src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Wed, 09 Jul 2008 15:08:55 -0700

author
jmasa
date
Wed, 09 Jul 2008 15:08:55 -0700
changeset 698
12eea04c8b06
parent 645
05712c37c828
child 699
15dd2594d08e
permissions
-rw-r--r--

6672698: mangle_unused_area() should not remangle the entire heap at each collection.
Summary: Maintain a high water mark for the allocations in a space and mangle only up to that high water mark.
Reviewed-by: ysr, apetrusenko

     1 /*
     2  * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psParallelCompact.cpp.incl"
    28 #include <math.h>
    30 // All sizes are in HeapWords.
    31 const size_t ParallelCompactData::Log2ChunkSize  = 9; // 512 words
    32 const size_t ParallelCompactData::ChunkSize      = (size_t)1 << Log2ChunkSize;
    33 const size_t ParallelCompactData::ChunkSizeBytes = ChunkSize << LogHeapWordSize;
    34 const size_t ParallelCompactData::ChunkSizeOffsetMask = ChunkSize - 1;
    35 const size_t ParallelCompactData::ChunkAddrOffsetMask = ChunkSizeBytes - 1;
    36 const size_t ParallelCompactData::ChunkAddrMask  = ~ChunkAddrOffsetMask;
    38 // 32-bit:  128 words covers 4 bitmap words
    39 // 64-bit:  128 words covers 2 bitmap words
    40 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
    41 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
    42 const size_t ParallelCompactData::BlockOffsetMask = BlockSize - 1;
    43 const size_t ParallelCompactData::BlockMask       = ~BlockOffsetMask;
    45 const size_t ParallelCompactData::BlocksPerChunk = ChunkSize / BlockSize;
    47 const ParallelCompactData::ChunkData::chunk_sz_t
    48 ParallelCompactData::ChunkData::dc_shift = 27;
    50 const ParallelCompactData::ChunkData::chunk_sz_t
    51 ParallelCompactData::ChunkData::dc_mask = ~0U << dc_shift;
    53 const ParallelCompactData::ChunkData::chunk_sz_t
    54 ParallelCompactData::ChunkData::dc_one = 0x1U << dc_shift;
    56 const ParallelCompactData::ChunkData::chunk_sz_t
    57 ParallelCompactData::ChunkData::los_mask = ~dc_mask;
    59 const ParallelCompactData::ChunkData::chunk_sz_t
    60 ParallelCompactData::ChunkData::dc_claimed = 0x8U << dc_shift;
    62 const ParallelCompactData::ChunkData::chunk_sz_t
    63 ParallelCompactData::ChunkData::dc_completed = 0xcU << dc_shift;
    65 #ifdef ASSERT
    66 short   ParallelCompactData::BlockData::_cur_phase = 0;
    67 #endif
    69 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    70 bool      PSParallelCompact::_print_phases = false;
    72 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    73 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
    75 double PSParallelCompact::_dwl_mean;
    76 double PSParallelCompact::_dwl_std_dev;
    77 double PSParallelCompact::_dwl_first_term;
    78 double PSParallelCompact::_dwl_adjustment;
    79 #ifdef  ASSERT
    80 bool   PSParallelCompact::_dwl_initialized = false;
    81 #endif  // #ifdef ASSERT
    83 #ifdef VALIDATE_MARK_SWEEP
    84 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
    85 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
    86 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
    87 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
    88 size_t                  PSParallelCompact::_live_oops_index = 0;
    89 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
    90 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
    91 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
    92 bool                    PSParallelCompact::_pointer_tracking = false;
    93 bool                    PSParallelCompact::_root_tracking = true;
    95 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
    96 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
    97 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
    98 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
    99 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
   100 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
   101 #endif
   103 // XXX beg - verification code; only works while we also mark in object headers
   104 static void
   105 verify_mark_bitmap(ParMarkBitMap& _mark_bitmap)
   106 {
   107   ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
   109   PSPermGen* perm_gen = heap->perm_gen();
   110   PSOldGen* old_gen = heap->old_gen();
   111   PSYoungGen* young_gen = heap->young_gen();
   113   MutableSpace* perm_space = perm_gen->object_space();
   114   MutableSpace* old_space = old_gen->object_space();
   115   MutableSpace* eden_space = young_gen->eden_space();
   116   MutableSpace* from_space = young_gen->from_space();
   117   MutableSpace* to_space = young_gen->to_space();
   119   // 'from_space' here is the survivor space at the lower address.
   120   if (to_space->bottom() < from_space->bottom()) {
   121     from_space = to_space;
   122     to_space = young_gen->from_space();
   123   }
   125   HeapWord* boundaries[12];
   126   unsigned int bidx = 0;
   127   const unsigned int bidx_max = sizeof(boundaries) / sizeof(boundaries[0]);
   129   boundaries[0] = perm_space->bottom();
   130   boundaries[1] = perm_space->top();
   131   boundaries[2] = old_space->bottom();
   132   boundaries[3] = old_space->top();
   133   boundaries[4] = eden_space->bottom();
   134   boundaries[5] = eden_space->top();
   135   boundaries[6] = from_space->bottom();
   136   boundaries[7] = from_space->top();
   137   boundaries[8] = to_space->bottom();
   138   boundaries[9] = to_space->top();
   139   boundaries[10] = to_space->end();
   140   boundaries[11] = to_space->end();
   142   BitMap::idx_t beg_bit = 0;
   143   BitMap::idx_t end_bit;
   144   BitMap::idx_t tmp_bit;
   145   const BitMap::idx_t last_bit = _mark_bitmap.size();
   146   do {
   147     HeapWord* addr = _mark_bitmap.bit_to_addr(beg_bit);
   148     if (_mark_bitmap.is_marked(beg_bit)) {
   149       oop obj = (oop)addr;
   150       assert(obj->is_gc_marked(), "obj header is not marked");
   151       end_bit = _mark_bitmap.find_obj_end(beg_bit, last_bit);
   152       const size_t size = _mark_bitmap.obj_size(beg_bit, end_bit);
   153       assert(size == (size_t)obj->size(), "end bit wrong?");
   154       beg_bit = _mark_bitmap.find_obj_beg(beg_bit + 1, last_bit);
   155       assert(beg_bit > end_bit, "bit set in middle of an obj");
   156     } else {
   157       if (addr >= boundaries[bidx] && addr < boundaries[bidx + 1]) {
   158         // a dead object in the current space.
   159         oop obj = (oop)addr;
   160         end_bit = _mark_bitmap.addr_to_bit(addr + obj->size());
   161         assert(!obj->is_gc_marked(), "obj marked in header, not in bitmap");
   162         tmp_bit = beg_bit + 1;
   163         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
   164         assert(beg_bit == end_bit, "beg bit set in unmarked obj");
   165         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
   166         assert(beg_bit == end_bit, "end bit set in unmarked obj");
   167       } else if (addr < boundaries[bidx + 2]) {
   168         // addr is between top in the current space and bottom in the next.
   169         end_bit = beg_bit + pointer_delta(boundaries[bidx + 2], addr);
   170         tmp_bit = beg_bit;
   171         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
   172         assert(beg_bit == end_bit, "beg bit set above top");
   173         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
   174         assert(beg_bit == end_bit, "end bit set above top");
   175         bidx += 2;
   176       } else if (bidx < bidx_max - 2) {
   177         bidx += 2; // ???
   178       } else {
   179         tmp_bit = beg_bit;
   180         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, last_bit);
   181         assert(beg_bit == last_bit, "beg bit set outside heap");
   182         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, last_bit);
   183         assert(beg_bit == last_bit, "end bit set outside heap");
   184       }
   185     }
   186   } while (beg_bit < last_bit);
   187 }
   188 // XXX end - verification code; only works while we also mark in object headers
   190 #ifndef PRODUCT
   191 const char* PSParallelCompact::space_names[] = {
   192   "perm", "old ", "eden", "from", "to  "
   193 };
   195 void PSParallelCompact::print_chunk_ranges()
   196 {
   197   tty->print_cr("space  bottom     top        end        new_top");
   198   tty->print_cr("------ ---------- ---------- ---------- ----------");
   200   for (unsigned int id = 0; id < last_space_id; ++id) {
   201     const MutableSpace* space = _space_info[id].space();
   202     tty->print_cr("%u %s "
   203                   SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " "
   204                   SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " ",
   205                   id, space_names[id],
   206                   summary_data().addr_to_chunk_idx(space->bottom()),
   207                   summary_data().addr_to_chunk_idx(space->top()),
   208                   summary_data().addr_to_chunk_idx(space->end()),
   209                   summary_data().addr_to_chunk_idx(_space_info[id].new_top()));
   210   }
   211 }
   213 void
   214 print_generic_summary_chunk(size_t i, const ParallelCompactData::ChunkData* c)
   215 {
   216 #define CHUNK_IDX_FORMAT        SIZE_FORMAT_W("7")
   217 #define CHUNK_DATA_FORMAT       SIZE_FORMAT_W("5")
   219   ParallelCompactData& sd = PSParallelCompact::summary_data();
   220   size_t dci = c->destination() ? sd.addr_to_chunk_idx(c->destination()) : 0;
   221   tty->print_cr(CHUNK_IDX_FORMAT " " PTR_FORMAT " "
   222                 CHUNK_IDX_FORMAT " " PTR_FORMAT " "
   223                 CHUNK_DATA_FORMAT " " CHUNK_DATA_FORMAT " "
   224                 CHUNK_DATA_FORMAT " " CHUNK_IDX_FORMAT " %d",
   225                 i, c->data_location(), dci, c->destination(),
   226                 c->partial_obj_size(), c->live_obj_size(),
   227                 c->data_size(), c->source_chunk(), c->destination_count());
   229 #undef  CHUNK_IDX_FORMAT
   230 #undef  CHUNK_DATA_FORMAT
   231 }
   233 void
   234 print_generic_summary_data(ParallelCompactData& summary_data,
   235                            HeapWord* const beg_addr,
   236                            HeapWord* const end_addr)
   237 {
   238   size_t total_words = 0;
   239   size_t i = summary_data.addr_to_chunk_idx(beg_addr);
   240   const size_t last = summary_data.addr_to_chunk_idx(end_addr);
   241   HeapWord* pdest = 0;
   243   while (i <= last) {
   244     ParallelCompactData::ChunkData* c = summary_data.chunk(i);
   245     if (c->data_size() != 0 || c->destination() != pdest) {
   246       print_generic_summary_chunk(i, c);
   247       total_words += c->data_size();
   248       pdest = c->destination();
   249     }
   250     ++i;
   251   }
   253   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   254 }
   256 void
   257 print_generic_summary_data(ParallelCompactData& summary_data,
   258                            SpaceInfo* space_info)
   259 {
   260   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   261     const MutableSpace* space = space_info[id].space();
   262     print_generic_summary_data(summary_data, space->bottom(),
   263                                MAX2(space->top(), space_info[id].new_top()));
   264   }
   265 }
   267 void
   268 print_initial_summary_chunk(size_t i,
   269                             const ParallelCompactData::ChunkData* c,
   270                             bool newline = true)
   271 {
   272   tty->print(SIZE_FORMAT_W("5") " " PTR_FORMAT " "
   273              SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " "
   274              SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " %d",
   275              i, c->destination(),
   276              c->partial_obj_size(), c->live_obj_size(),
   277              c->data_size(), c->source_chunk(), c->destination_count());
   278   if (newline) tty->cr();
   279 }
   281 void
   282 print_initial_summary_data(ParallelCompactData& summary_data,
   283                            const MutableSpace* space) {
   284   if (space->top() == space->bottom()) {
   285     return;
   286   }
   288   const size_t chunk_size = ParallelCompactData::ChunkSize;
   289   HeapWord* const top_aligned_up = summary_data.chunk_align_up(space->top());
   290   const size_t end_chunk = summary_data.addr_to_chunk_idx(top_aligned_up);
   291   const ParallelCompactData::ChunkData* c = summary_data.chunk(end_chunk - 1);
   292   HeapWord* end_addr = c->destination() + c->data_size();
   293   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   295   // Print (and count) the full chunks at the beginning of the space.
   296   size_t full_chunk_count = 0;
   297   size_t i = summary_data.addr_to_chunk_idx(space->bottom());
   298   while (i < end_chunk && summary_data.chunk(i)->data_size() == chunk_size) {
   299     print_initial_summary_chunk(i, summary_data.chunk(i));
   300     ++full_chunk_count;
   301     ++i;
   302   }
   304   size_t live_to_right = live_in_space - full_chunk_count * chunk_size;
   306   double max_reclaimed_ratio = 0.0;
   307   size_t max_reclaimed_ratio_chunk = 0;
   308   size_t max_dead_to_right = 0;
   309   size_t max_live_to_right = 0;
   311   // Print the 'reclaimed ratio' for chunks while there is something live in the
   312   // chunk or to the right of it.  The remaining chunks are empty (and
   313   // uninteresting), and computing the ratio will result in division by 0.
   314   while (i < end_chunk && live_to_right > 0) {
   315     c = summary_data.chunk(i);
   316     HeapWord* const chunk_addr = summary_data.chunk_to_addr(i);
   317     const size_t used_to_right = pointer_delta(space->top(), chunk_addr);
   318     const size_t dead_to_right = used_to_right - live_to_right;
   319     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   321     if (reclaimed_ratio > max_reclaimed_ratio) {
   322             max_reclaimed_ratio = reclaimed_ratio;
   323             max_reclaimed_ratio_chunk = i;
   324             max_dead_to_right = dead_to_right;
   325             max_live_to_right = live_to_right;
   326     }
   328     print_initial_summary_chunk(i, c, false);
   329     tty->print_cr(" %12.10f " SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10"),
   330                   reclaimed_ratio, dead_to_right, live_to_right);
   332     live_to_right -= c->data_size();
   333     ++i;
   334   }
   336   // Any remaining chunks are empty.  Print one more if there is one.
   337   if (i < end_chunk) {
   338     print_initial_summary_chunk(i, summary_data.chunk(i));
   339   }
   341   tty->print_cr("max:  " SIZE_FORMAT_W("4") " d2r=" SIZE_FORMAT_W("10") " "
   342                 "l2r=" SIZE_FORMAT_W("10") " max_ratio=%14.12f",
   343                 max_reclaimed_ratio_chunk, max_dead_to_right,
   344                 max_live_to_right, max_reclaimed_ratio);
   345 }
   347 void
   348 print_initial_summary_data(ParallelCompactData& summary_data,
   349                            SpaceInfo* space_info) {
   350   unsigned int id = PSParallelCompact::perm_space_id;
   351   const MutableSpace* space;
   352   do {
   353     space = space_info[id].space();
   354     print_initial_summary_data(summary_data, space);
   355   } while (++id < PSParallelCompact::eden_space_id);
   357   do {
   358     space = space_info[id].space();
   359     print_generic_summary_data(summary_data, space->bottom(), space->top());
   360   } while (++id < PSParallelCompact::last_space_id);
   361 }
   362 #endif  // #ifndef PRODUCT
   364 #ifdef  ASSERT
   365 size_t add_obj_count;
   366 size_t add_obj_size;
   367 size_t mark_bitmap_count;
   368 size_t mark_bitmap_size;
   369 #endif  // #ifdef ASSERT
   371 ParallelCompactData::ParallelCompactData()
   372 {
   373   _region_start = 0;
   375   _chunk_vspace = 0;
   376   _chunk_data = 0;
   377   _chunk_count = 0;
   379   _block_vspace = 0;
   380   _block_data = 0;
   381   _block_count = 0;
   382 }
   384 bool ParallelCompactData::initialize(MemRegion covered_region)
   385 {
   386   _region_start = covered_region.start();
   387   const size_t region_size = covered_region.word_size();
   388   DEBUG_ONLY(_region_end = _region_start + region_size;)
   390   assert(chunk_align_down(_region_start) == _region_start,
   391          "region start not aligned");
   392   assert((region_size & ChunkSizeOffsetMask) == 0,
   393          "region size not a multiple of ChunkSize");
   395   bool result = initialize_chunk_data(region_size);
   397   // Initialize the block data if it will be used for updating pointers, or if
   398   // this is a debug build.
   399   if (!UseParallelOldGCChunkPointerCalc || trueInDebug) {
   400     result = result && initialize_block_data(region_size);
   401   }
   403   return result;
   404 }
   406 PSVirtualSpace*
   407 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   408 {
   409   const size_t raw_bytes = count * element_size;
   410   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   411   const size_t granularity = os::vm_allocation_granularity();
   412   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   414   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   415     MAX2(page_sz, granularity);
   416   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   417   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   418                        rs.size());
   419   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   420   if (vspace != 0) {
   421     if (vspace->expand_by(bytes)) {
   422       return vspace;
   423     }
   424     delete vspace;
   425   }
   427   return 0;
   428 }
   430 bool ParallelCompactData::initialize_chunk_data(size_t region_size)
   431 {
   432   const size_t count = (region_size + ChunkSizeOffsetMask) >> Log2ChunkSize;
   433   _chunk_vspace = create_vspace(count, sizeof(ChunkData));
   434   if (_chunk_vspace != 0) {
   435     _chunk_data = (ChunkData*)_chunk_vspace->reserved_low_addr();
   436     _chunk_count = count;
   437     return true;
   438   }
   439   return false;
   440 }
   442 bool ParallelCompactData::initialize_block_data(size_t region_size)
   443 {
   444   const size_t count = (region_size + BlockOffsetMask) >> Log2BlockSize;
   445   _block_vspace = create_vspace(count, sizeof(BlockData));
   446   if (_block_vspace != 0) {
   447     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
   448     _block_count = count;
   449     return true;
   450   }
   451   return false;
   452 }
   454 void ParallelCompactData::clear()
   455 {
   456   if (_block_data) {
   457     memset(_block_data, 0, _block_vspace->committed_size());
   458   }
   459   memset(_chunk_data, 0, _chunk_vspace->committed_size());
   460 }
   462 void ParallelCompactData::clear_range(size_t beg_chunk, size_t end_chunk) {
   463   assert(beg_chunk <= _chunk_count, "beg_chunk out of range");
   464   assert(end_chunk <= _chunk_count, "end_chunk out of range");
   465   assert(ChunkSize % BlockSize == 0, "ChunkSize not a multiple of BlockSize");
   467   const size_t chunk_cnt = end_chunk - beg_chunk;
   469   if (_block_data) {
   470     const size_t blocks_per_chunk = ChunkSize / BlockSize;
   471     const size_t beg_block = beg_chunk * blocks_per_chunk;
   472     const size_t block_cnt = chunk_cnt * blocks_per_chunk;
   473     memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
   474   }
   475   memset(_chunk_data + beg_chunk, 0, chunk_cnt * sizeof(ChunkData));
   476 }
   478 HeapWord* ParallelCompactData::partial_obj_end(size_t chunk_idx) const
   479 {
   480   const ChunkData* cur_cp = chunk(chunk_idx);
   481   const ChunkData* const end_cp = chunk(chunk_count() - 1);
   483   HeapWord* result = chunk_to_addr(chunk_idx);
   484   if (cur_cp < end_cp) {
   485     do {
   486       result += cur_cp->partial_obj_size();
   487     } while (cur_cp->partial_obj_size() == ChunkSize && ++cur_cp < end_cp);
   488   }
   489   return result;
   490 }
   492 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   493 {
   494   const size_t obj_ofs = pointer_delta(addr, _region_start);
   495   const size_t beg_chunk = obj_ofs >> Log2ChunkSize;
   496   const size_t end_chunk = (obj_ofs + len - 1) >> Log2ChunkSize;
   498   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   499   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   501   if (beg_chunk == end_chunk) {
   502     // All in one chunk.
   503     _chunk_data[beg_chunk].add_live_obj(len);
   504     return;
   505   }
   507   // First chunk.
   508   const size_t beg_ofs = chunk_offset(addr);
   509   _chunk_data[beg_chunk].add_live_obj(ChunkSize - beg_ofs);
   511   klassOop klass = ((oop)addr)->klass();
   512   // Middle chunks--completely spanned by this object.
   513   for (size_t chunk = beg_chunk + 1; chunk < end_chunk; ++chunk) {
   514     _chunk_data[chunk].set_partial_obj_size(ChunkSize);
   515     _chunk_data[chunk].set_partial_obj_addr(addr);
   516   }
   518   // Last chunk.
   519   const size_t end_ofs = chunk_offset(addr + len - 1);
   520   _chunk_data[end_chunk].set_partial_obj_size(end_ofs + 1);
   521   _chunk_data[end_chunk].set_partial_obj_addr(addr);
   522 }
   524 void
   525 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   526 {
   527   assert(chunk_offset(beg) == 0, "not ChunkSize aligned");
   528   assert(chunk_offset(end) == 0, "not ChunkSize aligned");
   530   size_t cur_chunk = addr_to_chunk_idx(beg);
   531   const size_t end_chunk = addr_to_chunk_idx(end);
   532   HeapWord* addr = beg;
   533   while (cur_chunk < end_chunk) {
   534     _chunk_data[cur_chunk].set_destination(addr);
   535     _chunk_data[cur_chunk].set_destination_count(0);
   536     _chunk_data[cur_chunk].set_source_chunk(cur_chunk);
   537     _chunk_data[cur_chunk].set_data_location(addr);
   539     // Update live_obj_size so the chunk appears completely full.
   540     size_t live_size = ChunkSize - _chunk_data[cur_chunk].partial_obj_size();
   541     _chunk_data[cur_chunk].set_live_obj_size(live_size);
   543     ++cur_chunk;
   544     addr += ChunkSize;
   545   }
   546 }
   548 bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
   549                                     HeapWord* source_beg, HeapWord* source_end,
   550                                     HeapWord** target_next,
   551                                     HeapWord** source_next) {
   552   // This is too strict.
   553   // assert(chunk_offset(source_beg) == 0, "not ChunkSize aligned");
   555   if (TraceParallelOldGCSummaryPhase) {
   556     tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
   557                   "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
   558                   "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
   559                   target_beg, target_end,
   560                   source_beg, source_end,
   561                   target_next != 0 ? *target_next : (HeapWord*) 0,
   562                   source_next != 0 ? *source_next : (HeapWord*) 0);
   563   }
   565   size_t cur_chunk = addr_to_chunk_idx(source_beg);
   566   const size_t end_chunk = addr_to_chunk_idx(chunk_align_up(source_end));
   568   HeapWord *dest_addr = target_beg;
   569   while (cur_chunk < end_chunk) {
   570     size_t words = _chunk_data[cur_chunk].data_size();
   572 #if     1
   573     assert(pointer_delta(target_end, dest_addr) >= words,
   574            "source region does not fit into target region");
   575 #else
   576     // XXX - need some work on the corner cases here.  If the chunk does not
   577     // fit, then must either make sure any partial_obj from the chunk fits, or
   578     // 'undo' the initial part of the partial_obj that is in the previous chunk.
   579     if (dest_addr + words >= target_end) {
   580       // Let the caller know where to continue.
   581       *target_next = dest_addr;
   582       *source_next = chunk_to_addr(cur_chunk);
   583       return false;
   584     }
   585 #endif  // #if 1
   587     _chunk_data[cur_chunk].set_destination(dest_addr);
   589     // Set the destination_count for cur_chunk, and if necessary, update
   590     // source_chunk for a destination chunk.  The source_chunk field is updated
   591     // if cur_chunk is the first (left-most) chunk to be copied to a destination
   592     // chunk.
   593     //
   594     // The destination_count calculation is a bit subtle.  A chunk that has data
   595     // that compacts into itself does not count itself as a destination.  This
   596     // maintains the invariant that a zero count means the chunk is available
   597     // and can be claimed and then filled.
   598     if (words > 0) {
   599       HeapWord* const last_addr = dest_addr + words - 1;
   600       const size_t dest_chunk_1 = addr_to_chunk_idx(dest_addr);
   601       const size_t dest_chunk_2 = addr_to_chunk_idx(last_addr);
   602 #if     0
   603       // Initially assume that the destination chunks will be the same and
   604       // adjust the value below if necessary.  Under this assumption, if
   605       // cur_chunk == dest_chunk_2, then cur_chunk will be compacted completely
   606       // into itself.
   607       uint destination_count = cur_chunk == dest_chunk_2 ? 0 : 1;
   608       if (dest_chunk_1 != dest_chunk_2) {
   609         // Destination chunks differ; adjust destination_count.
   610         destination_count += 1;
   611         // Data from cur_chunk will be copied to the start of dest_chunk_2.
   612         _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
   613       } else if (chunk_offset(dest_addr) == 0) {
   614         // Data from cur_chunk will be copied to the start of the destination
   615         // chunk.
   616         _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
   617       }
   618 #else
   619       // Initially assume that the destination chunks will be different and
   620       // adjust the value below if necessary.  Under this assumption, if
   621       // cur_chunk == dest_chunk2, then cur_chunk will be compacted partially
   622       // into dest_chunk_1 and partially into itself.
   623       uint destination_count = cur_chunk == dest_chunk_2 ? 1 : 2;
   624       if (dest_chunk_1 != dest_chunk_2) {
   625         // Data from cur_chunk will be copied to the start of dest_chunk_2.
   626         _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
   627       } else {
   628         // Destination chunks are the same; adjust destination_count.
   629         destination_count -= 1;
   630         if (chunk_offset(dest_addr) == 0) {
   631           // Data from cur_chunk will be copied to the start of the destination
   632           // chunk.
   633           _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
   634         }
   635       }
   636 #endif  // #if 0
   638       _chunk_data[cur_chunk].set_destination_count(destination_count);
   639       _chunk_data[cur_chunk].set_data_location(chunk_to_addr(cur_chunk));
   640       dest_addr += words;
   641     }
   643     ++cur_chunk;
   644   }
   646   *target_next = dest_addr;
   647   return true;
   648 }
   650 bool ParallelCompactData::partial_obj_ends_in_block(size_t block_index) {
   651   HeapWord* block_addr = block_to_addr(block_index);
   652   HeapWord* block_end_addr = block_addr + BlockSize;
   653   size_t chunk_index = addr_to_chunk_idx(block_addr);
   654   HeapWord* partial_obj_end_addr = partial_obj_end(chunk_index);
   656   // An object that ends at the end of the block, ends
   657   // in the block (the last word of the object is to
   658   // the left of the end).
   659   if ((block_addr < partial_obj_end_addr) &&
   660       (partial_obj_end_addr <= block_end_addr)) {
   661     return true;
   662   }
   664   return false;
   665 }
   667 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   668   HeapWord* result = NULL;
   669   if (UseParallelOldGCChunkPointerCalc) {
   670     result = chunk_calc_new_pointer(addr);
   671   } else {
   672     result = block_calc_new_pointer(addr);
   673   }
   674   return result;
   675 }
   677 // This method is overly complicated (expensive) to be called
   678 // for every reference.
   679 // Try to restructure this so that a NULL is returned if
   680 // the object is dead.  But don't wast the cycles to explicitly check
   681 // that it is dead since only live objects should be passed in.
   683 HeapWord* ParallelCompactData::chunk_calc_new_pointer(HeapWord* addr) {
   684   assert(addr != NULL, "Should detect NULL oop earlier");
   685   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   686 #ifdef ASSERT
   687   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   688     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   689   }
   690 #endif
   691   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   693   // Chunk covering the object.
   694   size_t chunk_index = addr_to_chunk_idx(addr);
   695   const ChunkData* const chunk_ptr = chunk(chunk_index);
   696   HeapWord* const chunk_addr = chunk_align_down(addr);
   698   assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
   699   assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
   701   HeapWord* result = chunk_ptr->destination();
   703   // If all the data in the chunk is live, then the new location of the object
   704   // can be calculated from the destination of the chunk plus the offset of the
   705   // object in the chunk.
   706   if (chunk_ptr->data_size() == ChunkSize) {
   707     result += pointer_delta(addr, chunk_addr);
   708     return result;
   709   }
   711   // The new location of the object is
   712   //    chunk destination +
   713   //    size of the partial object extending onto the chunk +
   714   //    sizes of the live objects in the Chunk that are to the left of addr
   715   const size_t partial_obj_size = chunk_ptr->partial_obj_size();
   716   HeapWord* const search_start = chunk_addr + partial_obj_size;
   718   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   719   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   721   result += partial_obj_size + live_to_left;
   722   assert(result <= addr, "object cannot move to the right");
   723   return result;
   724 }
   726 HeapWord* ParallelCompactData::block_calc_new_pointer(HeapWord* addr) {
   727   assert(addr != NULL, "Should detect NULL oop earlier");
   728   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   729 #ifdef ASSERT
   730   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   731     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   732   }
   733 #endif
   734   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   736   // Chunk covering the object.
   737   size_t chunk_index = addr_to_chunk_idx(addr);
   738   const ChunkData* const chunk_ptr = chunk(chunk_index);
   739   HeapWord* const chunk_addr = chunk_align_down(addr);
   741   assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
   742   assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
   744   HeapWord* result = chunk_ptr->destination();
   746   // If all the data in the chunk is live, then the new location of the object
   747   // can be calculated from the destination of the chunk plus the offset of the
   748   // object in the chunk.
   749   if (chunk_ptr->data_size() == ChunkSize) {
   750     result += pointer_delta(addr, chunk_addr);
   751     return result;
   752   }
   754   // The new location of the object is
   755   //    chunk destination +
   756   //    block offset +
   757   //    sizes of the live objects in the Block that are to the left of addr
   758   const size_t block_offset = addr_to_block_ptr(addr)->offset();
   759   HeapWord* const search_start = chunk_addr + block_offset;
   761   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   762   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   764   result += block_offset + live_to_left;
   765   assert(result <= addr, "object cannot move to the right");
   766   assert(result == chunk_calc_new_pointer(addr), "Should match");
   767   return result;
   768 }
   770 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
   771   klassOop updated_klass;
   772   if (PSParallelCompact::should_update_klass(old_klass)) {
   773     updated_klass = (klassOop) calc_new_pointer(old_klass);
   774   } else {
   775     updated_klass = old_klass;
   776   }
   778   return updated_klass;
   779 }
   781 #ifdef  ASSERT
   782 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   783 {
   784   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   785   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   786   for (const size_t* p = beg; p < end; ++p) {
   787     assert(*p == 0, "not zero");
   788   }
   789 }
   791 void ParallelCompactData::verify_clear()
   792 {
   793   verify_clear(_chunk_vspace);
   794   verify_clear(_block_vspace);
   795 }
   796 #endif  // #ifdef ASSERT
   798 #ifdef NOT_PRODUCT
   799 ParallelCompactData::ChunkData* debug_chunk(size_t chunk_index) {
   800   ParallelCompactData& sd = PSParallelCompact::summary_data();
   801   return sd.chunk(chunk_index);
   802 }
   803 #endif
   805 elapsedTimer        PSParallelCompact::_accumulated_time;
   806 unsigned int        PSParallelCompact::_total_invocations = 0;
   807 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   808 jlong               PSParallelCompact::_time_of_last_gc = 0;
   809 CollectorCounters*  PSParallelCompact::_counters = NULL;
   810 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   811 ParallelCompactData PSParallelCompact::_summary_data;
   813 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   815 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   816 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   818 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   819 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   821 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   822 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   824 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   825 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   827 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
   829 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
   830 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   832 void PSParallelCompact::post_initialize() {
   833   ParallelScavengeHeap* heap = gc_heap();
   834   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   836   MemRegion mr = heap->reserved_region();
   837   _ref_processor = ReferenceProcessor::create_ref_processor(
   838     mr,                         // span
   839     true,                       // atomic_discovery
   840     true,                       // mt_discovery
   841     &_is_alive_closure,
   842     ParallelGCThreads,
   843     ParallelRefProcEnabled);
   844   _counters = new CollectorCounters("PSParallelCompact", 1);
   846   // Initialize static fields in ParCompactionManager.
   847   ParCompactionManager::initialize(mark_bitmap());
   848 }
   850 bool PSParallelCompact::initialize() {
   851   ParallelScavengeHeap* heap = gc_heap();
   852   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   853   MemRegion mr = heap->reserved_region();
   855   // Was the old gen get allocated successfully?
   856   if (!heap->old_gen()->is_allocated()) {
   857     return false;
   858   }
   860   initialize_space_info();
   861   initialize_dead_wood_limiter();
   863   if (!_mark_bitmap.initialize(mr)) {
   864     vm_shutdown_during_initialization("Unable to allocate bit map for "
   865       "parallel garbage collection for the requested heap size.");
   866     return false;
   867   }
   869   if (!_summary_data.initialize(mr)) {
   870     vm_shutdown_during_initialization("Unable to allocate tables for "
   871       "parallel garbage collection for the requested heap size.");
   872     return false;
   873   }
   875   return true;
   876 }
   878 void PSParallelCompact::initialize_space_info()
   879 {
   880   memset(&_space_info, 0, sizeof(_space_info));
   882   ParallelScavengeHeap* heap = gc_heap();
   883   PSYoungGen* young_gen = heap->young_gen();
   884   MutableSpace* perm_space = heap->perm_gen()->object_space();
   886   _space_info[perm_space_id].set_space(perm_space);
   887   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   888   _space_info[eden_space_id].set_space(young_gen->eden_space());
   889   _space_info[from_space_id].set_space(young_gen->from_space());
   890   _space_info[to_space_id].set_space(young_gen->to_space());
   892   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
   893   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   895   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
   896   if (TraceParallelOldGCDensePrefix) {
   897     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
   898                   _space_info[perm_space_id].min_dense_prefix());
   899   }
   900 }
   902 void PSParallelCompact::initialize_dead_wood_limiter()
   903 {
   904   const size_t max = 100;
   905   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   906   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   907   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   908   DEBUG_ONLY(_dwl_initialized = true;)
   909   _dwl_adjustment = normal_distribution(1.0);
   910 }
   912 // Simple class for storing info about the heap at the start of GC, to be used
   913 // after GC for comparison/printing.
   914 class PreGCValues {
   915 public:
   916   PreGCValues() { }
   917   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   919   void fill(ParallelScavengeHeap* heap) {
   920     _heap_used      = heap->used();
   921     _young_gen_used = heap->young_gen()->used_in_bytes();
   922     _old_gen_used   = heap->old_gen()->used_in_bytes();
   923     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
   924   };
   926   size_t heap_used() const      { return _heap_used; }
   927   size_t young_gen_used() const { return _young_gen_used; }
   928   size_t old_gen_used() const   { return _old_gen_used; }
   929   size_t perm_gen_used() const  { return _perm_gen_used; }
   931 private:
   932   size_t _heap_used;
   933   size_t _young_gen_used;
   934   size_t _old_gen_used;
   935   size_t _perm_gen_used;
   936 };
   938 void
   939 PSParallelCompact::clear_data_covering_space(SpaceId id)
   940 {
   941   // At this point, top is the value before GC, new_top() is the value that will
   942   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   943   // should be marked above top.  The summary data is cleared to the larger of
   944   // top & new_top.
   945   MutableSpace* const space = _space_info[id].space();
   946   HeapWord* const bot = space->bottom();
   947   HeapWord* const top = space->top();
   948   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   950   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   951   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   952   _mark_bitmap.clear_range(beg_bit, end_bit);
   954   const size_t beg_chunk = _summary_data.addr_to_chunk_idx(bot);
   955   const size_t end_chunk =
   956     _summary_data.addr_to_chunk_idx(_summary_data.chunk_align_up(max_top));
   957   _summary_data.clear_range(beg_chunk, end_chunk);
   958 }
   960 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   961 {
   962   // Update the from & to space pointers in space_info, since they are swapped
   963   // at each young gen gc.  Do the update unconditionally (even though a
   964   // promotion failure does not swap spaces) because an unknown number of minor
   965   // collections will have swapped the spaces an unknown number of times.
   966   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   967   ParallelScavengeHeap* heap = gc_heap();
   968   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   969   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   971   pre_gc_values->fill(heap);
   973   ParCompactionManager::reset();
   974   NOT_PRODUCT(_mark_bitmap.reset_counters());
   975   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   976   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   978   // Increment the invocation count
   979   heap->increment_total_collections(true);
   981   // We need to track unique mark sweep invocations as well.
   982   _total_invocations++;
   984   if (PrintHeapAtGC) {
   985     Universe::print_heap_before_gc();
   986   }
   988   // Fill in TLABs
   989   heap->accumulate_statistics_all_tlabs();
   990   heap->ensure_parsability(true);  // retire TLABs
   992   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   993     HandleMark hm;  // Discard invalid handles created during verification
   994     gclog_or_tty->print(" VerifyBeforeGC:");
   995     Universe::verify(true);
   996   }
   998   // Verify object start arrays
   999   if (VerifyObjectStartArray &&
  1000       VerifyBeforeGC) {
  1001     heap->old_gen()->verify_object_start_array();
  1002     heap->perm_gen()->verify_object_start_array();
  1005   DEBUG_ONLY(mark_bitmap()->verify_clear();)
  1006   DEBUG_ONLY(summary_data().verify_clear();)
  1008   // Have worker threads release resources the next time they run a task.
  1009   gc_task_manager()->release_all_resources();
  1012 void PSParallelCompact::post_compact()
  1014   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
  1016   // Clear the marking bitmap and summary data and update top() in each space.
  1017   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  1018     clear_data_covering_space(SpaceId(id));
  1019     _space_info[id].space()->set_top(_space_info[id].new_top());
  1022   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1023   MutableSpace* const from_space = _space_info[from_space_id].space();
  1024   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1026   ParallelScavengeHeap* heap = gc_heap();
  1027   bool eden_empty = eden_space->is_empty();
  1028   if (!eden_empty) {
  1029     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1030                                             heap->young_gen(), heap->old_gen());
  1033   // Update heap occupancy information which is used as input to the soft ref
  1034   // clearing policy at the next gc.
  1035   Universe::update_heap_info_at_gc();
  1037   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1038     to_space->is_empty();
  1040   BarrierSet* bs = heap->barrier_set();
  1041   if (bs->is_a(BarrierSet::ModRef)) {
  1042     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1043     MemRegion old_mr = heap->old_gen()->reserved();
  1044     MemRegion perm_mr = heap->perm_gen()->reserved();
  1045     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
  1047     if (young_gen_empty) {
  1048       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
  1049     } else {
  1050       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
  1054   Threads::gc_epilogue();
  1055   CodeCache::gc_epilogue();
  1057   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1059   ref_processor()->enqueue_discovered_references(NULL);
  1061   if (ZapUnusedHeapArea) {
  1062     heap->gen_mangle_unused_area();
  1065   // Update time of last GC
  1066   reset_millis_since_last_gc();
  1069 HeapWord*
  1070 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1071                                                     bool maximum_compaction)
  1073   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1074   const ParallelCompactData& sd = summary_data();
  1076   const MutableSpace* const space = _space_info[id].space();
  1077   HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  1078   const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(space->bottom());
  1079   const ChunkData* const end_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  1081   // Skip full chunks at the beginning of the space--they are necessarily part
  1082   // of the dense prefix.
  1083   size_t full_count = 0;
  1084   const ChunkData* cp;
  1085   for (cp = beg_cp; cp < end_cp && cp->data_size() == chunk_size; ++cp) {
  1086     ++full_count;
  1089   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1090   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1091   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1092   if (maximum_compaction || cp == end_cp || interval_ended) {
  1093     _maximum_compaction_gc_num = total_invocations();
  1094     return sd.chunk_to_addr(cp);
  1097   HeapWord* const new_top = _space_info[id].new_top();
  1098   const size_t space_live = pointer_delta(new_top, space->bottom());
  1099   const size_t space_used = space->used_in_words();
  1100   const size_t space_capacity = space->capacity_in_words();
  1102   const double cur_density = double(space_live) / space_capacity;
  1103   const double deadwood_density =
  1104     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1105   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1107   if (TraceParallelOldGCDensePrefix) {
  1108     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1109                   cur_density, deadwood_density, deadwood_goal);
  1110     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1111                   "space_cap=" SIZE_FORMAT,
  1112                   space_live, space_used,
  1113                   space_capacity);
  1116   // XXX - Use binary search?
  1117   HeapWord* dense_prefix = sd.chunk_to_addr(cp);
  1118   const ChunkData* full_cp = cp;
  1119   const ChunkData* const top_cp = sd.addr_to_chunk_ptr(space->top() - 1);
  1120   while (cp < end_cp) {
  1121     HeapWord* chunk_destination = cp->destination();
  1122     const size_t cur_deadwood = pointer_delta(dense_prefix, chunk_destination);
  1123     if (TraceParallelOldGCDensePrefix && Verbose) {
  1124       tty->print_cr("c#=" SIZE_FORMAT_W("04") " dst=" PTR_FORMAT " "
  1125                     "dp=" SIZE_FORMAT_W("08") " " "cdw=" SIZE_FORMAT_W("08"),
  1126                     sd.chunk(cp), chunk_destination,
  1127                     dense_prefix, cur_deadwood);
  1130     if (cur_deadwood >= deadwood_goal) {
  1131       // Found the chunk that has the correct amount of deadwood to the left.
  1132       // This typically occurs after crossing a fairly sparse set of chunks, so
  1133       // iterate backwards over those sparse chunks, looking for the chunk that
  1134       // has the lowest density of live objects 'to the right.'
  1135       size_t space_to_left = sd.chunk(cp) * chunk_size;
  1136       size_t live_to_left = space_to_left - cur_deadwood;
  1137       size_t space_to_right = space_capacity - space_to_left;
  1138       size_t live_to_right = space_live - live_to_left;
  1139       double density_to_right = double(live_to_right) / space_to_right;
  1140       while (cp > full_cp) {
  1141         --cp;
  1142         const size_t prev_chunk_live_to_right = live_to_right - cp->data_size();
  1143         const size_t prev_chunk_space_to_right = space_to_right + chunk_size;
  1144         double prev_chunk_density_to_right =
  1145           double(prev_chunk_live_to_right) / prev_chunk_space_to_right;
  1146         if (density_to_right <= prev_chunk_density_to_right) {
  1147           return dense_prefix;
  1149         if (TraceParallelOldGCDensePrefix && Verbose) {
  1150           tty->print_cr("backing up from c=" SIZE_FORMAT_W("4") " d2r=%10.8f "
  1151                         "pc_d2r=%10.8f", sd.chunk(cp), density_to_right,
  1152                         prev_chunk_density_to_right);
  1154         dense_prefix -= chunk_size;
  1155         live_to_right = prev_chunk_live_to_right;
  1156         space_to_right = prev_chunk_space_to_right;
  1157         density_to_right = prev_chunk_density_to_right;
  1159       return dense_prefix;
  1162     dense_prefix += chunk_size;
  1163     ++cp;
  1166   return dense_prefix;
  1169 #ifndef PRODUCT
  1170 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1171                                                  const SpaceId id,
  1172                                                  const bool maximum_compaction,
  1173                                                  HeapWord* const addr)
  1175   const size_t chunk_idx = summary_data().addr_to_chunk_idx(addr);
  1176   ChunkData* const cp = summary_data().chunk(chunk_idx);
  1177   const MutableSpace* const space = _space_info[id].space();
  1178   HeapWord* const new_top = _space_info[id].new_top();
  1180   const size_t space_live = pointer_delta(new_top, space->bottom());
  1181   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1182   const size_t space_cap = space->capacity_in_words();
  1183   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1184   const size_t live_to_right = new_top - cp->destination();
  1185   const size_t dead_to_right = space->top() - addr - live_to_right;
  1187   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W("05") " "
  1188                 "spl=" SIZE_FORMAT " "
  1189                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1190                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1191                 " ratio=%10.8f",
  1192                 algorithm, addr, chunk_idx,
  1193                 space_live,
  1194                 dead_to_left, dead_to_left_pct,
  1195                 dead_to_right, live_to_right,
  1196                 double(dead_to_right) / live_to_right);
  1198 #endif  // #ifndef PRODUCT
  1200 // Return a fraction indicating how much of the generation can be treated as
  1201 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1202 // based on the density of live objects in the generation to determine a limit,
  1203 // which is then adjusted so the return value is min_percent when the density is
  1204 // 1.
  1205 //
  1206 // The following table shows some return values for a different values of the
  1207 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1208 // min_percent is 1.
  1209 //
  1210 //                          fraction allowed as dead wood
  1211 //         -----------------------------------------------------------------
  1212 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1213 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1214 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1215 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1216 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1217 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1218 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1219 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1220 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1221 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1222 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1223 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1224 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1225 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1226 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1227 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1228 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1229 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1230 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1231 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1232 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1233 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1234 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1236 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1238   assert(_dwl_initialized, "uninitialized");
  1240   // The raw limit is the value of the normal distribution at x = density.
  1241   const double raw_limit = normal_distribution(density);
  1243   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1244   //
  1245   // First subtract the adjustment value (which is simply the precomputed value
  1246   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1247   // Then add the minimum value, so the minimum is returned when the density is
  1248   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1249   const double min = double(min_percent) / 100.0;
  1250   const double limit = raw_limit - _dwl_adjustment + min;
  1251   return MAX2(limit, 0.0);
  1254 ParallelCompactData::ChunkData*
  1255 PSParallelCompact::first_dead_space_chunk(const ChunkData* beg,
  1256                                           const ChunkData* end)
  1258   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1259   ParallelCompactData& sd = summary_data();
  1260   size_t left = sd.chunk(beg);
  1261   size_t right = end > beg ? sd.chunk(end) - 1 : left;
  1263   // Binary search.
  1264   while (left < right) {
  1265     // Equivalent to (left + right) / 2, but does not overflow.
  1266     const size_t middle = left + (right - left) / 2;
  1267     ChunkData* const middle_ptr = sd.chunk(middle);
  1268     HeapWord* const dest = middle_ptr->destination();
  1269     HeapWord* const addr = sd.chunk_to_addr(middle);
  1270     assert(dest != NULL, "sanity");
  1271     assert(dest <= addr, "must move left");
  1273     if (middle > left && dest < addr) {
  1274       right = middle - 1;
  1275     } else if (middle < right && middle_ptr->data_size() == chunk_size) {
  1276       left = middle + 1;
  1277     } else {
  1278       return middle_ptr;
  1281   return sd.chunk(left);
  1284 ParallelCompactData::ChunkData*
  1285 PSParallelCompact::dead_wood_limit_chunk(const ChunkData* beg,
  1286                                          const ChunkData* end,
  1287                                          size_t dead_words)
  1289   ParallelCompactData& sd = summary_data();
  1290   size_t left = sd.chunk(beg);
  1291   size_t right = end > beg ? sd.chunk(end) - 1 : left;
  1293   // Binary search.
  1294   while (left < right) {
  1295     // Equivalent to (left + right) / 2, but does not overflow.
  1296     const size_t middle = left + (right - left) / 2;
  1297     ChunkData* const middle_ptr = sd.chunk(middle);
  1298     HeapWord* const dest = middle_ptr->destination();
  1299     HeapWord* const addr = sd.chunk_to_addr(middle);
  1300     assert(dest != NULL, "sanity");
  1301     assert(dest <= addr, "must move left");
  1303     const size_t dead_to_left = pointer_delta(addr, dest);
  1304     if (middle > left && dead_to_left > dead_words) {
  1305       right = middle - 1;
  1306     } else if (middle < right && dead_to_left < dead_words) {
  1307       left = middle + 1;
  1308     } else {
  1309       return middle_ptr;
  1312   return sd.chunk(left);
  1315 // The result is valid during the summary phase, after the initial summarization
  1316 // of each space into itself, and before final summarization.
  1317 inline double
  1318 PSParallelCompact::reclaimed_ratio(const ChunkData* const cp,
  1319                                    HeapWord* const bottom,
  1320                                    HeapWord* const top,
  1321                                    HeapWord* const new_top)
  1323   ParallelCompactData& sd = summary_data();
  1325   assert(cp != NULL, "sanity");
  1326   assert(bottom != NULL, "sanity");
  1327   assert(top != NULL, "sanity");
  1328   assert(new_top != NULL, "sanity");
  1329   assert(top >= new_top, "summary data problem?");
  1330   assert(new_top > bottom, "space is empty; should not be here");
  1331   assert(new_top >= cp->destination(), "sanity");
  1332   assert(top >= sd.chunk_to_addr(cp), "sanity");
  1334   HeapWord* const destination = cp->destination();
  1335   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1336   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1337   const size_t compacted_region_used = pointer_delta(top, sd.chunk_to_addr(cp));
  1338   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1340   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1341   return double(reclaimable) / divisor;
  1344 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1345 // compacted region.  The address is always on a chunk boundary.
  1346 //
  1347 // Completely full chunks at the left are skipped, since no compaction can occur
  1348 // in those chunks.  Then the maximum amount of dead wood to allow is computed,
  1349 // based on the density (amount live / capacity) of the generation; the chunk
  1350 // with approximately that amount of dead space to the left is identified as the
  1351 // limit chunk.  Chunks between the last completely full chunk and the limit
  1352 // chunk are scanned and the one that has the best (maximum) reclaimed_ratio()
  1353 // is selected.
  1354 HeapWord*
  1355 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1356                                         bool maximum_compaction)
  1358   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1359   const ParallelCompactData& sd = summary_data();
  1361   const MutableSpace* const space = _space_info[id].space();
  1362   HeapWord* const top = space->top();
  1363   HeapWord* const top_aligned_up = sd.chunk_align_up(top);
  1364   HeapWord* const new_top = _space_info[id].new_top();
  1365   HeapWord* const new_top_aligned_up = sd.chunk_align_up(new_top);
  1366   HeapWord* const bottom = space->bottom();
  1367   const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(bottom);
  1368   const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  1369   const ChunkData* const new_top_cp = sd.addr_to_chunk_ptr(new_top_aligned_up);
  1371   // Skip full chunks at the beginning of the space--they are necessarily part
  1372   // of the dense prefix.
  1373   const ChunkData* const full_cp = first_dead_space_chunk(beg_cp, new_top_cp);
  1374   assert(full_cp->destination() == sd.chunk_to_addr(full_cp) ||
  1375          space->is_empty(), "no dead space allowed to the left");
  1376   assert(full_cp->data_size() < chunk_size || full_cp == new_top_cp - 1,
  1377          "chunk must have dead space");
  1379   // The gc number is saved whenever a maximum compaction is done, and used to
  1380   // determine when the maximum compaction interval has expired.  This avoids
  1381   // successive max compactions for different reasons.
  1382   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1383   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1384   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1385     total_invocations() == HeapFirstMaximumCompactionCount;
  1386   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1387     _maximum_compaction_gc_num = total_invocations();
  1388     return sd.chunk_to_addr(full_cp);
  1391   const size_t space_live = pointer_delta(new_top, bottom);
  1392   const size_t space_used = space->used_in_words();
  1393   const size_t space_capacity = space->capacity_in_words();
  1395   const double density = double(space_live) / double(space_capacity);
  1396   const size_t min_percent_free =
  1397           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  1398   const double limiter = dead_wood_limiter(density, min_percent_free);
  1399   const size_t dead_wood_max = space_used - space_live;
  1400   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1401                                       dead_wood_max);
  1403   if (TraceParallelOldGCDensePrefix) {
  1404     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1405                   "space_cap=" SIZE_FORMAT,
  1406                   space_live, space_used,
  1407                   space_capacity);
  1408     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1409                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1410                   density, min_percent_free, limiter,
  1411                   dead_wood_max, dead_wood_limit);
  1414   // Locate the chunk with the desired amount of dead space to the left.
  1415   const ChunkData* const limit_cp =
  1416     dead_wood_limit_chunk(full_cp, top_cp, dead_wood_limit);
  1418   // Scan from the first chunk with dead space to the limit chunk and find the
  1419   // one with the best (largest) reclaimed ratio.
  1420   double best_ratio = 0.0;
  1421   const ChunkData* best_cp = full_cp;
  1422   for (const ChunkData* cp = full_cp; cp < limit_cp; ++cp) {
  1423     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1424     if (tmp_ratio > best_ratio) {
  1425       best_cp = cp;
  1426       best_ratio = tmp_ratio;
  1430 #if     0
  1431   // Something to consider:  if the chunk with the best ratio is 'close to' the
  1432   // first chunk w/free space, choose the first chunk with free space
  1433   // ("first-free").  The first-free chunk is usually near the start of the
  1434   // heap, which means we are copying most of the heap already, so copy a bit
  1435   // more to get complete compaction.
  1436   if (pointer_delta(best_cp, full_cp, sizeof(ChunkData)) < 4) {
  1437     _maximum_compaction_gc_num = total_invocations();
  1438     best_cp = full_cp;
  1440 #endif  // #if 0
  1442   return sd.chunk_to_addr(best_cp);
  1445 void PSParallelCompact::summarize_spaces_quick()
  1447   for (unsigned int i = 0; i < last_space_id; ++i) {
  1448     const MutableSpace* space = _space_info[i].space();
  1449     bool result = _summary_data.summarize(space->bottom(), space->end(),
  1450                                           space->bottom(), space->top(),
  1451                                           _space_info[i].new_top_addr());
  1452     assert(result, "should never fail");
  1453     _space_info[i].set_dense_prefix(space->bottom());
  1457 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1459   HeapWord* const dense_prefix_end = dense_prefix(id);
  1460   const ChunkData* chunk = _summary_data.addr_to_chunk_ptr(dense_prefix_end);
  1461   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1462   if (dead_space_crosses_boundary(chunk, dense_prefix_bit)) {
  1463     // Only enough dead space is filled so that any remaining dead space to the
  1464     // left is larger than the minimum filler object.  (The remainder is filled
  1465     // during the copy/update phase.)
  1466     //
  1467     // The size of the dead space to the right of the boundary is not a
  1468     // concern, since compaction will be able to use whatever space is
  1469     // available.
  1470     //
  1471     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1472     // surrounds the space to be filled with an object.
  1473     //
  1474     // In the 32-bit VM, each bit represents two 32-bit words:
  1475     //                              +---+
  1476     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1477     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1478     //                              +---+
  1479     //
  1480     // In the 64-bit VM, each bit represents one 64-bit word:
  1481     //                              +------------+
  1482     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1483     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1484     //                              +------------+
  1485     //                          +-------+
  1486     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1487     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1488     //                          +-------+
  1489     //                      +-----------+
  1490     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1491     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1492     //                      +-----------+
  1493     //                          +-------+
  1494     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1495     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1496     //                          +-------+
  1498     // Initially assume case a, c or e will apply.
  1499     size_t obj_len = (size_t)oopDesc::header_size();
  1500     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1502 #ifdef  _LP64
  1503     if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1504       // Case b above.
  1505       obj_beg = dense_prefix_end - 1;
  1506     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1507                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1508       // Case d above.
  1509       obj_beg = dense_prefix_end - 3;
  1510       obj_len = 3;
  1512 #endif  // #ifdef _LP64
  1514     MemRegion region(obj_beg, obj_len);
  1515     SharedHeap::fill_region_with_object(region);
  1516     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1517     _summary_data.add_obj(obj_beg, obj_len);
  1518     assert(start_array(id) != NULL, "sanity");
  1519     start_array(id)->allocate_block(obj_beg);
  1523 void
  1524 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1526   assert(id < last_space_id, "id out of range");
  1528   const MutableSpace* space = _space_info[id].space();
  1529   HeapWord** new_top_addr = _space_info[id].new_top_addr();
  1531   HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1532   _space_info[id].set_dense_prefix(dense_prefix_end);
  1534 #ifndef PRODUCT
  1535   if (TraceParallelOldGCDensePrefix) {
  1536     print_dense_prefix_stats("ratio", id, maximum_compaction, dense_prefix_end);
  1537     HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1538     print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1540 #endif  // #ifndef PRODUCT
  1542   // If dead space crosses the dense prefix boundary, it is (at least partially)
  1543   // filled with a dummy object, marked live and added to the summary data.
  1544   // This simplifies the copy/update phase and must be done before the final
  1545   // locations of objects are determined, to prevent leaving a fragment of dead
  1546   // space that is too small to fill with an object.
  1547   if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1548     fill_dense_prefix_end(id);
  1551   // Compute the destination of each Chunk, and thus each object.
  1552   _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1553   _summary_data.summarize(dense_prefix_end, space->end(),
  1554                           dense_prefix_end, space->top(),
  1555                           new_top_addr);
  1557   if (TraceParallelOldGCSummaryPhase) {
  1558     const size_t chunk_size = ParallelCompactData::ChunkSize;
  1559     const size_t dp_chunk = _summary_data.addr_to_chunk_idx(dense_prefix_end);
  1560     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1561     const HeapWord* nt_aligned_up = _summary_data.chunk_align_up(*new_top_addr);
  1562     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1563     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1564                   "dp_chunk=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1565                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1566                   id, space->capacity_in_words(), dense_prefix_end,
  1567                   dp_chunk, dp_words / chunk_size,
  1568                   cr_words / chunk_size, *new_top_addr);
  1572 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1573                                       bool maximum_compaction)
  1575   EventMark m("2 summarize");
  1576   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1577   // trace("2");
  1579 #ifdef  ASSERT
  1580   if (VerifyParallelOldWithMarkSweep  &&
  1581       (PSParallelCompact::total_invocations() %
  1582          VerifyParallelOldWithMarkSweepInterval) == 0) {
  1583     verify_mark_bitmap(_mark_bitmap);
  1585   if (TraceParallelOldGCMarkingPhase) {
  1586     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1587                   "add_obj_bytes=" SIZE_FORMAT,
  1588                   add_obj_count, add_obj_size * HeapWordSize);
  1589     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1590                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1591                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1593 #endif  // #ifdef ASSERT
  1595   // Quick summarization of each space into itself, to see how much is live.
  1596   summarize_spaces_quick();
  1598   if (TraceParallelOldGCSummaryPhase) {
  1599     tty->print_cr("summary_phase:  after summarizing each space to self");
  1600     Universe::print();
  1601     NOT_PRODUCT(print_chunk_ranges());
  1602     if (Verbose) {
  1603       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1607   // The amount of live data that will end up in old space (assuming it fits).
  1608   size_t old_space_total_live = 0;
  1609   unsigned int id;
  1610   for (id = old_space_id; id < last_space_id; ++id) {
  1611     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1612                                           _space_info[id].space()->bottom());
  1615   const MutableSpace* old_space = _space_info[old_space_id].space();
  1616   if (old_space_total_live > old_space->capacity_in_words()) {
  1617     // XXX - should also try to expand
  1618     maximum_compaction = true;
  1619   } else if (!UseParallelOldGCDensePrefix) {
  1620     maximum_compaction = true;
  1623   // Permanent and Old generations.
  1624   summarize_space(perm_space_id, maximum_compaction);
  1625   summarize_space(old_space_id, maximum_compaction);
  1627   // Summarize the remaining spaces (those in the young gen) into old space.  If
  1628   // the live data from a space doesn't fit, the existing summarization is left
  1629   // intact, so the data is compacted down within the space itself.
  1630   HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
  1631   HeapWord* const target_space_end = old_space->end();
  1632   for (id = eden_space_id; id < last_space_id; ++id) {
  1633     const MutableSpace* space = _space_info[id].space();
  1634     const size_t live = pointer_delta(_space_info[id].new_top(),
  1635                                       space->bottom());
  1636     const size_t available = pointer_delta(target_space_end, *new_top_addr);
  1637     if (live <= available) {
  1638       // All the live data will fit.
  1639       if (TraceParallelOldGCSummaryPhase) {
  1640         tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
  1641                       id, *new_top_addr);
  1643       _summary_data.summarize(*new_top_addr, target_space_end,
  1644                               space->bottom(), space->top(),
  1645                               new_top_addr);
  1647       // Reset the new_top value for the space.
  1648       _space_info[id].set_new_top(space->bottom());
  1650       // Clear the source_chunk field for each chunk in the space.
  1651       ChunkData* beg_chunk = _summary_data.addr_to_chunk_ptr(space->bottom());
  1652       ChunkData* end_chunk = _summary_data.addr_to_chunk_ptr(space->top() - 1);
  1653       while (beg_chunk <= end_chunk) {
  1654         beg_chunk->set_source_chunk(0);
  1655         ++beg_chunk;
  1660   // Fill in the block data after any changes to the chunks have
  1661   // been made.
  1662 #ifdef  ASSERT
  1663   summarize_blocks(cm, perm_space_id);
  1664   summarize_blocks(cm, old_space_id);
  1665 #else
  1666   if (!UseParallelOldGCChunkPointerCalc) {
  1667     summarize_blocks(cm, perm_space_id);
  1668     summarize_blocks(cm, old_space_id);
  1670 #endif
  1672   if (TraceParallelOldGCSummaryPhase) {
  1673     tty->print_cr("summary_phase:  after final summarization");
  1674     Universe::print();
  1675     NOT_PRODUCT(print_chunk_ranges());
  1676     if (Verbose) {
  1677       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1682 // Fill in the BlockData.
  1683 // Iterate over the spaces and within each space iterate over
  1684 // the chunks and fill in the BlockData for each chunk.
  1686 void PSParallelCompact::summarize_blocks(ParCompactionManager* cm,
  1687                                          SpaceId first_compaction_space_id) {
  1688 #if     0
  1689   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(1);)
  1690   for (SpaceId cur_space_id = first_compaction_space_id;
  1691        cur_space_id != last_space_id;
  1692        cur_space_id = next_compaction_space_id(cur_space_id)) {
  1693     // Iterate over the chunks in the space
  1694     size_t start_chunk_index =
  1695       _summary_data.addr_to_chunk_idx(space(cur_space_id)->bottom());
  1696     BitBlockUpdateClosure bbu(mark_bitmap(),
  1697                               cm,
  1698                               start_chunk_index);
  1699     // Iterate over blocks.
  1700     for (size_t chunk_index =  start_chunk_index;
  1701          chunk_index < _summary_data.chunk_count() &&
  1702          _summary_data.chunk_to_addr(chunk_index) < space(cur_space_id)->top();
  1703          chunk_index++) {
  1705       // Reset the closure for the new chunk.  Note that the closure
  1706       // maintains some data that does not get reset for each chunk
  1707       // so a new instance of the closure is no appropriate.
  1708       bbu.reset_chunk(chunk_index);
  1710       // Start the iteration with the first live object.  This
  1711       // may return the end of the chunk.  That is acceptable since
  1712       // it will properly limit the iterations.
  1713       ParMarkBitMap::idx_t left_offset = mark_bitmap()->addr_to_bit(
  1714         _summary_data.first_live_or_end_in_chunk(chunk_index));
  1716       // End the iteration at the end of the chunk.
  1717       HeapWord* chunk_addr = _summary_data.chunk_to_addr(chunk_index);
  1718       HeapWord* chunk_end = chunk_addr + ParallelCompactData::ChunkSize;
  1719       ParMarkBitMap::idx_t right_offset =
  1720         mark_bitmap()->addr_to_bit(chunk_end);
  1722       // Blocks that have not objects starting in them can be
  1723       // skipped because their data will never be used.
  1724       if (left_offset < right_offset) {
  1726         // Iterate through the objects in the chunk.
  1727         ParMarkBitMap::idx_t last_offset =
  1728           mark_bitmap()->pair_iterate(&bbu, left_offset, right_offset);
  1730         // If last_offset is less than right_offset, then the iterations
  1731         // terminated while it was looking for an end bit.  "last_offset"
  1732         // is then the offset for the last start bit.  In this situation
  1733         // the "offset" field for the next block to the right (_cur_block + 1)
  1734         // will not have been update although there may be live data
  1735         // to the left of the chunk.
  1737         size_t cur_block_plus_1 = bbu.cur_block() + 1;
  1738         HeapWord* cur_block_plus_1_addr =
  1739         _summary_data.block_to_addr(bbu.cur_block()) +
  1740         ParallelCompactData::BlockSize;
  1741         HeapWord* last_offset_addr = mark_bitmap()->bit_to_addr(last_offset);
  1742  #if 1  // This code works.  The else doesn't but should.  Why does it?
  1743         // The current block (cur_block()) has already been updated.
  1744         // The last block that may need to be updated is either the
  1745         // next block (current block + 1) or the block where the
  1746         // last object starts (which can be greater than the
  1747         // next block if there were no objects found in intervening
  1748         // blocks).
  1749         size_t last_block =
  1750           MAX2(bbu.cur_block() + 1,
  1751                _summary_data.addr_to_block_idx(last_offset_addr));
  1752  #else
  1753         // The current block has already been updated.  The only block
  1754         // that remains to be updated is the block where the last
  1755         // object in the chunk starts.
  1756         size_t last_block = _summary_data.addr_to_block_idx(last_offset_addr);
  1757  #endif
  1758         assert_bit_is_start(last_offset);
  1759         assert((last_block == _summary_data.block_count()) ||
  1760              (_summary_data.block(last_block)->raw_offset() == 0),
  1761           "Should not have been set");
  1762         // Is the last block still in the current chunk?  If still
  1763         // in this chunk, update the last block (the counting that
  1764         // included the current block is meant for the offset of the last
  1765         // block).  If not in this chunk, do nothing.  Should not
  1766         // update a block in the next chunk.
  1767         if (ParallelCompactData::chunk_contains_block(bbu.chunk_index(),
  1768                                                       last_block)) {
  1769           if (last_offset < right_offset) {
  1770             // The last object started in this chunk but ends beyond
  1771             // this chunk.  Update the block for this last object.
  1772             assert(mark_bitmap()->is_marked(last_offset), "Should be marked");
  1773             // No end bit was found.  The closure takes care of
  1774             // the cases where
  1775             //   an objects crosses over into the next block
  1776             //   an objects starts and ends in the next block
  1777             // It does not handle the case where an object is
  1778             // the first object in a later block and extends
  1779             // past the end of the chunk (i.e., the closure
  1780             // only handles complete objects that are in the range
  1781             // it is given).  That object is handed back here
  1782             // for any special consideration necessary.
  1783             //
  1784             // Is the first bit in the last block a start or end bit?
  1785             //
  1786             // If the partial object ends in the last block L,
  1787             // then the 1st bit in L may be an end bit.
  1788             //
  1789             // Else does the last object start in a block after the current
  1790             // block? A block AA will already have been updated if an
  1791             // object ends in the next block AA+1.  An object found to end in
  1792             // the AA+1 is the trigger that updates AA.  Objects are being
  1793             // counted in the current block for updaing a following
  1794             // block.  An object may start in later block
  1795             // block but may extend beyond the last block in the chunk.
  1796             // Updates are only done when the end of an object has been
  1797             // found. If the last object (covered by block L) starts
  1798             // beyond the current block, then no object ends in L (otherwise
  1799             // L would be the current block).  So the first bit in L is
  1800             // a start bit.
  1801             //
  1802             // Else the last objects start in the current block and ends
  1803             // beyond the chunk.  The current block has already been
  1804             // updated and there is no later block (with an object
  1805             // starting in it) that needs to be updated.
  1806             //
  1807             if (_summary_data.partial_obj_ends_in_block(last_block)) {
  1808               _summary_data.block(last_block)->set_end_bit_offset(
  1809                 bbu.live_data_left());
  1810             } else if (last_offset_addr >= cur_block_plus_1_addr) {
  1811               //   The start of the object is on a later block
  1812               // (to the right of the current block and there are no
  1813               // complete live objects to the left of this last object
  1814               // within the chunk.
  1815               //   The first bit in the block is for the start of the
  1816               // last object.
  1817               _summary_data.block(last_block)->set_start_bit_offset(
  1818                 bbu.live_data_left());
  1819             } else {
  1820               //   The start of the last object was found in
  1821               // the current chunk (which has already
  1822               // been updated).
  1823               assert(bbu.cur_block() ==
  1824                       _summary_data.addr_to_block_idx(last_offset_addr),
  1825                 "Should be a block already processed");
  1827 #ifdef ASSERT
  1828             // Is there enough block information to find this object?
  1829             // The destination of the chunk has not been set so the
  1830             // values returned by calc_new_pointer() and
  1831             // block_calc_new_pointer() will only be
  1832             // offsets.  But they should agree.
  1833             HeapWord* moved_obj_with_chunks =
  1834               _summary_data.chunk_calc_new_pointer(last_offset_addr);
  1835             HeapWord* moved_obj_with_blocks =
  1836               _summary_data.calc_new_pointer(last_offset_addr);
  1837             assert(moved_obj_with_chunks == moved_obj_with_blocks,
  1838               "Block calculation is wrong");
  1839 #endif
  1840           } else if (last_block < _summary_data.block_count()) {
  1841             // Iterations ended looking for a start bit (but
  1842             // did not run off the end of the block table).
  1843             _summary_data.block(last_block)->set_start_bit_offset(
  1844               bbu.live_data_left());
  1847 #ifdef ASSERT
  1848         // Is there enough block information to find this object?
  1849           HeapWord* left_offset_addr = mark_bitmap()->bit_to_addr(left_offset);
  1850         HeapWord* moved_obj_with_chunks =
  1851           _summary_data.calc_new_pointer(left_offset_addr);
  1852         HeapWord* moved_obj_with_blocks =
  1853           _summary_data.calc_new_pointer(left_offset_addr);
  1854           assert(moved_obj_with_chunks == moved_obj_with_blocks,
  1855           "Block calculation is wrong");
  1856 #endif
  1858         // Is there another block after the end of this chunk?
  1859 #ifdef ASSERT
  1860         if (last_block < _summary_data.block_count()) {
  1861         // No object may have been found in a block.  If that
  1862         // block is at the end of the chunk, the iteration will
  1863         // terminate without incrementing the current block so
  1864         // that the current block is not the last block in the
  1865         // chunk.  That situation precludes asserting that the
  1866         // current block is the last block in the chunk.  Assert
  1867         // the lesser condition that the current block does not
  1868         // exceed the chunk.
  1869           assert(_summary_data.block_to_addr(last_block) <=
  1870                (_summary_data.chunk_to_addr(chunk_index) +
  1871                  ParallelCompactData::ChunkSize),
  1872               "Chunk and block inconsistency");
  1873           assert(last_offset <= right_offset, "Iteration over ran end");
  1875 #endif
  1877 #ifdef ASSERT
  1878       if (PrintGCDetails && Verbose) {
  1879         if (_summary_data.chunk(chunk_index)->partial_obj_size() == 1) {
  1880           size_t first_block =
  1881             chunk_index / ParallelCompactData::BlocksPerChunk;
  1882           gclog_or_tty->print_cr("first_block " PTR_FORMAT
  1883             " _offset " PTR_FORMAT
  1884             "_first_is_start_bit %d",
  1885             first_block,
  1886             _summary_data.block(first_block)->raw_offset(),
  1887             _summary_data.block(first_block)->first_is_start_bit());
  1890 #endif
  1893   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(16);)
  1894 #endif  // #if 0
  1897 // This method should contain all heap-specific policy for invoking a full
  1898 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1899 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1900 // before full gc, or any other specialized behavior, it needs to be added here.
  1901 //
  1902 // Note that this method should only be called from the vm_thread while at a
  1903 // safepoint.
  1904 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1905   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1906   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1907          "should be in vm thread");
  1908   ParallelScavengeHeap* heap = gc_heap();
  1909   GCCause::Cause gc_cause = heap->gc_cause();
  1910   assert(!heap->is_gc_active(), "not reentrant");
  1912   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1914   // Before each allocation/collection attempt, find out from the
  1915   // policy object if GCs are, on the whole, taking too long. If so,
  1916   // bail out without attempting a collection.  The exceptions are
  1917   // for explicitly requested GC's.
  1918   if (!policy->gc_time_limit_exceeded() ||
  1919       GCCause::is_user_requested_gc(gc_cause) ||
  1920       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1921     IsGCActiveMark mark;
  1923     if (ScavengeBeforeFullGC) {
  1924       PSScavenge::invoke_no_policy();
  1927     PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  1931 bool ParallelCompactData::chunk_contains(size_t chunk_index, HeapWord* addr) {
  1932   size_t addr_chunk_index = addr_to_chunk_idx(addr);
  1933   return chunk_index == addr_chunk_index;
  1936 bool ParallelCompactData::chunk_contains_block(size_t chunk_index,
  1937                                                size_t block_index) {
  1938   size_t first_block_in_chunk = chunk_index * BlocksPerChunk;
  1939   size_t last_block_in_chunk = (chunk_index + 1) * BlocksPerChunk - 1;
  1941   return (first_block_in_chunk <= block_index) &&
  1942          (block_index <= last_block_in_chunk);
  1945 // This method contains no policy. You should probably
  1946 // be calling invoke() instead.
  1947 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1948   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1949   assert(ref_processor() != NULL, "Sanity");
  1951   if (GC_locker::check_active_before_gc()) {
  1952     return;
  1955   TimeStamp marking_start;
  1956   TimeStamp compaction_start;
  1957   TimeStamp collection_exit;
  1959   ParallelScavengeHeap* heap = gc_heap();
  1960   GCCause::Cause gc_cause = heap->gc_cause();
  1961   PSYoungGen* young_gen = heap->young_gen();
  1962   PSOldGen* old_gen = heap->old_gen();
  1963   PSPermGen* perm_gen = heap->perm_gen();
  1964   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1966   if (ZapUnusedHeapArea) {
  1967     // Save information needed to minimize mangling
  1968     heap->record_gen_tops_before_GC();
  1971   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  1973   // Make sure data structures are sane, make the heap parsable, and do other
  1974   // miscellaneous bookkeeping.
  1975   PreGCValues pre_gc_values;
  1976   pre_compact(&pre_gc_values);
  1978   // Get the compaction manager reserved for the VM thread.
  1979   ParCompactionManager* const vmthread_cm =
  1980     ParCompactionManager::manager_array(gc_task_manager()->workers());
  1982   // Place after pre_compact() where the number of invocations is incremented.
  1983   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  1986     ResourceMark rm;
  1987     HandleMark hm;
  1989     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
  1991     // This is useful for debugging but don't change the output the
  1992     // the customer sees.
  1993     const char* gc_cause_str = "Full GC";
  1994     if (is_system_gc && PrintGCDetails) {
  1995       gc_cause_str = "Full GC (System)";
  1997     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1998     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1999     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
  2000     TraceCollectorStats tcs(counters());
  2001     TraceMemoryManagerStats tms(true /* Full GC */);
  2003     if (TraceGen1Time) accumulated_time()->start();
  2005     // Let the size policy know we're starting
  2006     size_policy->major_collection_begin();
  2008     // When collecting the permanent generation methodOops may be moving,
  2009     // so we either have to flush all bcp data or convert it into bci.
  2010     CodeCache::gc_prologue();
  2011     Threads::gc_prologue();
  2013     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2014     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2016     ref_processor()->enable_discovery();
  2018     bool marked_for_unloading = false;
  2020     marking_start.update();
  2021     marking_phase(vmthread_cm, maximum_heap_compaction);
  2023 #ifndef PRODUCT
  2024     if (TraceParallelOldGCMarkingPhase) {
  2025       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2026         "cas_by_another %d",
  2027         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2028         mark_bitmap()->cas_by_another());
  2030 #endif  // #ifndef PRODUCT
  2032 #ifdef ASSERT
  2033     if (VerifyParallelOldWithMarkSweep &&
  2034         (PSParallelCompact::total_invocations() %
  2035            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2036       gclog_or_tty->print_cr("Verify marking with mark_sweep_phase1()");
  2037       if (PrintGCDetails && Verbose) {
  2038         gclog_or_tty->print_cr("mark_sweep_phase1:");
  2040       // Clear the discovered lists so that discovered objects
  2041       // don't look like they have been discovered twice.
  2042       ref_processor()->clear_discovered_references();
  2044       PSMarkSweep::allocate_stacks();
  2045       MemRegion mr = Universe::heap()->reserved_region();
  2046       PSMarkSweep::ref_processor()->enable_discovery();
  2047       PSMarkSweep::mark_sweep_phase1(maximum_heap_compaction);
  2049 #endif
  2051     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
  2052     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2054 #ifdef ASSERT
  2055     if (VerifyParallelOldWithMarkSweep &&
  2056         (PSParallelCompact::total_invocations() %
  2057            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2058       if (PrintGCDetails && Verbose) {
  2059         gclog_or_tty->print_cr("mark_sweep_phase2:");
  2061       PSMarkSweep::mark_sweep_phase2();
  2063 #endif
  2065     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2066     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2068     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2069     // needed by the compaction for filling holes in the dense prefix.
  2070     adjust_roots();
  2072 #ifdef ASSERT
  2073     if (VerifyParallelOldWithMarkSweep &&
  2074         (PSParallelCompact::total_invocations() %
  2075            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2076       // Do a separate verify phase so that the verify
  2077       // code can use the the forwarding pointers to
  2078       // check the new pointer calculation.  The restore_marks()
  2079       // has to be done before the real compact.
  2080       vmthread_cm->set_action(ParCompactionManager::VerifyUpdate);
  2081       compact_perm(vmthread_cm);
  2082       compact_serial(vmthread_cm);
  2083       vmthread_cm->set_action(ParCompactionManager::ResetObjects);
  2084       compact_perm(vmthread_cm);
  2085       compact_serial(vmthread_cm);
  2086       vmthread_cm->set_action(ParCompactionManager::UpdateAndCopy);
  2088       // For debugging only
  2089       PSMarkSweep::restore_marks();
  2090       PSMarkSweep::deallocate_stacks();
  2092 #endif
  2094     compaction_start.update();
  2095     // Does the perm gen always have to be done serially because
  2096     // klasses are used in the update of an object?
  2097     compact_perm(vmthread_cm);
  2099     if (UseParallelOldGCCompacting) {
  2100       compact();
  2101     } else {
  2102       compact_serial(vmthread_cm);
  2105     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2106     // done before resizing.
  2107     post_compact();
  2109     // Let the size policy know we're done
  2110     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2112     if (UseAdaptiveSizePolicy) {
  2113       if (PrintAdaptiveSizePolicy) {
  2114         gclog_or_tty->print("AdaptiveSizeStart: ");
  2115         gclog_or_tty->stamp();
  2116         gclog_or_tty->print_cr(" collection: %d ",
  2117                        heap->total_collections());
  2118         if (Verbose) {
  2119           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
  2120             " perm_gen_capacity: %d ",
  2121             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
  2122             perm_gen->capacity_in_bytes());
  2126       // Don't check if the size_policy is ready here.  Let
  2127       // the size_policy check that internally.
  2128       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2129           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2130             UseAdaptiveSizePolicyWithSystemGC)) {
  2131         // Calculate optimal free space amounts
  2132         assert(young_gen->max_size() >
  2133           young_gen->from_space()->capacity_in_bytes() +
  2134           young_gen->to_space()->capacity_in_bytes(),
  2135           "Sizes of space in young gen are out-of-bounds");
  2136         size_t max_eden_size = young_gen->max_size() -
  2137           young_gen->from_space()->capacity_in_bytes() -
  2138           young_gen->to_space()->capacity_in_bytes();
  2139         size_policy->compute_generation_free_space(
  2140                               young_gen->used_in_bytes(),
  2141                               young_gen->eden_space()->used_in_bytes(),
  2142                               old_gen->used_in_bytes(),
  2143                               perm_gen->used_in_bytes(),
  2144                               young_gen->eden_space()->capacity_in_bytes(),
  2145                               old_gen->max_gen_size(),
  2146                               max_eden_size,
  2147                               true /* full gc*/,
  2148                               gc_cause);
  2150         heap->resize_old_gen(
  2151           size_policy->calculated_old_free_size_in_bytes());
  2153         // Don't resize the young generation at an major collection.  A
  2154         // desired young generation size may have been calculated but
  2155         // resizing the young generation complicates the code because the
  2156         // resizing of the old generation may have moved the boundary
  2157         // between the young generation and the old generation.  Let the
  2158         // young generation resizing happen at the minor collections.
  2160       if (PrintAdaptiveSizePolicy) {
  2161         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2162                        heap->total_collections());
  2166     if (UsePerfData) {
  2167       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2168       counters->update_counters();
  2169       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2170       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2173     heap->resize_all_tlabs();
  2175     // We collected the perm gen, so we'll resize it here.
  2176     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
  2178     if (TraceGen1Time) accumulated_time()->stop();
  2180     if (PrintGC) {
  2181       if (PrintGCDetails) {
  2182         // No GC timestamp here.  This is after GC so it would be confusing.
  2183         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2184         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2185         heap->print_heap_change(pre_gc_values.heap_used());
  2186         // Print perm gen last (print_heap_change() excludes the perm gen).
  2187         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
  2188       } else {
  2189         heap->print_heap_change(pre_gc_values.heap_used());
  2193     // Track memory usage and detect low memory
  2194     MemoryService::track_memory_usage();
  2195     heap->update_counters();
  2197     if (PrintGCDetails) {
  2198       if (size_policy->print_gc_time_limit_would_be_exceeded()) {
  2199         if (size_policy->gc_time_limit_exceeded()) {
  2200           gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
  2201             "of %d%%", GCTimeLimit);
  2202         } else {
  2203           gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
  2204             "of %d%%", GCTimeLimit);
  2207       size_policy->set_print_gc_time_limit_would_be_exceeded(false);
  2211   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2212     HandleMark hm;  // Discard invalid handles created during verification
  2213     gclog_or_tty->print(" VerifyAfterGC:");
  2214     Universe::verify(false);
  2217   // Re-verify object start arrays
  2218   if (VerifyObjectStartArray &&
  2219       VerifyAfterGC) {
  2220     old_gen->verify_object_start_array();
  2221     perm_gen->verify_object_start_array();
  2224   if (ZapUnusedHeapArea) {
  2225     old_gen->object_space()->check_mangled_unused_area_complete();
  2226     perm_gen->object_space()->check_mangled_unused_area_complete();
  2229   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2231   collection_exit.update();
  2233   if (PrintHeapAtGC) {
  2234     Universe::print_heap_after_gc();
  2236   if (PrintGCTaskTimeStamps) {
  2237     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2238                            INT64_FORMAT,
  2239                            marking_start.ticks(), compaction_start.ticks(),
  2240                            collection_exit.ticks());
  2241     gc_task_manager()->print_task_time_stamps();
  2245 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2246                                              PSYoungGen* young_gen,
  2247                                              PSOldGen* old_gen) {
  2248   MutableSpace* const eden_space = young_gen->eden_space();
  2249   assert(!eden_space->is_empty(), "eden must be non-empty");
  2250   assert(young_gen->virtual_space()->alignment() ==
  2251          old_gen->virtual_space()->alignment(), "alignments do not match");
  2253   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2254     return false;
  2257   // Both generations must be completely committed.
  2258   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2259     return false;
  2261   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2262     return false;
  2265   // Figure out how much to take from eden.  Include the average amount promoted
  2266   // in the total; otherwise the next young gen GC will simply bail out to a
  2267   // full GC.
  2268   const size_t alignment = old_gen->virtual_space()->alignment();
  2269   const size_t eden_used = eden_space->used_in_bytes();
  2270   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2271   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2272   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2274   if (absorb_size >= eden_capacity) {
  2275     return false; // Must leave some space in eden.
  2278   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2279   if (new_young_size < young_gen->min_gen_size()) {
  2280     return false; // Respect young gen minimum size.
  2283   if (TraceAdaptiveGCBoundary && Verbose) {
  2284     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2285                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2286                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2287                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2288                         absorb_size / K,
  2289                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2290                         young_gen->from_space()->used_in_bytes() / K,
  2291                         young_gen->to_space()->used_in_bytes() / K,
  2292                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2295   // Fill the unused part of the old gen.
  2296   MutableSpace* const old_space = old_gen->object_space();
  2297   MemRegion old_gen_unused(old_space->top(), old_space->end());
  2298   if (!old_gen_unused.is_empty()) {
  2299     SharedHeap::fill_region_with_object(old_gen_unused);
  2302   // Take the live data from eden and set both top and end in the old gen to
  2303   // eden top.  (Need to set end because reset_after_change() mangles the region
  2304   // from end to virtual_space->high() in debug builds).
  2305   HeapWord* const new_top = eden_space->top();
  2306   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2307                                         absorb_size);
  2308   young_gen->reset_after_change();
  2309   old_space->set_top(new_top);
  2310   old_space->set_end(new_top);
  2311   old_gen->reset_after_change();
  2313   // Update the object start array for the filler object and the data from eden.
  2314   ObjectStartArray* const start_array = old_gen->start_array();
  2315   HeapWord* const start = old_gen_unused.start();
  2316   for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
  2317     start_array->allocate_block(addr);
  2320   // Could update the promoted average here, but it is not typically updated at
  2321   // full GCs and the value to use is unclear.  Something like
  2322   //
  2323   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2325   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2326   return true;
  2329 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2330   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2331     "shouldn't return NULL");
  2332   return ParallelScavengeHeap::gc_task_manager();
  2335 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2336                                       bool maximum_heap_compaction) {
  2337   // Recursively traverse all live objects and mark them
  2338   EventMark m("1 mark object");
  2339   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2341   ParallelScavengeHeap* heap = gc_heap();
  2342   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2343   TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  2344   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2346   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2347   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2350     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2352     GCTaskQueue* q = GCTaskQueue::create();
  2354     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2355     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2356     // We scan the thread roots in parallel
  2357     Threads::create_thread_roots_marking_tasks(q);
  2358     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2359     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2360     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2361     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2362     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2363     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
  2365     if (parallel_gc_threads > 1) {
  2366       for (uint j = 0; j < parallel_gc_threads; j++) {
  2367         q->enqueue(new StealMarkingTask(&terminator));
  2371     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2372     q->enqueue(fin);
  2374     gc_task_manager()->add_list(q);
  2376     fin->wait_for();
  2378     // We have to release the barrier tasks!
  2379     WaitForBarrierGCTask::destroy(fin);
  2382   // Process reference objects found during marking
  2384     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2385     ReferencePolicy *soft_ref_policy;
  2386     if (maximum_heap_compaction) {
  2387       soft_ref_policy = new AlwaysClearPolicy();
  2388     } else {
  2389 #ifdef COMPILER2
  2390       soft_ref_policy = new LRUMaxHeapPolicy();
  2391 #else
  2392       soft_ref_policy = new LRUCurrentHeapPolicy();
  2393 #endif // COMPILER2
  2395     assert(soft_ref_policy != NULL, "No soft reference policy");
  2396     if (ref_processor()->processing_is_mt()) {
  2397       RefProcTaskExecutor task_executor;
  2398       ref_processor()->process_discovered_references(
  2399         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  2400         &follow_stack_closure, &task_executor);
  2401     } else {
  2402       ref_processor()->process_discovered_references(
  2403         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  2404         &follow_stack_closure, NULL);
  2408   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2409   // Follow system dictionary roots and unload classes.
  2410   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2412   // Follow code cache roots.
  2413   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  2414                           purged_class);
  2415   follow_stack(cm); // Flush marking stack.
  2417   // Update subklass/sibling/implementor links of live klasses
  2418   // revisit_klass_stack is used in follow_weak_klass_links().
  2419   follow_weak_klass_links(cm);
  2421   // Visit symbol and interned string tables and delete unmarked oops
  2422   SymbolTable::unlink(is_alive_closure());
  2423   StringTable::unlink(is_alive_closure());
  2425   assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  2426   assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
  2429 // This should be moved to the shared markSweep code!
  2430 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2431 public:
  2432   void do_object(oop p) { ShouldNotReachHere(); }
  2433   bool do_object_b(oop p) { return true; }
  2434 };
  2435 static PSAlwaysTrueClosure always_true;
  2437 void PSParallelCompact::adjust_roots() {
  2438   // Adjust the pointers to reflect the new locations
  2439   EventMark m("3 adjust roots");
  2440   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2442   // General strong roots.
  2443   Universe::oops_do(adjust_root_pointer_closure());
  2444   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  2445   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2446   Threads::oops_do(adjust_root_pointer_closure());
  2447   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2448   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2449   Management::oops_do(adjust_root_pointer_closure());
  2450   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2451   // SO_AllClasses
  2452   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2453   vmSymbols::oops_do(adjust_root_pointer_closure());
  2455   // Now adjust pointers in remaining weak roots.  (All of which should
  2456   // have been cleared if they pointed to non-surviving objects.)
  2457   // Global (weak) JNI handles
  2458   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2460   CodeCache::oops_do(adjust_pointer_closure());
  2461   SymbolTable::oops_do(adjust_root_pointer_closure());
  2462   StringTable::oops_do(adjust_root_pointer_closure());
  2463   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2464   // Roots were visited so references into the young gen in roots
  2465   // may have been scanned.  Process them also.
  2466   // Should the reference processor have a span that excludes
  2467   // young gen objects?
  2468   PSScavenge::reference_processor()->weak_oops_do(
  2469                                               adjust_root_pointer_closure());
  2472 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  2473   EventMark m("4 compact perm");
  2474   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  2475   // trace("4");
  2477   gc_heap()->perm_gen()->start_array()->reset();
  2478   move_and_update(cm, perm_space_id);
  2481 void PSParallelCompact::enqueue_chunk_draining_tasks(GCTaskQueue* q,
  2482                                                      uint parallel_gc_threads) {
  2483   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2485   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  2486   for (unsigned int j = 0; j < task_count; j++) {
  2487     q->enqueue(new DrainStacksCompactionTask());
  2490   // Find all chunks that are available (can be filled immediately) and
  2491   // distribute them to the thread stacks.  The iteration is done in reverse
  2492   // order (high to low) so the chunks will be removed in ascending order.
  2494   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2496   size_t fillable_chunks = 0;   // A count for diagnostic purposes.
  2497   unsigned int which = 0;       // The worker thread number.
  2499   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
  2500     SpaceInfo* const space_info = _space_info + id;
  2501     MutableSpace* const space = space_info->space();
  2502     HeapWord* const new_top = space_info->new_top();
  2504     const size_t beg_chunk = sd.addr_to_chunk_idx(space_info->dense_prefix());
  2505     const size_t end_chunk = sd.addr_to_chunk_idx(sd.chunk_align_up(new_top));
  2506     assert(end_chunk > 0, "perm gen cannot be empty");
  2508     for (size_t cur = end_chunk - 1; cur >= beg_chunk; --cur) {
  2509       if (sd.chunk(cur)->claim_unsafe()) {
  2510         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
  2511         cm->save_for_processing(cur);
  2513         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2514           const size_t count_mod_8 = fillable_chunks & 7;
  2515           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2516           gclog_or_tty->print(" " SIZE_FORMAT_W("7"), cur);
  2517           if (count_mod_8 == 7) gclog_or_tty->cr();
  2520         NOT_PRODUCT(++fillable_chunks;)
  2522         // Assign chunks to threads in round-robin fashion.
  2523         if (++which == task_count) {
  2524           which = 0;
  2530   if (TraceParallelOldGCCompactionPhase) {
  2531     if (Verbose && (fillable_chunks & 7) != 0) gclog_or_tty->cr();
  2532     gclog_or_tty->print_cr("%u initially fillable chunks", fillable_chunks);
  2536 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2538 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2539                                                     uint parallel_gc_threads) {
  2540   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2542   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2544   // Iterate over all the spaces adding tasks for updating
  2545   // chunks in the dense prefix.  Assume that 1 gc thread
  2546   // will work on opening the gaps and the remaining gc threads
  2547   // will work on the dense prefix.
  2548   SpaceId space_id = old_space_id;
  2549   while (space_id != last_space_id) {
  2550     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2551     const MutableSpace* const space = _space_info[space_id].space();
  2553     if (dense_prefix_end == space->bottom()) {
  2554       // There is no dense prefix for this space.
  2555       space_id = next_compaction_space_id(space_id);
  2556       continue;
  2559     // The dense prefix is before this chunk.
  2560     size_t chunk_index_end_dense_prefix =
  2561         sd.addr_to_chunk_idx(dense_prefix_end);
  2562     ChunkData* const dense_prefix_cp = sd.chunk(chunk_index_end_dense_prefix);
  2563     assert(dense_prefix_end == space->end() ||
  2564            dense_prefix_cp->available() ||
  2565            dense_prefix_cp->claimed(),
  2566            "The chunk after the dense prefix should always be ready to fill");
  2568     size_t chunk_index_start = sd.addr_to_chunk_idx(space->bottom());
  2570     // Is there dense prefix work?
  2571     size_t total_dense_prefix_chunks =
  2572       chunk_index_end_dense_prefix - chunk_index_start;
  2573     // How many chunks of the dense prefix should be given to
  2574     // each thread?
  2575     if (total_dense_prefix_chunks > 0) {
  2576       uint tasks_for_dense_prefix = 1;
  2577       if (UseParallelDensePrefixUpdate) {
  2578         if (total_dense_prefix_chunks <=
  2579             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2580           // Don't over partition.  This assumes that
  2581           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2582           // so there are not many chunks to process.
  2583           tasks_for_dense_prefix = parallel_gc_threads;
  2584         } else {
  2585           // Over partition
  2586           tasks_for_dense_prefix = parallel_gc_threads *
  2587             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2590       size_t chunks_per_thread = total_dense_prefix_chunks /
  2591         tasks_for_dense_prefix;
  2592       // Give each thread at least 1 chunk.
  2593       if (chunks_per_thread == 0) {
  2594         chunks_per_thread = 1;
  2597       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2598         if (chunk_index_start >= chunk_index_end_dense_prefix) {
  2599           break;
  2601         // chunk_index_end is not processed
  2602         size_t chunk_index_end = MIN2(chunk_index_start + chunks_per_thread,
  2603                                       chunk_index_end_dense_prefix);
  2604         q->enqueue(new UpdateDensePrefixTask(
  2605                                  space_id,
  2606                                  chunk_index_start,
  2607                                  chunk_index_end));
  2608         chunk_index_start = chunk_index_end;
  2611     // This gets any part of the dense prefix that did not
  2612     // fit evenly.
  2613     if (chunk_index_start < chunk_index_end_dense_prefix) {
  2614       q->enqueue(new UpdateDensePrefixTask(
  2615                                  space_id,
  2616                                  chunk_index_start,
  2617                                  chunk_index_end_dense_prefix));
  2619     space_id = next_compaction_space_id(space_id);
  2620   }  // End tasks for dense prefix
  2623 void PSParallelCompact::enqueue_chunk_stealing_tasks(
  2624                                      GCTaskQueue* q,
  2625                                      ParallelTaskTerminator* terminator_ptr,
  2626                                      uint parallel_gc_threads) {
  2627   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2629   // Once a thread has drained it's stack, it should try to steal chunks from
  2630   // other threads.
  2631   if (parallel_gc_threads > 1) {
  2632     for (uint j = 0; j < parallel_gc_threads; j++) {
  2633       q->enqueue(new StealChunkCompactionTask(terminator_ptr));
  2638 void PSParallelCompact::compact() {
  2639   EventMark m("5 compact");
  2640   // trace("5");
  2641   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2643   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2644   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2645   PSOldGen* old_gen = heap->old_gen();
  2646   old_gen->start_array()->reset();
  2647   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2648   TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  2649   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2651   GCTaskQueue* q = GCTaskQueue::create();
  2652   enqueue_chunk_draining_tasks(q, parallel_gc_threads);
  2653   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
  2654   enqueue_chunk_stealing_tasks(q, &terminator, parallel_gc_threads);
  2657     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2659     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2660     q->enqueue(fin);
  2662     gc_task_manager()->add_list(q);
  2664     fin->wait_for();
  2666     // We have to release the barrier tasks!
  2667     WaitForBarrierGCTask::destroy(fin);
  2669 #ifdef  ASSERT
  2670     // Verify that all chunks have been processed before the deferred updates.
  2671     // Note that perm_space_id is skipped; this type of verification is not
  2672     // valid until the perm gen is compacted by chunks.
  2673     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2674       verify_complete(SpaceId(id));
  2676 #endif
  2680     // Update the deferred objects, if any.  Any compaction manager can be used.
  2681     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2682     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2683     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2684       update_deferred_objects(cm, SpaceId(id));
  2689 #ifdef  ASSERT
  2690 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2691   // All Chunks between space bottom() to new_top() should be marked as filled
  2692   // and all Chunks between new_top() and top() should be available (i.e.,
  2693   // should have been emptied).
  2694   ParallelCompactData& sd = summary_data();
  2695   SpaceInfo si = _space_info[space_id];
  2696   HeapWord* new_top_addr = sd.chunk_align_up(si.new_top());
  2697   HeapWord* old_top_addr = sd.chunk_align_up(si.space()->top());
  2698   const size_t beg_chunk = sd.addr_to_chunk_idx(si.space()->bottom());
  2699   const size_t new_top_chunk = sd.addr_to_chunk_idx(new_top_addr);
  2700   const size_t old_top_chunk = sd.addr_to_chunk_idx(old_top_addr);
  2702   bool issued_a_warning = false;
  2704   size_t cur_chunk;
  2705   for (cur_chunk = beg_chunk; cur_chunk < new_top_chunk; ++cur_chunk) {
  2706     const ChunkData* const c = sd.chunk(cur_chunk);
  2707     if (!c->completed()) {
  2708       warning("chunk " SIZE_FORMAT " not filled:  "
  2709               "destination_count=" SIZE_FORMAT,
  2710               cur_chunk, c->destination_count());
  2711       issued_a_warning = true;
  2715   for (cur_chunk = new_top_chunk; cur_chunk < old_top_chunk; ++cur_chunk) {
  2716     const ChunkData* const c = sd.chunk(cur_chunk);
  2717     if (!c->available()) {
  2718       warning("chunk " SIZE_FORMAT " not empty:   "
  2719               "destination_count=" SIZE_FORMAT,
  2720               cur_chunk, c->destination_count());
  2721       issued_a_warning = true;
  2725   if (issued_a_warning) {
  2726     print_chunk_ranges();
  2729 #endif  // #ifdef ASSERT
  2731 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  2732   EventMark m("5 compact serial");
  2733   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
  2735   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2736   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2738   PSYoungGen* young_gen = heap->young_gen();
  2739   PSOldGen* old_gen = heap->old_gen();
  2741   old_gen->start_array()->reset();
  2742   old_gen->move_and_update(cm);
  2743   young_gen->move_and_update(cm);
  2747 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  2748   while(!cm->overflow_stack()->is_empty()) {
  2749     oop obj = cm->overflow_stack()->pop();
  2750     obj->follow_contents(cm);
  2753   oop obj;
  2754   // obj is a reference!!!
  2755   while (cm->marking_stack()->pop_local(obj)) {
  2756     // It would be nice to assert about the type of objects we might
  2757     // pop, but they can come from anywhere, unfortunately.
  2758     obj->follow_contents(cm);
  2762 void
  2763 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  2764   // All klasses on the revisit stack are marked at this point.
  2765   // Update and follow all subklass, sibling and implementor links.
  2766   for (uint i = 0; i < ParallelGCThreads+1; i++) {
  2767     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2768     KeepAliveClosure keep_alive_closure(cm);
  2769     for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
  2770       cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
  2771         is_alive_closure(),
  2772         &keep_alive_closure);
  2774     follow_stack(cm);
  2778 void
  2779 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  2780   cm->revisit_klass_stack()->push(k);
  2783 #ifdef VALIDATE_MARK_SWEEP
  2785 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
  2786   if (!ValidateMarkSweep)
  2787     return;
  2789   if (!isroot) {
  2790     if (_pointer_tracking) {
  2791       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2792       _adjusted_pointers->remove(p);
  2794   } else {
  2795     ptrdiff_t index = _root_refs_stack->find(p);
  2796     if (index != -1) {
  2797       int l = _root_refs_stack->length();
  2798       if (l > 0 && l - 1 != index) {
  2799         void* last = _root_refs_stack->pop();
  2800         assert(last != p, "should be different");
  2801         _root_refs_stack->at_put(index, last);
  2802       } else {
  2803         _root_refs_stack->remove(p);
  2810 void PSParallelCompact::check_adjust_pointer(void* p) {
  2811   _adjusted_pointers->push(p);
  2815 class AdjusterTracker: public OopClosure {
  2816  public:
  2817   AdjusterTracker() {};
  2818   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  2819   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2820 };
  2823 void PSParallelCompact::track_interior_pointers(oop obj) {
  2824   if (ValidateMarkSweep) {
  2825     _adjusted_pointers->clear();
  2826     _pointer_tracking = true;
  2828     AdjusterTracker checker;
  2829     obj->oop_iterate(&checker);
  2834 void PSParallelCompact::check_interior_pointers() {
  2835   if (ValidateMarkSweep) {
  2836     _pointer_tracking = false;
  2837     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2842 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  2843   if (ValidateMarkSweep) {
  2844     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2845     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  2850 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2851   if (ValidateMarkSweep) {
  2852     _live_oops->push(p);
  2853     _live_oops_size->push(size);
  2854     _live_oops_index++;
  2858 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2859   if (ValidateMarkSweep) {
  2860     oop obj = _live_oops->at((int)_live_oops_index);
  2861     guarantee(obj == p, "should be the same object");
  2862     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2863     _live_oops_index++;
  2867 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2868                                   HeapWord* compaction_top) {
  2869   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2870          "should be moved to forwarded location");
  2871   if (ValidateMarkSweep) {
  2872     PSParallelCompact::validate_live_oop(oop(q), size);
  2873     _live_oops_moved_to->push(oop(compaction_top));
  2875   if (RecordMarkSweepCompaction) {
  2876     _cur_gc_live_oops->push(q);
  2877     _cur_gc_live_oops_moved_to->push(compaction_top);
  2878     _cur_gc_live_oops_size->push(size);
  2883 void PSParallelCompact::compaction_complete() {
  2884   if (RecordMarkSweepCompaction) {
  2885     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2886     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2887     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2889     _cur_gc_live_oops           = _last_gc_live_oops;
  2890     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2891     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2892     _last_gc_live_oops          = _tmp_live_oops;
  2893     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2894     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2899 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2900   if (!RecordMarkSweepCompaction) {
  2901     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2902     return;
  2905   if (_last_gc_live_oops == NULL) {
  2906     tty->print_cr("No compaction information gathered yet");
  2907     return;
  2910   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2911     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2912     size_t    sz      = _last_gc_live_oops_size->at(i);
  2913     if (old_oop <= q && q < (old_oop + sz)) {
  2914       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2915       size_t offset = (q - old_oop);
  2916       tty->print_cr("Address " PTR_FORMAT, q);
  2917       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2918       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2919       return;
  2923   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2925 #endif //VALIDATE_MARK_SWEEP
  2927 // Update interior oops in the ranges of chunks [beg_chunk, end_chunk).
  2928 void
  2929 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2930                                                        SpaceId space_id,
  2931                                                        size_t beg_chunk,
  2932                                                        size_t end_chunk) {
  2933   ParallelCompactData& sd = summary_data();
  2934   ParMarkBitMap* const mbm = mark_bitmap();
  2936   HeapWord* beg_addr = sd.chunk_to_addr(beg_chunk);
  2937   HeapWord* const end_addr = sd.chunk_to_addr(end_chunk);
  2938   assert(beg_chunk <= end_chunk, "bad chunk range");
  2939   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2941 #ifdef  ASSERT
  2942   // Claim the chunks to avoid triggering an assert when they are marked as
  2943   // filled.
  2944   for (size_t claim_chunk = beg_chunk; claim_chunk < end_chunk; ++claim_chunk) {
  2945     assert(sd.chunk(claim_chunk)->claim_unsafe(), "claim() failed");
  2947 #endif  // #ifdef ASSERT
  2949   if (beg_addr != space(space_id)->bottom()) {
  2950     // Find the first live object or block of dead space that *starts* in this
  2951     // range of chunks.  If a partial object crosses onto the chunk, skip it; it
  2952     // will be marked for 'deferred update' when the object head is processed.
  2953     // If dead space crosses onto the chunk, it is also skipped; it will be
  2954     // filled when the prior chunk is processed.  If neither of those apply, the
  2955     // first word in the chunk is the start of a live object or dead space.
  2956     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2957     const ChunkData* const cp = sd.chunk(beg_chunk);
  2958     if (cp->partial_obj_size() != 0) {
  2959       beg_addr = sd.partial_obj_end(beg_chunk);
  2960     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2961       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2965   if (beg_addr < end_addr) {
  2966     // A live object or block of dead space starts in this range of Chunks.
  2967      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2969     // Create closures and iterate.
  2970     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2971     FillClosure fill_closure(cm, space_id);
  2972     ParMarkBitMap::IterationStatus status;
  2973     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2974                           dense_prefix_end);
  2975     if (status == ParMarkBitMap::incomplete) {
  2976       update_closure.do_addr(update_closure.source());
  2980   // Mark the chunks as filled.
  2981   ChunkData* const beg_cp = sd.chunk(beg_chunk);
  2982   ChunkData* const end_cp = sd.chunk(end_chunk);
  2983   for (ChunkData* cp = beg_cp; cp < end_cp; ++cp) {
  2984     cp->set_completed();
  2988 // Return the SpaceId for the space containing addr.  If addr is not in the
  2989 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2990 // in the heap and asserts such.
  2991 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2992   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2994   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  2995     if (_space_info[id].space()->contains(addr)) {
  2996       return SpaceId(id);
  3000   assert(false, "no space contains the addr");
  3001   return last_space_id;
  3004 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  3005                                                 SpaceId id) {
  3006   assert(id < last_space_id, "bad space id");
  3008   ParallelCompactData& sd = summary_data();
  3009   const SpaceInfo* const space_info = _space_info + id;
  3010   ObjectStartArray* const start_array = space_info->start_array();
  3012   const MutableSpace* const space = space_info->space();
  3013   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  3014   HeapWord* const beg_addr = space_info->dense_prefix();
  3015   HeapWord* const end_addr = sd.chunk_align_up(space_info->new_top());
  3017   const ChunkData* const beg_chunk = sd.addr_to_chunk_ptr(beg_addr);
  3018   const ChunkData* const end_chunk = sd.addr_to_chunk_ptr(end_addr);
  3019   const ChunkData* cur_chunk;
  3020   for (cur_chunk = beg_chunk; cur_chunk < end_chunk; ++cur_chunk) {
  3021     HeapWord* const addr = cur_chunk->deferred_obj_addr();
  3022     if (addr != NULL) {
  3023       if (start_array != NULL) {
  3024         start_array->allocate_block(addr);
  3026       oop(addr)->update_contents(cm);
  3027       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  3032 // Skip over count live words starting from beg, and return the address of the
  3033 // next live word.  Unless marked, the word corresponding to beg is assumed to
  3034 // be dead.  Callers must either ensure beg does not correspond to the middle of
  3035 // an object, or account for those live words in some other way.  Callers must
  3036 // also ensure that there are enough live words in the range [beg, end) to skip.
  3037 HeapWord*
  3038 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  3040   assert(count > 0, "sanity");
  3042   ParMarkBitMap* m = mark_bitmap();
  3043   idx_t bits_to_skip = m->words_to_bits(count);
  3044   idx_t cur_beg = m->addr_to_bit(beg);
  3045   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  3047   do {
  3048     cur_beg = m->find_obj_beg(cur_beg, search_end);
  3049     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  3050     const size_t obj_bits = cur_end - cur_beg + 1;
  3051     if (obj_bits > bits_to_skip) {
  3052       return m->bit_to_addr(cur_beg + bits_to_skip);
  3054     bits_to_skip -= obj_bits;
  3055     cur_beg = cur_end + 1;
  3056   } while (bits_to_skip > 0);
  3058   // Skipping the desired number of words landed just past the end of an object.
  3059   // Find the start of the next object.
  3060   cur_beg = m->find_obj_beg(cur_beg, search_end);
  3061   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  3062   return m->bit_to_addr(cur_beg);
  3065 HeapWord*
  3066 PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  3067                                  size_t src_chunk_idx)
  3069   ParMarkBitMap* const bitmap = mark_bitmap();
  3070   const ParallelCompactData& sd = summary_data();
  3071   const size_t ChunkSize = ParallelCompactData::ChunkSize;
  3073   assert(sd.is_chunk_aligned(dest_addr), "not aligned");
  3075   const ChunkData* const src_chunk_ptr = sd.chunk(src_chunk_idx);
  3076   const size_t partial_obj_size = src_chunk_ptr->partial_obj_size();
  3077   HeapWord* const src_chunk_destination = src_chunk_ptr->destination();
  3079   assert(dest_addr >= src_chunk_destination, "wrong src chunk");
  3080   assert(src_chunk_ptr->data_size() > 0, "src chunk cannot be empty");
  3082   HeapWord* const src_chunk_beg = sd.chunk_to_addr(src_chunk_idx);
  3083   HeapWord* const src_chunk_end = src_chunk_beg + ChunkSize;
  3085   HeapWord* addr = src_chunk_beg;
  3086   if (dest_addr == src_chunk_destination) {
  3087     // Return the first live word in the source chunk.
  3088     if (partial_obj_size == 0) {
  3089       addr = bitmap->find_obj_beg(addr, src_chunk_end);
  3090       assert(addr < src_chunk_end, "no objects start in src chunk");
  3092     return addr;
  3095   // Must skip some live data.
  3096   size_t words_to_skip = dest_addr - src_chunk_destination;
  3097   assert(src_chunk_ptr->data_size() > words_to_skip, "wrong src chunk");
  3099   if (partial_obj_size >= words_to_skip) {
  3100     // All the live words to skip are part of the partial object.
  3101     addr += words_to_skip;
  3102     if (partial_obj_size == words_to_skip) {
  3103       // Find the first live word past the partial object.
  3104       addr = bitmap->find_obj_beg(addr, src_chunk_end);
  3105       assert(addr < src_chunk_end, "wrong src chunk");
  3107     return addr;
  3110   // Skip over the partial object (if any).
  3111   if (partial_obj_size != 0) {
  3112     words_to_skip -= partial_obj_size;
  3113     addr += partial_obj_size;
  3116   // Skip over live words due to objects that start in the chunk.
  3117   addr = skip_live_words(addr, src_chunk_end, words_to_skip);
  3118   assert(addr < src_chunk_end, "wrong src chunk");
  3119   return addr;
  3122 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  3123                                                      size_t beg_chunk,
  3124                                                      HeapWord* end_addr)
  3126   ParallelCompactData& sd = summary_data();
  3127   ChunkData* const beg = sd.chunk(beg_chunk);
  3128   HeapWord* const end_addr_aligned_up = sd.chunk_align_up(end_addr);
  3129   ChunkData* const end = sd.addr_to_chunk_ptr(end_addr_aligned_up);
  3130   size_t cur_idx = beg_chunk;
  3131   for (ChunkData* cur = beg; cur < end; ++cur, ++cur_idx) {
  3132     assert(cur->data_size() > 0, "chunk must have live data");
  3133     cur->decrement_destination_count();
  3134     if (cur_idx <= cur->source_chunk() && cur->available() && cur->claim()) {
  3135       cm->save_for_processing(cur_idx);
  3140 size_t PSParallelCompact::next_src_chunk(MoveAndUpdateClosure& closure,
  3141                                          SpaceId& src_space_id,
  3142                                          HeapWord*& src_space_top,
  3143                                          HeapWord* end_addr)
  3145   typedef ParallelCompactData::ChunkData ChunkData;
  3147   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3148   const size_t chunk_size = ParallelCompactData::ChunkSize;
  3150   size_t src_chunk_idx = 0;
  3152   // Skip empty chunks (if any) up to the top of the space.
  3153   HeapWord* const src_aligned_up = sd.chunk_align_up(end_addr);
  3154   ChunkData* src_chunk_ptr = sd.addr_to_chunk_ptr(src_aligned_up);
  3155   HeapWord* const top_aligned_up = sd.chunk_align_up(src_space_top);
  3156   const ChunkData* const top_chunk_ptr = sd.addr_to_chunk_ptr(top_aligned_up);
  3157   while (src_chunk_ptr < top_chunk_ptr && src_chunk_ptr->data_size() == 0) {
  3158     ++src_chunk_ptr;
  3161   if (src_chunk_ptr < top_chunk_ptr) {
  3162     // The next source chunk is in the current space.  Update src_chunk_idx and
  3163     // the source address to match src_chunk_ptr.
  3164     src_chunk_idx = sd.chunk(src_chunk_ptr);
  3165     HeapWord* const src_chunk_addr = sd.chunk_to_addr(src_chunk_idx);
  3166     if (src_chunk_addr > closure.source()) {
  3167       closure.set_source(src_chunk_addr);
  3169     return src_chunk_idx;
  3172   // Switch to a new source space and find the first non-empty chunk.
  3173   unsigned int space_id = src_space_id + 1;
  3174   assert(space_id < last_space_id, "not enough spaces");
  3176   HeapWord* const destination = closure.destination();
  3178   do {
  3179     MutableSpace* space = _space_info[space_id].space();
  3180     HeapWord* const bottom = space->bottom();
  3181     const ChunkData* const bottom_cp = sd.addr_to_chunk_ptr(bottom);
  3183     // Iterate over the spaces that do not compact into themselves.
  3184     if (bottom_cp->destination() != bottom) {
  3185       HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  3186       const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  3188       for (const ChunkData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3189         if (src_cp->live_obj_size() > 0) {
  3190           // Found it.
  3191           assert(src_cp->destination() == destination,
  3192                  "first live obj in the space must match the destination");
  3193           assert(src_cp->partial_obj_size() == 0,
  3194                  "a space cannot begin with a partial obj");
  3196           src_space_id = SpaceId(space_id);
  3197           src_space_top = space->top();
  3198           const size_t src_chunk_idx = sd.chunk(src_cp);
  3199           closure.set_source(sd.chunk_to_addr(src_chunk_idx));
  3200           return src_chunk_idx;
  3201         } else {
  3202           assert(src_cp->data_size() == 0, "sanity");
  3206   } while (++space_id < last_space_id);
  3208   assert(false, "no source chunk was found");
  3209   return 0;
  3212 void PSParallelCompact::fill_chunk(ParCompactionManager* cm, size_t chunk_idx)
  3214   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3215   const size_t ChunkSize = ParallelCompactData::ChunkSize;
  3216   ParMarkBitMap* const bitmap = mark_bitmap();
  3217   ParallelCompactData& sd = summary_data();
  3218   ChunkData* const chunk_ptr = sd.chunk(chunk_idx);
  3220   // Get the items needed to construct the closure.
  3221   HeapWord* dest_addr = sd.chunk_to_addr(chunk_idx);
  3222   SpaceId dest_space_id = space_id(dest_addr);
  3223   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3224   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3225   assert(dest_addr < new_top, "sanity");
  3226   const size_t words = MIN2(pointer_delta(new_top, dest_addr), ChunkSize);
  3228   // Get the source chunk and related info.
  3229   size_t src_chunk_idx = chunk_ptr->source_chunk();
  3230   SpaceId src_space_id = space_id(sd.chunk_to_addr(src_chunk_idx));
  3231   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3233   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3234   closure.set_source(first_src_addr(dest_addr, src_chunk_idx));
  3236   // Adjust src_chunk_idx to prepare for decrementing destination counts (the
  3237   // destination count is not decremented when a chunk is copied to itself).
  3238   if (src_chunk_idx == chunk_idx) {
  3239     src_chunk_idx += 1;
  3242   if (bitmap->is_unmarked(closure.source())) {
  3243     // The first source word is in the middle of an object; copy the remainder
  3244     // of the object or as much as will fit.  The fact that pointer updates were
  3245     // deferred will be noted when the object header is processed.
  3246     HeapWord* const old_src_addr = closure.source();
  3247     closure.copy_partial_obj();
  3248     if (closure.is_full()) {
  3249       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3250       chunk_ptr->set_deferred_obj_addr(NULL);
  3251       chunk_ptr->set_completed();
  3252       return;
  3255     HeapWord* const end_addr = sd.chunk_align_down(closure.source());
  3256     if (sd.chunk_align_down(old_src_addr) != end_addr) {
  3257       // The partial object was copied from more than one source chunk.
  3258       decrement_destination_counts(cm, src_chunk_idx, end_addr);
  3260       // Move to the next source chunk, possibly switching spaces as well.  All
  3261       // args except end_addr may be modified.
  3262       src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
  3263                                      end_addr);
  3267   do {
  3268     HeapWord* const cur_addr = closure.source();
  3269     HeapWord* const end_addr = MIN2(sd.chunk_align_up(cur_addr + 1),
  3270                                     src_space_top);
  3271     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3273     if (status == ParMarkBitMap::incomplete) {
  3274       // The last obj that starts in the source chunk does not end in the chunk.
  3275       assert(closure.source() < end_addr, "sanity")
  3276       HeapWord* const obj_beg = closure.source();
  3277       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3278                                        src_space_top);
  3279       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3280       if (obj_end < range_end) {
  3281         // The end was found; the entire object will fit.
  3282         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3283         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3284       } else {
  3285         // The end was not found; the object will not fit.
  3286         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3287         status = ParMarkBitMap::would_overflow;
  3291     if (status == ParMarkBitMap::would_overflow) {
  3292       // The last object did not fit.  Note that interior oop updates were
  3293       // deferred, then copy enough of the object to fill the chunk.
  3294       chunk_ptr->set_deferred_obj_addr(closure.destination());
  3295       status = closure.copy_until_full(); // copies from closure.source()
  3297       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3298       chunk_ptr->set_completed();
  3299       return;
  3302     if (status == ParMarkBitMap::full) {
  3303       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3304       chunk_ptr->set_deferred_obj_addr(NULL);
  3305       chunk_ptr->set_completed();
  3306       return;
  3309     decrement_destination_counts(cm, src_chunk_idx, end_addr);
  3311     // Move to the next source chunk, possibly switching spaces as well.  All
  3312     // args except end_addr may be modified.
  3313     src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
  3314                                    end_addr);
  3315   } while (true);
  3318 void
  3319 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3320   const MutableSpace* sp = space(space_id);
  3321   if (sp->is_empty()) {
  3322     return;
  3325   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3326   ParMarkBitMap* const bitmap = mark_bitmap();
  3327   HeapWord* const dp_addr = dense_prefix(space_id);
  3328   HeapWord* beg_addr = sp->bottom();
  3329   HeapWord* end_addr = sp->top();
  3331 #ifdef ASSERT
  3332   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3333   if (cm->should_verify_only()) {
  3334     VerifyUpdateClosure verify_update(cm, sp);
  3335     bitmap->iterate(&verify_update, beg_addr, end_addr);
  3336     return;
  3339   if (cm->should_reset_only()) {
  3340     ResetObjectsClosure reset_objects(cm);
  3341     bitmap->iterate(&reset_objects, beg_addr, end_addr);
  3342     return;
  3344 #endif
  3346   const size_t beg_chunk = sd.addr_to_chunk_idx(beg_addr);
  3347   const size_t dp_chunk = sd.addr_to_chunk_idx(dp_addr);
  3348   if (beg_chunk < dp_chunk) {
  3349     update_and_deadwood_in_dense_prefix(cm, space_id, beg_chunk, dp_chunk);
  3352   // The destination of the first live object that starts in the chunk is one
  3353   // past the end of the partial object entering the chunk (if any).
  3354   HeapWord* const dest_addr = sd.partial_obj_end(dp_chunk);
  3355   HeapWord* const new_top = _space_info[space_id].new_top();
  3356   assert(new_top >= dest_addr, "bad new_top value");
  3357   const size_t words = pointer_delta(new_top, dest_addr);
  3359   if (words > 0) {
  3360     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3361     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3363     ParMarkBitMap::IterationStatus status;
  3364     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3365     assert(status == ParMarkBitMap::full, "iteration not complete");
  3366     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3367            "live objects skipped because closure is full");
  3371 jlong PSParallelCompact::millis_since_last_gc() {
  3372   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  3373   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3374   if (ret_val < 0) {
  3375     NOT_PRODUCT(warning("time warp: %d", ret_val);)
  3376     return 0;
  3378   return ret_val;
  3381 void PSParallelCompact::reset_millis_since_last_gc() {
  3382   _time_of_last_gc = os::javaTimeMillis();
  3385 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3387   if (source() != destination()) {
  3388     assert(source() > destination(), "must copy to the left");
  3389     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3391   update_state(words_remaining());
  3392   assert(is_full(), "sanity");
  3393   return ParMarkBitMap::full;
  3396 void MoveAndUpdateClosure::copy_partial_obj()
  3398   size_t words = words_remaining();
  3400   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3401   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3402   if (end_addr < range_end) {
  3403     words = bitmap()->obj_size(source(), end_addr);
  3406   // This test is necessary; if omitted, the pointer updates to a partial object
  3407   // that crosses the dense prefix boundary could be overwritten.
  3408   if (source() != destination()) {
  3409     assert(source() > destination(), "must copy to the left");
  3410     Copy::aligned_conjoint_words(source(), destination(), words);
  3412   update_state(words);
  3415 ParMarkBitMapClosure::IterationStatus
  3416 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3417   assert(destination() != NULL, "sanity");
  3418   assert(bitmap()->obj_size(addr) == words, "bad size");
  3420   _source = addr;
  3421   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3422          destination(), "wrong destination");
  3424   if (words > words_remaining()) {
  3425     return ParMarkBitMap::would_overflow;
  3428   // The start_array must be updated even if the object is not moving.
  3429   if (_start_array != NULL) {
  3430     _start_array->allocate_block(destination());
  3433   if (destination() != source()) {
  3434     assert(destination() < source(), "must copy to the left");
  3435     Copy::aligned_conjoint_words(source(), destination(), words);
  3438   oop moved_oop = (oop) destination();
  3439   moved_oop->update_contents(compaction_manager());
  3440   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3442   update_state(words);
  3443   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3444   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3447 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3448                                      ParCompactionManager* cm,
  3449                                      PSParallelCompact::SpaceId space_id) :
  3450   ParMarkBitMapClosure(mbm, cm),
  3451   _space_id(space_id),
  3452   _start_array(PSParallelCompact::start_array(space_id))
  3456 // Updates the references in the object to their new values.
  3457 ParMarkBitMapClosure::IterationStatus
  3458 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3459   do_addr(addr);
  3460   return ParMarkBitMap::incomplete;
  3463 BitBlockUpdateClosure::BitBlockUpdateClosure(ParMarkBitMap* mbm,
  3464                         ParCompactionManager* cm,
  3465                         size_t chunk_index) :
  3466                         ParMarkBitMapClosure(mbm, cm),
  3467                         _live_data_left(0),
  3468                         _cur_block(0) {
  3469   _chunk_start =
  3470     PSParallelCompact::summary_data().chunk_to_addr(chunk_index);
  3471   _chunk_end =
  3472     PSParallelCompact::summary_data().chunk_to_addr(chunk_index) +
  3473                  ParallelCompactData::ChunkSize;
  3474   _chunk_index = chunk_index;
  3475   _cur_block =
  3476     PSParallelCompact::summary_data().addr_to_block_idx(_chunk_start);
  3479 bool BitBlockUpdateClosure::chunk_contains_cur_block() {
  3480   return ParallelCompactData::chunk_contains_block(_chunk_index, _cur_block);
  3483 void BitBlockUpdateClosure::reset_chunk(size_t chunk_index) {
  3484   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(7);)
  3485   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3486   _chunk_index = chunk_index;
  3487   _live_data_left = 0;
  3488   _chunk_start = sd.chunk_to_addr(chunk_index);
  3489   _chunk_end = sd.chunk_to_addr(chunk_index) + ParallelCompactData::ChunkSize;
  3491   // The first block in this chunk
  3492   size_t first_block =  sd.addr_to_block_idx(_chunk_start);
  3493   size_t partial_live_size = sd.chunk(chunk_index)->partial_obj_size();
  3495   // Set the offset to 0. By definition it should have that value
  3496   // but it may have been written while processing an earlier chunk.
  3497   if (partial_live_size == 0) {
  3498     // No live object extends onto the chunk.  The first bit
  3499     // in the bit map for the first chunk must be a start bit.
  3500     // Although there may not be any marked bits, it is safe
  3501     // to set it as a start bit.
  3502     sd.block(first_block)->set_start_bit_offset(0);
  3503     sd.block(first_block)->set_first_is_start_bit(true);
  3504   } else if (sd.partial_obj_ends_in_block(first_block)) {
  3505     sd.block(first_block)->set_end_bit_offset(0);
  3506     sd.block(first_block)->set_first_is_start_bit(false);
  3507   } else {
  3508     // The partial object extends beyond the first block.
  3509     // There is no object starting in the first block
  3510     // so the offset and bit parity are not needed.
  3511     // Set the the bit parity to start bit so assertions
  3512     // work when not bit is found.
  3513     sd.block(first_block)->set_end_bit_offset(0);
  3514     sd.block(first_block)->set_first_is_start_bit(false);
  3516   _cur_block = first_block;
  3517 #ifdef ASSERT
  3518   if (sd.block(first_block)->first_is_start_bit()) {
  3519     assert(!sd.partial_obj_ends_in_block(first_block),
  3520       "Partial object cannot end in first block");
  3523   if (PrintGCDetails && Verbose) {
  3524     if (partial_live_size == 1) {
  3525     gclog_or_tty->print_cr("first_block " PTR_FORMAT
  3526       " _offset " PTR_FORMAT
  3527       " _first_is_start_bit %d",
  3528       first_block,
  3529       sd.block(first_block)->raw_offset(),
  3530       sd.block(first_block)->first_is_start_bit());
  3533 #endif
  3534   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(17);)
  3537 // This method is called when a object has been found (both beginning
  3538 // and end of the object) in the range of iteration.  This method is
  3539 // calculating the words of live data to the left of a block.  That live
  3540 // data includes any object starting to the left of the block (i.e.,
  3541 // the live-data-to-the-left of block AAA will include the full size
  3542 // of any object entering AAA).
  3544 ParMarkBitMapClosure::IterationStatus
  3545 BitBlockUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3546   // add the size to the block data.
  3547   HeapWord* obj = addr;
  3548   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3550   assert(bitmap()->obj_size(obj) == words, "bad size");
  3551   assert(_chunk_start <= obj, "object is not in chunk");
  3552   assert(obj + words <= _chunk_end, "object is not in chunk");
  3554   // Update the live data to the left
  3555   size_t prev_live_data_left = _live_data_left;
  3556   _live_data_left = _live_data_left + words;
  3558   // Is this object in the current block.
  3559   size_t block_of_obj = sd.addr_to_block_idx(obj);
  3560   size_t block_of_obj_last = sd.addr_to_block_idx(obj + words - 1);
  3561   HeapWord* block_of_obj_last_addr = sd.block_to_addr(block_of_obj_last);
  3562   if (_cur_block < block_of_obj) {
  3564     //
  3565     // No object crossed the block boundary and this object was found
  3566     // on the other side of the block boundary.  Update the offset for
  3567     // the new block with the data size that does not include this object.
  3568     //
  3569     // The first bit in block_of_obj is a start bit except in the
  3570     // case where the partial object for the chunk extends into
  3571     // this block.
  3572     if (sd.partial_obj_ends_in_block(block_of_obj)) {
  3573       sd.block(block_of_obj)->set_end_bit_offset(prev_live_data_left);
  3574     } else {
  3575       sd.block(block_of_obj)->set_start_bit_offset(prev_live_data_left);
  3578     // Does this object pass beyond the its block?
  3579     if (block_of_obj < block_of_obj_last) {
  3580       // Object crosses block boundary.  Two blocks need to be udpated:
  3581       //        the current block where the object started
  3582       //        the block where the object ends
  3583       //
  3584       // The offset for blocks with no objects starting in them
  3585       // (e.g., blocks between _cur_block and  block_of_obj_last)
  3586       // should not be needed.
  3587       // Note that block_of_obj_last may be in another chunk.  If so,
  3588       // it should be overwritten later.  This is a problem (writting
  3589       // into a block in a later chunk) for parallel execution.
  3590       assert(obj < block_of_obj_last_addr,
  3591         "Object should start in previous block");
  3593       // obj is crossing into block_of_obj_last so the first bit
  3594       // is and end bit.
  3595       sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
  3597       _cur_block = block_of_obj_last;
  3598     } else {
  3599       // _first_is_start_bit has already been set correctly
  3600       // in the if-then-else above so don't reset it here.
  3601       _cur_block = block_of_obj;
  3603   } else {
  3604     // The current block only changes if the object extends beyound
  3605     // the block it starts in.
  3606     //
  3607     // The object starts in the current block.
  3608     // Does this object pass beyond the end of it?
  3609     if (block_of_obj < block_of_obj_last) {
  3610       // Object crosses block boundary.
  3611       // See note above on possible blocks between block_of_obj and
  3612       // block_of_obj_last
  3613       assert(obj < block_of_obj_last_addr,
  3614         "Object should start in previous block");
  3616       sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
  3618       _cur_block = block_of_obj_last;
  3622   // Return incomplete if there are more blocks to be done.
  3623   if (chunk_contains_cur_block()) {
  3624     return ParMarkBitMap::incomplete;
  3626   return ParMarkBitMap::complete;
  3629 // Verify the new location using the forwarding pointer
  3630 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
  3631 // to the initial value.
  3632 ParMarkBitMapClosure::IterationStatus
  3633 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3634   // The second arg (words) is not used.
  3635   oop obj = (oop) addr;
  3636   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  3637   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  3638   if (forwarding_ptr == NULL) {
  3639     // The object is dead or not moving.
  3640     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
  3641            "Object liveness is wrong.");
  3642     return ParMarkBitMap::incomplete;
  3644   assert(UseParallelOldGCDensePrefix ||
  3645          (HeapMaximumCompactionInterval > 1) ||
  3646          (MarkSweepAlwaysCompactCount > 1) ||
  3647          (forwarding_ptr == new_pointer),
  3648     "Calculation of new location is incorrect");
  3649   return ParMarkBitMap::incomplete;
  3652 // Reset objects modified for debug checking.
  3653 ParMarkBitMapClosure::IterationStatus
  3654 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  3655   // The second arg (words) is not used.
  3656   oop obj = (oop) addr;
  3657   obj->init_mark();
  3658   return ParMarkBitMap::incomplete;
  3661 // Prepare for compaction.  This method is executed once
  3662 // (i.e., by a single thread) before compaction.
  3663 // Save the updated location of the intArrayKlassObj for
  3664 // filling holes in the dense prefix.
  3665 void PSParallelCompact::compact_prologue() {
  3666   _updated_int_array_klass_obj = (klassOop)
  3667     summary_data().calc_new_pointer(Universe::intArrayKlassObj());
  3670 // The initial implementation of this method created a field
  3671 // _next_compaction_space_id in SpaceInfo and initialized
  3672 // that field in SpaceInfo::initialize_space_info().  That
  3673 // required that _next_compaction_space_id be declared a
  3674 // SpaceId in SpaceInfo and that would have required that
  3675 // either SpaceId be declared in a separate class or that
  3676 // it be declared in SpaceInfo.  It didn't seem consistent
  3677 // to declare it in SpaceInfo (didn't really fit logically).
  3678 // Alternatively, defining a separate class to define SpaceId
  3679 // seem excessive.  This implementation is simple and localizes
  3680 // the knowledge.
  3682 PSParallelCompact::SpaceId
  3683 PSParallelCompact::next_compaction_space_id(SpaceId id) {
  3684   assert(id < last_space_id, "id out of range");
  3685   switch (id) {
  3686     case perm_space_id :
  3687       return last_space_id;
  3688     case old_space_id :
  3689       return eden_space_id;
  3690     case eden_space_id :
  3691       return from_space_id;
  3692     case from_space_id :
  3693       return to_space_id;
  3694     case to_space_id :
  3695       return last_space_id;
  3696     default:
  3697       assert(false, "Bad space id");
  3698       return last_space_id;
  3702 // Here temporarily for debugging
  3703 #ifdef ASSERT
  3704   size_t ParallelCompactData::block_idx(BlockData* block) {
  3705     size_t index = pointer_delta(block,
  3706       PSParallelCompact::summary_data()._block_data, sizeof(BlockData));
  3707     return index;
  3709 #endif

mercurial