src/cpu/sparc/vm/cppInterpreter_sparc.cpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4936
aeaca88565e6
child 5225
603ca7e51354
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

     1 /*
     2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/cppInterpreter.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #include "utilities/macros.hpp"
    49 #ifdef SHARK
    50 #include "shark/shark_globals.hpp"
    51 #endif
    53 #ifdef CC_INTERP
    55 // Routine exists to make tracebacks look decent in debugger
    56 // while "shadow" interpreter frames are on stack. It is also
    57 // used to distinguish interpreter frames.
    59 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
    60   ShouldNotReachHere();
    61 }
    63 bool CppInterpreter::contains(address pc) {
    64   return ( _code->contains(pc) ||
    65          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
    66 }
    68 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    69 #define __ _masm->
    71 Label frame_manager_entry;
    72 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    73                                       // c++ interpreter entry point this holds that entry point label.
    75 static address unctrap_frame_manager_entry  = NULL;
    77 static address interpreter_return_address  = NULL;
    78 static address deopt_frame_manager_return_atos  = NULL;
    79 static address deopt_frame_manager_return_btos  = NULL;
    80 static address deopt_frame_manager_return_itos  = NULL;
    81 static address deopt_frame_manager_return_ltos  = NULL;
    82 static address deopt_frame_manager_return_ftos  = NULL;
    83 static address deopt_frame_manager_return_dtos  = NULL;
    84 static address deopt_frame_manager_return_vtos  = NULL;
    86 const Register prevState = G1_scratch;
    88 void InterpreterGenerator::save_native_result(void) {
    89   // result potentially in O0/O1: save it across calls
    90   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
    91 #ifdef _LP64
    92   __ stx(O0, STATE(_native_lresult));
    93 #else
    94   __ std(O0, STATE(_native_lresult));
    95 #endif
    96 }
    98 void InterpreterGenerator::restore_native_result(void) {
   100   // Restore any method result value
   101   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
   102 #ifdef _LP64
   103   __ ldx(STATE(_native_lresult), O0);
   104 #else
   105   __ ldd(STATE(_native_lresult), O0);
   106 #endif
   107 }
   109 // A result handler converts/unboxes a native call result into
   110 // a java interpreter/compiler result. The current frame is an
   111 // interpreter frame. The activation frame unwind code must be
   112 // consistent with that of TemplateTable::_return(...). In the
   113 // case of native methods, the caller's SP was not modified.
   114 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
   115   address entry = __ pc();
   116   Register Itos_i  = Otos_i ->after_save();
   117   Register Itos_l  = Otos_l ->after_save();
   118   Register Itos_l1 = Otos_l1->after_save();
   119   Register Itos_l2 = Otos_l2->after_save();
   120   switch (type) {
   121     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   122     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   123     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   124     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   125     case T_LONG   :
   126 #ifndef _LP64
   127                     __ mov(O1, Itos_l2);  // move other half of long
   128 #endif              // ifdef or no ifdef, fall through to the T_INT case
   129     case T_INT    : __ mov(O0, Itos_i);                         break;
   130     case T_VOID   : /* nothing to do */                         break;
   131     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   132     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   133     case T_OBJECT :
   134       __ ld_ptr(STATE(_oop_temp), Itos_i);
   135       __ verify_oop(Itos_i);
   136       break;
   137     default       : ShouldNotReachHere();
   138   }
   139   __ ret();                           // return from interpreter activation
   140   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   141   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
   142   return entry;
   143 }
   145 // tosca based result to c++ interpreter stack based result.
   146 // Result goes to address in L1_scratch
   148 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   149   // A result is in the native abi result register from a native method call.
   150   // We need to return this result to the interpreter by pushing the result on the interpreter's
   151   // stack. This is relatively simple the destination is in L1_scratch
   152   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
   153   // adjust L1_scratch
   154   address entry = __ pc();
   155   switch (type) {
   156     case T_BOOLEAN:
   157       // !0 => true; 0 => false
   158       __ subcc(G0, O0, G0);
   159       __ addc(G0, 0, O0);
   160       __ st(O0, L1_scratch, 0);
   161       __ sub(L1_scratch, wordSize, L1_scratch);
   162       break;
   164     // cannot use and3, 0xFFFF too big as immediate value!
   165     case T_CHAR   :
   166       __ sll(O0, 16, O0);
   167       __ srl(O0, 16, O0);
   168       __ st(O0, L1_scratch, 0);
   169       __ sub(L1_scratch, wordSize, L1_scratch);
   170       break;
   172     case T_BYTE   :
   173       __ sll(O0, 24, O0);
   174       __ sra(O0, 24, O0);
   175       __ st(O0, L1_scratch, 0);
   176       __ sub(L1_scratch, wordSize, L1_scratch);
   177       break;
   179     case T_SHORT  :
   180       __ sll(O0, 16, O0);
   181       __ sra(O0, 16, O0);
   182       __ st(O0, L1_scratch, 0);
   183       __ sub(L1_scratch, wordSize, L1_scratch);
   184       break;
   185     case T_LONG   :
   186 #ifndef _LP64
   187 #if defined(COMPILER2)
   188   // All return values are where we want them, except for Longs.  C2 returns
   189   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   190   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   191   // build even if we are returning from interpreted we just do a little
   192   // stupid shuffing.
   193   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   194   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   195   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   196       __ stx(G1, L1_scratch, -wordSize);
   197 #else
   198       // native result is in O0, O1
   199       __ st(O1, L1_scratch, 0);                      // Low order
   200       __ st(O0, L1_scratch, -wordSize);              // High order
   201 #endif /* COMPILER2 */
   202 #else
   203       __ stx(O0, L1_scratch, -wordSize);
   204 #endif
   205       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   206       break;
   208     case T_INT    :
   209       __ st(O0, L1_scratch, 0);
   210       __ sub(L1_scratch, wordSize, L1_scratch);
   211       break;
   213     case T_VOID   : /* nothing to do */
   214       break;
   216     case T_FLOAT  :
   217       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
   218       __ sub(L1_scratch, wordSize, L1_scratch);
   219       break;
   221     case T_DOUBLE :
   222       // Every stack slot is aligned on 64 bit, However is this
   223       // the correct stack slot on 64bit?? QQQ
   224       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
   225       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   226       break;
   227     case T_OBJECT :
   228       __ verify_oop(O0);
   229       __ st_ptr(O0, L1_scratch, 0);
   230       __ sub(L1_scratch, wordSize, L1_scratch);
   231       break;
   232     default       : ShouldNotReachHere();
   233   }
   234   __ retl();                          // return from interpreter activation
   235   __ delayed()->nop();                // schedule this better
   236   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
   237   return entry;
   238 }
   240 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   241   // A result is in the java expression stack of the interpreted method that has just
   242   // returned. Place this result on the java expression stack of the caller.
   243   //
   244   // The current interpreter activation in Lstate is for the method just returning its
   245   // result. So we know that the result of this method is on the top of the current
   246   // execution stack (which is pre-pushed) and will be return to the top of the caller
   247   // stack. The top of the callers stack is the bottom of the locals of the current
   248   // activation.
   249   // Because of the way activation are managed by the frame manager the value of esp is
   250   // below both the stack top of the current activation and naturally the stack top
   251   // of the calling activation. This enable this routine to leave the return address
   252   // to the frame manager on the stack and do a vanilla return.
   253   //
   254   // On entry: O0 - points to source (callee stack top)
   255   //           O1 - points to destination (caller stack top [i.e. free location])
   256   // destroys O2, O3
   257   //
   259   address entry = __ pc();
   260   switch (type) {
   261     case T_VOID:  break;
   262       break;
   263     case T_FLOAT  :
   264     case T_BOOLEAN:
   265     case T_CHAR   :
   266     case T_BYTE   :
   267     case T_SHORT  :
   268     case T_INT    :
   269       // 1 word result
   270       __ ld(O0, 0, O2);
   271       __ st(O2, O1, 0);
   272       __ sub(O1, wordSize, O1);
   273       break;
   274     case T_DOUBLE  :
   275     case T_LONG    :
   276       // return top two words on current expression stack to caller's expression stack
   277       // The caller's expression stack is adjacent to the current frame manager's intepretState
   278       // except we allocated one extra word for this intepretState so we won't overwrite it
   279       // when we return a two word result.
   280 #ifdef _LP64
   281       __ ld_ptr(O0, 0, O2);
   282       __ st_ptr(O2, O1, -wordSize);
   283 #else
   284       __ ld(O0, 0, O2);
   285       __ ld(O0, wordSize, O3);
   286       __ st(O3, O1, 0);
   287       __ st(O2, O1, -wordSize);
   288 #endif
   289       __ sub(O1, 2*wordSize, O1);
   290       break;
   291     case T_OBJECT :
   292       __ ld_ptr(O0, 0, O2);
   293       __ verify_oop(O2);                                               // verify it
   294       __ st_ptr(O2, O1, 0);
   295       __ sub(O1, wordSize, O1);
   296       break;
   297     default       : ShouldNotReachHere();
   298   }
   299   __ retl();
   300   __ delayed()->nop(); // QQ schedule this better
   301   return entry;
   302 }
   304 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   305   // A result is in the java expression stack of the interpreted method that has just
   306   // returned. Place this result in the native abi that the caller expects.
   307   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
   308   //
   309   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   310   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   311   // and so rather than return result onto caller's java expression stack we return the
   312   // result in the expected location based on the native abi.
   313   // On entry: O0 - source (stack top)
   314   // On exit result in expected output register
   315   // QQQ schedule this better
   317   address entry = __ pc();
   318   switch (type) {
   319     case T_VOID:  break;
   320       break;
   321     case T_FLOAT  :
   322       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
   323       break;
   324     case T_BOOLEAN:
   325     case T_CHAR   :
   326     case T_BYTE   :
   327     case T_SHORT  :
   328     case T_INT    :
   329       // 1 word result
   330       __ ld(O0, 0, O0->after_save());
   331       break;
   332     case T_DOUBLE  :
   333       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
   334       break;
   335     case T_LONG    :
   336       // return top two words on current expression stack to caller's expression stack
   337       // The caller's expression stack is adjacent to the current frame manager's interpretState
   338       // except we allocated one extra word for this intepretState so we won't overwrite it
   339       // when we return a two word result.
   340 #ifdef _LP64
   341       __ ld_ptr(O0, 0, O0->after_save());
   342 #else
   343       __ ld(O0, wordSize, O1->after_save());
   344       __ ld(O0, 0, O0->after_save());
   345 #endif
   346 #if defined(COMPILER2) && !defined(_LP64)
   347       // C2 expects long results in G1 we can't tell if we're returning to interpreted
   348       // or compiled so just be safe use G1 and O0/O1
   350       // Shift bits into high (msb) of G1
   351       __ sllx(Otos_l1->after_save(), 32, G1);
   352       // Zero extend low bits
   353       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
   354       __ or3 (Otos_l2->after_save(), G1, G1);
   355 #endif /* COMPILER2 */
   356       break;
   357     case T_OBJECT :
   358       __ ld_ptr(O0, 0, O0->after_save());
   359       __ verify_oop(O0->after_save());                                               // verify it
   360       break;
   361     default       : ShouldNotReachHere();
   362   }
   363   __ retl();
   364   __ delayed()->nop();
   365   return entry;
   366 }
   368 address CppInterpreter::return_entry(TosState state, int length) {
   369   // make it look good in the debugger
   370   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
   371 }
   373 address CppInterpreter::deopt_entry(TosState state, int length) {
   374   address ret = NULL;
   375   if (length != 0) {
   376     switch (state) {
   377       case atos: ret = deopt_frame_manager_return_atos; break;
   378       case btos: ret = deopt_frame_manager_return_btos; break;
   379       case ctos:
   380       case stos:
   381       case itos: ret = deopt_frame_manager_return_itos; break;
   382       case ltos: ret = deopt_frame_manager_return_ltos; break;
   383       case ftos: ret = deopt_frame_manager_return_ftos; break;
   384       case dtos: ret = deopt_frame_manager_return_dtos; break;
   385       case vtos: ret = deopt_frame_manager_return_vtos; break;
   386     }
   387   } else {
   388     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   389   }
   390   assert(ret != NULL, "Not initialized");
   391   return ret;
   392 }
   394 //
   395 // Helpers for commoning out cases in the various type of method entries.
   396 //
   398 // increment invocation count & check for overflow
   399 //
   400 // Note: checking for negative value instead of overflow
   401 //       so we have a 'sticky' overflow test
   402 //
   403 // Lmethod: method
   404 // ??: invocation counter
   405 //
   406 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   407   Label done;
   408   const Register Rcounters = G3_scratch;
   410   __ ld_ptr(STATE(_method), G5_method);
   411   __ get_method_counters(G5_method, Rcounters, done);
   413   // Update standard invocation counters
   414   __ increment_invocation_counter(Rcounters, O0, G4_scratch);
   415   if (ProfileInterpreter) {
   416     Address interpreter_invocation_counter(Rcounters, 0,
   417             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
   418     __ ld(interpreter_invocation_counter, G4_scratch);
   419     __ inc(G4_scratch);
   420     __ st(G4_scratch, interpreter_invocation_counter);
   421   }
   423   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
   424   __ sethi(invocation_limit);
   425   __ ld(invocation_limit, G3_scratch);
   426   __ cmp(O0, G3_scratch);
   427   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   428   __ delayed()->nop();
   429   __ bind(done);
   430 }
   432 address InterpreterGenerator::generate_empty_entry(void) {
   434   // A method that does nothing but return...
   436   address entry = __ pc();
   437   Label slow_path;
   439   // do nothing for empty methods (do not even increment invocation counter)
   440   if ( UseFastEmptyMethods) {
   441     // If we need a safepoint check, generate full interpreter entry.
   442     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   443     __ load_contents(sync_state, G3_scratch);
   444     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   445     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
   446     __ delayed()->nop();
   448     // Code: _return
   449     __ retl();
   450     __ delayed()->mov(O5_savedSP, SP);
   451     return entry;
   452   }
   453   return NULL;
   454 }
   456 // Call an accessor method (assuming it is resolved, otherwise drop into
   457 // vanilla (slow path) entry
   459 // Generates code to elide accessor methods
   460 // Uses G3_scratch and G1_scratch as scratch
   461 address InterpreterGenerator::generate_accessor_entry(void) {
   463   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   464   // parameter size = 1
   465   // Note: We can only use this code if the getfield has been resolved
   466   //       and if we don't have a null-pointer exception => check for
   467   //       these conditions first and use slow path if necessary.
   468   address entry = __ pc();
   469   Label slow_path;
   471   if ( UseFastAccessorMethods) {
   472     // Check if we need to reach a safepoint and generate full interpreter
   473     // frame if so.
   474     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   475     __ load_contents(sync_state, G3_scratch);
   476     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   477     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   478     __ delayed()->nop();
   480     // Check if local 0 != NULL
   481     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   482     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   483     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   484     __ delayed()->nop();
   487     // read first instruction word and extract bytecode @ 1 and index @ 2
   488     // get first 4 bytes of the bytecodes (big endian!)
   489     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
   490     __ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
   492     // move index @ 2 far left then to the right most two bytes.
   493     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   494     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   495                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   497     // get constant pool cache
   498     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
   499     __ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
   500     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
   502     // get specific constant pool cache entry
   503     __ add(G3_scratch, G1_scratch, G3_scratch);
   505     // Check the constant Pool cache entry to see if it has been resolved.
   506     // If not, need the slow path.
   507     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
   508     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
   509     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   510     __ and3(G1_scratch, 0xFF, G1_scratch);
   511     __ cmp(G1_scratch, Bytecodes::_getfield);
   512     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   513     __ delayed()->nop();
   515     // Get the type and return field offset from the constant pool cache
   516     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
   517     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
   519     Label xreturn_path;
   520     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   521     // because they are different sizes.
   522     // Get the type from the constant pool cache
   523     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
   524     // Make sure we don't need to mask G1_scratch after the above shift
   525     ConstantPoolCacheEntry::verify_tos_state_shift();
   526     __ cmp(G1_scratch, atos );
   527     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   528     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   529     __ cmp(G1_scratch, itos);
   530     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   531     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   532     __ cmp(G1_scratch, stos);
   533     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   534     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   535     __ cmp(G1_scratch, ctos);
   536     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   537     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   538 #ifdef ASSERT
   539     __ cmp(G1_scratch, btos);
   540     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   541     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   542     __ should_not_reach_here();
   543 #endif
   544     __ ldsb(Otos_i, G3_scratch, Otos_i);
   545     __ bind(xreturn_path);
   547     // _ireturn/_areturn
   548     __ retl();                      // return from leaf routine
   549     __ delayed()->mov(O5_savedSP, SP);
   551     // Generate regular method entry
   552     __ bind(slow_path);
   553     __ ba(fast_accessor_slow_entry_path);
   554     __ delayed()->nop();
   555     return entry;
   556   }
   557   return NULL;
   558 }
   560 address InterpreterGenerator::generate_Reference_get_entry(void) {
   561 #if INCLUDE_ALL_GCS
   562   if (UseG1GC) {
   563     // We need to generate have a routine that generates code to:
   564     //   * load the value in the referent field
   565     //   * passes that value to the pre-barrier.
   566     //
   567     // In the case of G1 this will record the value of the
   568     // referent in an SATB buffer if marking is active.
   569     // This will cause concurrent marking to mark the referent
   570     // field as live.
   571     Unimplemented();
   572   }
   573 #endif // INCLUDE_ALL_GCS
   575   // If G1 is not enabled then attempt to go through the accessor entry point
   576   // Reference.get is an accessor
   577   return generate_accessor_entry();
   578 }
   580 //
   581 // Interpreter stub for calling a native method. (C++ interpreter)
   582 // This sets up a somewhat different looking stack for calling the native method
   583 // than the typical interpreter frame setup.
   584 //
   586 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   587   address entry = __ pc();
   589   // the following temporary registers are used during frame creation
   590   const Register Gtmp1 = G3_scratch ;
   591   const Register Gtmp2 = G1_scratch;
   592   const Register RconstMethod = Gtmp1;
   593   const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
   594   const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
   596   bool inc_counter  = UseCompiler || CountCompiledCalls;
   598   // make sure registers are different!
   599   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   601   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
   603   Label Lentry;
   604   __ bind(Lentry);
   606   const Register Glocals_size = G3;
   607   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   609   // make sure method is native & not abstract
   610   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   611 #ifdef ASSERT
   612   __ ld(access_flags, Gtmp1);
   613   {
   614     Label L;
   615     __ btst(JVM_ACC_NATIVE, Gtmp1);
   616     __ br(Assembler::notZero, false, Assembler::pt, L);
   617     __ delayed()->nop();
   618     __ stop("tried to execute non-native method as native");
   619     __ bind(L);
   620   }
   621   { Label L;
   622     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   623     __ br(Assembler::zero, false, Assembler::pt, L);
   624     __ delayed()->nop();
   625     __ stop("tried to execute abstract method as non-abstract");
   626     __ bind(L);
   627   }
   628 #endif // ASSERT
   630   __ ld_ptr(constMethod, RconstMethod);
   631   __ lduh(size_of_parameters, Gtmp1);
   632   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
   633   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
   634   // NEW
   635   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
   636   // generate the code to allocate the interpreter stack frame
   637   // NEW FRAME ALLOCATED HERE
   638   // save callers original sp
   639   // __ mov(SP, I5_savedSP->after_restore());
   641   generate_compute_interpreter_state(Lstate, G0, true);
   643   // At this point Lstate points to new interpreter state
   644   //
   646   const Address do_not_unlock_if_synchronized(G2_thread, 0,
   647       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   648   // Since at this point in the method invocation the exception handler
   649   // would try to exit the monitor of synchronized methods which hasn't
   650   // been entered yet, we set the thread local variable
   651   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   652   // runtime, exception handling i.e. unlock_if_synchronized_method will
   653   // check this thread local flag.
   654   // This flag has two effects, one is to force an unwind in the topmost
   655   // interpreter frame and not perform an unlock while doing so.
   657   __ movbool(true, G3_scratch);
   658   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   661   // increment invocation counter and check for overflow
   662   //
   663   // Note: checking for negative value instead of overflow
   664   //       so we have a 'sticky' overflow test (may be of
   665   //       importance as soon as we have true MT/MP)
   666   Label invocation_counter_overflow;
   667   if (inc_counter) {
   668     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   669   }
   670   Label Lcontinue;
   671   __ bind(Lcontinue);
   673   bang_stack_shadow_pages(true);
   674   // reset the _do_not_unlock_if_synchronized flag
   675   __ stbool(G0, do_not_unlock_if_synchronized);
   677   // check for synchronized methods
   678   // Must happen AFTER invocation_counter check, so method is not locked
   679   // if counter overflows.
   681   if (synchronized) {
   682     lock_method();
   683     // Don't see how G2_thread is preserved here...
   684     // __ verify_thread(); QQQ destroys L0,L1 can't use
   685   } else {
   686 #ifdef ASSERT
   687     { Label ok;
   688       __ ld_ptr(STATE(_method), G5_method);
   689       __ ld(access_flags, O0);
   690       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   691       __ br( Assembler::zero, false, Assembler::pt, ok);
   692       __ delayed()->nop();
   693       __ stop("method needs synchronization");
   694       __ bind(ok);
   695     }
   696 #endif // ASSERT
   697   }
   699   // start execution
   701 //   __ verify_thread(); kills L1,L2 can't  use at the moment
   703   // jvmti/jvmpi support
   704   __ notify_method_entry();
   706   // native call
   708   // (note that O0 is never an oop--at most it is a handle)
   709   // It is important not to smash any handles created by this call,
   710   // until any oop handle in O0 is dereferenced.
   712   // (note that the space for outgoing params is preallocated)
   714   // get signature handler
   716   Label pending_exception_present;
   718   { Label L;
   719     __ ld_ptr(STATE(_method), G5_method);
   720     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
   721     __ tst(G3_scratch);
   722     __ brx(Assembler::notZero, false, Assembler::pt, L);
   723     __ delayed()->nop();
   724     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
   725     __ ld_ptr(STATE(_method), G5_method);
   727     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   728     __ ld_ptr(exception_addr, G3_scratch);
   729     __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
   730     __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
   731     __ bind(L);
   732   }
   734   // Push a new frame so that the args will really be stored in
   735   // Copy a few locals across so the new frame has the variables
   736   // we need but these values will be dead at the jni call and
   737   // therefore not gc volatile like the values in the current
   738   // frame (Lstate in particular)
   740   // Flush the state pointer to the register save area
   741   // Which is the only register we need for a stack walk.
   742   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   744   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
   746   // Calculate current frame size
   747   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   748   __ save(SP, O3, SP);        // Allocate an identical sized frame
   750   __ mov(I1, Lstate);          // In the "natural" register.
   752   // Note I7 has leftover trash. Slow signature handler will fill it in
   753   // should we get there. Normal jni call will set reasonable last_Java_pc
   754   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   755   // in it).
   758   // call signature handler
   759   __ ld_ptr(STATE(_method), Lmethod);
   760   __ ld_ptr(STATE(_locals), Llocals);
   762   __ callr(G3_scratch, 0);
   763   __ delayed()->nop();
   764   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
   766   { Label not_static;
   768     __ ld_ptr(STATE(_method), G5_method);
   769     __ ld(access_flags, O0);
   770     __ btst(JVM_ACC_STATIC, O0);
   771     __ br( Assembler::zero, false, Assembler::pt, not_static);
   772     __ delayed()->
   773       // get native function entry point(O0 is a good temp until the very end)
   774        ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
   775     // for static methods insert the mirror argument
   776     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   778     __ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
   779     __ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
   780     __ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
   781     __ ld_ptr(O1, mirror_offset, O1);
   782     // where the mirror handle body is allocated:
   783 #ifdef ASSERT
   784     if (!PrintSignatureHandlers)  // do not dirty the output with this
   785     { Label L;
   786       __ tst(O1);
   787       __ brx(Assembler::notZero, false, Assembler::pt, L);
   788       __ delayed()->nop();
   789       __ stop("mirror is missing");
   790       __ bind(L);
   791     }
   792 #endif // ASSERT
   793     __ st_ptr(O1, STATE(_oop_temp));
   794     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
   795     __ bind(not_static);
   796   }
   798   // At this point, arguments have been copied off of stack into
   799   // their JNI positions, which are O1..O5 and SP[68..].
   800   // Oops are boxed in-place on the stack, with handles copied to arguments.
   801   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   803 #ifdef ASSERT
   804   { Label L;
   805     __ tst(O0);
   806     __ brx(Assembler::notZero, false, Assembler::pt, L);
   807     __ delayed()->nop();
   808     __ stop("native entry point is missing");
   809     __ bind(L);
   810   }
   811 #endif // ASSERT
   813   //
   814   // setup the java frame anchor
   815   //
   816   // The scavenge function only needs to know that the PC of this frame is
   817   // in the interpreter method entry code, it doesn't need to know the exact
   818   // PC and hence we can use O7 which points to the return address from the
   819   // previous call in the code stream (signature handler function)
   820   //
   821   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   822   // we have pushed the extra frame in order to protect the volatile register(s)
   823   // in that frame when we return from the jni call
   824   //
   827   __ set_last_Java_frame(FP, O7);
   828   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   829                    // not meaningless information that'll confuse me.
   831   // flush the windows now. We don't care about the current (protection) frame
   832   // only the outer frames
   834   __ flush_windows();
   836   // mark windows as flushed
   837   Address flags(G2_thread,
   838                 0,
   839                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   840   __ set(JavaFrameAnchor::flushed, G3_scratch);
   841   __ st(G3_scratch, flags);
   843   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   845   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
   846 #ifdef ASSERT
   847   { Label L;
   848     __ ld(thread_state, G3_scratch);
   849     __ cmp(G3_scratch, _thread_in_Java);
   850     __ br(Assembler::equal, false, Assembler::pt, L);
   851     __ delayed()->nop();
   852     __ stop("Wrong thread state in native stub");
   853     __ bind(L);
   854   }
   855 #endif // ASSERT
   856   __ set(_thread_in_native, G3_scratch);
   857   __ st(G3_scratch, thread_state);
   859   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   860   __ callr(O0, 0);
   861   __ delayed()->
   862      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
   863   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   865   // must we block?
   867   // Block, if necessary, before resuming in _thread_in_Java state.
   868   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   869   { Label no_block;
   870     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   872     // Switch thread to "native transition" state before reading the synchronization state.
   873     // This additional state is necessary because reading and testing the synchronization
   874     // state is not atomic w.r.t. GC, as this scenario demonstrates:
   875     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
   876     //     VM thread changes sync state to synchronizing and suspends threads for GC.
   877     //     Thread A is resumed to finish this native method, but doesn't block here since it
   878     //     didn't see any synchronization is progress, and escapes.
   879     __ set(_thread_in_native_trans, G3_scratch);
   880     __ st(G3_scratch, thread_state);
   881     if(os::is_MP()) {
   882       // Write serialization page so VM thread can do a pseudo remote membar.
   883       // We use the current thread pointer to calculate a thread specific
   884       // offset to write to within the page. This minimizes bus traffic
   885       // due to cache line collision.
   886       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
   887     }
   888     __ load_contents(sync_state, G3_scratch);
   889     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   892     Label L;
   893     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
   894     __ br(Assembler::notEqual, false, Assembler::pn, L);
   895     __ delayed()->
   896       ld(suspend_state, G3_scratch);
   897     __ cmp(G3_scratch, 0);
   898     __ br(Assembler::equal, false, Assembler::pt, no_block);
   899     __ delayed()->nop();
   900     __ bind(L);
   902     // Block.  Save any potential method result value before the operation and
   903     // use a leaf call to leave the last_Java_frame setup undisturbed.
   904     save_native_result();
   905     __ call_VM_leaf(noreg,
   906                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
   907                     G2_thread);
   908     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   909     // Restore any method result value
   910     restore_native_result();
   911     __ bind(no_block);
   912   }
   914   // Clear the frame anchor now
   916   __ reset_last_Java_frame();
   918   // Move the result handler address
   919   __ mov(Lscratch, G3_scratch);
   920   // return possible result to the outer frame
   921 #ifndef __LP64
   922   __ mov(O0, I0);
   923   __ restore(O1, G0, O1);
   924 #else
   925   __ restore(O0, G0, O0);
   926 #endif /* __LP64 */
   928   // Move result handler to expected register
   929   __ mov(G3_scratch, Lscratch);
   932   // thread state is thread_in_native_trans. Any safepoint blocking has
   933   // happened in the trampoline we are ready to switch to thread_in_Java.
   935   __ set(_thread_in_Java, G3_scratch);
   936   __ st(G3_scratch, thread_state);
   938   // If we have an oop result store it where it will be safe for any further gc
   939   // until we return now that we've released the handle it might be protected by
   941   {
   942     Label no_oop, store_result;
   944     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
   945     __ cmp(G3_scratch, Lscratch);
   946     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
   947     __ delayed()->nop();
   948     __ addcc(G0, O0, O0);
   949     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
   950     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
   951     __ mov(G0, O0);
   953     __ bind(store_result);
   954     // Store it where gc will look for it and result handler expects it.
   955     __ st_ptr(O0, STATE(_oop_temp));
   957     __ bind(no_oop);
   959   }
   961   // reset handle block
   962   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
   963   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
   966   // handle exceptions (exception handling will handle unlocking!)
   967   { Label L;
   968     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   970     __ ld_ptr(exception_addr, Gtemp);
   971     __ tst(Gtemp);
   972     __ brx(Assembler::equal, false, Assembler::pt, L);
   973     __ delayed()->nop();
   974     __ bind(pending_exception_present);
   975     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
   976     // Like x86 we ignore the result of the native call and leave the method locked. This
   977     // seems wrong to leave things locked.
   979     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   980     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   982     __ bind(L);
   983   }
   985   // jvmdi/jvmpi support (preserves thread register)
   986   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
   988   if (synchronized) {
   989     // save and restore any potential method result value around the unlocking operation
   990     save_native_result();
   992     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   993     // Get the initial monitor we allocated
   994     __ sub(Lstate, entry_size, O1);                        // initial monitor
   995     __ unlock_object(O1);
   996     restore_native_result();
   997   }
   999 #if defined(COMPILER2) && !defined(_LP64)
  1001   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1002   // or compiled so just be safe.
  1004   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1005   __ srl (O1, 0, O1);           // Zero extend O1
  1006   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1008 #endif /* COMPILER2 && !_LP64 */
  1010 #ifdef ASSERT
  1012     Label ok;
  1013     __ cmp(I5_savedSP, FP);
  1014     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1015     __ delayed()->nop();
  1016     __ stop("bad I5_savedSP value");
  1017     __ should_not_reach_here();
  1018     __ bind(ok);
  1020 #endif
  1021   // Calls result handler which POPS FRAME
  1022   if (TraceJumps) {
  1023     // Move target to register that is recordable
  1024     __ mov(Lscratch, G3_scratch);
  1025     __ JMP(G3_scratch, 0);
  1026   } else {
  1027     __ jmp(Lscratch, 0);
  1029   __ delayed()->nop();
  1031   if (inc_counter) {
  1032     // handle invocation counter overflow
  1033     __ bind(invocation_counter_overflow);
  1034     generate_counter_overflow(Lcontinue);
  1038   return entry;
  1041 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
  1042                                                               const Register prev_state,
  1043                                                               bool native) {
  1045   // On entry
  1046   // G5_method - caller's method
  1047   // Gargs - points to initial parameters (i.e. locals[0])
  1048   // G2_thread - valid? (C1 only??)
  1049   // "prev_state" - contains any previous frame manager state which we must save a link
  1050   //
  1051   // On return
  1052   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
  1053   // a new interpretState object and the method expression stack.
  1055   assert_different_registers(state, prev_state);
  1056   assert_different_registers(prev_state, G3_scratch);
  1057   const Register Gtmp = G3_scratch;
  1058   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
  1059   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
  1061   // slop factor is two extra slots on the expression stack so that
  1062   // we always have room to store a result when returning from a call without parameters
  1063   // that returns a result.
  1065   const int slop_factor = 2*wordSize;
  1067   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
  1068                          //6815692//Method::extra_stack_words() +  // extra push slots for MH adapters
  1069                          frame::memory_parameter_word_sp_offset +  // register save area + param window
  1070                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
  1072   // XXX G5_method valid
  1074   // Now compute new frame size
  1076   if (native) {
  1077     const Register RconstMethod = Gtmp;
  1078     const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
  1079     __ ld_ptr(constMethod, RconstMethod);
  1080     __ lduh( size_of_parameters, Gtmp );
  1081     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
  1082   } else {
  1083     // Full size expression stack
  1084     __ ld_ptr(constMethod, Gtmp);
  1085     __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
  1087   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
  1089   __ neg(Gtmp);                               // negative space for stack/parameters in words
  1090   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
  1091   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
  1093   // Need to do stack size check here before we fault on large frames
  1095   Label stack_ok;
  1097   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
  1098                                                                               (StackRedPages+StackYellowPages);
  1101   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
  1102   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
  1103   // compute stack bottom
  1104   __ sub(O0, O1, O0);
  1106   // Avoid touching the guard pages
  1107   // Also a fudge for frame size of BytecodeInterpreter::run
  1108   // It varies from 1k->4k depending on build type
  1109   const int fudge = 6 * K;
  1111   __ set(fudge + (max_pages * os::vm_page_size()), O1);
  1113   __ add(O0, O1, O0);
  1114   __ sub(O0, Gtmp, O0);
  1115   __ cmp(SP, O0);
  1116   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
  1117   __ delayed()->nop();
  1119      // throw exception return address becomes throwing pc
  1121   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  1122   __ stop("never reached");
  1124   __ bind(stack_ok);
  1126   __ save(SP, Gtmp, SP);                      // setup new frame and register window
  1128   // New window I7 call_stub or previous activation
  1129   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
  1130   //
  1131   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
  1132   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
  1134 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  1136   // Initialize a new Interpreter state
  1137   // orig_sp - caller's original sp
  1138   // G2_thread - thread
  1139   // Gargs - &locals[0] (unbiased?)
  1140   // G5_method - method
  1141   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
  1144   __ set(0xdead0004, O1);
  1147   __ st_ptr(Gargs, XXX_STATE(_locals));
  1148   __ st_ptr(G0, XXX_STATE(_oop_temp));
  1150   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
  1151   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
  1152   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
  1154   if (native) {
  1155     __ st_ptr(G0, XXX_STATE(_bcp));
  1156   } else {
  1157     __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
  1158     __ add(O2, in_bytes(ConstMethod::codes_offset()), O2);        // get bcp
  1159     __ st_ptr(O2, XXX_STATE(_bcp));
  1162   __ st_ptr(G0, XXX_STATE(_mdx));
  1163   __ st_ptr(G5_method, XXX_STATE(_method));
  1165   __ set((int) BytecodeInterpreter::method_entry, O1);
  1166   __ st(O1, XXX_STATE(_msg));
  1168   __ ld_ptr(constMethod, O3);
  1169   __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
  1170   __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
  1171   __ st_ptr(O2, XXX_STATE(_constants));
  1173   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
  1175   // Monitor base is just start of BytecodeInterpreter object;
  1176   __ mov(state, O2);
  1177   __ st_ptr(O2, XXX_STATE(_monitor_base));
  1179   // Do we need a monitor for synchonized method?
  1181     __ ld(access_flags, O1);
  1182     Label done;
  1183     Label got_obj;
  1184     __ btst(JVM_ACC_SYNCHRONIZED, O1);
  1185     __ br( Assembler::zero, false, Assembler::pt, done);
  1187     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1188     __ delayed()->btst(JVM_ACC_STATIC, O1);
  1189     __ ld_ptr(XXX_STATE(_locals), O1);
  1190     __ br( Assembler::zero, true, Assembler::pt, got_obj);
  1191     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
  1192     __ ld_ptr(constMethod, O1);
  1193     __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
  1194     __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
  1195     // lock the mirror, not the Klass*
  1196     __ ld_ptr( O1, mirror_offset, O1);
  1198     __ bind(got_obj);
  1200   #ifdef ASSERT
  1201     __ tst(O1);
  1202     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1203   #endif // ASSERT
  1205     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
  1206     __ sub(SP, entry_size, SP);                         // account for initial monitor
  1207     __ sub(O2, entry_size, O2);                        // initial monitor
  1208     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
  1209     __ bind(done);
  1212   // Remember initial frame bottom
  1214   __ st_ptr(SP, XXX_STATE(_frame_bottom));
  1216   __ st_ptr(O2, XXX_STATE(_stack_base));
  1218   __ sub(O2, wordSize, O2);                    // prepush
  1219   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
  1221   // Full size expression stack
  1222   __ ld_ptr(constMethod, O3);
  1223   __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
  1224   guarantee(!EnableInvokeDynamic, "no support yet for java.lang.invoke.MethodHandle"); //6815692
  1225   //6815692//if (EnableInvokeDynamic)
  1226   //6815692//  __ inc(O3, Method::extra_stack_entries());
  1227   __ sll(O3, LogBytesPerWord, O3);
  1228   __ sub(O2, O3, O3);
  1229 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
  1230   __ st_ptr(O3, XXX_STATE(_stack_limit));
  1232   if (!native) {
  1233     //
  1234     // Code to initialize locals
  1235     //
  1236     Register init_value = noreg;    // will be G0 if we must clear locals
  1237     // Now zero locals
  1238     if (true /* zerolocals */ || ClearInterpreterLocals) {
  1239       // explicitly initialize locals
  1240       init_value = G0;
  1241     } else {
  1242     #ifdef ASSERT
  1243       // initialize locals to a garbage pattern for better debugging
  1244       init_value = O3;
  1245       __ set( 0x0F0F0F0F, init_value );
  1246     #endif // ASSERT
  1248     if (init_value != noreg) {
  1249       Label clear_loop;
  1250       const Register RconstMethod = O1;
  1251       const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
  1252       const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
  1254       // NOTE: If you change the frame layout, this code will need to
  1255       // be updated!
  1256       __ ld_ptr( constMethod, RconstMethod );
  1257       __ lduh( size_of_locals, O2 );
  1258       __ lduh( size_of_parameters, O1 );
  1259       __ sll( O2, LogBytesPerWord, O2);
  1260       __ sll( O1, LogBytesPerWord, O1 );
  1261       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
  1262       __ sub( L2_scratch, O2, O2 );
  1263       __ sub( L2_scratch, O1, O1 );
  1265       __ bind( clear_loop );
  1266       __ inc( O2, wordSize );
  1268       __ cmp( O2, O1 );
  1269       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1270       __ delayed()->st_ptr( init_value, O2, 0 );
  1274 // Find preallocated  monitor and lock method (C++ interpreter)
  1275 //
  1276 void InterpreterGenerator::lock_method(void) {
  1277 // Lock the current method.
  1278 // Destroys registers L2_scratch, L3_scratch, O0
  1279 //
  1280 // Find everything relative to Lstate
  1282 #ifdef ASSERT
  1283   __ ld_ptr(STATE(_method), L2_scratch);
  1284   __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
  1286  { Label ok;
  1287    __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1288    __ br( Assembler::notZero, false, Assembler::pt, ok);
  1289    __ delayed()->nop();
  1290    __ stop("method doesn't need synchronization");
  1291    __ bind(ok);
  1293 #endif // ASSERT
  1295   // monitor is already allocated at stack base
  1296   // and the lockee is already present
  1297   __ ld_ptr(STATE(_stack_base), L2_scratch);
  1298   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
  1299   __ lock_object(L2_scratch, O0);
  1303 //  Generate code for handling resuming a deopted method
  1304 void CppInterpreterGenerator::generate_deopt_handling() {
  1306   Label return_from_deopt_common;
  1308   // deopt needs to jump to here to enter the interpreter (return a result)
  1309   deopt_frame_manager_return_atos  = __ pc();
  1311   // O0/O1 live
  1312   __ ba(return_from_deopt_common);
  1313   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
  1316   // deopt needs to jump to here to enter the interpreter (return a result)
  1317   deopt_frame_manager_return_btos  = __ pc();
  1319   // O0/O1 live
  1320   __ ba(return_from_deopt_common);
  1321   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
  1323   // deopt needs to jump to here to enter the interpreter (return a result)
  1324   deopt_frame_manager_return_itos  = __ pc();
  1326   // O0/O1 live
  1327   __ ba(return_from_deopt_common);
  1328   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
  1330   // deopt needs to jump to here to enter the interpreter (return a result)
  1332   deopt_frame_manager_return_ltos  = __ pc();
  1333 #if !defined(_LP64) && defined(COMPILER2)
  1334   // All return values are where we want them, except for Longs.  C2 returns
  1335   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  1336   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  1337   // build even if we are returning from interpreted we just do a little
  1338   // stupid shuffing.
  1339   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  1340   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  1341   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
  1343   __ srl (G1, 0,O1);
  1344   __ srlx(G1,32,O0);
  1345 #endif /* !_LP64 && COMPILER2 */
  1346   // O0/O1 live
  1347   __ ba(return_from_deopt_common);
  1348   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
  1350   // deopt needs to jump to here to enter the interpreter (return a result)
  1352   deopt_frame_manager_return_ftos  = __ pc();
  1353   // O0/O1 live
  1354   __ ba(return_from_deopt_common);
  1355   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
  1357   // deopt needs to jump to here to enter the interpreter (return a result)
  1358   deopt_frame_manager_return_dtos  = __ pc();
  1360   // O0/O1 live
  1361   __ ba(return_from_deopt_common);
  1362   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
  1364   // deopt needs to jump to here to enter the interpreter (return a result)
  1365   deopt_frame_manager_return_vtos  = __ pc();
  1367   // O0/O1 live
  1368   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
  1370   // Deopt return common
  1371   // an index is present that lets us move any possible result being
  1372   // return to the interpreter's stack
  1373   //
  1374   __ bind(return_from_deopt_common);
  1376   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1377   // stack is in the state that the  calling convention left it.
  1378   // Copy the result from native abi result and place it on java expression stack.
  1380   // Current interpreter state is present in Lstate
  1382   // Get current pre-pushed top of interpreter stack
  1383   // Any result (if any) is in native abi
  1384   // result type index is in L3_scratch
  1386   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1388   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1389   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1390   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1391   __ jmpl(Lscratch, G0, O7);                                         // and convert it
  1392   __ delayed()->nop();
  1394   // L1_scratch points to top of stack (prepushed)
  1395   __ st_ptr(L1_scratch, STATE(_stack));
  1398 // Generate the code to handle a more_monitors message from the c++ interpreter
  1399 void CppInterpreterGenerator::generate_more_monitors() {
  1401   Label entry, loop;
  1402   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1403   // 1. compute new pointers                                // esp: old expression stack top
  1404   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
  1405   __ sub(L4_scratch, entry_size, L4_scratch);
  1406   __ st_ptr(L4_scratch, STATE(_stack_base));
  1408   __ sub(SP, entry_size, SP);                  // Grow stack
  1409   __ st_ptr(SP, STATE(_frame_bottom));
  1411   __ ld_ptr(STATE(_stack_limit), L2_scratch);
  1412   __ sub(L2_scratch, entry_size, L2_scratch);
  1413   __ st_ptr(L2_scratch, STATE(_stack_limit));
  1415   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
  1416   __ sub(L1_scratch, entry_size, L1_scratch);
  1417   __ st_ptr(L1_scratch, STATE(_stack));
  1418   __ ba(entry);
  1419   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
  1421   // 2. move expression stack
  1423   __ bind(loop);
  1424   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
  1425   __ add(L1_scratch, wordSize, L1_scratch);
  1426   __ bind(entry);
  1427   __ cmp(L1_scratch, L4_scratch);
  1428   __ br(Assembler::notEqual, false, Assembler::pt, loop);
  1429   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
  1431   // now zero the slot so we can find it.
  1432   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
  1436 // Initial entry to C++ interpreter from the call_stub.
  1437 // This entry point is called the frame manager since it handles the generation
  1438 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1439 // and via requests from the interpreter. The requests from the call_stub happen
  1440 // directly thru the entry point. Requests from the interpreter happen via returning
  1441 // from the interpreter and examining the message the interpreter has returned to
  1442 // the frame manager. The frame manager can take the following requests:
  1444 // NO_REQUEST - error, should never happen.
  1445 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1446 //                 allocate a new monitor.
  1447 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1448 //               happens during entry during the entry via the call stub.
  1449 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1450 //
  1451 // Arguments:
  1452 //
  1453 // ebx: Method*
  1454 // ecx: receiver - unused (retrieved from stack as needed)
  1455 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
  1456 //
  1457 //
  1458 // Stack layout at entry
  1459 //
  1460 // [ return address     ] <--- esp
  1461 // [ parameter n        ]
  1462 //   ...
  1463 // [ parameter 1        ]
  1464 // [ expression stack   ]
  1465 //
  1466 //
  1467 // We are free to blow any registers we like because the call_stub which brought us here
  1468 // initially has preserved the callee save registers already.
  1469 //
  1470 //
  1472 static address interpreter_frame_manager = NULL;
  1474 #ifdef ASSERT
  1475   #define VALIDATE_STATE(scratch, marker)                         \
  1476   {                                                               \
  1477     Label skip;                                                   \
  1478     __ ld_ptr(STATE(_self_link), scratch);                        \
  1479     __ cmp(Lstate, scratch);                                      \
  1480     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
  1481     __ delayed()->nop();                                          \
  1482     __ breakpoint_trap();                                         \
  1483     __ emit_int32(marker);                                         \
  1484     __ bind(skip);                                                \
  1486 #else
  1487   #define VALIDATE_STATE(scratch, marker)
  1488 #endif /* ASSERT */
  1490 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
  1491 //
  1492 // Adjust caller's stack so that all the locals can be contiguous with
  1493 // the parameters.
  1494 // Worries about stack overflow make this a pain.
  1495 //
  1496 // Destroys args, G3_scratch, G3_scratch
  1497 // In/Out O5_savedSP (sender's original SP)
  1498 //
  1499 //  assert_different_registers(state, prev_state);
  1500   const Register Gtmp = G3_scratch;
  1501   const RconstMethod = G3_scratch;
  1502   const Register tmp = O2;
  1503   const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
  1504   const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
  1505   const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
  1507   __ ld_ptr(constMethod, RconstMethod);
  1508   __ lduh(size_of_parameters, tmp);
  1509   __ sll(tmp, LogBytesPerWord, Gargs);       // parameter size in bytes
  1510   __ add(args, Gargs, Gargs);                // points to first local + BytesPerWord
  1511   // NEW
  1512   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
  1513   // determine extra space for non-argument locals & adjust caller's SP
  1514   // Gtmp1: parameter size in words
  1515   __ lduh(size_of_locals, Gtmp);
  1516   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
  1518 #if 1
  1519   // c2i adapters place the final interpreter argument in the register save area for O0/I0
  1520   // the call_stub will place the final interpreter argument at
  1521   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
  1522   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
  1523   // and try to make it look good in the debugger we will store the argument to
  1524   // RecursiveInterpreterActivation in the register argument save area. Without allocating
  1525   // extra space for the compiler this will overwrite locals in the local array of the
  1526   // interpreter.
  1527   // QQQ still needed with frameless adapters???
  1529   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
  1531   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
  1532 #endif // 1
  1535   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
  1538 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1540   // G5_method: Method*
  1541   // G2_thread: thread (unused)
  1542   // Gargs:   bottom of args (sender_sp)
  1543   // O5: sender's sp
  1545   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1546   // the code is pretty much ready. Would need to change the test below and for good measure
  1547   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1548   // routines. Not clear this is worth it yet.
  1550   if (interpreter_frame_manager) {
  1551     return interpreter_frame_manager;
  1554   __ bind(frame_manager_entry);
  1556   // the following temporary registers are used during frame creation
  1557   const Register Gtmp1 = G3_scratch;
  1558   // const Register Lmirror = L1;     // native mirror (native calls only)
  1560   const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
  1561   const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
  1563   address entry_point = __ pc();
  1564   __ mov(G0, prevState);                                                 // no current activation
  1567   Label re_dispatch;
  1569   __ bind(re_dispatch);
  1571   // Interpreter needs to have locals completely contiguous. In order to do that
  1572   // We must adjust the caller's stack pointer for any locals beyond just the
  1573   // parameters
  1574   adjust_callers_stack(Gargs);
  1576   // O5_savedSP still contains sender's sp
  1578   // NEW FRAME
  1580   generate_compute_interpreter_state(Lstate, prevState, false);
  1582   // At this point a new interpreter frame and state object are created and initialized
  1583   // Lstate has the pointer to the new activation
  1584   // Any stack banging or limit check should already be done.
  1586   Label call_interpreter;
  1588   __ bind(call_interpreter);
  1591 #if 1
  1592   __ set(0xdead002, Lmirror);
  1593   __ set(0xdead002, L2_scratch);
  1594   __ set(0xdead003, L3_scratch);
  1595   __ set(0xdead004, L4_scratch);
  1596   __ set(0xdead005, Lscratch);
  1597   __ set(0xdead006, Lscratch2);
  1598   __ set(0xdead007, L7_scratch);
  1600   __ set(0xdeaf002, O2);
  1601   __ set(0xdeaf003, O3);
  1602   __ set(0xdeaf004, O4);
  1603   __ set(0xdeaf005, O5);
  1604 #endif
  1606   // Call interpreter (stack bang complete) enter here if message is
  1607   // set and we know stack size is valid
  1609   Label call_interpreter_2;
  1611   __ bind(call_interpreter_2);
  1613 #ifdef ASSERT
  1615     Label skip;
  1616     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
  1617     __ cmp(G3_scratch, SP);
  1618     __ brx(Assembler::equal, false, Assembler::pt, skip);
  1619     __ delayed()->nop();
  1620     __ stop("SP not restored to frame bottom");
  1621     __ bind(skip);
  1623 #endif
  1625   VALIDATE_STATE(G3_scratch, 4);
  1626   __ set_last_Java_frame(SP, noreg);
  1627   __ mov(Lstate, O0);                 // (arg) pointer to current state
  1629   __ call(CAST_FROM_FN_PTR(address,
  1630                            JvmtiExport::can_post_interpreter_events() ?
  1631                                                                   BytecodeInterpreter::runWithChecks
  1632                                                                 : BytecodeInterpreter::run),
  1633          relocInfo::runtime_call_type);
  1635   __ delayed()->nop();
  1637   __ ld_ptr(STATE(_thread), G2_thread);
  1638   __ reset_last_Java_frame();
  1640   // examine msg from interpreter to determine next action
  1641   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
  1643   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
  1645   Label call_method;
  1646   Label return_from_interpreted_method;
  1647   Label throw_exception;
  1648   Label do_OSR;
  1649   Label bad_msg;
  1650   Label resume_interpreter;
  1652   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
  1653   __ br(Assembler::equal, false, Assembler::pt, call_method);
  1654   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
  1655   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
  1656   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
  1657   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
  1658   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
  1659   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
  1660   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
  1661   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
  1663   // Allocate more monitor space, shuffle expression stack....
  1665   generate_more_monitors();
  1667   // new monitor slot allocated, resume the interpreter.
  1669   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
  1670   VALIDATE_STATE(G3_scratch, 5);
  1671   __ ba(call_interpreter);
  1672   __ delayed()->st(L1_scratch, STATE(_msg));
  1674   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1675   unctrap_frame_manager_entry  = __ pc();
  1677   // QQQ what message do we send
  1679   __ ba(call_interpreter);
  1680   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
  1682   //=============================================================================
  1683   // Returning from a compiled method into a deopted method. The bytecode at the
  1684   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1685   // for the template based interpreter). Any stack space that was used by the
  1686   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1687   // so all that we have to do is place any pending result on the expression stack
  1688   // and resume execution on the next bytecode.
  1690   generate_deopt_handling();
  1692   // ready to resume the interpreter
  1694   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
  1695   __ ba(call_interpreter);
  1696   __ delayed()->st(L1_scratch, STATE(_msg));
  1698   // Current frame has caught an exception we need to dispatch to the
  1699   // handler. We can get here because a native interpreter frame caught
  1700   // an exception in which case there is no handler and we must rethrow
  1701   // If it is a vanilla interpreted frame the we simply drop into the
  1702   // interpreter and let it do the lookup.
  1704   Interpreter::_rethrow_exception_entry = __ pc();
  1706   Label return_with_exception;
  1707   Label unwind_and_forward;
  1709   // O0: exception
  1710   // O7: throwing pc
  1712   // We want exception in the thread no matter what we ultimately decide about frame type.
  1714   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1715   __ verify_thread();
  1716   __ st_ptr(O0, exception_addr);
  1718   // get the Method*
  1719   __ ld_ptr(STATE(_method), G5_method);
  1721   // if this current frame vanilla or native?
  1723   __ ld(access_flags, Gtmp1);
  1724   __ btst(JVM_ACC_NATIVE, Gtmp1);
  1725   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
  1726   __ delayed()->nop();
  1728   // We drop thru to unwind a native interpreted frame with a pending exception
  1729   // We jump here for the initial interpreter frame with exception pending
  1730   // We unwind the current acivation and forward it to our caller.
  1732   __ bind(unwind_and_forward);
  1734   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
  1735   // as expected by forward_exception.
  1737   __ restore(FP, G0, SP);                  // unwind interpreter state frame
  1738   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1739   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1741   // Return point from a call which returns a result in the native abi
  1742   // (c1/c2/jni-native). This result must be processed onto the java
  1743   // expression stack.
  1744   //
  1745   // A pending exception may be present in which case there is no result present
  1747   address return_from_native_method = __ pc();
  1749   VALIDATE_STATE(G3_scratch, 6);
  1751   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1752   // stack is in the state that the  calling convention left it.
  1753   // Copy the result from native abi result and place it on java expression stack.
  1755   // Current interpreter state is present in Lstate
  1757   // Exception pending?
  1759   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1760   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
  1761   __ tst(Lscratch);                                                            // exception pending?
  1762   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
  1763   __ delayed()->nop();
  1765   // Process the native abi result to java expression stack
  1767   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
  1768   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1769   // get parameter size
  1770   __ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch);
  1771   __ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch);
  1772   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
  1773   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
  1774   __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
  1776   // tosca is really just native abi
  1777   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1778   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1779   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1780   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
  1781   __ delayed()->nop();
  1783   // L1_scratch points to top of stack (prepushed)
  1785   __ ba(resume_interpreter);
  1786   __ delayed()->mov(L1_scratch, O1);
  1788   // An exception is being caught on return to a vanilla interpreter frame.
  1789   // Empty the stack and resume interpreter
  1791   __ bind(return_with_exception);
  1793   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1794   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
  1795   __ ba(resume_interpreter);
  1796   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
  1798   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  1799   // interpreter call, or native) and unwind this interpreter activation.
  1800   // All monitors should be unlocked.
  1802   __ bind(return_from_interpreted_method);
  1804   VALIDATE_STATE(G3_scratch, 7);
  1806   Label return_to_initial_caller;
  1808   // Interpreted result is on the top of the completed activation expression stack.
  1809   // We must return it to the top of the callers stack if caller was interpreted
  1810   // otherwise we convert to native abi result and return to call_stub/c1/c2
  1811   // The caller's expression stack was truncated by the call however the current activation
  1812   // has enough stuff on the stack that we have usable space there no matter what. The
  1813   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
  1814   // for the current activation
  1816   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1817   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
  1818   __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
  1819   __ tst(L1_scratch);
  1820   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
  1821   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
  1823   // Copy result to callers java stack
  1825   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
  1826   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
  1827   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
  1828   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
  1830   // O0 - will be source, O1 - will be destination (preserved)
  1831   __ jmpl(Lscratch, G0, O7);                                          // and convert it
  1832   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
  1834   // O1 == &locals[0]
  1836   // Result is now on caller's stack. Just unwind current activation and resume
  1838   Label unwind_recursive_activation;
  1841   __ bind(unwind_recursive_activation);
  1843   // O1 == &locals[0] (really callers stacktop) for activation now returning
  1844   // returning to interpreter method from "recursive" interpreter call
  1845   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
  1846   // to. Now all we must do is unwind the state from the completed call
  1848   // Must restore stack
  1849   VALIDATE_STATE(G3_scratch, 8);
  1851   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
  1852   // Result if any is already on the caller's stack. All we must do now is remove the now dead
  1853   // frame and tell interpreter to resume.
  1856   __ mov(O1, I1);                                                     // pass back new stack top across activation
  1857   // POP FRAME HERE ==================================
  1858   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1859   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
  1862   // Resume the interpreter. The current frame contains the current interpreter
  1863   // state object.
  1864   //
  1865   // O1 == new java stack pointer
  1867   __ bind(resume_interpreter);
  1868   VALIDATE_STATE(G3_scratch, 10);
  1870   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
  1872   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
  1873   __ st(L1_scratch, STATE(_msg));
  1874   __ ba(call_interpreter_2);
  1875   __ delayed()->st_ptr(O1, STATE(_stack));
  1878   // Fast accessor methods share this entry point.
  1879   // This works because frame manager is in the same codelet
  1880   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
  1881   // we need to do a little register fixup here once we distinguish the two of them
  1882   if (UseFastAccessorMethods && !synchronized) {
  1883   // Call stub_return address still in O7
  1884     __ bind(fast_accessor_slow_entry_path);
  1885     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
  1886     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
  1887     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
  1888     __ delayed()->nop();
  1889     __ ba(re_dispatch);
  1890     __ delayed()->mov(G0, prevState);                                 // initial entry
  1894   // interpreter returning to native code (call_stub/c1/c2)
  1895   // convert result and unwind initial activation
  1896   // L2_scratch - scaled result type index
  1898   __ bind(return_to_initial_caller);
  1900   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
  1901   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
  1902   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
  1903   __ jmpl(Lscratch, G0, O7);                                           // and convert it
  1904   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
  1906   Label unwind_initial_activation;
  1907   __ bind(unwind_initial_activation);
  1909   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
  1910   // we can return here with an exception that wasn't handled by interpreted code
  1911   // how does c1/c2 see it on return?
  1913   // compute resulting sp before/after args popped depending upon calling convention
  1914   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
  1915   //
  1916   // POP FRAME HERE ==================================
  1917   __ restore(FP, G0, SP);
  1918   __ retl();
  1919   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1921   // OSR request, unwind the current frame and transfer to the OSR entry
  1922   // and enter OSR nmethod
  1924   __ bind(do_OSR);
  1925   Label remove_initial_frame;
  1926   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1927   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
  1929   // We are going to pop this frame. Is there another interpreter frame underneath
  1930   // it or is it callstub/compiled?
  1932   __ tst(L1_scratch);
  1933   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
  1934   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
  1936   // Frame underneath is an interpreter frame simply unwind
  1937   // POP FRAME HERE ==================================
  1938   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1939   __ mov(I5_savedSP->after_restore(), SP);
  1941   // Since we are now calling native need to change our "return address" from the
  1942   // dummy RecursiveInterpreterActivation to a return from native
  1944   __ set((intptr_t)return_from_native_method - 8, O7);
  1946   __ jmpl(G3_scratch, G0, G0);
  1947   __ delayed()->mov(G1_scratch, O0);
  1949   __ bind(remove_initial_frame);
  1951   // POP FRAME HERE ==================================
  1952   __ restore(FP, G0, SP);
  1953   __ mov(I5_savedSP->after_restore(), SP);
  1954   __ jmpl(G3_scratch, G0, G0);
  1955   __ delayed()->mov(G1_scratch, O0);
  1957   // Call a new method. All we do is (temporarily) trim the expression stack
  1958   // push a return address to bring us back to here and leap to the new entry.
  1959   // At this point we have a topmost frame that was allocated by the frame manager
  1960   // which contains the current method interpreted state. We trim this frame
  1961   // of excess java expression stack entries and then recurse.
  1963   __ bind(call_method);
  1965   // stack points to next free location and not top element on expression stack
  1966   // method expects sp to be pointing to topmost element
  1968   __ ld_ptr(STATE(_thread), G2_thread);
  1969   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
  1972   // SP already takes in to account the 2 extra words we use for slop
  1973   // when we call a "static long no_params()" method. So if
  1974   // we trim back sp by the amount of unused java expression stack
  1975   // there will be automagically the 2 extra words we need.
  1976   // We also have to worry about keeping SP aligned.
  1978   __ ld_ptr(STATE(_stack), Gargs);
  1979   __ ld_ptr(STATE(_stack_limit), L1_scratch);
  1981   // compute the unused java stack size
  1982   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
  1984   // Round down the unused space to that stack is always 16-byte aligned
  1985   // by making the unused space a multiple of the size of two longs.
  1987   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
  1989   // Now trim the stack
  1990   __ add(SP, L2_scratch, SP);
  1993   // Now point to the final argument (account for prepush)
  1994   __ add(Gargs, wordSize, Gargs);
  1995 #ifdef ASSERT
  1996   // Make sure we have space for the window
  1997   __ sub(Gargs, SP, L1_scratch);
  1998   __ cmp(L1_scratch, 16*wordSize);
  2000     Label skip;
  2001     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
  2002     __ delayed()->nop();
  2003     __ stop("killed stack");
  2004     __ bind(skip);
  2006 #endif // ASSERT
  2008   // Create a new frame where we can store values that make it look like the interpreter
  2009   // really recursed.
  2011   // prepare to recurse or call specialized entry
  2013   // First link the registers we need
  2015   // make the pc look good in debugger
  2016   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
  2017   // argument too
  2018   __ mov(Lstate, I0);
  2020   // Record our sending SP
  2021   __ mov(SP, O5_savedSP);
  2023   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
  2024   __ set((intptr_t) entry_point, L1_scratch);
  2025   __ cmp(L1_scratch, L2_scratch);
  2026   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
  2027   __ delayed()->mov(Lstate, prevState);                                // link activations
  2029   // method uses specialized entry, push a return so we look like call stub setup
  2030   // this path will handle fact that result is returned in registers and not
  2031   // on the java stack.
  2033   __ set((intptr_t)return_from_native_method - 8, O7);
  2034   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
  2035   __ delayed()->nop();
  2037   //
  2038   // Bad Message from interpreter
  2039   //
  2040   __ bind(bad_msg);
  2041   __ stop("Bad message from interpreter");
  2043   // Interpreted method "returned" with an exception pass it on...
  2044   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2045   // We handle result (if any) differently based on return to interpreter or call_stub
  2047   __ bind(throw_exception);
  2048   __ ld_ptr(STATE(_prev_link), L1_scratch);
  2049   __ tst(L1_scratch);
  2050   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
  2051   __ delayed()->nop();
  2053   __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
  2054   __ ba(unwind_recursive_activation);
  2055   __ delayed()->nop();
  2057   interpreter_frame_manager = entry_point;
  2058   return entry_point;
  2061 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2062  : CppInterpreterGenerator(code) {
  2063    generate_all(); // down here so it can be "virtual"
  2067 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  2069   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  2070   // expression stack, the callee will have callee_extra_locals (so we can account for
  2071   // frame extension) and monitor_size for monitors. Basically we need to calculate
  2072   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  2073   //
  2074   //
  2075   // The big complicating thing here is that we must ensure that the stack stays properly
  2076   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  2077   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  2078   // the caller so we must ensure that it is properly aligned for our callee.
  2079   //
  2080   // Ths c++ interpreter always makes sure that we have a enough extra space on the
  2081   // stack at all times to deal with the "stack long no_params()" method issue. This
  2082   // is "slop_factor" here.
  2083   const int slop_factor = 2;
  2085   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
  2086                          frame::memory_parameter_word_sp_offset;   // register save area + param window
  2087   const int extra_stack = 0; //6815692//Method::extra_stack_entries();
  2088   return (round_to(max_stack +
  2089                    extra_stack +
  2090                    slop_factor +
  2091                    fixed_size +
  2092                    monitor_size +
  2093                    (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
  2097 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  2099   // See call_stub code
  2100   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  2101                                  WordsPerLong);    // 7 + register save area
  2103   // Save space for one monitor to get into the interpreted method in case
  2104   // the method is synchronized
  2105   int monitor_size    = method->is_synchronized() ?
  2106                                 1*frame::interpreter_frame_monitor_size() : 0;
  2107   return size_activation_helper(method->max_locals(), method->max_stack(),
  2108                                  monitor_size) + call_stub_size;
  2111 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2112                                            frame* caller,
  2113                                            frame* current,
  2114                                            Method* method,
  2115                                            intptr_t* locals,
  2116                                            intptr_t* stack,
  2117                                            intptr_t* stack_base,
  2118                                            intptr_t* monitor_base,
  2119                                            intptr_t* frame_bottom,
  2120                                            bool is_top_frame
  2123   // What about any vtable?
  2124   //
  2125   to_fill->_thread = JavaThread::current();
  2126   // This gets filled in later but make it something recognizable for now
  2127   to_fill->_bcp = method->code_base();
  2128   to_fill->_locals = locals;
  2129   to_fill->_constants = method->constants()->cache();
  2130   to_fill->_method = method;
  2131   to_fill->_mdx = NULL;
  2132   to_fill->_stack = stack;
  2133   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2134     to_fill->_msg = deopt_resume2;
  2135   } else {
  2136     to_fill->_msg = method_resume;
  2138   to_fill->_result._to_call._bcp_advance = 0;
  2139   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2140   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2141   to_fill->_prev_link = NULL;
  2143   // Fill in the registers for the frame
  2145   // Need to install _sender_sp. Actually not too hard in C++!
  2146   // When the skeletal frames are layed out we fill in a value
  2147   // for _sender_sp. That value is only correct for the oldest
  2148   // skeletal frame constructed (because there is only a single
  2149   // entry for "caller_adjustment". While the skeletal frames
  2150   // exist that is good enough. We correct that calculation
  2151   // here and get all the frames correct.
  2153   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
  2155   *current->register_addr(Lstate) = (intptr_t) to_fill;
  2156   // skeletal already places a useful value here and this doesn't account
  2157   // for alignment so don't bother.
  2158   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
  2160   if (caller->is_interpreted_frame()) {
  2161     interpreterState prev  = caller->get_interpreterState();
  2162     to_fill->_prev_link = prev;
  2163     // Make the prev callee look proper
  2164     prev->_result._to_call._callee = method;
  2165     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2166       prev->_result._to_call._bcp_advance = 5;
  2167     } else {
  2168       prev->_result._to_call._bcp_advance = 3;
  2171   to_fill->_oop_temp = NULL;
  2172   to_fill->_stack_base = stack_base;
  2173   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2174   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2175   // See generate_compute_interpreter_state.
  2176   int extra_stack = 0; //6815692//Method::extra_stack_entries();
  2177   to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
  2178   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2180   // sparc specific
  2181   to_fill->_frame_bottom = frame_bottom;
  2182   to_fill->_self_link = to_fill;
  2183 #ifdef ASSERT
  2184   to_fill->_native_fresult = 123456.789;
  2185   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
  2186 #endif
  2189 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
  2190   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
  2194 int AbstractInterpreter::layout_activation(Method* method,
  2195                                            int tempcount, // Number of slots on java expression stack in use
  2196                                            int popframe_extra_args,
  2197                                            int moncount,  // Number of active monitors
  2198                                            int caller_actual_parameters,
  2199                                            int callee_param_size,
  2200                                            int callee_locals_size,
  2201                                            frame* caller,
  2202                                            frame* interpreter_frame,
  2203                                            bool is_top_frame,
  2204                                            bool is_bottom_frame) {
  2206   assert(popframe_extra_args == 0, "NEED TO FIX");
  2207   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2208   // does as far as allocating an interpreter frame.
  2209   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2210   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2211   // as determined by a previous call to this method.
  2212   // It is also guaranteed to be walkable even though it is in a skeletal state
  2213   // NOTE: return size is in words not bytes
  2214   // NOTE: tempcount is the current size of the java expression stack. For top most
  2215   //       frames we will allocate a full sized expression stack and not the curback
  2216   //       version that non-top frames have.
  2218   // Calculate the amount our frame will be adjust by the callee. For top frame
  2219   // this is zero.
  2221   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2222   // calculates the extra locals based on itself. Not what the callee does
  2223   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2224   // as getting sender_sp correct.
  2226   int extra_locals_size = callee_locals_size - callee_param_size;
  2227   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
  2228   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2229   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2230   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
  2233   /*
  2234     if we actually have a frame to layout we must now fill in all the pieces. This means both
  2235     the interpreterState and the registers.
  2236   */
  2237   if (interpreter_frame != NULL) {
  2239     // MUCHO HACK
  2241     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
  2242     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
  2243     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
  2244     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
  2246     /* Now fillin the interpreterState object */
  2248     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
  2251     intptr_t* locals;
  2253     // Calculate the postion of locals[0]. This is painful because of
  2254     // stack alignment (same as ia64). The problem is that we can
  2255     // not compute the location of locals from fp(). fp() will account
  2256     // for the extra locals but it also accounts for aligning the stack
  2257     // and we can't determine if the locals[0] was misaligned but max_locals
  2258     // was enough to have the
  2259     // calculate postion of locals. fp already accounts for extra locals.
  2260     // +2 for the static long no_params() issue.
  2262     if (caller->is_interpreted_frame()) {
  2263       // locals must agree with the caller because it will be used to set the
  2264       // caller's tos when we return.
  2265       interpreterState prev  = caller->get_interpreterState();
  2266       // stack() is prepushed.
  2267       locals = prev->stack() + method->size_of_parameters();
  2268     } else {
  2269       // Lay out locals block in the caller adjacent to the register window save area.
  2270       //
  2271       // Compiled frames do not allocate a varargs area which is why this if
  2272       // statement is needed.
  2273       //
  2274       intptr_t* fp = interpreter_frame->fp();
  2275       int local_words = method->max_locals() * Interpreter::stackElementWords;
  2277       if (caller->is_compiled_frame()) {
  2278         locals = fp + frame::register_save_words + local_words - 1;
  2279       } else {
  2280         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  2284     // END MUCHO HACK
  2286     intptr_t* monitor_base = (intptr_t*) cur_state;
  2287     intptr_t* stack_base =  monitor_base - monitor_size;
  2288     /* +1 because stack is always prepushed */
  2289     intptr_t* stack = stack_base - (tempcount + 1);
  2292     BytecodeInterpreter::layout_interpreterState(cur_state,
  2293                                           caller,
  2294                                           interpreter_frame,
  2295                                           method,
  2296                                           locals,
  2297                                           stack,
  2298                                           stack_base,
  2299                                           monitor_base,
  2300                                           frame_bottom,
  2301                                           is_top_frame);
  2303     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2306   return frame_words;
  2309 #endif // CC_INTERP

mercurial