src/cpu/x86/vm/vm_version_x86.cpp

Wed, 14 Dec 2011 14:54:38 -0800

author
kvn
date
Wed, 14 Dec 2011 14:54:38 -0800
changeset 3388
127b3692c168
parent 3156
f08d439fab8c
child 3400
22cee0ee8927
permissions
-rw-r--r--

7116452: Add support for AVX instructions
Summary: Added support for AVX extension to the x86 instruction set.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "runtime/java.hpp"
    29 #include "runtime/stubCodeGenerator.hpp"
    30 #include "vm_version_x86.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    40 #ifdef TARGET_OS_FAMILY_bsd
    41 # include "os_bsd.inline.hpp"
    42 #endif
    45 int VM_Version::_cpu;
    46 int VM_Version::_model;
    47 int VM_Version::_stepping;
    48 int VM_Version::_cpuFeatures;
    49 const char*           VM_Version::_features_str = "";
    50 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    52 static BufferBlob* stub_blob;
    53 static const int stub_size = 500;
    55 extern "C" {
    56   typedef void (*getPsrInfo_stub_t)(void*);
    57 }
    58 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    61 class VM_Version_StubGenerator: public StubCodeGenerator {
    62  public:
    64   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    66   address generate_getPsrInfo() {
    67     // Flags to test CPU type.
    68     const uint32_t EFL_AC           = 0x40000;
    69     const uint32_t EFL_ID           = 0x200000;
    70     // Values for when we don't have a CPUID instruction.
    71     const int      CPU_FAMILY_SHIFT = 8;
    72     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    73     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    75     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    76     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, done;
    78     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    79 #   define __ _masm->
    81     address start = __ pc();
    83     //
    84     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    85     //
    86     // LP64: rcx and rdx are first and second argument registers on windows
    88     __ push(rbp);
    89 #ifdef _LP64
    90     __ mov(rbp, c_rarg0); // cpuid_info address
    91 #else
    92     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    93 #endif
    94     __ push(rbx);
    95     __ push(rsi);
    96     __ pushf();          // preserve rbx, and flags
    97     __ pop(rax);
    98     __ push(rax);
    99     __ mov(rcx, rax);
   100     //
   101     // if we are unable to change the AC flag, we have a 386
   102     //
   103     __ xorl(rax, EFL_AC);
   104     __ push(rax);
   105     __ popf();
   106     __ pushf();
   107     __ pop(rax);
   108     __ cmpptr(rax, rcx);
   109     __ jccb(Assembler::notEqual, detect_486);
   111     __ movl(rax, CPU_FAMILY_386);
   112     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   113     __ jmp(done);
   115     //
   116     // If we are unable to change the ID flag, we have a 486 which does
   117     // not support the "cpuid" instruction.
   118     //
   119     __ bind(detect_486);
   120     __ mov(rax, rcx);
   121     __ xorl(rax, EFL_ID);
   122     __ push(rax);
   123     __ popf();
   124     __ pushf();
   125     __ pop(rax);
   126     __ cmpptr(rcx, rax);
   127     __ jccb(Assembler::notEqual, detect_586);
   129     __ bind(cpu486);
   130     __ movl(rax, CPU_FAMILY_486);
   131     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   132     __ jmp(done);
   134     //
   135     // At this point, we have a chip which supports the "cpuid" instruction
   136     //
   137     __ bind(detect_586);
   138     __ xorl(rax, rax);
   139     __ cpuid();
   140     __ orl(rax, rax);
   141     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   142                                         // value of at least 1, we give up and
   143                                         // assume a 486
   144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   145     __ movl(Address(rsi, 0), rax);
   146     __ movl(Address(rsi, 4), rbx);
   147     __ movl(Address(rsi, 8), rcx);
   148     __ movl(Address(rsi,12), rdx);
   150     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   151     __ jccb(Assembler::belowEqual, std_cpuid4);
   153     //
   154     // cpuid(0xB) Processor Topology
   155     //
   156     __ movl(rax, 0xb);
   157     __ xorl(rcx, rcx);   // Threads level
   158     __ cpuid();
   160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   161     __ movl(Address(rsi, 0), rax);
   162     __ movl(Address(rsi, 4), rbx);
   163     __ movl(Address(rsi, 8), rcx);
   164     __ movl(Address(rsi,12), rdx);
   166     __ movl(rax, 0xb);
   167     __ movl(rcx, 1);     // Cores level
   168     __ cpuid();
   169     __ push(rax);
   170     __ andl(rax, 0x1f);  // Determine if valid topology level
   171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   172     __ andl(rax, 0xffff);
   173     __ pop(rax);
   174     __ jccb(Assembler::equal, std_cpuid4);
   176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   177     __ movl(Address(rsi, 0), rax);
   178     __ movl(Address(rsi, 4), rbx);
   179     __ movl(Address(rsi, 8), rcx);
   180     __ movl(Address(rsi,12), rdx);
   182     __ movl(rax, 0xb);
   183     __ movl(rcx, 2);     // Packages level
   184     __ cpuid();
   185     __ push(rax);
   186     __ andl(rax, 0x1f);  // Determine if valid topology level
   187     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   188     __ andl(rax, 0xffff);
   189     __ pop(rax);
   190     __ jccb(Assembler::equal, std_cpuid4);
   192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   193     __ movl(Address(rsi, 0), rax);
   194     __ movl(Address(rsi, 4), rbx);
   195     __ movl(Address(rsi, 8), rcx);
   196     __ movl(Address(rsi,12), rdx);
   198     //
   199     // cpuid(0x4) Deterministic cache params
   200     //
   201     __ bind(std_cpuid4);
   202     __ movl(rax, 4);
   203     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   204     __ jccb(Assembler::greater, std_cpuid1);
   206     __ xorl(rcx, rcx);   // L1 cache
   207     __ cpuid();
   208     __ push(rax);
   209     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   210     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   211     __ pop(rax);
   212     __ jccb(Assembler::equal, std_cpuid1);
   214     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   215     __ movl(Address(rsi, 0), rax);
   216     __ movl(Address(rsi, 4), rbx);
   217     __ movl(Address(rsi, 8), rcx);
   218     __ movl(Address(rsi,12), rdx);
   220     //
   221     // Standard cpuid(0x1)
   222     //
   223     __ bind(std_cpuid1);
   224     __ movl(rax, 1);
   225     __ cpuid();
   226     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   227     __ movl(Address(rsi, 0), rax);
   228     __ movl(Address(rsi, 4), rbx);
   229     __ movl(Address(rsi, 8), rcx);
   230     __ movl(Address(rsi,12), rdx);
   232     //
   233     // Check if OS has enabled XGETBV instruction to access XCR0
   234     // (OSXSAVE feature flag) and CPU supports AVX
   235     //
   236     __ andl(rcx, 0x18000000);
   237     __ cmpl(rcx, 0x18000000);
   238     __ jccb(Assembler::notEqual, sef_cpuid);
   240     //
   241     // XCR0, XFEATURE_ENABLED_MASK register
   242     //
   243     __ xorl(rcx, rcx);   // zero for XCR0 register
   244     __ xgetbv();
   245     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   246     __ movl(Address(rsi, 0), rax);
   247     __ movl(Address(rsi, 4), rdx);
   249     //
   250     // cpuid(0x7) Structured Extended Features
   251     //
   252     __ bind(sef_cpuid);
   253     __ movl(rax, 7);
   254     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   255     __ jccb(Assembler::greater, ext_cpuid);
   257     __ xorl(rcx, rcx);
   258     __ cpuid();
   259     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   260     __ movl(Address(rsi, 0), rax);
   261     __ movl(Address(rsi, 4), rbx);
   263     //
   264     // Extended cpuid(0x80000000)
   265     //
   266     __ bind(ext_cpuid);
   267     __ movl(rax, 0x80000000);
   268     __ cpuid();
   269     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   270     __ jcc(Assembler::belowEqual, done);
   271     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   272     __ jccb(Assembler::belowEqual, ext_cpuid1);
   273     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   274     __ jccb(Assembler::belowEqual, ext_cpuid5);
   275     //
   276     // Extended cpuid(0x80000008)
   277     //
   278     __ movl(rax, 0x80000008);
   279     __ cpuid();
   280     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   281     __ movl(Address(rsi, 0), rax);
   282     __ movl(Address(rsi, 4), rbx);
   283     __ movl(Address(rsi, 8), rcx);
   284     __ movl(Address(rsi,12), rdx);
   286     //
   287     // Extended cpuid(0x80000005)
   288     //
   289     __ bind(ext_cpuid5);
   290     __ movl(rax, 0x80000005);
   291     __ cpuid();
   292     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   293     __ movl(Address(rsi, 0), rax);
   294     __ movl(Address(rsi, 4), rbx);
   295     __ movl(Address(rsi, 8), rcx);
   296     __ movl(Address(rsi,12), rdx);
   298     //
   299     // Extended cpuid(0x80000001)
   300     //
   301     __ bind(ext_cpuid1);
   302     __ movl(rax, 0x80000001);
   303     __ cpuid();
   304     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   305     __ movl(Address(rsi, 0), rax);
   306     __ movl(Address(rsi, 4), rbx);
   307     __ movl(Address(rsi, 8), rcx);
   308     __ movl(Address(rsi,12), rdx);
   310     //
   311     // return
   312     //
   313     __ bind(done);
   314     __ popf();
   315     __ pop(rsi);
   316     __ pop(rbx);
   317     __ pop(rbp);
   318     __ ret(0);
   320 #   undef __
   322     return start;
   323   };
   324 };
   327 void VM_Version::get_processor_features() {
   329   _cpu = 4; // 486 by default
   330   _model = 0;
   331   _stepping = 0;
   332   _cpuFeatures = 0;
   333   _logical_processors_per_package = 1;
   335   if (!Use486InstrsOnly) {
   336     // Get raw processor info
   337     getPsrInfo_stub(&_cpuid_info);
   338     assert_is_initialized();
   339     _cpu = extended_cpu_family();
   340     _model = extended_cpu_model();
   341     _stepping = cpu_stepping();
   343     if (cpu_family() > 4) { // it supports CPUID
   344       _cpuFeatures = feature_flags();
   345       // Logical processors are only available on P4s and above,
   346       // and only if hyperthreading is available.
   347       _logical_processors_per_package = logical_processor_count();
   348     }
   349   }
   351   _supports_cx8 = supports_cmpxchg8();
   353 #ifdef _LP64
   354   // OS should support SSE for x64 and hardware should support at least SSE2.
   355   if (!VM_Version::supports_sse2()) {
   356     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   357   }
   358   // in 64 bit the use of SSE2 is the minimum
   359   if (UseSSE < 2) UseSSE = 2;
   360 #endif
   362 #ifdef AMD64
   363   // flush_icache_stub have to be generated first.
   364   // That is why Icache line size is hard coded in ICache class,
   365   // see icache_x86.hpp. It is also the reason why we can't use
   366   // clflush instruction in 32-bit VM since it could be running
   367   // on CPU which does not support it.
   368   //
   369   // The only thing we can do is to verify that flushed
   370   // ICache::line_size has correct value.
   371   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   372   // clflush_size is size in quadwords (8 bytes).
   373   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   374 #endif
   376   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   377   if (!os::supports_sse())
   378     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   380   if (UseSSE < 4) {
   381     _cpuFeatures &= ~CPU_SSE4_1;
   382     _cpuFeatures &= ~CPU_SSE4_2;
   383   }
   385   if (UseSSE < 3) {
   386     _cpuFeatures &= ~CPU_SSE3;
   387     _cpuFeatures &= ~CPU_SSSE3;
   388     _cpuFeatures &= ~CPU_SSE4A;
   389   }
   391   if (UseSSE < 2)
   392     _cpuFeatures &= ~CPU_SSE2;
   394   if (UseSSE < 1)
   395     _cpuFeatures &= ~CPU_SSE;
   397   if (UseAVX < 2)
   398     _cpuFeatures &= ~CPU_AVX2;
   400   if (UseAVX < 1)
   401     _cpuFeatures &= ~CPU_AVX;
   403   if (logical_processors_per_package() == 1) {
   404     // HT processor could be installed on a system which doesn't support HT.
   405     _cpuFeatures &= ~CPU_HT;
   406   }
   408   char buf[256];
   409   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   410                cores_per_cpu(), threads_per_core(),
   411                cpu_family(), _model, _stepping,
   412                (supports_cmov() ? ", cmov" : ""),
   413                (supports_cmpxchg8() ? ", cx8" : ""),
   414                (supports_fxsr() ? ", fxsr" : ""),
   415                (supports_mmx()  ? ", mmx"  : ""),
   416                (supports_sse()  ? ", sse"  : ""),
   417                (supports_sse2() ? ", sse2" : ""),
   418                (supports_sse3() ? ", sse3" : ""),
   419                (supports_ssse3()? ", ssse3": ""),
   420                (supports_sse4_1() ? ", sse4.1" : ""),
   421                (supports_sse4_2() ? ", sse4.2" : ""),
   422                (supports_popcnt() ? ", popcnt" : ""),
   423                (supports_avx()    ? ", avx" : ""),
   424                (supports_avx2()   ? ", avx2" : ""),
   425                (supports_mmx_ext() ? ", mmxext" : ""),
   426                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   427                (supports_lzcnt()   ? ", lzcnt": ""),
   428                (supports_sse4a()   ? ", sse4a": ""),
   429                (supports_ht() ? ", ht": ""));
   430   _features_str = strdup(buf);
   432   // UseSSE is set to the smaller of what hardware supports and what
   433   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   434   // older Pentiums which do not support it.
   435   if (UseSSE > 4) UseSSE=4;
   436   if (UseSSE < 0) UseSSE=0;
   437   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   438     UseSSE = MIN2((intx)3,UseSSE);
   439   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   440     UseSSE = MIN2((intx)2,UseSSE);
   441   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   442     UseSSE = MIN2((intx)1,UseSSE);
   443   if (!supports_sse ()) // Drop to 0 if no SSE  support
   444     UseSSE = 0;
   446   if (UseAVX > 2) UseAVX=2;
   447   if (UseAVX < 0) UseAVX=0;
   448   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   449     UseAVX = MIN2((intx)1,UseAVX);
   450   if (!supports_avx ()) // Drop to 0 if no AVX  support
   451     UseAVX = 0;
   453   // On new cpus instructions which update whole XMM register should be used
   454   // to prevent partial register stall due to dependencies on high half.
   455   //
   456   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   457   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   458   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   459   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   461   if( is_amd() ) { // AMD cpus specific settings
   462     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   463       // Use it on new AMD cpus starting from Opteron.
   464       UseAddressNop = true;
   465     }
   466     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   467       // Use it on new AMD cpus starting from Opteron.
   468       UseNewLongLShift = true;
   469     }
   470     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   471       if( supports_sse4a() ) {
   472         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   473       } else {
   474         UseXmmLoadAndClearUpper = false;
   475       }
   476     }
   477     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   478       if( supports_sse4a() ) {
   479         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   480       } else {
   481         UseXmmRegToRegMoveAll = false;
   482       }
   483     }
   484     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   485       if( supports_sse4a() ) {
   486         UseXmmI2F = true;
   487       } else {
   488         UseXmmI2F = false;
   489       }
   490     }
   491     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   492       if( supports_sse4a() ) {
   493         UseXmmI2D = true;
   494       } else {
   495         UseXmmI2D = false;
   496       }
   497     }
   498     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   499       if( supports_sse4_2() && UseSSE >= 4 ) {
   500         UseSSE42Intrinsics = true;
   501       }
   502     }
   504     // Use count leading zeros count instruction if available.
   505     if (supports_lzcnt()) {
   506       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   507         UseCountLeadingZerosInstruction = true;
   508       }
   509     }
   511     // some defaults for AMD family 15h
   512     if ( cpu_family() == 0x15 ) {
   513       // On family 15h processors default is no sw prefetch
   514       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   515         AllocatePrefetchStyle = 0;
   516       }
   517       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   518       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   519         AllocatePrefetchInstr = 3;
   520       }
   521       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   522       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   523         UseXMMForArrayCopy = true;
   524       }
   525       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   526         UseUnalignedLoadStores = true;
   527       }
   528     }
   530   }
   532   if( is_intel() ) { // Intel cpus specific settings
   533     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   534       UseStoreImmI16 = false; // don't use it on Intel cpus
   535     }
   536     if( cpu_family() == 6 || cpu_family() == 15 ) {
   537       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   538         // Use it on all Intel cpus starting from PentiumPro
   539         UseAddressNop = true;
   540       }
   541     }
   542     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   543       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   544     }
   545     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   546       if( supports_sse3() ) {
   547         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   548       } else {
   549         UseXmmRegToRegMoveAll = false;
   550       }
   551     }
   552     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   553 #ifdef COMPILER2
   554       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   555         // For new Intel cpus do the next optimization:
   556         // don't align the beginning of a loop if there are enough instructions
   557         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   558         // in current fetch line (OptoLoopAlignment) or the padding
   559         // is big (> MaxLoopPad).
   560         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   561         // generated NOP instructions. 11 is the largest size of one
   562         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   563         MaxLoopPad = 11;
   564       }
   565 #endif // COMPILER2
   566       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   567         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   568       }
   569       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   570         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   571           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   572         }
   573       }
   574       if( supports_sse4_2() && UseSSE >= 4 ) {
   575         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   576           UseSSE42Intrinsics = true;
   577         }
   578       }
   579     }
   580   }
   582   // Use population count instruction if available.
   583   if (supports_popcnt()) {
   584     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   585       UsePopCountInstruction = true;
   586     }
   587   } else if (UsePopCountInstruction) {
   588     warning("POPCNT instruction is not available on this CPU");
   589     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   590   }
   592 #ifdef COMPILER2
   593   if (UseFPUForSpilling) {
   594     if (UseSSE < 2) {
   595       // Only supported with SSE2+
   596       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   597     }
   598   }
   599 #endif
   601   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   602   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   604   // set valid Prefetch instruction
   605   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   606   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   607   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   608   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   610   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   611   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   612   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   613   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   615   // Allocation prefetch settings
   616   intx cache_line_size = prefetch_data_size();
   617   if( cache_line_size > AllocatePrefetchStepSize )
   618     AllocatePrefetchStepSize = cache_line_size;
   620   assert(AllocatePrefetchLines > 0, "invalid value");
   621   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   622     AllocatePrefetchLines = 3;
   623   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   624   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   625     AllocateInstancePrefetchLines = 1;
   627   AllocatePrefetchDistance = allocate_prefetch_distance();
   628   AllocatePrefetchStyle    = allocate_prefetch_style();
   630   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   631     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   632 #ifdef _LP64
   633       AllocatePrefetchDistance = 384;
   634 #else
   635       AllocatePrefetchDistance = 320;
   636 #endif
   637     }
   638     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   639       AllocatePrefetchDistance = 192;
   640       AllocatePrefetchLines = 4;
   641 #ifdef COMPILER2
   642       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   643         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   644       }
   645 #endif
   646     }
   647   }
   648   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   650 #ifdef _LP64
   651   // Prefetch settings
   652   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   653   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   654   PrefetchFieldsAhead         = prefetch_fields_ahead();
   655 #endif
   657 #ifndef PRODUCT
   658   if (PrintMiscellaneous && Verbose) {
   659     tty->print_cr("Logical CPUs per core: %u",
   660                   logical_processors_per_package());
   661     tty->print("UseSSE=%d",UseSSE);
   662     if (UseAVX > 0) {
   663       tty->print("  UseAVX=%d",UseAVX);
   664     }
   665     tty->cr();
   666     tty->print("Allocation");
   667     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   668       tty->print_cr(": no prefetching");
   669     } else {
   670       tty->print(" prefetching: ");
   671       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   672         tty->print("PREFETCHW");
   673       } else if (UseSSE >= 1) {
   674         if (AllocatePrefetchInstr == 0) {
   675           tty->print("PREFETCHNTA");
   676         } else if (AllocatePrefetchInstr == 1) {
   677           tty->print("PREFETCHT0");
   678         } else if (AllocatePrefetchInstr == 2) {
   679           tty->print("PREFETCHT2");
   680         } else if (AllocatePrefetchInstr == 3) {
   681           tty->print("PREFETCHW");
   682         }
   683       }
   684       if (AllocatePrefetchLines > 1) {
   685         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   686       } else {
   687         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
   688       }
   689     }
   691     if (PrefetchCopyIntervalInBytes > 0) {
   692       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   693     }
   694     if (PrefetchScanIntervalInBytes > 0) {
   695       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   696     }
   697     if (PrefetchFieldsAhead > 0) {
   698       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   699     }
   700   }
   701 #endif // !PRODUCT
   702 }
   704 void VM_Version::initialize() {
   705   ResourceMark rm;
   706   // Making this stub must be FIRST use of assembler
   708   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   709   if (stub_blob == NULL) {
   710     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   711   }
   712   CodeBuffer c(stub_blob);
   713   VM_Version_StubGenerator g(&c);
   714   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   715                                    g.generate_getPsrInfo());
   717   get_processor_features();
   718 }

mercurial