src/os/linux/vm/os_linux.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1997
0e7d2a08b605
child 2105
c7004d700b49
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # define __STDC_FORMAT_MACROS
    27 // do not include  precompiled  header file
    28 # include "incls/_os_linux.cpp.incl"
    30 // put OS-includes here
    31 # include <sys/types.h>
    32 # include <sys/mman.h>
    33 # include <sys/stat.h>
    34 # include <sys/select.h>
    35 # include <pthread.h>
    36 # include <signal.h>
    37 # include <errno.h>
    38 # include <dlfcn.h>
    39 # include <stdio.h>
    40 # include <unistd.h>
    41 # include <sys/resource.h>
    42 # include <pthread.h>
    43 # include <sys/stat.h>
    44 # include <sys/time.h>
    45 # include <sys/times.h>
    46 # include <sys/utsname.h>
    47 # include <sys/socket.h>
    48 # include <sys/wait.h>
    49 # include <pwd.h>
    50 # include <poll.h>
    51 # include <semaphore.h>
    52 # include <fcntl.h>
    53 # include <string.h>
    54 # include <syscall.h>
    55 # include <sys/sysinfo.h>
    56 # include <gnu/libc-version.h>
    57 # include <sys/ipc.h>
    58 # include <sys/shm.h>
    59 # include <link.h>
    60 # include <stdint.h>
    61 # include <inttypes.h>
    63 #define MAX_PATH    (2 * K)
    65 // for timer info max values which include all bits
    66 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    67 #define SEC_IN_NANOSECS  1000000000LL
    69 ////////////////////////////////////////////////////////////////////////////////
    70 // global variables
    71 julong os::Linux::_physical_memory = 0;
    73 address   os::Linux::_initial_thread_stack_bottom = NULL;
    74 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
    76 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
    77 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
    78 Mutex* os::Linux::_createThread_lock = NULL;
    79 pthread_t os::Linux::_main_thread;
    80 int os::Linux::_page_size = -1;
    81 bool os::Linux::_is_floating_stack = false;
    82 bool os::Linux::_is_NPTL = false;
    83 bool os::Linux::_supports_fast_thread_cpu_time = false;
    84 const char * os::Linux::_glibc_version = NULL;
    85 const char * os::Linux::_libpthread_version = NULL;
    87 static jlong initial_time_count=0;
    89 static int clock_tics_per_sec = 100;
    91 // For diagnostics to print a message once. see run_periodic_checks
    92 static sigset_t check_signal_done;
    93 static bool check_signals = true;;
    95 static pid_t _initial_pid = 0;
    97 /* Signal number used to suspend/resume a thread */
    99 /* do not use any signal number less than SIGSEGV, see 4355769 */
   100 static int SR_signum = SIGUSR2;
   101 sigset_t SR_sigset;
   103 /* Used to protect dlsym() calls */
   104 static pthread_mutex_t dl_mutex;
   106 ////////////////////////////////////////////////////////////////////////////////
   107 // utility functions
   109 static int SR_initialize();
   110 static int SR_finalize();
   112 julong os::available_memory() {
   113   return Linux::available_memory();
   114 }
   116 julong os::Linux::available_memory() {
   117   // values in struct sysinfo are "unsigned long"
   118   struct sysinfo si;
   119   sysinfo(&si);
   121   return (julong)si.freeram * si.mem_unit;
   122 }
   124 julong os::physical_memory() {
   125   return Linux::physical_memory();
   126 }
   128 julong os::allocatable_physical_memory(julong size) {
   129 #ifdef _LP64
   130   return size;
   131 #else
   132   julong result = MIN2(size, (julong)3800*M);
   133    if (!is_allocatable(result)) {
   134      // See comments under solaris for alignment considerations
   135      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   136      result =  MIN2(size, reasonable_size);
   137    }
   138    return result;
   139 #endif // _LP64
   140 }
   142 ////////////////////////////////////////////////////////////////////////////////
   143 // environment support
   145 bool os::getenv(const char* name, char* buf, int len) {
   146   const char* val = ::getenv(name);
   147   if (val != NULL && strlen(val) < (size_t)len) {
   148     strcpy(buf, val);
   149     return true;
   150   }
   151   if (len > 0) buf[0] = 0;  // return a null string
   152   return false;
   153 }
   156 // Return true if user is running as root.
   158 bool os::have_special_privileges() {
   159   static bool init = false;
   160   static bool privileges = false;
   161   if (!init) {
   162     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   163     init = true;
   164   }
   165   return privileges;
   166 }
   169 #ifndef SYS_gettid
   170 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   171 #ifdef __ia64__
   172 #define SYS_gettid 1105
   173 #elif __i386__
   174 #define SYS_gettid 224
   175 #elif __amd64__
   176 #define SYS_gettid 186
   177 #elif __sparc__
   178 #define SYS_gettid 143
   179 #else
   180 #error define gettid for the arch
   181 #endif
   182 #endif
   184 // Cpu architecture string
   185 #if   defined(ZERO)
   186 static char cpu_arch[] = ZERO_LIBARCH;
   187 #elif defined(IA64)
   188 static char cpu_arch[] = "ia64";
   189 #elif defined(IA32)
   190 static char cpu_arch[] = "i386";
   191 #elif defined(AMD64)
   192 static char cpu_arch[] = "amd64";
   193 #elif defined(ARM)
   194 static char cpu_arch[] = "arm";
   195 #elif defined(PPC)
   196 static char cpu_arch[] = "ppc";
   197 #elif defined(SPARC)
   198 #  ifdef _LP64
   199 static char cpu_arch[] = "sparcv9";
   200 #  else
   201 static char cpu_arch[] = "sparc";
   202 #  endif
   203 #else
   204 #error Add appropriate cpu_arch setting
   205 #endif
   208 // pid_t gettid()
   209 //
   210 // Returns the kernel thread id of the currently running thread. Kernel
   211 // thread id is used to access /proc.
   212 //
   213 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   214 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   215 //
   216 pid_t os::Linux::gettid() {
   217   int rslt = syscall(SYS_gettid);
   218   if (rslt == -1) {
   219      // old kernel, no NPTL support
   220      return getpid();
   221   } else {
   222      return (pid_t)rslt;
   223   }
   224 }
   226 // Most versions of linux have a bug where the number of processors are
   227 // determined by looking at the /proc file system.  In a chroot environment,
   228 // the system call returns 1.  This causes the VM to act as if it is
   229 // a single processor and elide locking (see is_MP() call).
   230 static bool unsafe_chroot_detected = false;
   231 static const char *unstable_chroot_error = "/proc file system not found.\n"
   232                      "Java may be unstable running multithreaded in a chroot "
   233                      "environment on Linux when /proc filesystem is not mounted.";
   235 void os::Linux::initialize_system_info() {
   236   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   237   if (processor_count() == 1) {
   238     pid_t pid = os::Linux::gettid();
   239     char fname[32];
   240     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   241     FILE *fp = fopen(fname, "r");
   242     if (fp == NULL) {
   243       unsafe_chroot_detected = true;
   244     } else {
   245       fclose(fp);
   246     }
   247   }
   248   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   249   assert(processor_count() > 0, "linux error");
   250 }
   252 void os::init_system_properties_values() {
   253 //  char arch[12];
   254 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   256   // The next steps are taken in the product version:
   257   //
   258   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   259   // This library should be located at:
   260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   261   //
   262   // If "/jre/lib/" appears at the right place in the path, then we
   263   // assume libjvm[_g].so is installed in a JDK and we use this path.
   264   //
   265   // Otherwise exit with message: "Could not create the Java virtual machine."
   266   //
   267   // The following extra steps are taken in the debugging version:
   268   //
   269   // If "/jre/lib/" does NOT appear at the right place in the path
   270   // instead of exit check for $JAVA_HOME environment variable.
   271   //
   272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   273   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   274   // it looks like libjvm[_g].so is installed there
   275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   276   //
   277   // Otherwise exit.
   278   //
   279   // Important note: if the location of libjvm.so changes this
   280   // code needs to be changed accordingly.
   282   // The next few definitions allow the code to be verbatim:
   283 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   284 #define getenv(n) ::getenv(n)
   286 /*
   287  * See ld(1):
   288  *      The linker uses the following search paths to locate required
   289  *      shared libraries:
   290  *        1: ...
   291  *        ...
   292  *        7: The default directories, normally /lib and /usr/lib.
   293  */
   294 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   295 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   296 #else
   297 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   298 #endif
   300 #define EXTENSIONS_DIR  "/lib/ext"
   301 #define ENDORSED_DIR    "/lib/endorsed"
   302 #define REG_DIR         "/usr/java/packages"
   304   {
   305     /* sysclasspath, java_home, dll_dir */
   306     {
   307         char *home_path;
   308         char *dll_path;
   309         char *pslash;
   310         char buf[MAXPATHLEN];
   311         os::jvm_path(buf, sizeof(buf));
   313         // Found the full path to libjvm.so.
   314         // Now cut the path to <java_home>/jre if we can.
   315         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   316         pslash = strrchr(buf, '/');
   317         if (pslash != NULL)
   318             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   319         dll_path = malloc(strlen(buf) + 1);
   320         if (dll_path == NULL)
   321             return;
   322         strcpy(dll_path, buf);
   323         Arguments::set_dll_dir(dll_path);
   325         if (pslash != NULL) {
   326             pslash = strrchr(buf, '/');
   327             if (pslash != NULL) {
   328                 *pslash = '\0';       /* get rid of /<arch> */
   329                 pslash = strrchr(buf, '/');
   330                 if (pslash != NULL)
   331                     *pslash = '\0';   /* get rid of /lib */
   332             }
   333         }
   335         home_path = malloc(strlen(buf) + 1);
   336         if (home_path == NULL)
   337             return;
   338         strcpy(home_path, buf);
   339         Arguments::set_java_home(home_path);
   341         if (!set_boot_path('/', ':'))
   342             return;
   343     }
   345     /*
   346      * Where to look for native libraries
   347      *
   348      * Note: Due to a legacy implementation, most of the library path
   349      * is set in the launcher.  This was to accomodate linking restrictions
   350      * on legacy Linux implementations (which are no longer supported).
   351      * Eventually, all the library path setting will be done here.
   352      *
   353      * However, to prevent the proliferation of improperly built native
   354      * libraries, the new path component /usr/java/packages is added here.
   355      * Eventually, all the library path setting will be done here.
   356      */
   357     {
   358         char *ld_library_path;
   360         /*
   361          * Construct the invariant part of ld_library_path. Note that the
   362          * space for the colon and the trailing null are provided by the
   363          * nulls included by the sizeof operator (so actually we allocate
   364          * a byte more than necessary).
   365          */
   366         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   367             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   368         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   370         /*
   371          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   372          * should always exist (until the legacy problem cited above is
   373          * addressed).
   374          */
   375         char *v = getenv("LD_LIBRARY_PATH");
   376         if (v != NULL) {
   377             char *t = ld_library_path;
   378             /* That's +1 for the colon and +1 for the trailing '\0' */
   379             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   380             sprintf(ld_library_path, "%s:%s", v, t);
   381         }
   382         Arguments::set_library_path(ld_library_path);
   383     }
   385     /*
   386      * Extensions directories.
   387      *
   388      * Note that the space for the colon and the trailing null are provided
   389      * by the nulls included by the sizeof operator (so actually one byte more
   390      * than necessary is allocated).
   391      */
   392     {
   393         char *buf = malloc(strlen(Arguments::get_java_home()) +
   394             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   395         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   396             Arguments::get_java_home());
   397         Arguments::set_ext_dirs(buf);
   398     }
   400     /* Endorsed standards default directory. */
   401     {
   402         char * buf;
   403         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   404         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   405         Arguments::set_endorsed_dirs(buf);
   406     }
   407   }
   409 #undef malloc
   410 #undef getenv
   411 #undef EXTENSIONS_DIR
   412 #undef ENDORSED_DIR
   414   // Done
   415   return;
   416 }
   418 ////////////////////////////////////////////////////////////////////////////////
   419 // breakpoint support
   421 void os::breakpoint() {
   422   BREAKPOINT;
   423 }
   425 extern "C" void breakpoint() {
   426   // use debugger to set breakpoint here
   427 }
   429 ////////////////////////////////////////////////////////////////////////////////
   430 // signal support
   432 debug_only(static bool signal_sets_initialized = false);
   433 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   435 bool os::Linux::is_sig_ignored(int sig) {
   436       struct sigaction oact;
   437       sigaction(sig, (struct sigaction*)NULL, &oact);
   438       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   439                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   440       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   441            return true;
   442       else
   443            return false;
   444 }
   446 void os::Linux::signal_sets_init() {
   447   // Should also have an assertion stating we are still single-threaded.
   448   assert(!signal_sets_initialized, "Already initialized");
   449   // Fill in signals that are necessarily unblocked for all threads in
   450   // the VM. Currently, we unblock the following signals:
   451   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   452   //                         by -Xrs (=ReduceSignalUsage));
   453   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   454   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   455   // the dispositions or masks wrt these signals.
   456   // Programs embedding the VM that want to use the above signals for their
   457   // own purposes must, at this time, use the "-Xrs" option to prevent
   458   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   459   // (See bug 4345157, and other related bugs).
   460   // In reality, though, unblocking these signals is really a nop, since
   461   // these signals are not blocked by default.
   462   sigemptyset(&unblocked_sigs);
   463   sigemptyset(&allowdebug_blocked_sigs);
   464   sigaddset(&unblocked_sigs, SIGILL);
   465   sigaddset(&unblocked_sigs, SIGSEGV);
   466   sigaddset(&unblocked_sigs, SIGBUS);
   467   sigaddset(&unblocked_sigs, SIGFPE);
   468   sigaddset(&unblocked_sigs, SR_signum);
   470   if (!ReduceSignalUsage) {
   471    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   472       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   473       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   474    }
   475    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   476       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   477       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   478    }
   479    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   480       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   481       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   482    }
   483   }
   484   // Fill in signals that are blocked by all but the VM thread.
   485   sigemptyset(&vm_sigs);
   486   if (!ReduceSignalUsage)
   487     sigaddset(&vm_sigs, BREAK_SIGNAL);
   488   debug_only(signal_sets_initialized = true);
   490 }
   492 // These are signals that are unblocked while a thread is running Java.
   493 // (For some reason, they get blocked by default.)
   494 sigset_t* os::Linux::unblocked_signals() {
   495   assert(signal_sets_initialized, "Not initialized");
   496   return &unblocked_sigs;
   497 }
   499 // These are the signals that are blocked while a (non-VM) thread is
   500 // running Java. Only the VM thread handles these signals.
   501 sigset_t* os::Linux::vm_signals() {
   502   assert(signal_sets_initialized, "Not initialized");
   503   return &vm_sigs;
   504 }
   506 // These are signals that are blocked during cond_wait to allow debugger in
   507 sigset_t* os::Linux::allowdebug_blocked_signals() {
   508   assert(signal_sets_initialized, "Not initialized");
   509   return &allowdebug_blocked_sigs;
   510 }
   512 void os::Linux::hotspot_sigmask(Thread* thread) {
   514   //Save caller's signal mask before setting VM signal mask
   515   sigset_t caller_sigmask;
   516   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   518   OSThread* osthread = thread->osthread();
   519   osthread->set_caller_sigmask(caller_sigmask);
   521   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   523   if (!ReduceSignalUsage) {
   524     if (thread->is_VM_thread()) {
   525       // Only the VM thread handles BREAK_SIGNAL ...
   526       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   527     } else {
   528       // ... all other threads block BREAK_SIGNAL
   529       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   530     }
   531   }
   532 }
   534 //////////////////////////////////////////////////////////////////////////////
   535 // detecting pthread library
   537 void os::Linux::libpthread_init() {
   538   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   539   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   540   // generic name for earlier versions.
   541   // Define macros here so we can build HotSpot on old systems.
   542 # ifndef _CS_GNU_LIBC_VERSION
   543 # define _CS_GNU_LIBC_VERSION 2
   544 # endif
   545 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   546 # define _CS_GNU_LIBPTHREAD_VERSION 3
   547 # endif
   549   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   550   if (n > 0) {
   551      char *str = (char *)malloc(n);
   552      confstr(_CS_GNU_LIBC_VERSION, str, n);
   553      os::Linux::set_glibc_version(str);
   554   } else {
   555      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   556      static char _gnu_libc_version[32];
   557      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   558               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   559      os::Linux::set_glibc_version(_gnu_libc_version);
   560   }
   562   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   563   if (n > 0) {
   564      char *str = (char *)malloc(n);
   565      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   566      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   567      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   568      // is the case. LinuxThreads has a hard limit on max number of threads.
   569      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   570      // On the other hand, NPTL does not have such a limit, sysconf()
   571      // will return -1 and errno is not changed. Check if it is really NPTL.
   572      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   573          strstr(str, "NPTL") &&
   574          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   575        free(str);
   576        os::Linux::set_libpthread_version("linuxthreads");
   577      } else {
   578        os::Linux::set_libpthread_version(str);
   579      }
   580   } else {
   581     // glibc before 2.3.2 only has LinuxThreads.
   582     os::Linux::set_libpthread_version("linuxthreads");
   583   }
   585   if (strstr(libpthread_version(), "NPTL")) {
   586      os::Linux::set_is_NPTL();
   587   } else {
   588      os::Linux::set_is_LinuxThreads();
   589   }
   591   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   592   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   593   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   594      os::Linux::set_is_floating_stack();
   595   }
   596 }
   598 /////////////////////////////////////////////////////////////////////////////
   599 // thread stack
   601 // Force Linux kernel to expand current thread stack. If "bottom" is close
   602 // to the stack guard, caller should block all signals.
   603 //
   604 // MAP_GROWSDOWN:
   605 //   A special mmap() flag that is used to implement thread stacks. It tells
   606 //   kernel that the memory region should extend downwards when needed. This
   607 //   allows early versions of LinuxThreads to only mmap the first few pages
   608 //   when creating a new thread. Linux kernel will automatically expand thread
   609 //   stack as needed (on page faults).
   610 //
   611 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   612 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   613 //   region, it's hard to tell if the fault is due to a legitimate stack
   614 //   access or because of reading/writing non-exist memory (e.g. buffer
   615 //   overrun). As a rule, if the fault happens below current stack pointer,
   616 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   617 //   application (see Linux kernel fault.c).
   618 //
   619 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   620 //   stack overflow detection.
   621 //
   622 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   623 //   not use this flag. However, the stack of initial thread is not created
   624 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   625 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   626 //   and then attach the thread to JVM.
   627 //
   628 // To get around the problem and allow stack banging on Linux, we need to
   629 // manually expand thread stack after receiving the SIGSEGV.
   630 //
   631 // There are two ways to expand thread stack to address "bottom", we used
   632 // both of them in JVM before 1.5:
   633 //   1. adjust stack pointer first so that it is below "bottom", and then
   634 //      touch "bottom"
   635 //   2. mmap() the page in question
   636 //
   637 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   638 // if current sp is already near the lower end of page 101, and we need to
   639 // call mmap() to map page 100, it is possible that part of the mmap() frame
   640 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   641 // That will destroy the mmap() frame and cause VM to crash.
   642 //
   643 // The following code works by adjusting sp first, then accessing the "bottom"
   644 // page to force a page fault. Linux kernel will then automatically expand the
   645 // stack mapping.
   646 //
   647 // _expand_stack_to() assumes its frame size is less than page size, which
   648 // should always be true if the function is not inlined.
   650 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   651 #define NOINLINE
   652 #else
   653 #define NOINLINE __attribute__ ((noinline))
   654 #endif
   656 static void _expand_stack_to(address bottom) NOINLINE;
   658 static void _expand_stack_to(address bottom) {
   659   address sp;
   660   size_t size;
   661   volatile char *p;
   663   // Adjust bottom to point to the largest address within the same page, it
   664   // gives us a one-page buffer if alloca() allocates slightly more memory.
   665   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   666   bottom += os::Linux::page_size() - 1;
   668   // sp might be slightly above current stack pointer; if that's the case, we
   669   // will alloca() a little more space than necessary, which is OK. Don't use
   670   // os::current_stack_pointer(), as its result can be slightly below current
   671   // stack pointer, causing us to not alloca enough to reach "bottom".
   672   sp = (address)&sp;
   674   if (sp > bottom) {
   675     size = sp - bottom;
   676     p = (volatile char *)alloca(size);
   677     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   678     p[0] = '\0';
   679   }
   680 }
   682 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   683   assert(t!=NULL, "just checking");
   684   assert(t->osthread()->expanding_stack(), "expand should be set");
   685   assert(t->stack_base() != NULL, "stack_base was not initialized");
   687   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   688     sigset_t mask_all, old_sigset;
   689     sigfillset(&mask_all);
   690     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   691     _expand_stack_to(addr);
   692     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   693     return true;
   694   }
   695   return false;
   696 }
   698 //////////////////////////////////////////////////////////////////////////////
   699 // create new thread
   701 static address highest_vm_reserved_address();
   703 // check if it's safe to start a new thread
   704 static bool _thread_safety_check(Thread* thread) {
   705   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   706     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   707     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   708     //   allocated (MAP_FIXED) from high address space. Every thread stack
   709     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   710     //   it to other values if they rebuild LinuxThreads).
   711     //
   712     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   713     // the memory region has already been mmap'ed. That means if we have too
   714     // many threads and/or very large heap, eventually thread stack will
   715     // collide with heap.
   716     //
   717     // Here we try to prevent heap/stack collision by comparing current
   718     // stack bottom with the highest address that has been mmap'ed by JVM
   719     // plus a safety margin for memory maps created by native code.
   720     //
   721     // This feature can be disabled by setting ThreadSafetyMargin to 0
   722     //
   723     if (ThreadSafetyMargin > 0) {
   724       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   726       // not safe if our stack extends below the safety margin
   727       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   728     } else {
   729       return true;
   730     }
   731   } else {
   732     // Floating stack LinuxThreads or NPTL:
   733     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   734     //   there's not enough space left, pthread_create() will fail. If we come
   735     //   here, that means enough space has been reserved for stack.
   736     return true;
   737   }
   738 }
   740 // Thread start routine for all newly created threads
   741 static void *java_start(Thread *thread) {
   742   // Try to randomize the cache line index of hot stack frames.
   743   // This helps when threads of the same stack traces evict each other's
   744   // cache lines. The threads can be either from the same JVM instance, or
   745   // from different JVM instances. The benefit is especially true for
   746   // processors with hyperthreading technology.
   747   static int counter = 0;
   748   int pid = os::current_process_id();
   749   alloca(((pid ^ counter++) & 7) * 128);
   751   ThreadLocalStorage::set_thread(thread);
   753   OSThread* osthread = thread->osthread();
   754   Monitor* sync = osthread->startThread_lock();
   756   // non floating stack LinuxThreads needs extra check, see above
   757   if (!_thread_safety_check(thread)) {
   758     // notify parent thread
   759     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   760     osthread->set_state(ZOMBIE);
   761     sync->notify_all();
   762     return NULL;
   763   }
   765   // thread_id is kernel thread id (similar to Solaris LWP id)
   766   osthread->set_thread_id(os::Linux::gettid());
   768   if (UseNUMA) {
   769     int lgrp_id = os::numa_get_group_id();
   770     if (lgrp_id != -1) {
   771       thread->set_lgrp_id(lgrp_id);
   772     }
   773   }
   774   // initialize signal mask for this thread
   775   os::Linux::hotspot_sigmask(thread);
   777   // initialize floating point control register
   778   os::Linux::init_thread_fpu_state();
   780   // handshaking with parent thread
   781   {
   782     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   784     // notify parent thread
   785     osthread->set_state(INITIALIZED);
   786     sync->notify_all();
   788     // wait until os::start_thread()
   789     while (osthread->get_state() == INITIALIZED) {
   790       sync->wait(Mutex::_no_safepoint_check_flag);
   791     }
   792   }
   794   // call one more level start routine
   795   thread->run();
   797   return 0;
   798 }
   800 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   801   assert(thread->osthread() == NULL, "caller responsible");
   803   // Allocate the OSThread object
   804   OSThread* osthread = new OSThread(NULL, NULL);
   805   if (osthread == NULL) {
   806     return false;
   807   }
   809   // set the correct thread state
   810   osthread->set_thread_type(thr_type);
   812   // Initial state is ALLOCATED but not INITIALIZED
   813   osthread->set_state(ALLOCATED);
   815   thread->set_osthread(osthread);
   817   // init thread attributes
   818   pthread_attr_t attr;
   819   pthread_attr_init(&attr);
   820   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   822   // stack size
   823   if (os::Linux::supports_variable_stack_size()) {
   824     // calculate stack size if it's not specified by caller
   825     if (stack_size == 0) {
   826       stack_size = os::Linux::default_stack_size(thr_type);
   828       switch (thr_type) {
   829       case os::java_thread:
   830         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   831         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
   832         break;
   833       case os::compiler_thread:
   834         if (CompilerThreadStackSize > 0) {
   835           stack_size = (size_t)(CompilerThreadStackSize * K);
   836           break;
   837         } // else fall through:
   838           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   839       case os::vm_thread:
   840       case os::pgc_thread:
   841       case os::cgc_thread:
   842       case os::watcher_thread:
   843         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   844         break;
   845       }
   846     }
   848     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   849     pthread_attr_setstacksize(&attr, stack_size);
   850   } else {
   851     // let pthread_create() pick the default value.
   852   }
   854   // glibc guard page
   855   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   857   ThreadState state;
   859   {
   860     // Serialize thread creation if we are running with fixed stack LinuxThreads
   861     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   862     if (lock) {
   863       os::Linux::createThread_lock()->lock_without_safepoint_check();
   864     }
   866     pthread_t tid;
   867     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   869     pthread_attr_destroy(&attr);
   871     if (ret != 0) {
   872       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   873         perror("pthread_create()");
   874       }
   875       // Need to clean up stuff we've allocated so far
   876       thread->set_osthread(NULL);
   877       delete osthread;
   878       if (lock) os::Linux::createThread_lock()->unlock();
   879       return false;
   880     }
   882     // Store pthread info into the OSThread
   883     osthread->set_pthread_id(tid);
   885     // Wait until child thread is either initialized or aborted
   886     {
   887       Monitor* sync_with_child = osthread->startThread_lock();
   888       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   889       while ((state = osthread->get_state()) == ALLOCATED) {
   890         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   891       }
   892     }
   894     if (lock) {
   895       os::Linux::createThread_lock()->unlock();
   896     }
   897   }
   899   // Aborted due to thread limit being reached
   900   if (state == ZOMBIE) {
   901       thread->set_osthread(NULL);
   902       delete osthread;
   903       return false;
   904   }
   906   // The thread is returned suspended (in state INITIALIZED),
   907   // and is started higher up in the call chain
   908   assert(state == INITIALIZED, "race condition");
   909   return true;
   910 }
   912 /////////////////////////////////////////////////////////////////////////////
   913 // attach existing thread
   915 // bootstrap the main thread
   916 bool os::create_main_thread(JavaThread* thread) {
   917   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   918   return create_attached_thread(thread);
   919 }
   921 bool os::create_attached_thread(JavaThread* thread) {
   922 #ifdef ASSERT
   923     thread->verify_not_published();
   924 #endif
   926   // Allocate the OSThread object
   927   OSThread* osthread = new OSThread(NULL, NULL);
   929   if (osthread == NULL) {
   930     return false;
   931   }
   933   // Store pthread info into the OSThread
   934   osthread->set_thread_id(os::Linux::gettid());
   935   osthread->set_pthread_id(::pthread_self());
   937   // initialize floating point control register
   938   os::Linux::init_thread_fpu_state();
   940   // Initial thread state is RUNNABLE
   941   osthread->set_state(RUNNABLE);
   943   thread->set_osthread(osthread);
   945   if (UseNUMA) {
   946     int lgrp_id = os::numa_get_group_id();
   947     if (lgrp_id != -1) {
   948       thread->set_lgrp_id(lgrp_id);
   949     }
   950   }
   952   if (os::Linux::is_initial_thread()) {
   953     // If current thread is initial thread, its stack is mapped on demand,
   954     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   955     // the entire stack region to avoid SEGV in stack banging.
   956     // It is also useful to get around the heap-stack-gap problem on SuSE
   957     // kernel (see 4821821 for details). We first expand stack to the top
   958     // of yellow zone, then enable stack yellow zone (order is significant,
   959     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   960     // is no gap between the last two virtual memory regions.
   962     JavaThread *jt = (JavaThread *)thread;
   963     address addr = jt->stack_yellow_zone_base();
   964     assert(addr != NULL, "initialization problem?");
   965     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   967     osthread->set_expanding_stack();
   968     os::Linux::manually_expand_stack(jt, addr);
   969     osthread->clear_expanding_stack();
   970   }
   972   // initialize signal mask for this thread
   973   // and save the caller's signal mask
   974   os::Linux::hotspot_sigmask(thread);
   976   return true;
   977 }
   979 void os::pd_start_thread(Thread* thread) {
   980   OSThread * osthread = thread->osthread();
   981   assert(osthread->get_state() != INITIALIZED, "just checking");
   982   Monitor* sync_with_child = osthread->startThread_lock();
   983   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   984   sync_with_child->notify();
   985 }
   987 // Free Linux resources related to the OSThread
   988 void os::free_thread(OSThread* osthread) {
   989   assert(osthread != NULL, "osthread not set");
   991   if (Thread::current()->osthread() == osthread) {
   992     // Restore caller's signal mask
   993     sigset_t sigmask = osthread->caller_sigmask();
   994     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   995    }
   997   delete osthread;
   998 }
  1000 //////////////////////////////////////////////////////////////////////////////
  1001 // thread local storage
  1003 int os::allocate_thread_local_storage() {
  1004   pthread_key_t key;
  1005   int rslt = pthread_key_create(&key, NULL);
  1006   assert(rslt == 0, "cannot allocate thread local storage");
  1007   return (int)key;
  1010 // Note: This is currently not used by VM, as we don't destroy TLS key
  1011 // on VM exit.
  1012 void os::free_thread_local_storage(int index) {
  1013   int rslt = pthread_key_delete((pthread_key_t)index);
  1014   assert(rslt == 0, "invalid index");
  1017 void os::thread_local_storage_at_put(int index, void* value) {
  1018   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1019   assert(rslt == 0, "pthread_setspecific failed");
  1022 extern "C" Thread* get_thread() {
  1023   return ThreadLocalStorage::thread();
  1026 //////////////////////////////////////////////////////////////////////////////
  1027 // initial thread
  1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1030 bool os::Linux::is_initial_thread(void) {
  1031   char dummy;
  1032   // If called before init complete, thread stack bottom will be null.
  1033   // Can be called if fatal error occurs before initialization.
  1034   if (initial_thread_stack_bottom() == NULL) return false;
  1035   assert(initial_thread_stack_bottom() != NULL &&
  1036          initial_thread_stack_size()   != 0,
  1037          "os::init did not locate initial thread's stack region");
  1038   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1039       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1040        return true;
  1041   else return false;
  1044 // Find the virtual memory area that contains addr
  1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1046   FILE *fp = fopen("/proc/self/maps", "r");
  1047   if (fp) {
  1048     address low, high;
  1049     while (!feof(fp)) {
  1050       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1051         if (low <= addr && addr < high) {
  1052            if (vma_low)  *vma_low  = low;
  1053            if (vma_high) *vma_high = high;
  1054            fclose (fp);
  1055            return true;
  1058       for (;;) {
  1059         int ch = fgetc(fp);
  1060         if (ch == EOF || ch == (int)'\n') break;
  1063     fclose(fp);
  1065   return false;
  1068 // Locate initial thread stack. This special handling of initial thread stack
  1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1070 // bogus value for initial thread.
  1071 void os::Linux::capture_initial_stack(size_t max_size) {
  1072   // stack size is the easy part, get it from RLIMIT_STACK
  1073   size_t stack_size;
  1074   struct rlimit rlim;
  1075   getrlimit(RLIMIT_STACK, &rlim);
  1076   stack_size = rlim.rlim_cur;
  1078   // 6308388: a bug in ld.so will relocate its own .data section to the
  1079   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1080   //   so we won't install guard page on ld.so's data section.
  1081   stack_size -= 2 * page_size();
  1083   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1084   //   7.1, in both cases we will get 2G in return value.
  1085   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1086   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1087   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1088   //   in case other parts in glibc still assumes 2M max stack size.
  1089   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1090 #ifndef IA64
  1091   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1092 #else
  1093   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1094   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1095 #endif
  1097   // Try to figure out where the stack base (top) is. This is harder.
  1098   //
  1099   // When an application is started, glibc saves the initial stack pointer in
  1100   // a global variable "__libc_stack_end", which is then used by system
  1101   // libraries. __libc_stack_end should be pretty close to stack top. The
  1102   // variable is available since the very early days. However, because it is
  1103   // a private interface, it could disappear in the future.
  1104   //
  1105   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1106   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1107   // stack top. Note that /proc may not exist if VM is running as a chroot
  1108   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1109   // /proc/<pid>/stat could change in the future (though unlikely).
  1110   //
  1111   // We try __libc_stack_end first. If that doesn't work, look for
  1112   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1113   // as a hint, which should work well in most cases.
  1115   uintptr_t stack_start;
  1117   // try __libc_stack_end first
  1118   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1119   if (p && *p) {
  1120     stack_start = *p;
  1121   } else {
  1122     // see if we can get the start_stack field from /proc/self/stat
  1123     FILE *fp;
  1124     int pid;
  1125     char state;
  1126     int ppid;
  1127     int pgrp;
  1128     int session;
  1129     int nr;
  1130     int tpgrp;
  1131     unsigned long flags;
  1132     unsigned long minflt;
  1133     unsigned long cminflt;
  1134     unsigned long majflt;
  1135     unsigned long cmajflt;
  1136     unsigned long utime;
  1137     unsigned long stime;
  1138     long cutime;
  1139     long cstime;
  1140     long prio;
  1141     long nice;
  1142     long junk;
  1143     long it_real;
  1144     uintptr_t start;
  1145     uintptr_t vsize;
  1146     intptr_t rss;
  1147     uintptr_t rsslim;
  1148     uintptr_t scodes;
  1149     uintptr_t ecode;
  1150     int i;
  1152     // Figure what the primordial thread stack base is. Code is inspired
  1153     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1154     // followed by command name surrounded by parentheses, state, etc.
  1155     char stat[2048];
  1156     int statlen;
  1158     fp = fopen("/proc/self/stat", "r");
  1159     if (fp) {
  1160       statlen = fread(stat, 1, 2047, fp);
  1161       stat[statlen] = '\0';
  1162       fclose(fp);
  1164       // Skip pid and the command string. Note that we could be dealing with
  1165       // weird command names, e.g. user could decide to rename java launcher
  1166       // to "java 1.4.2 :)", then the stat file would look like
  1167       //                1234 (java 1.4.2 :)) R ... ...
  1168       // We don't really need to know the command string, just find the last
  1169       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1170       char * s = strrchr(stat, ')');
  1172       i = 0;
  1173       if (s) {
  1174         // Skip blank chars
  1175         do s++; while (isspace(*s));
  1177 #define _UFM UINTX_FORMAT
  1178 #define _DFM INTX_FORMAT
  1180         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1181         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1182         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1183              &state,          /* 3  %c  */
  1184              &ppid,           /* 4  %d  */
  1185              &pgrp,           /* 5  %d  */
  1186              &session,        /* 6  %d  */
  1187              &nr,             /* 7  %d  */
  1188              &tpgrp,          /* 8  %d  */
  1189              &flags,          /* 9  %lu  */
  1190              &minflt,         /* 10 %lu  */
  1191              &cminflt,        /* 11 %lu  */
  1192              &majflt,         /* 12 %lu  */
  1193              &cmajflt,        /* 13 %lu  */
  1194              &utime,          /* 14 %lu  */
  1195              &stime,          /* 15 %lu  */
  1196              &cutime,         /* 16 %ld  */
  1197              &cstime,         /* 17 %ld  */
  1198              &prio,           /* 18 %ld  */
  1199              &nice,           /* 19 %ld  */
  1200              &junk,           /* 20 %ld  */
  1201              &it_real,        /* 21 %ld  */
  1202              &start,          /* 22 UINTX_FORMAT */
  1203              &vsize,          /* 23 UINTX_FORMAT */
  1204              &rss,            /* 24 INTX_FORMAT  */
  1205              &rsslim,         /* 25 UINTX_FORMAT */
  1206              &scodes,         /* 26 UINTX_FORMAT */
  1207              &ecode,          /* 27 UINTX_FORMAT */
  1208              &stack_start);   /* 28 UINTX_FORMAT */
  1211 #undef _UFM
  1212 #undef _DFM
  1214       if (i != 28 - 2) {
  1215          assert(false, "Bad conversion from /proc/self/stat");
  1216          // product mode - assume we are the initial thread, good luck in the
  1217          // embedded case.
  1218          warning("Can't detect initial thread stack location - bad conversion");
  1219          stack_start = (uintptr_t) &rlim;
  1221     } else {
  1222       // For some reason we can't open /proc/self/stat (for example, running on
  1223       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1224       // most cases, so don't abort:
  1225       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1226       stack_start = (uintptr_t) &rlim;
  1230   // Now we have a pointer (stack_start) very close to the stack top, the
  1231   // next thing to do is to figure out the exact location of stack top. We
  1232   // can find out the virtual memory area that contains stack_start by
  1233   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1234   // and its upper limit is the real stack top. (again, this would fail if
  1235   // running inside chroot, because /proc may not exist.)
  1237   uintptr_t stack_top;
  1238   address low, high;
  1239   if (find_vma((address)stack_start, &low, &high)) {
  1240     // success, "high" is the true stack top. (ignore "low", because initial
  1241     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1242     stack_top = (uintptr_t)high;
  1243   } else {
  1244     // failed, likely because /proc/self/maps does not exist
  1245     warning("Can't detect initial thread stack location - find_vma failed");
  1246     // best effort: stack_start is normally within a few pages below the real
  1247     // stack top, use it as stack top, and reduce stack size so we won't put
  1248     // guard page outside stack.
  1249     stack_top = stack_start;
  1250     stack_size -= 16 * page_size();
  1253   // stack_top could be partially down the page so align it
  1254   stack_top = align_size_up(stack_top, page_size());
  1256   if (max_size && stack_size > max_size) {
  1257      _initial_thread_stack_size = max_size;
  1258   } else {
  1259      _initial_thread_stack_size = stack_size;
  1262   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1263   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1266 ////////////////////////////////////////////////////////////////////////////////
  1267 // time support
  1269 // Time since start-up in seconds to a fine granularity.
  1270 // Used by VMSelfDestructTimer and the MemProfiler.
  1271 double os::elapsedTime() {
  1273   return (double)(os::elapsed_counter()) * 0.000001;
  1276 jlong os::elapsed_counter() {
  1277   timeval time;
  1278   int status = gettimeofday(&time, NULL);
  1279   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1282 jlong os::elapsed_frequency() {
  1283   return (1000 * 1000);
  1286 // For now, we say that linux does not support vtime.  I have no idea
  1287 // whether it can actually be made to (DLD, 9/13/05).
  1289 bool os::supports_vtime() { return false; }
  1290 bool os::enable_vtime()   { return false; }
  1291 bool os::vtime_enabled()  { return false; }
  1292 double os::elapsedVTime() {
  1293   // better than nothing, but not much
  1294   return elapsedTime();
  1297 jlong os::javaTimeMillis() {
  1298   timeval time;
  1299   int status = gettimeofday(&time, NULL);
  1300   assert(status != -1, "linux error");
  1301   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1304 #ifndef CLOCK_MONOTONIC
  1305 #define CLOCK_MONOTONIC (1)
  1306 #endif
  1308 void os::Linux::clock_init() {
  1309   // we do dlopen's in this particular order due to bug in linux
  1310   // dynamical loader (see 6348968) leading to crash on exit
  1311   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1312   if (handle == NULL) {
  1313     handle = dlopen("librt.so", RTLD_LAZY);
  1316   if (handle) {
  1317     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1319     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1320            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1321     if (clock_getres_func && clock_gettime_func) {
  1322       // See if monotonic clock is supported by the kernel. Note that some
  1323       // early implementations simply return kernel jiffies (updated every
  1324       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1325       // for nano time (though the monotonic property is still nice to have).
  1326       // It's fixed in newer kernels, however clock_getres() still returns
  1327       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1328       // resolution for now. Hopefully as people move to new kernels, this
  1329       // won't be a problem.
  1330       struct timespec res;
  1331       struct timespec tp;
  1332       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1333           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1334         // yes, monotonic clock is supported
  1335         _clock_gettime = clock_gettime_func;
  1336       } else {
  1337         // close librt if there is no monotonic clock
  1338         dlclose(handle);
  1344 #ifndef SYS_clock_getres
  1346 #if defined(IA32) || defined(AMD64)
  1347 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1348 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1349 #else
  1350 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1351 #define sys_clock_getres(x,y)  -1
  1352 #endif
  1354 #else
  1355 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1356 #endif
  1358 void os::Linux::fast_thread_clock_init() {
  1359   if (!UseLinuxPosixThreadCPUClocks) {
  1360     return;
  1362   clockid_t clockid;
  1363   struct timespec tp;
  1364   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1365       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1367   // Switch to using fast clocks for thread cpu time if
  1368   // the sys_clock_getres() returns 0 error code.
  1369   // Note, that some kernels may support the current thread
  1370   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1371   // returned by the pthread_getcpuclockid().
  1372   // If the fast Posix clocks are supported then the sys_clock_getres()
  1373   // must return at least tp.tv_sec == 0 which means a resolution
  1374   // better than 1 sec. This is extra check for reliability.
  1376   if(pthread_getcpuclockid_func &&
  1377      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1378      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1380     _supports_fast_thread_cpu_time = true;
  1381     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1385 jlong os::javaTimeNanos() {
  1386   if (Linux::supports_monotonic_clock()) {
  1387     struct timespec tp;
  1388     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1389     assert(status == 0, "gettime error");
  1390     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1391     return result;
  1392   } else {
  1393     timeval time;
  1394     int status = gettimeofday(&time, NULL);
  1395     assert(status != -1, "linux error");
  1396     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1397     return 1000 * usecs;
  1401 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1402   if (Linux::supports_monotonic_clock()) {
  1403     info_ptr->max_value = ALL_64_BITS;
  1405     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1406     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1407     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1408   } else {
  1409     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1410     info_ptr->max_value = ALL_64_BITS;
  1412     // gettimeofday is a real time clock so it skips
  1413     info_ptr->may_skip_backward = true;
  1414     info_ptr->may_skip_forward = true;
  1417   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1420 // Return the real, user, and system times in seconds from an
  1421 // arbitrary fixed point in the past.
  1422 bool os::getTimesSecs(double* process_real_time,
  1423                       double* process_user_time,
  1424                       double* process_system_time) {
  1425   struct tms ticks;
  1426   clock_t real_ticks = times(&ticks);
  1428   if (real_ticks == (clock_t) (-1)) {
  1429     return false;
  1430   } else {
  1431     double ticks_per_second = (double) clock_tics_per_sec;
  1432     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1433     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1434     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1436     return true;
  1441 char * os::local_time_string(char *buf, size_t buflen) {
  1442   struct tm t;
  1443   time_t long_time;
  1444   time(&long_time);
  1445   localtime_r(&long_time, &t);
  1446   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1447                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1448                t.tm_hour, t.tm_min, t.tm_sec);
  1449   return buf;
  1452 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1453   return localtime_r(clock, res);
  1456 ////////////////////////////////////////////////////////////////////////////////
  1457 // runtime exit support
  1459 // Note: os::shutdown() might be called very early during initialization, or
  1460 // called from signal handler. Before adding something to os::shutdown(), make
  1461 // sure it is async-safe and can handle partially initialized VM.
  1462 void os::shutdown() {
  1464   // allow PerfMemory to attempt cleanup of any persistent resources
  1465   perfMemory_exit();
  1467   // needs to remove object in file system
  1468   AttachListener::abort();
  1470   // flush buffered output, finish log files
  1471   ostream_abort();
  1473   // Check for abort hook
  1474   abort_hook_t abort_hook = Arguments::abort_hook();
  1475   if (abort_hook != NULL) {
  1476     abort_hook();
  1481 // Note: os::abort() might be called very early during initialization, or
  1482 // called from signal handler. Before adding something to os::abort(), make
  1483 // sure it is async-safe and can handle partially initialized VM.
  1484 void os::abort(bool dump_core) {
  1485   os::shutdown();
  1486   if (dump_core) {
  1487 #ifndef PRODUCT
  1488     fdStream out(defaultStream::output_fd());
  1489     out.print_raw("Current thread is ");
  1490     char buf[16];
  1491     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1492     out.print_raw_cr(buf);
  1493     out.print_raw_cr("Dumping core ...");
  1494 #endif
  1495     ::abort(); // dump core
  1498   ::exit(1);
  1501 // Die immediately, no exit hook, no abort hook, no cleanup.
  1502 void os::die() {
  1503   // _exit() on LinuxThreads only kills current thread
  1504   ::abort();
  1507 // unused on linux for now.
  1508 void os::set_error_file(const char *logfile) {}
  1510 intx os::current_thread_id() { return (intx)pthread_self(); }
  1511 int os::current_process_id() {
  1513   // Under the old linux thread library, linux gives each thread
  1514   // its own process id. Because of this each thread will return
  1515   // a different pid if this method were to return the result
  1516   // of getpid(2). Linux provides no api that returns the pid
  1517   // of the launcher thread for the vm. This implementation
  1518   // returns a unique pid, the pid of the launcher thread
  1519   // that starts the vm 'process'.
  1521   // Under the NPTL, getpid() returns the same pid as the
  1522   // launcher thread rather than a unique pid per thread.
  1523   // Use gettid() if you want the old pre NPTL behaviour.
  1525   // if you are looking for the result of a call to getpid() that
  1526   // returns a unique pid for the calling thread, then look at the
  1527   // OSThread::thread_id() method in osThread_linux.hpp file
  1529   return (int)(_initial_pid ? _initial_pid : getpid());
  1532 // DLL functions
  1534 const char* os::dll_file_extension() { return ".so"; }
  1536 const char* os::get_temp_directory() {
  1537   const char *prop = Arguments::get_property("java.io.tmpdir");
  1538   return prop == NULL ? "/tmp" : prop;
  1541 static bool file_exists(const char* filename) {
  1542   struct stat statbuf;
  1543   if (filename == NULL || strlen(filename) == 0) {
  1544     return false;
  1546   return os::stat(filename, &statbuf) == 0;
  1549 void os::dll_build_name(char* buffer, size_t buflen,
  1550                         const char* pname, const char* fname) {
  1551   // Copied from libhpi
  1552   const size_t pnamelen = pname ? strlen(pname) : 0;
  1554   // Quietly truncate on buffer overflow.  Should be an error.
  1555   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1556       *buffer = '\0';
  1557       return;
  1560   if (pnamelen == 0) {
  1561     snprintf(buffer, buflen, "lib%s.so", fname);
  1562   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1563     int n;
  1564     char** pelements = split_path(pname, &n);
  1565     for (int i = 0 ; i < n ; i++) {
  1566       // Really shouldn't be NULL, but check can't hurt
  1567       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1568         continue; // skip the empty path values
  1570       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1571       if (file_exists(buffer)) {
  1572         break;
  1575     // release the storage
  1576     for (int i = 0 ; i < n ; i++) {
  1577       if (pelements[i] != NULL) {
  1578         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1581     if (pelements != NULL) {
  1582       FREE_C_HEAP_ARRAY(char*, pelements);
  1584   } else {
  1585     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1589 const char* os::get_current_directory(char *buf, int buflen) {
  1590   return getcwd(buf, buflen);
  1593 // check if addr is inside libjvm[_g].so
  1594 bool os::address_is_in_vm(address addr) {
  1595   static address libjvm_base_addr;
  1596   Dl_info dlinfo;
  1598   if (libjvm_base_addr == NULL) {
  1599     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1600     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1601     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1604   if (dladdr((void *)addr, &dlinfo)) {
  1605     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1608   return false;
  1611 bool os::dll_address_to_function_name(address addr, char *buf,
  1612                                       int buflen, int *offset) {
  1613   Dl_info dlinfo;
  1615   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1616     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1617     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
  1618     return true;
  1619   } else {
  1620     if (buf) buf[0] = '\0';
  1621     if (offset) *offset = -1;
  1622     return false;
  1626 struct _address_to_library_name {
  1627   address addr;          // input : memory address
  1628   size_t  buflen;        //         size of fname
  1629   char*   fname;         // output: library name
  1630   address base;          //         library base addr
  1631 };
  1633 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1634                                             size_t size, void *data) {
  1635   int i;
  1636   bool found = false;
  1637   address libbase = NULL;
  1638   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1640   // iterate through all loadable segments
  1641   for (i = 0; i < info->dlpi_phnum; i++) {
  1642     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1643     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1644       // base address of a library is the lowest address of its loaded
  1645       // segments.
  1646       if (libbase == NULL || libbase > segbase) {
  1647         libbase = segbase;
  1649       // see if 'addr' is within current segment
  1650       if (segbase <= d->addr &&
  1651           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1652         found = true;
  1657   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1658   // so dll_address_to_library_name() can fall through to use dladdr() which
  1659   // can figure out executable name from argv[0].
  1660   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1661     d->base = libbase;
  1662     if (d->fname) {
  1663       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1665     return 1;
  1667   return 0;
  1670 bool os::dll_address_to_library_name(address addr, char* buf,
  1671                                      int buflen, int* offset) {
  1672   Dl_info dlinfo;
  1673   struct _address_to_library_name data;
  1675   // There is a bug in old glibc dladdr() implementation that it could resolve
  1676   // to wrong library name if the .so file has a base address != NULL. Here
  1677   // we iterate through the program headers of all loaded libraries to find
  1678   // out which library 'addr' really belongs to. This workaround can be
  1679   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1680   data.addr = addr;
  1681   data.fname = buf;
  1682   data.buflen = buflen;
  1683   data.base = NULL;
  1684   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1686   if (rslt) {
  1687      // buf already contains library name
  1688      if (offset) *offset = addr - data.base;
  1689      return true;
  1690   } else if (dladdr((void*)addr, &dlinfo)){
  1691      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1692      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1693      return true;
  1694   } else {
  1695      if (buf) buf[0] = '\0';
  1696      if (offset) *offset = -1;
  1697      return false;
  1701   // Loads .dll/.so and
  1702   // in case of error it checks if .dll/.so was built for the
  1703   // same architecture as Hotspot is running on
  1705 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1707   void * result= ::dlopen(filename, RTLD_LAZY);
  1708   if (result != NULL) {
  1709     // Successful loading
  1710     return result;
  1713   Elf32_Ehdr elf_head;
  1715   // Read system error message into ebuf
  1716   // It may or may not be overwritten below
  1717   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1718   ebuf[ebuflen-1]='\0';
  1719   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1720   char* diag_msg_buf=ebuf+strlen(ebuf);
  1722   if (diag_msg_max_length==0) {
  1723     // No more space in ebuf for additional diagnostics message
  1724     return NULL;
  1728   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1730   if (file_descriptor < 0) {
  1731     // Can't open library, report dlerror() message
  1732     return NULL;
  1735   bool failed_to_read_elf_head=
  1736     (sizeof(elf_head)!=
  1737         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1739   ::close(file_descriptor);
  1740   if (failed_to_read_elf_head) {
  1741     // file i/o error - report dlerror() msg
  1742     return NULL;
  1745   typedef struct {
  1746     Elf32_Half  code;         // Actual value as defined in elf.h
  1747     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1748     char        elf_class;    // 32 or 64 bit
  1749     char        endianess;    // MSB or LSB
  1750     char*       name;         // String representation
  1751   } arch_t;
  1753   #ifndef EM_486
  1754   #define EM_486          6               /* Intel 80486 */
  1755   #endif
  1757   static const arch_t arch_array[]={
  1758     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1759     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1760     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1761     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1762     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1763     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1764     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1765     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1766     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1767     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1768     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1769     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1770     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1771     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1772     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1773     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1774   };
  1776   #if  (defined IA32)
  1777     static  Elf32_Half running_arch_code=EM_386;
  1778   #elif   (defined AMD64)
  1779     static  Elf32_Half running_arch_code=EM_X86_64;
  1780   #elif  (defined IA64)
  1781     static  Elf32_Half running_arch_code=EM_IA_64;
  1782   #elif  (defined __sparc) && (defined _LP64)
  1783     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1784   #elif  (defined __sparc) && (!defined _LP64)
  1785     static  Elf32_Half running_arch_code=EM_SPARC;
  1786   #elif  (defined __powerpc64__)
  1787     static  Elf32_Half running_arch_code=EM_PPC64;
  1788   #elif  (defined __powerpc__)
  1789     static  Elf32_Half running_arch_code=EM_PPC;
  1790   #elif  (defined ARM)
  1791     static  Elf32_Half running_arch_code=EM_ARM;
  1792   #elif  (defined S390)
  1793     static  Elf32_Half running_arch_code=EM_S390;
  1794   #elif  (defined ALPHA)
  1795     static  Elf32_Half running_arch_code=EM_ALPHA;
  1796   #elif  (defined MIPSEL)
  1797     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1798   #elif  (defined PARISC)
  1799     static  Elf32_Half running_arch_code=EM_PARISC;
  1800   #elif  (defined MIPS)
  1801     static  Elf32_Half running_arch_code=EM_MIPS;
  1802   #elif  (defined M68K)
  1803     static  Elf32_Half running_arch_code=EM_68K;
  1804   #else
  1805     #error Method os::dll_load requires that one of following is defined:\
  1806          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1807   #endif
  1809   // Identify compatability class for VM's architecture and library's architecture
  1810   // Obtain string descriptions for architectures
  1812   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1813   int running_arch_index=-1;
  1815   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1816     if (running_arch_code == arch_array[i].code) {
  1817       running_arch_index    = i;
  1819     if (lib_arch.code == arch_array[i].code) {
  1820       lib_arch.compat_class = arch_array[i].compat_class;
  1821       lib_arch.name         = arch_array[i].name;
  1825   assert(running_arch_index != -1,
  1826     "Didn't find running architecture code (running_arch_code) in arch_array");
  1827   if (running_arch_index == -1) {
  1828     // Even though running architecture detection failed
  1829     // we may still continue with reporting dlerror() message
  1830     return NULL;
  1833   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1834     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1835     return NULL;
  1838 #ifndef S390
  1839   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1840     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1841     return NULL;
  1843 #endif // !S390
  1845   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1846     if ( lib_arch.name!=NULL ) {
  1847       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1848         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1849         lib_arch.name, arch_array[running_arch_index].name);
  1850     } else {
  1851       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1852       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1853         lib_arch.code,
  1854         arch_array[running_arch_index].name);
  1858   return NULL;
  1861 /*
  1862  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1863  * chances are you might want to run the generated bits against glibc-2.0
  1864  * libdl.so, so always use locking for any version of glibc.
  1865  */
  1866 void* os::dll_lookup(void* handle, const char* name) {
  1867   pthread_mutex_lock(&dl_mutex);
  1868   void* res = dlsym(handle, name);
  1869   pthread_mutex_unlock(&dl_mutex);
  1870   return res;
  1874 bool _print_ascii_file(const char* filename, outputStream* st) {
  1875   int fd = open(filename, O_RDONLY);
  1876   if (fd == -1) {
  1877      return false;
  1880   char buf[32];
  1881   int bytes;
  1882   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
  1883     st->print_raw(buf, bytes);
  1886   close(fd);
  1888   return true;
  1891 void os::print_dll_info(outputStream *st) {
  1892    st->print_cr("Dynamic libraries:");
  1894    char fname[32];
  1895    pid_t pid = os::Linux::gettid();
  1897    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1899    if (!_print_ascii_file(fname, st)) {
  1900      st->print("Can not get library information for pid = %d\n", pid);
  1905 void os::print_os_info(outputStream* st) {
  1906   st->print("OS:");
  1908   // Try to identify popular distros.
  1909   // Most Linux distributions have /etc/XXX-release file, which contains
  1910   // the OS version string. Some have more than one /etc/XXX-release file
  1911   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  1912   // so the order is important.
  1913   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  1914       !_print_ascii_file("/etc/sun-release", st) &&
  1915       !_print_ascii_file("/etc/redhat-release", st) &&
  1916       !_print_ascii_file("/etc/SuSE-release", st) &&
  1917       !_print_ascii_file("/etc/turbolinux-release", st) &&
  1918       !_print_ascii_file("/etc/gentoo-release", st) &&
  1919       !_print_ascii_file("/etc/debian_version", st) &&
  1920       !_print_ascii_file("/etc/ltib-release", st) &&
  1921       !_print_ascii_file("/etc/angstrom-version", st)) {
  1922       st->print("Linux");
  1924   st->cr();
  1926   // kernel
  1927   st->print("uname:");
  1928   struct utsname name;
  1929   uname(&name);
  1930   st->print(name.sysname); st->print(" ");
  1931   st->print(name.release); st->print(" ");
  1932   st->print(name.version); st->print(" ");
  1933   st->print(name.machine);
  1934   st->cr();
  1936   // Print warning if unsafe chroot environment detected
  1937   if (unsafe_chroot_detected) {
  1938     st->print("WARNING!! ");
  1939     st->print_cr(unstable_chroot_error);
  1942   // libc, pthread
  1943   st->print("libc:");
  1944   st->print(os::Linux::glibc_version()); st->print(" ");
  1945   st->print(os::Linux::libpthread_version()); st->print(" ");
  1946   if (os::Linux::is_LinuxThreads()) {
  1947      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  1949   st->cr();
  1951   // rlimit
  1952   st->print("rlimit:");
  1953   struct rlimit rlim;
  1955   st->print(" STACK ");
  1956   getrlimit(RLIMIT_STACK, &rlim);
  1957   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1958   else st->print("%uk", rlim.rlim_cur >> 10);
  1960   st->print(", CORE ");
  1961   getrlimit(RLIMIT_CORE, &rlim);
  1962   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1963   else st->print("%uk", rlim.rlim_cur >> 10);
  1965   st->print(", NPROC ");
  1966   getrlimit(RLIMIT_NPROC, &rlim);
  1967   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1968   else st->print("%d", rlim.rlim_cur);
  1970   st->print(", NOFILE ");
  1971   getrlimit(RLIMIT_NOFILE, &rlim);
  1972   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1973   else st->print("%d", rlim.rlim_cur);
  1975   st->print(", AS ");
  1976   getrlimit(RLIMIT_AS, &rlim);
  1977   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1978   else st->print("%uk", rlim.rlim_cur >> 10);
  1979   st->cr();
  1981   // load average
  1982   st->print("load average:");
  1983   double loadavg[3];
  1984   os::loadavg(loadavg, 3);
  1985   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  1986   st->cr();
  1988   // meminfo
  1989   st->print("\n/proc/meminfo:\n");
  1990   _print_ascii_file("/proc/meminfo", st);
  1991   st->cr();
  1994 void os::print_memory_info(outputStream* st) {
  1996   st->print("Memory:");
  1997   st->print(" %dk page", os::vm_page_size()>>10);
  1999   // values in struct sysinfo are "unsigned long"
  2000   struct sysinfo si;
  2001   sysinfo(&si);
  2003   st->print(", physical " UINT64_FORMAT "k",
  2004             os::physical_memory() >> 10);
  2005   st->print("(" UINT64_FORMAT "k free)",
  2006             os::available_memory() >> 10);
  2007   st->print(", swap " UINT64_FORMAT "k",
  2008             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2009   st->print("(" UINT64_FORMAT "k free)",
  2010             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2011   st->cr();
  2014 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2015 // but they're the same for all the linux arch that we support
  2016 // and they're the same for solaris but there's no common place to put this.
  2017 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2018                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2019                           "ILL_COPROC", "ILL_BADSTK" };
  2021 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2022                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2023                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2025 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2027 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2029 void os::print_siginfo(outputStream* st, void* siginfo) {
  2030   st->print("siginfo:");
  2032   const int buflen = 100;
  2033   char buf[buflen];
  2034   siginfo_t *si = (siginfo_t*)siginfo;
  2035   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2036   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2037     st->print("si_errno=%s", buf);
  2038   } else {
  2039     st->print("si_errno=%d", si->si_errno);
  2041   const int c = si->si_code;
  2042   assert(c > 0, "unexpected si_code");
  2043   switch (si->si_signo) {
  2044   case SIGILL:
  2045     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2046     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2047     break;
  2048   case SIGFPE:
  2049     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2050     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2051     break;
  2052   case SIGSEGV:
  2053     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2054     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2055     break;
  2056   case SIGBUS:
  2057     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2058     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2059     break;
  2060   default:
  2061     st->print(", si_code=%d", si->si_code);
  2062     // no si_addr
  2065   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2066       UseSharedSpaces) {
  2067     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2068     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2069       st->print("\n\nError accessing class data sharing archive."   \
  2070                 " Mapped file inaccessible during execution, "      \
  2071                 " possible disk/network problem.");
  2074   st->cr();
  2078 static void print_signal_handler(outputStream* st, int sig,
  2079                                  char* buf, size_t buflen);
  2081 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2082   st->print_cr("Signal Handlers:");
  2083   print_signal_handler(st, SIGSEGV, buf, buflen);
  2084   print_signal_handler(st, SIGBUS , buf, buflen);
  2085   print_signal_handler(st, SIGFPE , buf, buflen);
  2086   print_signal_handler(st, SIGPIPE, buf, buflen);
  2087   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2088   print_signal_handler(st, SIGILL , buf, buflen);
  2089   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2090   print_signal_handler(st, SR_signum, buf, buflen);
  2091   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2092   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2093   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2094   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2097 static char saved_jvm_path[MAXPATHLEN] = {0};
  2099 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2100 void os::jvm_path(char *buf, jint buflen) {
  2101   // Error checking.
  2102   if (buflen < MAXPATHLEN) {
  2103     assert(false, "must use a large-enough buffer");
  2104     buf[0] = '\0';
  2105     return;
  2107   // Lazy resolve the path to current module.
  2108   if (saved_jvm_path[0] != 0) {
  2109     strcpy(buf, saved_jvm_path);
  2110     return;
  2113   char dli_fname[MAXPATHLEN];
  2114   bool ret = dll_address_to_library_name(
  2115                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2116                 dli_fname, sizeof(dli_fname), NULL);
  2117   assert(ret != 0, "cannot locate libjvm");
  2118   char *rp = realpath(dli_fname, buf);
  2119   if (rp == NULL)
  2120     return;
  2122   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2123     // Support for the gamma launcher.  Typical value for buf is
  2124     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2125     // the right place in the string, then assume we are installed in a JDK and
  2126     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2127     // up the path so it looks like libjvm.so is installed there (append a
  2128     // fake suffix hotspot/libjvm.so).
  2129     const char *p = buf + strlen(buf) - 1;
  2130     for (int count = 0; p > buf && count < 5; ++count) {
  2131       for (--p; p > buf && *p != '/'; --p)
  2132         /* empty */ ;
  2135     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2136       // Look for JAVA_HOME in the environment.
  2137       char* java_home_var = ::getenv("JAVA_HOME");
  2138       if (java_home_var != NULL && java_home_var[0] != 0) {
  2139         char* jrelib_p;
  2140         int len;
  2142         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2143         p = strrchr(buf, '/');
  2144         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2145         p = strstr(p, "_g") ? "_g" : "";
  2147         rp = realpath(java_home_var, buf);
  2148         if (rp == NULL)
  2149           return;
  2151         // determine if this is a legacy image or modules image
  2152         // modules image doesn't have "jre" subdirectory
  2153         len = strlen(buf);
  2154         jrelib_p = buf + len;
  2155         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2156         if (0 != access(buf, F_OK)) {
  2157           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2160         if (0 == access(buf, F_OK)) {
  2161           // Use current module name "libjvm[_g].so" instead of
  2162           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2163           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2164           // It is used when we are choosing the HPI library's name
  2165           // "libhpi[_g].so" in hpi::initialize_get_interface().
  2166           len = strlen(buf);
  2167           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2168         } else {
  2169           // Go back to path of .so
  2170           rp = realpath(dli_fname, buf);
  2171           if (rp == NULL)
  2172             return;
  2178   strcpy(saved_jvm_path, buf);
  2181 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2182   // no prefix required, not even "_"
  2185 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2186   // no suffix required
  2189 ////////////////////////////////////////////////////////////////////////////////
  2190 // sun.misc.Signal support
  2192 static volatile jint sigint_count = 0;
  2194 static void
  2195 UserHandler(int sig, void *siginfo, void *context) {
  2196   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2197   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2198   // don't want to flood the manager thread with sem_post requests.
  2199   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2200       return;
  2202   // Ctrl-C is pressed during error reporting, likely because the error
  2203   // handler fails to abort. Let VM die immediately.
  2204   if (sig == SIGINT && is_error_reported()) {
  2205      os::die();
  2208   os::signal_notify(sig);
  2211 void* os::user_handler() {
  2212   return CAST_FROM_FN_PTR(void*, UserHandler);
  2215 extern "C" {
  2216   typedef void (*sa_handler_t)(int);
  2217   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2220 void* os::signal(int signal_number, void* handler) {
  2221   struct sigaction sigAct, oldSigAct;
  2223   sigfillset(&(sigAct.sa_mask));
  2224   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2225   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2227   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2228     // -1 means registration failed
  2229     return (void *)-1;
  2232   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2235 void os::signal_raise(int signal_number) {
  2236   ::raise(signal_number);
  2239 /*
  2240  * The following code is moved from os.cpp for making this
  2241  * code platform specific, which it is by its very nature.
  2242  */
  2244 // Will be modified when max signal is changed to be dynamic
  2245 int os::sigexitnum_pd() {
  2246   return NSIG;
  2249 // a counter for each possible signal value
  2250 static volatile jint pending_signals[NSIG+1] = { 0 };
  2252 // Linux(POSIX) specific hand shaking semaphore.
  2253 static sem_t sig_sem;
  2255 void os::signal_init_pd() {
  2256   // Initialize signal structures
  2257   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2259   // Initialize signal semaphore
  2260   ::sem_init(&sig_sem, 0, 0);
  2263 void os::signal_notify(int sig) {
  2264   Atomic::inc(&pending_signals[sig]);
  2265   ::sem_post(&sig_sem);
  2268 static int check_pending_signals(bool wait) {
  2269   Atomic::store(0, &sigint_count);
  2270   for (;;) {
  2271     for (int i = 0; i < NSIG + 1; i++) {
  2272       jint n = pending_signals[i];
  2273       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2274         return i;
  2277     if (!wait) {
  2278       return -1;
  2280     JavaThread *thread = JavaThread::current();
  2281     ThreadBlockInVM tbivm(thread);
  2283     bool threadIsSuspended;
  2284     do {
  2285       thread->set_suspend_equivalent();
  2286       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2287       ::sem_wait(&sig_sem);
  2289       // were we externally suspended while we were waiting?
  2290       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2291       if (threadIsSuspended) {
  2292         //
  2293         // The semaphore has been incremented, but while we were waiting
  2294         // another thread suspended us. We don't want to continue running
  2295         // while suspended because that would surprise the thread that
  2296         // suspended us.
  2297         //
  2298         ::sem_post(&sig_sem);
  2300         thread->java_suspend_self();
  2302     } while (threadIsSuspended);
  2306 int os::signal_lookup() {
  2307   return check_pending_signals(false);
  2310 int os::signal_wait() {
  2311   return check_pending_signals(true);
  2314 ////////////////////////////////////////////////////////////////////////////////
  2315 // Virtual Memory
  2317 int os::vm_page_size() {
  2318   // Seems redundant as all get out
  2319   assert(os::Linux::page_size() != -1, "must call os::init");
  2320   return os::Linux::page_size();
  2323 // Solaris allocates memory by pages.
  2324 int os::vm_allocation_granularity() {
  2325   assert(os::Linux::page_size() != -1, "must call os::init");
  2326   return os::Linux::page_size();
  2329 // Rationale behind this function:
  2330 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2331 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2332 //  samples for JITted code. Here we create private executable mapping over the code cache
  2333 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2334 //  info for the reporting script by storing timestamp and location of symbol
  2335 void linux_wrap_code(char* base, size_t size) {
  2336   static volatile jint cnt = 0;
  2338   if (!UseOprofile) {
  2339     return;
  2342   char buf[PATH_MAX+1];
  2343   int num = Atomic::add(1, &cnt);
  2345   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2346            os::get_temp_directory(), os::current_process_id(), num);
  2347   unlink(buf);
  2349   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2351   if (fd != -1) {
  2352     off_t rv = lseek(fd, size-2, SEEK_SET);
  2353     if (rv != (off_t)-1) {
  2354       if (write(fd, "", 1) == 1) {
  2355         mmap(base, size,
  2356              PROT_READ|PROT_WRITE|PROT_EXEC,
  2357              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2360     close(fd);
  2361     unlink(buf);
  2365 // NOTE: Linux kernel does not really reserve the pages for us.
  2366 //       All it does is to check if there are enough free pages
  2367 //       left at the time of mmap(). This could be a potential
  2368 //       problem.
  2369 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2370   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2371   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2372                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2373   return res != (uintptr_t) MAP_FAILED;
  2376 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2377                        bool exec) {
  2378   return commit_memory(addr, size, exec);
  2381 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2383 void os::free_memory(char *addr, size_t bytes) {
  2384   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
  2385          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2388 void os::numa_make_global(char *addr, size_t bytes) {
  2389   Linux::numa_interleave_memory(addr, bytes);
  2392 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2393   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2396 bool os::numa_topology_changed()   { return false; }
  2398 size_t os::numa_get_groups_num() {
  2399   int max_node = Linux::numa_max_node();
  2400   return max_node > 0 ? max_node + 1 : 1;
  2403 int os::numa_get_group_id() {
  2404   int cpu_id = Linux::sched_getcpu();
  2405   if (cpu_id != -1) {
  2406     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2407     if (lgrp_id != -1) {
  2408       return lgrp_id;
  2411   return 0;
  2414 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2415   for (size_t i = 0; i < size; i++) {
  2416     ids[i] = i;
  2418   return size;
  2421 bool os::get_page_info(char *start, page_info* info) {
  2422   return false;
  2425 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2426   return end;
  2429 extern "C" void numa_warn(int number, char *where, ...) { }
  2430 extern "C" void numa_error(char *where) { }
  2433 // If we are running with libnuma version > 2, then we should
  2434 // be trying to use symbols with versions 1.1
  2435 // If we are running with earlier version, which did not have symbol versions,
  2436 // we should use the base version.
  2437 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2438   void *f = dlvsym(handle, name, "libnuma_1.1");
  2439   if (f == NULL) {
  2440     f = dlsym(handle, name);
  2442   return f;
  2445 bool os::Linux::libnuma_init() {
  2446   // sched_getcpu() should be in libc.
  2447   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2448                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2450   if (sched_getcpu() != -1) { // Does it work?
  2451     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2452     if (handle != NULL) {
  2453       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2454                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2455       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2456                                        libnuma_dlsym(handle, "numa_max_node")));
  2457       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2458                                         libnuma_dlsym(handle, "numa_available")));
  2459       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2460                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2461       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2462                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2465       if (numa_available() != -1) {
  2466         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2467         // Create a cpu -> node mapping
  2468         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2469         rebuild_cpu_to_node_map();
  2470         return true;
  2474   return false;
  2477 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2478 // The table is later used in get_node_by_cpu().
  2479 void os::Linux::rebuild_cpu_to_node_map() {
  2480   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2481                               // in libnuma (possible values are starting from 16,
  2482                               // and continuing up with every other power of 2, but less
  2483                               // than the maximum number of CPUs supported by kernel), and
  2484                               // is a subject to change (in libnuma version 2 the requirements
  2485                               // are more reasonable) we'll just hardcode the number they use
  2486                               // in the library.
  2487   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2489   size_t cpu_num = os::active_processor_count();
  2490   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2491   size_t cpu_map_valid_size =
  2492     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2494   cpu_to_node()->clear();
  2495   cpu_to_node()->at_grow(cpu_num - 1);
  2496   size_t node_num = numa_get_groups_num();
  2498   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2499   for (size_t i = 0; i < node_num; i++) {
  2500     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2501       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2502         if (cpu_map[j] != 0) {
  2503           for (size_t k = 0; k < BitsPerCLong; k++) {
  2504             if (cpu_map[j] & (1UL << k)) {
  2505               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2512   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2515 int os::Linux::get_node_by_cpu(int cpu_id) {
  2516   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2517     return cpu_to_node()->at(cpu_id);
  2519   return -1;
  2522 GrowableArray<int>* os::Linux::_cpu_to_node;
  2523 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2524 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2525 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2526 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2527 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2528 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2529 unsigned long* os::Linux::_numa_all_nodes;
  2531 bool os::uncommit_memory(char* addr, size_t size) {
  2532   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2533                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2534   return res  != (uintptr_t) MAP_FAILED;
  2537 // Linux uses a growable mapping for the stack, and if the mapping for
  2538 // the stack guard pages is not removed when we detach a thread the
  2539 // stack cannot grow beyond the pages where the stack guard was
  2540 // mapped.  If at some point later in the process the stack expands to
  2541 // that point, the Linux kernel cannot expand the stack any further
  2542 // because the guard pages are in the way, and a segfault occurs.
  2543 //
  2544 // However, it's essential not to split the stack region by unmapping
  2545 // a region (leaving a hole) that's already part of the stack mapping,
  2546 // so if the stack mapping has already grown beyond the guard pages at
  2547 // the time we create them, we have to truncate the stack mapping.
  2548 // So, we need to know the extent of the stack mapping when
  2549 // create_stack_guard_pages() is called.
  2551 // Find the bounds of the stack mapping.  Return true for success.
  2552 //
  2553 // We only need this for stacks that are growable: at the time of
  2554 // writing thread stacks don't use growable mappings (i.e. those
  2555 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2556 // only applies to the main thread.
  2557 static bool
  2558 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
  2560   FILE *f = fopen("/proc/self/maps", "r");
  2561   if (f == NULL)
  2562     return false;
  2564   while (!feof(f)) {
  2565     size_t dummy;
  2566     char *str = NULL;
  2567     ssize_t len = getline(&str, &dummy, f);
  2568     if (len == -1) {
  2569       fclose(f);
  2570       return false;
  2573     if (len > 0 && str[len-1] == '\n') {
  2574       str[len-1] = 0;
  2575       len--;
  2578     static const char *stack_str = "[stack]";
  2579     if (len > (ssize_t)strlen(stack_str)
  2580        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
  2581       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2582         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
  2583         if (sp >= *bottom && sp <= *top) {
  2584           free(str);
  2585           fclose(f);
  2586           return true;
  2590     free(str);
  2592   fclose(f);
  2593   return false;
  2596 // If the (growable) stack mapping already extends beyond the point
  2597 // where we're going to put our guard pages, truncate the mapping at
  2598 // that point by munmap()ping it.  This ensures that when we later
  2599 // munmap() the guard pages we don't leave a hole in the stack
  2600 // mapping.
  2601 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2602   uintptr_t stack_extent, stack_base;
  2603   if (get_stack_bounds(&stack_extent, &stack_base)) {
  2604     if (stack_extent < (uintptr_t)addr)
  2605       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2608   return os::commit_memory(addr, size);
  2611 // If this is a growable mapping, remove the guard pages entirely by
  2612 // munmap()ping them.  If not, just call uncommit_memory().
  2613 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2614   uintptr_t stack_extent, stack_base;
  2615   if (get_stack_bounds(&stack_extent, &stack_base)) {
  2616     return ::munmap(addr, size) == 0;
  2619   return os::uncommit_memory(addr, size);
  2622 static address _highest_vm_reserved_address = NULL;
  2624 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2625 // at 'requested_addr'. If there are existing memory mappings at the same
  2626 // location, however, they will be overwritten. If 'fixed' is false,
  2627 // 'requested_addr' is only treated as a hint, the return value may or
  2628 // may not start from the requested address. Unlike Linux mmap(), this
  2629 // function returns NULL to indicate failure.
  2630 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2631   char * addr;
  2632   int flags;
  2634   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2635   if (fixed) {
  2636     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2637     flags |= MAP_FIXED;
  2640   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2641   // to PROT_EXEC if executable when we commit the page.
  2642   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2643                        flags, -1, 0);
  2645   if (addr != MAP_FAILED) {
  2646     // anon_mmap() should only get called during VM initialization,
  2647     // don't need lock (actually we can skip locking even it can be called
  2648     // from multiple threads, because _highest_vm_reserved_address is just a
  2649     // hint about the upper limit of non-stack memory regions.)
  2650     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2651       _highest_vm_reserved_address = (address)addr + bytes;
  2655   return addr == MAP_FAILED ? NULL : addr;
  2658 // Don't update _highest_vm_reserved_address, because there might be memory
  2659 // regions above addr + size. If so, releasing a memory region only creates
  2660 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2661 //
  2662 static int anon_munmap(char * addr, size_t size) {
  2663   return ::munmap(addr, size) == 0;
  2666 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2667                          size_t alignment_hint) {
  2668   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2671 bool os::release_memory(char* addr, size_t size) {
  2672   return anon_munmap(addr, size);
  2675 static address highest_vm_reserved_address() {
  2676   return _highest_vm_reserved_address;
  2679 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2680   // Linux wants the mprotect address argument to be page aligned.
  2681   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2683   // According to SUSv3, mprotect() should only be used with mappings
  2684   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2685   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2686   // protection of malloc'ed or statically allocated memory). Check the
  2687   // caller if you hit this assert.
  2688   assert(addr == bottom, "sanity check");
  2690   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2691   return ::mprotect(bottom, size, prot) == 0;
  2694 // Set protections specified
  2695 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2696                         bool is_committed) {
  2697   unsigned int p = 0;
  2698   switch (prot) {
  2699   case MEM_PROT_NONE: p = PROT_NONE; break;
  2700   case MEM_PROT_READ: p = PROT_READ; break;
  2701   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2702   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2703   default:
  2704     ShouldNotReachHere();
  2706   // is_committed is unused.
  2707   return linux_mprotect(addr, bytes, p);
  2710 bool os::guard_memory(char* addr, size_t size) {
  2711   return linux_mprotect(addr, size, PROT_NONE);
  2714 bool os::unguard_memory(char* addr, size_t size) {
  2715   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2718 // Large page support
  2720 static size_t _large_page_size = 0;
  2722 bool os::large_page_init() {
  2723   if (!UseLargePages) return false;
  2725   if (LargePageSizeInBytes) {
  2726     _large_page_size = LargePageSizeInBytes;
  2727   } else {
  2728     // large_page_size on Linux is used to round up heap size. x86 uses either
  2729     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2730     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2731     // page as large as 256M.
  2732     //
  2733     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2734     // for a line with the following format:
  2735     //    Hugepagesize:     2048 kB
  2736     //
  2737     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2738     // format has been changed), we'll use the largest page size supported by
  2739     // the processor.
  2741 #ifndef ZERO
  2742     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  2743                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  2744 #endif // ZERO
  2746     FILE *fp = fopen("/proc/meminfo", "r");
  2747     if (fp) {
  2748       while (!feof(fp)) {
  2749         int x = 0;
  2750         char buf[16];
  2751         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  2752           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  2753             _large_page_size = x * K;
  2754             break;
  2756         } else {
  2757           // skip to next line
  2758           for (;;) {
  2759             int ch = fgetc(fp);
  2760             if (ch == EOF || ch == (int)'\n') break;
  2764       fclose(fp);
  2768   const size_t default_page_size = (size_t)Linux::page_size();
  2769   if (_large_page_size > default_page_size) {
  2770     _page_sizes[0] = _large_page_size;
  2771     _page_sizes[1] = default_page_size;
  2772     _page_sizes[2] = 0;
  2775   // Large page support is available on 2.6 or newer kernel, some vendors
  2776   // (e.g. Redhat) have backported it to their 2.4 based distributions.
  2777   // We optimistically assume the support is available. If later it turns out
  2778   // not true, VM will automatically switch to use regular page size.
  2779   return true;
  2782 #ifndef SHM_HUGETLB
  2783 #define SHM_HUGETLB 04000
  2784 #endif
  2786 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  2787   // "exec" is passed in but not used.  Creating the shared image for
  2788   // the code cache doesn't have an SHM_X executable permission to check.
  2789   assert(UseLargePages, "only for large pages");
  2791   key_t key = IPC_PRIVATE;
  2792   char *addr;
  2794   bool warn_on_failure = UseLargePages &&
  2795                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2796                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2797                         );
  2798   char msg[128];
  2800   // Create a large shared memory region to attach to based on size.
  2801   // Currently, size is the total size of the heap
  2802   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  2803   if (shmid == -1) {
  2804      // Possible reasons for shmget failure:
  2805      // 1. shmmax is too small for Java heap.
  2806      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2807      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2808      // 2. not enough large page memory.
  2809      //    > check available large pages: cat /proc/meminfo
  2810      //    > increase amount of large pages:
  2811      //          echo new_value > /proc/sys/vm/nr_hugepages
  2812      //      Note 1: different Linux may use different name for this property,
  2813      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2814      //      Note 2: it's possible there's enough physical memory available but
  2815      //            they are so fragmented after a long run that they can't
  2816      //            coalesce into large pages. Try to reserve large pages when
  2817      //            the system is still "fresh".
  2818      if (warn_on_failure) {
  2819        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2820        warning(msg);
  2822      return NULL;
  2825   // attach to the region
  2826   addr = (char*)shmat(shmid, req_addr, 0);
  2827   int err = errno;
  2829   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2830   // will be deleted when it's detached by shmdt() or when the process
  2831   // terminates. If shmat() is not successful this will remove the shared
  2832   // segment immediately.
  2833   shmctl(shmid, IPC_RMID, NULL);
  2835   if ((intptr_t)addr == -1) {
  2836      if (warn_on_failure) {
  2837        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2838        warning(msg);
  2840      return NULL;
  2843   return addr;
  2846 bool os::release_memory_special(char* base, size_t bytes) {
  2847   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2848   int rslt = shmdt(base);
  2849   return rslt == 0;
  2852 size_t os::large_page_size() {
  2853   return _large_page_size;
  2856 // Linux does not support anonymous mmap with large page memory. The only way
  2857 // to reserve large page memory without file backing is through SysV shared
  2858 // memory API. The entire memory region is committed and pinned upfront.
  2859 // Hopefully this will change in the future...
  2860 bool os::can_commit_large_page_memory() {
  2861   return false;
  2864 bool os::can_execute_large_page_memory() {
  2865   return false;
  2868 // Reserve memory at an arbitrary address, only if that area is
  2869 // available (and not reserved for something else).
  2871 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2872   const int max_tries = 10;
  2873   char* base[max_tries];
  2874   size_t size[max_tries];
  2875   const size_t gap = 0x000000;
  2877   // Assert only that the size is a multiple of the page size, since
  2878   // that's all that mmap requires, and since that's all we really know
  2879   // about at this low abstraction level.  If we need higher alignment,
  2880   // we can either pass an alignment to this method or verify alignment
  2881   // in one of the methods further up the call chain.  See bug 5044738.
  2882   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2884   // Repeatedly allocate blocks until the block is allocated at the
  2885   // right spot. Give up after max_tries. Note that reserve_memory() will
  2886   // automatically update _highest_vm_reserved_address if the call is
  2887   // successful. The variable tracks the highest memory address every reserved
  2888   // by JVM. It is used to detect heap-stack collision if running with
  2889   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  2890   // space than needed, it could confuse the collision detecting code. To
  2891   // solve the problem, save current _highest_vm_reserved_address and
  2892   // calculate the correct value before return.
  2893   address old_highest = _highest_vm_reserved_address;
  2895   // Linux mmap allows caller to pass an address as hint; give it a try first,
  2896   // if kernel honors the hint then we can return immediately.
  2897   char * addr = anon_mmap(requested_addr, bytes, false);
  2898   if (addr == requested_addr) {
  2899      return requested_addr;
  2902   if (addr != NULL) {
  2903      // mmap() is successful but it fails to reserve at the requested address
  2904      anon_munmap(addr, bytes);
  2907   int i;
  2908   for (i = 0; i < max_tries; ++i) {
  2909     base[i] = reserve_memory(bytes);
  2911     if (base[i] != NULL) {
  2912       // Is this the block we wanted?
  2913       if (base[i] == requested_addr) {
  2914         size[i] = bytes;
  2915         break;
  2918       // Does this overlap the block we wanted? Give back the overlapped
  2919       // parts and try again.
  2921       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2922       if (top_overlap >= 0 && top_overlap < bytes) {
  2923         unmap_memory(base[i], top_overlap);
  2924         base[i] += top_overlap;
  2925         size[i] = bytes - top_overlap;
  2926       } else {
  2927         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2928         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2929           unmap_memory(requested_addr, bottom_overlap);
  2930           size[i] = bytes - bottom_overlap;
  2931         } else {
  2932           size[i] = bytes;
  2938   // Give back the unused reserved pieces.
  2940   for (int j = 0; j < i; ++j) {
  2941     if (base[j] != NULL) {
  2942       unmap_memory(base[j], size[j]);
  2946   if (i < max_tries) {
  2947     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2948     return requested_addr;
  2949   } else {
  2950     _highest_vm_reserved_address = old_highest;
  2951     return NULL;
  2955 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2956   return ::read(fd, buf, nBytes);
  2959 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  2960 // Solaris uses poll(), linux uses park().
  2961 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2962 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2963 // SIGSEGV, see 4355769.
  2965 const int NANOSECS_PER_MILLISECS = 1000000;
  2967 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2968   assert(thread == Thread::current(),  "thread consistency check");
  2970   ParkEvent * const slp = thread->_SleepEvent ;
  2971   slp->reset() ;
  2972   OrderAccess::fence() ;
  2974   if (interruptible) {
  2975     jlong prevtime = javaTimeNanos();
  2977     for (;;) {
  2978       if (os::is_interrupted(thread, true)) {
  2979         return OS_INTRPT;
  2982       jlong newtime = javaTimeNanos();
  2984       if (newtime - prevtime < 0) {
  2985         // time moving backwards, should only happen if no monotonic clock
  2986         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2987         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2988       } else {
  2989         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2992       if(millis <= 0) {
  2993         return OS_OK;
  2996       prevtime = newtime;
  2999         assert(thread->is_Java_thread(), "sanity check");
  3000         JavaThread *jt = (JavaThread *) thread;
  3001         ThreadBlockInVM tbivm(jt);
  3002         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3004         jt->set_suspend_equivalent();
  3005         // cleared by handle_special_suspend_equivalent_condition() or
  3006         // java_suspend_self() via check_and_wait_while_suspended()
  3008         slp->park(millis);
  3010         // were we externally suspended while we were waiting?
  3011         jt->check_and_wait_while_suspended();
  3014   } else {
  3015     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3016     jlong prevtime = javaTimeNanos();
  3018     for (;;) {
  3019       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3020       // the 1st iteration ...
  3021       jlong newtime = javaTimeNanos();
  3023       if (newtime - prevtime < 0) {
  3024         // time moving backwards, should only happen if no monotonic clock
  3025         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3026         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3027       } else {
  3028         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3031       if(millis <= 0) break ;
  3033       prevtime = newtime;
  3034       slp->park(millis);
  3036     return OS_OK ;
  3040 int os::naked_sleep() {
  3041   // %% make the sleep time an integer flag. for now use 1 millisec.
  3042   return os::sleep(Thread::current(), 1, false);
  3045 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3046 void os::infinite_sleep() {
  3047   while (true) {    // sleep forever ...
  3048     ::sleep(100);   // ... 100 seconds at a time
  3052 // Used to convert frequent JVM_Yield() to nops
  3053 bool os::dont_yield() {
  3054   return DontYieldALot;
  3057 void os::yield() {
  3058   sched_yield();
  3061 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3063 void os::yield_all(int attempts) {
  3064   // Yields to all threads, including threads with lower priorities
  3065   // Threads on Linux are all with same priority. The Solaris style
  3066   // os::yield_all() with nanosleep(1ms) is not necessary.
  3067   sched_yield();
  3070 // Called from the tight loops to possibly influence time-sharing heuristics
  3071 void os::loop_breaker(int attempts) {
  3072   os::yield_all(attempts);
  3075 ////////////////////////////////////////////////////////////////////////////////
  3076 // thread priority support
  3078 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3079 // only supports dynamic priority, static priority must be zero. For real-time
  3080 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3081 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3082 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3083 // of 5 runs - Sep 2005).
  3084 //
  3085 // The following code actually changes the niceness of kernel-thread/LWP. It
  3086 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3087 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3088 // threads. It has always been the case, but could change in the future. For
  3089 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3090 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3092 int os::java_to_os_priority[MaxPriority + 1] = {
  3093   19,              // 0 Entry should never be used
  3095    4,              // 1 MinPriority
  3096    3,              // 2
  3097    2,              // 3
  3099    1,              // 4
  3100    0,              // 5 NormPriority
  3101   -1,              // 6
  3103   -2,              // 7
  3104   -3,              // 8
  3105   -4,              // 9 NearMaxPriority
  3107   -5               // 10 MaxPriority
  3108 };
  3110 static int prio_init() {
  3111   if (ThreadPriorityPolicy == 1) {
  3112     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3113     // if effective uid is not root. Perhaps, a more elegant way of doing
  3114     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3115     if (geteuid() != 0) {
  3116       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3117         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3119       ThreadPriorityPolicy = 0;
  3122   return 0;
  3125 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3126   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3128   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3129   return (ret == 0) ? OS_OK : OS_ERR;
  3132 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3133   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3134     *priority_ptr = java_to_os_priority[NormPriority];
  3135     return OS_OK;
  3138   errno = 0;
  3139   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3140   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3143 // Hint to the underlying OS that a task switch would not be good.
  3144 // Void return because it's a hint and can fail.
  3145 void os::hint_no_preempt() {}
  3147 ////////////////////////////////////////////////////////////////////////////////
  3148 // suspend/resume support
  3150 //  the low-level signal-based suspend/resume support is a remnant from the
  3151 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3152 //  within hotspot. Now there is a single use-case for this:
  3153 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3154 //      that runs in the watcher thread.
  3155 //  The remaining code is greatly simplified from the more general suspension
  3156 //  code that used to be used.
  3157 //
  3158 //  The protocol is quite simple:
  3159 //  - suspend:
  3160 //      - sends a signal to the target thread
  3161 //      - polls the suspend state of the osthread using a yield loop
  3162 //      - target thread signal handler (SR_handler) sets suspend state
  3163 //        and blocks in sigsuspend until continued
  3164 //  - resume:
  3165 //      - sets target osthread state to continue
  3166 //      - sends signal to end the sigsuspend loop in the SR_handler
  3167 //
  3168 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3169 //
  3171 static void resume_clear_context(OSThread *osthread) {
  3172   osthread->set_ucontext(NULL);
  3173   osthread->set_siginfo(NULL);
  3175   // notify the suspend action is completed, we have now resumed
  3176   osthread->sr.clear_suspended();
  3179 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3180   osthread->set_ucontext(context);
  3181   osthread->set_siginfo(siginfo);
  3184 //
  3185 // Handler function invoked when a thread's execution is suspended or
  3186 // resumed. We have to be careful that only async-safe functions are
  3187 // called here (Note: most pthread functions are not async safe and
  3188 // should be avoided.)
  3189 //
  3190 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3191 // interface point of view, but sigwait() prevents the signal hander
  3192 // from being run. libpthread would get very confused by not having
  3193 // its signal handlers run and prevents sigwait()'s use with the
  3194 // mutex granting granting signal.
  3195 //
  3196 // Currently only ever called on the VMThread
  3197 //
  3198 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3199   // Save and restore errno to avoid confusing native code with EINTR
  3200   // after sigsuspend.
  3201   int old_errno = errno;
  3203   Thread* thread = Thread::current();
  3204   OSThread* osthread = thread->osthread();
  3205   assert(thread->is_VM_thread(), "Must be VMThread");
  3206   // read current suspend action
  3207   int action = osthread->sr.suspend_action();
  3208   if (action == SR_SUSPEND) {
  3209     suspend_save_context(osthread, siginfo, context);
  3211     // Notify the suspend action is about to be completed. do_suspend()
  3212     // waits until SR_SUSPENDED is set and then returns. We will wait
  3213     // here for a resume signal and that completes the suspend-other
  3214     // action. do_suspend/do_resume is always called as a pair from
  3215     // the same thread - so there are no races
  3217     // notify the caller
  3218     osthread->sr.set_suspended();
  3220     sigset_t suspend_set;  // signals for sigsuspend()
  3222     // get current set of blocked signals and unblock resume signal
  3223     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3224     sigdelset(&suspend_set, SR_signum);
  3226     // wait here until we are resumed
  3227     do {
  3228       sigsuspend(&suspend_set);
  3229       // ignore all returns until we get a resume signal
  3230     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3232     resume_clear_context(osthread);
  3234   } else {
  3235     assert(action == SR_CONTINUE, "unexpected sr action");
  3236     // nothing special to do - just leave the handler
  3239   errno = old_errno;
  3243 static int SR_initialize() {
  3244   struct sigaction act;
  3245   char *s;
  3246   /* Get signal number to use for suspend/resume */
  3247   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3248     int sig = ::strtol(s, 0, 10);
  3249     if (sig > 0 || sig < _NSIG) {
  3250         SR_signum = sig;
  3254   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3255         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3257   sigemptyset(&SR_sigset);
  3258   sigaddset(&SR_sigset, SR_signum);
  3260   /* Set up signal handler for suspend/resume */
  3261   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3262   act.sa_handler = (void (*)(int)) SR_handler;
  3264   // SR_signum is blocked by default.
  3265   // 4528190 - We also need to block pthread restart signal (32 on all
  3266   // supported Linux platforms). Note that LinuxThreads need to block
  3267   // this signal for all threads to work properly. So we don't have
  3268   // to use hard-coded signal number when setting up the mask.
  3269   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3271   if (sigaction(SR_signum, &act, 0) == -1) {
  3272     return -1;
  3275   // Save signal flag
  3276   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3277   return 0;
  3280 static int SR_finalize() {
  3281   return 0;
  3285 // returns true on success and false on error - really an error is fatal
  3286 // but this seems the normal response to library errors
  3287 static bool do_suspend(OSThread* osthread) {
  3288   // mark as suspended and send signal
  3289   osthread->sr.set_suspend_action(SR_SUSPEND);
  3290   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3291   assert_status(status == 0, status, "pthread_kill");
  3293   // check status and wait until notified of suspension
  3294   if (status == 0) {
  3295     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3296       os::yield_all(i);
  3298     osthread->sr.set_suspend_action(SR_NONE);
  3299     return true;
  3301   else {
  3302     osthread->sr.set_suspend_action(SR_NONE);
  3303     return false;
  3307 static void do_resume(OSThread* osthread) {
  3308   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3309   osthread->sr.set_suspend_action(SR_CONTINUE);
  3311   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3312   assert_status(status == 0, status, "pthread_kill");
  3313   // check status and wait unit notified of resumption
  3314   if (status == 0) {
  3315     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3316       os::yield_all(i);
  3319   osthread->sr.set_suspend_action(SR_NONE);
  3322 ////////////////////////////////////////////////////////////////////////////////
  3323 // interrupt support
  3325 void os::interrupt(Thread* thread) {
  3326   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3327     "possibility of dangling Thread pointer");
  3329   OSThread* osthread = thread->osthread();
  3331   if (!osthread->interrupted()) {
  3332     osthread->set_interrupted(true);
  3333     // More than one thread can get here with the same value of osthread,
  3334     // resulting in multiple notifications.  We do, however, want the store
  3335     // to interrupted() to be visible to other threads before we execute unpark().
  3336     OrderAccess::fence();
  3337     ParkEvent * const slp = thread->_SleepEvent ;
  3338     if (slp != NULL) slp->unpark() ;
  3341   // For JSR166. Unpark even if interrupt status already was set
  3342   if (thread->is_Java_thread())
  3343     ((JavaThread*)thread)->parker()->unpark();
  3345   ParkEvent * ev = thread->_ParkEvent ;
  3346   if (ev != NULL) ev->unpark() ;
  3350 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3351   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3352     "possibility of dangling Thread pointer");
  3354   OSThread* osthread = thread->osthread();
  3356   bool interrupted = osthread->interrupted();
  3358   if (interrupted && clear_interrupted) {
  3359     osthread->set_interrupted(false);
  3360     // consider thread->_SleepEvent->reset() ... optional optimization
  3363   return interrupted;
  3366 ///////////////////////////////////////////////////////////////////////////////////
  3367 // signal handling (except suspend/resume)
  3369 // This routine may be used by user applications as a "hook" to catch signals.
  3370 // The user-defined signal handler must pass unrecognized signals to this
  3371 // routine, and if it returns true (non-zero), then the signal handler must
  3372 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3373 // routine will never retun false (zero), but instead will execute a VM panic
  3374 // routine kill the process.
  3375 //
  3376 // If this routine returns false, it is OK to call it again.  This allows
  3377 // the user-defined signal handler to perform checks either before or after
  3378 // the VM performs its own checks.  Naturally, the user code would be making
  3379 // a serious error if it tried to handle an exception (such as a null check
  3380 // or breakpoint) that the VM was generating for its own correct operation.
  3381 //
  3382 // This routine may recognize any of the following kinds of signals:
  3383 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3384 // It should be consulted by handlers for any of those signals.
  3385 //
  3386 // The caller of this routine must pass in the three arguments supplied
  3387 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3388 // field of the structure passed to sigaction().  This routine assumes that
  3389 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3390 //
  3391 // Note that the VM will print warnings if it detects conflicting signal
  3392 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3393 //
  3394 extern "C" int
  3395 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3396                         void* ucontext, int abort_if_unrecognized);
  3398 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3399   assert(info != NULL && uc != NULL, "it must be old kernel");
  3400   JVM_handle_linux_signal(sig, info, uc, true);
  3404 // This boolean allows users to forward their own non-matching signals
  3405 // to JVM_handle_linux_signal, harmlessly.
  3406 bool os::Linux::signal_handlers_are_installed = false;
  3408 // For signal-chaining
  3409 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3410 unsigned int os::Linux::sigs = 0;
  3411 bool os::Linux::libjsig_is_loaded = false;
  3412 typedef struct sigaction *(*get_signal_t)(int);
  3413 get_signal_t os::Linux::get_signal_action = NULL;
  3415 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3416   struct sigaction *actp = NULL;
  3418   if (libjsig_is_loaded) {
  3419     // Retrieve the old signal handler from libjsig
  3420     actp = (*get_signal_action)(sig);
  3422   if (actp == NULL) {
  3423     // Retrieve the preinstalled signal handler from jvm
  3424     actp = get_preinstalled_handler(sig);
  3427   return actp;
  3430 static bool call_chained_handler(struct sigaction *actp, int sig,
  3431                                  siginfo_t *siginfo, void *context) {
  3432   // Call the old signal handler
  3433   if (actp->sa_handler == SIG_DFL) {
  3434     // It's more reasonable to let jvm treat it as an unexpected exception
  3435     // instead of taking the default action.
  3436     return false;
  3437   } else if (actp->sa_handler != SIG_IGN) {
  3438     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3439       // automaticlly block the signal
  3440       sigaddset(&(actp->sa_mask), sig);
  3443     sa_handler_t hand;
  3444     sa_sigaction_t sa;
  3445     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3446     // retrieve the chained handler
  3447     if (siginfo_flag_set) {
  3448       sa = actp->sa_sigaction;
  3449     } else {
  3450       hand = actp->sa_handler;
  3453     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3454       actp->sa_handler = SIG_DFL;
  3457     // try to honor the signal mask
  3458     sigset_t oset;
  3459     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3461     // call into the chained handler
  3462     if (siginfo_flag_set) {
  3463       (*sa)(sig, siginfo, context);
  3464     } else {
  3465       (*hand)(sig);
  3468     // restore the signal mask
  3469     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3471   // Tell jvm's signal handler the signal is taken care of.
  3472   return true;
  3475 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3476   bool chained = false;
  3477   // signal-chaining
  3478   if (UseSignalChaining) {
  3479     struct sigaction *actp = get_chained_signal_action(sig);
  3480     if (actp != NULL) {
  3481       chained = call_chained_handler(actp, sig, siginfo, context);
  3484   return chained;
  3487 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3488   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3489     return &sigact[sig];
  3491   return NULL;
  3494 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3495   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3496   sigact[sig] = oldAct;
  3497   sigs |= (unsigned int)1 << sig;
  3500 // for diagnostic
  3501 int os::Linux::sigflags[MAXSIGNUM];
  3503 int os::Linux::get_our_sigflags(int sig) {
  3504   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3505   return sigflags[sig];
  3508 void os::Linux::set_our_sigflags(int sig, int flags) {
  3509   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3510   sigflags[sig] = flags;
  3513 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3514   // Check for overwrite.
  3515   struct sigaction oldAct;
  3516   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3518   void* oldhand = oldAct.sa_sigaction
  3519                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3520                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3521   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3522       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3523       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3524     if (AllowUserSignalHandlers || !set_installed) {
  3525       // Do not overwrite; user takes responsibility to forward to us.
  3526       return;
  3527     } else if (UseSignalChaining) {
  3528       // save the old handler in jvm
  3529       save_preinstalled_handler(sig, oldAct);
  3530       // libjsig also interposes the sigaction() call below and saves the
  3531       // old sigaction on it own.
  3532     } else {
  3533       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3534                     "%#lx for signal %d.", (long)oldhand, sig));
  3538   struct sigaction sigAct;
  3539   sigfillset(&(sigAct.sa_mask));
  3540   sigAct.sa_handler = SIG_DFL;
  3541   if (!set_installed) {
  3542     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3543   } else {
  3544     sigAct.sa_sigaction = signalHandler;
  3545     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3547   // Save flags, which are set by ours
  3548   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3549   sigflags[sig] = sigAct.sa_flags;
  3551   int ret = sigaction(sig, &sigAct, &oldAct);
  3552   assert(ret == 0, "check");
  3554   void* oldhand2  = oldAct.sa_sigaction
  3555                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3556                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3557   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3560 // install signal handlers for signals that HotSpot needs to
  3561 // handle in order to support Java-level exception handling.
  3563 void os::Linux::install_signal_handlers() {
  3564   if (!signal_handlers_are_installed) {
  3565     signal_handlers_are_installed = true;
  3567     // signal-chaining
  3568     typedef void (*signal_setting_t)();
  3569     signal_setting_t begin_signal_setting = NULL;
  3570     signal_setting_t end_signal_setting = NULL;
  3571     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3572                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3573     if (begin_signal_setting != NULL) {
  3574       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3575                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3576       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3577                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3578       libjsig_is_loaded = true;
  3579       assert(UseSignalChaining, "should enable signal-chaining");
  3581     if (libjsig_is_loaded) {
  3582       // Tell libjsig jvm is setting signal handlers
  3583       (*begin_signal_setting)();
  3586     set_signal_handler(SIGSEGV, true);
  3587     set_signal_handler(SIGPIPE, true);
  3588     set_signal_handler(SIGBUS, true);
  3589     set_signal_handler(SIGILL, true);
  3590     set_signal_handler(SIGFPE, true);
  3591     set_signal_handler(SIGXFSZ, true);
  3593     if (libjsig_is_loaded) {
  3594       // Tell libjsig jvm finishes setting signal handlers
  3595       (*end_signal_setting)();
  3598     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3599     // and if UserSignalHandler is installed all bets are off
  3600     if (CheckJNICalls) {
  3601       if (libjsig_is_loaded) {
  3602         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3603         check_signals = false;
  3605       if (AllowUserSignalHandlers) {
  3606         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3607         check_signals = false;
  3613 // This is the fastest way to get thread cpu time on Linux.
  3614 // Returns cpu time (user+sys) for any thread, not only for current.
  3615 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3616 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3617 // For reference, please, see IEEE Std 1003.1-2004:
  3618 //   http://www.unix.org/single_unix_specification
  3620 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3621   struct timespec tp;
  3622   int rc = os::Linux::clock_gettime(clockid, &tp);
  3623   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3625   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3628 /////
  3629 // glibc on Linux platform uses non-documented flag
  3630 // to indicate, that some special sort of signal
  3631 // trampoline is used.
  3632 // We will never set this flag, and we should
  3633 // ignore this flag in our diagnostic
  3634 #ifdef SIGNIFICANT_SIGNAL_MASK
  3635 #undef SIGNIFICANT_SIGNAL_MASK
  3636 #endif
  3637 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3639 static const char* get_signal_handler_name(address handler,
  3640                                            char* buf, int buflen) {
  3641   int offset;
  3642   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3643   if (found) {
  3644     // skip directory names
  3645     const char *p1, *p2;
  3646     p1 = buf;
  3647     size_t len = strlen(os::file_separator());
  3648     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3649     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3650   } else {
  3651     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3653   return buf;
  3656 static void print_signal_handler(outputStream* st, int sig,
  3657                                  char* buf, size_t buflen) {
  3658   struct sigaction sa;
  3660   sigaction(sig, NULL, &sa);
  3662   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3663   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3665   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3667   address handler = (sa.sa_flags & SA_SIGINFO)
  3668     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3669     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3671   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3672     st->print("SIG_DFL");
  3673   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3674     st->print("SIG_IGN");
  3675   } else {
  3676     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3679   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3681   address rh = VMError::get_resetted_sighandler(sig);
  3682   // May be, handler was resetted by VMError?
  3683   if(rh != NULL) {
  3684     handler = rh;
  3685     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3688   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3690   // Check: is it our handler?
  3691   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3692      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3693     // It is our signal handler
  3694     // check for flags, reset system-used one!
  3695     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3696       st->print(
  3697                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3698                 os::Linux::get_our_sigflags(sig));
  3701   st->cr();
  3705 #define DO_SIGNAL_CHECK(sig) \
  3706   if (!sigismember(&check_signal_done, sig)) \
  3707     os::Linux::check_signal_handler(sig)
  3709 // This method is a periodic task to check for misbehaving JNI applications
  3710 // under CheckJNI, we can add any periodic checks here
  3712 void os::run_periodic_checks() {
  3714   if (check_signals == false) return;
  3716   // SEGV and BUS if overridden could potentially prevent
  3717   // generation of hs*.log in the event of a crash, debugging
  3718   // such a case can be very challenging, so we absolutely
  3719   // check the following for a good measure:
  3720   DO_SIGNAL_CHECK(SIGSEGV);
  3721   DO_SIGNAL_CHECK(SIGILL);
  3722   DO_SIGNAL_CHECK(SIGFPE);
  3723   DO_SIGNAL_CHECK(SIGBUS);
  3724   DO_SIGNAL_CHECK(SIGPIPE);
  3725   DO_SIGNAL_CHECK(SIGXFSZ);
  3728   // ReduceSignalUsage allows the user to override these handlers
  3729   // see comments at the very top and jvm_solaris.h
  3730   if (!ReduceSignalUsage) {
  3731     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3732     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3733     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3734     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3737   DO_SIGNAL_CHECK(SR_signum);
  3738   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3741 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3743 static os_sigaction_t os_sigaction = NULL;
  3745 void os::Linux::check_signal_handler(int sig) {
  3746   char buf[O_BUFLEN];
  3747   address jvmHandler = NULL;
  3750   struct sigaction act;
  3751   if (os_sigaction == NULL) {
  3752     // only trust the default sigaction, in case it has been interposed
  3753     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3754     if (os_sigaction == NULL) return;
  3757   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3760   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3762   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3763     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3764     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3767   switch(sig) {
  3768   case SIGSEGV:
  3769   case SIGBUS:
  3770   case SIGFPE:
  3771   case SIGPIPE:
  3772   case SIGILL:
  3773   case SIGXFSZ:
  3774     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3775     break;
  3777   case SHUTDOWN1_SIGNAL:
  3778   case SHUTDOWN2_SIGNAL:
  3779   case SHUTDOWN3_SIGNAL:
  3780   case BREAK_SIGNAL:
  3781     jvmHandler = (address)user_handler();
  3782     break;
  3784   case INTERRUPT_SIGNAL:
  3785     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3786     break;
  3788   default:
  3789     if (sig == SR_signum) {
  3790       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3791     } else {
  3792       return;
  3794     break;
  3797   if (thisHandler != jvmHandler) {
  3798     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3799     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3800     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3801     // No need to check this sig any longer
  3802     sigaddset(&check_signal_done, sig);
  3803   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3804     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3805     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  3806     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3807     // No need to check this sig any longer
  3808     sigaddset(&check_signal_done, sig);
  3811   // Dump all the signal
  3812   if (sigismember(&check_signal_done, sig)) {
  3813     print_signal_handlers(tty, buf, O_BUFLEN);
  3817 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3819 extern bool signal_name(int signo, char* buf, size_t len);
  3821 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3822   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3823     // signal
  3824     if (!signal_name(exception_code, buf, size)) {
  3825       jio_snprintf(buf, size, "SIG%d", exception_code);
  3827     return buf;
  3828   } else {
  3829     return NULL;
  3833 // this is called _before_ the most of global arguments have been parsed
  3834 void os::init(void) {
  3835   char dummy;   /* used to get a guess on initial stack address */
  3836 //  first_hrtime = gethrtime();
  3838   // With LinuxThreads the JavaMain thread pid (primordial thread)
  3839   // is different than the pid of the java launcher thread.
  3840   // So, on Linux, the launcher thread pid is passed to the VM
  3841   // via the sun.java.launcher.pid property.
  3842   // Use this property instead of getpid() if it was correctly passed.
  3843   // See bug 6351349.
  3844   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3846   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3848   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  3850   init_random(1234567);
  3852   ThreadCritical::initialize();
  3854   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  3855   if (Linux::page_size() == -1) {
  3856     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  3857                   strerror(errno)));
  3859   init_page_sizes((size_t) Linux::page_size());
  3861   Linux::initialize_system_info();
  3863   // main_thread points to the aboriginal thread
  3864   Linux::_main_thread = pthread_self();
  3866   Linux::clock_init();
  3867   initial_time_count = os::elapsed_counter();
  3868   pthread_mutex_init(&dl_mutex, NULL);
  3871 // To install functions for atexit system call
  3872 extern "C" {
  3873   static void perfMemory_exit_helper() {
  3874     perfMemory_exit();
  3878 // this is called _after_ the global arguments have been parsed
  3879 jint os::init_2(void)
  3881   Linux::fast_thread_clock_init();
  3883   // Allocate a single page and mark it as readable for safepoint polling
  3884   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3885   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3887   os::set_polling_page( polling_page );
  3889 #ifndef PRODUCT
  3890   if(Verbose && PrintMiscellaneous)
  3891     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3892 #endif
  3894   if (!UseMembar) {
  3895     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3896     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  3897     os::set_memory_serialize_page( mem_serialize_page );
  3899 #ifndef PRODUCT
  3900     if(Verbose && PrintMiscellaneous)
  3901       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3902 #endif
  3905   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3907   // initialize suspend/resume support - must do this before signal_sets_init()
  3908   if (SR_initialize() != 0) {
  3909     perror("SR_initialize failed");
  3910     return JNI_ERR;
  3913   Linux::signal_sets_init();
  3914   Linux::install_signal_handlers();
  3916   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3917   if (threadStackSizeInBytes != 0 &&
  3918       threadStackSizeInBytes < Linux::min_stack_allowed) {
  3919         tty->print_cr("\nThe stack size specified is too small, "
  3920                       "Specify at least %dk",
  3921                       Linux::min_stack_allowed / K);
  3922         return JNI_ERR;
  3925   // Make the stack size a multiple of the page size so that
  3926   // the yellow/red zones can be guarded.
  3927   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3928         vm_page_size()));
  3930   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  3932   Linux::libpthread_init();
  3933   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  3934      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  3935           Linux::glibc_version(), Linux::libpthread_version(),
  3936           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  3939   if (UseNUMA) {
  3940     if (!Linux::libnuma_init()) {
  3941       UseNUMA = false;
  3942     } else {
  3943       if ((Linux::numa_max_node() < 1)) {
  3944         // There's only one node(they start from 0), disable NUMA.
  3945         UseNUMA = false;
  3948     if (!UseNUMA && ForceNUMA) {
  3949       UseNUMA = true;
  3953   if (MaxFDLimit) {
  3954     // set the number of file descriptors to max. print out error
  3955     // if getrlimit/setrlimit fails but continue regardless.
  3956     struct rlimit nbr_files;
  3957     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3958     if (status != 0) {
  3959       if (PrintMiscellaneous && (Verbose || WizardMode))
  3960         perror("os::init_2 getrlimit failed");
  3961     } else {
  3962       nbr_files.rlim_cur = nbr_files.rlim_max;
  3963       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3964       if (status != 0) {
  3965         if (PrintMiscellaneous && (Verbose || WizardMode))
  3966           perror("os::init_2 setrlimit failed");
  3971   // Initialize lock used to serialize thread creation (see os::create_thread)
  3972   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  3974   // Initialize HPI.
  3975   jint hpi_result = hpi::initialize();
  3976   if (hpi_result != JNI_OK) {
  3977     tty->print_cr("There was an error trying to initialize the HPI library.");
  3978     return hpi_result;
  3981   // at-exit methods are called in the reverse order of their registration.
  3982   // atexit functions are called on return from main or as a result of a
  3983   // call to exit(3C). There can be only 32 of these functions registered
  3984   // and atexit() does not set errno.
  3986   if (PerfAllowAtExitRegistration) {
  3987     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3988     // atexit functions can be delayed until process exit time, which
  3989     // can be problematic for embedded VM situations. Embedded VMs should
  3990     // call DestroyJavaVM() to assure that VM resources are released.
  3992     // note: perfMemory_exit_helper atexit function may be removed in
  3993     // the future if the appropriate cleanup code can be added to the
  3994     // VM_Exit VMOperation's doit method.
  3995     if (atexit(perfMemory_exit_helper) != 0) {
  3996       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4000   // initialize thread priority policy
  4001   prio_init();
  4003   return JNI_OK;
  4006 // this is called at the end of vm_initialization
  4007 void os::init_3(void) { }
  4009 // Mark the polling page as unreadable
  4010 void os::make_polling_page_unreadable(void) {
  4011   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4012     fatal("Could not disable polling page");
  4013 };
  4015 // Mark the polling page as readable
  4016 void os::make_polling_page_readable(void) {
  4017   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4018     fatal("Could not enable polling page");
  4020 };
  4022 int os::active_processor_count() {
  4023   // Linux doesn't yet have a (official) notion of processor sets,
  4024   // so just return the number of online processors.
  4025   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4026   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4027   return online_cpus;
  4030 bool os::distribute_processes(uint length, uint* distribution) {
  4031   // Not yet implemented.
  4032   return false;
  4035 bool os::bind_to_processor(uint processor_id) {
  4036   // Not yet implemented.
  4037   return false;
  4040 ///
  4042 // Suspends the target using the signal mechanism and then grabs the PC before
  4043 // resuming the target. Used by the flat-profiler only
  4044 ExtendedPC os::get_thread_pc(Thread* thread) {
  4045   // Make sure that it is called by the watcher for the VMThread
  4046   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4047   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4049   ExtendedPC epc;
  4051   OSThread* osthread = thread->osthread();
  4052   if (do_suspend(osthread)) {
  4053     if (osthread->ucontext() != NULL) {
  4054       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4055     } else {
  4056       // NULL context is unexpected, double-check this is the VMThread
  4057       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4059     do_resume(osthread);
  4061   // failure means pthread_kill failed for some reason - arguably this is
  4062   // a fatal problem, but such problems are ignored elsewhere
  4064   return epc;
  4067 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4069    if (is_NPTL()) {
  4070       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4071    } else {
  4072 #ifndef IA64
  4073       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4074       // word back to default 64bit precision if condvar is signaled. Java
  4075       // wants 53bit precision.  Save and restore current value.
  4076       int fpu = get_fpu_control_word();
  4077 #endif // IA64
  4078       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4079 #ifndef IA64
  4080       set_fpu_control_word(fpu);
  4081 #endif // IA64
  4082       return status;
  4086 ////////////////////////////////////////////////////////////////////////////////
  4087 // debug support
  4089 static address same_page(address x, address y) {
  4090   int page_bits = -os::vm_page_size();
  4091   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4092     return x;
  4093   else if (x > y)
  4094     return (address)(intptr_t(y) | ~page_bits) + 1;
  4095   else
  4096     return (address)(intptr_t(y) & page_bits);
  4099 bool os::find(address addr, outputStream* st) {
  4100   Dl_info dlinfo;
  4101   memset(&dlinfo, 0, sizeof(dlinfo));
  4102   if (dladdr(addr, &dlinfo)) {
  4103     st->print(PTR_FORMAT ": ", addr);
  4104     if (dlinfo.dli_sname != NULL) {
  4105       st->print("%s+%#x", dlinfo.dli_sname,
  4106                  addr - (intptr_t)dlinfo.dli_saddr);
  4107     } else if (dlinfo.dli_fname) {
  4108       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4109     } else {
  4110       st->print("<absolute address>");
  4112     if (dlinfo.dli_fname) {
  4113       st->print(" in %s", dlinfo.dli_fname);
  4115     if (dlinfo.dli_fbase) {
  4116       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4118     st->cr();
  4120     if (Verbose) {
  4121       // decode some bytes around the PC
  4122       address begin = same_page(addr-40, addr);
  4123       address end   = same_page(addr+40, addr);
  4124       address       lowest = (address) dlinfo.dli_sname;
  4125       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4126       if (begin < lowest)  begin = lowest;
  4127       Dl_info dlinfo2;
  4128       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4129           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4130         end = (address) dlinfo2.dli_saddr;
  4131       Disassembler::decode(begin, end, st);
  4133     return true;
  4135   return false;
  4138 ////////////////////////////////////////////////////////////////////////////////
  4139 // misc
  4141 // This does not do anything on Linux. This is basically a hook for being
  4142 // able to use structured exception handling (thread-local exception filters)
  4143 // on, e.g., Win32.
  4144 void
  4145 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4146                          JavaCallArguments* args, Thread* thread) {
  4147   f(value, method, args, thread);
  4150 void os::print_statistics() {
  4153 int os::message_box(const char* title, const char* message) {
  4154   int i;
  4155   fdStream err(defaultStream::error_fd());
  4156   for (i = 0; i < 78; i++) err.print_raw("=");
  4157   err.cr();
  4158   err.print_raw_cr(title);
  4159   for (i = 0; i < 78; i++) err.print_raw("-");
  4160   err.cr();
  4161   err.print_raw_cr(message);
  4162   for (i = 0; i < 78; i++) err.print_raw("=");
  4163   err.cr();
  4165   char buf[16];
  4166   // Prevent process from exiting upon "read error" without consuming all CPU
  4167   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4169   return buf[0] == 'y' || buf[0] == 'Y';
  4172 int os::stat(const char *path, struct stat *sbuf) {
  4173   char pathbuf[MAX_PATH];
  4174   if (strlen(path) > MAX_PATH - 1) {
  4175     errno = ENAMETOOLONG;
  4176     return -1;
  4178   hpi::native_path(strcpy(pathbuf, path));
  4179   return ::stat(pathbuf, sbuf);
  4182 bool os::check_heap(bool force) {
  4183   return true;
  4186 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4187   return ::vsnprintf(buf, count, format, args);
  4190 // Is a (classpath) directory empty?
  4191 bool os::dir_is_empty(const char* path) {
  4192   DIR *dir = NULL;
  4193   struct dirent *ptr;
  4195   dir = opendir(path);
  4196   if (dir == NULL) return true;
  4198   /* Scan the directory */
  4199   bool result = true;
  4200   char buf[sizeof(struct dirent) + MAX_PATH];
  4201   while (result && (ptr = ::readdir(dir)) != NULL) {
  4202     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4203       result = false;
  4206   closedir(dir);
  4207   return result;
  4210 // create binary file, rewriting existing file if required
  4211 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4212   int oflags = O_WRONLY | O_CREAT;
  4213   if (!rewrite_existing) {
  4214     oflags |= O_EXCL;
  4216   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4219 // return current position of file pointer
  4220 jlong os::current_file_offset(int fd) {
  4221   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4224 // move file pointer to the specified offset
  4225 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4226   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4229 // Map a block of memory.
  4230 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4231                      char *addr, size_t bytes, bool read_only,
  4232                      bool allow_exec) {
  4233   int prot;
  4234   int flags;
  4236   if (read_only) {
  4237     prot = PROT_READ;
  4238     flags = MAP_SHARED;
  4239   } else {
  4240     prot = PROT_READ | PROT_WRITE;
  4241     flags = MAP_PRIVATE;
  4244   if (allow_exec) {
  4245     prot |= PROT_EXEC;
  4248   if (addr != NULL) {
  4249     flags |= MAP_FIXED;
  4252   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4253                                      fd, file_offset);
  4254   if (mapped_address == MAP_FAILED) {
  4255     return NULL;
  4257   return mapped_address;
  4261 // Remap a block of memory.
  4262 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4263                        char *addr, size_t bytes, bool read_only,
  4264                        bool allow_exec) {
  4265   // same as map_memory() on this OS
  4266   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4267                         allow_exec);
  4271 // Unmap a block of memory.
  4272 bool os::unmap_memory(char* addr, size_t bytes) {
  4273   return munmap(addr, bytes) == 0;
  4276 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4278 static clockid_t thread_cpu_clockid(Thread* thread) {
  4279   pthread_t tid = thread->osthread()->pthread_id();
  4280   clockid_t clockid;
  4282   // Get thread clockid
  4283   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4284   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4285   return clockid;
  4288 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4289 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4290 // of a thread.
  4291 //
  4292 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4293 // the fast estimate available on the platform.
  4295 jlong os::current_thread_cpu_time() {
  4296   if (os::Linux::supports_fast_thread_cpu_time()) {
  4297     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4298   } else {
  4299     // return user + sys since the cost is the same
  4300     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4304 jlong os::thread_cpu_time(Thread* thread) {
  4305   // consistent with what current_thread_cpu_time() returns
  4306   if (os::Linux::supports_fast_thread_cpu_time()) {
  4307     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4308   } else {
  4309     return slow_thread_cpu_time(thread, true /* user + sys */);
  4313 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4314   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4315     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4316   } else {
  4317     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4321 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4322   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4323     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4324   } else {
  4325     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4329 //
  4330 //  -1 on error.
  4331 //
  4333 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4334   static bool proc_pid_cpu_avail = true;
  4335   static bool proc_task_unchecked = true;
  4336   static const char *proc_stat_path = "/proc/%d/stat";
  4337   pid_t  tid = thread->osthread()->thread_id();
  4338   int i;
  4339   char *s;
  4340   char stat[2048];
  4341   int statlen;
  4342   char proc_name[64];
  4343   int count;
  4344   long sys_time, user_time;
  4345   char string[64];
  4346   char cdummy;
  4347   int idummy;
  4348   long ldummy;
  4349   FILE *fp;
  4351   // We first try accessing /proc/<pid>/cpu since this is faster to
  4352   // process.  If this file is not present (linux kernels 2.5 and above)
  4353   // then we open /proc/<pid>/stat.
  4354   if ( proc_pid_cpu_avail ) {
  4355     sprintf(proc_name, "/proc/%d/cpu", tid);
  4356     fp =  fopen(proc_name, "r");
  4357     if ( fp != NULL ) {
  4358       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4359       fclose(fp);
  4360       if ( count != 3 ) return -1;
  4362       if (user_sys_cpu_time) {
  4363         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4364       } else {
  4365         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4368     else proc_pid_cpu_avail = false;
  4371   // The /proc/<tid>/stat aggregates per-process usage on
  4372   // new Linux kernels 2.6+ where NPTL is supported.
  4373   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4374   // See bug 6328462.
  4375   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4376   // and possibly in some other cases, so we check its availability.
  4377   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4378     // This is executed only once
  4379     proc_task_unchecked = false;
  4380     fp = fopen("/proc/self/task", "r");
  4381     if (fp != NULL) {
  4382       proc_stat_path = "/proc/self/task/%d/stat";
  4383       fclose(fp);
  4387   sprintf(proc_name, proc_stat_path, tid);
  4388   fp = fopen(proc_name, "r");
  4389   if ( fp == NULL ) return -1;
  4390   statlen = fread(stat, 1, 2047, fp);
  4391   stat[statlen] = '\0';
  4392   fclose(fp);
  4394   // Skip pid and the command string. Note that we could be dealing with
  4395   // weird command names, e.g. user could decide to rename java launcher
  4396   // to "java 1.4.2 :)", then the stat file would look like
  4397   //                1234 (java 1.4.2 :)) R ... ...
  4398   // We don't really need to know the command string, just find the last
  4399   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4400   s = strrchr(stat, ')');
  4401   i = 0;
  4402   if (s == NULL ) return -1;
  4404   // Skip blank chars
  4405   do s++; while (isspace(*s));
  4407   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4408                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4409                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4410                  &user_time, &sys_time);
  4411   if ( count != 13 ) return -1;
  4412   if (user_sys_cpu_time) {
  4413     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4414   } else {
  4415     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4419 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4420   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4421   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4422   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4423   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4426 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4427   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4428   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4429   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4430   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4433 bool os::is_thread_cpu_time_supported() {
  4434   return true;
  4437 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4438 // Linux doesn't yet have a (official) notion of processor sets,
  4439 // so just return the system wide load average.
  4440 int os::loadavg(double loadavg[], int nelem) {
  4441   return ::getloadavg(loadavg, nelem);
  4444 void os::pause() {
  4445   char filename[MAX_PATH];
  4446   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4447     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4448   } else {
  4449     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4452   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4453   if (fd != -1) {
  4454     struct stat buf;
  4455     close(fd);
  4456     while (::stat(filename, &buf) == 0) {
  4457       (void)::poll(NULL, 0, 100);
  4459   } else {
  4460     jio_fprintf(stderr,
  4461       "Could not open pause file '%s', continuing immediately.\n", filename);
  4465 extern "C" {
  4467 /**
  4468  * NOTE: the following code is to keep the green threads code
  4469  * in the libjava.so happy. Once the green threads is removed,
  4470  * these code will no longer be needed.
  4471  */
  4472 int
  4473 jdk_waitpid(pid_t pid, int* status, int options) {
  4474     return waitpid(pid, status, options);
  4477 int
  4478 fork1() {
  4479     return fork();
  4482 int
  4483 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
  4484     return sem_init(sem, pshared, value);
  4487 int
  4488 jdk_sem_post(sem_t *sem) {
  4489     return sem_post(sem);
  4492 int
  4493 jdk_sem_wait(sem_t *sem) {
  4494     return sem_wait(sem);
  4497 int
  4498 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
  4499     return pthread_sigmask(how , newmask, oldmask);
  4504 // Refer to the comments in os_solaris.cpp park-unpark.
  4505 //
  4506 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4507 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4508 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4509 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4510 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4511 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4512 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4513 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4514 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4515 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4516 // of libpthread avoids the problem, but isn't practical.
  4517 //
  4518 // Possible remedies:
  4519 //
  4520 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4521 //      This is palliative and probabilistic, however.  If the thread is preempted
  4522 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4523 //      than the minimum period may have passed, and the abstime may be stale (in the
  4524 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4525 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4526 //
  4527 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4528 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4529 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4530 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4531 //      thread.
  4532 //
  4533 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4534 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4535 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4536 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4537 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4538 //      timers in a graceful fashion.
  4539 //
  4540 // 4.   When the abstime value is in the past it appears that control returns
  4541 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4542 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4543 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4544 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4545 //      It may be possible to avoid reinitialization by checking the return
  4546 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4547 //      condvar we must establish the invariant that cond_signal() is only called
  4548 //      within critical sections protected by the adjunct mutex.  This prevents
  4549 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4550 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4551 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4552 //
  4553 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4554 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4555 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4556 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4557 //
  4558 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4559 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4560 // and only enabling the work-around for vulnerable environments.
  4562 // utility to compute the abstime argument to timedwait:
  4563 // millis is the relative timeout time
  4564 // abstime will be the absolute timeout time
  4565 // TODO: replace compute_abstime() with unpackTime()
  4567 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4568   if (millis < 0)  millis = 0;
  4569   struct timeval now;
  4570   int status = gettimeofday(&now, NULL);
  4571   assert(status == 0, "gettimeofday");
  4572   jlong seconds = millis / 1000;
  4573   millis %= 1000;
  4574   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4575     seconds = 50000000;
  4577   abstime->tv_sec = now.tv_sec  + seconds;
  4578   long       usec = now.tv_usec + millis * 1000;
  4579   if (usec >= 1000000) {
  4580     abstime->tv_sec += 1;
  4581     usec -= 1000000;
  4583   abstime->tv_nsec = usec * 1000;
  4584   return abstime;
  4588 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4589 // Conceptually TryPark() should be equivalent to park(0).
  4591 int os::PlatformEvent::TryPark() {
  4592   for (;;) {
  4593     const int v = _Event ;
  4594     guarantee ((v == 0) || (v == 1), "invariant") ;
  4595     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4599 void os::PlatformEvent::park() {       // AKA "down()"
  4600   // Invariant: Only the thread associated with the Event/PlatformEvent
  4601   // may call park().
  4602   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4603   int v ;
  4604   for (;;) {
  4605       v = _Event ;
  4606       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4608   guarantee (v >= 0, "invariant") ;
  4609   if (v == 0) {
  4610      // Do this the hard way by blocking ...
  4611      int status = pthread_mutex_lock(_mutex);
  4612      assert_status(status == 0, status, "mutex_lock");
  4613      guarantee (_nParked == 0, "invariant") ;
  4614      ++ _nParked ;
  4615      while (_Event < 0) {
  4616         status = pthread_cond_wait(_cond, _mutex);
  4617         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4618         // Treat this the same as if the wait was interrupted
  4619         if (status == ETIME) { status = EINTR; }
  4620         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4622      -- _nParked ;
  4624     // In theory we could move the ST of 0 into _Event past the unlock(),
  4625     // but then we'd need a MEMBAR after the ST.
  4626     _Event = 0 ;
  4627      status = pthread_mutex_unlock(_mutex);
  4628      assert_status(status == 0, status, "mutex_unlock");
  4630   guarantee (_Event >= 0, "invariant") ;
  4633 int os::PlatformEvent::park(jlong millis) {
  4634   guarantee (_nParked == 0, "invariant") ;
  4636   int v ;
  4637   for (;;) {
  4638       v = _Event ;
  4639       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4641   guarantee (v >= 0, "invariant") ;
  4642   if (v != 0) return OS_OK ;
  4644   // We do this the hard way, by blocking the thread.
  4645   // Consider enforcing a minimum timeout value.
  4646   struct timespec abst;
  4647   compute_abstime(&abst, millis);
  4649   int ret = OS_TIMEOUT;
  4650   int status = pthread_mutex_lock(_mutex);
  4651   assert_status(status == 0, status, "mutex_lock");
  4652   guarantee (_nParked == 0, "invariant") ;
  4653   ++_nParked ;
  4655   // Object.wait(timo) will return because of
  4656   // (a) notification
  4657   // (b) timeout
  4658   // (c) thread.interrupt
  4659   //
  4660   // Thread.interrupt and object.notify{All} both call Event::set.
  4661   // That is, we treat thread.interrupt as a special case of notification.
  4662   // The underlying Solaris implementation, cond_timedwait, admits
  4663   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4664   // JVM from making those visible to Java code.  As such, we must
  4665   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4666   //
  4667   // TODO: properly differentiate simultaneous notify+interrupt.
  4668   // In that case, we should propagate the notify to another waiter.
  4670   while (_Event < 0) {
  4671     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  4672     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4673       pthread_cond_destroy (_cond);
  4674       pthread_cond_init (_cond, NULL) ;
  4676     assert_status(status == 0 || status == EINTR ||
  4677                   status == ETIME || status == ETIMEDOUT,
  4678                   status, "cond_timedwait");
  4679     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4680     if (status == ETIME || status == ETIMEDOUT) break ;
  4681     // We consume and ignore EINTR and spurious wakeups.
  4683   --_nParked ;
  4684   if (_Event >= 0) {
  4685      ret = OS_OK;
  4687   _Event = 0 ;
  4688   status = pthread_mutex_unlock(_mutex);
  4689   assert_status(status == 0, status, "mutex_unlock");
  4690   assert (_nParked == 0, "invariant") ;
  4691   return ret;
  4694 void os::PlatformEvent::unpark() {
  4695   int v, AnyWaiters ;
  4696   for (;;) {
  4697       v = _Event ;
  4698       if (v > 0) {
  4699          // The LD of _Event could have reordered or be satisfied
  4700          // by a read-aside from this processor's write buffer.
  4701          // To avoid problems execute a barrier and then
  4702          // ratify the value.
  4703          OrderAccess::fence() ;
  4704          if (_Event == v) return ;
  4705          continue ;
  4707       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4709   if (v < 0) {
  4710      // Wait for the thread associated with the event to vacate
  4711      int status = pthread_mutex_lock(_mutex);
  4712      assert_status(status == 0, status, "mutex_lock");
  4713      AnyWaiters = _nParked ;
  4714      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  4715      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4716         AnyWaiters = 0 ;
  4717         pthread_cond_signal (_cond);
  4719      status = pthread_mutex_unlock(_mutex);
  4720      assert_status(status == 0, status, "mutex_unlock");
  4721      if (AnyWaiters != 0) {
  4722         status = pthread_cond_signal(_cond);
  4723         assert_status(status == 0, status, "cond_signal");
  4727   // Note that we signal() _after dropping the lock for "immortal" Events.
  4728   // This is safe and avoids a common class of  futile wakeups.  In rare
  4729   // circumstances this can cause a thread to return prematurely from
  4730   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4731   // simply re-test the condition and re-park itself.
  4735 // JSR166
  4736 // -------------------------------------------------------
  4738 /*
  4739  * The solaris and linux implementations of park/unpark are fairly
  4740  * conservative for now, but can be improved. They currently use a
  4741  * mutex/condvar pair, plus a a count.
  4742  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4743  * sets count to 1 and signals condvar.  Only one thread ever waits
  4744  * on the condvar. Contention seen when trying to park implies that someone
  4745  * is unparking you, so don't wait. And spurious returns are fine, so there
  4746  * is no need to track notifications.
  4747  */
  4750 #define NANOSECS_PER_SEC 1000000000
  4751 #define NANOSECS_PER_MILLISEC 1000000
  4752 #define MAX_SECS 100000000
  4753 /*
  4754  * This code is common to linux and solaris and will be moved to a
  4755  * common place in dolphin.
  4757  * The passed in time value is either a relative time in nanoseconds
  4758  * or an absolute time in milliseconds. Either way it has to be unpacked
  4759  * into suitable seconds and nanoseconds components and stored in the
  4760  * given timespec structure.
  4761  * Given time is a 64-bit value and the time_t used in the timespec is only
  4762  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  4763  * overflow if times way in the future are given. Further on Solaris versions
  4764  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4765  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4766  * As it will be 28 years before "now + 100000000" will overflow we can
  4767  * ignore overflow and just impose a hard-limit on seconds using the value
  4768  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4769  * years from "now".
  4770  */
  4772 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  4773   assert (time > 0, "convertTime");
  4775   struct timeval now;
  4776   int status = gettimeofday(&now, NULL);
  4777   assert(status == 0, "gettimeofday");
  4779   time_t max_secs = now.tv_sec + MAX_SECS;
  4781   if (isAbsolute) {
  4782     jlong secs = time / 1000;
  4783     if (secs > max_secs) {
  4784       absTime->tv_sec = max_secs;
  4786     else {
  4787       absTime->tv_sec = secs;
  4789     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4791   else {
  4792     jlong secs = time / NANOSECS_PER_SEC;
  4793     if (secs >= MAX_SECS) {
  4794       absTime->tv_sec = max_secs;
  4795       absTime->tv_nsec = 0;
  4797     else {
  4798       absTime->tv_sec = now.tv_sec + secs;
  4799       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4800       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4801         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4802         ++absTime->tv_sec; // note: this must be <= max_secs
  4806   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4807   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4808   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4809   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4812 void Parker::park(bool isAbsolute, jlong time) {
  4813   // Optional fast-path check:
  4814   // Return immediately if a permit is available.
  4815   if (_counter > 0) {
  4816       _counter = 0 ;
  4817       OrderAccess::fence();
  4818       return ;
  4821   Thread* thread = Thread::current();
  4822   assert(thread->is_Java_thread(), "Must be JavaThread");
  4823   JavaThread *jt = (JavaThread *)thread;
  4825   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4826   // Check interrupt before trying to wait
  4827   if (Thread::is_interrupted(thread, false)) {
  4828     return;
  4831   // Next, demultiplex/decode time arguments
  4832   timespec absTime;
  4833   if (time < 0) { // don't wait at all
  4834     return;
  4836   if (time > 0) {
  4837     unpackTime(&absTime, isAbsolute, time);
  4841   // Enter safepoint region
  4842   // Beware of deadlocks such as 6317397.
  4843   // The per-thread Parker:: mutex is a classic leaf-lock.
  4844   // In particular a thread must never block on the Threads_lock while
  4845   // holding the Parker:: mutex.  If safepoints are pending both the
  4846   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4847   ThreadBlockInVM tbivm(jt);
  4849   // Don't wait if cannot get lock since interference arises from
  4850   // unblocking.  Also. check interrupt before trying wait
  4851   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4852     return;
  4855   int status ;
  4856   if (_counter > 0)  { // no wait needed
  4857     _counter = 0;
  4858     status = pthread_mutex_unlock(_mutex);
  4859     assert (status == 0, "invariant") ;
  4860     OrderAccess::fence();
  4861     return;
  4864 #ifdef ASSERT
  4865   // Don't catch signals while blocked; let the running threads have the signals.
  4866   // (This allows a debugger to break into the running thread.)
  4867   sigset_t oldsigs;
  4868   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  4869   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4870 #endif
  4872   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4873   jt->set_suspend_equivalent();
  4874   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4876   if (time == 0) {
  4877     status = pthread_cond_wait (_cond, _mutex) ;
  4878   } else {
  4879     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4880     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4881       pthread_cond_destroy (_cond) ;
  4882       pthread_cond_init    (_cond, NULL);
  4885   assert_status(status == 0 || status == EINTR ||
  4886                 status == ETIME || status == ETIMEDOUT,
  4887                 status, "cond_timedwait");
  4889 #ifdef ASSERT
  4890   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4891 #endif
  4893   _counter = 0 ;
  4894   status = pthread_mutex_unlock(_mutex) ;
  4895   assert_status(status == 0, status, "invariant") ;
  4896   // If externally suspended while waiting, re-suspend
  4897   if (jt->handle_special_suspend_equivalent_condition()) {
  4898     jt->java_suspend_self();
  4901   OrderAccess::fence();
  4904 void Parker::unpark() {
  4905   int s, status ;
  4906   status = pthread_mutex_lock(_mutex);
  4907   assert (status == 0, "invariant") ;
  4908   s = _counter;
  4909   _counter = 1;
  4910   if (s < 1) {
  4911      if (WorkAroundNPTLTimedWaitHang) {
  4912         status = pthread_cond_signal (_cond) ;
  4913         assert (status == 0, "invariant") ;
  4914         status = pthread_mutex_unlock(_mutex);
  4915         assert (status == 0, "invariant") ;
  4916      } else {
  4917         status = pthread_mutex_unlock(_mutex);
  4918         assert (status == 0, "invariant") ;
  4919         status = pthread_cond_signal (_cond) ;
  4920         assert (status == 0, "invariant") ;
  4922   } else {
  4923     pthread_mutex_unlock(_mutex);
  4924     assert (status == 0, "invariant") ;
  4929 extern char** environ;
  4931 #ifndef __NR_fork
  4932 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  4933 #endif
  4935 #ifndef __NR_execve
  4936 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  4937 #endif
  4939 // Run the specified command in a separate process. Return its exit value,
  4940 // or -1 on failure (e.g. can't fork a new process).
  4941 // Unlike system(), this function can be called from signal handler. It
  4942 // doesn't block SIGINT et al.
  4943 int os::fork_and_exec(char* cmd) {
  4944   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4946   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  4947   // pthread_atfork handlers and reset pthread library. All we need is a
  4948   // separate process to execve. Make a direct syscall to fork process.
  4949   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4950   // the best...
  4951   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  4952               IA64_ONLY(fork();)
  4954   if (pid < 0) {
  4955     // fork failed
  4956     return -1;
  4958   } else if (pid == 0) {
  4959     // child process
  4961     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  4962     // first to kill every thread on the thread list. Because this list is
  4963     // not reset by fork() (see notes above), execve() will instead kill
  4964     // every thread in the parent process. We know this is the only thread
  4965     // in the new process, so make a system call directly.
  4966     // IA64 should use normal execve() from glibc to match the glibc fork()
  4967     // above.
  4968     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  4969     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  4971     // execve failed
  4972     _exit(-1);
  4974   } else  {
  4975     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4976     // care about the actual exit code, for now.
  4978     int status;
  4980     // Wait for the child process to exit.  This returns immediately if
  4981     // the child has already exited. */
  4982     while (waitpid(pid, &status, 0) < 0) {
  4983         switch (errno) {
  4984         case ECHILD: return 0;
  4985         case EINTR: break;
  4986         default: return -1;
  4990     if (WIFEXITED(status)) {
  4991        // The child exited normally; get its exit code.
  4992        return WEXITSTATUS(status);
  4993     } else if (WIFSIGNALED(status)) {
  4994        // The child exited because of a signal
  4995        // The best value to return is 0x80 + signal number,
  4996        // because that is what all Unix shells do, and because
  4997        // it allows callers to distinguish between process exit and
  4998        // process death by signal.
  4999        return 0x80 + WTERMSIG(status);
  5000     } else {
  5001        // Unknown exit code; pass it through
  5002        return status;
  5007 // is_headless_jre()
  5008 //
  5009 // Test for the existence of libmawt in motif21 or xawt directories
  5010 // in order to report if we are running in a headless jre
  5011 //
  5012 bool os::is_headless_jre() {
  5013     struct stat statbuf;
  5014     char buf[MAXPATHLEN];
  5015     char libmawtpath[MAXPATHLEN];
  5016     const char *xawtstr  = "/xawt/libmawt.so";
  5017     const char *motifstr = "/motif21/libmawt.so";
  5018     char *p;
  5020     // Get path to libjvm.so
  5021     os::jvm_path(buf, sizeof(buf));
  5023     // Get rid of libjvm.so
  5024     p = strrchr(buf, '/');
  5025     if (p == NULL) return false;
  5026     else *p = '\0';
  5028     // Get rid of client or server
  5029     p = strrchr(buf, '/');
  5030     if (p == NULL) return false;
  5031     else *p = '\0';
  5033     // check xawt/libmawt.so
  5034     strcpy(libmawtpath, buf);
  5035     strcat(libmawtpath, xawtstr);
  5036     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5038     // check motif21/libmawt.so
  5039     strcpy(libmawtpath, buf);
  5040     strcat(libmawtpath, motifstr);
  5041     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5043     return true;

mercurial