278                                                                                 "arrayof_jint_arraycopy");
  3279 #ifdef _LP64
  3280     // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
  3281     // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
  3282     StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
  3283                                                                                 "jint_disjoint_arraycopy");
  3284     StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
  3285                                                                                 &entry_jint_arraycopy,
  3286                                                                                 "jint_arraycopy");
  3287 #else
  3288     // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
  3289     // (in fact in 32bit we always have a pre-loop part even in the aligned version,
  3290     //  because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
  3291     StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
  3292     StubRoutines::_jint_arraycopy          = StubRoutines::_arrayof_jint_arraycopy;
  3293 #endif
  3296     //*** jlong
  3297     // It is always aligned
  3298     StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
  3299                                                                                   "arrayof_jlong_disjoint_arraycopy");
  3300     StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
  3301                                                                                   "arrayof_jlong_arraycopy");
  3302     StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
  3303     StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;
  3306     //*** oops
  3307     // Aligned versions
  3308     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, &entry,
  3309                                                                                       "arrayof_oop_disjoint_arraycopy");
  3310     StubRoutines::_arrayof_oop_arraycopy                 = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
  3311                                                                                       "arrayof_oop_arraycopy");
  3312     // Aligned versions without pre-barriers
  3313     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
  3314                                                                                       "arrayof_oop_disjoint_arraycopy_uninit",
  3315                                                                                       /*dest_uninitialized*/true);
  3316     StubRoutines::_arrayof_oop_arraycopy_uninit          = generate_conjoint_oop_copy(true, entry, NULL,
  3317                                                                                       "arrayof_oop_arraycopy_uninit",
  3318                                                                                       /*dest_uninitialized*/true);
  3319 #ifdef _LP64
  3320     if (UseCompressedOops) {
  3321       // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
  3322       StubRoutines::_oop_disjoint_arraycopy            = generate_disjoint_oop_copy(false, &entry,
  3323                                                                                     "oop_disjoint_arraycopy");
  3324       StubRoutines::_oop_arraycopy                     = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
  3325                                                                                     "oop_arraycopy");
  3326       // Unaligned versions without pre-barriers
  3327       StubRoutines::_oop_disjoint_arraycopy_uninit     = generate_disjoint_oop_copy(false, &entry,
  3328                                                                                     "oop_disjoint_arraycopy_uninit",
  3329                                                                                     /*dest_uninitialized*/true);
  3330       StubRoutines::_oop_arraycopy_uninit              = generate_conjoint_oop_copy(false, entry, NULL,
  3331                                                                                     "oop_arraycopy_uninit",
  3332                                                                                     /*dest_uninitialized*/true);
  3333     } else
  3334 #endif
  3336       // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
  3337       StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
  3338       StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
  3339       StubRoutines::_oop_disjoint_arraycopy_uninit     = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
  3340       StubRoutines::_oop_arraycopy_uninit              = StubRoutines::_arrayof_oop_arraycopy_uninit;
  3343     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  3344     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
  3345                                                                         /*dest_uninitialized*/true);
  3347     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
  3348                                                               entry_jbyte_arraycopy,
  3349                                                               entry_jshort_arraycopy,
  3350                                                               entry_jint_arraycopy,
  3351                                                               entry_jlong_arraycopy);
  3352     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
  3353                                                                entry_jbyte_arraycopy,
  3354                                                                entry_jshort_arraycopy,
  3355                                                                entry_jint_arraycopy,
  3356                                                                entry_oop_arraycopy,
  3357                                                                entry_jlong_arraycopy,
  3358                                                                entry_checkcast_arraycopy);
  3360     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  3361     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  3362     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  3363     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  3364     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  3365     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  3367     if (UseBlockZeroing) {
  3368       StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
  3372   void generate_initial() {
  3373     // Generates all stubs and initializes the entry points
  3375     //------------------------------------------------------------------------------------------------------------------------
  3376     // entry points that exist in all platforms
  3377     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  3378     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  3379     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
  3381     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
  3382     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
  3384     //------------------------------------------------------------------------------------------------------------------------
  3385     // entry points that are platform specific
  3386     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
  3388     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
  3389     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
  3391 #if !defined(COMPILER2) && !defined(_LP64)
  3392     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  3393     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  3394     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  3395     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
  3396     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
  3397     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  3398     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
  3399 #endif  // COMPILER2 !=> _LP64
  3401     // Build this early so it's available for the interpreter.
  3402     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  3406   void generate_all() {
  3407     // Generates all stubs and initializes the entry points
  3409     // Generate partial_subtype_check first here since its code depends on
  3410     // UseZeroBaseCompressedOops which is defined after heap initialization.
  3411     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
  3412     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  3413     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
  3414     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
  3415     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
  3417     StubRoutines::_handler_for_unsafe_access_entry =
  3418       generate_handler_for_unsafe_access();
  3420     // support for verify_oop (must happen after universe_init)
  3421     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
  3423     // arraycopy stubs used by compilers
  3424     generate_arraycopy_stubs();
  3426     // Don't initialize the platform math functions since sparc
  3427     // doesn't have intrinsics for these operations.
  3431  public:
  3432   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3433     // replace the standard masm with a special one:
  3434     _masm = new MacroAssembler(code);
  3436     _stub_count = !all ? 0x100 : 0x200;
  3437     if (all) {
  3438       generate_all();
  3439     } else {
  3440       generate_initial();
  3443     // make sure this stub is available for all local calls
  3444     if (_atomic_add_stub.is_unbound()) {
  3445       // generate a second time, if necessary
  3446       (void) generate_atomic_add();
  3451  private:
  3452   int _stub_count;
  3453   void stub_prolog(StubCodeDesc* cdesc) {
  3454     # ifdef ASSERT
  3455       // put extra information in the stub code, to make it more readable
  3456 #ifdef _LP64
  3457 // Write the high part of the address
  3458 // [RGV] Check if there is a dependency on the size of this prolog
  3459       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
  3460 #endif
  3461       __ emit_data((intptr_t)cdesc,    relocInfo::none);
  3462       __ emit_data(++_stub_count, relocInfo::none);
  3463     # endif
  3464     align(true);
  3467   void align(bool at_header = false) {
  3468     // %%%%% move this constant somewhere else
  3469     // UltraSPARC cache line size is 8 instructions:
  3470     const unsigned int icache_line_size = 32;
  3471     const unsigned int icache_half_line_size = 16;
  3473     if (at_header) {
  3474       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
  3475         __ emit_data(0, relocInfo::none);
  3477     } else {
  3478       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
  3479         __ nop();
  3484 }; // end class declaration
  3486 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3487   StubGenerator g(code, all);

mercurial