src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1934
e9ff18c4ace7
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_sparc.cpp.incl"
    28 #define __ masm->
    30 #ifdef COMPILER2
    31 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    32 #endif // COMPILER2
    34 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    35 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    36 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    37 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    38 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    39 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    40 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    41 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    43 class RegisterSaver {
    45   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    46   // The Oregs are problematic. In the 32bit build the compiler can
    47   // have O registers live with 64 bit quantities. A window save will
    48   // cut the heads off of the registers. We have to do a very extensive
    49   // stack dance to save and restore these properly.
    51   // Note that the Oregs problem only exists if we block at either a polling
    52   // page exception a compiled code safepoint that was not originally a call
    53   // or deoptimize following one of these kinds of safepoints.
    55   // Lots of registers to save.  For all builds, a window save will preserve
    56   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    57   // builds a window-save will preserve the %o registers.  In the LION build
    58   // we need to save the 64-bit %o registers which requires we save them
    59   // before the window-save (as then they become %i registers and get their
    60   // heads chopped off on interrupt).  We have to save some %g registers here
    61   // as well.
    62   enum {
    63     // This frame's save area.  Includes extra space for the native call:
    64     // vararg's layout space and the like.  Briefly holds the caller's
    65     // register save area.
    66     call_args_area = frame::register_save_words_sp_offset +
    67                      frame::memory_parameter_word_sp_offset*wordSize,
    68     // Make sure save locations are always 8 byte aligned.
    69     // can't use round_to because it doesn't produce compile time constant
    70     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    71     g1_offset = start_of_extra_save_area, // g-regs needing saving
    72     g3_offset = g1_offset+8,
    73     g4_offset = g3_offset+8,
    74     g5_offset = g4_offset+8,
    75     o0_offset = g5_offset+8,
    76     o1_offset = o0_offset+8,
    77     o2_offset = o1_offset+8,
    78     o3_offset = o2_offset+8,
    79     o4_offset = o3_offset+8,
    80     o5_offset = o4_offset+8,
    81     start_of_flags_save_area = o5_offset+8,
    82     ccr_offset = start_of_flags_save_area,
    83     fsr_offset = ccr_offset + 8,
    84     d00_offset = fsr_offset+8,  // Start of float save area
    85     register_save_size = d00_offset+8*32
    86   };
    89   public:
    91   static int Oexception_offset() { return o0_offset; };
    92   static int G3_offset() { return g3_offset; };
    93   static int G5_offset() { return g5_offset; };
    94   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
    95   static void restore_live_registers(MacroAssembler* masm);
    97   // During deoptimization only the result register need to be restored
    98   // all the other values have already been extracted.
   100   static void restore_result_registers(MacroAssembler* masm);
   101 };
   103 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   104   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   105   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   106   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   107   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   108   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   109   int i;
   110   // Always make the frame size 16 byte aligned.
   111   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   112   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   113   int frame_size_in_slots = frame_size / sizeof(jint);
   114   // CodeBlob frame size is in words.
   115   *total_frame_words = frame_size / wordSize;
   116   // OopMap* map = new OopMap(*total_frame_words, 0);
   117   OopMap* map = new OopMap(frame_size_in_slots, 0);
   119 #if !defined(_LP64)
   121   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   122   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   123   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   124   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   125   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   126   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   127   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   128 #endif /* _LP64 */
   130   __ save(SP, -frame_size, SP);
   132 #ifndef _LP64
   133   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   134   // to Oregs here to avoid interrupts cutting off their heads
   136   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   137   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   138   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   139   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   140   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   141   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   143   __ stx(O0, SP, o0_offset+STACK_BIAS);
   144   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   146   __ stx(O1, SP, o1_offset+STACK_BIAS);
   148   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   150   __ stx(O2, SP, o2_offset+STACK_BIAS);
   151   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   153   __ stx(O3, SP, o3_offset+STACK_BIAS);
   154   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   156   __ stx(O4, SP, o4_offset+STACK_BIAS);
   157   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   159   __ stx(O5, SP, o5_offset+STACK_BIAS);
   160   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   161 #endif /* _LP64 */
   164 #ifdef _LP64
   165   int debug_offset = 0;
   166 #else
   167   int debug_offset = 4;
   168 #endif
   169   // Save the G's
   170   __ stx(G1, SP, g1_offset+STACK_BIAS);
   171   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   173   __ stx(G3, SP, g3_offset+STACK_BIAS);
   174   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   176   __ stx(G4, SP, g4_offset+STACK_BIAS);
   177   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   179   __ stx(G5, SP, g5_offset+STACK_BIAS);
   180   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   182   // This is really a waste but we'll keep things as they were for now
   183   if (true) {
   184 #ifndef _LP64
   185     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   186     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   187     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   188     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   189     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   190     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   191     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   192     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   193     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   195 #endif /* _LP64 */
   196   }
   199   // Save the flags
   200   __ rdccr( G5 );
   201   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   202   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   204   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   205   int offset = d00_offset;
   206   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   207     FloatRegister f = as_FloatRegister(i);
   208     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   209     // Record as callee saved both halves of double registers (2 float registers).
   210     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   211     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   212     offset += sizeof(double);
   213   }
   215   // And we're done.
   217   return map;
   218 }
   221 // Pop the current frame and restore all the registers that we
   222 // saved.
   223 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   225   // Restore all the FP registers
   226   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   227     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   228   }
   230   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   231   __ wrccr (G1) ;
   233   // Restore the G's
   234   // Note that G2 (AKA GThread) must be saved and restored separately.
   235   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   237   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   238   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   239   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   240   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   243 #if !defined(_LP64)
   244   // Restore the 64-bit O's.
   245   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   246   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   247   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   248   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   249   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   250   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   252   // And temporarily place them in TLS
   254   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   255   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   256   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   257   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   258   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   259   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   260 #endif /* _LP64 */
   262   // Restore flags
   264   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   266   __ restore();
   268 #if !defined(_LP64)
   269   // Now reload the 64bit Oregs after we've restore the window.
   270   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   271   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   272   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   273   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   274   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   275   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   276 #endif /* _LP64 */
   278 }
   280 // Pop the current frame and restore the registers that might be holding
   281 // a result.
   282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   284 #if !defined(_LP64)
   285   // 32bit build returns longs in G1
   286   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   288   // Retrieve the 64-bit O's.
   289   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   290   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   291   // and save to TLS
   292   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   293   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   294 #endif /* _LP64 */
   296   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   298   __ restore();
   300 #if !defined(_LP64)
   301   // Now reload the 64bit Oregs after we've restore the window.
   302   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   303   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   304 #endif /* _LP64 */
   306 }
   308 // The java_calling_convention describes stack locations as ideal slots on
   309 // a frame with no abi restrictions. Since we must observe abi restrictions
   310 // (like the placement of the register window) the slots must be biased by
   311 // the following value.
   312 static int reg2offset(VMReg r) {
   313   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   314 }
   316 // ---------------------------------------------------------------------------
   317 // Read the array of BasicTypes from a signature, and compute where the
   318 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   319 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   320 // refer to 4-byte stack slots.  All stack slots are based off of the window
   321 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   322 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   323 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   324 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   325 // Each 32-bit quantity is given its own number, so the integer registers
   326 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   327 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   329 // Register results are passed in O0-O5, for outgoing call arguments.  To
   330 // convert to incoming arguments, convert all O's to I's.  The regs array
   331 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   332 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   333 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   334 // passed (used as a placeholder for the other half of longs and doubles in
   335 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   336 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   337 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   338 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   339 // same VMRegPair.
   341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   343 // units regardless of build.
   346 // ---------------------------------------------------------------------------
   347 // The compiled Java calling convention.  The Java convention always passes
   348 // 64-bit values in adjacent aligned locations (either registers or stack),
   349 // floats in float registers and doubles in aligned float pairs.  Values are
   350 // packed in the registers.  There is no backing varargs store for values in
   351 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
   352 // passed in I's, because longs in I's get their heads chopped off at
   353 // interrupt).
   354 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   355                                            VMRegPair *regs,
   356                                            int total_args_passed,
   357                                            int is_outgoing) {
   358   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   360   // Convention is to pack the first 6 int/oop args into the first 6 registers
   361   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
   362   // into F0-F7, extras spill to the stack.  Then pad all register sets to
   363   // align.  Then put longs and doubles into the same registers as they fit,
   364   // else spill to the stack.
   365   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   366   const int flt_reg_max = 8;
   367   //
   368   // Where 32-bit 1-reg longs start being passed
   369   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
   370   // So make it look like we've filled all the G regs that c2 wants to use.
   371   Register g_reg = TieredCompilation ? noreg : G1;
   373   // Count int/oop and float args.  See how many stack slots we'll need and
   374   // where the longs & doubles will go.
   375   int int_reg_cnt   = 0;
   376   int flt_reg_cnt   = 0;
   377   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
   378   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
   379   int stk_reg_pairs = 0;
   380   for (int i = 0; i < total_args_passed; i++) {
   381     switch (sig_bt[i]) {
   382     case T_LONG:                // LP64, longs compete with int args
   383       assert(sig_bt[i+1] == T_VOID, "");
   384 #ifdef _LP64
   385       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   386 #endif
   387       break;
   388     case T_OBJECT:
   389     case T_ARRAY:
   390     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   391       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   392 #ifndef _LP64
   393       else                            stk_reg_pairs++;
   394 #endif
   395       break;
   396     case T_INT:
   397     case T_SHORT:
   398     case T_CHAR:
   399     case T_BYTE:
   400     case T_BOOLEAN:
   401       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   402       else                            stk_reg_pairs++;
   403       break;
   404     case T_FLOAT:
   405       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
   406       else                            stk_reg_pairs++;
   407       break;
   408     case T_DOUBLE:
   409       assert(sig_bt[i+1] == T_VOID, "");
   410       break;
   411     case T_VOID:
   412       break;
   413     default:
   414       ShouldNotReachHere();
   415     }
   416   }
   418   // This is where the longs/doubles start on the stack.
   419   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
   421   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
   422   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
   424   // int stk_reg = frame::register_save_words*(wordSize>>2);
   425   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
   426   int stk_reg = 0;
   427   int int_reg = 0;
   428   int flt_reg = 0;
   430   // Now do the signature layout
   431   for (int i = 0; i < total_args_passed; i++) {
   432     switch (sig_bt[i]) {
   433     case T_INT:
   434     case T_SHORT:
   435     case T_CHAR:
   436     case T_BYTE:
   437     case T_BOOLEAN:
   438 #ifndef _LP64
   439     case T_OBJECT:
   440     case T_ARRAY:
   441     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   442 #endif // _LP64
   443       if (int_reg < int_reg_max) {
   444         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   445         regs[i].set1(r->as_VMReg());
   446       } else {
   447         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
   448       }
   449       break;
   451 #ifdef _LP64
   452     case T_OBJECT:
   453     case T_ARRAY:
   454     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   455       if (int_reg < int_reg_max) {
   456         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   457         regs[i].set2(r->as_VMReg());
   458       } else {
   459         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   460         stk_reg_pairs += 2;
   461       }
   462       break;
   463 #endif // _LP64
   465     case T_LONG:
   466       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   467 #ifdef _LP64
   468         if (int_reg < int_reg_max) {
   469           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   470           regs[i].set2(r->as_VMReg());
   471         } else {
   472           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   473           stk_reg_pairs += 2;
   474         }
   475 #else
   476 #ifdef COMPILER2
   477         // For 32-bit build, can't pass longs in O-regs because they become
   478         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
   479         // spare and available.  This convention isn't used by the Sparc ABI or
   480         // anywhere else. If we're tiered then we don't use G-regs because c1
   481         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
   482         // G0: zero
   483         // G1: 1st Long arg
   484         // G2: global allocated to TLS
   485         // G3: used in inline cache check
   486         // G4: 2nd Long arg
   487         // G5: used in inline cache check
   488         // G6: used by OS
   489         // G7: used by OS
   491         if (g_reg == G1) {
   492           regs[i].set2(G1->as_VMReg()); // This long arg in G1
   493           g_reg = G4;                  // Where the next arg goes
   494         } else if (g_reg == G4) {
   495           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
   496           g_reg = noreg;               // No more longs in registers
   497         } else {
   498           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   499           stk_reg_pairs += 2;
   500         }
   501 #else // COMPILER2
   502         if (int_reg_pairs + 1 < int_reg_max) {
   503           if (is_outgoing) {
   504             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
   505           } else {
   506             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
   507           }
   508           int_reg_pairs += 2;
   509         } else {
   510           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   511           stk_reg_pairs += 2;
   512         }
   513 #endif // COMPILER2
   514 #endif // _LP64
   515       break;
   517     case T_FLOAT:
   518       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
   519       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
   520       break;
   521     case T_DOUBLE:
   522       assert(sig_bt[i+1] == T_VOID, "expecting half");
   523       if (flt_reg_pairs + 1 < flt_reg_max) {
   524         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
   525         flt_reg_pairs += 2;
   526       } else {
   527         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   528         stk_reg_pairs += 2;
   529       }
   530       break;
   531     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
   532     default:
   533       ShouldNotReachHere();
   534     }
   535   }
   537   // retun the amount of stack space these arguments will need.
   538   return stk_reg_pairs;
   540 }
   542 // Helper class mostly to avoid passing masm everywhere, and handle
   543 // store displacement overflow logic.
   544 class AdapterGenerator {
   545   MacroAssembler *masm;
   546   Register Rdisp;
   547   void set_Rdisp(Register r)  { Rdisp = r; }
   549   void patch_callers_callsite();
   551   // base+st_off points to top of argument
   552   int arg_offset(const int st_off) { return st_off; }
   553   int next_arg_offset(const int st_off) {
   554     return st_off - Interpreter::stackElementSize;
   555   }
   557   // Argument slot values may be loaded first into a register because
   558   // they might not fit into displacement.
   559   RegisterOrConstant arg_slot(const int st_off);
   560   RegisterOrConstant next_arg_slot(const int st_off);
   562   // Stores long into offset pointed to by base
   563   void store_c2i_long(Register r, Register base,
   564                       const int st_off, bool is_stack);
   565   void store_c2i_object(Register r, Register base,
   566                         const int st_off);
   567   void store_c2i_int(Register r, Register base,
   568                      const int st_off);
   569   void store_c2i_double(VMReg r_2,
   570                         VMReg r_1, Register base, const int st_off);
   571   void store_c2i_float(FloatRegister f, Register base,
   572                        const int st_off);
   574  public:
   575   void gen_c2i_adapter(int total_args_passed,
   576                               // VMReg max_arg,
   577                               int comp_args_on_stack, // VMRegStackSlots
   578                               const BasicType *sig_bt,
   579                               const VMRegPair *regs,
   580                               Label& skip_fixup);
   581   void gen_i2c_adapter(int total_args_passed,
   582                               // VMReg max_arg,
   583                               int comp_args_on_stack, // VMRegStackSlots
   584                               const BasicType *sig_bt,
   585                               const VMRegPair *regs);
   587   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   588 };
   591 // Patch the callers callsite with entry to compiled code if it exists.
   592 void AdapterGenerator::patch_callers_callsite() {
   593   Label L;
   594   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
   595   __ br_null(G3_scratch, false, __ pt, L);
   596   // Schedule the branch target address early.
   597   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   598   // Call into the VM to patch the caller, then jump to compiled callee
   599   __ save_frame(4);     // Args in compiled layout; do not blow them
   601   // Must save all the live Gregs the list is:
   602   // G1: 1st Long arg (32bit build)
   603   // G2: global allocated to TLS
   604   // G3: used in inline cache check (scratch)
   605   // G4: 2nd Long arg (32bit build);
   606   // G5: used in inline cache check (methodOop)
   608   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   610 #ifdef _LP64
   611   // mov(s,d)
   612   __ mov(G1, L1);
   613   __ mov(G4, L4);
   614   __ mov(G5_method, L5);
   615   __ mov(G5_method, O0);         // VM needs target method
   616   __ mov(I7, O1);                // VM needs caller's callsite
   617   // Must be a leaf call...
   618   // can be very far once the blob has been relocated
   619   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   620   __ relocate(relocInfo::runtime_call_type);
   621   __ jumpl_to(dest, O7, O7);
   622   __ delayed()->mov(G2_thread, L7_thread_cache);
   623   __ mov(L7_thread_cache, G2_thread);
   624   __ mov(L1, G1);
   625   __ mov(L4, G4);
   626   __ mov(L5, G5_method);
   627 #else
   628   __ stx(G1, FP, -8 + STACK_BIAS);
   629   __ stx(G4, FP, -16 + STACK_BIAS);
   630   __ mov(G5_method, L5);
   631   __ mov(G5_method, O0);         // VM needs target method
   632   __ mov(I7, O1);                // VM needs caller's callsite
   633   // Must be a leaf call...
   634   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   635   __ delayed()->mov(G2_thread, L7_thread_cache);
   636   __ mov(L7_thread_cache, G2_thread);
   637   __ ldx(FP, -8 + STACK_BIAS, G1);
   638   __ ldx(FP, -16 + STACK_BIAS, G4);
   639   __ mov(L5, G5_method);
   640   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   641 #endif /* _LP64 */
   643   __ restore();      // Restore args
   644   __ bind(L);
   645 }
   648 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   649   RegisterOrConstant roc(arg_offset(st_off));
   650   return __ ensure_simm13_or_reg(roc, Rdisp);
   651 }
   653 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   654   RegisterOrConstant roc(next_arg_offset(st_off));
   655   return __ ensure_simm13_or_reg(roc, Rdisp);
   656 }
   659 // Stores long into offset pointed to by base
   660 void AdapterGenerator::store_c2i_long(Register r, Register base,
   661                                       const int st_off, bool is_stack) {
   662 #ifdef _LP64
   663   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   664   // data is passed in only 1 slot.
   665   __ stx(r, base, next_arg_slot(st_off));
   666 #else
   667 #ifdef COMPILER2
   668   // Misaligned store of 64-bit data
   669   __ stw(r, base, arg_slot(st_off));    // lo bits
   670   __ srlx(r, 32, r);
   671   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   672 #else
   673   if (is_stack) {
   674     // Misaligned store of 64-bit data
   675     __ stw(r, base, arg_slot(st_off));    // lo bits
   676     __ srlx(r, 32, r);
   677     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   678   } else {
   679     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   680     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   681   }
   682 #endif // COMPILER2
   683 #endif // _LP64
   684 }
   686 void AdapterGenerator::store_c2i_object(Register r, Register base,
   687                       const int st_off) {
   688   __ st_ptr (r, base, arg_slot(st_off));
   689 }
   691 void AdapterGenerator::store_c2i_int(Register r, Register base,
   692                    const int st_off) {
   693   __ st (r, base, arg_slot(st_off));
   694 }
   696 // Stores into offset pointed to by base
   697 void AdapterGenerator::store_c2i_double(VMReg r_2,
   698                       VMReg r_1, Register base, const int st_off) {
   699 #ifdef _LP64
   700   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   701   // data is passed in only 1 slot.
   702   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   703 #else
   704   // Need to marshal 64-bit value from misaligned Lesp loads
   705   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   706   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   707 #endif
   708 }
   710 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   711                                        const int st_off) {
   712   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   713 }
   715 void AdapterGenerator::gen_c2i_adapter(
   716                             int total_args_passed,
   717                             // VMReg max_arg,
   718                             int comp_args_on_stack, // VMRegStackSlots
   719                             const BasicType *sig_bt,
   720                             const VMRegPair *regs,
   721                             Label& skip_fixup) {
   723   // Before we get into the guts of the C2I adapter, see if we should be here
   724   // at all.  We've come from compiled code and are attempting to jump to the
   725   // interpreter, which means the caller made a static call to get here
   726   // (vcalls always get a compiled target if there is one).  Check for a
   727   // compiled target.  If there is one, we need to patch the caller's call.
   728   // However we will run interpreted if we come thru here. The next pass
   729   // thru the call site will run compiled. If we ran compiled here then
   730   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   731   // deopt/uncommon trap cycles. If we always go interpreted here then
   732   // we can have at most one and don't need to play any tricks to keep
   733   // from endlessly growing the stack.
   734   //
   735   // Actually if we detected that we had an i2c->c2i transition here we
   736   // ought to be able to reset the world back to the state of the interpreted
   737   // call and not bother building another interpreter arg area. We don't
   738   // do that at this point.
   740   patch_callers_callsite();
   742   __ bind(skip_fixup);
   744   // Since all args are passed on the stack, total_args_passed*wordSize is the
   745   // space we need.  Add in varargs area needed by the interpreter. Round up
   746   // to stack alignment.
   747   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   748   const int varargs_area =
   749                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   750   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   752   int bias = STACK_BIAS;
   753   const int interp_arg_offset = frame::varargs_offset*wordSize +
   754                         (total_args_passed-1)*Interpreter::stackElementSize;
   756   Register base = SP;
   758 #ifdef _LP64
   759   // In the 64bit build because of wider slots and STACKBIAS we can run
   760   // out of bits in the displacement to do loads and stores.  Use g3 as
   761   // temporary displacement.
   762   if (! __ is_simm13(extraspace)) {
   763     __ set(extraspace, G3_scratch);
   764     __ sub(SP, G3_scratch, SP);
   765   } else {
   766     __ sub(SP, extraspace, SP);
   767   }
   768   set_Rdisp(G3_scratch);
   769 #else
   770   __ sub(SP, extraspace, SP);
   771 #endif // _LP64
   773   // First write G1 (if used) to where ever it must go
   774   for (int i=0; i<total_args_passed; i++) {
   775     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   776     VMReg r_1 = regs[i].first();
   777     VMReg r_2 = regs[i].second();
   778     if (r_1 == G1_scratch->as_VMReg()) {
   779       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   780         store_c2i_object(G1_scratch, base, st_off);
   781       } else if (sig_bt[i] == T_LONG) {
   782         assert(!TieredCompilation, "should not use register args for longs");
   783         store_c2i_long(G1_scratch, base, st_off, false);
   784       } else {
   785         store_c2i_int(G1_scratch, base, st_off);
   786       }
   787     }
   788   }
   790   // Now write the args into the outgoing interpreter space
   791   for (int i=0; i<total_args_passed; i++) {
   792     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   793     VMReg r_1 = regs[i].first();
   794     VMReg r_2 = regs[i].second();
   795     if (!r_1->is_valid()) {
   796       assert(!r_2->is_valid(), "");
   797       continue;
   798     }
   799     // Skip G1 if found as we did it first in order to free it up
   800     if (r_1 == G1_scratch->as_VMReg()) {
   801       continue;
   802     }
   803 #ifdef ASSERT
   804     bool G1_forced = false;
   805 #endif // ASSERT
   806     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   807 #ifdef _LP64
   808       Register ld_off = Rdisp;
   809       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
   810 #else
   811       int ld_off = reg2offset(r_1) + extraspace + bias;
   812 #endif // _LP64
   813 #ifdef ASSERT
   814       G1_forced = true;
   815 #endif // ASSERT
   816       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   817       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   818       else                  __ ldx(base, ld_off, G1_scratch);
   819     }
   821     if (r_1->is_Register()) {
   822       Register r = r_1->as_Register()->after_restore();
   823       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   824         store_c2i_object(r, base, st_off);
   825       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   826 #ifndef _LP64
   827         if (TieredCompilation) {
   828           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
   829         }
   830 #endif // _LP64
   831         store_c2i_long(r, base, st_off, r_2->is_stack());
   832       } else {
   833         store_c2i_int(r, base, st_off);
   834       }
   835     } else {
   836       assert(r_1->is_FloatRegister(), "");
   837       if (sig_bt[i] == T_FLOAT) {
   838         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   839       } else {
   840         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   841         store_c2i_double(r_2, r_1, base, st_off);
   842       }
   843     }
   844   }
   846 #ifdef _LP64
   847   // Need to reload G3_scratch, used for temporary displacements.
   848   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   850   // Pass O5_savedSP as an argument to the interpreter.
   851   // The interpreter will restore SP to this value before returning.
   852   __ set(extraspace, G1);
   853   __ add(SP, G1, O5_savedSP);
   854 #else
   855   // Pass O5_savedSP as an argument to the interpreter.
   856   // The interpreter will restore SP to this value before returning.
   857   __ add(SP, extraspace, O5_savedSP);
   858 #endif // _LP64
   860   __ mov((frame::varargs_offset)*wordSize -
   861          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   862   // Jump to the interpreter just as if interpreter was doing it.
   863   __ jmpl(G3_scratch, 0, G0);
   864   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   865   // (really L0) is in use by the compiled frame as a generic temp.  However,
   866   // the interpreter does not know where its args are without some kind of
   867   // arg pointer being passed in.  Pass it in Gargs.
   868   __ delayed()->add(SP, G1, Gargs);
   869 }
   871 void AdapterGenerator::gen_i2c_adapter(
   872                             int total_args_passed,
   873                             // VMReg max_arg,
   874                             int comp_args_on_stack, // VMRegStackSlots
   875                             const BasicType *sig_bt,
   876                             const VMRegPair *regs) {
   878   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   879   // layout.  Lesp was saved by the calling I-frame and will be restored on
   880   // return.  Meanwhile, outgoing arg space is all owned by the callee
   881   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   882   // hoist register arguments and repack other args according to the compiled
   883   // code convention.  Finally, end in a jump to the compiled code.  The entry
   884   // point address is the start of the buffer.
   886   // We will only enter here from an interpreted frame and never from after
   887   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   888   // race and use a c2i we will remain interpreted for the race loser(s).
   889   // This removes all sorts of headaches on the x86 side and also eliminates
   890   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   892   // As you can see from the list of inputs & outputs there are not a lot
   893   // of temp registers to work with: mostly G1, G3 & G4.
   895   // Inputs:
   896   // G2_thread      - TLS
   897   // G5_method      - Method oop
   898   // G4 (Gargs)     - Pointer to interpreter's args
   899   // O0..O4         - free for scratch
   900   // O5_savedSP     - Caller's saved SP, to be restored if needed
   901   // O6             - Current SP!
   902   // O7             - Valid return address
   903   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   905   // Outputs:
   906   // G2_thread      - TLS
   907   // G1, G4         - Outgoing long args in 32-bit build
   908   // O0-O5          - Outgoing args in compiled layout
   909   // O6             - Adjusted or restored SP
   910   // O7             - Valid return address
   911   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   912   // F0-F7          - more outgoing args
   915   // Gargs is the incoming argument base, and also an outgoing argument.
   916   __ sub(Gargs, BytesPerWord, Gargs);
   918   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   919   // WITH O7 HOLDING A VALID RETURN PC
   920   //
   921   // |              |
   922   // :  java stack  :
   923   // |              |
   924   // +--------------+ <--- start of outgoing args
   925   // |   receiver   |   |
   926   // : rest of args :   |---size is java-arg-words
   927   // |              |   |
   928   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   929   // |              |   |
   930   // :    unused    :   |---Space for max Java stack, plus stack alignment
   931   // |              |   |
   932   // +--------------+ <--- SP + 16*wordsize
   933   // |              |
   934   // :    window    :
   935   // |              |
   936   // +--------------+ <--- SP
   938   // WE REPACK THE STACK.  We use the common calling convention layout as
   939   // discovered by calling SharedRuntime::calling_convention.  We assume it
   940   // causes an arbitrary shuffle of memory, which may require some register
   941   // temps to do the shuffle.  We hope for (and optimize for) the case where
   942   // temps are not needed.  We may have to resize the stack slightly, in case
   943   // we need alignment padding (32-bit interpreter can pass longs & doubles
   944   // misaligned, but the compilers expect them aligned).
   945   //
   946   // |              |
   947   // :  java stack  :
   948   // |              |
   949   // +--------------+ <--- start of outgoing args
   950   // |  pad, align  |   |
   951   // +--------------+   |
   952   // | ints, floats |   |---Outgoing stack args, packed low.
   953   // +--------------+   |   First few args in registers.
   954   // :   doubles    :   |
   955   // |   longs      |   |
   956   // +--------------+ <--- SP' + 16*wordsize
   957   // |              |
   958   // :    window    :
   959   // |              |
   960   // +--------------+ <--- SP'
   962   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
   963   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
   964   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
   966   // Cut-out for having no stack args.  Since up to 6 args are passed
   967   // in registers, we will commonly have no stack args.
   968   if (comp_args_on_stack > 0) {
   970     // Convert VMReg stack slots to words.
   971     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   972     // Round up to miminum stack alignment, in wordSize
   973     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   974     // Now compute the distance from Lesp to SP.  This calculation does not
   975     // include the space for total_args_passed because Lesp has not yet popped
   976     // the arguments.
   977     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
   978   }
   980   // Will jump to the compiled code just as if compiled code was doing it.
   981   // Pre-load the register-jump target early, to schedule it better.
   982   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
   984   // Now generate the shuffle code.  Pick up all register args and move the
   985   // rest through G1_scratch.
   986   for (int i=0; i<total_args_passed; i++) {
   987     if (sig_bt[i] == T_VOID) {
   988       // Longs and doubles are passed in native word order, but misaligned
   989       // in the 32-bit build.
   990       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   991       continue;
   992     }
   994     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
   995     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
   996     // ldx/lddf optimizations.
   998     // Load in argument order going down.
   999     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
  1000     set_Rdisp(G1_scratch);
  1002     VMReg r_1 = regs[i].first();
  1003     VMReg r_2 = regs[i].second();
  1004     if (!r_1->is_valid()) {
  1005       assert(!r_2->is_valid(), "");
  1006       continue;
  1008     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
  1009       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
  1010       if (r_2->is_valid()) r_2 = r_1->next();
  1012     if (r_1->is_Register()) {  // Register argument
  1013       Register r = r_1->as_Register()->after_restore();
  1014       if (!r_2->is_valid()) {
  1015         __ ld(Gargs, arg_slot(ld_off), r);
  1016       } else {
  1017 #ifdef _LP64
  1018         // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1019         // data is passed in only 1 slot.
  1020         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
  1021               next_arg_slot(ld_off) : arg_slot(ld_off);
  1022         __ ldx(Gargs, slot, r);
  1023 #else
  1024         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
  1025         // stack shuffle.  Load the first 2 longs into G1/G4 later.
  1026 #endif
  1028     } else {
  1029       assert(r_1->is_FloatRegister(), "");
  1030       if (!r_2->is_valid()) {
  1031         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
  1032       } else {
  1033 #ifdef _LP64
  1034         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
  1035         // data is passed in only 1 slot.  This code also handles longs that
  1036         // are passed on the stack, but need a stack-to-stack move through a
  1037         // spare float register.
  1038         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
  1039               next_arg_slot(ld_off) : arg_slot(ld_off);
  1040         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
  1041 #else
  1042         // Need to marshal 64-bit value from misaligned Lesp loads
  1043         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
  1044         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
  1045 #endif
  1048     // Was the argument really intended to be on the stack, but was loaded
  1049     // into F8/F9?
  1050     if (regs[i].first()->is_stack()) {
  1051       assert(r_1->as_FloatRegister() == F8, "fix this code");
  1052       // Convert stack slot to an SP offset
  1053       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
  1054       // Store down the shuffled stack word.  Target address _is_ aligned.
  1055       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
  1056       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
  1057       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
  1060   bool made_space = false;
  1061 #ifndef _LP64
  1062   // May need to pick up a few long args in G1/G4
  1063   bool g4_crushed = false;
  1064   bool g3_crushed = false;
  1065   for (int i=0; i<total_args_passed; i++) {
  1066     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
  1067       // Load in argument order going down
  1068       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
  1069       // Need to marshal 64-bit value from misaligned Lesp loads
  1070       Register r = regs[i].first()->as_Register()->after_restore();
  1071       if (r == G1 || r == G4) {
  1072         assert(!g4_crushed, "ordering problem");
  1073         if (r == G4){
  1074           g4_crushed = true;
  1075           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1076           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1077         } else {
  1078           // better schedule this way
  1079           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1080           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1082         g3_crushed = true;
  1083         __ sllx(r, 32, r);
  1084         __ or3(G3_scratch, r, r);
  1085       } else {
  1086         assert(r->is_out(), "longs passed in two O registers");
  1087         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
  1088         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
  1092 #endif
  1094   // Jump to the compiled code just as if compiled code was doing it.
  1095   //
  1096 #ifndef _LP64
  1097     if (g3_crushed) {
  1098       // Rats load was wasted, at least it is in cache...
  1099       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
  1101 #endif /* _LP64 */
  1103     // 6243940 We might end up in handle_wrong_method if
  1104     // the callee is deoptimized as we race thru here. If that
  1105     // happens we don't want to take a safepoint because the
  1106     // caller frame will look interpreted and arguments are now
  1107     // "compiled" so it is much better to make this transition
  1108     // invisible to the stack walking code. Unfortunately if
  1109     // we try and find the callee by normal means a safepoint
  1110     // is possible. So we stash the desired callee in the thread
  1111     // and the vm will find there should this case occur.
  1112     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1113     __ st_ptr(G5_method, callee_target_addr);
  1115     if (StressNonEntrant) {
  1116       // Open a big window for deopt failure
  1117       __ save_frame(0);
  1118       __ mov(G0, L0);
  1119       Label loop;
  1120       __ bind(loop);
  1121       __ sub(L0, 1, L0);
  1122       __ br_null(L0, false, Assembler::pt, loop);
  1123       __ delayed()->nop();
  1125       __ restore();
  1129     __ jmpl(G3, 0, G0);
  1130     __ delayed()->nop();
  1133 // ---------------------------------------------------------------
  1134 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1135                                                             int total_args_passed,
  1136                                                             // VMReg max_arg,
  1137                                                             int comp_args_on_stack, // VMRegStackSlots
  1138                                                             const BasicType *sig_bt,
  1139                                                             const VMRegPair *regs,
  1140                                                             AdapterFingerPrint* fingerprint) {
  1141   address i2c_entry = __ pc();
  1143   AdapterGenerator agen(masm);
  1145   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1148   // -------------------------------------------------------------------------
  1149   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
  1150   // args start out packed in the compiled layout.  They need to be unpacked
  1151   // into the interpreter layout.  This will almost always require some stack
  1152   // space.  We grow the current (compiled) stack, then repack the args.  We
  1153   // finally end in a jump to the generic interpreter entry point.  On exit
  1154   // from the interpreter, the interpreter will restore our SP (lest the
  1155   // compiled code, which relys solely on SP and not FP, get sick).
  1157   address c2i_unverified_entry = __ pc();
  1158   Label skip_fixup;
  1160 #if !defined(_LP64) && defined(COMPILER2)
  1161     Register R_temp   = L0;   // another scratch register
  1162 #else
  1163     Register R_temp   = G1;   // another scratch register
  1164 #endif
  1166     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1168     __ verify_oop(O0);
  1169     __ verify_oop(G5_method);
  1170     __ load_klass(O0, G3_scratch);
  1171     __ verify_oop(G3_scratch);
  1173 #if !defined(_LP64) && defined(COMPILER2)
  1174     __ save(SP, -frame::register_save_words*wordSize, SP);
  1175     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1176     __ verify_oop(R_temp);
  1177     __ cmp(G3_scratch, R_temp);
  1178     __ restore();
  1179 #else
  1180     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1181     __ verify_oop(R_temp);
  1182     __ cmp(G3_scratch, R_temp);
  1183 #endif
  1185     Label ok, ok2;
  1186     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1187     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
  1188     __ jump_to(ic_miss, G3_scratch);
  1189     __ delayed()->nop();
  1191     __ bind(ok);
  1192     // Method might have been compiled since the call site was patched to
  1193     // interpreted if that is the case treat it as a miss so we can get
  1194     // the call site corrected.
  1195     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
  1196     __ bind(ok2);
  1197     __ br_null(G3_scratch, false, __ pt, skip_fixup);
  1198     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
  1199     __ jump_to(ic_miss, G3_scratch);
  1200     __ delayed()->nop();
  1204   address c2i_entry = __ pc();
  1206   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
  1208   __ flush();
  1209   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1213 // Helper function for native calling conventions
  1214 static VMReg int_stk_helper( int i ) {
  1215   // Bias any stack based VMReg we get by ignoring the window area
  1216   // but not the register parameter save area.
  1217   //
  1218   // This is strange for the following reasons. We'd normally expect
  1219   // the calling convention to return an VMReg for a stack slot
  1220   // completely ignoring any abi reserved area. C2 thinks of that
  1221   // abi area as only out_preserve_stack_slots. This does not include
  1222   // the area allocated by the C abi to store down integer arguments
  1223   // because the java calling convention does not use it. So
  1224   // since c2 assumes that there are only out_preserve_stack_slots
  1225   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1226   // location the c calling convention must add in this bias amount
  1227   // to make up for the fact that the out_preserve_stack_slots is
  1228   // insufficient for C calls. What a mess. I sure hope those 6
  1229   // stack words were worth it on every java call!
  1231   // Another way of cleaning this up would be for out_preserve_stack_slots
  1232   // to take a parameter to say whether it was C or java calling conventions.
  1233   // Then things might look a little better (but not much).
  1235   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1236   if( mem_parm_offset < 0 ) {
  1237     return as_oRegister(i)->as_VMReg();
  1238   } else {
  1239     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1240     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1241     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1246 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1247                                          VMRegPair *regs,
  1248                                          int total_args_passed) {
  1250     // Return the number of VMReg stack_slots needed for the args.
  1251     // This value does not include an abi space (like register window
  1252     // save area).
  1254     // The native convention is V8 if !LP64
  1255     // The LP64 convention is the V9 convention which is slightly more sane.
  1257     // We return the amount of VMReg stack slots we need to reserve for all
  1258     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1259     // have space for storing at least 6 registers to memory we start with that.
  1260     // See int_stk_helper for a further discussion.
  1261     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1263 #ifdef _LP64
  1264     // V9 convention: All things "as-if" on double-wide stack slots.
  1265     // Hoist any int/ptr/long's in the first 6 to int regs.
  1266     // Hoist any flt/dbl's in the first 16 dbl regs.
  1267     int j = 0;                  // Count of actual args, not HALVES
  1268     for( int i=0; i<total_args_passed; i++, j++ ) {
  1269       switch( sig_bt[i] ) {
  1270       case T_BOOLEAN:
  1271       case T_BYTE:
  1272       case T_CHAR:
  1273       case T_INT:
  1274       case T_SHORT:
  1275         regs[i].set1( int_stk_helper( j ) ); break;
  1276       case T_LONG:
  1277         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1278       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1279       case T_ARRAY:
  1280       case T_OBJECT:
  1281         regs[i].set2( int_stk_helper( j ) );
  1282         break;
  1283       case T_FLOAT:
  1284         if ( j < 16 ) {
  1285           // V9ism: floats go in ODD registers
  1286           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1287         } else {
  1288           // V9ism: floats go in ODD stack slot
  1289           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1291         break;
  1292       case T_DOUBLE:
  1293         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1294         if ( j < 16 ) {
  1295           // V9ism: doubles go in EVEN/ODD regs
  1296           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1297         } else {
  1298           // V9ism: doubles go in EVEN/ODD stack slots
  1299           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1301         break;
  1302       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1303       default:
  1304         ShouldNotReachHere();
  1306       if (regs[i].first()->is_stack()) {
  1307         int off =  regs[i].first()->reg2stack();
  1308         if (off > max_stack_slots) max_stack_slots = off;
  1310       if (regs[i].second()->is_stack()) {
  1311         int off =  regs[i].second()->reg2stack();
  1312         if (off > max_stack_slots) max_stack_slots = off;
  1316 #else // _LP64
  1317     // V8 convention: first 6 things in O-regs, rest on stack.
  1318     // Alignment is willy-nilly.
  1319     for( int i=0; i<total_args_passed; i++ ) {
  1320       switch( sig_bt[i] ) {
  1321       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1322       case T_ARRAY:
  1323       case T_BOOLEAN:
  1324       case T_BYTE:
  1325       case T_CHAR:
  1326       case T_FLOAT:
  1327       case T_INT:
  1328       case T_OBJECT:
  1329       case T_SHORT:
  1330         regs[i].set1( int_stk_helper( i ) );
  1331         break;
  1332       case T_DOUBLE:
  1333       case T_LONG:
  1334         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1335         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1336         break;
  1337       case T_VOID: regs[i].set_bad(); break;
  1338       default:
  1339         ShouldNotReachHere();
  1341       if (regs[i].first()->is_stack()) {
  1342         int off =  regs[i].first()->reg2stack();
  1343         if (off > max_stack_slots) max_stack_slots = off;
  1345       if (regs[i].second()->is_stack()) {
  1346         int off =  regs[i].second()->reg2stack();
  1347         if (off > max_stack_slots) max_stack_slots = off;
  1350 #endif // _LP64
  1352   return round_to(max_stack_slots + 1, 2);
  1357 // ---------------------------------------------------------------------------
  1358 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1359   switch (ret_type) {
  1360   case T_FLOAT:
  1361     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1362     break;
  1363   case T_DOUBLE:
  1364     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1365     break;
  1369 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1370   switch (ret_type) {
  1371   case T_FLOAT:
  1372     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1373     break;
  1374   case T_DOUBLE:
  1375     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1376     break;
  1380 // Check and forward and pending exception.  Thread is stored in
  1381 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1382 // is no exception handler.  We merely pop this frame off and throw the
  1383 // exception in the caller's frame.
  1384 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1385   Label L;
  1386   __ br_null(Rex_oop, false, Assembler::pt, L);
  1387   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1388   // Since this is a native call, we *know* the proper exception handler
  1389   // without calling into the VM: it's the empty function.  Just pop this
  1390   // frame and then jump to forward_exception_entry; O7 will contain the
  1391   // native caller's return PC.
  1392  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1393   __ jump_to(exception_entry, G3_scratch);
  1394   __ delayed()->restore();      // Pop this frame off.
  1395   __ bind(L);
  1398 // A simple move of integer like type
  1399 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1400   if (src.first()->is_stack()) {
  1401     if (dst.first()->is_stack()) {
  1402       // stack to stack
  1403       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1404       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1405     } else {
  1406       // stack to reg
  1407       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1409   } else if (dst.first()->is_stack()) {
  1410     // reg to stack
  1411     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1412   } else {
  1413     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1417 // On 64 bit we will store integer like items to the stack as
  1418 // 64 bits items (sparc abi) even though java would only store
  1419 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1420 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1421 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1422   if (src.first()->is_stack()) {
  1423     if (dst.first()->is_stack()) {
  1424       // stack to stack
  1425       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1426       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1427     } else {
  1428       // stack to reg
  1429       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1431   } else if (dst.first()->is_stack()) {
  1432     // reg to stack
  1433     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1434   } else {
  1435     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1440 // An oop arg. Must pass a handle not the oop itself
  1441 static void object_move(MacroAssembler* masm,
  1442                         OopMap* map,
  1443                         int oop_handle_offset,
  1444                         int framesize_in_slots,
  1445                         VMRegPair src,
  1446                         VMRegPair dst,
  1447                         bool is_receiver,
  1448                         int* receiver_offset) {
  1450   // must pass a handle. First figure out the location we use as a handle
  1452   if (src.first()->is_stack()) {
  1453     // Oop is already on the stack
  1454     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1455     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1456     __ ld_ptr(rHandle, 0, L4);
  1457 #ifdef _LP64
  1458     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1459 #else
  1460     __ tst( L4 );
  1461     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1462 #endif
  1463     if (dst.first()->is_stack()) {
  1464       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1466     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1467     if (is_receiver) {
  1468       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1470     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1471   } else {
  1472     // Oop is in an input register pass we must flush it to the stack
  1473     const Register rOop = src.first()->as_Register();
  1474     const Register rHandle = L5;
  1475     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1476     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1477     Label skip;
  1478     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1479     if (is_receiver) {
  1480       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1482     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1483     __ add(SP, offset + STACK_BIAS, rHandle);
  1484 #ifdef _LP64
  1485     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1486 #else
  1487     __ tst( rOop );
  1488     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1489 #endif
  1491     if (dst.first()->is_stack()) {
  1492       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1493     } else {
  1494       __ mov(rHandle, dst.first()->as_Register());
  1499 // A float arg may have to do float reg int reg conversion
  1500 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1501   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1503   if (src.first()->is_stack()) {
  1504     if (dst.first()->is_stack()) {
  1505       // stack to stack the easiest of the bunch
  1506       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1507       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1508     } else {
  1509       // stack to reg
  1510       if (dst.first()->is_Register()) {
  1511         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1512       } else {
  1513         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1516   } else if (dst.first()->is_stack()) {
  1517     // reg to stack
  1518     if (src.first()->is_Register()) {
  1519       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1520     } else {
  1521       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1523   } else {
  1524     // reg to reg
  1525     if (src.first()->is_Register()) {
  1526       if (dst.first()->is_Register()) {
  1527         // gpr -> gpr
  1528         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1529       } else {
  1530         // gpr -> fpr
  1531         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1532         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1534     } else if (dst.first()->is_Register()) {
  1535       // fpr -> gpr
  1536       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1537       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1538     } else {
  1539       // fpr -> fpr
  1540       // In theory these overlap but the ordering is such that this is likely a nop
  1541       if ( src.first() != dst.first()) {
  1542         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1548 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1549   VMRegPair src_lo(src.first());
  1550   VMRegPair src_hi(src.second());
  1551   VMRegPair dst_lo(dst.first());
  1552   VMRegPair dst_hi(dst.second());
  1553   simple_move32(masm, src_lo, dst_lo);
  1554   simple_move32(masm, src_hi, dst_hi);
  1557 // A long move
  1558 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1560   // Do the simple ones here else do two int moves
  1561   if (src.is_single_phys_reg() ) {
  1562     if (dst.is_single_phys_reg()) {
  1563       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1564     } else {
  1565       // split src into two separate registers
  1566       // Remember hi means hi address or lsw on sparc
  1567       // Move msw to lsw
  1568       if (dst.second()->is_reg()) {
  1569         // MSW -> MSW
  1570         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1571         // Now LSW -> LSW
  1572         // this will only move lo -> lo and ignore hi
  1573         VMRegPair split(dst.second());
  1574         simple_move32(masm, src, split);
  1575       } else {
  1576         VMRegPair split(src.first(), L4->as_VMReg());
  1577         // MSW -> MSW (lo ie. first word)
  1578         __ srax(src.first()->as_Register(), 32, L4);
  1579         split_long_move(masm, split, dst);
  1582   } else if (dst.is_single_phys_reg()) {
  1583     if (src.is_adjacent_aligned_on_stack(2)) {
  1584       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1585     } else {
  1586       // dst is a single reg.
  1587       // Remember lo is low address not msb for stack slots
  1588       // and lo is the "real" register for registers
  1589       // src is
  1591       VMRegPair split;
  1593       if (src.first()->is_reg()) {
  1594         // src.lo (msw) is a reg, src.hi is stk/reg
  1595         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1596         split.set_pair(dst.first(), src.first());
  1597       } else {
  1598         // msw is stack move to L5
  1599         // lsw is stack move to dst.lo (real reg)
  1600         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1601         split.set_pair(dst.first(), L5->as_VMReg());
  1604       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1605       // msw   -> src.lo/L5,  lsw -> dst.lo
  1606       split_long_move(masm, src, split);
  1608       // So dst now has the low order correct position the
  1609       // msw half
  1610       __ sllx(split.first()->as_Register(), 32, L5);
  1612       const Register d = dst.first()->as_Register();
  1613       __ or3(L5, d, d);
  1615   } else {
  1616     // For LP64 we can probably do better.
  1617     split_long_move(masm, src, dst);
  1621 // A double move
  1622 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1624   // The painful thing here is that like long_move a VMRegPair might be
  1625   // 1: a single physical register
  1626   // 2: two physical registers (v8)
  1627   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1628   // 4: two stack slots
  1630   // Since src is always a java calling convention we know that the src pair
  1631   // is always either all registers or all stack (and aligned?)
  1633   // in a register [lo] and a stack slot [hi]
  1634   if (src.first()->is_stack()) {
  1635     if (dst.first()->is_stack()) {
  1636       // stack to stack the easiest of the bunch
  1637       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1638       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1639       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1640       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1641       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1642     } else {
  1643       // stack to reg
  1644       if (dst.second()->is_stack()) {
  1645         // stack -> reg, stack -> stack
  1646         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1647         if (dst.first()->is_Register()) {
  1648           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1649         } else {
  1650           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1652         // This was missing. (very rare case)
  1653         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1654       } else {
  1655         // stack -> reg
  1656         // Eventually optimize for alignment QQQ
  1657         if (dst.first()->is_Register()) {
  1658           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1659           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1660         } else {
  1661           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1662           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1666   } else if (dst.first()->is_stack()) {
  1667     // reg to stack
  1668     if (src.first()->is_Register()) {
  1669       // Eventually optimize for alignment QQQ
  1670       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1671       if (src.second()->is_stack()) {
  1672         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1673         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1674       } else {
  1675         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1677     } else {
  1678       // fpr to stack
  1679       if (src.second()->is_stack()) {
  1680         ShouldNotReachHere();
  1681       } else {
  1682         // Is the stack aligned?
  1683         if (reg2offset(dst.first()) & 0x7) {
  1684           // No do as pairs
  1685           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1686           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1687         } else {
  1688           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1692   } else {
  1693     // reg to reg
  1694     if (src.first()->is_Register()) {
  1695       if (dst.first()->is_Register()) {
  1696         // gpr -> gpr
  1697         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1698         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1699       } else {
  1700         // gpr -> fpr
  1701         // ought to be able to do a single store
  1702         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1703         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1704         // ought to be able to do a single load
  1705         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1706         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1708     } else if (dst.first()->is_Register()) {
  1709       // fpr -> gpr
  1710       // ought to be able to do a single store
  1711       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1712       // ought to be able to do a single load
  1713       // REMEMBER first() is low address not LSB
  1714       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1715       if (dst.second()->is_Register()) {
  1716         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1717       } else {
  1718         __ ld(FP, -4 + STACK_BIAS, L4);
  1719         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1721     } else {
  1722       // fpr -> fpr
  1723       // In theory these overlap but the ordering is such that this is likely a nop
  1724       if ( src.first() != dst.first()) {
  1725         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1731 // Creates an inner frame if one hasn't already been created, and
  1732 // saves a copy of the thread in L7_thread_cache
  1733 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1734   if (!*already_created) {
  1735     __ save_frame(0);
  1736     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1737     // Don't use save_thread because it smashes G2 and we merely want to save a
  1738     // copy
  1739     __ mov(G2_thread, L7_thread_cache);
  1740     *already_created = true;
  1744 // ---------------------------------------------------------------------------
  1745 // Generate a native wrapper for a given method.  The method takes arguments
  1746 // in the Java compiled code convention, marshals them to the native
  1747 // convention (handlizes oops, etc), transitions to native, makes the call,
  1748 // returns to java state (possibly blocking), unhandlizes any result and
  1749 // returns.
  1750 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1751                                                 methodHandle method,
  1752                                                 int total_in_args,
  1753                                                 int comp_args_on_stack, // in VMRegStackSlots
  1754                                                 BasicType *in_sig_bt,
  1755                                                 VMRegPair *in_regs,
  1756                                                 BasicType ret_type) {
  1758   // Native nmethod wrappers never take possesion of the oop arguments.
  1759   // So the caller will gc the arguments. The only thing we need an
  1760   // oopMap for is if the call is static
  1761   //
  1762   // An OopMap for lock (and class if static), and one for the VM call itself
  1763   OopMapSet *oop_maps = new OopMapSet();
  1764   intptr_t start = (intptr_t)__ pc();
  1766   // First thing make an ic check to see if we should even be here
  1768     Label L;
  1769     const Register temp_reg = G3_scratch;
  1770     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1771     __ verify_oop(O0);
  1772     __ load_klass(O0, temp_reg);
  1773     __ cmp(temp_reg, G5_inline_cache_reg);
  1774     __ brx(Assembler::equal, true, Assembler::pt, L);
  1775     __ delayed()->nop();
  1777     __ jump_to(ic_miss, temp_reg);
  1778     __ delayed()->nop();
  1779     __ align(CodeEntryAlignment);
  1780     __ bind(L);
  1783   int vep_offset = ((intptr_t)__ pc()) - start;
  1785 #ifdef COMPILER1
  1786   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1787     // Object.hashCode can pull the hashCode from the header word
  1788     // instead of doing a full VM transition once it's been computed.
  1789     // Since hashCode is usually polymorphic at call sites we can't do
  1790     // this optimization at the call site without a lot of work.
  1791     Label slowCase;
  1792     Register receiver             = O0;
  1793     Register result               = O0;
  1794     Register header               = G3_scratch;
  1795     Register hash                 = G3_scratch; // overwrite header value with hash value
  1796     Register mask                 = G1;         // to get hash field from header
  1798     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  1799     // We depend on hash_mask being at most 32 bits and avoid the use of
  1800     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1801     // vm: see markOop.hpp.
  1802     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  1803     __ sethi(markOopDesc::hash_mask, mask);
  1804     __ btst(markOopDesc::unlocked_value, header);
  1805     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  1806     if (UseBiasedLocking) {
  1807       // Check if biased and fall through to runtime if so
  1808       __ delayed()->nop();
  1809       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  1810       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  1812     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  1814     // Check for a valid (non-zero) hash code and get its value.
  1815 #ifdef _LP64
  1816     __ srlx(header, markOopDesc::hash_shift, hash);
  1817 #else
  1818     __ srl(header, markOopDesc::hash_shift, hash);
  1819 #endif
  1820     __ andcc(hash, mask, hash);
  1821     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  1822     __ delayed()->nop();
  1824     // leaf return.
  1825     __ retl();
  1826     __ delayed()->mov(hash, result);
  1827     __ bind(slowCase);
  1829 #endif // COMPILER1
  1832   // We have received a description of where all the java arg are located
  1833   // on entry to the wrapper. We need to convert these args to where
  1834   // the jni function will expect them. To figure out where they go
  1835   // we convert the java signature to a C signature by inserting
  1836   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1838   int total_c_args = total_in_args + 1;
  1839   if (method->is_static()) {
  1840     total_c_args++;
  1843   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1844   VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1846   int argc = 0;
  1847   out_sig_bt[argc++] = T_ADDRESS;
  1848   if (method->is_static()) {
  1849     out_sig_bt[argc++] = T_OBJECT;
  1852   for (int i = 0; i < total_in_args ; i++ ) {
  1853     out_sig_bt[argc++] = in_sig_bt[i];
  1856   // Now figure out where the args must be stored and how much stack space
  1857   // they require (neglecting out_preserve_stack_slots but space for storing
  1858   // the 1st six register arguments). It's weird see int_stk_helper.
  1859   //
  1860   int out_arg_slots;
  1861   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1863   // Compute framesize for the wrapper.  We need to handlize all oops in
  1864   // registers. We must create space for them here that is disjoint from
  1865   // the windowed save area because we have no control over when we might
  1866   // flush the window again and overwrite values that gc has since modified.
  1867   // (The live window race)
  1868   //
  1869   // We always just allocate 6 word for storing down these object. This allow
  1870   // us to simply record the base and use the Ireg number to decide which
  1871   // slot to use. (Note that the reg number is the inbound number not the
  1872   // outbound number).
  1873   // We must shuffle args to match the native convention, and include var-args space.
  1875   // Calculate the total number of stack slots we will need.
  1877   // First count the abi requirement plus all of the outgoing args
  1878   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1880   // Now the space for the inbound oop handle area
  1882   int oop_handle_offset = stack_slots;
  1883   stack_slots += 6*VMRegImpl::slots_per_word;
  1885   // Now any space we need for handlizing a klass if static method
  1887   int oop_temp_slot_offset = 0;
  1888   int klass_slot_offset = 0;
  1889   int klass_offset = -1;
  1890   int lock_slot_offset = 0;
  1891   bool is_static = false;
  1893   if (method->is_static()) {
  1894     klass_slot_offset = stack_slots;
  1895     stack_slots += VMRegImpl::slots_per_word;
  1896     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1897     is_static = true;
  1900   // Plus a lock if needed
  1902   if (method->is_synchronized()) {
  1903     lock_slot_offset = stack_slots;
  1904     stack_slots += VMRegImpl::slots_per_word;
  1907   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  1908   stack_slots += 2;
  1910   // Ok The space we have allocated will look like:
  1911   //
  1912   //
  1913   // FP-> |                     |
  1914   //      |---------------------|
  1915   //      | 2 slots for moves   |
  1916   //      |---------------------|
  1917   //      | lock box (if sync)  |
  1918   //      |---------------------| <- lock_slot_offset
  1919   //      | klass (if static)   |
  1920   //      |---------------------| <- klass_slot_offset
  1921   //      | oopHandle area      |
  1922   //      |---------------------| <- oop_handle_offset
  1923   //      | outbound memory     |
  1924   //      | based arguments     |
  1925   //      |                     |
  1926   //      |---------------------|
  1927   //      | vararg area         |
  1928   //      |---------------------|
  1929   //      |                     |
  1930   // SP-> | out_preserved_slots |
  1931   //
  1932   //
  1935   // Now compute actual number of stack words we need rounding to make
  1936   // stack properly aligned.
  1937   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  1939   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1941   // Generate stack overflow check before creating frame
  1942   __ generate_stack_overflow_check(stack_size);
  1944   // Generate a new frame for the wrapper.
  1945   __ save(SP, -stack_size, SP);
  1947   int frame_complete = ((intptr_t)__ pc()) - start;
  1949   __ verify_thread();
  1952   //
  1953   // We immediately shuffle the arguments so that any vm call we have to
  1954   // make from here on out (sync slow path, jvmti, etc.) we will have
  1955   // captured the oops from our caller and have a valid oopMap for
  1956   // them.
  1958   // -----------------
  1959   // The Grand Shuffle
  1960   //
  1961   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1962   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  1963   // the class mirror instead of a receiver.  This pretty much guarantees that
  1964   // register layout will not match.  We ignore these extra arguments during
  1965   // the shuffle. The shuffle is described by the two calling convention
  1966   // vectors we have in our possession. We simply walk the java vector to
  1967   // get the source locations and the c vector to get the destinations.
  1968   // Because we have a new window and the argument registers are completely
  1969   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  1970   // here.
  1972   // This is a trick. We double the stack slots so we can claim
  1973   // the oops in the caller's frame. Since we are sure to have
  1974   // more args than the caller doubling is enough to make
  1975   // sure we can capture all the incoming oop args from the
  1976   // caller.
  1977   //
  1978   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1979   int c_arg = total_c_args - 1;
  1980   // Record sp-based slot for receiver on stack for non-static methods
  1981   int receiver_offset = -1;
  1983   // We move the arguments backward because the floating point registers
  1984   // destination will always be to a register with a greater or equal register
  1985   // number or the stack.
  1987 #ifdef ASSERT
  1988   bool reg_destroyed[RegisterImpl::number_of_registers];
  1989   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  1990   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  1991     reg_destroyed[r] = false;
  1993   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  1994     freg_destroyed[f] = false;
  1997 #endif /* ASSERT */
  1999   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  2001 #ifdef ASSERT
  2002     if (in_regs[i].first()->is_Register()) {
  2003       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2004     } else if (in_regs[i].first()->is_FloatRegister()) {
  2005       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2007     if (out_regs[c_arg].first()->is_Register()) {
  2008       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2009     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2010       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2012 #endif /* ASSERT */
  2014     switch (in_sig_bt[i]) {
  2015       case T_ARRAY:
  2016       case T_OBJECT:
  2017         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2018                     ((i == 0) && (!is_static)),
  2019                     &receiver_offset);
  2020         break;
  2021       case T_VOID:
  2022         break;
  2024       case T_FLOAT:
  2025         float_move(masm, in_regs[i], out_regs[c_arg]);
  2026           break;
  2028       case T_DOUBLE:
  2029         assert( i + 1 < total_in_args &&
  2030                 in_sig_bt[i + 1] == T_VOID &&
  2031                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2032         double_move(masm, in_regs[i], out_regs[c_arg]);
  2033         break;
  2035       case T_LONG :
  2036         long_move(masm, in_regs[i], out_regs[c_arg]);
  2037         break;
  2039       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2041       default:
  2042         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2046   // Pre-load a static method's oop into O1.  Used both by locking code and
  2047   // the normal JNI call code.
  2048   if (method->is_static()) {
  2049     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2051     // Now handlize the static class mirror in O1.  It's known not-null.
  2052     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2053     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2054     __ add(SP, klass_offset + STACK_BIAS, O1);
  2058   const Register L6_handle = L6;
  2060   if (method->is_synchronized()) {
  2061     __ mov(O1, L6_handle);
  2064   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2065   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2066   // push a new frame and flush the windows.
  2068 #ifdef _LP64
  2069   intptr_t thepc = (intptr_t) __ pc();
  2071     address here = __ pc();
  2072     // Call the next instruction
  2073     __ call(here + 8, relocInfo::none);
  2074     __ delayed()->nop();
  2076 #else
  2077   intptr_t thepc = __ load_pc_address(O7, 0);
  2078 #endif /* _LP64 */
  2080   // We use the same pc/oopMap repeatedly when we call out
  2081   oop_maps->add_gc_map(thepc - start, map);
  2083   // O7 now has the pc loaded that we will use when we finally call to native.
  2085   // Save thread in L7; it crosses a bunch of VM calls below
  2086   // Don't use save_thread because it smashes G2 and we merely
  2087   // want to save a copy
  2088   __ mov(G2_thread, L7_thread_cache);
  2091   // If we create an inner frame once is plenty
  2092   // when we create it we must also save G2_thread
  2093   bool inner_frame_created = false;
  2095   // dtrace method entry support
  2097     SkipIfEqual skip_if(
  2098       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2099     // create inner frame
  2100     __ save_frame(0);
  2101     __ mov(G2_thread, L7_thread_cache);
  2102     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2103     __ call_VM_leaf(L7_thread_cache,
  2104          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2105          G2_thread, O1);
  2106     __ restore();
  2109   // RedefineClasses() tracing support for obsolete method entry
  2110   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2111     // create inner frame
  2112     __ save_frame(0);
  2113     __ mov(G2_thread, L7_thread_cache);
  2114     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2115     __ call_VM_leaf(L7_thread_cache,
  2116          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2117          G2_thread, O1);
  2118     __ restore();
  2121   // We are in the jni frame unless saved_frame is true in which case
  2122   // we are in one frame deeper (the "inner" frame). If we are in the
  2123   // "inner" frames the args are in the Iregs and if the jni frame then
  2124   // they are in the Oregs.
  2125   // If we ever need to go to the VM (for locking, jvmti) then
  2126   // we will always be in the "inner" frame.
  2128   // Lock a synchronized method
  2129   int lock_offset = -1;         // Set if locked
  2130   if (method->is_synchronized()) {
  2131     Register Roop = O1;
  2132     const Register L3_box = L3;
  2134     create_inner_frame(masm, &inner_frame_created);
  2136     __ ld_ptr(I1, 0, O1);
  2137     Label done;
  2139     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2140     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2141 #ifdef ASSERT
  2142     if (UseBiasedLocking) {
  2143       // making the box point to itself will make it clear it went unused
  2144       // but also be obviously invalid
  2145       __ st_ptr(L3_box, L3_box, 0);
  2147 #endif // ASSERT
  2148     //
  2149     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2150     //
  2151     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2152     __ br(Assembler::equal, false, Assembler::pt, done);
  2153     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2156     // None of the above fast optimizations worked so we have to get into the
  2157     // slow case of monitor enter.  Inline a special case of call_VM that
  2158     // disallows any pending_exception.
  2159     __ mov(Roop, O0);            // Need oop in O0
  2160     __ mov(L3_box, O1);
  2162     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2164     __ set_last_Java_frame(FP, I7);
  2166     // do the call
  2167     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2168     __ delayed()->mov(L7_thread_cache, O2);
  2170     __ restore_thread(L7_thread_cache); // restore G2_thread
  2171     __ reset_last_Java_frame();
  2173 #ifdef ASSERT
  2174     { Label L;
  2175     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2176     __ br_null(O0, false, Assembler::pt, L);
  2177     __ delayed()->nop();
  2178     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2179     __ bind(L);
  2181 #endif
  2182     __ bind(done);
  2186   // Finally just about ready to make the JNI call
  2188   __ flush_windows();
  2189   if (inner_frame_created) {
  2190     __ restore();
  2191   } else {
  2192     // Store only what we need from this frame
  2193     // QQQ I think that non-v9 (like we care) we don't need these saves
  2194     // either as the flush traps and the current window goes too.
  2195     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2196     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2199   // get JNIEnv* which is first argument to native
  2201   __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2203   // Use that pc we placed in O7 a while back as the current frame anchor
  2205   __ set_last_Java_frame(SP, O7);
  2207   // Transition from _thread_in_Java to _thread_in_native.
  2208   __ set(_thread_in_native, G3_scratch);
  2209   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2211   // We flushed the windows ages ago now mark them as flushed
  2213   // mark windows as flushed
  2214   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2216   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2218 #ifdef _LP64
  2219   AddressLiteral dest(method->native_function());
  2220   __ relocate(relocInfo::runtime_call_type);
  2221   __ jumpl_to(dest, O7, O7);
  2222 #else
  2223   __ call(method->native_function(), relocInfo::runtime_call_type);
  2224 #endif
  2225   __ delayed()->st(G3_scratch, flags);
  2227   __ restore_thread(L7_thread_cache); // restore G2_thread
  2229   // Unpack native results.  For int-types, we do any needed sign-extension
  2230   // and move things into I0.  The return value there will survive any VM
  2231   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2232   // specially in the slow-path code.
  2233   switch (ret_type) {
  2234   case T_VOID:    break;        // Nothing to do!
  2235   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2236   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2237   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2238   case T_LONG:
  2239 #ifndef _LP64
  2240                   __ mov(O1, I1);
  2241 #endif
  2242                   // Fall thru
  2243   case T_OBJECT:                // Really a handle
  2244   case T_ARRAY:
  2245   case T_INT:
  2246                   __ mov(O0, I0);
  2247                   break;
  2248   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2249   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2250   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2251   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2252     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2253   default:
  2254     ShouldNotReachHere();
  2257   // must we block?
  2259   // Block, if necessary, before resuming in _thread_in_Java state.
  2260   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2261   { Label no_block;
  2262     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2264     // Switch thread to "native transition" state before reading the synchronization state.
  2265     // This additional state is necessary because reading and testing the synchronization
  2266     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2267     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2268     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2269     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2270     //     didn't see any synchronization is progress, and escapes.
  2271     __ set(_thread_in_native_trans, G3_scratch);
  2272     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2273     if(os::is_MP()) {
  2274       if (UseMembar) {
  2275         // Force this write out before the read below
  2276         __ membar(Assembler::StoreLoad);
  2277       } else {
  2278         // Write serialization page so VM thread can do a pseudo remote membar.
  2279         // We use the current thread pointer to calculate a thread specific
  2280         // offset to write to within the page. This minimizes bus traffic
  2281         // due to cache line collision.
  2282         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2285     __ load_contents(sync_state, G3_scratch);
  2286     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2288     Label L;
  2289     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2290     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2291     __ delayed()->ld(suspend_state, G3_scratch);
  2292     __ cmp(G3_scratch, 0);
  2293     __ br(Assembler::equal, false, Assembler::pt, no_block);
  2294     __ delayed()->nop();
  2295     __ bind(L);
  2297     // Block.  Save any potential method result value before the operation and
  2298     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2299     // lets us share the oopMap we used when we went native rather the create
  2300     // a distinct one for this pc
  2301     //
  2302     save_native_result(masm, ret_type, stack_slots);
  2303     __ call_VM_leaf(L7_thread_cache,
  2304                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2305                     G2_thread);
  2307     // Restore any method result value
  2308     restore_native_result(masm, ret_type, stack_slots);
  2309     __ bind(no_block);
  2312   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2313   // happened so we can now change state to _thread_in_Java.
  2316   __ set(_thread_in_Java, G3_scratch);
  2317   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2320   Label no_reguard;
  2321   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2322   __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
  2323   __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
  2324   __ delayed()->nop();
  2326     save_native_result(masm, ret_type, stack_slots);
  2327   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2328   __ delayed()->nop();
  2330   __ restore_thread(L7_thread_cache); // restore G2_thread
  2331     restore_native_result(masm, ret_type, stack_slots);
  2333   __ bind(no_reguard);
  2335   // Handle possible exception (will unlock if necessary)
  2337   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2339   // Unlock
  2340   if (method->is_synchronized()) {
  2341     Label done;
  2342     Register I2_ex_oop = I2;
  2343     const Register L3_box = L3;
  2344     // Get locked oop from the handle we passed to jni
  2345     __ ld_ptr(L6_handle, 0, L4);
  2346     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2347     // Must save pending exception around the slow-path VM call.  Since it's a
  2348     // leaf call, the pending exception (if any) can be kept in a register.
  2349     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2350     // Now unlock
  2351     //                       (Roop, Rmark, Rbox,   Rscratch)
  2352     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2353     __ br(Assembler::equal, false, Assembler::pt, done);
  2354     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2356     // save and restore any potential method result value around the unlocking
  2357     // operation.  Will save in I0 (or stack for FP returns).
  2358     save_native_result(masm, ret_type, stack_slots);
  2360     // Must clear pending-exception before re-entering the VM.  Since this is
  2361     // a leaf call, pending-exception-oop can be safely kept in a register.
  2362     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2364     // slow case of monitor enter.  Inline a special case of call_VM that
  2365     // disallows any pending_exception.
  2366     __ mov(L3_box, O1);
  2368     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2369     __ delayed()->mov(L4, O0);              // Need oop in O0
  2371     __ restore_thread(L7_thread_cache); // restore G2_thread
  2373 #ifdef ASSERT
  2374     { Label L;
  2375     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2376     __ br_null(O0, false, Assembler::pt, L);
  2377     __ delayed()->nop();
  2378     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2379     __ bind(L);
  2381 #endif
  2382     restore_native_result(masm, ret_type, stack_slots);
  2383     // check_forward_pending_exception jump to forward_exception if any pending
  2384     // exception is set.  The forward_exception routine expects to see the
  2385     // exception in pending_exception and not in a register.  Kind of clumsy,
  2386     // since all folks who branch to forward_exception must have tested
  2387     // pending_exception first and hence have it in a register already.
  2388     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2389     __ bind(done);
  2392   // Tell dtrace about this method exit
  2394     SkipIfEqual skip_if(
  2395       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2396     save_native_result(masm, ret_type, stack_slots);
  2397     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2398     __ call_VM_leaf(L7_thread_cache,
  2399        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2400        G2_thread, O1);
  2401     restore_native_result(masm, ret_type, stack_slots);
  2404   // Clear "last Java frame" SP and PC.
  2405   __ verify_thread(); // G2_thread must be correct
  2406   __ reset_last_Java_frame();
  2408   // Unpack oop result
  2409   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2410       Label L;
  2411       __ addcc(G0, I0, G0);
  2412       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2413       __ delayed()->ld_ptr(I0, 0, I0);
  2414       __ mov(G0, I0);
  2415       __ bind(L);
  2416       __ verify_oop(I0);
  2419   // reset handle block
  2420   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2421   __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2423   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2424   check_forward_pending_exception(masm, G3_scratch);
  2427   // Return
  2429 #ifndef _LP64
  2430   if (ret_type == T_LONG) {
  2432     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2433     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2434     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2435     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2437 #endif
  2439   __ ret();
  2440   __ delayed()->restore();
  2442   __ flush();
  2444   nmethod *nm = nmethod::new_native_nmethod(method,
  2445                                             masm->code(),
  2446                                             vep_offset,
  2447                                             frame_complete,
  2448                                             stack_slots / VMRegImpl::slots_per_word,
  2449                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2450                                             in_ByteSize(lock_offset),
  2451                                             oop_maps);
  2452   return nm;
  2456 #ifdef HAVE_DTRACE_H
  2457 // ---------------------------------------------------------------------------
  2458 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2459 // in the Java compiled code convention, marshals them to the native
  2460 // abi and then leaves nops at the position you would expect to call a native
  2461 // function. When the probe is enabled the nops are replaced with a trap
  2462 // instruction that dtrace inserts and the trace will cause a notification
  2463 // to dtrace.
  2464 //
  2465 // The probes are only able to take primitive types and java/lang/String as
  2466 // arguments.  No other java types are allowed. Strings are converted to utf8
  2467 // strings so that from dtrace point of view java strings are converted to C
  2468 // strings. There is an arbitrary fixed limit on the total space that a method
  2469 // can use for converting the strings. (256 chars per string in the signature).
  2470 // So any java string larger then this is truncated.
  2472 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2473 static bool offsets_initialized = false;
  2475 static VMRegPair reg64_to_VMRegPair(Register r) {
  2476   VMRegPair ret;
  2477   if (wordSize == 8) {
  2478     ret.set2(r->as_VMReg());
  2479   } else {
  2480     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
  2482   return ret;
  2486 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2487     MacroAssembler *masm, methodHandle method) {
  2490   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2491   // be single threaded in this method.
  2492   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2494   // Fill in the signature array, for the calling-convention call.
  2495   int total_args_passed = method->size_of_parameters();
  2497   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2498   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2500   // The signature we are going to use for the trap that dtrace will see
  2501   // java/lang/String is converted. We drop "this" and any other object
  2502   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2503   // is converted to a two-slot long, which is why we double the allocation).
  2504   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2505   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2507   int i=0;
  2508   int total_strings = 0;
  2509   int first_arg_to_pass = 0;
  2510   int total_c_args = 0;
  2512   // Skip the receiver as dtrace doesn't want to see it
  2513   if( !method->is_static() ) {
  2514     in_sig_bt[i++] = T_OBJECT;
  2515     first_arg_to_pass = 1;
  2518   SignatureStream ss(method->signature());
  2519   for ( ; !ss.at_return_type(); ss.next()) {
  2520     BasicType bt = ss.type();
  2521     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2522     out_sig_bt[total_c_args++] = bt;
  2523     if( bt == T_OBJECT) {
  2524       symbolOop s = ss.as_symbol_or_null();
  2525       if (s == vmSymbols::java_lang_String()) {
  2526         total_strings++;
  2527         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2528       } else if (s == vmSymbols::java_lang_Boolean() ||
  2529                  s == vmSymbols::java_lang_Byte()) {
  2530         out_sig_bt[total_c_args-1] = T_BYTE;
  2531       } else if (s == vmSymbols::java_lang_Character() ||
  2532                  s == vmSymbols::java_lang_Short()) {
  2533         out_sig_bt[total_c_args-1] = T_SHORT;
  2534       } else if (s == vmSymbols::java_lang_Integer() ||
  2535                  s == vmSymbols::java_lang_Float()) {
  2536         out_sig_bt[total_c_args-1] = T_INT;
  2537       } else if (s == vmSymbols::java_lang_Long() ||
  2538                  s == vmSymbols::java_lang_Double()) {
  2539         out_sig_bt[total_c_args-1] = T_LONG;
  2540         out_sig_bt[total_c_args++] = T_VOID;
  2542     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2543       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2544       // We convert double to long
  2545       out_sig_bt[total_c_args-1] = T_LONG;
  2546       out_sig_bt[total_c_args++] = T_VOID;
  2547     } else if ( bt == T_FLOAT) {
  2548       // We convert float to int
  2549       out_sig_bt[total_c_args-1] = T_INT;
  2553   assert(i==total_args_passed, "validly parsed signature");
  2555   // Now get the compiled-Java layout as input arguments
  2556   int comp_args_on_stack;
  2557   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2558       in_sig_bt, in_regs, total_args_passed, false);
  2560   // We have received a description of where all the java arg are located
  2561   // on entry to the wrapper. We need to convert these args to where
  2562   // the a  native (non-jni) function would expect them. To figure out
  2563   // where they go we convert the java signature to a C signature and remove
  2564   // T_VOID for any long/double we might have received.
  2567   // Now figure out where the args must be stored and how much stack space
  2568   // they require (neglecting out_preserve_stack_slots but space for storing
  2569   // the 1st six register arguments). It's weird see int_stk_helper.
  2570   //
  2571   int out_arg_slots;
  2572   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2574   // Calculate the total number of stack slots we will need.
  2576   // First count the abi requirement plus all of the outgoing args
  2577   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2579   // Plus a temp for possible converion of float/double/long register args
  2581   int conversion_temp = stack_slots;
  2582   stack_slots += 2;
  2585   // Now space for the string(s) we must convert
  2587   int string_locs = stack_slots;
  2588   stack_slots += total_strings *
  2589                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2591   // Ok The space we have allocated will look like:
  2592   //
  2593   //
  2594   // FP-> |                     |
  2595   //      |---------------------|
  2596   //      | string[n]           |
  2597   //      |---------------------| <- string_locs[n]
  2598   //      | string[n-1]         |
  2599   //      |---------------------| <- string_locs[n-1]
  2600   //      | ...                 |
  2601   //      | ...                 |
  2602   //      |---------------------| <- string_locs[1]
  2603   //      | string[0]           |
  2604   //      |---------------------| <- string_locs[0]
  2605   //      | temp                |
  2606   //      |---------------------| <- conversion_temp
  2607   //      | outbound memory     |
  2608   //      | based arguments     |
  2609   //      |                     |
  2610   //      |---------------------|
  2611   //      |                     |
  2612   // SP-> | out_preserved_slots |
  2613   //
  2614   //
  2616   // Now compute actual number of stack words we need rounding to make
  2617   // stack properly aligned.
  2618   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2620   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2622   intptr_t start = (intptr_t)__ pc();
  2624   // First thing make an ic check to see if we should even be here
  2627     Label L;
  2628     const Register temp_reg = G3_scratch;
  2629     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2630     __ verify_oop(O0);
  2631     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2632     __ cmp(temp_reg, G5_inline_cache_reg);
  2633     __ brx(Assembler::equal, true, Assembler::pt, L);
  2634     __ delayed()->nop();
  2636     __ jump_to(ic_miss, temp_reg);
  2637     __ delayed()->nop();
  2638     __ align(CodeEntryAlignment);
  2639     __ bind(L);
  2642   int vep_offset = ((intptr_t)__ pc()) - start;
  2645   // The instruction at the verified entry point must be 5 bytes or longer
  2646   // because it can be patched on the fly by make_non_entrant. The stack bang
  2647   // instruction fits that requirement.
  2649   // Generate stack overflow check before creating frame
  2650   __ generate_stack_overflow_check(stack_size);
  2652   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2653          "valid size for make_non_entrant");
  2655   // Generate a new frame for the wrapper.
  2656   __ save(SP, -stack_size, SP);
  2658   // Frame is now completed as far a size and linkage.
  2660   int frame_complete = ((intptr_t)__ pc()) - start;
  2662 #ifdef ASSERT
  2663   bool reg_destroyed[RegisterImpl::number_of_registers];
  2664   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2665   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2666     reg_destroyed[r] = false;
  2668   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2669     freg_destroyed[f] = false;
  2672 #endif /* ASSERT */
  2674   VMRegPair zero;
  2675   const Register g0 = G0; // without this we get a compiler warning (why??)
  2676   zero.set2(g0->as_VMReg());
  2678   int c_arg, j_arg;
  2680   Register conversion_off = noreg;
  2682   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2683        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2685     VMRegPair src = in_regs[j_arg];
  2686     VMRegPair dst = out_regs[c_arg];
  2688 #ifdef ASSERT
  2689     if (src.first()->is_Register()) {
  2690       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2691     } else if (src.first()->is_FloatRegister()) {
  2692       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2693                                                FloatRegisterImpl::S)], "ack!");
  2695     if (dst.first()->is_Register()) {
  2696       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2697     } else if (dst.first()->is_FloatRegister()) {
  2698       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2699                                                  FloatRegisterImpl::S)] = true;
  2701 #endif /* ASSERT */
  2703     switch (in_sig_bt[j_arg]) {
  2704       case T_ARRAY:
  2705       case T_OBJECT:
  2707           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2708               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2709             // need to unbox a one-slot value
  2710             Register in_reg = L0;
  2711             Register tmp = L2;
  2712             if ( src.first()->is_reg() ) {
  2713               in_reg = src.first()->as_Register();
  2714             } else {
  2715               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  2716                      "must be");
  2717               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  2719             // If the final destination is an acceptable register
  2720             if ( dst.first()->is_reg() ) {
  2721               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  2722                 tmp = dst.first()->as_Register();
  2726             Label skipUnbox;
  2727             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  2728               __ mov(G0, tmp->successor());
  2730             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  2731             __ delayed()->mov(G0, tmp);
  2733             BasicType bt = out_sig_bt[c_arg];
  2734             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2735             switch (bt) {
  2736                 case T_BYTE:
  2737                   __ ldub(in_reg, box_offset, tmp); break;
  2738                 case T_SHORT:
  2739                   __ lduh(in_reg, box_offset, tmp); break;
  2740                 case T_INT:
  2741                   __ ld(in_reg, box_offset, tmp); break;
  2742                 case T_LONG:
  2743                   __ ld_long(in_reg, box_offset, tmp); break;
  2744                 default: ShouldNotReachHere();
  2747             __ bind(skipUnbox);
  2748             // If tmp wasn't final destination copy to final destination
  2749             if (tmp == L2) {
  2750               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  2751               if (out_sig_bt[c_arg] == T_LONG) {
  2752                 long_move(masm, tmp_as_VM, dst);
  2753               } else {
  2754                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  2757             if (out_sig_bt[c_arg] == T_LONG) {
  2758               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2759               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  2761           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  2762             Register s =
  2763                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  2764             Register d =
  2765                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  2767             // We store the oop now so that the conversion pass can reach
  2768             // while in the inner frame. This will be the only store if
  2769             // the oop is NULL.
  2770             if (s != L2) {
  2771               // src is register
  2772               if (d != L2) {
  2773                 // dst is register
  2774                 __ mov(s, d);
  2775               } else {
  2776                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2777                           STACK_BIAS), "must be");
  2778                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  2780             } else {
  2781                 // src not a register
  2782                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  2783                            STACK_BIAS), "must be");
  2784                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  2785                 if (d == L2) {
  2786                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2787                              STACK_BIAS), "must be");
  2788                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  2791           } else if (out_sig_bt[c_arg] != T_VOID) {
  2792             // Convert the arg to NULL
  2793             if (dst.first()->is_reg()) {
  2794               __ mov(G0, dst.first()->as_Register());
  2795             } else {
  2796               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2797                          STACK_BIAS), "must be");
  2798               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  2802         break;
  2803       case T_VOID:
  2804         break;
  2806       case T_FLOAT:
  2807         if (src.first()->is_stack()) {
  2808           // Stack to stack/reg is simple
  2809           move32_64(masm, src, dst);
  2810         } else {
  2811           if (dst.first()->is_reg()) {
  2812             // freg -> reg
  2813             int off =
  2814               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2815             Register d = dst.first()->as_Register();
  2816             if (Assembler::is_simm13(off)) {
  2817               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2818                      SP, off);
  2819               __ ld(SP, off, d);
  2820             } else {
  2821               if (conversion_off == noreg) {
  2822                 __ set(off, L6);
  2823                 conversion_off = L6;
  2825               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2826                      SP, conversion_off);
  2827               __ ld(SP, conversion_off , d);
  2829           } else {
  2830             // freg -> mem
  2831             int off = STACK_BIAS + reg2offset(dst.first());
  2832             if (Assembler::is_simm13(off)) {
  2833               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2834                      SP, off);
  2835             } else {
  2836               if (conversion_off == noreg) {
  2837                 __ set(off, L6);
  2838                 conversion_off = L6;
  2840               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2841                      SP, conversion_off);
  2845         break;
  2847       case T_DOUBLE:
  2848         assert( j_arg + 1 < total_args_passed &&
  2849                 in_sig_bt[j_arg + 1] == T_VOID &&
  2850                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2851         if (src.first()->is_stack()) {
  2852           // Stack to stack/reg is simple
  2853           long_move(masm, src, dst);
  2854         } else {
  2855           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  2857           // Destination could be an odd reg on 32bit in which case
  2858           // we can't load direct to the destination.
  2860           if (!d->is_even() && wordSize == 4) {
  2861             d = L2;
  2863           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2864           if (Assembler::is_simm13(off)) {
  2865             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  2866                    SP, off);
  2867             __ ld_long(SP, off, d);
  2868           } else {
  2869             if (conversion_off == noreg) {
  2870               __ set(off, L6);
  2871               conversion_off = L6;
  2873             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  2874                    SP, conversion_off);
  2875             __ ld_long(SP, conversion_off, d);
  2877           if (d == L2) {
  2878             long_move(masm, reg64_to_VMRegPair(L2), dst);
  2881         break;
  2883       case T_LONG :
  2884         // 32bit can't do a split move of something like g1 -> O0, O1
  2885         // so use a memory temp
  2886         if (src.is_single_phys_reg() && wordSize == 4) {
  2887           Register tmp = L2;
  2888           if (dst.first()->is_reg() &&
  2889               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  2890             tmp = dst.first()->as_Register();
  2893           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2894           if (Assembler::is_simm13(off)) {
  2895             __ stx(src.first()->as_Register(), SP, off);
  2896             __ ld_long(SP, off, tmp);
  2897           } else {
  2898             if (conversion_off == noreg) {
  2899               __ set(off, L6);
  2900               conversion_off = L6;
  2902             __ stx(src.first()->as_Register(), SP, conversion_off);
  2903             __ ld_long(SP, conversion_off, tmp);
  2906           if (tmp == L2) {
  2907             long_move(masm, reg64_to_VMRegPair(L2), dst);
  2909         } else {
  2910           long_move(masm, src, dst);
  2912         break;
  2914       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2916       default:
  2917         move32_64(masm, src, dst);
  2922   // If we have any strings we must store any register based arg to the stack
  2923   // This includes any still live xmm registers too.
  2925   if (total_strings > 0 ) {
  2927     // protect all the arg registers
  2928     __ save_frame(0);
  2929     __ mov(G2_thread, L7_thread_cache);
  2930     const Register L2_string_off = L2;
  2932     // Get first string offset
  2933     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  2935     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  2936       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2938         VMRegPair dst = out_regs[c_arg];
  2939         const Register d = dst.first()->is_reg() ?
  2940             dst.first()->as_Register()->after_save() : noreg;
  2942         // It's a string the oop and it was already copied to the out arg
  2943         // position
  2944         if (d != noreg) {
  2945           __ mov(d, O0);
  2946         } else {
  2947           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  2948                  "must be");
  2949           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  2951         Label skip;
  2953         __ br_null(O0, false, Assembler::pn, skip);
  2954         __ delayed()->add(FP, L2_string_off, O1);
  2956         if (d != noreg) {
  2957           __ mov(O1, d);
  2958         } else {
  2959           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  2960                  "must be");
  2961           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  2964         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  2965                 relocInfo::runtime_call_type);
  2966         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  2968         __ bind(skip);
  2973     __ mov(L7_thread_cache, G2_thread);
  2974     __ restore();
  2979   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2980   // patch in the trap
  2982   int patch_offset = ((intptr_t)__ pc()) - start;
  2984   __ nop();
  2987   // Return
  2989   __ ret();
  2990   __ delayed()->restore();
  2992   __ flush();
  2994   nmethod *nm = nmethod::new_dtrace_nmethod(
  2995       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2996       stack_slots / VMRegImpl::slots_per_word);
  2997   return nm;
  3001 #endif // HAVE_DTRACE_H
  3003 // this function returns the adjust size (in number of words) to a c2i adapter
  3004 // activation for use during deoptimization
  3005 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3006   assert(callee_locals >= callee_parameters,
  3007           "test and remove; got more parms than locals");
  3008   if (callee_locals < callee_parameters)
  3009     return 0;                   // No adjustment for negative locals
  3010   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3011   return round_to(diff, WordsPerLong);
  3014 // "Top of Stack" slots that may be unused by the calling convention but must
  3015 // otherwise be preserved.
  3016 // On Intel these are not necessary and the value can be zero.
  3017 // On Sparc this describes the words reserved for storing a register window
  3018 // when an interrupt occurs.
  3019 uint SharedRuntime::out_preserve_stack_slots() {
  3020   return frame::register_save_words * VMRegImpl::slots_per_word;
  3023 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3024 //
  3025 // Common out the new frame generation for deopt and uncommon trap
  3026 //
  3027   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3028   Register        Oreturn0           = O0;
  3029   Register        Oreturn1           = O1;
  3030   Register        O2UnrollBlock      = O2;
  3031   Register        O3array            = O3;         // Array of frame sizes (input)
  3032   Register        O4array_size       = O4;         // number of frames (input)
  3033   Register        O7frame_size       = O7;         // number of frames (input)
  3035   __ ld_ptr(O3array, 0, O7frame_size);
  3036   __ sub(G0, O7frame_size, O7frame_size);
  3037   __ save(SP, O7frame_size, SP);
  3038   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3040   #ifdef ASSERT
  3041   // make sure that the frames are aligned properly
  3042 #ifndef _LP64
  3043   __ btst(wordSize*2-1, SP);
  3044   __ breakpoint_trap(Assembler::notZero);
  3045 #endif
  3046   #endif
  3048   // Deopt needs to pass some extra live values from frame to frame
  3050   if (deopt) {
  3051     __ mov(Oreturn0->after_save(), Oreturn0);
  3052     __ mov(Oreturn1->after_save(), Oreturn1);
  3055   __ mov(O4array_size->after_save(), O4array_size);
  3056   __ sub(O4array_size, 1, O4array_size);
  3057   __ mov(O3array->after_save(), O3array);
  3058   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3059   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3061   #ifdef ASSERT
  3062   // trash registers to show a clear pattern in backtraces
  3063   __ set(0xDEAD0000, I0);
  3064   __ add(I0,  2, I1);
  3065   __ add(I0,  4, I2);
  3066   __ add(I0,  6, I3);
  3067   __ add(I0,  8, I4);
  3068   // Don't touch I5 could have valuable savedSP
  3069   __ set(0xDEADBEEF, L0);
  3070   __ mov(L0, L1);
  3071   __ mov(L0, L2);
  3072   __ mov(L0, L3);
  3073   __ mov(L0, L4);
  3074   __ mov(L0, L5);
  3076   // trash the return value as there is nothing to return yet
  3077   __ set(0xDEAD0001, O7);
  3078   #endif
  3080   __ mov(SP, O5_savedSP);
  3084 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3085   //
  3086   // loop through the UnrollBlock info and create new frames
  3087   //
  3088   Register        G3pcs              = G3_scratch;
  3089   Register        Oreturn0           = O0;
  3090   Register        Oreturn1           = O1;
  3091   Register        O2UnrollBlock      = O2;
  3092   Register        O3array            = O3;
  3093   Register        O4array_size       = O4;
  3094   Label           loop;
  3096   // Before we make new frames, check to see if stack is available.
  3097   // Do this after the caller's return address is on top of stack
  3098   if (UseStackBanging) {
  3099     // Get total frame size for interpreted frames
  3100     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3101     __ bang_stack_size(O4, O3, G3_scratch);
  3104   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3105   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3106   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3108   // Adjust old interpreter frame to make space for new frame's extra java locals
  3109   //
  3110   // We capture the original sp for the transition frame only because it is needed in
  3111   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3112   // every interpreter frame captures a savedSP it is only needed at the transition
  3113   // (fortunately). If we had to have it correct everywhere then we would need to
  3114   // be told the sp_adjustment for each frame we create. If the frame size array
  3115   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3116   // for each frame we create and keep up the illusion every where.
  3117   //
  3119   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3120   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3121   __ sub(SP, O7, SP);
  3123 #ifdef ASSERT
  3124   // make sure that there is at least one entry in the array
  3125   __ tst(O4array_size);
  3126   __ breakpoint_trap(Assembler::zero);
  3127 #endif
  3129   // Now push the new interpreter frames
  3130   __ bind(loop);
  3132   // allocate a new frame, filling the registers
  3134   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3136   __ tst(O4array_size);
  3137   __ br(Assembler::notZero, false, Assembler::pn, loop);
  3138   __ delayed()->add(O3array, wordSize, O3array);
  3139   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3143 //------------------------------generate_deopt_blob----------------------------
  3144 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3145 // instead.
  3146 void SharedRuntime::generate_deopt_blob() {
  3147   // allocate space for the code
  3148   ResourceMark rm;
  3149   // setup code generation tools
  3150   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3151 #ifdef _LP64
  3152   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3153 #else
  3154   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3155   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3156   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3157 #endif /* _LP64 */
  3158   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3159   FloatRegister   Freturn0           = F0;
  3160   Register        Greturn1           = G1;
  3161   Register        Oreturn0           = O0;
  3162   Register        Oreturn1           = O1;
  3163   Register        O2UnrollBlock      = O2;
  3164   Register        L0deopt_mode       = L0;
  3165   Register        G4deopt_mode       = G4_scratch;
  3166   int             frame_size_words;
  3167   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3168 #if !defined(_LP64) && defined(COMPILER2)
  3169   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3170 #endif
  3171   Label           cont;
  3173   OopMapSet *oop_maps = new OopMapSet();
  3175   //
  3176   // This is the entry point for code which is returning to a de-optimized
  3177   // frame.
  3178   // The steps taken by this frame are as follows:
  3179   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3180   //     and all potentially live registers (at a pollpoint many registers can be live).
  3181   //
  3182   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3183   //     returns information about the number and size of interpreter frames
  3184   //     which are equivalent to the frame which is being deoptimized)
  3185   //   - deallocate the unpack frame, restoring only results values. Other
  3186   //     volatile registers will now be captured in the vframeArray as needed.
  3187   //   - deallocate the deoptimization frame
  3188   //   - in a loop using the information returned in the previous step
  3189   //     push new interpreter frames (take care to propagate the return
  3190   //     values through each new frame pushed)
  3191   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3192   //   - call the C routine: Deoptimization::unpack_frames (this function
  3193   //     lays out values on the interpreter frame which was just created)
  3194   //   - deallocate the dummy unpack_frame
  3195   //   - ensure that all the return values are correctly set and then do
  3196   //     a return to the interpreter entry point
  3197   //
  3198   // Refer to the following methods for more information:
  3199   //   - Deoptimization::fetch_unroll_info
  3200   //   - Deoptimization::unpack_frames
  3202   OopMap* map = NULL;
  3204   int start = __ offset();
  3206   // restore G2, the trampoline destroyed it
  3207   __ get_thread();
  3209   // On entry we have been called by the deoptimized nmethod with a call that
  3210   // replaced the original call (or safepoint polling location) so the deoptimizing
  3211   // pc is now in O7. Return values are still in the expected places
  3213   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3214   __ ba(false, cont);
  3215   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3217   int exception_offset = __ offset() - start;
  3219   // restore G2, the trampoline destroyed it
  3220   __ get_thread();
  3222   // On entry we have been jumped to by the exception handler (or exception_blob
  3223   // for server).  O0 contains the exception oop and O7 contains the original
  3224   // exception pc.  So if we push a frame here it will look to the
  3225   // stack walking code (fetch_unroll_info) just like a normal call so
  3226   // state will be extracted normally.
  3228   // save exception oop in JavaThread and fall through into the
  3229   // exception_in_tls case since they are handled in same way except
  3230   // for where the pending exception is kept.
  3231   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3233   //
  3234   // Vanilla deoptimization with an exception pending in exception_oop
  3235   //
  3236   int exception_in_tls_offset = __ offset() - start;
  3238   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3239   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3241   // Restore G2_thread
  3242   __ get_thread();
  3244 #ifdef ASSERT
  3246     // verify that there is really an exception oop in exception_oop
  3247     Label has_exception;
  3248     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3249     __ br_notnull(Oexception, false, Assembler::pt, has_exception);
  3250     __ delayed()-> nop();
  3251     __ stop("no exception in thread");
  3252     __ bind(has_exception);
  3254     // verify that there is no pending exception
  3255     Label no_pending_exception;
  3256     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3257     __ ld_ptr(exception_addr, Oexception);
  3258     __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
  3259     __ delayed()->nop();
  3260     __ stop("must not have pending exception here");
  3261     __ bind(no_pending_exception);
  3263 #endif
  3265   __ ba(false, cont);
  3266   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3268   //
  3269   // Reexecute entry, similar to c2 uncommon trap
  3270   //
  3271   int reexecute_offset = __ offset() - start;
  3273   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3274   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3276   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3278   __ bind(cont);
  3280   __ set_last_Java_frame(SP, noreg);
  3282   // do the call by hand so we can get the oopmap
  3284   __ mov(G2_thread, L7_thread_cache);
  3285   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3286   __ delayed()->mov(G2_thread, O0);
  3288   // Set an oopmap for the call site this describes all our saved volatile registers
  3290   oop_maps->add_gc_map( __ offset()-start, map);
  3292   __ mov(L7_thread_cache, G2_thread);
  3294   __ reset_last_Java_frame();
  3296   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3297   // so this move will survive
  3299   __ mov(L0deopt_mode, G4deopt_mode);
  3301   __ mov(O0, O2UnrollBlock->after_save());
  3303   RegisterSaver::restore_result_registers(masm);
  3305   Label noException;
  3306   __ cmp(G4deopt_mode, Deoptimization::Unpack_exception);   // Was exception pending?
  3307   __ br(Assembler::notEqual, false, Assembler::pt, noException);
  3308   __ delayed()->nop();
  3310   // Move the pending exception from exception_oop to Oexception so
  3311   // the pending exception will be picked up the interpreter.
  3312   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3313   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3314   __ bind(noException);
  3316   // deallocate the deoptimization frame taking care to preserve the return values
  3317   __ mov(Oreturn0,     Oreturn0->after_save());
  3318   __ mov(Oreturn1,     Oreturn1->after_save());
  3319   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3320   __ restore();
  3322   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3324   make_new_frames(masm, true);
  3326   // push a dummy "unpack_frame" taking care of float return values and
  3327   // call Deoptimization::unpack_frames to have the unpacker layout
  3328   // information in the interpreter frames just created and then return
  3329   // to the interpreter entry point
  3330   __ save(SP, -frame_size_words*wordSize, SP);
  3331   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3332 #if !defined(_LP64)
  3333 #if defined(COMPILER2)
  3334   if (!TieredCompilation) {
  3335     // 32-bit 1-register longs return longs in G1
  3336     __ stx(Greturn1, saved_Greturn1_addr);
  3338 #endif
  3339   __ set_last_Java_frame(SP, noreg);
  3340   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3341 #else
  3342   // LP64 uses g4 in set_last_Java_frame
  3343   __ mov(G4deopt_mode, O1);
  3344   __ set_last_Java_frame(SP, G0);
  3345   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3346 #endif
  3347   __ reset_last_Java_frame();
  3348   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3350   // In tiered we never use C2 to compile methods returning longs so
  3351   // the result is where we expect it already.
  3353 #if !defined(_LP64) && defined(COMPILER2)
  3354   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3355   // I0/I1 if the return value is long.  In the tiered world there is
  3356   // a mismatch between how C1 and C2 return longs compiles and so
  3357   // currently compilation of methods which return longs is disabled
  3358   // for C2 and so is this code.  Eventually C1 and C2 will do the
  3359   // same thing for longs in the tiered world.
  3360   if (!TieredCompilation) {
  3361     Label not_long;
  3362     __ cmp(O0,T_LONG);
  3363     __ br(Assembler::notEqual, false, Assembler::pt, not_long);
  3364     __ delayed()->nop();
  3365     __ ldd(saved_Greturn1_addr,I0);
  3366     __ bind(not_long);
  3368 #endif
  3369   __ ret();
  3370   __ delayed()->restore();
  3372   masm->flush();
  3373   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3374   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3377 #ifdef COMPILER2
  3379 //------------------------------generate_uncommon_trap_blob--------------------
  3380 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3381 // instead.
  3382 void SharedRuntime::generate_uncommon_trap_blob() {
  3383   // allocate space for the code
  3384   ResourceMark rm;
  3385   // setup code generation tools
  3386   int pad = VerifyThread ? 512 : 0;
  3387 #ifdef _LP64
  3388   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3389 #else
  3390   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3391   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3392   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3393 #endif
  3394   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3395   Register        O2UnrollBlock      = O2;
  3396   Register        O2klass_index      = O2;
  3398   //
  3399   // This is the entry point for all traps the compiler takes when it thinks
  3400   // it cannot handle further execution of compilation code. The frame is
  3401   // deoptimized in these cases and converted into interpreter frames for
  3402   // execution
  3403   // The steps taken by this frame are as follows:
  3404   //   - push a fake "unpack_frame"
  3405   //   - call the C routine Deoptimization::uncommon_trap (this function
  3406   //     packs the current compiled frame into vframe arrays and returns
  3407   //     information about the number and size of interpreter frames which
  3408   //     are equivalent to the frame which is being deoptimized)
  3409   //   - deallocate the "unpack_frame"
  3410   //   - deallocate the deoptimization frame
  3411   //   - in a loop using the information returned in the previous step
  3412   //     push interpreter frames;
  3413   //   - create a dummy "unpack_frame"
  3414   //   - call the C routine: Deoptimization::unpack_frames (this function
  3415   //     lays out values on the interpreter frame which was just created)
  3416   //   - deallocate the dummy unpack_frame
  3417   //   - return to the interpreter entry point
  3418   //
  3419   //  Refer to the following methods for more information:
  3420   //   - Deoptimization::uncommon_trap
  3421   //   - Deoptimization::unpack_frame
  3423   // the unloaded class index is in O0 (first parameter to this blob)
  3425   // push a dummy "unpack_frame"
  3426   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3427   // vframe array and return the UnrollBlock information
  3428   __ save_frame(0);
  3429   __ set_last_Java_frame(SP, noreg);
  3430   __ mov(I0, O2klass_index);
  3431   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3432   __ reset_last_Java_frame();
  3433   __ mov(O0, O2UnrollBlock->after_save());
  3434   __ restore();
  3436   // deallocate the deoptimized frame taking care to preserve the return values
  3437   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3438   __ restore();
  3440   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3442   make_new_frames(masm, false);
  3444   // push a dummy "unpack_frame" taking care of float return values and
  3445   // call Deoptimization::unpack_frames to have the unpacker layout
  3446   // information in the interpreter frames just created and then return
  3447   // to the interpreter entry point
  3448   __ save_frame(0);
  3449   __ set_last_Java_frame(SP, noreg);
  3450   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3451   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3452   __ reset_last_Java_frame();
  3453   __ ret();
  3454   __ delayed()->restore();
  3456   masm->flush();
  3457   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3460 #endif // COMPILER2
  3462 //------------------------------generate_handler_blob-------------------
  3463 //
  3464 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3465 // up an OopMap.
  3466 //
  3467 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3468 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3469 // address in the original nmethod at which we should resume normal execution.
  3470 // Thus, this blob looks like a subroutine which must preserve lots of
  3471 // registers and return normally.  Note that O7 is never register-allocated,
  3472 // so it is guaranteed to be free here.
  3473 //
  3475 // The hardest part of what this blob must do is to save the 64-bit %o
  3476 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3477 // an interrupt will chop off their heads.  Making space in the caller's frame
  3478 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3479 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3480 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3481 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3482 // Tricky, tricky, tricky...
  3484 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  3485   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3487   // allocate space for the code
  3488   ResourceMark rm;
  3489   // setup code generation tools
  3490   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3491   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3492   // even larger with TraceJumps
  3493   int pad = TraceJumps ? 512 : 0;
  3494   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3495   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3496   int             frame_size_words;
  3497   OopMapSet *oop_maps = new OopMapSet();
  3498   OopMap* map = NULL;
  3500   int start = __ offset();
  3502   // If this causes a return before the processing, then do a "restore"
  3503   if (cause_return) {
  3504     __ restore();
  3505   } else {
  3506     // Make it look like we were called via the poll
  3507     // so that frame constructor always sees a valid return address
  3508     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3509     __ sub(O7, frame::pc_return_offset, O7);
  3512   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3514   // setup last_Java_sp (blows G4)
  3515   __ set_last_Java_frame(SP, noreg);
  3517   // call into the runtime to handle illegal instructions exception
  3518   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3519   __ mov(G2_thread, O0);
  3520   __ save_thread(L7_thread_cache);
  3521   __ call(call_ptr);
  3522   __ delayed()->nop();
  3524   // Set an oopmap for the call site.
  3525   // We need this not only for callee-saved registers, but also for volatile
  3526   // registers that the compiler might be keeping live across a safepoint.
  3528   oop_maps->add_gc_map( __ offset() - start, map);
  3530   __ restore_thread(L7_thread_cache);
  3531   // clear last_Java_sp
  3532   __ reset_last_Java_frame();
  3534   // Check for exceptions
  3535   Label pending;
  3537   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3538   __ tst(O1);
  3539   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
  3540   __ delayed()->nop();
  3542   RegisterSaver::restore_live_registers(masm);
  3544   // We are back the the original state on entry and ready to go.
  3546   __ retl();
  3547   __ delayed()->nop();
  3549   // Pending exception after the safepoint
  3551   __ bind(pending);
  3553   RegisterSaver::restore_live_registers(masm);
  3555   // We are back the the original state on entry.
  3557   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3558   // so it looks like the original nmethod called forward_exception_entry.
  3559   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3560   __ JMP(O0, 0);
  3561   __ delayed()->nop();
  3563   // -------------
  3564   // make sure all code is generated
  3565   masm->flush();
  3567   // return exception blob
  3568   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3571 //
  3572 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3573 //
  3574 // Generate a stub that calls into vm to find out the proper destination
  3575 // of a java call. All the argument registers are live at this point
  3576 // but since this is generic code we don't know what they are and the caller
  3577 // must do any gc of the args.
  3578 //
  3579 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3580   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3582   // allocate space for the code
  3583   ResourceMark rm;
  3584   // setup code generation tools
  3585   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3586   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3587   // even larger with TraceJumps
  3588   int pad = TraceJumps ? 512 : 0;
  3589   CodeBuffer buffer(name, 1600 + pad, 512);
  3590   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3591   int             frame_size_words;
  3592   OopMapSet *oop_maps = new OopMapSet();
  3593   OopMap* map = NULL;
  3595   int start = __ offset();
  3597   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3599   int frame_complete = __ offset();
  3601   // setup last_Java_sp (blows G4)
  3602   __ set_last_Java_frame(SP, noreg);
  3604   // call into the runtime to handle illegal instructions exception
  3605   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3606   __ mov(G2_thread, O0);
  3607   __ save_thread(L7_thread_cache);
  3608   __ call(destination, relocInfo::runtime_call_type);
  3609   __ delayed()->nop();
  3611   // O0 contains the address we are going to jump to assuming no exception got installed
  3613   // Set an oopmap for the call site.
  3614   // We need this not only for callee-saved registers, but also for volatile
  3615   // registers that the compiler might be keeping live across a safepoint.
  3617   oop_maps->add_gc_map( __ offset() - start, map);
  3619   __ restore_thread(L7_thread_cache);
  3620   // clear last_Java_sp
  3621   __ reset_last_Java_frame();
  3623   // Check for exceptions
  3624   Label pending;
  3626   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3627   __ tst(O1);
  3628   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
  3629   __ delayed()->nop();
  3631   // get the returned methodOop
  3633   __ get_vm_result(G5_method);
  3634   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3636   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3638   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3640   RegisterSaver::restore_live_registers(masm);
  3642   // We are back the the original state on entry and ready to go.
  3644   __ JMP(G3, 0);
  3645   __ delayed()->nop();
  3647   // Pending exception after the safepoint
  3649   __ bind(pending);
  3651   RegisterSaver::restore_live_registers(masm);
  3653   // We are back the the original state on entry.
  3655   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3656   // so it looks like the original nmethod called forward_exception_entry.
  3657   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3658   __ JMP(O0, 0);
  3659   __ delayed()->nop();
  3661   // -------------
  3662   // make sure all code is generated
  3663   masm->flush();
  3665   // return the  blob
  3666   // frame_size_words or bytes??
  3667   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
  3670 void SharedRuntime::generate_stubs() {
  3672   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3673                                              "wrong_method_stub");
  3675   _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3676                                         "ic_miss_stub");
  3678   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3679                                         "resolve_opt_virtual_call");
  3681   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3682                                         "resolve_virtual_call");
  3684   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3685                                         "resolve_static_call");
  3687   _polling_page_safepoint_handler_blob =
  3688     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3689                    SafepointSynchronize::handle_polling_page_exception), false);
  3691   _polling_page_return_handler_blob =
  3692     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3693                    SafepointSynchronize::handle_polling_page_exception), true);
  3695   generate_deopt_blob();
  3697 #ifdef COMPILER2
  3698   generate_uncommon_trap_blob();
  3699 #endif // COMPILER2

mercurial