src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4860
46f6f063b272
child 5283
46c544b8fbfc
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (UseCompressedKlassPointers) {
   109         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
   110             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
   111       }
   113       if (dst->is_register()) {
   114         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   115           return !PatchALot;
   116         } else if (src->is_single_stack()) {
   117           return true;
   118         }
   119       }
   121       if (src->is_register()) {
   122         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   123           return !PatchALot;
   124         } else if (dst->is_single_stack()) {
   125           return true;
   126         }
   127       }
   129       if (dst->is_register() &&
   130           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   131            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   132         return true;
   133       }
   135       return false;
   136     }
   138     default:
   139       return false;
   140   }
   141   ShouldNotReachHere();
   142 }
   145 LIR_Opr LIR_Assembler::receiverOpr() {
   146   return FrameMap::O0_oop_opr;
   147 }
   150 LIR_Opr LIR_Assembler::osrBufferPointer() {
   151   return FrameMap::I0_opr;
   152 }
   155 int LIR_Assembler::initial_frame_size_in_bytes() {
   156   return in_bytes(frame_map()->framesize_in_bytes());
   157 }
   160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   161 // we fetch the class of the receiver (O0) and compare it with the cached class.
   162 // If they do not match we jump to slow case.
   163 int LIR_Assembler::check_icache() {
   164   int offset = __ offset();
   165   __ inline_cache_check(O0, G5_inline_cache_reg);
   166   return offset;
   167 }
   170 void LIR_Assembler::osr_entry() {
   171   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   172   //
   173   //   1. Create a new compiled activation.
   174   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   175   //      at the osr_bci; it is not initialized.
   176   //   3. Jump to the continuation address in compiled code to resume execution.
   178   // OSR entry point
   179   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   180   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   181   ValueStack* entry_state = osr_entry->end()->state();
   182   int number_of_locks = entry_state->locks_size();
   184   // Create a frame for the compiled activation.
   185   __ build_frame(initial_frame_size_in_bytes());
   187   // OSR buffer is
   188   //
   189   // locals[nlocals-1..0]
   190   // monitors[number_of_locks-1..0]
   191   //
   192   // locals is a direct copy of the interpreter frame so in the osr buffer
   193   // so first slot in the local array is the last local from the interpreter
   194   // and last slot is local[0] (receiver) from the interpreter
   195   //
   196   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   197   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   198   // in the interpreter frame (the method lock if a sync method)
   200   // Initialize monitors in the compiled activation.
   201   //   I0: pointer to osr buffer
   202   //
   203   // All other registers are dead at this point and the locals will be
   204   // copied into place by code emitted in the IR.
   206   Register OSR_buf = osrBufferPointer()->as_register();
   207   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   208     int monitor_offset = BytesPerWord * method()->max_locals() +
   209       (2 * BytesPerWord) * (number_of_locks - 1);
   210     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   211     // the OSR buffer using 2 word entries: first the lock and then
   212     // the oop.
   213     for (int i = 0; i < number_of_locks; i++) {
   214       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   215 #ifdef ASSERT
   216       // verify the interpreter's monitor has a non-null object
   217       {
   218         Label L;
   219         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   220         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   221         __ stop("locked object is NULL");
   222         __ bind(L);
   223       }
   224 #endif // ASSERT
   225       // Copy the lock field into the compiled activation.
   226       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   227       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   228       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   229       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   230     }
   231   }
   232 }
   235 // Optimized Library calls
   236 // This is the fast version of java.lang.String.compare; it has not
   237 // OSR-entry and therefore, we generate a slow version for OSR's
   238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   239   Register str0 = left->as_register();
   240   Register str1 = right->as_register();
   242   Label Ldone;
   244   Register result = dst->as_register();
   245   {
   246     // Get a pointer to the first character of string0 in tmp0
   247     //   and get string0.length() in str0
   248     // Get a pointer to the first character of string1 in tmp1
   249     //   and get string1.length() in str1
   250     // Also, get string0.length()-string1.length() in
   251     //   o7 and get the condition code set
   252     // Note: some instructions have been hoisted for better instruction scheduling
   254     Register tmp0 = L0;
   255     Register tmp1 = L1;
   256     Register tmp2 = L2;
   258     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   259     if (java_lang_String::has_offset_field()) {
   260       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   261       int  count_offset = java_lang_String:: count_offset_in_bytes();
   262       __ load_heap_oop(str0, value_offset, tmp0);
   263       __ ld(str0, offset_offset, tmp2);
   264       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   265       __ ld(str0, count_offset, str0);
   266       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   267     } else {
   268       __ load_heap_oop(str0, value_offset, tmp1);
   269       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   270       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   271     }
   273     // str1 may be null
   274     add_debug_info_for_null_check_here(info);
   276     if (java_lang_String::has_offset_field()) {
   277       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   278       int  count_offset = java_lang_String:: count_offset_in_bytes();
   279       __ load_heap_oop(str1, value_offset, tmp1);
   280       __ add(tmp0, tmp2, tmp0);
   282       __ ld(str1, offset_offset, tmp2);
   283       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   284       __ ld(str1, count_offset, str1);
   285       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   286       __ add(tmp1, tmp2, tmp1);
   287     } else {
   288       __ load_heap_oop(str1, value_offset, tmp2);
   289       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   290       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   291     }
   292     __ subcc(str0, str1, O7);
   293   }
   295   {
   296     // Compute the minimum of the string lengths, scale it and store it in limit
   297     Register count0 = I0;
   298     Register count1 = I1;
   299     Register limit  = L3;
   301     Label Lskip;
   302     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   303     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   304     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   305     __ bind(Lskip);
   307     // If either string is empty (or both of them) the result is the difference in lengths
   308     __ cmp(limit, 0);
   309     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   310     __ delayed()->mov(O7, result);  // result is difference in lengths
   311   }
   313   {
   314     // Neither string is empty
   315     Label Lloop;
   317     Register base0 = L0;
   318     Register base1 = L1;
   319     Register chr0  = I0;
   320     Register chr1  = I1;
   321     Register limit = L3;
   323     // Shift base0 and base1 to the end of the arrays, negate limit
   324     __ add(base0, limit, base0);
   325     __ add(base1, limit, base1);
   326     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   328     __ lduh(base0, limit, chr0);
   329     __ bind(Lloop);
   330     __ lduh(base1, limit, chr1);
   331     __ subcc(chr0, chr1, chr0);
   332     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   333     assert(chr0 == result, "result must be pre-placed");
   334     __ delayed()->inccc(limit, sizeof(jchar));
   335     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   336     __ delayed()->lduh(base0, limit, chr0);
   337   }
   339   // If strings are equal up to min length, return the length difference.
   340   __ mov(O7, result);
   342   // Otherwise, return the difference between the first mismatched chars.
   343   __ bind(Ldone);
   344 }
   347 // --------------------------------------------------------------------------------------------
   349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   350   if (!GenerateSynchronizationCode) return;
   352   Register obj_reg = obj_opr->as_register();
   353   Register lock_reg = lock_opr->as_register();
   355   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   356   Register reg = mon_addr.base();
   357   int offset = mon_addr.disp();
   358   // compute pointer to BasicLock
   359   if (mon_addr.is_simm13()) {
   360     __ add(reg, offset, lock_reg);
   361   }
   362   else {
   363     __ set(offset, lock_reg);
   364     __ add(reg, lock_reg, lock_reg);
   365   }
   366   // unlock object
   367   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   368   // _slow_case_stubs->append(slow_case);
   369   // temporary fix: must be created after exceptionhandler, therefore as call stub
   370   _slow_case_stubs->append(slow_case);
   371   if (UseFastLocking) {
   372     // try inlined fast unlocking first, revert to slow locking if it fails
   373     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   374     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   375     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   376   } else {
   377     // always do slow unlocking
   378     // note: the slow unlocking code could be inlined here, however if we use
   379     //       slow unlocking, speed doesn't matter anyway and this solution is
   380     //       simpler and requires less duplicated code - additionally, the
   381     //       slow unlocking code is the same in either case which simplifies
   382     //       debugging
   383     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   384     __ delayed()->nop();
   385   }
   386   // done
   387   __ bind(*slow_case->continuation());
   388 }
   391 int LIR_Assembler::emit_exception_handler() {
   392   // if the last instruction is a call (typically to do a throw which
   393   // is coming at the end after block reordering) the return address
   394   // must still point into the code area in order to avoid assertion
   395   // failures when searching for the corresponding bci => add a nop
   396   // (was bug 5/14/1999 - gri)
   397   __ nop();
   399   // generate code for exception handler
   400   ciMethod* method = compilation()->method();
   402   address handler_base = __ start_a_stub(exception_handler_size);
   404   if (handler_base == NULL) {
   405     // not enough space left for the handler
   406     bailout("exception handler overflow");
   407     return -1;
   408   }
   410   int offset = code_offset();
   412   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   413   __ delayed()->nop();
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   435   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   436   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   438   __ bind(_unwind_handler_entry);
   439   __ verify_not_null_oop(O0);
   440   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   441     __ mov(O0, I0);  // Preserve the exception
   442   }
   444   // Preform needed unlocking
   445   MonitorExitStub* stub = NULL;
   446   if (method()->is_synchronized()) {
   447     monitor_address(0, FrameMap::I1_opr);
   448     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   449     __ unlock_object(I3, I2, I1, *stub->entry());
   450     __ bind(*stub->continuation());
   451   }
   453   if (compilation()->env()->dtrace_method_probes()) {
   454     __ mov(G2_thread, O0);
   455     __ save_thread(I1); // need to preserve thread in G2 across
   456                         // runtime call
   457     metadata2reg(method()->constant_encoding(), O1);
   458     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   459     __ delayed()->nop();
   460     __ restore_thread(I1);
   461   }
   463   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   464     __ mov(I0, O0);  // Restore the exception
   465   }
   467   // dispatch to the unwind logic
   468   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   469   __ delayed()->nop();
   471   // Emit the slow path assembly
   472   if (stub != NULL) {
   473     stub->emit_code(this);
   474   }
   476   return offset;
   477 }
   480 int LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   486   __ nop();
   488   // generate code for deopt handler
   489   ciMethod* method = compilation()->method();
   490   address handler_base = __ start_a_stub(deopt_handler_size);
   491   if (handler_base == NULL) {
   492     // not enough space left for the handler
   493     bailout("deopt handler overflow");
   494     return -1;
   495   }
   497   int offset = code_offset();
   498   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   499   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   500   __ delayed()->nop();
   501   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   502   __ end_a_stub();
   504   return offset;
   505 }
   508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   509   if (o == NULL) {
   510     __ set(NULL_WORD, reg);
   511   } else {
   512     int oop_index = __ oop_recorder()->find_index(o);
   513     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
   514     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   515     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   516   }
   517 }
   520 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   521   // Allocate a new index in table to hold the object once it's been patched
   522   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
   523   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
   525   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   526   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   527   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   528   // NULL will be dynamically patched later and the patched value may be large.  We must
   529   // therefore generate the sethi/add as a placeholders
   530   __ patchable_set(addrlit, reg);
   532   patching_epilog(patch, lir_patch_normal, reg, info);
   533 }
   536 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
   537   __ set_metadata_constant(o, reg);
   538 }
   540 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
   541   // Allocate a new index in table to hold the klass once it's been patched
   542   int index = __ oop_recorder()->allocate_metadata_index(NULL);
   543   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
   544   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
   545   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
   546   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   547   // NULL will be dynamically patched later and the patched value may be large.  We must
   548   // therefore generate the sethi/add as a placeholders
   549   __ patchable_set(addrlit, reg);
   551   patching_epilog(patch, lir_patch_normal, reg, info);
   552 }
   554 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   555   Register Rdividend = op->in_opr1()->as_register();
   556   Register Rdivisor  = noreg;
   557   Register Rscratch  = op->in_opr3()->as_register();
   558   Register Rresult   = op->result_opr()->as_register();
   559   int divisor = -1;
   561   if (op->in_opr2()->is_register()) {
   562     Rdivisor = op->in_opr2()->as_register();
   563   } else {
   564     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   565     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   566   }
   568   assert(Rdividend != Rscratch, "");
   569   assert(Rdivisor  != Rscratch, "");
   570   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   572   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   573     // convert division by a power of two into some shifts and logical operations
   574     if (op->code() == lir_idiv) {
   575       if (divisor == 2) {
   576         __ srl(Rdividend, 31, Rscratch);
   577       } else {
   578         __ sra(Rdividend, 31, Rscratch);
   579         __ and3(Rscratch, divisor - 1, Rscratch);
   580       }
   581       __ add(Rdividend, Rscratch, Rscratch);
   582       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   583       return;
   584     } else {
   585       if (divisor == 2) {
   586         __ srl(Rdividend, 31, Rscratch);
   587       } else {
   588         __ sra(Rdividend, 31, Rscratch);
   589         __ and3(Rscratch, divisor - 1,Rscratch);
   590       }
   591       __ add(Rdividend, Rscratch, Rscratch);
   592       __ andn(Rscratch, divisor - 1,Rscratch);
   593       __ sub(Rdividend, Rscratch, Rresult);
   594       return;
   595     }
   596   }
   598   __ sra(Rdividend, 31, Rscratch);
   599   __ wry(Rscratch);
   600   if (!VM_Version::v9_instructions_work()) {
   601     // v9 doesn't require these nops
   602     __ nop();
   603     __ nop();
   604     __ nop();
   605     __ nop();
   606   }
   608   add_debug_info_for_div0_here(op->info());
   610   if (Rdivisor != noreg) {
   611     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   612   } else {
   613     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   614     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   615   }
   617   Label skip;
   618   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   619   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   620   __ bind(skip);
   622   if (op->code() == lir_irem) {
   623     if (Rdivisor != noreg) {
   624       __ smul(Rscratch, Rdivisor, Rscratch);
   625     } else {
   626       __ smul(Rscratch, divisor, Rscratch);
   627     }
   628     __ sub(Rdividend, Rscratch, Rresult);
   629   }
   630 }
   633 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   634 #ifdef ASSERT
   635   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   636   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   637   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   638 #endif
   639   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   641   if (op->cond() == lir_cond_always) {
   642     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   643   } else if (op->code() == lir_cond_float_branch) {
   644     assert(op->ublock() != NULL, "must have unordered successor");
   645     bool is_unordered = (op->ublock() == op->block());
   646     Assembler::Condition acond;
   647     switch (op->cond()) {
   648       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   649       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   650       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   651       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   652       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   653       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   654       default :                         ShouldNotReachHere();
   655     };
   657     if (!VM_Version::v9_instructions_work()) {
   658       __ nop();
   659     }
   660     __ fb( acond, false, Assembler::pn, *(op->label()));
   661   } else {
   662     assert (op->code() == lir_branch, "just checking");
   664     Assembler::Condition acond;
   665     switch (op->cond()) {
   666       case lir_cond_equal:        acond = Assembler::equal;                break;
   667       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   668       case lir_cond_less:         acond = Assembler::less;                 break;
   669       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   670       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   671       case lir_cond_greater:      acond = Assembler::greater;              break;
   672       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   673       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   674       default:                         ShouldNotReachHere();
   675     };
   677     // sparc has different condition codes for testing 32-bit
   678     // vs. 64-bit values.  We could always test xcc is we could
   679     // guarantee that 32-bit loads always sign extended but that isn't
   680     // true and since sign extension isn't free, it would impose a
   681     // slight cost.
   682 #ifdef _LP64
   683     if  (op->type() == T_INT) {
   684       __ br(acond, false, Assembler::pn, *(op->label()));
   685     } else
   686 #endif
   687       __ brx(acond, false, Assembler::pn, *(op->label()));
   688   }
   689   // The peephole pass fills the delay slot
   690 }
   693 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   694   Bytecodes::Code code = op->bytecode();
   695   LIR_Opr dst = op->result_opr();
   697   switch(code) {
   698     case Bytecodes::_i2l: {
   699       Register rlo  = dst->as_register_lo();
   700       Register rhi  = dst->as_register_hi();
   701       Register rval = op->in_opr()->as_register();
   702 #ifdef _LP64
   703       __ sra(rval, 0, rlo);
   704 #else
   705       __ mov(rval, rlo);
   706       __ sra(rval, BitsPerInt-1, rhi);
   707 #endif
   708       break;
   709     }
   710     case Bytecodes::_i2d:
   711     case Bytecodes::_i2f: {
   712       bool is_double = (code == Bytecodes::_i2d);
   713       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   714       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   715       FloatRegister rsrc = op->in_opr()->as_float_reg();
   716       if (rsrc != rdst) {
   717         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   718       }
   719       __ fitof(w, rdst, rdst);
   720       break;
   721     }
   722     case Bytecodes::_f2i:{
   723       FloatRegister rsrc = op->in_opr()->as_float_reg();
   724       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   725       Label L;
   726       // result must be 0 if value is NaN; test by comparing value to itself
   727       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   728       if (!VM_Version::v9_instructions_work()) {
   729         __ nop();
   730       }
   731       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   732       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   733       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   734       // move integer result from float register to int register
   735       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   736       __ bind (L);
   737       break;
   738     }
   739     case Bytecodes::_l2i: {
   740       Register rlo  = op->in_opr()->as_register_lo();
   741       Register rhi  = op->in_opr()->as_register_hi();
   742       Register rdst = dst->as_register();
   743 #ifdef _LP64
   744       __ sra(rlo, 0, rdst);
   745 #else
   746       __ mov(rlo, rdst);
   747 #endif
   748       break;
   749     }
   750     case Bytecodes::_d2f:
   751     case Bytecodes::_f2d: {
   752       bool is_double = (code == Bytecodes::_f2d);
   753       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   754       LIR_Opr val = op->in_opr();
   755       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   756       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   757       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   758       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   759       __ ftof(vw, dw, rval, rdst);
   760       break;
   761     }
   762     case Bytecodes::_i2s:
   763     case Bytecodes::_i2b: {
   764       Register rval = op->in_opr()->as_register();
   765       Register rdst = dst->as_register();
   766       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   767       __ sll (rval, shift, rdst);
   768       __ sra (rdst, shift, rdst);
   769       break;
   770     }
   771     case Bytecodes::_i2c: {
   772       Register rval = op->in_opr()->as_register();
   773       Register rdst = dst->as_register();
   774       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   775       __ sll (rval, shift, rdst);
   776       __ srl (rdst, shift, rdst);
   777       break;
   778     }
   780     default: ShouldNotReachHere();
   781   }
   782 }
   785 void LIR_Assembler::align_call(LIR_Code) {
   786   // do nothing since all instructions are word aligned on sparc
   787 }
   790 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   791   __ call(op->addr(), rtype);
   792   // The peephole pass fills the delay slot, add_call_info is done in
   793   // LIR_Assembler::emit_delay.
   794 }
   797 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   798   __ ic_call(op->addr(), false);
   799   // The peephole pass fills the delay slot, add_call_info is done in
   800   // LIR_Assembler::emit_delay.
   801 }
   804 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   805   add_debug_info_for_null_check_here(op->info());
   806   __ load_klass(O0, G3_scratch);
   807   if (Assembler::is_simm13(op->vtable_offset())) {
   808     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   809   } else {
   810     // This will generate 2 instructions
   811     __ set(op->vtable_offset(), G5_method);
   812     // ld_ptr, set_hi, set
   813     __ ld_ptr(G3_scratch, G5_method, G5_method);
   814   }
   815   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
   816   __ callr(G3_scratch, G0);
   817   // the peephole pass fills the delay slot
   818 }
   820 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   821   int store_offset;
   822   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   823     assert(!unaligned, "can't handle this");
   824     // for offsets larger than a simm13 we setup the offset in O7
   825     __ set(offset, O7);
   826     store_offset = store(from_reg, base, O7, type, wide);
   827   } else {
   828     if (type == T_ARRAY || type == T_OBJECT) {
   829       __ verify_oop(from_reg->as_register());
   830     }
   831     store_offset = code_offset();
   832     switch (type) {
   833       case T_BOOLEAN: // fall through
   834       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   835       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   836       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   837       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   838       case T_LONG  :
   839 #ifdef _LP64
   840         if (unaligned || PatchALot) {
   841           __ srax(from_reg->as_register_lo(), 32, O7);
   842           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   843           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   844         } else {
   845           __ stx(from_reg->as_register_lo(), base, offset);
   846         }
   847 #else
   848         assert(Assembler::is_simm13(offset + 4), "must be");
   849         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   850         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   851 #endif
   852         break;
   853       case T_ADDRESS:
   854       case T_METADATA:
   855         __ st_ptr(from_reg->as_register(), base, offset);
   856         break;
   857       case T_ARRAY : // fall through
   858       case T_OBJECT:
   859         {
   860           if (UseCompressedOops && !wide) {
   861             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   862             store_offset = code_offset();
   863             __ stw(G3_scratch, base, offset);
   864           } else {
   865             __ st_ptr(from_reg->as_register(), base, offset);
   866           }
   867           break;
   868         }
   870       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   871       case T_DOUBLE:
   872         {
   873           FloatRegister reg = from_reg->as_double_reg();
   874           // split unaligned stores
   875           if (unaligned || PatchALot) {
   876             assert(Assembler::is_simm13(offset + 4), "must be");
   877             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   878             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   879           } else {
   880             __ stf(FloatRegisterImpl::D, reg, base, offset);
   881           }
   882           break;
   883         }
   884       default      : ShouldNotReachHere();
   885     }
   886   }
   887   return store_offset;
   888 }
   891 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   892   if (type == T_ARRAY || type == T_OBJECT) {
   893     __ verify_oop(from_reg->as_register());
   894   }
   895   int store_offset = code_offset();
   896   switch (type) {
   897     case T_BOOLEAN: // fall through
   898     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   899     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   900     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   901     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   902     case T_LONG  :
   903 #ifdef _LP64
   904       __ stx(from_reg->as_register_lo(), base, disp);
   905 #else
   906       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   907       __ std(from_reg->as_register_hi(), base, disp);
   908 #endif
   909       break;
   910     case T_ADDRESS:
   911       __ st_ptr(from_reg->as_register(), base, disp);
   912       break;
   913     case T_ARRAY : // fall through
   914     case T_OBJECT:
   915       {
   916         if (UseCompressedOops && !wide) {
   917           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   918           store_offset = code_offset();
   919           __ stw(G3_scratch, base, disp);
   920         } else {
   921           __ st_ptr(from_reg->as_register(), base, disp);
   922         }
   923         break;
   924       }
   925     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   926     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   927     default      : ShouldNotReachHere();
   928   }
   929   return store_offset;
   930 }
   933 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   934   int load_offset;
   935   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   936     assert(base != O7, "destroying register");
   937     assert(!unaligned, "can't handle this");
   938     // for offsets larger than a simm13 we setup the offset in O7
   939     __ set(offset, O7);
   940     load_offset = load(base, O7, to_reg, type, wide);
   941   } else {
   942     load_offset = code_offset();
   943     switch(type) {
   944       case T_BOOLEAN: // fall through
   945       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   946       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   947       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   948       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   949       case T_LONG  :
   950         if (!unaligned) {
   951 #ifdef _LP64
   952           __ ldx(base, offset, to_reg->as_register_lo());
   953 #else
   954           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   955                  "must be sequential");
   956           __ ldd(base, offset, to_reg->as_register_hi());
   957 #endif
   958         } else {
   959 #ifdef _LP64
   960           assert(base != to_reg->as_register_lo(), "can't handle this");
   961           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   962           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   963           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   964           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   965           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   966 #else
   967           if (base == to_reg->as_register_lo()) {
   968             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   969             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   970           } else {
   971             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   972             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   973           }
   974 #endif
   975         }
   976         break;
   977       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   978       case T_ADDRESS:
   979 #ifdef _LP64
   980         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedKlassPointers) {
   981           __ lduw(base, offset, to_reg->as_register());
   982           __ decode_klass_not_null(to_reg->as_register());
   983         } else
   984 #endif
   985         {
   986           __ ld_ptr(base, offset, to_reg->as_register());
   987         }
   988         break;
   989       case T_ARRAY : // fall through
   990       case T_OBJECT:
   991         {
   992           if (UseCompressedOops && !wide) {
   993             __ lduw(base, offset, to_reg->as_register());
   994             __ decode_heap_oop(to_reg->as_register());
   995           } else {
   996             __ ld_ptr(base, offset, to_reg->as_register());
   997           }
   998           break;
   999         }
  1000       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
  1001       case T_DOUBLE:
  1003           FloatRegister reg = to_reg->as_double_reg();
  1004           // split unaligned loads
  1005           if (unaligned || PatchALot) {
  1006             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
  1007             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
  1008           } else {
  1009             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1011           break;
  1013       default      : ShouldNotReachHere();
  1015     if (type == T_ARRAY || type == T_OBJECT) {
  1016       __ verify_oop(to_reg->as_register());
  1019   return load_offset;
  1023 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
  1024   int load_offset = code_offset();
  1025   switch(type) {
  1026     case T_BOOLEAN: // fall through
  1027     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
  1028     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
  1029     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
  1030     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
  1031     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1032     case T_ARRAY : // fall through
  1033     case T_OBJECT:
  1035           if (UseCompressedOops && !wide) {
  1036             __ lduw(base, disp, to_reg->as_register());
  1037             __ decode_heap_oop(to_reg->as_register());
  1038           } else {
  1039             __ ld_ptr(base, disp, to_reg->as_register());
  1041           break;
  1043     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1044     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1045     case T_LONG  :
  1046 #ifdef _LP64
  1047       __ ldx(base, disp, to_reg->as_register_lo());
  1048 #else
  1049       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1050              "must be sequential");
  1051       __ ldd(base, disp, to_reg->as_register_hi());
  1052 #endif
  1053       break;
  1054     default      : ShouldNotReachHere();
  1056   if (type == T_ARRAY || type == T_OBJECT) {
  1057     __ verify_oop(to_reg->as_register());
  1059   return load_offset;
  1062 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1063   LIR_Const* c = src->as_constant_ptr();
  1064   switch (c->type()) {
  1065     case T_INT:
  1066     case T_FLOAT: {
  1067       Register src_reg = O7;
  1068       int value = c->as_jint_bits();
  1069       if (value == 0) {
  1070         src_reg = G0;
  1071       } else {
  1072         __ set(value, O7);
  1074       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1075       __ stw(src_reg, addr.base(), addr.disp());
  1076       break;
  1078     case T_ADDRESS: {
  1079       Register src_reg = O7;
  1080       int value = c->as_jint_bits();
  1081       if (value == 0) {
  1082         src_reg = G0;
  1083       } else {
  1084         __ set(value, O7);
  1086       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1087       __ st_ptr(src_reg, addr.base(), addr.disp());
  1088       break;
  1090     case T_OBJECT: {
  1091       Register src_reg = O7;
  1092       jobject2reg(c->as_jobject(), src_reg);
  1093       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1094       __ st_ptr(src_reg, addr.base(), addr.disp());
  1095       break;
  1097     case T_LONG:
  1098     case T_DOUBLE: {
  1099       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1101       Register tmp = O7;
  1102       int value_lo = c->as_jint_lo_bits();
  1103       if (value_lo == 0) {
  1104         tmp = G0;
  1105       } else {
  1106         __ set(value_lo, O7);
  1108       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1109       int value_hi = c->as_jint_hi_bits();
  1110       if (value_hi == 0) {
  1111         tmp = G0;
  1112       } else {
  1113         __ set(value_hi, O7);
  1115       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1116       break;
  1118     default:
  1119       Unimplemented();
  1124 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1125   LIR_Const* c = src->as_constant_ptr();
  1126   LIR_Address* addr     = dest->as_address_ptr();
  1127   Register base = addr->base()->as_pointer_register();
  1128   int offset = -1;
  1130   switch (c->type()) {
  1131     case T_INT:
  1132     case T_FLOAT:
  1133     case T_ADDRESS: {
  1134       LIR_Opr tmp = FrameMap::O7_opr;
  1135       int value = c->as_jint_bits();
  1136       if (value == 0) {
  1137         tmp = FrameMap::G0_opr;
  1138       } else if (Assembler::is_simm13(value)) {
  1139         __ set(value, O7);
  1141       if (addr->index()->is_valid()) {
  1142         assert(addr->disp() == 0, "must be zero");
  1143         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1144       } else {
  1145         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1146         offset = store(tmp, base, addr->disp(), type, wide, false);
  1148       break;
  1150     case T_LONG:
  1151     case T_DOUBLE: {
  1152       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1153       assert(Assembler::is_simm13(addr->disp()) &&
  1154              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1156       LIR_Opr tmp = FrameMap::O7_opr;
  1157       int value_lo = c->as_jint_lo_bits();
  1158       if (value_lo == 0) {
  1159         tmp = FrameMap::G0_opr;
  1160       } else {
  1161         __ set(value_lo, O7);
  1163       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1164       int value_hi = c->as_jint_hi_bits();
  1165       if (value_hi == 0) {
  1166         tmp = FrameMap::G0_opr;
  1167       } else {
  1168         __ set(value_hi, O7);
  1170       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1171       break;
  1173     case T_OBJECT: {
  1174       jobject obj = c->as_jobject();
  1175       LIR_Opr tmp;
  1176       if (obj == NULL) {
  1177         tmp = FrameMap::G0_opr;
  1178       } else {
  1179         tmp = FrameMap::O7_opr;
  1180         jobject2reg(c->as_jobject(), O7);
  1182       // handle either reg+reg or reg+disp address
  1183       if (addr->index()->is_valid()) {
  1184         assert(addr->disp() == 0, "must be zero");
  1185         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1186       } else {
  1187         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1188         offset = store(tmp, base, addr->disp(), type, wide, false);
  1191       break;
  1193     default:
  1194       Unimplemented();
  1196   if (info != NULL) {
  1197     assert(offset != -1, "offset should've been set");
  1198     add_debug_info_for_null_check(offset, info);
  1203 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1204   LIR_Const* c = src->as_constant_ptr();
  1205   LIR_Opr to_reg = dest;
  1207   switch (c->type()) {
  1208     case T_INT:
  1209     case T_ADDRESS:
  1211         jint con = c->as_jint();
  1212         if (to_reg->is_single_cpu()) {
  1213           assert(patch_code == lir_patch_none, "no patching handled here");
  1214           __ set(con, to_reg->as_register());
  1215         } else {
  1216           ShouldNotReachHere();
  1217           assert(to_reg->is_single_fpu(), "wrong register kind");
  1219           __ set(con, O7);
  1220           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1221           __ st(O7, temp_slot);
  1222           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1225       break;
  1227     case T_LONG:
  1229         jlong con = c->as_jlong();
  1231         if (to_reg->is_double_cpu()) {
  1232 #ifdef _LP64
  1233           __ set(con,  to_reg->as_register_lo());
  1234 #else
  1235           __ set(low(con),  to_reg->as_register_lo());
  1236           __ set(high(con), to_reg->as_register_hi());
  1237 #endif
  1238 #ifdef _LP64
  1239         } else if (to_reg->is_single_cpu()) {
  1240           __ set(con, to_reg->as_register());
  1241 #endif
  1242         } else {
  1243           ShouldNotReachHere();
  1244           assert(to_reg->is_double_fpu(), "wrong register kind");
  1245           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1246           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1247           __ set(low(con),  O7);
  1248           __ st(O7, temp_slot_lo);
  1249           __ set(high(con), O7);
  1250           __ st(O7, temp_slot_hi);
  1251           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1254       break;
  1256     case T_OBJECT:
  1258         if (patch_code == lir_patch_none) {
  1259           jobject2reg(c->as_jobject(), to_reg->as_register());
  1260         } else {
  1261           jobject2reg_with_patching(to_reg->as_register(), info);
  1264       break;
  1266     case T_METADATA:
  1268         if (patch_code == lir_patch_none) {
  1269           metadata2reg(c->as_metadata(), to_reg->as_register());
  1270         } else {
  1271           klass2reg_with_patching(to_reg->as_register(), info);
  1274       break;
  1276     case T_FLOAT:
  1278         address const_addr = __ float_constant(c->as_jfloat());
  1279         if (const_addr == NULL) {
  1280           bailout("const section overflow");
  1281           break;
  1283         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1284         AddressLiteral const_addrlit(const_addr, rspec);
  1285         if (to_reg->is_single_fpu()) {
  1286           __ patchable_sethi(const_addrlit, O7);
  1287           __ relocate(rspec);
  1288           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1290         } else {
  1291           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1293           __ set(const_addrlit, O7);
  1294           __ ld(O7, 0, to_reg->as_register());
  1297       break;
  1299     case T_DOUBLE:
  1301         address const_addr = __ double_constant(c->as_jdouble());
  1302         if (const_addr == NULL) {
  1303           bailout("const section overflow");
  1304           break;
  1306         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1308         if (to_reg->is_double_fpu()) {
  1309           AddressLiteral const_addrlit(const_addr, rspec);
  1310           __ patchable_sethi(const_addrlit, O7);
  1311           __ relocate(rspec);
  1312           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1313         } else {
  1314           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1315 #ifdef _LP64
  1316           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1317 #else
  1318           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1319           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1320 #endif
  1324       break;
  1326     default:
  1327       ShouldNotReachHere();
  1331 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1332   Register reg = addr->base()->as_register();
  1333   LIR_Opr index = addr->index();
  1334   if (index->is_illegal()) {
  1335     return Address(reg, addr->disp());
  1336   } else {
  1337     assert (addr->disp() == 0, "unsupported address mode");
  1338     return Address(reg, index->as_pointer_register());
  1343 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1344   switch (type) {
  1345     case T_INT:
  1346     case T_FLOAT: {
  1347       Register tmp = O7;
  1348       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1349       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1350       __ lduw(from.base(), from.disp(), tmp);
  1351       __ stw(tmp, to.base(), to.disp());
  1352       break;
  1354     case T_OBJECT: {
  1355       Register tmp = O7;
  1356       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1357       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1358       __ ld_ptr(from.base(), from.disp(), tmp);
  1359       __ st_ptr(tmp, to.base(), to.disp());
  1360       break;
  1362     case T_LONG:
  1363     case T_DOUBLE: {
  1364       Register tmp = O7;
  1365       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1366       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1367       __ lduw(from.base(), from.disp(), tmp);
  1368       __ stw(tmp, to.base(), to.disp());
  1369       __ lduw(from.base(), from.disp() + 4, tmp);
  1370       __ stw(tmp, to.base(), to.disp() + 4);
  1371       break;
  1374     default:
  1375       ShouldNotReachHere();
  1380 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1381   Address base = as_Address(addr);
  1382   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1386 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1387   Address base = as_Address(addr);
  1388   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1392 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1393                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1395   assert(type != T_METADATA, "load of metadata ptr not supported");
  1396   LIR_Address* addr = src_opr->as_address_ptr();
  1397   LIR_Opr to_reg = dest;
  1399   Register src = addr->base()->as_pointer_register();
  1400   Register disp_reg = noreg;
  1401   int disp_value = addr->disp();
  1402   bool needs_patching = (patch_code != lir_patch_none);
  1404   if (addr->base()->type() == T_OBJECT) {
  1405     __ verify_oop(src);
  1408   PatchingStub* patch = NULL;
  1409   if (needs_patching) {
  1410     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1411     assert(!to_reg->is_double_cpu() ||
  1412            patch_code == lir_patch_none ||
  1413            patch_code == lir_patch_normal, "patching doesn't match register");
  1416   if (addr->index()->is_illegal()) {
  1417     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1418       if (needs_patching) {
  1419         __ patchable_set(0, O7);
  1420       } else {
  1421         __ set(disp_value, O7);
  1423       disp_reg = O7;
  1425   } else if (unaligned || PatchALot) {
  1426     __ add(src, addr->index()->as_register(), O7);
  1427     src = O7;
  1428   } else {
  1429     disp_reg = addr->index()->as_pointer_register();
  1430     assert(disp_value == 0, "can't handle 3 operand addresses");
  1433   // remember the offset of the load.  The patching_epilog must be done
  1434   // before the call to add_debug_info, otherwise the PcDescs don't get
  1435   // entered in increasing order.
  1436   int offset = code_offset();
  1438   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1439   if (disp_reg == noreg) {
  1440     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1441   } else {
  1442     assert(!unaligned, "can't handle this");
  1443     offset = load(src, disp_reg, to_reg, type, wide);
  1446   if (patch != NULL) {
  1447     patching_epilog(patch, patch_code, src, info);
  1449   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1453 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1454   LIR_Address* addr = src->as_address_ptr();
  1455   Address from_addr = as_Address(addr);
  1457   if (VM_Version::has_v9()) {
  1458     __ prefetch(from_addr, Assembler::severalReads);
  1463 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1464   LIR_Address* addr = src->as_address_ptr();
  1465   Address from_addr = as_Address(addr);
  1467   if (VM_Version::has_v9()) {
  1468     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1473 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1474   Address addr;
  1475   if (src->is_single_word()) {
  1476     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1477   } else if (src->is_double_word())  {
  1478     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1481   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1482   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1486 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1487   Address addr;
  1488   if (dest->is_single_word()) {
  1489     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1490   } else if (dest->is_double_word())  {
  1491     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1493   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1494   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1498 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1499   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1500     if (from_reg->is_double_fpu()) {
  1501       // double to double moves
  1502       assert(to_reg->is_double_fpu(), "should match");
  1503       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1504     } else {
  1505       // float to float moves
  1506       assert(to_reg->is_single_fpu(), "should match");
  1507       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1509   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1510     if (from_reg->is_double_cpu()) {
  1511 #ifdef _LP64
  1512       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1513 #else
  1514       assert(to_reg->is_double_cpu() &&
  1515              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1516              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1517              "should both be long and not overlap");
  1518       // long to long moves
  1519       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1520       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1521 #endif
  1522 #ifdef _LP64
  1523     } else if (to_reg->is_double_cpu()) {
  1524       // int to int moves
  1525       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1526 #endif
  1527     } else {
  1528       // int to int moves
  1529       __ mov(from_reg->as_register(), to_reg->as_register());
  1531   } else {
  1532     ShouldNotReachHere();
  1534   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1535     __ verify_oop(to_reg->as_register());
  1540 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1541                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1542                             bool wide, bool unaligned) {
  1543   assert(type != T_METADATA, "store of metadata ptr not supported");
  1544   LIR_Address* addr = dest->as_address_ptr();
  1546   Register src = addr->base()->as_pointer_register();
  1547   Register disp_reg = noreg;
  1548   int disp_value = addr->disp();
  1549   bool needs_patching = (patch_code != lir_patch_none);
  1551   if (addr->base()->is_oop_register()) {
  1552     __ verify_oop(src);
  1555   PatchingStub* patch = NULL;
  1556   if (needs_patching) {
  1557     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1558     assert(!from_reg->is_double_cpu() ||
  1559            patch_code == lir_patch_none ||
  1560            patch_code == lir_patch_normal, "patching doesn't match register");
  1563   if (addr->index()->is_illegal()) {
  1564     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1565       if (needs_patching) {
  1566         __ patchable_set(0, O7);
  1567       } else {
  1568         __ set(disp_value, O7);
  1570       disp_reg = O7;
  1572   } else if (unaligned || PatchALot) {
  1573     __ add(src, addr->index()->as_register(), O7);
  1574     src = O7;
  1575   } else {
  1576     disp_reg = addr->index()->as_pointer_register();
  1577     assert(disp_value == 0, "can't handle 3 operand addresses");
  1580   // remember the offset of the store.  The patching_epilog must be done
  1581   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1582   // entered in increasing order.
  1583   int offset;
  1585   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1586   if (disp_reg == noreg) {
  1587     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1588   } else {
  1589     assert(!unaligned, "can't handle this");
  1590     offset = store(from_reg, src, disp_reg, type, wide);
  1593   if (patch != NULL) {
  1594     patching_epilog(patch, patch_code, src, info);
  1597   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1601 void LIR_Assembler::return_op(LIR_Opr result) {
  1602   // the poll may need a register so just pick one that isn't the return register
  1603 #if defined(TIERED) && !defined(_LP64)
  1604   if (result->type_field() == LIR_OprDesc::long_type) {
  1605     // Must move the result to G1
  1606     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1607     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1608     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1609     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1610 #ifdef ASSERT
  1611     // mangle it so any problems will show up
  1612     __ set(0xdeadbeef, I0);
  1613     __ set(0xdeadbeef, I1);
  1614 #endif
  1616 #endif // TIERED
  1617   __ set((intptr_t)os::get_polling_page(), L0);
  1618   __ relocate(relocInfo::poll_return_type);
  1619   __ ld_ptr(L0, 0, G0);
  1620   __ ret();
  1621   __ delayed()->restore();
  1625 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1626   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1627   if (info != NULL) {
  1628     add_debug_info_for_branch(info);
  1629   } else {
  1630     __ relocate(relocInfo::poll_type);
  1633   int offset = __ offset();
  1634   __ ld_ptr(tmp->as_register(), 0, G0);
  1636   return offset;
  1640 void LIR_Assembler::emit_static_call_stub() {
  1641   address call_pc = __ pc();
  1642   address stub = __ start_a_stub(call_stub_size);
  1643   if (stub == NULL) {
  1644     bailout("static call stub overflow");
  1645     return;
  1648   int start = __ offset();
  1649   __ relocate(static_stub_Relocation::spec(call_pc));
  1651   __ set_metadata(NULL, G5);
  1652   // must be set to -1 at code generation time
  1653   AddressLiteral addrlit(-1);
  1654   __ jump_to(addrlit, G3);
  1655   __ delayed()->nop();
  1657   assert(__ offset() - start <= call_stub_size, "stub too big");
  1658   __ end_a_stub();
  1662 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1663   if (opr1->is_single_fpu()) {
  1664     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1665   } else if (opr1->is_double_fpu()) {
  1666     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1667   } else if (opr1->is_single_cpu()) {
  1668     if (opr2->is_constant()) {
  1669       switch (opr2->as_constant_ptr()->type()) {
  1670         case T_INT:
  1671           { jint con = opr2->as_constant_ptr()->as_jint();
  1672             if (Assembler::is_simm13(con)) {
  1673               __ cmp(opr1->as_register(), con);
  1674             } else {
  1675               __ set(con, O7);
  1676               __ cmp(opr1->as_register(), O7);
  1679           break;
  1681         case T_OBJECT:
  1682           // there are only equal/notequal comparisions on objects
  1683           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1684             if (con == NULL) {
  1685               __ cmp(opr1->as_register(), 0);
  1686             } else {
  1687               jobject2reg(con, O7);
  1688               __ cmp(opr1->as_register(), O7);
  1691           break;
  1693         default:
  1694           ShouldNotReachHere();
  1695           break;
  1697     } else {
  1698       if (opr2->is_address()) {
  1699         LIR_Address * addr = opr2->as_address_ptr();
  1700         BasicType type = addr->type();
  1701         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1702         else                    __ ld(as_Address(addr), O7);
  1703         __ cmp(opr1->as_register(), O7);
  1704       } else {
  1705         __ cmp(opr1->as_register(), opr2->as_register());
  1708   } else if (opr1->is_double_cpu()) {
  1709     Register xlo = opr1->as_register_lo();
  1710     Register xhi = opr1->as_register_hi();
  1711     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1712       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1713 #ifdef _LP64
  1714       __ orcc(xhi, G0, G0);
  1715 #else
  1716       __ orcc(xhi, xlo, G0);
  1717 #endif
  1718     } else if (opr2->is_register()) {
  1719       Register ylo = opr2->as_register_lo();
  1720       Register yhi = opr2->as_register_hi();
  1721 #ifdef _LP64
  1722       __ cmp(xlo, ylo);
  1723 #else
  1724       __ subcc(xlo, ylo, xlo);
  1725       __ subccc(xhi, yhi, xhi);
  1726       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1727         __ orcc(xhi, xlo, G0);
  1729 #endif
  1730     } else {
  1731       ShouldNotReachHere();
  1733   } else if (opr1->is_address()) {
  1734     LIR_Address * addr = opr1->as_address_ptr();
  1735     BasicType type = addr->type();
  1736     assert (opr2->is_constant(), "Checking");
  1737     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1738     else                    __ ld(as_Address(addr), O7);
  1739     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1740   } else {
  1741     ShouldNotReachHere();
  1746 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1747   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1748     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1749     if (left->is_single_fpu()) {
  1750       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1751     } else if (left->is_double_fpu()) {
  1752       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1753     } else {
  1754       ShouldNotReachHere();
  1756   } else if (code == lir_cmp_l2i) {
  1757 #ifdef _LP64
  1758     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1759 #else
  1760     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1761             right->as_register_hi(), right->as_register_lo(),
  1762             dst->as_register());
  1763 #endif
  1764   } else {
  1765     ShouldNotReachHere();
  1770 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1771   Assembler::Condition acond;
  1772   switch (condition) {
  1773     case lir_cond_equal:        acond = Assembler::equal;        break;
  1774     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1775     case lir_cond_less:         acond = Assembler::less;         break;
  1776     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1777     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1778     case lir_cond_greater:      acond = Assembler::greater;      break;
  1779     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1780     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1781     default:                         ShouldNotReachHere();
  1782   };
  1784   if (opr1->is_constant() && opr1->type() == T_INT) {
  1785     Register dest = result->as_register();
  1786     // load up first part of constant before branch
  1787     // and do the rest in the delay slot.
  1788     if (!Assembler::is_simm13(opr1->as_jint())) {
  1789       __ sethi(opr1->as_jint(), dest);
  1791   } else if (opr1->is_constant()) {
  1792     const2reg(opr1, result, lir_patch_none, NULL);
  1793   } else if (opr1->is_register()) {
  1794     reg2reg(opr1, result);
  1795   } else if (opr1->is_stack()) {
  1796     stack2reg(opr1, result, result->type());
  1797   } else {
  1798     ShouldNotReachHere();
  1800   Label skip;
  1801 #ifdef _LP64
  1802     if  (type == T_INT) {
  1803       __ br(acond, false, Assembler::pt, skip);
  1804     } else
  1805 #endif
  1806       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1807   if (opr1->is_constant() && opr1->type() == T_INT) {
  1808     Register dest = result->as_register();
  1809     if (Assembler::is_simm13(opr1->as_jint())) {
  1810       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1811     } else {
  1812       // the sethi has been done above, so just put in the low 10 bits
  1813       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1815   } else {
  1816     // can't do anything useful in the delay slot
  1817     __ delayed()->nop();
  1819   if (opr2->is_constant()) {
  1820     const2reg(opr2, result, lir_patch_none, NULL);
  1821   } else if (opr2->is_register()) {
  1822     reg2reg(opr2, result);
  1823   } else if (opr2->is_stack()) {
  1824     stack2reg(opr2, result, result->type());
  1825   } else {
  1826     ShouldNotReachHere();
  1828   __ bind(skip);
  1832 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1833   assert(info == NULL, "unused on this code path");
  1834   assert(left->is_register(), "wrong items state");
  1835   assert(dest->is_register(), "wrong items state");
  1837   if (right->is_register()) {
  1838     if (dest->is_float_kind()) {
  1840       FloatRegister lreg, rreg, res;
  1841       FloatRegisterImpl::Width w;
  1842       if (right->is_single_fpu()) {
  1843         w = FloatRegisterImpl::S;
  1844         lreg = left->as_float_reg();
  1845         rreg = right->as_float_reg();
  1846         res  = dest->as_float_reg();
  1847       } else {
  1848         w = FloatRegisterImpl::D;
  1849         lreg = left->as_double_reg();
  1850         rreg = right->as_double_reg();
  1851         res  = dest->as_double_reg();
  1854       switch (code) {
  1855         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1856         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1857         case lir_mul: // fall through
  1858         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1859         case lir_div: // fall through
  1860         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1861         default: ShouldNotReachHere();
  1864     } else if (dest->is_double_cpu()) {
  1865 #ifdef _LP64
  1866       Register dst_lo = dest->as_register_lo();
  1867       Register op1_lo = left->as_pointer_register();
  1868       Register op2_lo = right->as_pointer_register();
  1870       switch (code) {
  1871         case lir_add:
  1872           __ add(op1_lo, op2_lo, dst_lo);
  1873           break;
  1875         case lir_sub:
  1876           __ sub(op1_lo, op2_lo, dst_lo);
  1877           break;
  1879         default: ShouldNotReachHere();
  1881 #else
  1882       Register op1_lo = left->as_register_lo();
  1883       Register op1_hi = left->as_register_hi();
  1884       Register op2_lo = right->as_register_lo();
  1885       Register op2_hi = right->as_register_hi();
  1886       Register dst_lo = dest->as_register_lo();
  1887       Register dst_hi = dest->as_register_hi();
  1889       switch (code) {
  1890         case lir_add:
  1891           __ addcc(op1_lo, op2_lo, dst_lo);
  1892           __ addc (op1_hi, op2_hi, dst_hi);
  1893           break;
  1895         case lir_sub:
  1896           __ subcc(op1_lo, op2_lo, dst_lo);
  1897           __ subc (op1_hi, op2_hi, dst_hi);
  1898           break;
  1900         default: ShouldNotReachHere();
  1902 #endif
  1903     } else {
  1904       assert (right->is_single_cpu(), "Just Checking");
  1906       Register lreg = left->as_register();
  1907       Register res  = dest->as_register();
  1908       Register rreg = right->as_register();
  1909       switch (code) {
  1910         case lir_add:  __ add  (lreg, rreg, res); break;
  1911         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1912         case lir_mul:  __ mult (lreg, rreg, res); break;
  1913         default: ShouldNotReachHere();
  1916   } else {
  1917     assert (right->is_constant(), "must be constant");
  1919     if (dest->is_single_cpu()) {
  1920       Register lreg = left->as_register();
  1921       Register res  = dest->as_register();
  1922       int    simm13 = right->as_constant_ptr()->as_jint();
  1924       switch (code) {
  1925         case lir_add:  __ add  (lreg, simm13, res); break;
  1926         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1927         case lir_mul:  __ mult (lreg, simm13, res); break;
  1928         default: ShouldNotReachHere();
  1930     } else {
  1931       Register lreg = left->as_pointer_register();
  1932       Register res  = dest->as_register_lo();
  1933       long con = right->as_constant_ptr()->as_jlong();
  1934       assert(Assembler::is_simm13(con), "must be simm13");
  1936       switch (code) {
  1937         case lir_add:  __ add  (lreg, (int)con, res); break;
  1938         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1939         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1940         default: ShouldNotReachHere();
  1947 void LIR_Assembler::fpop() {
  1948   // do nothing
  1952 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1953   switch (code) {
  1954     case lir_sin:
  1955     case lir_tan:
  1956     case lir_cos: {
  1957       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1958       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1959       break;
  1961     case lir_sqrt: {
  1962       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1963       FloatRegister src_reg = value->as_double_reg();
  1964       FloatRegister dst_reg = dest->as_double_reg();
  1965       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1966       break;
  1968     case lir_abs: {
  1969       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1970       FloatRegister src_reg = value->as_double_reg();
  1971       FloatRegister dst_reg = dest->as_double_reg();
  1972       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1973       break;
  1975     default: {
  1976       ShouldNotReachHere();
  1977       break;
  1983 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1984   if (right->is_constant()) {
  1985     if (dest->is_single_cpu()) {
  1986       int simm13 = right->as_constant_ptr()->as_jint();
  1987       switch (code) {
  1988         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1989         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1990         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1991         default: ShouldNotReachHere();
  1993     } else {
  1994       long c = right->as_constant_ptr()->as_jlong();
  1995       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1996       int simm13 = (int)c;
  1997       switch (code) {
  1998         case lir_logic_and:
  1999 #ifndef _LP64
  2000           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2001 #endif
  2002           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2003           break;
  2005         case lir_logic_or:
  2006 #ifndef _LP64
  2007           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2008 #endif
  2009           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2010           break;
  2012         case lir_logic_xor:
  2013 #ifndef _LP64
  2014           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2015 #endif
  2016           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2017           break;
  2019         default: ShouldNotReachHere();
  2022   } else {
  2023     assert(right->is_register(), "right should be in register");
  2025     if (dest->is_single_cpu()) {
  2026       switch (code) {
  2027         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2028         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2029         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2030         default: ShouldNotReachHere();
  2032     } else {
  2033 #ifdef _LP64
  2034       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2035                                                                         left->as_register_lo();
  2036       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2037                                                                           right->as_register_lo();
  2039       switch (code) {
  2040         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2041         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2042         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2043         default: ShouldNotReachHere();
  2045 #else
  2046       switch (code) {
  2047         case lir_logic_and:
  2048           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2049           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2050           break;
  2052         case lir_logic_or:
  2053           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2054           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2055           break;
  2057         case lir_logic_xor:
  2058           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2059           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2060           break;
  2062         default: ShouldNotReachHere();
  2064 #endif
  2070 int LIR_Assembler::shift_amount(BasicType t) {
  2071   int elem_size = type2aelembytes(t);
  2072   switch (elem_size) {
  2073     case 1 : return 0;
  2074     case 2 : return 1;
  2075     case 4 : return 2;
  2076     case 8 : return 3;
  2078   ShouldNotReachHere();
  2079   return -1;
  2083 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2084   assert(exceptionOop->as_register() == Oexception, "should match");
  2085   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2087   info->add_register_oop(exceptionOop);
  2089   // reuse the debug info from the safepoint poll for the throw op itself
  2090   address pc_for_athrow  = __ pc();
  2091   int pc_for_athrow_offset = __ offset();
  2092   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2093   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2094   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2096   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2097   __ delayed()->nop();
  2101 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2102   assert(exceptionOop->as_register() == Oexception, "should match");
  2104   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2105   __ delayed()->nop();
  2108 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2109   Register src = op->src()->as_register();
  2110   Register dst = op->dst()->as_register();
  2111   Register src_pos = op->src_pos()->as_register();
  2112   Register dst_pos = op->dst_pos()->as_register();
  2113   Register length  = op->length()->as_register();
  2114   Register tmp = op->tmp()->as_register();
  2115   Register tmp2 = O7;
  2117   int flags = op->flags();
  2118   ciArrayKlass* default_type = op->expected_type();
  2119   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2120   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2122 #ifdef _LP64
  2123   // higher 32bits must be null
  2124   __ sra(dst_pos, 0, dst_pos);
  2125   __ sra(src_pos, 0, src_pos);
  2126   __ sra(length, 0, length);
  2127 #endif
  2129   // set up the arraycopy stub information
  2130   ArrayCopyStub* stub = op->stub();
  2132   // always do stub if no type information is available.  it's ok if
  2133   // the known type isn't loaded since the code sanity checks
  2134   // in debug mode and the type isn't required when we know the exact type
  2135   // also check that the type is an array type.
  2136   if (op->expected_type() == NULL) {
  2137     __ mov(src,     O0);
  2138     __ mov(src_pos, O1);
  2139     __ mov(dst,     O2);
  2140     __ mov(dst_pos, O3);
  2141     __ mov(length,  O4);
  2142     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2144     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2145       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2146     } else {
  2147 #ifndef PRODUCT
  2148       if (PrintC1Statistics) {
  2149         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2150         __ inc_counter(counter, G1, G3);
  2152 #endif
  2153       __ call_VM_leaf(tmp, copyfunc_addr);
  2156     if (copyfunc_addr != NULL) {
  2157       __ xor3(O0, -1, tmp);
  2158       __ sub(length, tmp, length);
  2159       __ add(src_pos, tmp, src_pos);
  2160       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2161       __ delayed()->add(dst_pos, tmp, dst_pos);
  2162     } else {
  2163       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2164       __ delayed()->nop();
  2166     __ bind(*stub->continuation());
  2167     return;
  2170   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2172   // make sure src and dst are non-null and load array length
  2173   if (flags & LIR_OpArrayCopy::src_null_check) {
  2174     __ tst(src);
  2175     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2176     __ delayed()->nop();
  2179   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2180     __ tst(dst);
  2181     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2182     __ delayed()->nop();
  2185   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2186     // test src_pos register
  2187     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2188     __ delayed()->nop();
  2191   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2192     // test dst_pos register
  2193     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2194     __ delayed()->nop();
  2197   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2198     // make sure length isn't negative
  2199     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2200     __ delayed()->nop();
  2203   if (flags & LIR_OpArrayCopy::src_range_check) {
  2204     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2205     __ add(length, src_pos, tmp);
  2206     __ cmp(tmp2, tmp);
  2207     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2208     __ delayed()->nop();
  2211   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2212     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2213     __ add(length, dst_pos, tmp);
  2214     __ cmp(tmp2, tmp);
  2215     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2216     __ delayed()->nop();
  2219   int shift = shift_amount(basic_type);
  2221   if (flags & LIR_OpArrayCopy::type_check) {
  2222     // We don't know the array types are compatible
  2223     if (basic_type != T_OBJECT) {
  2224       // Simple test for basic type arrays
  2225       if (UseCompressedKlassPointers) {
  2226         // We don't need decode because we just need to compare
  2227         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2228         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2229         __ cmp(tmp, tmp2);
  2230         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2231       } else {
  2232         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2233         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2234         __ cmp(tmp, tmp2);
  2235         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2237       __ delayed()->nop();
  2238     } else {
  2239       // For object arrays, if src is a sub class of dst then we can
  2240       // safely do the copy.
  2241       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2243       Label cont, slow;
  2244       assert_different_registers(tmp, tmp2, G3, G1);
  2246       __ load_klass(src, G3);
  2247       __ load_klass(dst, G1);
  2249       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2251       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2252       __ delayed()->nop();
  2254       __ cmp(G3, 0);
  2255       if (copyfunc_addr != NULL) { // use stub if available
  2256         // src is not a sub class of dst so we have to do a
  2257         // per-element check.
  2258         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2259         __ delayed()->nop();
  2261         __ bind(slow);
  2263         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2264         if ((flags & mask) != mask) {
  2265           // Check that at least both of them object arrays.
  2266           assert(flags & mask, "one of the two should be known to be an object array");
  2268           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2269             __ load_klass(src, tmp);
  2270           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2271             __ load_klass(dst, tmp);
  2273           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2275           __ lduw(tmp, lh_offset, tmp2);
  2277           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2278           __ set(objArray_lh, tmp);
  2279           __ cmp(tmp, tmp2);
  2280           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2281           __ delayed()->nop();
  2284         Register src_ptr = O0;
  2285         Register dst_ptr = O1;
  2286         Register len     = O2;
  2287         Register chk_off = O3;
  2288         Register super_k = O4;
  2290         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2291         if (shift == 0) {
  2292           __ add(src_ptr, src_pos, src_ptr);
  2293         } else {
  2294           __ sll(src_pos, shift, tmp);
  2295           __ add(src_ptr, tmp, src_ptr);
  2298         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2299         if (shift == 0) {
  2300           __ add(dst_ptr, dst_pos, dst_ptr);
  2301         } else {
  2302           __ sll(dst_pos, shift, tmp);
  2303           __ add(dst_ptr, tmp, dst_ptr);
  2305         __ mov(length, len);
  2306         __ load_klass(dst, tmp);
  2308         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  2309         __ ld_ptr(tmp, ek_offset, super_k);
  2311         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2312         __ lduw(super_k, sco_offset, chk_off);
  2314         __ call_VM_leaf(tmp, copyfunc_addr);
  2316 #ifndef PRODUCT
  2317         if (PrintC1Statistics) {
  2318           Label failed;
  2319           __ br_notnull_short(O0, Assembler::pn, failed);
  2320           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2321           __ bind(failed);
  2323 #endif
  2325         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2326         __ delayed()->xor3(O0, -1, tmp);
  2328 #ifndef PRODUCT
  2329         if (PrintC1Statistics) {
  2330           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2332 #endif
  2334         __ sub(length, tmp, length);
  2335         __ add(src_pos, tmp, src_pos);
  2336         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2337         __ delayed()->add(dst_pos, tmp, dst_pos);
  2339         __ bind(cont);
  2340       } else {
  2341         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2342         __ delayed()->nop();
  2343         __ bind(cont);
  2348 #ifdef ASSERT
  2349   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2350     // Sanity check the known type with the incoming class.  For the
  2351     // primitive case the types must match exactly with src.klass and
  2352     // dst.klass each exactly matching the default type.  For the
  2353     // object array case, if no type check is needed then either the
  2354     // dst type is exactly the expected type and the src type is a
  2355     // subtype which we can't check or src is the same array as dst
  2356     // but not necessarily exactly of type default_type.
  2357     Label known_ok, halt;
  2358     metadata2reg(op->expected_type()->constant_encoding(), tmp);
  2359     if (UseCompressedKlassPointers) {
  2360       // tmp holds the default type. It currently comes uncompressed after the
  2361       // load of a constant, so encode it.
  2362       __ encode_klass_not_null(tmp);
  2363       // load the raw value of the dst klass, since we will be comparing
  2364       // uncompressed values directly.
  2365       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2366       if (basic_type != T_OBJECT) {
  2367         __ cmp(tmp, tmp2);
  2368         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2369         // load the raw value of the src klass.
  2370         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2371         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2372       } else {
  2373         __ cmp(tmp, tmp2);
  2374         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2375         __ delayed()->cmp(src, dst);
  2376         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2377         __ delayed()->nop();
  2379     } else {
  2380       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2381       if (basic_type != T_OBJECT) {
  2382         __ cmp(tmp, tmp2);
  2383         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2384         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2385         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2386       } else {
  2387         __ cmp(tmp, tmp2);
  2388         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2389         __ delayed()->cmp(src, dst);
  2390         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2391         __ delayed()->nop();
  2394     __ bind(halt);
  2395     __ stop("incorrect type information in arraycopy");
  2396     __ bind(known_ok);
  2398 #endif
  2400 #ifndef PRODUCT
  2401   if (PrintC1Statistics) {
  2402     address counter = Runtime1::arraycopy_count_address(basic_type);
  2403     __ inc_counter(counter, G1, G3);
  2405 #endif
  2407   Register src_ptr = O0;
  2408   Register dst_ptr = O1;
  2409   Register len     = O2;
  2411   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2412   if (shift == 0) {
  2413     __ add(src_ptr, src_pos, src_ptr);
  2414   } else {
  2415     __ sll(src_pos, shift, tmp);
  2416     __ add(src_ptr, tmp, src_ptr);
  2419   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2420   if (shift == 0) {
  2421     __ add(dst_ptr, dst_pos, dst_ptr);
  2422   } else {
  2423     __ sll(dst_pos, shift, tmp);
  2424     __ add(dst_ptr, tmp, dst_ptr);
  2427   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2428   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2429   const char *name;
  2430   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2432   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2433   __ mov(length, len);
  2434   __ call_VM_leaf(tmp, entry);
  2436   __ bind(*stub->continuation());
  2440 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2441   if (dest->is_single_cpu()) {
  2442 #ifdef _LP64
  2443     if (left->type() == T_OBJECT) {
  2444       switch (code) {
  2445         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2446         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2447         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2448         default: ShouldNotReachHere();
  2450     } else
  2451 #endif
  2452       switch (code) {
  2453         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2454         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2455         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2456         default: ShouldNotReachHere();
  2458   } else {
  2459 #ifdef _LP64
  2460     switch (code) {
  2461       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2462       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2463       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2464       default: ShouldNotReachHere();
  2466 #else
  2467     switch (code) {
  2468       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2469       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2470       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2471       default: ShouldNotReachHere();
  2473 #endif
  2478 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2479 #ifdef _LP64
  2480   if (left->type() == T_OBJECT) {
  2481     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2482     Register l = left->as_register();
  2483     Register d = dest->as_register_lo();
  2484     switch (code) {
  2485       case lir_shl:  __ sllx  (l, count, d); break;
  2486       case lir_shr:  __ srax  (l, count, d); break;
  2487       case lir_ushr: __ srlx  (l, count, d); break;
  2488       default: ShouldNotReachHere();
  2490     return;
  2492 #endif
  2494   if (dest->is_single_cpu()) {
  2495     count = count & 0x1F; // Java spec
  2496     switch (code) {
  2497       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2498       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2499       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2500       default: ShouldNotReachHere();
  2502   } else if (dest->is_double_cpu()) {
  2503     count = count & 63; // Java spec
  2504     switch (code) {
  2505       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2506       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2507       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2508       default: ShouldNotReachHere();
  2510   } else {
  2511     ShouldNotReachHere();
  2516 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2517   assert(op->tmp1()->as_register()  == G1 &&
  2518          op->tmp2()->as_register()  == G3 &&
  2519          op->tmp3()->as_register()  == G4 &&
  2520          op->obj()->as_register()   == O0 &&
  2521          op->klass()->as_register() == G5, "must be");
  2522   if (op->init_check()) {
  2523     __ ldub(op->klass()->as_register(),
  2524           in_bytes(InstanceKlass::init_state_offset()),
  2525           op->tmp1()->as_register());
  2526     add_debug_info_for_null_check_here(op->stub()->info());
  2527     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
  2528     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2529     __ delayed()->nop();
  2531   __ allocate_object(op->obj()->as_register(),
  2532                      op->tmp1()->as_register(),
  2533                      op->tmp2()->as_register(),
  2534                      op->tmp3()->as_register(),
  2535                      op->header_size(),
  2536                      op->object_size(),
  2537                      op->klass()->as_register(),
  2538                      *op->stub()->entry());
  2539   __ bind(*op->stub()->continuation());
  2540   __ verify_oop(op->obj()->as_register());
  2544 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2545   assert(op->tmp1()->as_register()  == G1 &&
  2546          op->tmp2()->as_register()  == G3 &&
  2547          op->tmp3()->as_register()  == G4 &&
  2548          op->tmp4()->as_register()  == O1 &&
  2549          op->klass()->as_register() == G5, "must be");
  2551   LP64_ONLY( __ signx(op->len()->as_register()); )
  2552   if (UseSlowPath ||
  2553       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2554       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2555     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2556     __ delayed()->nop();
  2557   } else {
  2558     __ allocate_array(op->obj()->as_register(),
  2559                       op->len()->as_register(),
  2560                       op->tmp1()->as_register(),
  2561                       op->tmp2()->as_register(),
  2562                       op->tmp3()->as_register(),
  2563                       arrayOopDesc::header_size(op->type()),
  2564                       type2aelembytes(op->type()),
  2565                       op->klass()->as_register(),
  2566                       *op->stub()->entry());
  2568   __ bind(*op->stub()->continuation());
  2572 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2573                                         ciMethodData *md, ciProfileData *data,
  2574                                         Register recv, Register tmp1, Label* update_done) {
  2575   uint i;
  2576   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2577     Label next_test;
  2578     // See if the receiver is receiver[n].
  2579     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2580                           mdo_offset_bias);
  2581     __ ld_ptr(receiver_addr, tmp1);
  2582     __ verify_oop(tmp1);
  2583     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2584     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2585                       mdo_offset_bias);
  2586     __ ld_ptr(data_addr, tmp1);
  2587     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2588     __ st_ptr(tmp1, data_addr);
  2589     __ ba(*update_done);
  2590     __ delayed()->nop();
  2591     __ bind(next_test);
  2594   // Didn't find receiver; find next empty slot and fill it in
  2595   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2596     Label next_test;
  2597     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2598                       mdo_offset_bias);
  2599     __ ld_ptr(recv_addr, tmp1);
  2600     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2601     __ st_ptr(recv, recv_addr);
  2602     __ set(DataLayout::counter_increment, tmp1);
  2603     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2604               mdo_offset_bias);
  2605     __ ba(*update_done);
  2606     __ delayed()->nop();
  2607     __ bind(next_test);
  2612 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2613                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2614   md = method->method_data_or_null();
  2615   assert(md != NULL, "Sanity");
  2616   data = md->bci_to_data(bci);
  2617   assert(data != NULL,       "need data for checkcast");
  2618   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2619   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2620     // The offset is large so bias the mdo by the base of the slot so
  2621     // that the ld can use simm13s to reference the slots of the data
  2622     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2626 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2627   // we always need a stub for the failure case.
  2628   CodeStub* stub = op->stub();
  2629   Register obj = op->object()->as_register();
  2630   Register k_RInfo = op->tmp1()->as_register();
  2631   Register klass_RInfo = op->tmp2()->as_register();
  2632   Register dst = op->result_opr()->as_register();
  2633   Register Rtmp1 = op->tmp3()->as_register();
  2634   ciKlass* k = op->klass();
  2637   if (obj == k_RInfo) {
  2638     k_RInfo = klass_RInfo;
  2639     klass_RInfo = obj;
  2642   ciMethodData* md;
  2643   ciProfileData* data;
  2644   int mdo_offset_bias = 0;
  2645   if (op->should_profile()) {
  2646     ciMethod* method = op->profiled_method();
  2647     assert(method != NULL, "Should have method");
  2648     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2650     Label not_null;
  2651     __ br_notnull_short(obj, Assembler::pn, not_null);
  2652     Register mdo      = k_RInfo;
  2653     Register data_val = Rtmp1;
  2654     metadata2reg(md->constant_encoding(), mdo);
  2655     if (mdo_offset_bias > 0) {
  2656       __ set(mdo_offset_bias, data_val);
  2657       __ add(mdo, data_val, mdo);
  2659     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2660     __ ldub(flags_addr, data_val);
  2661     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2662     __ stb(data_val, flags_addr);
  2663     __ ba(*obj_is_null);
  2664     __ delayed()->nop();
  2665     __ bind(not_null);
  2666   } else {
  2667     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2668     __ delayed()->nop();
  2671   Label profile_cast_failure, profile_cast_success;
  2672   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2673   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2675   // patching may screw with our temporaries on sparc,
  2676   // so let's do it before loading the class
  2677   if (k->is_loaded()) {
  2678     metadata2reg(k->constant_encoding(), k_RInfo);
  2679   } else {
  2680     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  2682   assert(obj != k_RInfo, "must be different");
  2684   // get object class
  2685   // not a safepoint as obj null check happens earlier
  2686   __ load_klass(obj, klass_RInfo);
  2687   if (op->fast_check()) {
  2688     assert_different_registers(klass_RInfo, k_RInfo);
  2689     __ cmp(k_RInfo, klass_RInfo);
  2690     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2691     __ delayed()->nop();
  2692   } else {
  2693     bool need_slow_path = true;
  2694     if (k->is_loaded()) {
  2695       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2696         need_slow_path = false;
  2697       // perform the fast part of the checking logic
  2698       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2699                                        (need_slow_path ? success_target : NULL),
  2700                                        failure_target, NULL,
  2701                                        RegisterOrConstant(k->super_check_offset()));
  2702     } else {
  2703       // perform the fast part of the checking logic
  2704       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2705                                        failure_target, NULL);
  2707     if (need_slow_path) {
  2708       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2709       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2710       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2711       __ delayed()->nop();
  2712       __ cmp(G3, 0);
  2713       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2714       __ delayed()->nop();
  2715       // Fall through to success case
  2719   if (op->should_profile()) {
  2720     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2721     assert_different_registers(obj, mdo, recv, tmp1);
  2722     __ bind(profile_cast_success);
  2723     metadata2reg(md->constant_encoding(), mdo);
  2724     if (mdo_offset_bias > 0) {
  2725       __ set(mdo_offset_bias, tmp1);
  2726       __ add(mdo, tmp1, mdo);
  2728     __ load_klass(obj, recv);
  2729     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2730     // Jump over the failure case
  2731     __ ba(*success);
  2732     __ delayed()->nop();
  2733     // Cast failure case
  2734     __ bind(profile_cast_failure);
  2735     metadata2reg(md->constant_encoding(), mdo);
  2736     if (mdo_offset_bias > 0) {
  2737       __ set(mdo_offset_bias, tmp1);
  2738       __ add(mdo, tmp1, mdo);
  2740     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2741     __ ld_ptr(data_addr, tmp1);
  2742     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2743     __ st_ptr(tmp1, data_addr);
  2744     __ ba(*failure);
  2745     __ delayed()->nop();
  2747   __ ba(*success);
  2748   __ delayed()->nop();
  2751 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2752   LIR_Code code = op->code();
  2753   if (code == lir_store_check) {
  2754     Register value = op->object()->as_register();
  2755     Register array = op->array()->as_register();
  2756     Register k_RInfo = op->tmp1()->as_register();
  2757     Register klass_RInfo = op->tmp2()->as_register();
  2758     Register Rtmp1 = op->tmp3()->as_register();
  2760     __ verify_oop(value);
  2761     CodeStub* stub = op->stub();
  2762     // check if it needs to be profiled
  2763     ciMethodData* md;
  2764     ciProfileData* data;
  2765     int mdo_offset_bias = 0;
  2766     if (op->should_profile()) {
  2767       ciMethod* method = op->profiled_method();
  2768       assert(method != NULL, "Should have method");
  2769       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2771     Label profile_cast_success, profile_cast_failure, done;
  2772     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2773     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2775     if (op->should_profile()) {
  2776       Label not_null;
  2777       __ br_notnull_short(value, Assembler::pn, not_null);
  2778       Register mdo      = k_RInfo;
  2779       Register data_val = Rtmp1;
  2780       metadata2reg(md->constant_encoding(), mdo);
  2781       if (mdo_offset_bias > 0) {
  2782         __ set(mdo_offset_bias, data_val);
  2783         __ add(mdo, data_val, mdo);
  2785       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2786       __ ldub(flags_addr, data_val);
  2787       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2788       __ stb(data_val, flags_addr);
  2789       __ ba_short(done);
  2790       __ bind(not_null);
  2791     } else {
  2792       __ br_null_short(value, Assembler::pn, done);
  2794     add_debug_info_for_null_check_here(op->info_for_exception());
  2795     __ load_klass(array, k_RInfo);
  2796     __ load_klass(value, klass_RInfo);
  2798     // get instance klass
  2799     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
  2800     // perform the fast part of the checking logic
  2801     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2803     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2804     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2805     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2806     __ delayed()->nop();
  2807     __ cmp(G3, 0);
  2808     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2809     __ delayed()->nop();
  2810     // fall through to the success case
  2812     if (op->should_profile()) {
  2813       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2814       assert_different_registers(value, mdo, recv, tmp1);
  2815       __ bind(profile_cast_success);
  2816       metadata2reg(md->constant_encoding(), mdo);
  2817       if (mdo_offset_bias > 0) {
  2818         __ set(mdo_offset_bias, tmp1);
  2819         __ add(mdo, tmp1, mdo);
  2821       __ load_klass(value, recv);
  2822       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2823       __ ba_short(done);
  2824       // Cast failure case
  2825       __ bind(profile_cast_failure);
  2826       metadata2reg(md->constant_encoding(), mdo);
  2827       if (mdo_offset_bias > 0) {
  2828         __ set(mdo_offset_bias, tmp1);
  2829         __ add(mdo, tmp1, mdo);
  2831       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2832       __ ld_ptr(data_addr, tmp1);
  2833       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2834       __ st_ptr(tmp1, data_addr);
  2835       __ ba(*stub->entry());
  2836       __ delayed()->nop();
  2838     __ bind(done);
  2839   } else if (code == lir_checkcast) {
  2840     Register obj = op->object()->as_register();
  2841     Register dst = op->result_opr()->as_register();
  2842     Label success;
  2843     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2844     __ bind(success);
  2845     __ mov(obj, dst);
  2846   } else if (code == lir_instanceof) {
  2847     Register obj = op->object()->as_register();
  2848     Register dst = op->result_opr()->as_register();
  2849     Label success, failure, done;
  2850     emit_typecheck_helper(op, &success, &failure, &failure);
  2851     __ bind(failure);
  2852     __ set(0, dst);
  2853     __ ba_short(done);
  2854     __ bind(success);
  2855     __ set(1, dst);
  2856     __ bind(done);
  2857   } else {
  2858     ShouldNotReachHere();
  2864 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2865   if (op->code() == lir_cas_long) {
  2866     assert(VM_Version::supports_cx8(), "wrong machine");
  2867     Register addr = op->addr()->as_pointer_register();
  2868     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2869     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2870     Register new_value_lo = op->new_value()->as_register_lo();
  2871     Register new_value_hi = op->new_value()->as_register_hi();
  2872     Register t1 = op->tmp1()->as_register();
  2873     Register t2 = op->tmp2()->as_register();
  2874 #ifdef _LP64
  2875     __ mov(cmp_value_lo, t1);
  2876     __ mov(new_value_lo, t2);
  2877     // perform the compare and swap operation
  2878     __ casx(addr, t1, t2);
  2879     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2880     // overwritten with the original value in "addr" and will be equal to t1.
  2881     __ cmp(t1, t2);
  2882 #else
  2883     // move high and low halves of long values into single registers
  2884     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2885     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2886     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2887     __ sllx(new_value_hi, 32, t2);
  2888     __ srl(new_value_lo, 0, new_value_lo);
  2889     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2890     // perform the compare and swap operation
  2891     __ casx(addr, t1, t2);
  2892     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2893     // overwritten with the original value in "addr" and will be equal to t1.
  2894     // Produce icc flag for 32bit.
  2895     __ sub(t1, t2, t2);
  2896     __ srlx(t2, 32, t1);
  2897     __ orcc(t2, t1, G0);
  2898 #endif
  2899   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2900     Register addr = op->addr()->as_pointer_register();
  2901     Register cmp_value = op->cmp_value()->as_register();
  2902     Register new_value = op->new_value()->as_register();
  2903     Register t1 = op->tmp1()->as_register();
  2904     Register t2 = op->tmp2()->as_register();
  2905     __ mov(cmp_value, t1);
  2906     __ mov(new_value, t2);
  2907     if (op->code() == lir_cas_obj) {
  2908       if (UseCompressedOops) {
  2909         __ encode_heap_oop(t1);
  2910         __ encode_heap_oop(t2);
  2911         __ cas(addr, t1, t2);
  2912       } else {
  2913         __ cas_ptr(addr, t1, t2);
  2915     } else {
  2916       __ cas(addr, t1, t2);
  2918     __ cmp(t1, t2);
  2919   } else {
  2920     Unimplemented();
  2924 void LIR_Assembler::set_24bit_FPU() {
  2925   Unimplemented();
  2929 void LIR_Assembler::reset_FPU() {
  2930   Unimplemented();
  2934 void LIR_Assembler::breakpoint() {
  2935   __ breakpoint_trap();
  2939 void LIR_Assembler::push(LIR_Opr opr) {
  2940   Unimplemented();
  2944 void LIR_Assembler::pop(LIR_Opr opr) {
  2945   Unimplemented();
  2949 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2950   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2951   Register dst = dst_opr->as_register();
  2952   Register reg = mon_addr.base();
  2953   int offset = mon_addr.disp();
  2954   // compute pointer to BasicLock
  2955   if (mon_addr.is_simm13()) {
  2956     __ add(reg, offset, dst);
  2957   } else {
  2958     __ set(offset, dst);
  2959     __ add(dst, reg, dst);
  2964 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2965   Register obj = op->obj_opr()->as_register();
  2966   Register hdr = op->hdr_opr()->as_register();
  2967   Register lock = op->lock_opr()->as_register();
  2969   // obj may not be an oop
  2970   if (op->code() == lir_lock) {
  2971     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2972     if (UseFastLocking) {
  2973       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2974       // add debug info for NullPointerException only if one is possible
  2975       if (op->info() != NULL) {
  2976         add_debug_info_for_null_check_here(op->info());
  2978       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2979     } else {
  2980       // always do slow locking
  2981       // note: the slow locking code could be inlined here, however if we use
  2982       //       slow locking, speed doesn't matter anyway and this solution is
  2983       //       simpler and requires less duplicated code - additionally, the
  2984       //       slow locking code is the same in either case which simplifies
  2985       //       debugging
  2986       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2987       __ delayed()->nop();
  2989   } else {
  2990     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2991     if (UseFastLocking) {
  2992       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2993       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2994     } else {
  2995       // always do slow unlocking
  2996       // note: the slow unlocking code could be inlined here, however if we use
  2997       //       slow unlocking, speed doesn't matter anyway and this solution is
  2998       //       simpler and requires less duplicated code - additionally, the
  2999       //       slow unlocking code is the same in either case which simplifies
  3000       //       debugging
  3001       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  3002       __ delayed()->nop();
  3005   __ bind(*op->stub()->continuation());
  3009 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3010   ciMethod* method = op->profiled_method();
  3011   int bci          = op->profiled_bci();
  3012   ciMethod* callee = op->profiled_callee();
  3014   // Update counter for all call types
  3015   ciMethodData* md = method->method_data_or_null();
  3016   assert(md != NULL, "Sanity");
  3017   ciProfileData* data = md->bci_to_data(bci);
  3018   assert(data->is_CounterData(), "need CounterData for calls");
  3019   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3020   Register mdo  = op->mdo()->as_register();
  3021 #ifdef _LP64
  3022   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  3023   Register tmp1 = op->tmp1()->as_register_lo();
  3024 #else
  3025   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  3026   Register tmp1 = op->tmp1()->as_register();
  3027 #endif
  3028   metadata2reg(md->constant_encoding(), mdo);
  3029   int mdo_offset_bias = 0;
  3030   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  3031                             data->size_in_bytes())) {
  3032     // The offset is large so bias the mdo by the base of the slot so
  3033     // that the ld can use simm13s to reference the slots of the data
  3034     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  3035     __ set(mdo_offset_bias, O7);
  3036     __ add(mdo, O7, mdo);
  3039   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  3040   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3041   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3042   // Perform additional virtual call profiling for invokevirtual and
  3043   // invokeinterface bytecodes
  3044   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3045       !callee_is_static &&  // required for optimized MH invokes
  3046       C1ProfileVirtualCalls) {
  3047     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3048     Register recv = op->recv()->as_register();
  3049     assert_different_registers(mdo, tmp1, recv);
  3050     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3051     ciKlass* known_klass = op->known_holder();
  3052     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3053       // We know the type that will be seen at this call site; we can
  3054       // statically update the MethodData* rather than needing to do
  3055       // dynamic tests on the receiver type
  3057       // NOTE: we should probably put a lock around this search to
  3058       // avoid collisions by concurrent compilations
  3059       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3060       uint i;
  3061       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3062         ciKlass* receiver = vc_data->receiver(i);
  3063         if (known_klass->equals(receiver)) {
  3064           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3065                                                          VirtualCallData::receiver_count_offset(i)) -
  3066                             mdo_offset_bias);
  3067           __ ld_ptr(data_addr, tmp1);
  3068           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3069           __ st_ptr(tmp1, data_addr);
  3070           return;
  3074       // Receiver type not found in profile data; select an empty slot
  3076       // Note that this is less efficient than it should be because it
  3077       // always does a write to the receiver part of the
  3078       // VirtualCallData rather than just the first time
  3079       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3080         ciKlass* receiver = vc_data->receiver(i);
  3081         if (receiver == NULL) {
  3082           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3083                             mdo_offset_bias);
  3084           metadata2reg(known_klass->constant_encoding(), tmp1);
  3085           __ st_ptr(tmp1, recv_addr);
  3086           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3087                             mdo_offset_bias);
  3088           __ ld_ptr(data_addr, tmp1);
  3089           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3090           __ st_ptr(tmp1, data_addr);
  3091           return;
  3094     } else {
  3095       __ load_klass(recv, recv);
  3096       Label update_done;
  3097       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3098       // Receiver did not match any saved receiver and there is no empty row for it.
  3099       // Increment total counter to indicate polymorphic case.
  3100       __ ld_ptr(counter_addr, tmp1);
  3101       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3102       __ st_ptr(tmp1, counter_addr);
  3104       __ bind(update_done);
  3106   } else {
  3107     // Static call
  3108     __ ld_ptr(counter_addr, tmp1);
  3109     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3110     __ st_ptr(tmp1, counter_addr);
  3114 void LIR_Assembler::align_backward_branch_target() {
  3115   __ align(OptoLoopAlignment);
  3119 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3120   // make sure we are expecting a delay
  3121   // this has the side effect of clearing the delay state
  3122   // so we can use _masm instead of _masm->delayed() to do the
  3123   // code generation.
  3124   __ delayed();
  3126   // make sure we only emit one instruction
  3127   int offset = code_offset();
  3128   op->delay_op()->emit_code(this);
  3129 #ifdef ASSERT
  3130   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3131     op->delay_op()->print();
  3133   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3134          "only one instruction can go in a delay slot");
  3135 #endif
  3137   // we may also be emitting the call info for the instruction
  3138   // which we are the delay slot of.
  3139   CodeEmitInfo* call_info = op->call_info();
  3140   if (call_info) {
  3141     add_call_info(code_offset(), call_info);
  3144   if (VerifyStackAtCalls) {
  3145     _masm->sub(FP, SP, O7);
  3146     _masm->cmp(O7, initial_frame_size_in_bytes());
  3147     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3152 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3153   assert(left->is_register(), "can only handle registers");
  3155   if (left->is_single_cpu()) {
  3156     __ neg(left->as_register(), dest->as_register());
  3157   } else if (left->is_single_fpu()) {
  3158     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3159   } else if (left->is_double_fpu()) {
  3160     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3161   } else {
  3162     assert (left->is_double_cpu(), "Must be a long");
  3163     Register Rlow = left->as_register_lo();
  3164     Register Rhi = left->as_register_hi();
  3165 #ifdef _LP64
  3166     __ sub(G0, Rlow, dest->as_register_lo());
  3167 #else
  3168     __ subcc(G0, Rlow, dest->as_register_lo());
  3169     __ subc (G0, Rhi,  dest->as_register_hi());
  3170 #endif
  3175 void LIR_Assembler::fxch(int i) {
  3176   Unimplemented();
  3179 void LIR_Assembler::fld(int i) {
  3180   Unimplemented();
  3183 void LIR_Assembler::ffree(int i) {
  3184   Unimplemented();
  3187 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3188                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3190   // if tmp is invalid, then the function being called doesn't destroy the thread
  3191   if (tmp->is_valid()) {
  3192     __ save_thread(tmp->as_register());
  3194   __ call(dest, relocInfo::runtime_call_type);
  3195   __ delayed()->nop();
  3196   if (info != NULL) {
  3197     add_call_info_here(info);
  3199   if (tmp->is_valid()) {
  3200     __ restore_thread(tmp->as_register());
  3203 #ifdef ASSERT
  3204   __ verify_thread();
  3205 #endif // ASSERT
  3209 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3210 #ifdef _LP64
  3211   ShouldNotReachHere();
  3212 #endif
  3214   NEEDS_CLEANUP;
  3215   if (type == T_LONG) {
  3216     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3218     // (extended to allow indexed as well as constant displaced for JSR-166)
  3219     Register idx = noreg; // contains either constant offset or index
  3221     int disp = mem_addr->disp();
  3222     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3223       if (!Assembler::is_simm13(disp)) {
  3224         idx = O7;
  3225         __ set(disp, idx);
  3227     } else {
  3228       assert(disp == 0, "not both indexed and disp");
  3229       idx = mem_addr->index()->as_register();
  3232     int null_check_offset = -1;
  3234     Register base = mem_addr->base()->as_register();
  3235     if (src->is_register() && dest->is_address()) {
  3236       // G4 is high half, G5 is low half
  3237       if (VM_Version::v9_instructions_work()) {
  3238         // clear the top bits of G5, and scale up G4
  3239         __ srl (src->as_register_lo(),  0, G5);
  3240         __ sllx(src->as_register_hi(), 32, G4);
  3241         // combine the two halves into the 64 bits of G4
  3242         __ or3(G4, G5, G4);
  3243         null_check_offset = __ offset();
  3244         if (idx == noreg) {
  3245           __ stx(G4, base, disp);
  3246         } else {
  3247           __ stx(G4, base, idx);
  3249       } else {
  3250         __ mov (src->as_register_hi(), G4);
  3251         __ mov (src->as_register_lo(), G5);
  3252         null_check_offset = __ offset();
  3253         if (idx == noreg) {
  3254           __ std(G4, base, disp);
  3255         } else {
  3256           __ std(G4, base, idx);
  3259     } else if (src->is_address() && dest->is_register()) {
  3260       null_check_offset = __ offset();
  3261       if (VM_Version::v9_instructions_work()) {
  3262         if (idx == noreg) {
  3263           __ ldx(base, disp, G5);
  3264         } else {
  3265           __ ldx(base, idx, G5);
  3267         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3268         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3269       } else {
  3270         if (idx == noreg) {
  3271           __ ldd(base, disp, G4);
  3272         } else {
  3273           __ ldd(base, idx, G4);
  3275         // G4 is high half, G5 is low half
  3276         __ mov (G4, dest->as_register_hi());
  3277         __ mov (G5, dest->as_register_lo());
  3279     } else {
  3280       Unimplemented();
  3282     if (info != NULL) {
  3283       add_debug_info_for_null_check(null_check_offset, info);
  3286   } else {
  3287     // use normal move for all other volatiles since they don't need
  3288     // special handling to remain atomic.
  3289     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3293 void LIR_Assembler::membar() {
  3294   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3295   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3298 void LIR_Assembler::membar_acquire() {
  3299   // no-op on TSO
  3302 void LIR_Assembler::membar_release() {
  3303   // no-op on TSO
  3306 void LIR_Assembler::membar_loadload() {
  3307   // no-op
  3308   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3311 void LIR_Assembler::membar_storestore() {
  3312   // no-op
  3313   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3316 void LIR_Assembler::membar_loadstore() {
  3317   // no-op
  3318   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3321 void LIR_Assembler::membar_storeload() {
  3322   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3326 // Pack two sequential registers containing 32 bit values
  3327 // into a single 64 bit register.
  3328 // src and src->successor() are packed into dst
  3329 // src and dst may be the same register.
  3330 // Note: src is destroyed
  3331 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3332   Register rs = src->as_register();
  3333   Register rd = dst->as_register_lo();
  3334   __ sllx(rs, 32, rs);
  3335   __ srl(rs->successor(), 0, rs->successor());
  3336   __ or3(rs, rs->successor(), rd);
  3339 // Unpack a 64 bit value in a register into
  3340 // two sequential registers.
  3341 // src is unpacked into dst and dst->successor()
  3342 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3343   Register rs = src->as_register_lo();
  3344   Register rd = dst->as_register_hi();
  3345   assert_different_registers(rs, rd, rd->successor());
  3346   __ srlx(rs, 32, rd);
  3347   __ srl (rs,  0, rd->successor());
  3351 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3352   LIR_Address* addr = addr_opr->as_address_ptr();
  3353   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3355   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3359 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3360   assert(result_reg->is_register(), "check");
  3361   __ mov(G2_thread, result_reg->as_register());
  3364 #ifdef ASSERT
  3365 // emit run-time assertion
  3366 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3367   assert(op->code() == lir_assert, "must be");
  3369   if (op->in_opr1()->is_valid()) {
  3370     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3371     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3372   } else {
  3373     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3374     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3377   Label ok;
  3378   if (op->condition() != lir_cond_always) {
  3379     Assembler::Condition acond;
  3380     switch (op->condition()) {
  3381       case lir_cond_equal:        acond = Assembler::equal;                break;
  3382       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
  3383       case lir_cond_less:         acond = Assembler::less;                 break;
  3384       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
  3385       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
  3386       case lir_cond_greater:      acond = Assembler::greater;              break;
  3387       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
  3388       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
  3389       default:                         ShouldNotReachHere();
  3390     };
  3391     __ br(acond, false, Assembler::pt, ok);
  3392     __ delayed()->nop();
  3394   if (op->halt()) {
  3395     const char* str = __ code_string(op->msg());
  3396     __ stop(str);
  3397   } else {
  3398     breakpoint();
  3400   __ bind(ok);
  3402 #endif
  3404 void LIR_Assembler::peephole(LIR_List* lir) {
  3405   LIR_OpList* inst = lir->instructions_list();
  3406   for (int i = 0; i < inst->length(); i++) {
  3407     LIR_Op* op = inst->at(i);
  3408     switch (op->code()) {
  3409       case lir_cond_float_branch:
  3410       case lir_branch: {
  3411         LIR_OpBranch* branch = op->as_OpBranch();
  3412         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3413         LIR_Op* delay_op = NULL;
  3414         // we'd like to be able to pull following instructions into
  3415         // this slot but we don't know enough to do it safely yet so
  3416         // only optimize block to block control flow.
  3417         if (LIRFillDelaySlots && branch->block()) {
  3418           LIR_Op* prev = inst->at(i - 1);
  3419           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3420             // swap previous instruction into delay slot
  3421             inst->at_put(i - 1, op);
  3422             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3423 #ifndef PRODUCT
  3424             if (LIRTracePeephole) {
  3425               tty->print_cr("delayed");
  3426               inst->at(i - 1)->print();
  3427               inst->at(i)->print();
  3428               tty->cr();
  3430 #endif
  3431             continue;
  3435         if (!delay_op) {
  3436           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3438         inst->insert_before(i + 1, delay_op);
  3439         break;
  3441       case lir_static_call:
  3442       case lir_virtual_call:
  3443       case lir_icvirtual_call:
  3444       case lir_optvirtual_call:
  3445       case lir_dynamic_call: {
  3446         LIR_Op* prev = inst->at(i - 1);
  3447         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3448             (op->code() != lir_virtual_call ||
  3449              !prev->result_opr()->is_single_cpu() ||
  3450              prev->result_opr()->as_register() != O0) &&
  3451             LIR_Assembler::is_single_instruction(prev)) {
  3452           // Only moves without info can be put into the delay slot.
  3453           // Also don't allow the setup of the receiver in the delay
  3454           // slot for vtable calls.
  3455           inst->at_put(i - 1, op);
  3456           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3457 #ifndef PRODUCT
  3458           if (LIRTracePeephole) {
  3459             tty->print_cr("delayed");
  3460             inst->at(i - 1)->print();
  3461             inst->at(i)->print();
  3462             tty->cr();
  3464 #endif
  3465         } else {
  3466           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3467           inst->insert_before(i + 1, delay_op);
  3468           i++;
  3471 #if defined(TIERED) && !defined(_LP64)
  3472         // fixup the return value from G1 to O0/O1 for long returns.
  3473         // It's done here instead of in LIRGenerator because there's
  3474         // such a mismatch between the single reg and double reg
  3475         // calling convention.
  3476         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3477         if (callop->result_opr() == FrameMap::out_long_opr) {
  3478           LIR_OpJavaCall* call;
  3479           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3480           for (int a = 0; a < arguments->length(); a++) {
  3481             arguments[a] = callop->arguments()[a];
  3483           if (op->code() == lir_virtual_call) {
  3484             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3485                                       callop->vtable_offset(), arguments, callop->info());
  3486           } else {
  3487             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3488                                       callop->addr(), arguments, callop->info());
  3490           inst->at_put(i - 1, call);
  3491           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3492                                                  T_LONG, lir_patch_none, NULL));
  3494 #endif
  3495         break;
  3501 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3502   LIR_Address* addr = src->as_address_ptr();
  3504   assert(data == dest, "swap uses only 2 operands");
  3505   assert (code == lir_xchg, "no xadd on sparc");
  3507   if (data->type() == T_INT) {
  3508     __ swap(as_Address(addr), data->as_register());
  3509   } else if (data->is_oop()) {
  3510     Register obj = data->as_register();
  3511     Register narrow = tmp->as_register();
  3512 #ifdef _LP64
  3513     assert(UseCompressedOops, "swap is 32bit only");
  3514     __ encode_heap_oop(obj, narrow);
  3515     __ swap(as_Address(addr), narrow);
  3516     __ decode_heap_oop(narrow, obj);
  3517 #else
  3518     __ swap(as_Address(addr), obj);
  3519 #endif
  3520   } else {
  3521     ShouldNotReachHere();
  3525 #undef __

mercurial