src/cpu/sparc/vm/macroAssembler_sparc.inline.hpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4356
18d56ca3e901
child 5283
46c544b8fbfc
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
    26 #define CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/macroAssembler.hpp"
    30 #include "asm/codeBuffer.hpp"
    31 #include "code/codeCache.hpp"
    33 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    36 inline int AddressLiteral::low10() const {
    37   return Assembler::low10(value());
    38 }
    41 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    42   jint& stub_inst = *(jint*) branch;
    43   stub_inst = patched_branch(target - branch, stub_inst, 0);
    44 }
    46 // Use the right loads/stores for the platform
    47 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
    48 #ifdef _LP64
    49   Assembler::ldx(s1, s2, d);
    50 #else
    51              ld( s1, s2, d);
    52 #endif
    53 }
    55 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
    56 #ifdef _LP64
    57   Assembler::ldx(s1, simm13a, d);
    58 #else
    59              ld( s1, simm13a, d);
    60 #endif
    61 }
    63 #ifdef ASSERT
    64 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
    65 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
    66   ld_ptr(s1, in_bytes(simm13a), d);
    67 }
    68 #endif
    70 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
    71 #ifdef _LP64
    72   ldx(s1, s2, d);
    73 #else
    74   ld( s1, s2, d);
    75 #endif
    76 }
    78 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
    79 #ifdef _LP64
    80   ldx(a, d, offset);
    81 #else
    82   ld( a, d, offset);
    83 #endif
    84 }
    86 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
    87 #ifdef _LP64
    88   Assembler::stx(d, s1, s2);
    89 #else
    90              st( d, s1, s2);
    91 #endif
    92 }
    94 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
    95 #ifdef _LP64
    96   Assembler::stx(d, s1, simm13a);
    97 #else
    98              st( d, s1, simm13a);
    99 #endif
   100 }
   102 #ifdef ASSERT
   103 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   104 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   105   st_ptr(d, s1, in_bytes(simm13a));
   106 }
   107 #endif
   109 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   110 #ifdef _LP64
   111   stx(d, s1, s2);
   112 #else
   113   st( d, s1, s2);
   114 #endif
   115 }
   117 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   118 #ifdef _LP64
   119   stx(d, a, offset);
   120 #else
   121   st( d, a, offset);
   122 #endif
   123 }
   125 // Use the right loads/stores for the platform
   126 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   127 #ifdef _LP64
   128   Assembler::ldx(s1, s2, d);
   129 #else
   130   Assembler::ldd(s1, s2, d);
   131 #endif
   132 }
   134 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   135 #ifdef _LP64
   136   Assembler::ldx(s1, simm13a, d);
   137 #else
   138   Assembler::ldd(s1, simm13a, d);
   139 #endif
   140 }
   142 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   143 #ifdef _LP64
   144   ldx(s1, s2, d);
   145 #else
   146   ldd(s1, s2, d);
   147 #endif
   148 }
   150 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   151 #ifdef _LP64
   152   ldx(a, d, offset);
   153 #else
   154   ldd(a, d, offset);
   155 #endif
   156 }
   158 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   159 #ifdef _LP64
   160   Assembler::stx(d, s1, s2);
   161 #else
   162   Assembler::std(d, s1, s2);
   163 #endif
   164 }
   166 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   167 #ifdef _LP64
   168   Assembler::stx(d, s1, simm13a);
   169 #else
   170   Assembler::std(d, s1, simm13a);
   171 #endif
   172 }
   174 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   175 #ifdef _LP64
   176   stx(d, s1, s2);
   177 #else
   178   std(d, s1, s2);
   179 #endif
   180 }
   182 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   183 #ifdef _LP64
   184   stx(d, a, offset);
   185 #else
   186   std(d, a, offset);
   187 #endif
   188 }
   190 // Functions for isolating 64 bit shifts for LP64
   192 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   193 #ifdef _LP64
   194   Assembler::sllx(s1, s2, d);
   195 #else
   196   Assembler::sll( s1, s2, d);
   197 #endif
   198 }
   200 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   201 #ifdef _LP64
   202   Assembler::sllx(s1, imm6a, d);
   203 #else
   204   Assembler::sll( s1, imm6a, d);
   205 #endif
   206 }
   208 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   209 #ifdef _LP64
   210   Assembler::srlx(s1, s2, d);
   211 #else
   212   Assembler::srl( s1, s2, d);
   213 #endif
   214 }
   216 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   217 #ifdef _LP64
   218   Assembler::srlx(s1, imm6a, d);
   219 #else
   220   Assembler::srl( s1, imm6a, d);
   221 #endif
   222 }
   224 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   225   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   226   else                   sll_ptr(s1, s2.as_constant(), d);
   227 }
   229 // Use the right branch for the platform
   231 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   232   if (VM_Version::v9_instructions_work())
   233     Assembler::bp(c, a, icc, p, d, rt);
   234   else
   235     Assembler::br(c, a, d, rt);
   236 }
   238 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   239   br(c, a, p, target(L));
   240 }
   243 // Branch that tests either xcc or icc depending on the
   244 // architecture compiled (LP64 or not)
   245 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   246 #ifdef _LP64
   247     Assembler::bp(c, a, xcc, p, d, rt);
   248 #else
   249     MacroAssembler::br(c, a, p, d, rt);
   250 #endif
   251 }
   253 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   254   brx(c, a, p, target(L));
   255 }
   257 inline void MacroAssembler::ba( Label& L ) {
   258   br(always, false, pt, L);
   259 }
   261 // Warning: V9 only functions
   262 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   263   Assembler::bp(c, a, cc, p, d, rt);
   264 }
   266 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   267   Assembler::bp(c, a, cc, p, L);
   268 }
   270 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   271   if (VM_Version::v9_instructions_work())
   272     fbp(c, a, fcc0, p, d, rt);
   273   else
   274     Assembler::fb(c, a, d, rt);
   275 }
   277 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   278   fb(c, a, p, target(L));
   279 }
   281 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   282   Assembler::fbp(c, a, cc, p, d, rt);
   283 }
   285 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   286   Assembler::fbp(c, a, cc, p, L);
   287 }
   289 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   290 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   292 inline bool MacroAssembler::is_far_target(address d) {
   293   if (ForceUnreachable) {
   294     // References outside the code cache should be treated as far
   295     return d < CodeCache::low_bound() || d > CodeCache::high_bound();
   296   }
   297   return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
   298 }
   300 // Call with a check to see if we need to deal with the added
   301 // expense of relocation and if we overflow the displacement
   302 // of the quick call instruction.
   303 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   304 #ifdef _LP64
   305   intptr_t disp;
   306   // NULL is ok because it will be relocated later.
   307   // Must change NULL to a reachable address in order to
   308   // pass asserts here and in wdisp.
   309   if ( d == NULL )
   310     d = pc();
   312   // Is this address within range of the call instruction?
   313   // If not, use the expensive instruction sequence
   314   if (is_far_target(d)) {
   315     relocate(rt);
   316     AddressLiteral dest(d);
   317     jumpl_to(dest, O7, O7);
   318   } else {
   319     Assembler::call(d, rt);
   320   }
   321 #else
   322   Assembler::call( d, rt );
   323 #endif
   324 }
   326 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   327   MacroAssembler::call( target(L), rt);
   328 }
   332 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   333 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   335 // prefetch instruction
   336 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   337   if (VM_Version::v9_instructions_work())
   338     Assembler::bp( never, true, xcc, pt, d, rt );
   339 }
   340 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   343 // clobbers o7 on V8!!
   344 // returns delta from gotten pc to addr after
   345 inline int MacroAssembler::get_pc( Register d ) {
   346   int x = offset();
   347   if (VM_Version::v9_instructions_work())
   348     rdpc(d);
   349   else {
   350     Label lbl;
   351     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   352     if (d == O7)  delayed()->nop();
   353     else          delayed()->mov(O7, d);
   354     bind(lbl);
   355   }
   356   return offset() - x;
   357 }
   360 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   363 // Loads the current PC of the following instruction as an immediate value in
   364 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   365 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   366   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   367 #ifdef _LP64
   368   Unimplemented();
   369 #else
   370   Assembler::sethi(   thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   371              add(reg, thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   372 #endif
   373   return thepc;
   374 }
   377 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
   378   assert_not_delayed();
   379   if (ForceUnreachable) {
   380     patchable_sethi(addrlit, d);
   381   } else {
   382     sethi(addrlit, d);
   383   }
   384   ld(d, addrlit.low10() + offset, d);
   385 }
   388 inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
   389   assert_not_delayed();
   390   if (ForceUnreachable) {
   391     patchable_sethi(addrlit, d);
   392   } else {
   393     sethi(addrlit, d);
   394   }
   395   ldub(d, addrlit.low10() + offset, d);
   396 }
   399 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
   400   assert_not_delayed();
   401   if (ForceUnreachable) {
   402     patchable_sethi(addrlit, d);
   403   } else {
   404     sethi(addrlit, d);
   405   }
   406   ld_ptr(d, addrlit.low10() + offset, d);
   407 }
   410 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   411   assert_not_delayed();
   412   if (ForceUnreachable) {
   413     patchable_sethi(addrlit, temp);
   414   } else {
   415     sethi(addrlit, temp);
   416   }
   417   st(s, temp, addrlit.low10() + offset);
   418 }
   421 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   422   assert_not_delayed();
   423   if (ForceUnreachable) {
   424     patchable_sethi(addrlit, temp);
   425   } else {
   426     sethi(addrlit, temp);
   427   }
   428   st_ptr(s, temp, addrlit.low10() + offset);
   429 }
   432 // This code sequence is relocatable to any address, even on LP64.
   433 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
   434   assert_not_delayed();
   435   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   436   // variable length instruction streams.
   437   patchable_sethi(addrlit, temp);
   438   jmpl(temp, addrlit.low10() + offset, d);
   439 }
   442 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
   443   jumpl_to(addrlit, temp, G0, offset);
   444 }
   447 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   448                                              int ld_offset, int jmp_offset) {
   449   assert_not_delayed();
   450   //sethi(al);                   // sethi is caller responsibility for this one
   451   ld_ptr(a, temp, ld_offset);
   452   jmp(temp, jmp_offset);
   453 }
   456 inline void MacroAssembler::set_metadata(Metadata* obj, Register d) {
   457   set_metadata(allocate_metadata_address(obj), d);
   458 }
   460 inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) {
   461   set_metadata(constant_metadata_address(obj), d);
   462 }
   464 inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) {
   465   assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc");
   466   set(obj_addr, d);
   467 }
   469 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   470   set_oop(allocate_oop_address(obj), d);
   471 }
   474 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   475   set_oop(constant_oop_address(obj), d);
   476 }
   479 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
   480   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   481   set(obj_addr, d);
   482 }
   485 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   486   if (a.is_register())
   487     mov(a.as_register(), d);
   488   else
   489     ld (a.as_address(),  d);
   490 }
   492 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   493   if (a.is_register())
   494     mov(s, a.as_register());
   495   else
   496     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   497 }
   499 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   500   if (a.is_register())
   501     mov(s, a.as_register());
   502   else
   503     st_ptr (s, a.as_address());
   504 }
   507 #ifdef _LP64
   508 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   509   if (a.is_float_register())
   510 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   511     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   512   else
   513     // Floats are stored in the high half of the stack entry
   514     // The low half is undefined per the ABI.
   515     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   516 }
   518 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   519   if (a.is_float_register())
   520 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   521     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   522   else
   523     stf(FloatRegisterImpl::D, s, a.as_address());
   524 }
   526 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   527   if (a.is_register())
   528     mov(s, a.as_register());
   529   else
   530     stx(s, a.as_address());
   531 }
   532 #endif
   534 inline void MacroAssembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype) {
   535   relocate(rtype);
   536   add(s1, simm13a, d);
   537 }
   538 inline void MacroAssembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec) {
   539   relocate(rspec);
   540   add(s1, simm13a, d);
   541 }
   543 // form effective addresses this way:
   544 inline void MacroAssembler::add(const Address& a, Register d, int offset) {
   545   if (a.has_index())   add(a.base(), a.index(),         d);
   546   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
   547   if (offset != 0)     add(d,        offset,            d);
   548 }
   549 inline void MacroAssembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
   550   if (s2.is_register())  add(s1, s2.as_register(),          d);
   551   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   552   if (offset != 0)       add(d,  offset,                    d);
   553 }
   555 inline void MacroAssembler::andn(Register s1, RegisterOrConstant s2, Register d) {
   556   if (s2.is_register())  andn(s1, s2.as_register(), d);
   557   else                   andn(s1, s2.as_constant(), d);
   558 }
   560 inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); }
   561 inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); }
   562 inline void MacroAssembler::clr(  Register s1, Register s2) { stw( G0, s1, s2 ); }
   563 inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
   565 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   566 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   567 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   568 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   570 #ifdef _LP64
   571 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   572 inline void MacroAssembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   573 inline void MacroAssembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   574 #else
   575 inline void MacroAssembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   576 inline void MacroAssembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   577 #endif
   579 #ifdef ASSERT
   580   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   581 # ifdef _LP64
   582 inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   583 # else
   584 inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   585 # endif
   586 #endif
   588 inline void MacroAssembler::ld(  const Address& a, Register d, int offset) {
   589   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   590   else               {                          ld(  a.base(), a.disp() + offset, d); }
   591 }
   593 inline void MacroAssembler::ldsb(const Address& a, Register d, int offset) {
   594   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   595   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   596 }
   597 inline void MacroAssembler::ldsh(const Address& a, Register d, int offset) {
   598   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   599   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   600 }
   601 inline void MacroAssembler::ldsw(const Address& a, Register d, int offset) {
   602   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   603   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   604 }
   605 inline void MacroAssembler::ldub(const Address& a, Register d, int offset) {
   606   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   607   else               {                          ldub(a.base(), a.disp() + offset, d); }
   608 }
   609 inline void MacroAssembler::lduh(const Address& a, Register d, int offset) {
   610   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   611   else               {                          lduh(a.base(), a.disp() + offset, d); }
   612 }
   613 inline void MacroAssembler::lduw(const Address& a, Register d, int offset) {
   614   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   615   else               {                          lduw(a.base(), a.disp() + offset, d); }
   616 }
   617 inline void MacroAssembler::ldd( const Address& a, Register d, int offset) {
   618   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   619   else               {                          ldd( a.base(), a.disp() + offset, d); }
   620 }
   621 inline void MacroAssembler::ldx( const Address& a, Register d, int offset) {
   622   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   623   else               {                          ldx( a.base(), a.disp() + offset, d); }
   624 }
   626 inline void MacroAssembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   627 inline void MacroAssembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   628 inline void MacroAssembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   629 inline void MacroAssembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   630 inline void MacroAssembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   631 inline void MacroAssembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   632 inline void MacroAssembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   633 inline void MacroAssembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   634 inline void MacroAssembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   636 inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   637   if (s2.is_register())  ldf(w, s1, s2.as_register(), d);
   638   else                   ldf(w, s1, s2.as_constant(), d);
   639 }
   641 inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) {
   642   relocate(a.rspec(offset));
   643   ldf(w, a.base(), a.disp() + offset, d);
   644 }
   646 // returns if membar generates anything, obviously this code should mirror
   647 // membar below.
   648 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   649   if( !os::is_MP() ) return false;  // Not needed on single CPU
   650   if( VM_Version::v9_instructions_work() ) {
   651     const Membar_mask_bits effective_mask =
   652         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   653     return (effective_mask != 0);
   654   } else {
   655     return true;
   656   }
   657 }
   659 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   660   // Uniprocessors do not need memory barriers
   661   if (!os::is_MP()) return;
   662   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   663   // 8.4.4.3, a.31 and a.50.
   664   if( VM_Version::v9_instructions_work() ) {
   665     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   666     // of the mmask subfield of const7a that does anything that isn't done
   667     // implicitly is StoreLoad.
   668     const Membar_mask_bits effective_mask =
   669         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   670     if ( effective_mask != 0 ) {
   671       Assembler::membar( effective_mask );
   672     }
   673   } else {
   674     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   675     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   676     // which guarantees that all stores behave as if an stbar were issued just after
   677     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   678     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   679     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   680     //
   681     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   682     // space.  Put one here to be on the safe side.
   683     Assembler::ldstub(SP, 0, G0);
   684   }
   685 }
   687 inline void MacroAssembler::prefetch(const Address& a, PrefetchFcn f, int offset) {
   688   relocate(a.rspec(offset));
   689   assert(!a.has_index(), "");
   690   prefetch(a.base(), a.disp() + offset, f);
   691 }
   693 inline void MacroAssembler::st(Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   694 inline void MacroAssembler::st(Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   696 #ifdef ASSERT
   697 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   698 inline void MacroAssembler::st(Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   699 #endif
   701 inline void MacroAssembler::st(Register d, const Address& a, int offset) {
   702   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   703   else               {                          st( d, a.base(), a.disp() + offset); }
   704 }
   706 inline void MacroAssembler::stb(Register d, const Address& a, int offset) {
   707   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   708   else               {                          stb(d, a.base(), a.disp() + offset); }
   709 }
   710 inline void MacroAssembler::sth(Register d, const Address& a, int offset) {
   711   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   712   else               {                          sth(d, a.base(), a.disp() + offset); }
   713 }
   714 inline void MacroAssembler::stw(Register d, const Address& a, int offset) {
   715   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   716   else               {                          stw(d, a.base(), a.disp() + offset); }
   717 }
   718 inline void MacroAssembler::std(Register d, const Address& a, int offset) {
   719   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   720   else               {                          std(d, a.base(), a.disp() + offset); }
   721 }
   722 inline void MacroAssembler::stx(Register d, const Address& a, int offset) {
   723   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   724   else               {                          stx(d, a.base(), a.disp() + offset); }
   725 }
   727 inline void MacroAssembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   728 inline void MacroAssembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   729 inline void MacroAssembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   730 inline void MacroAssembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   731 inline void MacroAssembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   732 inline void MacroAssembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   734 inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   735   if (s2.is_register())  stf(w, d, s1, s2.as_register());
   736   else                   stf(w, d, s1, s2.as_constant());
   737 }
   739 inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
   740   relocate(a.rspec(offset));
   741   if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index()        ); }
   742   else               {                          stf(w, d, a.base(), a.disp() + offset); }
   743 }
   745 inline void MacroAssembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
   746   if (s2.is_register())  sub(s1, s2.as_register(),          d);
   747   else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
   748   if (offset != 0)       sub(d,  offset,                    d);
   749 }
   751 inline void MacroAssembler::swap(Address& a, Register d, int offset) {
   752   relocate(a.rspec(offset));
   753   if (a.has_index()) { assert(offset == 0, ""); swap(a.base(), a.index(), d        ); }
   754   else               {                          swap(a.base(), a.disp() + offset, d); }
   755 }
   757 #endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP

mercurial