src/cpu/sparc/vm/assembler_sparc.hpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4412
ffa87474d7a4
child 5283
46c544b8fbfc
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    28 #include "asm/register.hpp"
    30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
    31 // level; i.e., what you write
    32 // is what you get. The Assembler is generating code into a CodeBuffer.
    34 class Assembler : public AbstractAssembler  {
    35   friend class AbstractAssembler;
    36   friend class AddressLiteral;
    38   // code patchers need various routines like inv_wdisp()
    39   friend class NativeInstruction;
    40   friend class NativeGeneralJump;
    41   friend class Relocation;
    42   friend class Label;
    44  public:
    45   // op carries format info; see page 62 & 267
    47   enum ops {
    48     call_op   = 1, // fmt 1
    49     branch_op = 0, // also sethi (fmt2)
    50     arith_op  = 2, // fmt 3, arith & misc
    51     ldst_op   = 3  // fmt 3, load/store
    52   };
    54   enum op2s {
    55     bpr_op2   = 3,
    56     fb_op2    = 6,
    57     fbp_op2   = 5,
    58     br_op2    = 2,
    59     bp_op2    = 1,
    60     cb_op2    = 7, // V8
    61     sethi_op2 = 4
    62   };
    64   enum op3s {
    65     // selected op3s
    66     add_op3      = 0x00,
    67     and_op3      = 0x01,
    68     or_op3       = 0x02,
    69     xor_op3      = 0x03,
    70     sub_op3      = 0x04,
    71     andn_op3     = 0x05,
    72     orn_op3      = 0x06,
    73     xnor_op3     = 0x07,
    74     addc_op3     = 0x08,
    75     mulx_op3     = 0x09,
    76     umul_op3     = 0x0a,
    77     smul_op3     = 0x0b,
    78     subc_op3     = 0x0c,
    79     udivx_op3    = 0x0d,
    80     udiv_op3     = 0x0e,
    81     sdiv_op3     = 0x0f,
    83     addcc_op3    = 0x10,
    84     andcc_op3    = 0x11,
    85     orcc_op3     = 0x12,
    86     xorcc_op3    = 0x13,
    87     subcc_op3    = 0x14,
    88     andncc_op3   = 0x15,
    89     orncc_op3    = 0x16,
    90     xnorcc_op3   = 0x17,
    91     addccc_op3   = 0x18,
    92     umulcc_op3   = 0x1a,
    93     smulcc_op3   = 0x1b,
    94     subccc_op3   = 0x1c,
    95     udivcc_op3   = 0x1e,
    96     sdivcc_op3   = 0x1f,
    98     taddcc_op3   = 0x20,
    99     tsubcc_op3   = 0x21,
   100     taddcctv_op3 = 0x22,
   101     tsubcctv_op3 = 0x23,
   102     mulscc_op3   = 0x24,
   103     sll_op3      = 0x25,
   104     sllx_op3     = 0x25,
   105     srl_op3      = 0x26,
   106     srlx_op3     = 0x26,
   107     sra_op3      = 0x27,
   108     srax_op3     = 0x27,
   109     rdreg_op3    = 0x28,
   110     membar_op3   = 0x28,
   112     flushw_op3   = 0x2b,
   113     movcc_op3    = 0x2c,
   114     sdivx_op3    = 0x2d,
   115     popc_op3     = 0x2e,
   116     movr_op3     = 0x2f,
   118     sir_op3      = 0x30,
   119     wrreg_op3    = 0x30,
   120     saved_op3    = 0x31,
   122     fpop1_op3    = 0x34,
   123     fpop2_op3    = 0x35,
   124     impdep1_op3  = 0x36,
   125     impdep2_op3  = 0x37,
   126     jmpl_op3     = 0x38,
   127     rett_op3     = 0x39,
   128     trap_op3     = 0x3a,
   129     flush_op3    = 0x3b,
   130     save_op3     = 0x3c,
   131     restore_op3  = 0x3d,
   132     done_op3     = 0x3e,
   133     retry_op3    = 0x3e,
   135     lduw_op3     = 0x00,
   136     ldub_op3     = 0x01,
   137     lduh_op3     = 0x02,
   138     ldd_op3      = 0x03,
   139     stw_op3      = 0x04,
   140     stb_op3      = 0x05,
   141     sth_op3      = 0x06,
   142     std_op3      = 0x07,
   143     ldsw_op3     = 0x08,
   144     ldsb_op3     = 0x09,
   145     ldsh_op3     = 0x0a,
   146     ldx_op3      = 0x0b,
   148     ldstub_op3   = 0x0d,
   149     stx_op3      = 0x0e,
   150     swap_op3     = 0x0f,
   152     stwa_op3     = 0x14,
   153     stxa_op3     = 0x1e,
   155     ldf_op3      = 0x20,
   156     ldfsr_op3    = 0x21,
   157     ldqf_op3     = 0x22,
   158     lddf_op3     = 0x23,
   159     stf_op3      = 0x24,
   160     stfsr_op3    = 0x25,
   161     stqf_op3     = 0x26,
   162     stdf_op3     = 0x27,
   164     prefetch_op3 = 0x2d,
   167     ldc_op3      = 0x30,
   168     ldcsr_op3    = 0x31,
   169     lddc_op3     = 0x33,
   170     stc_op3      = 0x34,
   171     stcsr_op3    = 0x35,
   172     stdcq_op3    = 0x36,
   173     stdc_op3     = 0x37,
   175     casa_op3     = 0x3c,
   176     casxa_op3    = 0x3e,
   178     mftoi_op3    = 0x36,
   180     alt_bit_op3  = 0x10,
   181      cc_bit_op3  = 0x10
   182   };
   184   enum opfs {
   185     // selected opfs
   186     fmovs_opf   = 0x01,
   187     fmovd_opf   = 0x02,
   189     fnegs_opf   = 0x05,
   190     fnegd_opf   = 0x06,
   192     fadds_opf   = 0x41,
   193     faddd_opf   = 0x42,
   194     fsubs_opf   = 0x45,
   195     fsubd_opf   = 0x46,
   197     fmuls_opf   = 0x49,
   198     fmuld_opf   = 0x4a,
   199     fdivs_opf   = 0x4d,
   200     fdivd_opf   = 0x4e,
   202     fcmps_opf   = 0x51,
   203     fcmpd_opf   = 0x52,
   205     fstox_opf   = 0x81,
   206     fdtox_opf   = 0x82,
   207     fxtos_opf   = 0x84,
   208     fxtod_opf   = 0x88,
   209     fitos_opf   = 0xc4,
   210     fdtos_opf   = 0xc6,
   211     fitod_opf   = 0xc8,
   212     fstod_opf   = 0xc9,
   213     fstoi_opf   = 0xd1,
   214     fdtoi_opf   = 0xd2,
   216     mdtox_opf   = 0x110,
   217     mstouw_opf  = 0x111,
   218     mstosw_opf  = 0x113,
   219     mxtod_opf   = 0x118,
   220     mwtos_opf   = 0x119
   221   };
   223   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez  };
   225   enum Condition {
   226      // for FBfcc & FBPfcc instruction
   227     f_never                     = 0,
   228     f_notEqual                  = 1,
   229     f_notZero                   = 1,
   230     f_lessOrGreater             = 2,
   231     f_unorderedOrLess           = 3,
   232     f_less                      = 4,
   233     f_unorderedOrGreater        = 5,
   234     f_greater                   = 6,
   235     f_unordered                 = 7,
   236     f_always                    = 8,
   237     f_equal                     = 9,
   238     f_zero                      = 9,
   239     f_unorderedOrEqual          = 10,
   240     f_greaterOrEqual            = 11,
   241     f_unorderedOrGreaterOrEqual = 12,
   242     f_lessOrEqual               = 13,
   243     f_unorderedOrLessOrEqual    = 14,
   244     f_ordered                   = 15,
   246     // V8 coproc, pp 123 v8 manual
   248     cp_always  = 8,
   249     cp_never   = 0,
   250     cp_3       = 7,
   251     cp_2       = 6,
   252     cp_2or3    = 5,
   253     cp_1       = 4,
   254     cp_1or3    = 3,
   255     cp_1or2    = 2,
   256     cp_1or2or3 = 1,
   257     cp_0       = 9,
   258     cp_0or3    = 10,
   259     cp_0or2    = 11,
   260     cp_0or2or3 = 12,
   261     cp_0or1    = 13,
   262     cp_0or1or3 = 14,
   263     cp_0or1or2 = 15,
   266     // for integers
   268     never                 =  0,
   269     equal                 =  1,
   270     zero                  =  1,
   271     lessEqual             =  2,
   272     less                  =  3,
   273     lessEqualUnsigned     =  4,
   274     lessUnsigned          =  5,
   275     carrySet              =  5,
   276     negative              =  6,
   277     overflowSet           =  7,
   278     always                =  8,
   279     notEqual              =  9,
   280     notZero               =  9,
   281     greater               =  10,
   282     greaterEqual          =  11,
   283     greaterUnsigned       =  12,
   284     greaterEqualUnsigned  =  13,
   285     carryClear            =  13,
   286     positive              =  14,
   287     overflowClear         =  15
   288   };
   290   enum CC {
   291     icc  = 0,  xcc  = 2,
   292     // ptr_cc is the correct condition code for a pointer or intptr_t:
   293     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   294     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   295   };
   297   enum PrefetchFcn {
   298     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   299   };
   301  public:
   302   // Helper functions for groups of instructions
   304   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   306   enum Membar_mask_bits { // page 184, v9
   307     StoreStore = 1 << 3,
   308     LoadStore  = 1 << 2,
   309     StoreLoad  = 1 << 1,
   310     LoadLoad   = 1 << 0,
   312     Sync       = 1 << 6,
   313     MemIssue   = 1 << 5,
   314     Lookaside  = 1 << 4
   315   };
   317   static bool is_in_wdisp_range(address a, address b, int nbits) {
   318     intptr_t d = intptr_t(b) - intptr_t(a);
   319     return is_simm(d, nbits + 2);
   320   }
   322   address target_distance(Label& L) {
   323     // Assembler::target(L) should be called only when
   324     // a branch instruction is emitted since non-bound
   325     // labels record current pc() as a branch address.
   326     if (L.is_bound()) return target(L);
   327     // Return current address for non-bound labels.
   328     return pc();
   329   }
   331   // test if label is in simm16 range in words (wdisp16).
   332   bool is_in_wdisp16_range(Label& L) {
   333     return is_in_wdisp_range(target_distance(L), pc(), 16);
   334   }
   335   // test if the distance between two addresses fits in simm30 range in words
   336   static bool is_in_wdisp30_range(address a, address b) {
   337     return is_in_wdisp_range(a, b, 30);
   338   }
   340   enum ASIs { // page 72, v9
   341     ASI_PRIMARY            = 0x80,
   342     ASI_PRIMARY_NOFAULT    = 0x82,
   343     ASI_PRIMARY_LITTLE     = 0x88,
   344     // Block initializing store
   345     ASI_ST_BLKINIT_PRIMARY = 0xE2,
   346     // Most-Recently-Used (MRU) BIS variant
   347     ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
   348     // add more from book as needed
   349   };
   351  protected:
   352   // helpers
   354   // x is supposed to fit in a field "nbits" wide
   355   // and be sign-extended. Check the range.
   357   static void assert_signed_range(intptr_t x, int nbits) {
   358     assert(nbits == 32 || (-(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1)),
   359            err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
   360   }
   362   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   363     assert( (x & 3) == 0, "not word aligned");
   364     assert_signed_range(x, nbits + 2);
   365   }
   367   static void assert_unsigned_const(int x, int nbits) {
   368     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   369   }
   371   // fields: note bits numbered from LSB = 0,
   372   //  fields known by inclusive bit range
   374   static int fmask(juint hi_bit, juint lo_bit) {
   375     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   376     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   377   }
   379   // inverse of u_field
   381   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   382     juint r = juint(x) >> lo_bit;
   383     r &= fmask( hi_bit, lo_bit);
   384     return int(r);
   385   }
   388   // signed version: extract from field and sign-extend
   390   static int inv_s_field(int x, int hi_bit, int lo_bit) {
   391     int sign_shift = 31 - hi_bit;
   392     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   393   }
   395   // given a field that ranges from hi_bit to lo_bit (inclusive,
   396   // LSB = 0), and an unsigned value for the field,
   397   // shift it into the field
   399 #ifdef ASSERT
   400   static int u_field(int x, int hi_bit, int lo_bit) {
   401     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   402             "value out of range");
   403     int r = x << lo_bit;
   404     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   405     return r;
   406   }
   407 #else
   408   // make sure this is inlined as it will reduce code size significantly
   409   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   410 #endif
   412   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   413   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   414   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   415   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   417   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   419   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   420   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   421   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   423   static int op(       int         x)  { return  u_field(x,             31, 30); }
   424   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   425   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   426   static int op3(      int         x)  { return  u_field(x,             24, 19); }
   427   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   428   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   429   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   430   static int cond(     int         x)  { return  u_field(x,             28, 25); }
   431   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   432   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   433   static int op2(      int         x)  { return  u_field(x,             24, 22); }
   434   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   435   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   436   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   437   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   438   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   439   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   440   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   441   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   442   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   443   static int opf(      int         x)  { return  u_field(x,             13,  5); }
   445   static bool is_cbcond( int x ) {
   446     return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
   447             inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
   448   }
   449   static bool is_cxb( int x ) {
   450     assert(is_cbcond(x), "wrong instruction");
   451     return (x & (1<<21)) != 0;
   452   }
   453   static int cond_cbcond( int         x)  { return  u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
   454   static int inv_cond_cbcond(int      x)  {
   455     assert(is_cbcond(x), "wrong instruction");
   456     return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
   457   }
   459   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   460   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   462   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   463   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   464   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   466   // some float instructions use this encoding on the op3 field
   467   static int alt_op3(int op, FloatRegisterImpl::Width w) {
   468     int r;
   469     switch(w) {
   470      case FloatRegisterImpl::S: r = op + 0;  break;
   471      case FloatRegisterImpl::D: r = op + 3;  break;
   472      case FloatRegisterImpl::Q: r = op + 2;  break;
   473      default: ShouldNotReachHere(); break;
   474     }
   475     return op3(r);
   476   }
   479   // compute inverse of simm
   480   static int inv_simm(int x, int nbits) {
   481     return (int)(x << (32 - nbits)) >> (32 - nbits);
   482   }
   484   static int inv_simm13( int x ) { return inv_simm(x, 13); }
   486   // signed immediate, in low bits, nbits long
   487   static int simm(int x, int nbits) {
   488     assert_signed_range(x, nbits);
   489     return x  &  (( 1 << nbits ) - 1);
   490   }
   492   // compute inverse of wdisp16
   493   static intptr_t inv_wdisp16(int x, intptr_t pos) {
   494     int lo = x & (( 1 << 14 ) - 1);
   495     int hi = (x >> 20) & 3;
   496     if (hi >= 2) hi |= ~1;
   497     return (((hi << 14) | lo) << 2) + pos;
   498   }
   500   // word offset, 14 bits at LSend, 2 bits at B21, B20
   501   static int wdisp16(intptr_t x, intptr_t off) {
   502     intptr_t xx = x - off;
   503     assert_signed_word_disp_range(xx, 16);
   504     int r =  (xx >> 2) & ((1 << 14) - 1)
   505            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   506     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   507     return r;
   508   }
   510   // compute inverse of wdisp10
   511   static intptr_t inv_wdisp10(int x, intptr_t pos) {
   512     assert(is_cbcond(x), "wrong instruction");
   513     int lo = inv_u_field(x, 12, 5);
   514     int hi = (x >> 19) & 3;
   515     if (hi >= 2) hi |= ~1;
   516     return (((hi << 8) | lo) << 2) + pos;
   517   }
   519   // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
   520   static int wdisp10(intptr_t x, intptr_t off) {
   521     assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
   522     intptr_t xx = x - off;
   523     assert_signed_word_disp_range(xx, 10);
   524     int r =  ( ( (xx >>  2   ) & ((1 << 8) - 1) ) <<  5 )
   525            | ( ( (xx >> (2+8)) & 3              ) << 19 );
   526     // Have to fake cbcond instruction to pass assert in inv_wdisp10()
   527     assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x,  "inverse is not inverse");
   528     return r;
   529   }
   531   // word displacement in low-order nbits bits
   533   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   534     int pre_sign_extend = x & (( 1 << nbits ) - 1);
   535     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   536        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   537        :   pre_sign_extend;
   538     return (r << 2) + pos;
   539   }
   541   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
   542     intptr_t xx = x - off;
   543     assert_signed_word_disp_range(xx, nbits);
   544     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
   545     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
   546     return r;
   547   }
   550   // Extract the top 32 bits in a 64 bit word
   551   static int32_t hi32( int64_t x ) {
   552     int32_t r = int32_t( (uint64_t)x >> 32 );
   553     return r;
   554   }
   556   // given a sethi instruction, extract the constant, left-justified
   557   static int inv_hi22( int x ) {
   558     return x << 10;
   559   }
   561   // create an imm22 field, given a 32-bit left-justified constant
   562   static int hi22( int x ) {
   563     int r = int( juint(x) >> 10 );
   564     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
   565     return r;
   566   }
   568   // create a low10 __value__ (not a field) for a given a 32-bit constant
   569   static int low10( int x ) {
   570     return x & ((1 << 10) - 1);
   571   }
   573   // instruction only in VIS3
   574   static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
   576   // instruction only in v9
   577   static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
   579   // instruction only in v8
   580   static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
   582   // instruction deprecated in v9
   583   static void v9_dep()  { } // do nothing for now
   585   // some float instructions only exist for single prec. on v8
   586   static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
   588   // v8 has no CC field
   589   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
   591  protected:
   592   // Simple delay-slot scheme:
   593   // In order to check the programmer, the assembler keeps track of deley slots.
   594   // It forbids CTIs in delay slots (conservative, but should be OK).
   595   // Also, when putting an instruction into a delay slot, you must say
   596   // asm->delayed()->add(...), in order to check that you don't omit
   597   // delay-slot instructions.
   598   // To implement this, we use a simple FSA
   600 #ifdef ASSERT
   601   #define CHECK_DELAY
   602 #endif
   603 #ifdef CHECK_DELAY
   604   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
   605 #endif
   607  public:
   608   // Tells assembler next instruction must NOT be in delay slot.
   609   // Use at start of multinstruction macros.
   610   void assert_not_delayed() {
   611     // This is a separate overloading to avoid creation of string constants
   612     // in non-asserted code--with some compilers this pollutes the object code.
   613 #ifdef CHECK_DELAY
   614     assert_not_delayed("next instruction should not be a delay slot");
   615 #endif
   616   }
   617   void assert_not_delayed(const char* msg) {
   618 #ifdef CHECK_DELAY
   619     assert(delay_state == no_delay, msg);
   620 #endif
   621   }
   623  protected:
   624   // Delay slot helpers
   625   // cti is called when emitting control-transfer instruction,
   626   // BEFORE doing the emitting.
   627   // Only effective when assertion-checking is enabled.
   628   void cti() {
   629 #ifdef CHECK_DELAY
   630     assert_not_delayed("cti should not be in delay slot");
   631 #endif
   632   }
   634   // called when emitting cti with a delay slot, AFTER emitting
   635   void has_delay_slot() {
   636 #ifdef CHECK_DELAY
   637     assert_not_delayed("just checking");
   638     delay_state = at_delay_slot;
   639 #endif
   640   }
   642   // cbcond instruction should not be generated one after an other
   643   bool cbcond_before() {
   644     if (offset() == 0) return false; // it is first instruction
   645     int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
   646     return is_cbcond(x);
   647   }
   649   void no_cbcond_before() {
   650     assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
   651   }
   653 public:
   655   bool use_cbcond(Label& L) {
   656     if (!UseCBCond || cbcond_before()) return false;
   657     intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
   658     assert( (x & 3) == 0, "not word aligned");
   659     return is_simm12(x);
   660   }
   662   // Tells assembler you know that next instruction is delayed
   663   Assembler* delayed() {
   664 #ifdef CHECK_DELAY
   665     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
   666     delay_state = filling_delay_slot;
   667 #endif
   668     return this;
   669   }
   671   void flush() {
   672 #ifdef CHECK_DELAY
   673     assert ( delay_state == no_delay, "ending code with a delay slot");
   674 #endif
   675     AbstractAssembler::flush();
   676   }
   678   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
   679   inline void emit_data(int x) { emit_int32(x); }
   680   inline void emit_data(int, RelocationHolder const&);
   681   inline void emit_data(int, relocInfo::relocType rtype);
   682   // helper for above fcns
   683   inline void check_delay();
   686  public:
   687   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
   689   // pp 135 (addc was addx in v8)
   691   inline void add(Register s1, Register s2, Register d );
   692   inline void add(Register s1, int simm13a, Register d );
   694   void addcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   695   void addcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   696   void addc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
   697   void addc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   698   void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   699   void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   702   // pp 136
   704   inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
   705   inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
   707   // compare and branch
   708   inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
   709   inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
   711  protected: // use MacroAssembler::br instead
   713   // pp 138
   715   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   716   inline void fb( Condition c, bool a, Label& L );
   718   // pp 141
   720   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   721   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
   723   // pp 144
   725   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   726   inline void br( Condition c, bool a, Label& L );
   728   // pp 146
   730   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   731   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
   733   // pp 121 (V8)
   735   inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   736   inline void cb( Condition c, bool a, Label& L );
   738   // pp 149
   740   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
   741   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
   743  public:
   745   // pp 150
   747   // These instructions compare the contents of s2 with the contents of
   748   // memory at address in s1. If the values are equal, the contents of memory
   749   // at address s1 is swapped with the data in d. If the values are not equal,
   750   // the the contents of memory at s1 is loaded into d, without the swap.
   752   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   753   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   755   // pp 152
   757   void udiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
   758   void udiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   759   void sdiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
   760   void sdiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   761   void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   762   void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   763   void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   764   void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   766   // pp 155
   768   void done()  { v9_only();  cti();  emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
   769   void retry() { v9_only();  cti();  emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
   771   // pp 156
   773   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
   774   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
   776   // pp 157
   778   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
   779   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
   781   // pp 159
   783   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
   784   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
   786   // pp 160
   788   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
   790   // pp 161
   792   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
   793   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
   795   // pp 162
   797   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
   799   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
   801   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
   802   // on v8 to do negation of single, double and quad precision floats.
   804   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
   806   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
   808   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
   809   // on v8 to do abs operation on single/double/quad precision floats.
   811   void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
   813   // pp 163
   815   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
   816   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
   817   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
   819   // pp 164
   821   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
   823   // pp 165
   825   inline void flush( Register s1, Register s2 );
   826   inline void flush( Register s1, int simm13a);
   828   // pp 167
   830   void flushw() { v9_only();  emit_int32( op(arith_op) | op3(flushw_op3) ); }
   832   // pp 168
   834   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
   835   // v8 unimp == illtrap(0)
   837   // pp 169
   839   void impdep1( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
   840   void impdep2( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
   842   // pp 149 (v8)
   844   void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_int32( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
   845   void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_int32( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
   847   // pp 170
   849   void jmpl( Register s1, Register s2, Register d );
   850   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
   852   // 171
   854   inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
   855   inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
   858   inline void ldfsr(  Register s1, Register s2 );
   859   inline void ldfsr(  Register s1, int simm13a);
   860   inline void ldxfsr( Register s1, Register s2 );
   861   inline void ldxfsr( Register s1, int simm13a);
   863   // pp 94 (v8)
   865   inline void ldc(   Register s1, Register s2, int crd );
   866   inline void ldc(   Register s1, int simm13a, int crd);
   867   inline void lddc(  Register s1, Register s2, int crd );
   868   inline void lddc(  Register s1, int simm13a, int crd);
   869   inline void ldcsr( Register s1, Register s2, int crd );
   870   inline void ldcsr( Register s1, int simm13a, int crd);
   873   // 173
   875   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   876   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   878   // pp 175, lduw is ld on v8
   880   inline void ldsb(  Register s1, Register s2, Register d );
   881   inline void ldsb(  Register s1, int simm13a, Register d);
   882   inline void ldsh(  Register s1, Register s2, Register d );
   883   inline void ldsh(  Register s1, int simm13a, Register d);
   884   inline void ldsw(  Register s1, Register s2, Register d );
   885   inline void ldsw(  Register s1, int simm13a, Register d);
   886   inline void ldub(  Register s1, Register s2, Register d );
   887   inline void ldub(  Register s1, int simm13a, Register d);
   888   inline void lduh(  Register s1, Register s2, Register d );
   889   inline void lduh(  Register s1, int simm13a, Register d);
   890   inline void lduw(  Register s1, Register s2, Register d );
   891   inline void lduw(  Register s1, int simm13a, Register d);
   892   inline void ldx(   Register s1, Register s2, Register d );
   893   inline void ldx(   Register s1, int simm13a, Register d);
   894   inline void ldd(   Register s1, Register s2, Register d );
   895   inline void ldd(   Register s1, int simm13a, Register d);
   897   // pp 177
   899   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   900   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   901   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   902   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   903   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   904   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   905   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   906   void lduba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   907   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   908   void lduha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   909   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   910   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   911   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   912   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   913   void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_int32( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   914   void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_int32( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   916   // pp 179
   918   inline void ldstub(  Register s1, Register s2, Register d );
   919   inline void ldstub(  Register s1, int simm13a, Register d);
   921   // pp 180
   923   void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   924   void ldstuba( Register s1, int simm13a,         Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   926   // pp 181
   928   void and3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
   929   void and3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   930   void andcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   931   void andcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   932   void andn(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
   933   void andn(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   934   void andncc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   935   void andncc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   936   void or3(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
   937   void or3(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   938   void orcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   939   void orcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   940   void orn(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
   941   void orn(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   942   void orncc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   943   void orncc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   944   void xor3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
   945   void xor3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   946   void xorcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   947   void xorcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   948   void xnor(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
   949   void xnor(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   950   void xnorcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   951   void xnorcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   953   // pp 183
   955   void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
   957   // pp 185
   959   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
   961   // pp 189
   963   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
   965   // pp 191
   967   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
   968   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
   970   // pp 195
   972   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
   973   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
   975   // pp 196
   977   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
   978   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   979   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
   980   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   981   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
   982   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   984   // pp 197
   986   void umul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
   987   void umul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   988   void smul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
   989   void smul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   990   void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   991   void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   992   void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   993   void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   995   // pp 199
   997   void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
   998   void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1000   // pp 201
  1002   void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
  1005   // pp 202
  1007   void popc( Register s,  Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  1008   void popc( int simm13a, Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
  1010   // pp 203
  1012   void prefetch(   Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
  1013   void prefetch(   Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  1015   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1016   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1018   // pp 208
  1020   // not implementing read privileged register
  1022   inline void rdy(    Register d) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  1023   inline void rdccr(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  1024   inline void rdasi(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  1025   inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  1026   inline void rdpc(   Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  1027   inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
  1029   // pp 213
  1031   inline void rett( Register s1, Register s2);
  1032   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
  1034   // pp 214
  1036   void save(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  1037   void save(    Register s1, int simm13a, Register d ) {
  1038     // make sure frame is at least large enough for the register save area
  1039     assert(-simm13a >= 16 * wordSize, "frame too small");
  1040     emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
  1043   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  1044   void restore( Register s1,       int simm13a,      Register d      ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1046   // pp 216
  1048   void saved()    { v9_only();  emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
  1049   void restored() { v9_only();  emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
  1051   // pp 217
  1053   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1054   // pp 218
  1056   void sll(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1057   void sll(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1058   void srl(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1059   void srl(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1060   void sra(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1061   void sra(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1063   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1064   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1065   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1066   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1067   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1068   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1070   // pp 220
  1072   void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1074   // pp 221
  1076   void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1078   // pp 222
  1080   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
  1081   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1083   inline void stfsr(  Register s1, Register s2 );
  1084   inline void stfsr(  Register s1, int simm13a);
  1085   inline void stxfsr( Register s1, Register s2 );
  1086   inline void stxfsr( Register s1, int simm13a);
  1088   //  pp 224
  1090   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1091   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1093   // p 226
  1095   inline void stb(  Register d, Register s1, Register s2 );
  1096   inline void stb(  Register d, Register s1, int simm13a);
  1097   inline void sth(  Register d, Register s1, Register s2 );
  1098   inline void sth(  Register d, Register s1, int simm13a);
  1099   inline void stw(  Register d, Register s1, Register s2 );
  1100   inline void stw(  Register d, Register s1, int simm13a);
  1101   inline void stx(  Register d, Register s1, Register s2 );
  1102   inline void stx(  Register d, Register s1, int simm13a);
  1103   inline void std(  Register d, Register s1, Register s2 );
  1104   inline void std(  Register d, Register s1, int simm13a);
  1106   // pp 177
  1108   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1109   void stba(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1110   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1111   void stha(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1112   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1113   void stwa(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1114   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1115   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1116   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1117   void stda(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1119   // pp 97 (v8)
  1121   inline void stc(   int crd, Register s1, Register s2 );
  1122   inline void stc(   int crd, Register s1, int simm13a);
  1123   inline void stdc(  int crd, Register s1, Register s2 );
  1124   inline void stdc(  int crd, Register s1, int simm13a);
  1125   inline void stcsr( int crd, Register s1, Register s2 );
  1126   inline void stcsr( int crd, Register s1, int simm13a);
  1127   inline void stdcq( int crd, Register s1, Register s2 );
  1128   inline void stdcq( int crd, Register s1, int simm13a);
  1130   // pp 230
  1132   void sub(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1133   void sub(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1135   void subcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1136   void subcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1137   void subc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1138   void subc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1139   void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1140   void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1142   // pp 231
  1144   inline void swap( Register s1, Register s2, Register d );
  1145   inline void swap( Register s1, int simm13a, Register d);
  1147   // pp 232
  1149   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1150   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1152   // pp 234, note op in book is wrong, see pp 268
  1154   void taddcc(    Register s1, Register s2, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1155   void taddcc(    Register s1, int simm13a, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1156   void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
  1157   void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1159   // pp 235
  1161   void tsubcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1162   void tsubcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1163   void tsubcctv(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
  1164   void tsubcctv(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1166   // pp 237
  1168   void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1169   void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1170   // simple uncond. trap
  1171   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1173   // pp 239 omit write priv register for now
  1175   inline void wry(    Register d) { v9_dep();  emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1176   inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1177   inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
  1178                                                                            rs1(s) |
  1179                                                                            op3(wrreg_op3) |
  1180                                                                            u_field(2, 29, 25) |
  1181                                                                            immed(true) |
  1182                                                                            simm(simm13a, 13)); }
  1183   inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1184   // wrasi(d, imm) stores (d xor imm) to asi
  1185   inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
  1186                                                u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
  1187   inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1190   // VIS3 instructions
  1192   void movstosw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1193   void movstouw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1194   void movdtox(  FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
  1196   void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
  1197   void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
  1199   // Creation
  1200   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1201 #ifdef CHECK_DELAY
  1202     delay_state = no_delay;
  1203 #endif
  1205 };
  1207 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial