src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1934
e9ff18c4ace7
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateInterpreter_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    35 // Generation of Interpreter
    36 //
    37 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    40 #define __ _masm->
    43 //----------------------------------------------------------------------------------------------------
    46 void InterpreterGenerator::save_native_result(void) {
    47   // result potentially in O0/O1: save it across calls
    48   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    50   // result potentially in F0/F1: save it across calls
    51   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    53   // save and restore any potential method result value around the unlocking operation
    54   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    55 #ifdef _LP64
    56   __ stx(O0, l_tmp);
    57 #else
    58   __ std(O0, l_tmp);
    59 #endif
    60 }
    62 void InterpreterGenerator::restore_native_result(void) {
    63   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    64   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    66   // Restore any method result value
    67   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    68 #ifdef _LP64
    69   __ ldx(l_tmp, O0);
    70 #else
    71   __ ldd(l_tmp, O0);
    72 #endif
    73 }
    75 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    76   assert(!pass_oop || message == NULL, "either oop or message but not both");
    77   address entry = __ pc();
    78   // expression stack must be empty before entering the VM if an exception happened
    79   __ empty_expression_stack();
    80   // load exception object
    81   __ set((intptr_t)name, G3_scratch);
    82   if (pass_oop) {
    83     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
    84   } else {
    85     __ set((intptr_t)message, G4_scratch);
    86     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
    87   }
    88   // throw exception
    89   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
    90   AddressLiteral thrower(Interpreter::throw_exception_entry());
    91   __ jump_to(thrower, G3_scratch);
    92   __ delayed()->nop();
    93   return entry;
    94 }
    96 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
    97   address entry = __ pc();
    98   // expression stack must be empty before entering the VM if an exception
    99   // happened
   100   __ empty_expression_stack();
   101   // load exception object
   102   __ call_VM(Oexception,
   103              CAST_FROM_FN_PTR(address,
   104                               InterpreterRuntime::throw_ClassCastException),
   105              Otos_i);
   106   __ should_not_reach_here();
   107   return entry;
   108 }
   111 // Arguments are: required type in G5_method_type, and
   112 // failing object (or NULL) in G3_method_handle.
   113 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
   114   address entry = __ pc();
   115   // expression stack must be empty before entering the VM if an exception
   116   // happened
   117   __ empty_expression_stack();
   118   // load exception object
   119   __ call_VM(Oexception,
   120              CAST_FROM_FN_PTR(address,
   121                               InterpreterRuntime::throw_WrongMethodTypeException),
   122              G5_method_type,    // required
   123              G3_method_handle); // actual
   124   __ should_not_reach_here();
   125   return entry;
   126 }
   129 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   130   address entry = __ pc();
   131   // expression stack must be empty before entering the VM if an exception happened
   132   __ empty_expression_stack();
   133   // convention: expect aberrant index in register G3_scratch, then shuffle the
   134   // index to G4_scratch for the VM call
   135   __ mov(G3_scratch, G4_scratch);
   136   __ set((intptr_t)name, G3_scratch);
   137   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   138   __ should_not_reach_here();
   139   return entry;
   140 }
   143 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   144   address entry = __ pc();
   145   // expression stack must be empty before entering the VM if an exception happened
   146   __ empty_expression_stack();
   147   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   148   __ should_not_reach_here();
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   154   TosState incoming_state = state;
   156   Label cont;
   157   address compiled_entry = __ pc();
   159   address entry = __ pc();
   160 #if !defined(_LP64) && defined(COMPILER2)
   161   // All return values are where we want them, except for Longs.  C2 returns
   162   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   163   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   164   // build even if we are returning from interpreted we just do a little
   165   // stupid shuffing.
   166   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   167   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   168   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   170   if (incoming_state == ltos) {
   171     __ srl (G1,  0, O1);
   172     __ srlx(G1, 32, O0);
   173   }
   174 #endif // !_LP64 && COMPILER2
   176   __ bind(cont);
   178   // The callee returns with the stack possibly adjusted by adapter transition
   179   // We remove that possible adjustment here.
   180   // All interpreter local registers are untouched. Any result is passed back
   181   // in the O0/O1 or float registers. Before continuing, the arguments must be
   182   // popped from the java expression stack; i.e., Lesp must be adjusted.
   184   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   186   Label L_got_cache, L_giant_index;
   187   const Register cache = G3_scratch;
   188   const Register size  = G1_scratch;
   189   if (EnableInvokeDynamic) {
   190     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
   191     __ cmp(G1_scratch, Bytecodes::_invokedynamic);
   192     __ br(Assembler::equal, false, Assembler::pn, L_giant_index);
   193     __ delayed()->nop();
   194   }
   195   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
   196   __ bind(L_got_cache);
   197   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
   198                    ConstantPoolCacheEntry::flags_offset(), size);
   199   __ and3(size, 0xFF, size);                   // argument size in words
   200   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
   201   __ add(Lesp, size, Lesp);                    // pop arguments
   202   __ dispatch_next(state, step);
   204   // out of the main line of code...
   205   if (EnableInvokeDynamic) {
   206     __ bind(L_giant_index);
   207     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
   208     __ ba(false, L_got_cache);
   209     __ delayed()->nop();
   210   }
   212   return entry;
   213 }
   216 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   217   address entry = __ pc();
   218   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   219   { Label L;
   220     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   221     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
   222     __ tst(Gtemp);
   223     __ brx(Assembler::equal, false, Assembler::pt, L);
   224     __ delayed()->nop();
   225     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   226     __ should_not_reach_here();
   227     __ bind(L);
   228   }
   229   __ dispatch_next(state, step);
   230   return entry;
   231 }
   233 // A result handler converts/unboxes a native call result into
   234 // a java interpreter/compiler result. The current frame is an
   235 // interpreter frame. The activation frame unwind code must be
   236 // consistent with that of TemplateTable::_return(...). In the
   237 // case of native methods, the caller's SP was not modified.
   238 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   239   address entry = __ pc();
   240   Register Itos_i  = Otos_i ->after_save();
   241   Register Itos_l  = Otos_l ->after_save();
   242   Register Itos_l1 = Otos_l1->after_save();
   243   Register Itos_l2 = Otos_l2->after_save();
   244   switch (type) {
   245     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   246     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   247     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   248     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   249     case T_LONG   :
   250 #ifndef _LP64
   251                     __ mov(O1, Itos_l2);  // move other half of long
   252 #endif              // ifdef or no ifdef, fall through to the T_INT case
   253     case T_INT    : __ mov(O0, Itos_i);                         break;
   254     case T_VOID   : /* nothing to do */                         break;
   255     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   256     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   257     case T_OBJECT :
   258       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   259       __ verify_oop(Itos_i);
   260       break;
   261     default       : ShouldNotReachHere();
   262   }
   263   __ ret();                           // return from interpreter activation
   264   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   265   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   266   return entry;
   267 }
   269 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   270   address entry = __ pc();
   271   __ push(state);
   272   __ call_VM(noreg, runtime_entry);
   273   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   274   return entry;
   275 }
   278 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   279   address entry = __ pc();
   280   __ dispatch_next(state);
   281   return entry;
   282 }
   284 //
   285 // Helpers for commoning out cases in the various type of method entries.
   286 //
   288 // increment invocation count & check for overflow
   289 //
   290 // Note: checking for negative value instead of overflow
   291 //       so we have a 'sticky' overflow test
   292 //
   293 // Lmethod: method
   294 // ??: invocation counter
   295 //
   296 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   297   // Update standard invocation counters
   298   __ increment_invocation_counter(O0, G3_scratch);
   299   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   300     Address interpreter_invocation_counter(Lmethod, methodOopDesc::interpreter_invocation_counter_offset());
   301     __ ld(interpreter_invocation_counter, G3_scratch);
   302     __ inc(G3_scratch);
   303     __ st(G3_scratch, interpreter_invocation_counter);
   304   }
   306   if (ProfileInterpreter && profile_method != NULL) {
   307     // Test to see if we should create a method data oop
   308     AddressLiteral profile_limit(&InvocationCounter::InterpreterProfileLimit);
   309     __ sethi(profile_limit, G3_scratch);
   310     __ ld(G3_scratch, profile_limit.low10(), G3_scratch);
   311     __ cmp(O0, G3_scratch);
   312     __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
   313     __ delayed()->nop();
   315     // if no method data exists, go to profile_method
   316     __ test_method_data_pointer(*profile_method);
   317   }
   319   AddressLiteral invocation_limit(&InvocationCounter::InterpreterInvocationLimit);
   320   __ sethi(invocation_limit, G3_scratch);
   321   __ ld(G3_scratch, invocation_limit.low10(), G3_scratch);
   322   __ cmp(O0, G3_scratch);
   323   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   324   __ delayed()->nop();
   326 }
   328 // Allocate monitor and lock method (asm interpreter)
   329 // ebx - methodOop
   330 //
   331 void InterpreterGenerator::lock_method(void) {
   332   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
   334 #ifdef ASSERT
   335  { Label ok;
   336    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   337    __ br( Assembler::notZero, false, Assembler::pt, ok);
   338    __ delayed()->nop();
   339    __ stop("method doesn't need synchronization");
   340    __ bind(ok);
   341   }
   342 #endif // ASSERT
   344   // get synchronization object to O0
   345   { Label done;
   346     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   347     __ btst(JVM_ACC_STATIC, O0);
   348     __ br( Assembler::zero, true, Assembler::pt, done);
   349     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   351     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
   352     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
   354     // lock the mirror, not the klassOop
   355     __ ld_ptr( O0, mirror_offset, O0);
   357 #ifdef ASSERT
   358     __ tst(O0);
   359     __ breakpoint_trap(Assembler::zero);
   360 #endif // ASSERT
   362     __ bind(done);
   363   }
   365   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   366   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   367   // __ untested("lock_object from method entry");
   368   __ lock_object(Lmonitors, O0);
   369 }
   372 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   373                                                          Register Rscratch,
   374                                                          Register Rscratch2) {
   375   const int page_size = os::vm_page_size();
   376   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
   377   Label after_frame_check;
   379   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   381   __ set( page_size,   Rscratch );
   382   __ cmp( Rframe_size, Rscratch );
   384   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
   385   __ delayed()->nop();
   387   // get the stack base, and in debug, verify it is non-zero
   388   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
   389 #ifdef ASSERT
   390   Label base_not_zero;
   391   __ cmp( Rscratch, G0 );
   392   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
   393   __ delayed()->nop();
   394   __ stop("stack base is zero in generate_stack_overflow_check");
   395   __ bind(base_not_zero);
   396 #endif
   398   // get the stack size, and in debug, verify it is non-zero
   399   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   400   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
   401 #ifdef ASSERT
   402   Label size_not_zero;
   403   __ cmp( Rscratch2, G0 );
   404   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
   405   __ delayed()->nop();
   406   __ stop("stack size is zero in generate_stack_overflow_check");
   407   __ bind(size_not_zero);
   408 #endif
   410   // compute the beginning of the protected zone minus the requested frame size
   411   __ sub( Rscratch, Rscratch2,   Rscratch );
   412   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   413   __ add( Rscratch, Rscratch2,   Rscratch );
   415   // Add in the size of the frame (which is the same as subtracting it from the
   416   // SP, which would take another register
   417   __ add( Rscratch, Rframe_size, Rscratch );
   419   // the frame is greater than one page in size, so check against
   420   // the bottom of the stack
   421   __ cmp( SP, Rscratch );
   422   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
   423   __ delayed()->nop();
   425   // Save the return address as the exception pc
   426   __ st_ptr(O7, saved_exception_pc);
   428   // the stack will overflow, throw an exception
   429   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   431   // if you get to here, then there is enough stack space
   432   __ bind( after_frame_check );
   433 }
   436 //
   437 // Generate a fixed interpreter frame. This is identical setup for interpreted
   438 // methods and for native methods hence the shared code.
   440 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   441   //
   442   //
   443   // The entry code sets up a new interpreter frame in 4 steps:
   444   //
   445   // 1) Increase caller's SP by for the extra local space needed:
   446   //    (check for overflow)
   447   //    Efficient implementation of xload/xstore bytecodes requires
   448   //    that arguments and non-argument locals are in a contigously
   449   //    addressable memory block => non-argument locals must be
   450   //    allocated in the caller's frame.
   451   //
   452   // 2) Create a new stack frame and register window:
   453   //    The new stack frame must provide space for the standard
   454   //    register save area, the maximum java expression stack size,
   455   //    the monitor slots (0 slots initially), and some frame local
   456   //    scratch locations.
   457   //
   458   // 3) The following interpreter activation registers must be setup:
   459   //    Lesp       : expression stack pointer
   460   //    Lbcp       : bytecode pointer
   461   //    Lmethod    : method
   462   //    Llocals    : locals pointer
   463   //    Lmonitors  : monitor pointer
   464   //    LcpoolCache: constant pool cache
   465   //
   466   // 4) Initialize the non-argument locals if necessary:
   467   //    Non-argument locals may need to be initialized to NULL
   468   //    for GC to work. If the oop-map information is accurate
   469   //    (in the absence of the JSR problem), no initialization
   470   //    is necessary.
   471   //
   472   // (gri - 2/25/2000)
   475   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
   476   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
   477   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
   478   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   480   const int extra_space =
   481     rounded_vm_local_words +                   // frame local scratch space
   482     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
   483     frame::memory_parameter_word_sp_offset +   // register save area
   484     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   486   const Register Glocals_size = G3;
   487   const Register Otmp1 = O3;
   488   const Register Otmp2 = O4;
   489   // Lscratch can't be used as a temporary because the call_stub uses
   490   // it to assert that the stack frame was setup correctly.
   492   __ lduh( size_of_parameters, Glocals_size);
   494   // Gargs points to first local + BytesPerWord
   495   // Set the saved SP after the register window save
   496   //
   497   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   498   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
   499   __ add(Gargs, Otmp1, Gargs);
   501   if (native_call) {
   502     __ calc_mem_param_words( Glocals_size, Gframe_size );
   503     __ add( Gframe_size,  extra_space, Gframe_size);
   504     __ round_to( Gframe_size, WordsPerLong );
   505     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   506   } else {
   508     //
   509     // Compute number of locals in method apart from incoming parameters
   510     //
   511     __ lduh( size_of_locals, Otmp1 );
   512     __ sub( Otmp1, Glocals_size, Glocals_size );
   513     __ round_to( Glocals_size, WordsPerLong );
   514     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
   516     // see if the frame is greater than one page in size. If so,
   517     // then we need to verify there is enough stack space remaining
   518     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   519     __ lduh( max_stack, Gframe_size );
   520     __ add( Gframe_size, extra_space, Gframe_size );
   521     __ round_to( Gframe_size, WordsPerLong );
   522     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
   524     // Add in java locals size for stack overflow check only
   525     __ add( Gframe_size, Glocals_size, Gframe_size );
   527     const Register Otmp2 = O4;
   528     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   529     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   531     __ sub( Gframe_size, Glocals_size, Gframe_size);
   533     //
   534     // bump SP to accomodate the extra locals
   535     //
   536     __ sub( SP, Glocals_size, SP );
   537   }
   539   //
   540   // now set up a stack frame with the size computed above
   541   //
   542   __ neg( Gframe_size );
   543   __ save( SP, Gframe_size, SP );
   545   //
   546   // now set up all the local cache registers
   547   //
   548   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   549   // that all present references to Lbyte_code initialize the register
   550   // immediately before use
   551   if (native_call) {
   552     __ mov(G0, Lbcp);
   553   } else {
   554     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
   555     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
   556   }
   557   __ mov( G5_method, Lmethod);                 // set Lmethod
   558   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   559   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   560 #ifdef _LP64
   561   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   562 #endif
   563   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   565   // setup interpreter activation registers
   566   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   568   if (ProfileInterpreter) {
   569 #ifdef FAST_DISPATCH
   570     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   571     // they both use I2.
   572     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   573 #endif // FAST_DISPATCH
   574     __ set_method_data_pointer();
   575   }
   577 }
   579 // Empty method, generate a very fast return.
   581 address InterpreterGenerator::generate_empty_entry(void) {
   583   // A method that does nother but return...
   585   address entry = __ pc();
   586   Label slow_path;
   588   __ verify_oop(G5_method);
   590   // do nothing for empty methods (do not even increment invocation counter)
   591   if ( UseFastEmptyMethods) {
   592     // If we need a safepoint check, generate full interpreter entry.
   593     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   594     __ set(sync_state, G3_scratch);
   595     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   596     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   597     __ delayed()->nop();
   599     // Code: _return
   600     __ retl();
   601     __ delayed()->mov(O5_savedSP, SP);
   603     __ bind(slow_path);
   604     (void) generate_normal_entry(false);
   606     return entry;
   607   }
   608   return NULL;
   609 }
   611 // Call an accessor method (assuming it is resolved, otherwise drop into
   612 // vanilla (slow path) entry
   614 // Generates code to elide accessor methods
   615 // Uses G3_scratch and G1_scratch as scratch
   616 address InterpreterGenerator::generate_accessor_entry(void) {
   618   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   619   // parameter size = 1
   620   // Note: We can only use this code if the getfield has been resolved
   621   //       and if we don't have a null-pointer exception => check for
   622   //       these conditions first and use slow path if necessary.
   623   address entry = __ pc();
   624   Label slow_path;
   627   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   628   // delay slot and damages G1
   629   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   630     // Check if we need to reach a safepoint and generate full interpreter
   631     // frame if so.
   632     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   633     __ load_contents(sync_state, G3_scratch);
   634     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   635     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   636     __ delayed()->nop();
   638     // Check if local 0 != NULL
   639     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   640     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   641     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   642     __ delayed()->nop();
   645     // read first instruction word and extract bytecode @ 1 and index @ 2
   646     // get first 4 bytes of the bytecodes (big endian!)
   647     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
   648     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
   650     // move index @ 2 far left then to the right most two bytes.
   651     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   652     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   653                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   655     // get constant pool cache
   656     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
   657     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   659     // get specific constant pool cache entry
   660     __ add(G3_scratch, G1_scratch, G3_scratch);
   662     // Check the constant Pool cache entry to see if it has been resolved.
   663     // If not, need the slow path.
   664     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   665     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
   666     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   667     __ and3(G1_scratch, 0xFF, G1_scratch);
   668     __ cmp(G1_scratch, Bytecodes::_getfield);
   669     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   670     __ delayed()->nop();
   672     // Get the type and return field offset from the constant pool cache
   673     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
   674     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
   676     Label xreturn_path;
   677     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   678     // because they are different sizes.
   679     // Get the type from the constant pool cache
   680     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   681     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   682     ConstantPoolCacheEntry::verify_tosBits();
   683     __ cmp(G1_scratch, atos );
   684     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   685     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   686     __ cmp(G1_scratch, itos);
   687     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   688     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   689     __ cmp(G1_scratch, stos);
   690     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   691     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   692     __ cmp(G1_scratch, ctos);
   693     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   694     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   695 #ifdef ASSERT
   696     __ cmp(G1_scratch, btos);
   697     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   698     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   699     __ should_not_reach_here();
   700 #endif
   701     __ ldsb(Otos_i, G3_scratch, Otos_i);
   702     __ bind(xreturn_path);
   704     // _ireturn/_areturn
   705     __ retl();                      // return from leaf routine
   706     __ delayed()->mov(O5_savedSP, SP);
   708     // Generate regular method entry
   709     __ bind(slow_path);
   710     (void) generate_normal_entry(false);
   711     return entry;
   712   }
   713   return NULL;
   714 }
   716 //
   717 // Interpreter stub for calling a native method. (asm interpreter)
   718 // This sets up a somewhat different looking stack for calling the native method
   719 // than the typical interpreter frame setup.
   720 //
   722 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   723   address entry = __ pc();
   725   // the following temporary registers are used during frame creation
   726   const Register Gtmp1 = G3_scratch ;
   727   const Register Gtmp2 = G1_scratch;
   728   bool inc_counter  = UseCompiler || CountCompiledCalls;
   730   // make sure registers are different!
   731   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   733   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
   735   __ verify_oop(G5_method);
   737   const Register Glocals_size = G3;
   738   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   740   // make sure method is native & not abstract
   741   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   742 #ifdef ASSERT
   743   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
   744   {
   745     Label L;
   746     __ btst(JVM_ACC_NATIVE, Gtmp1);
   747     __ br(Assembler::notZero, false, Assembler::pt, L);
   748     __ delayed()->nop();
   749     __ stop("tried to execute non-native method as native");
   750     __ bind(L);
   751   }
   752   { Label L;
   753     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   754     __ br(Assembler::zero, false, Assembler::pt, L);
   755     __ delayed()->nop();
   756     __ stop("tried to execute abstract method as non-abstract");
   757     __ bind(L);
   758   }
   759 #endif // ASSERT
   761  // generate the code to allocate the interpreter stack frame
   762   generate_fixed_frame(true);
   764   //
   765   // No locals to initialize for native method
   766   //
   768   // this slot will be set later, we initialize it to null here just in
   769   // case we get a GC before the actual value is stored later
   770   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
   772   const Address do_not_unlock_if_synchronized(G2_thread,
   773     JavaThread::do_not_unlock_if_synchronized_offset());
   774   // Since at this point in the method invocation the exception handler
   775   // would try to exit the monitor of synchronized methods which hasn't
   776   // been entered yet, we set the thread local variable
   777   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   778   // runtime, exception handling i.e. unlock_if_synchronized_method will
   779   // check this thread local flag.
   780   // This flag has two effects, one is to force an unwind in the topmost
   781   // interpreter frame and not perform an unlock while doing so.
   783   __ movbool(true, G3_scratch);
   784   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   786   // increment invocation counter and check for overflow
   787   //
   788   // Note: checking for negative value instead of overflow
   789   //       so we have a 'sticky' overflow test (may be of
   790   //       importance as soon as we have true MT/MP)
   791   Label invocation_counter_overflow;
   792   Label Lcontinue;
   793   if (inc_counter) {
   794     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   796   }
   797   __ bind(Lcontinue);
   799   bang_stack_shadow_pages(true);
   801   // reset the _do_not_unlock_if_synchronized flag
   802   __ stbool(G0, do_not_unlock_if_synchronized);
   804   // check for synchronized methods
   805   // Must happen AFTER invocation_counter check and stack overflow check,
   806   // so method is not locked if overflows.
   808   if (synchronized) {
   809     lock_method();
   810   } else {
   811 #ifdef ASSERT
   812     { Label ok;
   813       __ ld(Laccess_flags, O0);
   814       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   815       __ br( Assembler::zero, false, Assembler::pt, ok);
   816       __ delayed()->nop();
   817       __ stop("method needs synchronization");
   818       __ bind(ok);
   819     }
   820 #endif // ASSERT
   821   }
   824   // start execution
   825   __ verify_thread();
   827   // JVMTI support
   828   __ notify_method_entry();
   830   // native call
   832   // (note that O0 is never an oop--at most it is a handle)
   833   // It is important not to smash any handles created by this call,
   834   // until any oop handle in O0 is dereferenced.
   836   // (note that the space for outgoing params is preallocated)
   838   // get signature handler
   839   { Label L;
   840     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
   841     __ ld_ptr(signature_handler, G3_scratch);
   842     __ tst(G3_scratch);
   843     __ brx(Assembler::notZero, false, Assembler::pt, L);
   844     __ delayed()->nop();
   845     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   846     __ ld_ptr(signature_handler, G3_scratch);
   847     __ bind(L);
   848   }
   850   // Push a new frame so that the args will really be stored in
   851   // Copy a few locals across so the new frame has the variables
   852   // we need but these values will be dead at the jni call and
   853   // therefore not gc volatile like the values in the current
   854   // frame (Lmethod in particular)
   856   // Flush the method pointer to the register save area
   857   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   858   __ mov(Llocals, O1);
   860   // calculate where the mirror handle body is allocated in the interpreter frame:
   861   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
   863   // Calculate current frame size
   864   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   865   __ save(SP, O3, SP);        // Allocate an identical sized frame
   867   // Note I7 has leftover trash. Slow signature handler will fill it in
   868   // should we get there. Normal jni call will set reasonable last_Java_pc
   869   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   870   // in it).
   872   // Load interpreter frame's Lmethod into same register here
   874   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   876   __ mov(I1, Llocals);
   877   __ mov(I2, Lscratch2);     // save the address of the mirror
   880   // ONLY Lmethod and Llocals are valid here!
   882   // call signature handler, It will move the arg properly since Llocals in current frame
   883   // matches that in outer frame
   885   __ callr(G3_scratch, 0);
   886   __ delayed()->nop();
   888   // Result handler is in Lscratch
   890   // Reload interpreter frame's Lmethod since slow signature handler may block
   891   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   893   { Label not_static;
   895     __ ld(Laccess_flags, O0);
   896     __ btst(JVM_ACC_STATIC, O0);
   897     __ br( Assembler::zero, false, Assembler::pt, not_static);
   898     // get native function entry point(O0 is a good temp until the very end)
   899     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
   900     // for static methods insert the mirror argument
   901     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   903     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
   904     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
   905     __ ld_ptr(O1, mirror_offset, O1);
   906 #ifdef ASSERT
   907     if (!PrintSignatureHandlers)  // do not dirty the output with this
   908     { Label L;
   909       __ tst(O1);
   910       __ brx(Assembler::notZero, false, Assembler::pt, L);
   911       __ delayed()->nop();
   912       __ stop("mirror is missing");
   913       __ bind(L);
   914     }
   915 #endif // ASSERT
   916     __ st_ptr(O1, Lscratch2, 0);
   917     __ mov(Lscratch2, O1);
   918     __ bind(not_static);
   919   }
   921   // At this point, arguments have been copied off of stack into
   922   // their JNI positions, which are O1..O5 and SP[68..].
   923   // Oops are boxed in-place on the stack, with handles copied to arguments.
   924   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   926 #ifdef ASSERT
   927   { Label L;
   928     __ tst(O0);
   929     __ brx(Assembler::notZero, false, Assembler::pt, L);
   930     __ delayed()->nop();
   931     __ stop("native entry point is missing");
   932     __ bind(L);
   933   }
   934 #endif // ASSERT
   936   //
   937   // setup the frame anchor
   938   //
   939   // The scavenge function only needs to know that the PC of this frame is
   940   // in the interpreter method entry code, it doesn't need to know the exact
   941   // PC and hence we can use O7 which points to the return address from the
   942   // previous call in the code stream (signature handler function)
   943   //
   944   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   945   // we have pushed the extra frame in order to protect the volatile register(s)
   946   // in that frame when we return from the jni call
   947   //
   949   __ set_last_Java_frame(FP, O7);
   950   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   951                    // not meaningless information that'll confuse me.
   953   // flush the windows now. We don't care about the current (protection) frame
   954   // only the outer frames
   956   __ flush_windows();
   958   // mark windows as flushed
   959   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
   960   __ set(JavaFrameAnchor::flushed, G3_scratch);
   961   __ st(G3_scratch, flags);
   963   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   965   Address thread_state(G2_thread, JavaThread::thread_state_offset());
   966 #ifdef ASSERT
   967   { Label L;
   968     __ ld(thread_state, G3_scratch);
   969     __ cmp(G3_scratch, _thread_in_Java);
   970     __ br(Assembler::equal, false, Assembler::pt, L);
   971     __ delayed()->nop();
   972     __ stop("Wrong thread state in native stub");
   973     __ bind(L);
   974   }
   975 #endif // ASSERT
   976   __ set(_thread_in_native, G3_scratch);
   977   __ st(G3_scratch, thread_state);
   979   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   980   __ save_thread(L7_thread_cache); // save Gthread
   981   __ callr(O0, 0);
   982   __ delayed()->
   983      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
   985   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
   987   __ restore_thread(L7_thread_cache); // restore G2_thread
   988   __ reinit_heapbase();
   990   // must we block?
   992   // Block, if necessary, before resuming in _thread_in_Java state.
   993   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   994   { Label no_block;
   995     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   997     // Switch thread to "native transition" state before reading the synchronization state.
   998     // This additional state is necessary because reading and testing the synchronization
   999     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1000     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1001     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1002     //     Thread A is resumed to finish this native method, but doesn't block here since it
  1003     //     didn't see any synchronization is progress, and escapes.
  1004     __ set(_thread_in_native_trans, G3_scratch);
  1005     __ st(G3_scratch, thread_state);
  1006     if(os::is_MP()) {
  1007       if (UseMembar) {
  1008         // Force this write out before the read below
  1009         __ membar(Assembler::StoreLoad);
  1010       } else {
  1011         // Write serialization page so VM thread can do a pseudo remote membar.
  1012         // We use the current thread pointer to calculate a thread specific
  1013         // offset to write to within the page. This minimizes bus traffic
  1014         // due to cache line collision.
  1015         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1018     __ load_contents(sync_state, G3_scratch);
  1019     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1021     Label L;
  1022     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1023     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
  1024     __ cmp(G3_scratch, 0);
  1025     __ br(Assembler::equal, false, Assembler::pt, no_block);
  1026     __ delayed()->nop();
  1027     __ bind(L);
  1029     // Block.  Save any potential method result value before the operation and
  1030     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1031     save_native_result();
  1032     __ call_VM_leaf(L7_thread_cache,
  1033                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1034                     G2_thread);
  1036     // Restore any method result value
  1037     restore_native_result();
  1038     __ bind(no_block);
  1041   // Clear the frame anchor now
  1043   __ reset_last_Java_frame();
  1045   // Move the result handler address
  1046   __ mov(Lscratch, G3_scratch);
  1047   // return possible result to the outer frame
  1048 #ifndef __LP64
  1049   __ mov(O0, I0);
  1050   __ restore(O1, G0, O1);
  1051 #else
  1052   __ restore(O0, G0, O0);
  1053 #endif /* __LP64 */
  1055   // Move result handler to expected register
  1056   __ mov(G3_scratch, Lscratch);
  1058   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1059   // switch to thread_in_Java.
  1061   __ set(_thread_in_Java, G3_scratch);
  1062   __ st(G3_scratch, thread_state);
  1064   // reset handle block
  1065   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
  1066   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1068   // If we have an oop result store it where it will be safe for any further gc
  1069   // until we return now that we've released the handle it might be protected by
  1072     Label no_oop, store_result;
  1074     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1075     __ cmp(G3_scratch, Lscratch);
  1076     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
  1077     __ delayed()->nop();
  1078     __ addcc(G0, O0, O0);
  1079     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1080     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1081     __ mov(G0, O0);
  1083     __ bind(store_result);
  1084     // Store it where gc will look for it and result handler expects it.
  1085     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1087     __ bind(no_oop);
  1092   // handle exceptions (exception handling will handle unlocking!)
  1093   { Label L;
  1094     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1095     __ ld_ptr(exception_addr, Gtemp);
  1096     __ tst(Gtemp);
  1097     __ brx(Assembler::equal, false, Assembler::pt, L);
  1098     __ delayed()->nop();
  1099     // Note: This could be handled more efficiently since we know that the native
  1100     //       method doesn't have an exception handler. We could directly return
  1101     //       to the exception handler for the caller.
  1102     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1103     __ should_not_reach_here();
  1104     __ bind(L);
  1107   // JVMTI support (preserves thread register)
  1108   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1110   if (synchronized) {
  1111     // save and restore any potential method result value around the unlocking operation
  1112     save_native_result();
  1114     __ add( __ top_most_monitor(), O1);
  1115     __ unlock_object(O1);
  1117     restore_native_result();
  1120 #if defined(COMPILER2) && !defined(_LP64)
  1122   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1123   // or compiled so just be safe.
  1125   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1126   __ srl (O1, 0, O1);           // Zero extend O1
  1127   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1129 #endif /* COMPILER2 && !_LP64 */
  1131   // dispose of return address and remove activation
  1132 #ifdef ASSERT
  1134     Label ok;
  1135     __ cmp(I5_savedSP, FP);
  1136     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1137     __ delayed()->nop();
  1138     __ stop("bad I5_savedSP value");
  1139     __ should_not_reach_here();
  1140     __ bind(ok);
  1142 #endif
  1143   if (TraceJumps) {
  1144     // Move target to register that is recordable
  1145     __ mov(Lscratch, G3_scratch);
  1146     __ JMP(G3_scratch, 0);
  1147   } else {
  1148     __ jmp(Lscratch, 0);
  1150   __ delayed()->nop();
  1153   if (inc_counter) {
  1154     // handle invocation counter overflow
  1155     __ bind(invocation_counter_overflow);
  1156     generate_counter_overflow(Lcontinue);
  1161   return entry;
  1165 // Generic method entry to (asm) interpreter
  1166 //------------------------------------------------------------------------------------------------------------------------
  1167 //
  1168 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1169   address entry = __ pc();
  1171   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1173   // the following temporary registers are used during frame creation
  1174   const Register Gtmp1 = G3_scratch ;
  1175   const Register Gtmp2 = G1_scratch;
  1177   // make sure registers are different!
  1178   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1180   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
  1181   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
  1182   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1183   // and use in the asserts.
  1184   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
  1186   __ verify_oop(G5_method);
  1188   const Register Glocals_size = G3;
  1189   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1191   // make sure method is not native & not abstract
  1192   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1193 #ifdef ASSERT
  1194   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
  1196     Label L;
  1197     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1198     __ br(Assembler::zero, false, Assembler::pt, L);
  1199     __ delayed()->nop();
  1200     __ stop("tried to execute native method as non-native");
  1201     __ bind(L);
  1203   { Label L;
  1204     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1205     __ br(Assembler::zero, false, Assembler::pt, L);
  1206     __ delayed()->nop();
  1207     __ stop("tried to execute abstract method as non-abstract");
  1208     __ bind(L);
  1210 #endif // ASSERT
  1212   // generate the code to allocate the interpreter stack frame
  1214   generate_fixed_frame(false);
  1216 #ifdef FAST_DISPATCH
  1217   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1218                                           // set bytecode dispatch table base
  1219 #endif
  1221   //
  1222   // Code to initialize the extra (i.e. non-parm) locals
  1223   //
  1224   Register init_value = noreg;    // will be G0 if we must clear locals
  1225   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1226   // It could only be false for the specialized entries like accessor or empty which have
  1227   // no extra locals so the testing was a waste of time and the extra locals were always
  1228   // initialized. We removed this extra complication to already over complicated code.
  1230   init_value = G0;
  1231   Label clear_loop;
  1233   // NOTE: If you change the frame layout, this code will need to
  1234   // be updated!
  1235   __ lduh( size_of_locals, O2 );
  1236   __ lduh( size_of_parameters, O1 );
  1237   __ sll( O2, Interpreter::logStackElementSize, O2);
  1238   __ sll( O1, Interpreter::logStackElementSize, O1 );
  1239   __ sub( Llocals, O2, O2 );
  1240   __ sub( Llocals, O1, O1 );
  1242   __ bind( clear_loop );
  1243   __ inc( O2, wordSize );
  1245   __ cmp( O2, O1 );
  1246   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1247   __ delayed()->st_ptr( init_value, O2, 0 );
  1249   const Address do_not_unlock_if_synchronized(G2_thread,
  1250     JavaThread::do_not_unlock_if_synchronized_offset());
  1251   // Since at this point in the method invocation the exception handler
  1252   // would try to exit the monitor of synchronized methods which hasn't
  1253   // been entered yet, we set the thread local variable
  1254   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1255   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1256   // check this thread local flag.
  1257   __ movbool(true, G3_scratch);
  1258   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1260   // increment invocation counter and check for overflow
  1261   //
  1262   // Note: checking for negative value instead of overflow
  1263   //       so we have a 'sticky' overflow test (may be of
  1264   //       importance as soon as we have true MT/MP)
  1265   Label invocation_counter_overflow;
  1266   Label profile_method;
  1267   Label profile_method_continue;
  1268   Label Lcontinue;
  1269   if (inc_counter) {
  1270     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1271     if (ProfileInterpreter) {
  1272       __ bind(profile_method_continue);
  1275   __ bind(Lcontinue);
  1277   bang_stack_shadow_pages(false);
  1279   // reset the _do_not_unlock_if_synchronized flag
  1280   __ stbool(G0, do_not_unlock_if_synchronized);
  1282   // check for synchronized methods
  1283   // Must happen AFTER invocation_counter check and stack overflow check,
  1284   // so method is not locked if overflows.
  1286   if (synchronized) {
  1287     lock_method();
  1288   } else {
  1289 #ifdef ASSERT
  1290     { Label ok;
  1291       __ ld(access_flags, O0);
  1292       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1293       __ br( Assembler::zero, false, Assembler::pt, ok);
  1294       __ delayed()->nop();
  1295       __ stop("method needs synchronization");
  1296       __ bind(ok);
  1298 #endif // ASSERT
  1301   // start execution
  1303   __ verify_thread();
  1305   // jvmti support
  1306   __ notify_method_entry();
  1308   // start executing instructions
  1309   __ dispatch_next(vtos);
  1312   if (inc_counter) {
  1313     if (ProfileInterpreter) {
  1314       // We have decided to profile this method in the interpreter
  1315       __ bind(profile_method);
  1317       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), Lbcp, true);
  1319 #ifdef ASSERT
  1320       __ tst(O0);
  1321       __ breakpoint_trap(Assembler::notEqual);
  1322 #endif
  1324       __ set_method_data_pointer();
  1326       __ ba(false, profile_method_continue);
  1327       __ delayed()->nop();
  1330     // handle invocation counter overflow
  1331     __ bind(invocation_counter_overflow);
  1332     generate_counter_overflow(Lcontinue);
  1336   return entry;
  1340 //----------------------------------------------------------------------------------------------------
  1341 // Entry points & stack frame layout
  1342 //
  1343 // Here we generate the various kind of entries into the interpreter.
  1344 // The two main entry type are generic bytecode methods and native call method.
  1345 // These both come in synchronized and non-synchronized versions but the
  1346 // frame layout they create is very similar. The other method entry
  1347 // types are really just special purpose entries that are really entry
  1348 // and interpretation all in one. These are for trivial methods like
  1349 // accessor, empty, or special math methods.
  1350 //
  1351 // When control flow reaches any of the entry types for the interpreter
  1352 // the following holds ->
  1353 //
  1354 // C2 Calling Conventions:
  1355 //
  1356 // The entry code below assumes that the following registers are set
  1357 // when coming in:
  1358 //    G5_method: holds the methodOop of the method to call
  1359 //    Lesp:    points to the TOS of the callers expression stack
  1360 //             after having pushed all the parameters
  1361 //
  1362 // The entry code does the following to setup an interpreter frame
  1363 //   pop parameters from the callers stack by adjusting Lesp
  1364 //   set O0 to Lesp
  1365 //   compute X = (max_locals - num_parameters)
  1366 //   bump SP up by X to accomadate the extra locals
  1367 //   compute X = max_expression_stack
  1368 //               + vm_local_words
  1369 //               + 16 words of register save area
  1370 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1371 //   set Lbcp, Lmethod, LcpoolCache
  1372 //   set Llocals to i0
  1373 //   set Lmonitors to FP - rounded_vm_local_words
  1374 //   set Lesp to Lmonitors - 4
  1375 //
  1376 //  The frame has now been setup to do the rest of the entry code
  1378 // Try this optimization:  Most method entries could live in a
  1379 // "one size fits all" stack frame without all the dynamic size
  1380 // calculations.  It might be profitable to do all this calculation
  1381 // statically and approximately for "small enough" methods.
  1383 //-----------------------------------------------------------------------------------------------
  1385 // C1 Calling conventions
  1386 //
  1387 // Upon method entry, the following registers are setup:
  1388 //
  1389 // g2 G2_thread: current thread
  1390 // g5 G5_method: method to activate
  1391 // g4 Gargs  : pointer to last argument
  1392 //
  1393 //
  1394 // Stack:
  1395 //
  1396 // +---------------+ <--- sp
  1397 // |               |
  1398 // : reg save area :
  1399 // |               |
  1400 // +---------------+ <--- sp + 0x40
  1401 // |               |
  1402 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1403 // |               |
  1404 // +---------------+ <--- sp + 0x5c
  1405 // |               |
  1406 // :     free      :
  1407 // |               |
  1408 // +---------------+ <--- Gargs
  1409 // |               |
  1410 // :   arguments   :
  1411 // |               |
  1412 // +---------------+
  1413 // |               |
  1414 //
  1415 //
  1416 //
  1417 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1418 //
  1419 // +---------------+ <--- sp
  1420 // |               |
  1421 // : reg save area :
  1422 // |               |
  1423 // +---------------+ <--- sp + 0x40
  1424 // |               |
  1425 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1426 // |               |
  1427 // +---------------+ <--- sp + 0x5c
  1428 // |               |
  1429 // :               :
  1430 // |               | <--- Lesp
  1431 // +---------------+ <--- Lmonitors (fp - 0x18)
  1432 // |   VM locals   |
  1433 // +---------------+ <--- fp
  1434 // |               |
  1435 // : reg save area :
  1436 // |               |
  1437 // +---------------+ <--- fp + 0x40
  1438 // |               |
  1439 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1440 // |               |
  1441 // +---------------+ <--- fp + 0x5c
  1442 // |               |
  1443 // :     free      :
  1444 // |               |
  1445 // +---------------+
  1446 // |               |
  1447 // : nonarg locals :
  1448 // |               |
  1449 // +---------------+
  1450 // |               |
  1451 // :   arguments   :
  1452 // |               | <--- Llocals
  1453 // +---------------+ <--- Gargs
  1454 // |               |
  1456 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1458   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1459   // expression stack, the callee will have callee_extra_locals (so we can account for
  1460   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1461   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1462   //
  1463   //
  1464   // The big complicating thing here is that we must ensure that the stack stays properly
  1465   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1466   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1467   // the caller so we must ensure that it is properly aligned for our callee.
  1468   //
  1469   const int rounded_vm_local_words =
  1470        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1471   // callee_locals and max_stack are counts, not the size in frame.
  1472   const int locals_size =
  1473        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  1474   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  1475   return (round_to((max_stack_words
  1476                    //6815692//+ methodOopDesc::extra_stack_words()
  1477                    + rounded_vm_local_words
  1478                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1479                    // already rounded
  1480                    + locals_size + monitor_size);
  1483 // How much stack a method top interpreter activation needs in words.
  1484 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1486   // See call_stub code
  1487   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1488                                  WordsPerLong);    // 7 + register save area
  1490   // Save space for one monitor to get into the interpreted method in case
  1491   // the method is synchronized
  1492   int monitor_size    = method->is_synchronized() ?
  1493                                 1*frame::interpreter_frame_monitor_size() : 0;
  1494   return size_activation_helper(method->max_locals(), method->max_stack(),
  1495                                  monitor_size) + call_stub_size;
  1498 int AbstractInterpreter::layout_activation(methodOop method,
  1499                                            int tempcount,
  1500                                            int popframe_extra_args,
  1501                                            int moncount,
  1502                                            int callee_param_count,
  1503                                            int callee_local_count,
  1504                                            frame* caller,
  1505                                            frame* interpreter_frame,
  1506                                            bool is_top_frame) {
  1507   // Note: This calculation must exactly parallel the frame setup
  1508   // in InterpreterGenerator::generate_fixed_frame.
  1509   // If f!=NULL, set up the following variables:
  1510   //   - Lmethod
  1511   //   - Llocals
  1512   //   - Lmonitors (to the indicated number of monitors)
  1513   //   - Lesp (to the indicated number of temps)
  1514   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1515   // we are about to layout. We are guaranteed that we will be able to fill in a
  1516   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1517   // the amount was determined by an earlier call to this method with f == NULL).
  1518   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1520   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1521   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1523   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1524   //
  1525   // Note: if you look closely this appears to be doing something much different
  1526   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1527   // this dance with interpreter_sp_adjustment because the window save area would
  1528   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1529   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1530   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1531   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1532   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1533   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1534   // because the oldest frame would have adjust its callers frame and yet that frame
  1535   // already exists and isn't part of this array of frames we are unpacking. So at first
  1536   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1537   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1538   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1539   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1540   // callee... parameters here). However this would mean that this routine would have to take
  1541   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1542   // and run the calling loop in the reverse order. This would also would appear to mean making
  1543   // this code aware of what the interactions are when that initial caller fram was an osr or
  1544   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1545   // there is no sense in messing working code.
  1546   //
  1548   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1549   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1551   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1552                                               monitor_size);
  1554   if (interpreter_frame != NULL) {
  1555     // The skeleton frame must already look like an interpreter frame
  1556     // even if not fully filled out.
  1557     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1559     intptr_t* fp = interpreter_frame->fp();
  1561     JavaThread* thread = JavaThread::current();
  1562     RegisterMap map(thread, false);
  1563     // More verification that skeleton frame is properly walkable
  1564     assert(fp == caller->sp(), "fp must match");
  1566     intptr_t* montop     = fp - rounded_vm_local_words;
  1568     // preallocate monitors (cf. __ add_monitor_to_stack)
  1569     intptr_t* monitors = montop - monitor_size;
  1571     // preallocate stack space
  1572     intptr_t*  esp = monitors - 1 -
  1573                      (tempcount * Interpreter::stackElementWords) -
  1574                      popframe_extra_args;
  1576     int local_words = method->max_locals() * Interpreter::stackElementWords;
  1577     int parm_words  = method->size_of_parameters() * Interpreter::stackElementWords;
  1578     NEEDS_CLEANUP;
  1579     intptr_t* locals;
  1580     if (caller->is_interpreted_frame()) {
  1581       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1582       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1583       // Note that this computation means we replace size_of_parameters() values from the caller
  1584       // interpreter frame's expression stack with our argument locals
  1585       locals = Lesp_ptr + parm_words;
  1586       int delta = local_words - parm_words;
  1587       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1588       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1589     } else {
  1590       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1591       // Don't have Lesp available; lay out locals block in the caller
  1592       // adjacent to the register window save area.
  1593       //
  1594       // Compiled frames do not allocate a varargs area which is why this if
  1595       // statement is needed.
  1596       //
  1597       if (caller->is_compiled_frame()) {
  1598         locals = fp + frame::register_save_words + local_words - 1;
  1599       } else {
  1600         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1602       if (!caller->is_entry_frame()) {
  1603         // Caller wants his own SP back
  1604         int caller_frame_size = caller->cb()->frame_size();
  1605         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1608     if (TraceDeoptimization) {
  1609       if (caller->is_entry_frame()) {
  1610         // make sure I5_savedSP and the entry frames notion of saved SP
  1611         // agree.  This assertion duplicate a check in entry frame code
  1612         // but catches the failure earlier.
  1613         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1614                "would change callers SP");
  1616       if (caller->is_entry_frame()) {
  1617         tty->print("entry ");
  1619       if (caller->is_compiled_frame()) {
  1620         tty->print("compiled ");
  1621         if (caller->is_deoptimized_frame()) {
  1622           tty->print("(deopt) ");
  1625       if (caller->is_interpreted_frame()) {
  1626         tty->print("interpreted ");
  1628       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1629       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1630       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1631       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1632       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1633       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1634       tty->print_cr("Llocals = 0x%x", locals);
  1635       tty->print_cr("Lesp = 0x%x", esp);
  1636       tty->print_cr("Lmonitors = 0x%x", monitors);
  1639     if (method->max_locals() > 0) {
  1640       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1641       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1642       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1643       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1645 #ifdef _LP64
  1646     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1647 #endif
  1649     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1650     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1651     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1652     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1653     // Llast_SP will be same as SP as there is no adapter space
  1654     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1655     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1656 #ifdef FAST_DISPATCH
  1657     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1658 #endif
  1661 #ifdef ASSERT
  1662     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1664     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1665     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
  1666     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1667     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1668     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1670     // check bounds
  1671     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1672     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1673     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1674     assert(lo <= esp && esp < monitors, "esp in bounds");
  1675 #endif // ASSERT
  1678   return raw_frame_size;
  1681 //----------------------------------------------------------------------------------------------------
  1682 // Exceptions
  1683 void TemplateInterpreterGenerator::generate_throw_exception() {
  1685   // Entry point in previous activation (i.e., if the caller was interpreted)
  1686   Interpreter::_rethrow_exception_entry = __ pc();
  1687   // O0: exception
  1689   // entry point for exceptions thrown within interpreter code
  1690   Interpreter::_throw_exception_entry = __ pc();
  1691   __ verify_thread();
  1692   // expression stack is undefined here
  1693   // O0: exception, i.e. Oexception
  1694   // Lbcp: exception bcx
  1695   __ verify_oop(Oexception);
  1698   // expression stack must be empty before entering the VM in case of an exception
  1699   __ empty_expression_stack();
  1700   // find exception handler address and preserve exception oop
  1701   // call C routine to find handler and jump to it
  1702   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1703   __ push_ptr(O1); // push exception for exception handler bytecodes
  1705   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1706   __ delayed()->nop();
  1709   // if the exception is not handled in the current frame
  1710   // the frame is removed and the exception is rethrown
  1711   // (i.e. exception continuation is _rethrow_exception)
  1712   //
  1713   // Note: At this point the bci is still the bxi for the instruction which caused
  1714   //       the exception and the expression stack is empty. Thus, for any VM calls
  1715   //       at this point, GC will find a legal oop map (with empty expression stack).
  1717   // in current activation
  1718   // tos: exception
  1719   // Lbcp: exception bcp
  1721   //
  1722   // JVMTI PopFrame support
  1723   //
  1725   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1726   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1727   // Set the popframe_processing bit in popframe_condition indicating that we are
  1728   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1729   // popframe handling cycles.
  1731   __ ld(popframe_condition_addr, G3_scratch);
  1732   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1733   __ stw(G3_scratch, popframe_condition_addr);
  1735   // Empty the expression stack, as in normal exception handling
  1736   __ empty_expression_stack();
  1737   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1740     // Check to see whether we are returning to a deoptimized frame.
  1741     // (The PopFrame call ensures that the caller of the popped frame is
  1742     // either interpreted or compiled and deoptimizes it if compiled.)
  1743     // In this case, we can't call dispatch_next() after the frame is
  1744     // popped, but instead must save the incoming arguments and restore
  1745     // them after deoptimization has occurred.
  1746     //
  1747     // Note that we don't compare the return PC against the
  1748     // deoptimization blob's unpack entry because of the presence of
  1749     // adapter frames in C2.
  1750     Label caller_not_deoptimized;
  1751     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1752     __ tst(O0);
  1753     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
  1754     __ delayed()->nop();
  1756     const Register Gtmp1 = G3_scratch;
  1757     const Register Gtmp2 = G1_scratch;
  1759     // Compute size of arguments for saving when returning to deoptimized caller
  1760     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
  1761     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
  1762     __ sub(Llocals, Gtmp1, Gtmp2);
  1763     __ add(Gtmp2, wordSize, Gtmp2);
  1764     // Save these arguments
  1765     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1766     // Inform deoptimization that it is responsible for restoring these arguments
  1767     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1768     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1769     __ st(Gtmp1, popframe_condition_addr);
  1771     // Return from the current method
  1772     // The caller's SP was adjusted upon method entry to accomodate
  1773     // the callee's non-argument locals. Undo that adjustment.
  1774     __ ret();
  1775     __ delayed()->restore(I5_savedSP, G0, SP);
  1777     __ bind(caller_not_deoptimized);
  1780   // Clear the popframe condition flag
  1781   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1783   // Get out of the current method (how this is done depends on the particular compiler calling
  1784   // convention that the interpreter currently follows)
  1785   // The caller's SP was adjusted upon method entry to accomodate
  1786   // the callee's non-argument locals. Undo that adjustment.
  1787   __ restore(I5_savedSP, G0, SP);
  1788   // The method data pointer was incremented already during
  1789   // call profiling. We have to restore the mdp for the current bcp.
  1790   if (ProfileInterpreter) {
  1791     __ set_method_data_pointer_for_bcp();
  1793   // Resume bytecode interpretation at the current bcp
  1794   __ dispatch_next(vtos);
  1795   // end of JVMTI PopFrame support
  1797   Interpreter::_remove_activation_entry = __ pc();
  1799   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1800   __ pop_ptr(Oexception);                                  // get exception
  1802   // Intel has the following comment:
  1803   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1804   // They remove the activation without checking for bad monitor state.
  1805   // %%% We should make sure this is the right semantics before implementing.
  1807   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
  1808   __ set_vm_result(Oexception);
  1809   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1811   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1813   __ get_vm_result(Oexception);
  1814   __ verify_oop(Oexception);
  1816     const int return_reg_adjustment = frame::pc_return_offset;
  1817   Address issuing_pc_addr(I7, return_reg_adjustment);
  1819   // We are done with this activation frame; find out where to go next.
  1820   // The continuation point will be an exception handler, which expects
  1821   // the following registers set up:
  1822   //
  1823   // Oexception: exception
  1824   // Oissuing_pc: the local call that threw exception
  1825   // Other On: garbage
  1826   // In/Ln:  the contents of the caller's register window
  1827   //
  1828   // We do the required restore at the last possible moment, because we
  1829   // need to preserve some state across a runtime call.
  1830   // (Remember that the caller activation is unknown--it might not be
  1831   // interpreted, so things like Lscratch are useless in the caller.)
  1833   // Although the Intel version uses call_C, we can use the more
  1834   // compact call_VM.  (The only real difference on SPARC is a
  1835   // harmlessly ignored [re]set_last_Java_frame, compared with
  1836   // the Intel code which lacks this.)
  1837   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1838   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1839   __ super_call_VM_leaf(L7_thread_cache,
  1840                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1841                         G2_thread, Oissuing_pc->after_save());
  1843   // The caller's SP was adjusted upon method entry to accomodate
  1844   // the callee's non-argument locals. Undo that adjustment.
  1845   __ JMP(O0, 0);                         // return exception handler in caller
  1846   __ delayed()->restore(I5_savedSP, G0, SP);
  1848   // (same old exception object is already in Oexception; see above)
  1849   // Note that an "issuing PC" is actually the next PC after the call
  1853 //
  1854 // JVMTI ForceEarlyReturn support
  1855 //
  1857 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1858   address entry = __ pc();
  1860   __ empty_expression_stack();
  1861   __ load_earlyret_value(state);
  1863   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
  1864   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
  1866   // Clear the earlyret state
  1867   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1869   __ remove_activation(state,
  1870                        /* throw_monitor_exception */ false,
  1871                        /* install_monitor_exception */ false);
  1873   // The caller's SP was adjusted upon method entry to accomodate
  1874   // the callee's non-argument locals. Undo that adjustment.
  1875   __ ret();                             // return to caller
  1876   __ delayed()->restore(I5_savedSP, G0, SP);
  1878   return entry;
  1879 } // end of JVMTI ForceEarlyReturn support
  1882 //------------------------------------------------------------------------------------------------------------------------
  1883 // Helper for vtos entry point generation
  1885 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1886   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1887   Label L;
  1888   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
  1889   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
  1890   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
  1891   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
  1892   iep = __ pc(); __ push_i();
  1893   bep = cep = sep = iep;                        // there aren't any
  1894   vep = __ pc(); __ bind(L);                    // fall through
  1895   generate_and_dispatch(t);
  1898 // --------------------------------------------------------------------------------
  1901 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1902  : TemplateInterpreterGenerator(code) {
  1903    generate_all(); // down here so it can be "virtual"
  1906 // --------------------------------------------------------------------------------
  1908 // Non-product code
  1909 #ifndef PRODUCT
  1910 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1911   address entry = __ pc();
  1913   __ push(state);
  1914   __ mov(O7, Lscratch); // protect return address within interpreter
  1916   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  1917   __ mov( Otos_l2, G3_scratch );
  1918   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  1919   __ mov(Lscratch, O7); // restore return address
  1920   __ pop(state);
  1921   __ retl();
  1922   __ delayed()->nop();
  1924   return entry;
  1928 // helpers for generate_and_dispatch
  1930 void TemplateInterpreterGenerator::count_bytecode() {
  1931   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
  1935 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1936   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
  1940 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1941   AddressLiteral index   (&BytecodePairHistogram::_index);
  1942   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
  1944   // get index, shift out old bytecode, bring in new bytecode, and store it
  1945   // _index = (_index >> log2_number_of_codes) |
  1946   //          (bytecode << log2_number_of_codes);
  1948   __ load_contents(index, G4_scratch);
  1949   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  1950   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  1951   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  1952   __ store_contents(G4_scratch, index, G3_scratch);
  1954   // bump bucket contents
  1955   // _counters[_index] ++;
  1957   __ set(counters, G3_scratch);                       // loads into G3_scratch
  1958   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  1959   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  1960   __ ld (G3_scratch, 0, G4_scratch);
  1961   __ inc (G4_scratch);
  1962   __ st (G4_scratch, 0, G3_scratch);
  1966 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1967   // Call a little run-time stub to avoid blow-up for each bytecode.
  1968   // The run-time runtime saves the right registers, depending on
  1969   // the tosca in-state for the given template.
  1970   address entry = Interpreter::trace_code(t->tos_in());
  1971   guarantee(entry != NULL, "entry must have been generated");
  1972   __ call(entry, relocInfo::none);
  1973   __ delayed()->nop();
  1977 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1978   AddressLiteral counter(&BytecodeCounter::_counter_value);
  1979   __ load_contents(counter, G3_scratch);
  1980   AddressLiteral stop_at(&StopInterpreterAt);
  1981   __ load_ptr_contents(stop_at, G4_scratch);
  1982   __ cmp(G3_scratch, G4_scratch);
  1983   __ breakpoint_trap(Assembler::equal);
  1985 #endif // not PRODUCT
  1986 #endif // !CC_INTERP

mercurial